WorldWideScience

Sample records for neural net backpropagation

  1. Training Deep Spiking Neural Networks Using Backpropagation.

    Science.gov (United States)

    Lee, Jun Haeng; Delbruck, Tobi; Pfeiffer, Michael

    2016-01-01

    Deep spiking neural networks (SNNs) hold the potential for improving the latency and energy efficiency of deep neural networks through data-driven event-based computation. However, training such networks is difficult due to the non-differentiable nature of spike events. In this paper, we introduce a novel technique, which treats the membrane potentials of spiking neurons as differentiable signals, where discontinuities at spike times are considered as noise. This enables an error backpropagation mechanism for deep SNNs that follows the same principles as in conventional deep networks, but works directly on spike signals and membrane potentials. Compared with previous methods relying on indirect training and conversion, our technique has the potential to capture the statistics of spikes more precisely. We evaluate the proposed framework on artificially generated events from the original MNIST handwritten digit benchmark, and also on the N-MNIST benchmark recorded with an event-based dynamic vision sensor, in which the proposed method reduces the error rate by a factor of more than three compared to the best previous SNN, and also achieves a higher accuracy than a conventional convolutional neural network (CNN) trained and tested on the same data. We demonstrate in the context of the MNIST task that thanks to their event-driven operation, deep SNNs (both fully connected and convolutional) trained with our method achieve accuracy equivalent with conventional neural networks. In the N-MNIST example, equivalent accuracy is achieved with about five times fewer computational operations.

  2. Training Deep Spiking Neural Networks using Backpropagation

    Directory of Open Access Journals (Sweden)

    Jun Haeng Lee

    2016-11-01

    Full Text Available Deep spiking neural networks (SNNs hold the potential for improving the latency and energy efficiency of deep neural networks through data-driven event-based computation. However, training such networks is difficult due to the non-differentiable nature of spike events. In this paper, we introduce a novel technique, which treats the membrane potentials of spiking neurons as differentiable signals, where discontinuities at spike times are considered as noise. This enables an error backpropagation mechanism for deep SNNs that follows the same principles as in conventional deep networks, but works directly on spike signals and membrane potentials. Compared with previous methods relying on indirect training and conversion, our technique has the potential to capture the statistics of spikes more precisely. We evaluate the proposed framework on artificially generated events from the original MNIST handwritten digit benchmark, and also on the N-MNIST benchmark recorded with an event-based dynamic vision sensor, in which the proposed method reduces the error rate by a factor of more than three compared to the best previous SNN, and also achieves a higher accuracy than a conventional convolutional neural network (CNN trained and tested on the same data. We demonstrate in the context of the MNIST task that thanks to their event-driven operation, deep SNNs (both fully connected and convolutional trained with our method achieve accuracy equivalent with conventional neural networks. In the N-MNIST example, equivalent accuracy is achieved with about five times fewer computational operations.

  3. Prediction of tides using back-propagation neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.

    Prediction of tides is very much essential for human activities and to reduce the construction cost in marine environment. This paper presents an application of the artificial neural network with back-propagation procedures for accurate prediction...

  4. Kontrol Kecepatan Motor Induksi menggunakan Algoritma Backpropagation Neural Network

    Directory of Open Access Journals (Sweden)

    MUHAMMAD RUSWANDI DJALAL

    2017-07-01

    Full Text Available ABSTRAKBanyak strategi kontrol berbasis kecerdasan buatan telah diusulkan dalam penelitian seperti Fuzzy Logic dan Artificial Neural Network (ANN. Tujuan dari penelitian ini adalah untuk mendesain sebuah kontrol agar kecepatan motor induksi dapat diatur sesuai kebutuhan serta membandingkan kinerja motor induksi tanpa kontrol dan dengan kontrol. Dalam penelitian ini diusulkan sebuah metode artificial neural network untuk mengontrol kecepatan motor induksi tiga fasa. Kecepatan referensi motor diatur pada kecepatan 140 rad/s, 150 rad/s, dan 130 rad/s. Perubahan kecepatan diatur pada setiap interval 0.3 detik dan waktu simulasi maksimum adalah 0,9 detik. Kasus 1 tanpa kontrol, menunjukkan respon torka dan kecepatan dari motor induksi tiga fasa tanpa kontrol. Meskipun kecepatan motor induksi tiga fasa diatur berubah pada setiap 0,3 detik tidak akan mempengaruhi torka. Selain itu, motor induksi tiga fasa tanpa kontrol memiliki kinerja yang buruk dikarenakan kecepatan motor induksi tidak dapat diatur sesuai dengan kebutuhan. Kasus 2 dengan control backpropagation neural network, meskipun kecepatan motor induksi tiga fasa berubah pada setiap 0.3 detik tidak akan mempengaruhi torsi. Selain itu, kontrol backpropagation neural network memiliki kinerja yang baik dikarenakan kecepatan motor induksi dapat diatur sesuai dengan kebutuhan.Kata kunci: Backpropagation Neural Network (BPNN, NN Training, NN Testing, Motor.ABSTRACTMany artificial intelligence-based control strategies have been proposed in research such as Fuzzy Logic and Artificial Neural Network (ANN. The purpose of this research was design a control for the induction motor speed that could be adjusted as needed and compare the performance of induction motor without control and with control. In this research, it was proposed an artificial neural network method to control the speed of three-phase induction motors. The reference speed of motor was set at the rate of 140 rad / s, 150 rad / s, and 130

  5. Impact of Mutation Weights on Training Backpropagation Neural Networks

    Directory of Open Access Journals (Sweden)

    Lamia Abed Noor Muhammed

    2014-07-01

    Full Text Available Neural network is a computational approach, which based on the simulation of biology neural network. This approach is conducted by several parameters; learning rate, initialized weights, network architecture, and so on. However, this paper would be focused on one of these parameters that is weights. The aim is to shed lights on the mutation weights through training network and its effects on the results. The experiment was done using backpropagation neural network with one hidden layer. The results reveal the role of mutation in escape from the local minima and making the change

  6. Kunstige neurale net

    DEFF Research Database (Denmark)

    Hørning, Annette

    1994-01-01

    Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse.......Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse....

  7. Comparative Study of Backpropagation Algorithms in Neural Network Based Identification of Power System

    Directory of Open Access Journals (Sweden)

    Sheela Tiwari

    2013-08-01

    Full Text Available This paperexplores theapplicationof artificial neural networksfor online identification of a multimachinepower system.Arecurrent neural networkhas been proposedas the identifier of the two area, four machinesystemwhich is a benchmark system for studying electromechanical oscillations in multimachine powersystems. This neural identifier is trained using the static Backpropagation algorithm. The emphasis of thepaper is on investigating the performance of the variants of the Backpropagation algorithm in training theneural identifier. The paper also compares the performances of the neural identifiers trained usingvariantsof the Backpropagation algorithmover a wide range of operating conditions.The simulation resultsestablish a satisfactory performance of the trained neural identifiers in identification of the test powersystem

  8. Backpropagation Artificial Neural Network To Detect Hyperthermic Seizures In Rats

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Sinha

    2003-02-01

    Full Text Available A three-layered feed-forward back-propagation Artificial Neural Network was used to classify the seizure episodes in rats. Seizure patterns were induced by subjecting anesthetized rats to a Biological Oxygen Demand incubator at 45-47ºC for 30 to 60 minutes. Selected fast Fourier transform data of one second epochs of electroencephalogram were used to train and test the network for the classification of seizure and normal patterns. The results indicate that the present network with the architecture of 40-12-1 (input-hidden-output nodes agrees with manual scoring of seizure and normal patterns with a high recognition rate of 98.6%.

  9. Conjugate descent formulation of backpropagation error in feedforward neural networks

    Directory of Open Access Journals (Sweden)

    NK Sharma

    2009-06-01

    Full Text Available The feedforward neural network architecture uses backpropagation learning to determine optimal weights between different interconnected layers. This learning procedure uses a gradient descent technique applied to a sum-of-squares error function for the given input-output pattern. It employs an iterative procedure to minimise the error function for a given set of patterns, by adjusting the weights of the network. The first derivates of the error with respect to the weights identify the local error surface in the descent direction. Hence the network exhibits a different local error surface for every different pattern presented to it, and weights are iteratively modified in order to minimise the current local error. The determination of an optimal weight vector is possible only when the total minimum error (mean of the minimum local errors for all patterns from the training set may be minimised. In this paper, we present a general mathematical formulation for the second derivative of the error function with respect to the weights (which represents a conjugate descent for arbitrary feedforward neural network topologies, and we use this derivative information to obtain the optimal weight vector. The local error is backpropagated among the units of hidden layers via the second order derivative of the error with respect to the weights of the hidden and output layers independently and also in combination. The new total minimum error point may be evaluated with the help of the current total minimum error and the current minimised local error. The weight modification processes is performed twice: once with respect to the present local error and once more with respect to the current total or mean error. We present some numerical evidence that our proposed method yields better network weights than those determined via a conventional gradient descent approach.

  10. A Comparison of the Backpropagation and Recursive Prediction Error Algorithms for Training Neural Networks.

    OpenAIRE

    1990-01-01

    A new recursive prediction error routine is compared with the backpropagation method of training neural networks. Results based on simulated systems, the prediction of Canadian Lynx data and the modelling of an automotive diesel engine indicate that the recursive prediction error algorithm is far superior to backpropagation.

  11. Klasifikasi Varietas Cabai Berdasarkan Morfologi Daun Menggunakan Backpropagation Neural Network

    Directory of Open Access Journals (Sweden)

    Kharis Syaban

    2016-07-01

    Full Text Available Compared with other methods of classifiers such as cellular and molecular biological methods, using the image of the leaves become the first choice in the classification of plants. The leaves can be characterized by shape, color, and texture; The leaves can have a color that varies depending on the season and geographical location. In addition, the same plant species also can have different leaf shapes. In this study, the morphological features of leaves used to identify varieties of pepper plants. The method used to perform feature extraction is a moment invariant and basic geometric features. For the process of recognition based on the features that have been extracted, used neural network methods with backpropagation learning algorithm. From the neural-network training, the best accuracy in classifying varieties of chili with minimum error 0.001 by providing learning rate 0.1, momentum of 0.7, and 15 neurons in the hidden layer foreach of various feature. To conduct cross-validation testing with k-fold tehcnique, obtained classification accuracy to be range of 80.75%±0.09% with k=4.

  12. Penggunaan Backpropagation Neural Network Pada Relay Jarak Untuk Mendeteksi Gangguan Pada Jaringan Transmisi

    OpenAIRE

    Ibnu Hajar

    2009-01-01

    Relay jarak digunakan untuk mengamankan jaringan transmisi dari gangguan hubung singkat, biasanya dirancang dengan range setting yang tetap. Jika impedansi jaringan transmisi yang akan diamankan tidak berada derange setting impedansi relay jarak, maka relay tidak bias bekerja. Penggunaan backpropagation neural network pada relay jarak untuk mendeteksi gangguan dengan mengenali pola-pola bentuk gelombang tegangan dan arus. Prinsip dari backpropagation neural network pada aplikasi relay jarak a...

  13. Uniformly stable backpropagation algorithm to train a feedforward neural network.

    Science.gov (United States)

    Rubio, José de Jesús; Angelov, Plamen; Pacheco, Jaime

    2011-03-01

    Neural networks (NNs) have numerous applications to online processes, but the problem of stability is rarely discussed. This is an extremely important issue because, if the stability of a solution is not guaranteed, the equipment that is being used can be damaged, which can also cause serious accidents. It is true that in some research papers this problem has been considered, but this concerns continuous-time NN only. At the same time, there are many systems that are better described in the discrete time domain such as population of animals, the annual expenses in an industry, the interest earned by a bank, or the prediction of the distribution of loads stored every hour in a warehouse. Therefore, it is of paramount importance to consider the stability of the discrete-time NN. This paper makes several important contributions. 1) A theorem is stated and proven which guarantees uniform stability of a general discrete-time system. 2) It is proven that the backpropagation (BP) algorithm with a new time-varying rate is uniformly stable for online identification and the identification error converges to a small zone bounded by the uncertainty. 3) It is proven that the weights' error is bounded by the initial weights' error, i.e., overfitting is eliminated in the proposed algorithm. 4) The BP algorithm is applied to predict the distribution of loads that a transelevator receives from a trailer and places in the deposits in a warehouse every hour, so that the deposits in the warehouse are reserved in advance using the prediction results. 5) The BP algorithm is compared with the recursive least square (RLS) algorithm and with the Takagi-Sugeno type fuzzy inference system in the problem of predicting the distribution of loads in a warehouse, giving that the first and the second are stable and the third is unstable. 6) The BP algorithm is compared with the RLS algorithm and with the Kalman filter algorithm in a synthetic example.

  14. Backpropagation Neural Network Modeling for Fault Location in Transmission Line 150 kV

    Directory of Open Access Journals (Sweden)

    Azriyenni Narwan

    2014-03-01

    Full Text Available In this topic research was provided about the backpropagation neural network to detect fault location in transmission line 150 kV between substation to substation. The distance relay is one of the good protective device and safety devices that often used on transmission line 150 kV. The disturbances in power system are used distance relay protection equipment in the transmission line. However, it needs more increasing large load and network systems are increasing complex. The protection system use the digital control, in order to avoid the error calculation of the distance relay impedance settings and spent time will be more efficient. Then backpropagation neural network is a computational model that uses the training process that can be used to solve the problem of work limitations of distance protection relays. The backpropagation neural network does not have limitations cause of the impedance range setting. If the output gives the wrong result, so the correct of the weights can be minimized and also the response of galat, the backpropagation neural network is expected to be closer to the correct value. In the end, backpropagation neural network modeling is expected to detect the fault location and identify operational output current circuit breaker was tripped it. The tests are performance with interconnected system 150 kV of Riau Region.

  15. Analisis Perbandingan Neural Network Backpropagation dengan Simple Perceptron dalam Mengenali Image Daun

    OpenAIRE

    Alfina, Ommi

    2012-01-01

    As one of the information processing systems, artificial neural networks (ANN) which resembles biological neural networks has grown rapidly. One application of artificial neural networks is in the field of biology which to categorize plant species. In order to determine the species of a plant, one usually looks at its flowers or its leaves. In this research, two artificial neural networks (ANN) methods which are backpropagation and simple perceptron are applied separately in order to evalua...

  16. Training a Feed-Forward Neural Network with Artificial Bee Colony based Backpropagation Method

    Directory of Open Access Journals (Sweden)

    Sudarshan Nandy

    2012-09-01

    Full Text Available Back-propagation algorithm is one of the most widely used and popular techniques to optimize the feedforward neural network training. Nature inspired meta-heuristic algorithms also provide derivative-freesolution to optimize complex problem. Artificial bee colony algorithm is a nature inspired meta-heuristicalgorithm, mimicking the foraging or food source searching behaviour of bees in a bee colony and thisalgorithm is implemented in several applications for an improved optimized outcome. The proposedmethod in this paper includes an improved artificial bee colony algorithm based back-propagation neuralnetwork training method for fast and improved convergence rate of the hybrid neural network learningmethod. The result is analysed with the genetic algorithm based back-propagation method, and it isanother hybridized procedure of its kind. Analysis is performed over standard data sets, reflecting the lightof efficiency of proposed method in terms of convergence speed and rate.

  17. Assembly Quality Prediction Based on Back-propagation Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    He Yong-yi

    2013-07-01

    Full Text Available Because of the severe geometrical distortion induced by the optical system and the limited kinetic accuracy of mechanical system in the vision-based mobile-phone lens’s assembly system, the nonlinear, perspective distortion errors and the kinematics errors generally exist in the assembly process of the mobile-phone lens. It is necessary to predict the assembly quality of the vision-based mobile-phone lens’s pick-and-place system so as to eliminate the immediate effect on the assembling process before extracting quantitative assembling. Comparison with current research methods, the back-propagation artificial neural network is applied to predict the assembly quality of the vision-based mobile-phone lens’s pick-and-place system. Firstly, the mobile-phone lens’s assembly quality characteristics are defined and sampled; Secondly, a back-propagation artificial neural network of the mobile-phone lens’s assembly quality prediction is presented; Finally apply some training samples obtained from the experiments to train and test this back-propagation artificial neural network. The results show that the proposed method is effective to predict the assembly quality of the vision-based mobile-phone lens’s pick-and-place system with high accuracy and high reliability.  

  18. Diagnosing coronary artery disease with a backpropagation neural network: Lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    Turner, D.D. [Pacific Northwest Lab., Richland, WA (United States); Holmes, E.R. [Sacred Heart Medical Center, Spokane, WA (United States)

    1995-12-31

    The SPECT (single photon emitted computed tomography) procedure, while widely used for diagnosing coronary artery disease, is not a perfect technology. We have investigated using a backpropagation neural network to diagnose patients suffering from coronary artery disease that is independent from the SPECT procedure. The raw thallium-201 scintigrams produced before the SPECT tomographic reconstruction were used as input patterns for the backpropagation neural network, and the diagnoses resulting mainly from cardiac catheterization as the desired outputs for each pattern. Several preprocessing techniques were applied to the scintigrams, in an attempt to improve the information to noise ratio. After using the a procedure that extracted a subimage containing the heart from each scintigram, we used a data reduction technique, thereby encoding the scintigram in 12 values, which were the inputs to the backpropagation neural network. The network was then trained. This network per-formed superbly for patients suffering from inferolateral disease (classifying 10 out of 10 correctly), but performance was less than optimal for cases involving other coronary zones. While the scope of this project was limited to diagnosing coronary artery disease, this initial work can be extended to other medical imaging procedures, such as diagnosing breast cancer from a mammogram and evaluating lung perfusion studies.

  19. Application of structured support vector machine backpropagation to a convolutional neural network for human pose estimation.

    Science.gov (United States)

    Witoonchart, Peerajak; Chongstitvatana, Prabhas

    2017-08-01

    In this study, for the first time, we show how to formulate a structured support vector machine (SSVM) as two layers in a convolutional neural network, where the top layer is a loss augmented inference layer and the bottom layer is the normal convolutional layer. We show that a deformable part model can be learned with the proposed structured SVM neural network by backpropagating the error of the deformable part model to the convolutional neural network. The forward propagation calculates the loss augmented inference and the backpropagation calculates the gradient from the loss augmented inference layer to the convolutional layer. Thus, we obtain a new type of convolutional neural network called an Structured SVM convolutional neural network, which we applied to the human pose estimation problem. This new neural network can be used as the final layers in deep learning. Our method jointly learns the structural model parameters and the appearance model parameters. We implemented our method as a new layer in the existing Caffe library. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Application of backpropagation neural networks to phonetic element classification

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, S.R.

    1990-01-01

    A need was established in conjunction with an USAF-sponsored project to develop a speech element classifier. This classifier had to be capable of placing continuous speech into a number of phoneme-like categories, and also had to be independent of speaker identity and individual voice characteristics. The feasibility of using a neural network to perform this classification task was explored. The results of this exploration are discussed here.

  1. Backpropagation Neural Network Implementation for Medical Image Compression

    Directory of Open Access Journals (Sweden)

    Kamil Dimililer

    2013-01-01

    Full Text Available Medical images require compression, before transmission or storage, due to constrained bandwidth and storage capacity. An ideal image compression system must yield high-quality compressed image with high compression ratio. In this paper, Haar wavelet transform and discrete cosine transform are considered and a neural network is trained to relate the X-ray image contents to their ideal compression method and their optimum compression ratio.

  2. Backpropagation Neural Ensemble for Localizing and Recognizing Non-Standardized Malaysia’s Car Plates

    Directory of Open Access Journals (Sweden)

    Chin Kim On

    2016-12-01

    Full Text Available In this paper, we describe a research project that autonomously localizes and recognizes non-standardized Malaysian’s car plates using conventional Backpropagation algorithm (BPP in combination with Ensemble Neural Network (ENN. We compared the results with the results obtained using simple Feed-Forward Neural Network (FFNN. This research aims to solve four main issues; (1 localization of car plates that has the same colour with the vehicle colour, (2 detection and recognition of car plates with varying sizes, (3 detection and recognition of car plates with different font types, and (4 detection and recognition of non-standardized car plates. The non-standardized Malaysian’s car plates are different from the normal plate as they contain italic characters, a combination of cursive characters, and different font types. The experimental results show that the combination of backpropagation and ENN can be effectively used to solve these four issues. The combination of BPP and ENN’s algorithm achieved a localization rate of 98% and a 97% in recognition rate. On the other hand, the combination of backpropagation and simple FFNN recorded a 96% recognition rate.

  3. Ocean wave parameters estimation using backpropagation neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; SubbaRao; Raju, D.H.

    of the chain rule to compute the influence of each weight in the network with respect to an arbitrary error function E: qE qw ij ¼ qE qs i C20C21 C2 qs i qnet i C20C21 C2 qnet i qw ij C20C21 . (6) Here, w ij is the weight from neuron j to neuron i, s i... is output, and net i is the weighted sum of the inputs of neuron i. Once the partial derivative for each weight is known, the aim of minimizing the error function is achieved. Various adaptive techniques [15] are available to efficiently minimize the error...

  4. The parallel implementation of a backpropagation neural network and its applicability to SPECT image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, J.P.

    1992-01-01

    The objective of this study was to determine the feasibility of using an Artificial Neural Network (ANN), in particular a backpropagation ANN, to improve the speed and quality of the reconstruction of three-dimensional SPECT (single photon emission computed tomography) images. In addition, since the processing elements (PE)s in each layer of an ANN are independent of each other, the speed and efficiency of the neural network architecture could be better optimized by implementing the ANN on a massively parallel computer. The specific goals of this research were: to implement a fully interconnected backpropagation neural network on a serial computer and a SIMD parallel computer, to identify any reduction in the time required to train these networks on the parallel machine versus the serial machine, to determine if these neural networks can learn to recognize SPECT data by training them on a section of an actual SPECT image, and to determine from the knowledge obtained in this research if full SPECT image reconstruction by an ANN implemented on a parallel computer is feasible both in time required to train the network, and in quality of the images reconstructed.

  5. The parallel implementation of a backpropagation neural network and its applicability to SPECT image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, J.P.

    1992-12-31

    The objective of this study was to determine the feasibility of using an Artificial Neural Network (ANN), in particular a backpropagation ANN, to improve the speed and quality of the reconstruction of three-dimensional SPECT (single photon emission computed tomography) images. In addition, since the processing elements (PE)s in each layer of an ANN are independent of each other, the speed and efficiency of the neural network architecture could be better optimized by implementing the ANN on a massively parallel computer. The specific goals of this research were: to implement a fully interconnected backpropagation neural network on a serial computer and a SIMD parallel computer, to identify any reduction in the time required to train these networks on the parallel machine versus the serial machine, to determine if these neural networks can learn to recognize SPECT data by training them on a section of an actual SPECT image, and to determine from the knowledge obtained in this research if full SPECT image reconstruction by an ANN implemented on a parallel computer is feasible both in time required to train the network, and in quality of the images reconstructed.

  6. Median Filter Noise Reduction of Image and Backpropagation Neural Network Model for Cervical Cancer Classification

    Science.gov (United States)

    Wutsqa, D. U.; Marwah, M.

    2017-06-01

    In this paper, we consider spatial operation median filter to reduce the noise in the cervical images yielded by colposcopy tool. The backpropagation neural network (BPNN) model is applied to the colposcopy images to classify cervical cancer. The classification process requires an image extraction by using a gray level co-occurrence matrix (GLCM) method to obtain image features that are used as inputs of BPNN model. The advantage of noise reduction is evaluated by comparing the performances of BPNN models with and without spatial operation median filter. The experimental result shows that the spatial operation median filter can improve the accuracy of the BPNN model for cervical cancer classification.

  7. Scanner color management model based on improved back-propagation neural network

    Institute of Scientific and Technical Information of China (English)

    Xinwu Li

    2008-01-01

    Scanner color management is one of the key techniques for color reproduction in information optics.A new scanner color management model is presented based on analyzing rendering principle of scanning objects.In this model,a standard color target is taken as experimental sample.Color blocks in color shade area are used to substitute complete color space to solve the difficulties in selecting experimental color blocks.Immune genetic algorithm is used to correct back-propagation neural network(BPNN)to speed up the convergence of the model.Experimental results show that the model can improve the accuracy of scanner color management.

  8. Improving the Performance of Backpropagation Neural Network Algorithm for Image Compression/Decompression System

    Directory of Open Access Journals (Sweden)

    Omaima N. A.

    2010-01-01

    Full Text Available Problem statement: The problem inherent to any digital image is the large amount of bandwidth required for transmission or storage. This has driven the research area of image compression to develop algorithms that compress images to lower data rates with better quality. Artificial neural networks are becoming attractive in image processing where high computational performance and parallel architectures are required. Approach: In this research, a three layered Backpropagation Neural Network (BPNN was designed for building image compression/decompression system. The Backpropagation neural network algorithm (BP was used for training the designed BPNN. Many techniques were used to speed up and improve this algorithm by using different BPNN architecture and different values of learning rate and momentum variables. Results: Experiments had been achieved, the results obtained, such as Compression Ratio (CR and peak signal to noise ratio (PSNR are compared with the performance of BP with different BPNN architecture and different learning parameters. The efficiency of the designed BPNN comes from reducing the chance of error occurring during the compressed image transmission through analog or digital channel. Conclusion: The performance of the designed BPNN image compression system can be increased by modifying the network itself, learning parameters and weights. Practically, we can note that the BPNN has the ability to compress untrained images but not in the same performance of the trained images.

  9. Application of the Backpropagation Neural Network Method in Designing Tungsten Heavy Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhao-hui; WANG Wei-jie; WANG Fu-chi; LI Shu-kui

    2006-01-01

    The model describing the dependence of the mechanical properties on the chemical composition and as deformation techniques of tungsten heavy alloy is established by the method of improved the backpropagation neural network. The mechanical properties' parameters of tungsten alloy and deformation techniques for tungsten alloy are used as the inputs. The chemical composition and deformation amount of tungsten alloy are used as the outputs. Then they are used for training the neural network. At the same time,the optimal number of the hidden neurons is obtained through the experiential equations,and the varied step learning method is adopted to ensure the stability of the training process. According to the requirements for mechanical properties,the chemical composition and the deformation condition for tungsten heavy alloy can be designed by this artificial neural network system.

  10. A Parallel Adaboost-Backpropagation Neural Network for Massive Image Dataset Classification

    Science.gov (United States)

    Cao, Jianfang; Chen, Lichao; Wang, Min; Shi, Hao; Tian, Yun

    2016-12-01

    Image classification uses computers to simulate human understanding and cognition of images by automatically categorizing images. This study proposes a faster image classification approach that parallelizes the traditional Adaboost-Backpropagation (BP) neural network using the MapReduce parallel programming model. First, we construct a strong classifier by assembling the outputs of 15 BP neural networks (which are individually regarded as weak classifiers) based on the Adaboost algorithm. Second, we design Map and Reduce tasks for both the parallel Adaboost-BP neural network and the feature extraction algorithm. Finally, we establish an automated classification model by building a Hadoop cluster. We use the Pascal VOC2007 and Caltech256 datasets to train and test the classification model. The results are superior to those obtained using traditional Adaboost-BP neural network or parallel BP neural network approaches. Our approach increased the average classification accuracy rate by approximately 14.5% and 26.0% compared to the traditional Adaboost-BP neural network and parallel BP neural network, respectively. Furthermore, the proposed approach requires less computation time and scales very well as evaluated by speedup, sizeup and scaleup. The proposed approach may provide a foundation for automated large-scale image classification and demonstrates practical value.

  11. A Parallel Adaboost-Backpropagation Neural Network for Massive Image Dataset Classification.

    Science.gov (United States)

    Cao, Jianfang; Chen, Lichao; Wang, Min; Shi, Hao; Tian, Yun

    2016-12-01

    Image classification uses computers to simulate human understanding and cognition of images by automatically categorizing images. This study proposes a faster image classification approach that parallelizes the traditional Adaboost-Backpropagation (BP) neural network using the MapReduce parallel programming model. First, we construct a strong classifier by assembling the outputs of 15 BP neural networks (which are individually regarded as weak classifiers) based on the Adaboost algorithm. Second, we design Map and Reduce tasks for both the parallel Adaboost-BP neural network and the feature extraction algorithm. Finally, we establish an automated classification model by building a Hadoop cluster. We use the Pascal VOC2007 and Caltech256 datasets to train and test the classification model. The results are superior to those obtained using traditional Adaboost-BP neural network or parallel BP neural network approaches. Our approach increased the average classification accuracy rate by approximately 14.5% and 26.0% compared to the traditional Adaboost-BP neural network and parallel BP neural network, respectively. Furthermore, the proposed approach requires less computation time and scales very well as evaluated by speedup, sizeup and scaleup. The proposed approach may provide a foundation for automated large-scale image classification and demonstrates practical value.

  12. The Prediction of Bandwidth On Need Computer Network Through Artificial Neural Network Method of Backpropagation

    Directory of Open Access Journals (Sweden)

    Ikhthison Mekongga

    2014-02-01

    Full Text Available The need for bandwidth has been increasing recently. This is because the development of internet infrastructure is also increasing so that we need an economic and efficient provider system. This can be achieved through good planning and a proper system. The prediction of the bandwidth consumption is one of the factors that support the planning for an efficient internet service provider system. Bandwidth consumption is predicted using ANN. ANN is an information processing system which has similar characteristics as the biologic al neural network.  ANN  is  chosen  to  predict  the  consumption  of  the  bandwidth  because  ANN  has  good  approachability  to  non-linearity.  The variable used in ANN is the historical load data. A bandwidth consumption information system was built using neural networks  with a backpropagation algorithm to make the use of bandwidth more efficient in the future both in the rental rate of the bandwidth and in the usage of the bandwidth.Keywords: Forecasting, Bandwidth, Backpropagation

  13. Simulation and optimization for synthetic technology of 2-chloro-4, 6-dinitroresorcinol based on back-propagation neural network

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Back-propagation neural network was applied to predict and optimize the synthetic technology of 2-chloro-4,6-dinitroresorcinol. A model was established based on back-propagation neural network using the experimental data of homogeneous design as the training sample set and the technological parameters were optimized by it. The optimal technological parameters are as follows: the reaction time is 4h, the rewere performed and the average yield of 2-chloro-4,6-dinitroresorcinol is 96.64%, the absolute error of it with the predicted value is - 1.07 %.

  14. Back-Propagation Artificial Neural Networks for Water Supply Pipeline Model

    Institute of Scientific and Technical Information of China (English)

    朱东海; 张土乔; 毛根海

    2002-01-01

    Water supply pipelines are the lifelines of a city. When pipelines burst, the burst site is difficult to locate by traditional methods such as manual tools or only by watching. In this paper, the burst site was identified using back-propagation (BP) artificial neural networks (ANN). The study is based on an indoor urban water supply model experiment. The key to appling BP ANN is to optimize the ANN's topological structure and learning parameters. This paper presents the optimizing method for a 3-layer BP neural network's topological structure and its learning parameters-learning ratio and the momentum factor. The indoor water supply pipeline model experimental results show that BP ANNs can be used to locate the burst point in urban water supply systems. The topological structure and learning parameters were optimized using the experimental results.

  15. Prediction model of microwave calcining of ammonium diuranate using incremental improved back-propagation neural network

    Institute of Scientific and Technical Information of China (English)

    Yingwei LI; Bingguo LIU; Jinhui PENG; Wei LI; Daifu HUANG; Libo ZHANG

    2011-01-01

    The incremental improved Back-Propagation (BP) neural network prediction model using the Levenberg-Marquardt algorithm based on optimizing theory is put forward,which can solve the problems existing in the process of calcinations for ammonium diuranate (ADU) by microwave heating,such as long testing cycle,high testing quantity,difficulty of optimization for process parameters. Many training data probably were offered by the way of increment batch and the limitation of the system memory could make the training data infeasible when the sample scale was large. The prediction model of the nonlinear system is built,which can effectively predict the experiment of microwave calcining of ADU,and the incremental improved BP neural network is very useful in overcoming the local minimum problem,finding the global optinal solution and accelerating the convergence speed.

  16. Neural net robot controller with guaranteed tracking performance.

    Science.gov (United States)

    Lewis, F L; Liu, K; Yesildirek, A

    1995-01-01

    A neural net (NN) controller for a general serial-link robot arm is developed. The NN has two layers so that linearity in the parameters holds, but the "net functional reconstruction error" and robot disturbance input are taken as nonzero. The structure of the NN controller is derived using a filtered error/passivity approach, leading to new NN passivity properties. Online weight tuning algorithms including a correction term to backpropagation, plus an added robustifying signal, guarantee tracking as well as bounded NN weights. The NN controller structure has an outer tracking loop so that the NN weights are conveniently initialized at zero, with learning occurring online in real-time. It is shown that standard backpropagation, when used for real-time closed-loop control, can yield unbounded NN weights if (1) the net cannot exactly reconstruct a certain required control function or (2) there are bounded unknown disturbances in the robot dynamics. The role of persistency of excitation is explored.

  17. Application of backpropagation artificial neural network prediction model for the PAH bioremediation of polluted soil.

    Science.gov (United States)

    Olawoyin, Richard

    2016-10-01

    The backpropagation (BP) artificial neural network (ANN) is a renowned and extensively functional mathematical tool used for time-series predictions and approximations; which also define results for non-linear functions. ANNs are vital tools in the predictions of toxicant levels, such as polycyclic aromatic hydrocarbons (PAH) potentially derived from anthropogenic activities in the microenvironment. In the present work, BP ANN was used as a prediction tool to study the potential toxicity of PAH carcinogens (PAHcarc) in soils. Soil samples (16 × 4 = 64) were collected from locations in South-southern Nigeria. The concentration of PAHcarc in laboratory cultivated white melilot, Melilotus alba roots grown on treated soils was predicted using ANN model training. Results indicated the Levenberg-Marquardt back-propagation training algorithm converged in 2.5E+04 epochs at an average RMSE value of 1.06E-06. The averagedR(2) comparison between the measured and predicted outputs was 0.9994. It may be deduced from this study that, analytical processes involving environmental risk assessment as used in this study can successfully provide prompt prediction and source identification of major soil toxicants.

  18. Hybrid intelligent system for Sale Forecasting using Delphi and adaptive Fuzzy Back-Propagation Neural Networks

    Directory of Open Access Journals (Sweden)

    Attariuas Hicham

    2012-12-01

    Full Text Available ales forecasting is one of the most crucial issues addressed in business. Control and evaluation of future sales still seem concerned both researchers and policy makers and managers of companies. this research propose an intelligent hybrid sales forecasting system Delphi-FCBPN sales forecast based on Delphi Method, fuzzy clustering and Back-propagation (BP Neural Networks with adaptive learning rate. The proposed model is constructed to integrate expert judgments, using Delphi method, in enhancing the model of FCBPN. Winter’s Exponential Smoothing method will be utilized to take the trend effect into consideration. The data for this search come from an industrial company that manufactures packaging. Analyze of results show that the proposed model outperforms other three different forecasting models in MAPE and RMSE measures.

  19. The Performance of EEG-P300 Classification using Backpropagation Neural Networks

    Directory of Open Access Journals (Sweden)

    Arjon Turnip

    2013-12-01

    Full Text Available Electroencephalogram (EEG recordings signal provide an important function of brain-computer communication, but the accuracy of their classification is very limited in unforeseeable signal variations relating to artifacts. In this paper, we propose a classification method entailing time-series EEG-P300 signals using backpropagation neural networks to predict the qualitative properties of a subject’s mental tasks by extracting useful information from the highly multivariate non-invasive recordings of brain activity. To test the improvement in the EEG-P300 classification performance (i.e., classification accuracy and transfer rate with the proposed method, comparative experiments were conducted using Bayesian Linear Discriminant Analysis (BLDA. Finally, the result of the experiment showed that the average of the classification accuracy was 97% and the maximum improvement of the average transfer rate is 42.4%, indicating the considerable potential of the using of EEG-P300 for the continuous classification of mental tasks.

  20. Parallelizing Backpropagation Neural Network Using MapReduce and Cascading Model.

    Science.gov (United States)

    Liu, Yang; Jing, Weizhe; Xu, Lixiong

    2016-01-01

    Artificial Neural Network (ANN) is a widely used algorithm in pattern recognition, classification, and prediction fields. Among a number of neural networks, backpropagation neural network (BPNN) has become the most famous one due to its remarkable function approximation ability. However, a standard BPNN frequently employs a large number of sum and sigmoid calculations, which may result in low efficiency in dealing with large volume of data. Therefore to parallelize BPNN using distributed computing technologies is an effective way to improve the algorithm performance in terms of efficiency. However, traditional parallelization may lead to accuracy loss. Although several complements have been done, it is still difficult to find out a compromise between efficiency and precision. This paper presents a parallelized BPNN based on MapReduce computing model which supplies advanced features including fault tolerance, data replication, and load balancing. And also to improve the algorithm performance in terms of precision, this paper creates a cascading model based classification approach, which helps to refine the classification results. The experimental results indicate that the presented parallelized BPNN is able to offer high efficiency whilst maintaining excellent precision in enabling large-scale machine learning.

  1. Parallelizing Backpropagation Neural Network Using MapReduce and Cascading Model

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-01-01

    Full Text Available Artificial Neural Network (ANN is a widely used algorithm in pattern recognition, classification, and prediction fields. Among a number of neural networks, backpropagation neural network (BPNN has become the most famous one due to its remarkable function approximation ability. However, a standard BPNN frequently employs a large number of sum and sigmoid calculations, which may result in low efficiency in dealing with large volume of data. Therefore to parallelize BPNN using distributed computing technologies is an effective way to improve the algorithm performance in terms of efficiency. However, traditional parallelization may lead to accuracy loss. Although several complements have been done, it is still difficult to find out a compromise between efficiency and precision. This paper presents a parallelized BPNN based on MapReduce computing model which supplies advanced features including fault tolerance, data replication, and load balancing. And also to improve the algorithm performance in terms of precision, this paper creates a cascading model based classification approach, which helps to refine the classification results. The experimental results indicate that the presented parallelized BPNN is able to offer high efficiency whilst maintaining excellent precision in enabling large-scale machine learning.

  2. Peak load forecasting using Bayesian regularization, Resilient and adaptive backpropagation learning based artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Lalit Mohan [Department of Electrical Engineering, National Institute of Technology, Kurukshetra, Haryana 136119 (India)

    2008-07-15

    Up to 7 days ahead electrical peak load forecasting has been done using feed forward neural network based on Steepest descent, Bayesian regularization, Resilient and adaptive backpropagation learning methods, by incorporating the effect of eleven weather parameters and past peak load information. To avoid trapping of network into a state of local minima, the optimization of user-defined parameters viz., learning rate and error goal has been performed. The sliding window concept has been incorporated for selection of training data set. It was then reduced as per relevant selection according to the day type and season for which the forecast is made. To reduce the dimensionality of input matrix, the Principal Component Analysis method of factor extraction or correlation analysis technique has been used and their performance has been compared. The resultant data set was used for training of three-layered neural network. In order to increase the learning speed, the weights and biases were initialized according to Nguyen and Widrow method. To avoid over fitting, early stopping of training was done at the minimum validation error. (author)

  3. Automatic volcanic ash detection from MODIS observations using a back-propagation neural network

    Directory of Open Access Journals (Sweden)

    T. M. Gray

    2015-12-01

    Full Text Available Due to the climate effects and aviation threats of volcanic eruptions, it is important to accurately locate ash in the atmosphere. This study aims to explore the accuracy and reliability of training a neural network to identify cases of ash using observations from the Moderate Resolution Imaging Spectroradiometer (MODIS. Satellite images were obtained for the following eruptions: Kasatochi, Aleutian Islands, 2008; Okmok, Aleutian Islands, 2008; Grímsvötn, northeastern Iceland, 2011; Chaitén, southern Chile, 2008; Puyehue-Cordón Caulle, central Chile, 2011; Sangeang Api, Indonesia, 2014; and Kelut, Indonesia, 2014. The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT model was used to obtain ash concentrations for the same archived eruptions. Two back-propagation neural networks were then trained using brightness temperature differences as inputs obtained via the following band combinations: 12–11, 11–8.6, 11–7.3, and 11 μm. Using the ash concentrations determined via HYSPLIT, flags were created to differentiate between ash (1 and no ash (0 and SO2-rich ash (1 and no SO2-rich ash (0 and used as output. When neural network output was compared to the test data set, 93 % of pixels containing ash were correctly identified and 7 % were missed. Nearly 100 % of pixels containing SO2-rich ash were correctly identified. The optimal thresholds, determined using Heidke skill scores, for ash retrieval and SO2-rich ash retrieval were 0.48 and 0.47, respectively. The networks show significantly less accuracy in the presence of high water vapor, liquid water, ice, or dust concentrations. Significant errors are also observed at the edge of the MODIS swath.

  4. Automatic volcanic ash detection from MODIS observations using a back-propagation neural network

    Directory of Open Access Journals (Sweden)

    T. M. Gray

    2015-08-01

    Full Text Available Due to the climate effects and aviation threats of volcanic eruptions, it is important to accurately locate ash in the atmosphere. This study aims to explore the accuracy and reliability of training a neural network to identify cases of ash using observations from the Moderate Resolution Imaging Spectroradiometer (MODIS. Satellite images were obtained for the following eruptions: Kasatochi, Aleutian Islands, 2008; Okmok, Aleutian Islands, 2008; Grímsvötn, northeastern Iceland, 2011; Chaiteìn, southern Chile, 2008; Puyehue-Cordoìn Caulle, central Chile, 2011; Sangeang Api, Indonesia, 2014; and Kelut, Indonesia, 2014. The Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT was used to obtain ash concentrations for the same archived eruptions. Two back-propagation neural networks were then trained using brightness temperature differences as inputs obtained via the following band combinations: 12-11, 11-8.6, 11-7.3, and 11 μm. Using the ash concentrations determined via HYSPLIT, flags were created to differentiate between ash (1 and no ash (0 and SO2-rich ash (1 and no SO2-rich ash (0 and used as output. When neural network output was compared to the test dataset, 93 % of pixels containing ash were correctly identified and 7 % were missed. Nearly 100 % of pixels containing SO2-rich ash were correctly identified. The optimal thresholds, determined using Heidke skill scores, for ash retrieval and SO2-rich ash retrieval were 0.48 and 0.47, respectively. The networks show significantly less accuracy in the presence of high water vapor, liquid water, ice, or dust concentrations. Significant errors are also observed at the edge of the MODIS swath.

  5. Forecasting outpatient visits using empirical mode decomposition coupled with back-propagation artificial neural networks optimized by particle swarm optimization.

    Science.gov (United States)

    Huang, Daizheng; Wu, Zhihui

    2017-01-01

    Accurately predicting the trend of outpatient visits by mathematical modeling can help policy makers manage hospitals effectively, reasonably organize schedules for human resources and finances, and appropriately distribute hospital material resources. In this study, a hybrid method based on empirical mode decomposition and back-propagation artificial neural networks optimized by particle swarm optimization is developed to forecast outpatient visits on the basis of monthly numbers. The data outpatient visits are retrieved from January 2005 to December 2013 and first obtained as the original time series. Second, the original time series is decomposed into a finite and often small number of intrinsic mode functions by the empirical mode decomposition technique. Third, a three-layer back-propagation artificial neural network is constructed to forecast each intrinsic mode functions. To improve network performance and avoid falling into a local minimum, particle swarm optimization is employed to optimize the weights and thresholds of back-propagation artificial neural networks. Finally, the superposition of forecasting results of the intrinsic mode functions is regarded as the ultimate forecasting value. Simulation indicates that the proposed method attains a better performance index than the other four methods.

  6. Forecasting outpatient visits using empirical mode decomposition coupled with back-propagation artificial neural networks optimized by particle swarm optimization

    Science.gov (United States)

    Huang, Daizheng; Wu, Zhihui

    2017-01-01

    Accurately predicting the trend of outpatient visits by mathematical modeling can help policy makers manage hospitals effectively, reasonably organize schedules for human resources and finances, and appropriately distribute hospital material resources. In this study, a hybrid method based on empirical mode decomposition and back-propagation artificial neural networks optimized by particle swarm optimization is developed to forecast outpatient visits on the basis of monthly numbers. The data outpatient visits are retrieved from January 2005 to December 2013 and first obtained as the original time series. Second, the original time series is decomposed into a finite and often small number of intrinsic mode functions by the empirical mode decomposition technique. Third, a three-layer back-propagation artificial neural network is constructed to forecast each intrinsic mode functions. To improve network performance and avoid falling into a local minimum, particle swarm optimization is employed to optimize the weights and thresholds of back-propagation artificial neural networks. Finally, the superposition of forecasting results of the intrinsic mode functions is regarded as the ultimate forecasting value. Simulation indicates that the proposed method attains a better performance index than the other four methods. PMID:28222194

  7. A Short-Range Quantitative Precipitation Forecast Algorithm Using Back-Propagation Neural Network Approach

    Institute of Scientific and Technical Information of China (English)

    FENG Yerong; David H.KITZMILLER

    2006-01-01

    A back-propagation neural network (BPNN) was used to establish relationships between the shortrange (0-3-h) rainfall and the predictors ranging from extrapolative forecasts of radar reflectivity, satelliteestimated cloud-top temperature, lightning strike rates, and Nested Grid Model (NGM) outputs. Quantitative precipitation forecasts (QPF) and the probabilities of categorical precipitation were obtained.Results of the BPNN algorithm were compared to the results obtained from the multiple linear regression algorithm for an independent dataset from the 1999 warm season over the continental United States. A sample forecast was made over the southeastern United States. Results showed that the BPNN categorical rainfall forecasts agreed well with Stage Ⅲ observations in terms of the size and shape of the area of rainfall. The BPNN tended to over-forecast the spatial extent of heavier rainfall amounts, but the positioning of the areas with rainfall ≥25.4 mm was still generally accurate. It appeared that the BPNN and linear regression approaches produce forecasts of very similar quality, although in some respects BPNN slightly outperformed the regression.

  8. Forest Fire Smoke Detection Using Back-Propagation Neural Network Based on MODIS Data

    Directory of Open Access Journals (Sweden)

    Xiaolian Li

    2015-04-01

    Full Text Available Satellite remote sensing provides global observations of the Earth’s surface and provides useful information for monitoring smoke plumes emitted from forest fires. The aim of this study is to automatically separate smoke plumes from the background by analyzing the MODIS data. An identification algorithm was improved based on the spectral analysis among the smoke, cloud and underlying surface. In order to get satisfactory results, a multi-threshold method is used for extracting training sample sets to train back-propagation neural network (BPNN classification for merging the smoke detection algorithm. The MODIS data from three forest fires were used to develop the algorithm and get parameter values. These fires occurred in (i China on 16 October 2004, (ii Northeast Asia on 29 April 2009 and (iii Russia on 29 July 2010 in different seasons. Then, the data from four other fires were used to validate the algorithm. Results indicated that the algorithm captured both thick smoke and thin dispersed smoke over land, as well as the mixed pixels of smoke over the ocean. These results could provide valuable information concerning forest fire location, fire spreading and so on.

  9. Automatic Selection of Open Source Multimedia Softwares Using Error Back-Propagation Neural Network

    Directory of Open Access Journals (Sweden)

    Deepika

    2015-07-01

    Full Text Available Open source opens a new era to provide license of the software for the user at free of cost which is advantage over paid licensed software. In Multimedia applications there are many versions of software are available and there is a problem for the user to select compatible software for their own system. Most of the time while surfing for software a huge list of software opens in response. The selection of particular software which is pretty suitable for the system from a real big list is the biggest challenge that is faced by the users. This work has been done that focuses on the existing open source software that are widely used and to design an automatic system for selection of particular open source software according to the compatibility of users own system. In this work, error back-propagation based neural network is designed in MATLAB for automatic selection of open source software. The system provides the open source software name after taking the information from user. Regression coefficient of 0.93877 is obtained and the results shown are up to the mark and can be utilized for the fast and effective software search.

  10. Study on range interval distance of prestressed anchor bars using update backpropagation neural network

    Institute of Scientific and Technical Information of China (English)

    WU Shun-chuan(吴顺川); ZHANG You-pa(张友葩); GAO Yong-tao(高永涛)

    2003-01-01

    Taking the practical reinforced engineering of a reinforced soil retaining wall as an example, which located in Shandong Province and set on 104 national highway, the stress-spread behaviors of the anchor bars in the preforced proceeding were tested. According to the test data, and by use of the update backpropagation (BP) algorithm neural network(NN), the test method and it's mechanism were studied by the network, then the learning results show the mean square error(MSE) only at the 2.55% level, and the proof-testing results show the MSE at 4.38% level (the main aim is to build a NN directly from the in-situ test results (the learning phase)). Ipso-facto, the learning and adjustment abilities of the NN permit us to develop the test data, subsequently, 36 test data were acquired from the NN. By use of the provide data, as well as the failure situation and carried loading capacity of the retaining wall, finally, the choice the reasonable range interval distance of prestress cement grouting anchor bars were carried out, and the result was 2 m×2 m.

  11. Modeling water and carbon fluxes above summer maize field in North China Plain with back-propagation neural networks

    Institute of Scientific and Technical Information of China (English)

    QIN Zhong; SU Gao-li; YU Qiang; HU Bing-min; LI Jun

    2005-01-01

    In this work, datasets of water and carbon fluxes measured with eddy covariance technique above a summer maize field in the North China Plain were simulated with artificial neural networks (ANNs) to explore the fluxes responses to local environmental variables. The results showed that photosynthetically active radiation (PAR), vapor pressure deficit (VPD), air temperature (T) and leaf area index (LAI) were primary factors regulating both water vapor and carbon dioxide fluxes. Three-layer back-propagation neural networks (BP) could be applied to model fluxes exchange between cropland surface and atmosphere without using detailed physiological information or specific parameters of the plant.

  12. Perbandingan Kinerja Jaringan Saraf Tiruan Model Backpropagation dan General Regression Neural Network Untuk Mengidentifikasi Jenis Daging Sapi

    Directory of Open Access Journals (Sweden)

    Nugroho Nugroho

    2012-01-01

    Full Text Available The research on image identification has been conducted to identify the type of beef. The research is aimed to compare the performance of  artificial  neural  network  of  backpropagation  and  general  regression  neural  network  model  in  identifying  the  type  of  meat.  Image management is processed by counting R, G and B value in every meat image, and normalization process is then carried out by obtaining R, G, and B index value which is then converted from RGB model to HSI model to obtain the value of hue, saturation and intensity. The resulting value of image processing will be used as input parameter of training and validation programs. The performance of  G RNN model is more accurate than the backpropagation with accuracy ratio by 51%.Keyword: Identification; Backpropagation; GRNN

  13. Neural Net Safety Monitor Design

    Science.gov (United States)

    Larson, Richard R.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) at the Dryden Flight Research Center (DFRC) has been conducting flight-test research using an F-15 aircraft (figure 1). This aircraft has been specially modified to interface a neural net (NN) controller as part of a single-string Airborne Research Test System (ARTS) computer with the existing quad-redundant flight control system (FCC) shown in figure 2. The NN commands are passed to FCC channels 2 and 4 and are cross channel data linked (CCDL) to the other computers as shown. Numerous types of fault-detection monitors exist in the FCC when the NN mode is engaged; these monitors would cause an automatic disengagement of the NN in the event of a triggering fault. Unfortunately, these monitors still may not prevent a possible NN hard-over command from coming through to the control laws. Therefore, an additional and unique safety monitor was designed for a single-string source that allows authority at maximum actuator rates but protects the pilot and structural loads against excessive g-limits in the case of a NN hard-over command input. This additional monitor resides in the FCCs and is executed before the control laws are computed. This presentation describes a floating limiter (FL) concept1 that was developed and successfully test-flown for this program (figure 3). The FL computes the rate of change of the NN commands that are input to the FCC from the ARTS. A window is created with upper and lower boundaries, which is constantly floating and trying to stay centered as the NN command rates are changing. The limiter works by only allowing the window to move at a much slower rate than those of the NN commands. Anywhere within the window, however, full rates are allowed. If a rate persists in one direction, it will eventually hit the boundary and be rate-limited to the floating limiter rate. When this happens, a persistent counter begins and after a limit is reached, a NN disengage command is generated. The

  14. Klasifikasi Varietas Tanaman Kelengkeng Berdasarkan Morfologi Daun Menggunakan Backpropagation Neural Network dan Probabilistic Neural Network

    Directory of Open Access Journals (Sweden)

    Hermawan Syahputra

    2011-11-01

    Full Text Available Pengenalan daun memainkan peran penting dalam klasifikasi tanaman dan isu utamanya terletak pada apakah fitur yang dipilih stabil dan memiliki kemampuan yang baik untuk membedakan berbagai jenis daun. Pengenalan tanaman berbantuan komputer merupakan tugas yang masih sangat menantang dalam visi komputer karena kurangnya model atau skema representasi yang tepat. Fokus komputerisasi pengenalan tanaman hidup adalah untuk mengukur bentuk geometris berbasis morfologi daun. Informasi ini memainkan peran penting dalam mengidentifikasi berbagai kelas tanaman. Pada penelitian ini dilakukan pengenalan jenis tanaman berdasarkan fitur yang menonjol dari daun seperti fisiologis panjang (physiological length, lebar (physiological width, diameter,  keliling (leaf perimeter, luas (leaf area, faktor mulus (narrow factor, rasio aspek (aspect ratio, factor bentuk (form factor, rectangularity, rasio perimeter terhadap diameter, rasio perimeter panjang fisiologi dan lebar fisiologi yang dapat digunakan untuk membedakan satu sama lain. Berdasarkan hasil pengujian, ditunjukkan bahwa hasil pencocokkan daun kelengkeng dengan menggunakan neural network lebih baik dibandingkan dengan hasil pencocokkan daun kelengkeng dengan menggunakan probabilistic neural network. Akan tetapi ekstraksi fitur dengan menggunakan morfologi belum dapat memberikan informasi pembeda yang signifikan bagi pengenalan tanaman varitas kelengkeng berdasarkan daunnya. Keywords— klasifikasi, morfologi daun, neural network, probabilistic neural network

  15. CDMA and TDMA based neural nets.

    Science.gov (United States)

    Herrero, J C

    2001-06-01

    CDMA and TDMA telecommunication techniques were established long time ago, but they have acquired a renewed presence due to the rapidly increasing mobile phones demand. In this paper, we are going to see they are suitable for neural nets, if we leave the concept "connection" between processing units and we adopt the concept "messages" exchanged between them. This may open the door to neural nets with a higher number of processing units and flexible configuration.

  16. Template learning in morphological neural nets

    Science.gov (United States)

    Davidson, Jennifer L.; Sun, K.

    1991-07-01

    This paper presents an application of morphology neural networks to a template learning problem. Morphology neural networks are a nonlinear version of the familiar artificial neural networks. Typically, an artificial neural net is used to solve pattern classification problems One useful characterization of many neural network algorithms is the ability to 'learn' to respond correctly to new data based only on a selection of known data responses. For example, in the multilayer perceptron model, the 'learning' is a procedure whereby parameters are fed back from output to input neurons and the weights changed to give a better response. The morphological neural net in this paper solves a different type of image processing problem. Specifically, given an input image and an output image which corresponds to a dilated version of the input, one would like to determine what template produced the output. The problem corresponds to teaching the network to solve for the weights in a morphological net, as the weights are the template's values. A reasonable method has been investigated for the boolean case; in this paper results are presented for gray scale images. Image algebra has been shown to provide a succinct expression of neural networks algorithms and also to allow a generalization of neural networks, and thus the authors describe the algorithm in image algebra. The remainder of the paper gives a brief discussion of image algebra, the relationship of image algebra and neural networks, a recap of the dilation morphology neural network boolean for boolean images, and the generalization to grayscale data.

  17. Prediction of Negative Conversion Days of Childhood Nephrotic Syndrome Based on the Improved Backpropagation Neural Network with Momentum

    Directory of Open Access Journals (Sweden)

    Yi-jun Liu

    2015-12-01

    Full Text Available Childhood nephrotic syndrome is a chronic disease harmful to growth of children. Scientific and accurate prediction of negative conversion days for children with nephrotic syndrome offers potential benefits for treatment of patients and helps achieve better cure effect. In this study, the improved backpropagation neural network with momentum is used for prediction. Momentum speeds up convergence and maintains the generalization performance of the neural network, and therefore overcomes weaknesses of the standard backpropagation algorithm. The three-tier network structure is constructed. Eight indicators including age, lgG, lgA and lgM, etc. are selected for network inputs. The scientific computing software of MATLAB and its neural network tools are used to create model and predict. The training sample of twenty-eight cases is used to train the neural network. The test sample of six typical cases belonging to six different age groups respectively is used to test the predictive model. The low mean absolute error of predictive results is achieved at 0.83. The experimental results of the small-size sample show that the proposed approach is to some degree applicable for the prediction of negative conversion days of childhood nephrotic syndrome.

  18. Optimizing the Flexural Strength of Beams Reinforced with Fiber Reinforced Polymer Bars Using Back-Propagation Neural Networks

    Directory of Open Access Journals (Sweden)

    Bahman O. Taha

    2015-06-01

    Full Text Available The reinforced concrete with fiber reinforced polymer (FRP bars (carbon, aramid, basalt and glass is used in places where a high ratio of strength to weight is required and corrosion is not acceptable. Behavior of structural members using (FRP bars is hard to be modeled using traditional methods because of the high non-linearity relationship among factors influencing the strength of structural members. Back-propagation neural network is a very effective method for modeling such complicated relationships. In this paper, back-propagation neural network is used for modeling the flexural behavior of beams reinforced with (FRP bars. 101 samples of beams reinforced with fiber bars were collected from literatures. Five important factors are taken in consideration for predicting the strength of beams. Two models of Multilayer Perceptron (MLP are created, first with single-hidden layer and the second with two-hidden layers. The two-hidden layer model showed better accuracy ratio than the single-hidden layer model. Parametric study has been done for two-hidden layer model only. Equations are derived to be used instead of the model and the importance of input factors is determined. Results showed that the neural network is successful in modeling the behavior of concrete beams reinforced with different types of (FRP bars.

  19. Classification using Bayesian neural nets

    NARCIS (Netherlands)

    J.C. Bioch (Cor); O. van der Meer; R. Potharst (Rob)

    1995-01-01

    textabstractRecently, Bayesian methods have been proposed for neural networks to solve regression and classification problems. These methods claim to overcome some difficulties encountered in the standard approach such as overfitting. However, an implementation of the full Bayesian approach to neura

  20. A Novel Prediction Algorithm of DR Position Error Based on Bayesian Regularization Back-propagation Neural Network

    Directory of Open Access Journals (Sweden)

    Li Honglian

    2013-07-01

    Full Text Available It is difficult to accurately reckon vehicle position for vehicle navigation system (VNS during GPS outages, a novel prediction algorithm of dead reckon (DR position error is put forward, which based on Bayesian regularization back-propagation (BRBP neural network. DR, GPS position data are first de-noised and compared at different stationary wavelet transformation (SWT decomposition level, and DR position error data are acquired after the SWT coefficients differences are reconstructed. A neural network to mimic position error property is trained with back-propagation algorithm, and the algorithm is improved for improving its generalization by Bayesian regularization theory. During GPS outages, the established prediction algorithm predictes DR position errors, and provides precise position for VNS through DR position error data updating DR position data. The simulation results show the positioning precision of the BRBP algorithm is best among the presented prediction algorithms such as simple DR and adaptive linear network, and a precise mathematical model of navigation sensors isn’t established.

  1. Sales Forecasting Based on ERP System through Delphi, fuzzy Clustering and Back-Propagation Neural Networks with adaptive learning rate

    Directory of Open Access Journals (Sweden)

    Attariuas Hicham

    2012-11-01

    Full Text Available In recent years, there has been a strong tendency by companies to use centralized management systems like Enterprise resource planning (ERP. ERP systems offer a comprehensive and simplified process managements and extensive functional coverage. Sales management module is an important element business management of ERP. This paper describes an intelligent hybrid sales forecasting system ERP-FCBPN sales forecast based on architecture of ERP through Delphi, fuzzy clustering and Back-propagation (BP Neural Networks with adaptive learning rate (FCBPN. The proposed approach is composed of three stages: (1 Stage of data collection: Data collection will be implemented from the fields (attributes existing at the interfaces (Tables the database of the ERP. Collection of Key factors that influence sales be made using the Delphi method; (2 Stage of Data preprocessing: Winter Exponential Smoothing method will be utilized to take the trend effect into consideration. (3 Stage of learning by FCBPN: We use hybrid sales forecasting system based on Delphi, fuzzy clustering and Back-propagation (BP Neural Networks with adaptive learning rate (FCBPN. The data for this study come from an industrial company that manufactures packaging. Experimental results show that the proposed model outperforms the previous and traditional approaches. Therefore, it is a very promising solution for industrial forecasting.

  2. Chemometric model for simultaneous spectrophotometric estimation of phenobarbitone and phenytoin sodium in tablets using back-propagation neural network

    Directory of Open Access Journals (Sweden)

    Satyanarayana D

    2006-01-01

    Full Text Available A chemometric model for the simultaneous estimation of phenobarbitone and phenytoin sodium anticonvulsant tablets using the back-propagation neural network calibration has been presented. The use of calibration datasets constructed from the spectral data of pure components is proposed. The calibration sets were designed such that the concentrations were orthogonal and span the possible mixture space fairly evenly. Spectra of phenobarbitone and phenytoin sodium were recorded at several concentrations within their linear range and used to compute the calibration mixture between wavelengths 220 and 260 nm at an interval of 1 nm. The back-propagation neural network model was optimized using three different sets of calibration and monitoring data for the number of hidden sigmoid neurons. The calibration model was thoroughly evaluated at several concentration levels using spectra obtained for 95 synthetic binary mixtures prepared using orthogonal designs. The optimized model showed sufficient robustness even when the calibration sets were constructed from different sets of pure spectra of components. Although the components showed complete spectral overlap, the model could accurately estimate the drugs, with satisfactory precision and accuracy, in tablet dosage with no interference from excipients, as indicated by the recovery study results.

  3. Estimation of biogas and methane yields in an UASB treating potato starch processing wastewater with backpropagation artificial neural network.

    Science.gov (United States)

    Antwi, Philip; Li, Jianzheng; Boadi, Portia Opoku; Meng, Jia; Shi, En; Deng, Kaiwen; Bondinuba, Francis Kwesi

    2017-03-01

    Three-layered feedforward backpropagation (BP) artificial neural networks (ANN) and multiple nonlinear regression (MnLR) models were developed to estimate biogas and methane yield in an upflow anaerobic sludge blanket (UASB) reactor treating potato starch processing wastewater (PSPW). Anaerobic process parameters were optimized to identify their importance on methanation. pH, total chemical oxygen demand, ammonium, alkalinity, total Kjeldahl nitrogen, total phosphorus, volatile fatty acids and hydraulic retention time selected based on principal component analysis were used as input variables, whiles biogas and methane yield were employed as target variables. Quasi-Newton method and conjugate gradient backpropagation algorithms were best among eleven training algorithms. Coefficient of determination (R(2)) of the BP-ANN reached 98.72% and 97.93% whiles MnLR model attained 93.9% and 91.08% for biogas and methane yield, respectively. Compared with the MnLR model, BP-ANN model demonstrated significant performance, suggesting possible control of the anaerobic digestion process with the BP-ANN model.

  4. ALPHABET SIGN LANGUAGE RECOGNITION USING LEAP MOTION TECHNOLOGY AND RULE BASED BACKPROPAGATION-GENETIC ALGORITHM NEURAL NETWORK (RBBPGANN

    Directory of Open Access Journals (Sweden)

    Wijayanti Nurul Khotimah

    2017-01-01

    Full Text Available Sign Language recognition was used to help people with normal hearing communicate effectively with the deaf and hearing-impaired. Based on survey that conducted by Multi-Center Study in Southeast Asia, Indonesia was on the top four position in number of patients with hearing disability (4.6%. Therefore, the existence of Sign Language recognition is important. Some research has been conducted on this field. Many neural network types had been used for recognizing many kinds of sign languages. However, their performance are need to be improved. This work focuses on the ASL (Alphabet Sign Language in SIBI (Sign System of Indonesian Language which uses one hand and 26 gestures. Here, thirty four features were extracted by using Leap Motion. Further, a new method, Rule Based-Backpropagation Genetic Al-gorithm Neural Network (RB-BPGANN, was used to recognize these Sign Languages. This method is combination of Rule and Back Propagation Neural Network (BPGANN. Based on experiment this pro-posed application can recognize Sign Language up to 93.8% accuracy. It was very good to recognize large multiclass instance and can be solution of overfitting problem in Neural Network algorithm.

  5. Denoising by coupled partial differential equations and extracting phase by backpropagation neural networks for electronic speckle pattern interferometry.

    Science.gov (United States)

    Tang, Chen; Lu, Wenjing; Chen, Song; Zhang, Zhen; Li, Botao; Wang, Wenping; Han, Lin

    2007-10-20

    We extend and refine previous work [Appl. Opt. 46, 2907 (2007)]. Combining the coupled nonlinear partial differential equations (PDEs) denoising model with the ordinary differential equations enhancement method, we propose the new denoising and enhancing model for electronic speckle pattern interferometry (ESPI) fringe patterns. Meanwhile, we propose the backpropagation neural networks (BPNN) method to obtain unwrapped phase values based on a skeleton map instead of traditional interpolations. We test the introduced methods on the computer-simulated speckle ESPI fringe patterns and experimentally obtained fringe pattern, respectively. The experimental results show that the coupled nonlinear PDEs denoising model is capable of effectively removing noise, and the unwrapped phase values obtained by the BPNN method are much more accurate than those obtained by the well-known traditional interpolation. In addition, the accuracy of the BPNN method is adjustable by changing the parameters of networks such as the number of neurons.

  6. Predict typhoon-induced storm surge deviation in a principal component back-propagation neural network model

    Institute of Scientific and Technical Information of China (English)

    GUO Zhongyang; DAI Xiaoyan; LI Xiaodong; YE Shufeng

    2013-01-01

    To reduce typhoon-caused damages,numerical and empirical methods are often used to forecast typhoon storm surge.However,typhoon surge is a complex nonlinear process that is difficult to forecast accurately.We applied a principal component back-propagation neural network (PCBPNN) to predict the deviation in typhoon storm surge,in which data of the typhoon,upstream flood,and historical case studies were involved.With principal component analysis,15 input factors were reduced to five principal components,and the application of the model was improved.Observation data from Huangpu Park in Shanghai,China were used to test the feasibility of the model.The results indicate that the model is capable of predicting a 12-hour warning before a typhoon surge.

  7. Parallel implementation of backpropagation neural networks on a heterogeneous array of transputers.

    Science.gov (United States)

    Foo, S K; Saratchandran, P; Sundararajan, N

    1997-01-01

    This paper analyzes parallel implementation of the backpropagation training algorithm on a heterogeneous transputer network (i.e., transputers of different speed and memory) connected in a pipelined ring topology. Training-set parallelism is employed as the parallelizing paradigm for the backpropagation algorithm. It is shown through analysis that finding the optimal allocation of the training patterns amongst the processors to minimize the time for a training epoch is a mixed integer programming problem. Using mixed integer programming optimal pattern allocations for heterogeneous processor networks having a mixture of T805-20 (20 MHz) and T805-25 (25 MHz) transputers are theoretically found for two benchmark problems. The time for an epoch corresponding to the optimal pattern allocations is then obtained experimentally for the benchmark problems from the T805-20, TS805-25 heterogeneous networks. A Monte Carlo simulation study is carried out to statistically verify the optimality of the epoch time obtained from the mixed integer programming based allocations. In this study pattern allocations are randomly generated and the corresponding time for an epoch is experimentally obtained from the heterogeneous network. The mean and standard deviation for the epoch times from the random allocations are then compared with the optimal epoch time. The results show the optimal epoch time to be always lower than the mean epoch times by more than three standard deviations (3sigma) for all the sample sizes used in the study thus giving validity to the theoretical analysis.

  8. ATHENA: A knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait Loci

    Directory of Open Access Journals (Sweden)

    Turner Stephen D

    2010-09-01

    Full Text Available Abstract Background Growing interest and burgeoning technology for discovering genetic mechanisms that influence disease processes have ushered in a flood of genetic association studies over the last decade, yet little heritability in highly studied complex traits has been explained by genetic variation. Non-additive gene-gene interactions, which are not often explored, are thought to be one source of this "missing" heritability. Methods Stochastic methods employing evolutionary algorithms have demonstrated promise in being able to detect and model gene-gene and gene-environment interactions that influence human traits. Here we demonstrate modifications to a neural network algorithm in ATHENA (the Analysis Tool for Heritable and Environmental Network Associations resulting in clear performance improvements for discovering gene-gene interactions that influence human traits. We employed an alternative tree-based crossover, backpropagation for locally fitting neural network weights, and incorporation of domain knowledge obtainable from publicly accessible biological databases for initializing the search for gene-gene interactions. We tested these modifications in silico using simulated datasets. Results We show that the alternative tree-based crossover modification resulted in a modest increase in the sensitivity of the ATHENA algorithm for discovering gene-gene interactions. The performance increase was highly statistically significant when backpropagation was used to locally fit NN weights. We also demonstrate that using domain knowledge to initialize the search for gene-gene interactions results in a large performance increase, especially when the search space is larger than the search coverage. Conclusions We show that a hybrid optimization procedure, alternative crossover strategies, and incorporation of domain knowledge from publicly available biological databases can result in marked increases in sensitivity and performance of the ATHENA

  9. Non-Linear Back-propagation: Doing Back-Propagation withoutDerivatives of the Activation Function

    DEFF Research Database (Denmark)

    Hertz, John; Krogh, Anders Stærmose; Lautrup, Benny

    1997-01-01

    The conventional linear back-propagation algorithm is replaced by a non-linear version, which avoids the necessity for calculating the derivative of the activation function. This may be exploited in hardware realizations of neural processors. In this paper we derive the non-linear back-propagatio......-propagation algorithms in the framework of recurrent back-propagation and present some numerical simulations of feed-forward networks on the NetTalk problem. A discussion of implementation in analog VLSI electronics concludes the paper.......The conventional linear back-propagation algorithm is replaced by a non-linear version, which avoids the necessity for calculating the derivative of the activation function. This may be exploited in hardware realizations of neural processors. In this paper we derive the non-linear back...

  10. Neural net approach to predictive vector quantization

    Science.gov (United States)

    Mohsenian, Nader; Nasrabadi, Nasser M.

    1992-11-01

    A new predictive vector quantization (PVQ) technique, capable of exploring the nonlinear dependencies in addition to the linear dependencies that exist between adjacent blocks of pixels, is introduced. Two different classes of neural nets form the components of the PVQ scheme. A multi-layer perceptron is embedded in the predictive component of the compression system. This neural network, using the non-linearity condition associated with its processing units, can perform as a non-linear vector predictor. The second component of the PVQ scheme vector quantizes (VQ) the residual vector that is formed by subtracting the output of the perceptron from the original wave-pattern. Kohonen Self-Organizing Feature Map (KSOFM) was utilized as a neural network clustering algorithm to design the codebook for the VQ technique. Coding results are presented for monochrome 'still' images.

  11. [Preliminary application of Back-Propagation artificial neural network model on the prediction of infectious diarrhea incidence in Shanghai].

    Science.gov (United States)

    Li, Jian; Gu, Jun-zhong; Mao, Sheng-hua; Xiao, Wen-jia; Jin, Hui-ming; Zheng, Ya-xu; Wang, Yong-ming; Hu, Jia-yu

    2013-12-01

    To establish BP artificial neural network predicting model regarding the daily cases of infectious diarrhea in Shanghai. Data regarding both the incidence of infectious diarrhea from 2005 to 2008 in Shanghai and meteorological factors including temperature, relative humidity, rainfall, atmospheric pressure, duration of sunshine and wind speed within the same periods were collected and analyzed with the MatLab R2012b software. Meteorological factors that were correlated with infectious diarrhea were screened by Spearman correlation analysis. Principal component analysis (PCA) was used to remove the multi-colinearities between meteorological factors. Back-Propagation (BP) neural network was employed to establish related prediction models regarding the daily infectious diarrhea incidence, using artificial neural networks toolbox. The established models were evaluated through the fitting, predicting and forecasting processes. Data from Spearman correlation analysis indicated that the incidence of infectious diarrhea had a highly positive correlation with factors as daily maximum temperature, minimum temperature, average temperature, minimum relative humidity and average relative humidity in the previous two days (P neural network model were established under the input of 4 meteorological principal components, extracted by PCA and used for training and prediction. Then appeared to be 4.7811, 6.8921,0.7918,0.8418 and 5.8163, 7.8062,0.7202,0.8180, respectively. The rate on mean error regarding the predictive value to actual incidence in 2008 was 5.30% and the forecasting precision reached 95.63% . Temperature and air pressure showed important impact on the incidence of infectious diarrhea. The BP neural network model had the advantages of low simulation forecasting errors and high forecasting hit rate that could ideally predict and forecast the effects on the incidence of infectious diarrhea.

  12. Pattern Association For Character Recognition By Back-Propagation Algorithm Using Neural Network Approach

    Directory of Open Access Journals (Sweden)

    S.P.Kosbatwar

    2012-03-01

    Full Text Available The use of artificial neural network in applications can dramatically simplify the code and improve quality of recognition while achieving good performance. Another benefit of using neural network in application is extensibility of the system – ability to recognize more character sets than initially defined. Most of traditional systems are not extensible enough. In this paper recognition ofcharacters is possible by using neural network back propagation algorithm.

  13. Document analysis with neural net circuits

    Science.gov (United States)

    Graf, Hans Peter

    1994-01-01

    Document analysis is one of the main applications of machine vision today and offers great opportunities for neural net circuits. Despite more and more data processing with computers, the number of paper documents is still increasing rapidly. A fast translation of data from paper into electronic format is needed almost everywhere, and when done manually, this is a time consuming process. Markets range from small scanners for personal use to high-volume document analysis systems, such as address readers for the postal service or check processing systems for banks. A major concern with present systems is the accuracy of the automatic interpretation. Today's algorithms fail miserably when noise is present, when print quality is poor, or when the layout is complex. A common approach to circumvent these problems is to restrict the variations of the documents handled by a system. In our laboratory, we had the best luck with circuits implementing basic functions, such as convolutions, that can be used in many different algorithms. To illustrate the flexibility of this approach, three applications of the NET32K circuit are described in this short viewgraph presentation: locating address blocks, cleaning document images by removing noise, and locating areas of interest in personal checks to improve image compression. Several of the ideas realized in this circuit that were inspired by neural nets, such as analog computation with a low resolution, resulted in a chip that is well suited for real-world document analysis applications and that compares favorably with alternative, 'conventional' circuits.

  14. A Fast C++ Implementation of Neural Network Backpropagation Training Algorithm: Application to Bayesian Optimal Image Demosaicing

    Directory of Open Access Journals (Sweden)

    Yi-Qing Wang

    2015-09-01

    Full Text Available Recent years have seen a surge of interest in multilayer neural networks fueled by their successful applications in numerous image processing and computer vision tasks. In this article, we describe a C++ implementation of the stochastic gradient descent to train a multilayer neural network, where a fast and accurate acceleration of tanh(· is achieved with linear interpolation. As an example of application, we present a neural network able to deliver state-of-the-art performance in image demosaicing.

  15. Application of a Back-Propagation Neural Network to Isolated-Word Speech Recognition

    Science.gov (United States)

    1993-06-01

    discusses the limitations of the proposed BNN system, and offers ideas for further reseach . 2 II. NEURAL NETWORKS A. WHY NEURAL NETWORKS? Recently...Besides the syntactic and semantic issues in the linguistic theories, speech segmentation is a big concern. Boundaries between words and phonemes are...can be estimated by a sudden large variation in the speech spectrum, this method is not very reliable due to coarticulation, i.e., the changes in the

  16. A power spectrum based backpropagation artificial neural network model for classification of sleep-wake stages in rats

    Directory of Open Access Journals (Sweden)

    Amit Kumar Ray

    2003-05-01

    Full Text Available Three layered feed-forward backpropagation artificial neural network architecture is designed to classify sleep-wake stages in rats. Continuous three channel polygraphic signals such as electroencephalogram, electrooculogram and electromyogram were recorded from conscious rats for eight hours during day time. Signals were also stored in computer hard disk with the help of analog to digital converter and its compatible data acquisition software. The power spectra (in dB scale of the digitized signals in three sleep-wake stages were calculated. Selected power spectrum data of all three simultaneously recorded polygraphic signals were used for training the network and to classify slow wave sleep, rapid eye movement sleep and awake stages. The ANN architecture used in present study shows a very good agreement with manual sleep stage scoring with an average of 94.83% for all the 1200 samples tested from SWS, REM and AWA stages. The high performance observed with the system based on ANN highlights the need of this computational tool into the field of sleep research.

  17. Predictive accuracy of backpropagation neural network methodology in evapotranspiration forecasting in Dédougou region, western Burkina Faso

    Indian Academy of Sciences (India)

    S Traore; Y M Wang; W G Chung

    2014-03-01

    The present study evaluates the predictive accuracy of the feed forward backpropagation artificial neural network (BP) in evapotranspiration forecasting from temperature data basis in Dédougou region located in western Burkina Faso, sub-Saharan Africa. BP accuracy is compared to the conventional Blaney–Criddle (BCR) and Reference Model developed for Burkina Faso (RMBF) by referring to the FAO56 Penman–Monteith (PM) as the standard method. Statistically, the models accuracies were evaluated with the goodness-of-fit measures of root mean square error, mean absolute error and coefficient of determination between their estimated and PM observed values. From the statistical results, BP shows similar contour trends to PM, and performs better than the conventional methods in reference evapotranspiration (ET_ref) forecasting in the region. In poor data situation, BP based only on temperature data is much more preferred than the other alternative methods for ET_ref forecasting. Furthermore, it is noted that the BP network computing technique accuracy improves significantly with the addition of wind velocity into the network input set. Therefore, in the region, wind velocity is recommended to be incorporated into the BP model for high accuracy management purpose of irrigation water, which relies on accurate values of ET_ref.

  18. Application of back-propagation artificial neural network and curve estimation in pharmacokinetics of losartan in rabbit.

    Science.gov (United States)

    Lin, Bin; Lin, Gaotong; Liu, Xianyun; Ma, Jianshe; Wang, Xianchuan; Lin, Feiyan; Hu, Lufeng

    2015-01-01

    In order to develop pharmacokinetic model, a well-known multilayer feed-forward algorithm back-propagation artificial neural networks (BP-ANN) was applied to the pharmacokinetics of losartan in rabbit. The plasma concentrations of losartan in twelve rabbits, which were divided into two groups and given losartan 2 mg/kg by intravenous (Iv) and intragastrical (Ig) administration, were determined by LC-MS. The BP-ANN model included one input layer, hidden layers, and one output layer was constructed and compared with curve estimation based on the time-concentration data of losartan. The results showed the BP-ANN model had high goodness of fit index and good coherence (R > 0.99) between forecasted concentration and measured concentration both in Iv and Ig administration. The residuals of each concentrations generated by BP-ANN model were all smaller than Curve estimation. The pharmacokinetic result showed there was no significant difference between measured and simulated pharmacokinetic parameters including AUC(0-t), AUC(0-∞), MRT(0-t), MRT(0-∞), T1/2 V and Cmax (P > 0.05). In conclusion, the BP-ANN model has remarkably accurate predictions ability, which better than Curve estimation, and can be used as a utility tool in pharmacokinetic experiment.

  19. Wavelet low- and high-frequency components as features for predicting stock prices with backpropagation neural networks

    Directory of Open Access Journals (Sweden)

    Salim Lahmiri

    2014-07-01

    Full Text Available This paper presents a forecasting model that integrates the discrete wavelet transform (DWT and backpropagation neural networks (BPNN for predicting financial time series. The presented model first uses the DWT to decompose the financial time series data. Then, the obtained approximation (low-frequency and detail (high-frequency components after decomposition of the original time series are used as input variables to forecast future stock prices. Indeed, while high-frequency components can capture discontinuities, ruptures and singularities in the original data, low-frequency components characterize the coarse structure of the data, to identify the long-term trends in the original data. As a result, high-frequency components act as a complementary part of low-frequency components. The model was applied to seven datasets. For all of the datasets, accuracy measures showed that the presented model outperforms a conventional model that uses only low-frequency components. In addition, the presented model outperforms both the well-known auto-regressive moving-average (ARMA model and the random walk (RW process.

  20. CONVERGENCE OF GRADIENT METHOD WITH MOMENTUM FOR BACK-PROPAGATION NEURAL NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Wei Wu; Naimin Zhang; Zhengxue Li; Long Li; Yan Liu

    2008-01-01

    In this work,a gradient method with momentum for BP neural networks is considered.The momentum coefficient is chosen in an adaptive manner to accelerate and stabilize the learning procedure of the network weights.Corresponding convergence results are proved.

  1. New backpropagation algorithm with type-2 fuzzy weights for neural networks

    CERN Document Server

    Gaxiola, Fernando; Valdez, Fevrier

    2016-01-01

    In this book a neural network learning method with type-2 fuzzy weight adjustment is proposed. The mathematical analysis of the proposed learning method architecture and the adaptation of type-2 fuzzy weights are presented. The proposed method is based on research of recent methods that handle weight adaptation and especially fuzzy weights. The internal operation of the neuron is changed to work with two internal calculations for the activation function to obtain two results as outputs of the proposed method. Simulation results and a comparative study among monolithic neural networks, neural network with type-1 fuzzy weights and neural network with type-2 fuzzy weights are presented to illustrate the advantages of the proposed method. The proposed approach is based on recent methods that handle adaptation of weights using fuzzy logic of type-1 and type-2. The proposed approach is applied to a cases of prediction for the Mackey-Glass (for ô=17) and Dow-Jones time series, and recognition of person with iris bi...

  2. A novel hybrid classification model of genetic algorithms, modified k-Nearest Neighbor and developed backpropagation neural network.

    Science.gov (United States)

    Salari, Nader; Shohaimi, Shamarina; Najafi, Farid; Nallappan, Meenakshii; Karishnarajah, Isthrinayagy

    2014-01-01

    Among numerous artificial intelligence approaches, k-Nearest Neighbor algorithms, genetic algorithms, and artificial neural networks are considered as the most common and effective methods in classification problems in numerous studies. In the present study, the results of the implementation of a novel hybrid feature selection-classification model using the above mentioned methods are presented. The purpose is benefitting from the synergies obtained from combining these technologies for the development of classification models. Such a combination creates an opportunity to invest in the strength of each algorithm, and is an approach to make up for their deficiencies. To develop proposed model, with the aim of obtaining the best array of features, first, feature ranking techniques such as the Fisher's discriminant ratio and class separability criteria were used to prioritize features. Second, the obtained results that included arrays of the top-ranked features were used as the initial population of a genetic algorithm to produce optimum arrays of features. Third, using a modified k-Nearest Neighbor method as well as an improved method of backpropagation neural networks, the classification process was advanced based on optimum arrays of the features selected by genetic algorithms. The performance of the proposed model was compared with thirteen well-known classification models based on seven datasets. Furthermore, the statistical analysis was performed using the Friedman test followed by post-hoc tests. The experimental findings indicated that the novel proposed hybrid model resulted in significantly better classification performance compared with all 13 classification methods. Finally, the performance results of the proposed model was benchmarked against the best ones reported as the state-of-the-art classifiers in terms of classification accuracy for the same data sets. The substantial findings of the comprehensive comparative study revealed that performance of the

  3. Transmission Risks of Schistosomiasis Japonica: Extraction from Back-propagation Artificial Neural Network and Logistic Regression Model

    Science.gov (United States)

    Xu, Jun-Fang; Xu, Jing; Li, Shi-Zhu; Jia, Tia-Wu; Huang, Xi-Bao; Zhang, Hua-Ming; Chen, Mei; Yang, Guo-Jing; Gao, Shu-Jing; Wang, Qing-Yun; Zhou, Xiao-Nong

    2013-01-01

    Background The transmission of schistosomiasis japonica in a local setting is still poorly understood in the lake regions of the People's Republic of China (P. R. China), and its transmission patterns are closely related to human, social and economic factors. Methodology/Principal Findings We aimed to apply the integrated approach of artificial neural network (ANN) and logistic regression model in assessment of transmission risks of Schistosoma japonicum with epidemiological data collected from 2339 villagers from 1247 households in six villages of Jiangling County, P.R. China. By using the back-propagation (BP) of the ANN model, 16 factors out of 27 factors were screened, and the top five factors ranked by the absolute value of mean impact value (MIV) were mainly related to human behavior, i.e. integration of water contact history and infection history, family with past infection, history of water contact, infection history, and infection times. The top five factors screened by the logistic regression model were mainly related to the social economics, i.e. village level, economic conditions of family, age group, education level, and infection times. The risk of human infection with S. japonicum is higher in the population who are at age 15 or younger, or with lower education, or with the higher infection rate of the village, or with poor family, and in the population with more than one time to be infected. Conclusion/Significance Both BP artificial neural network and logistic regression model established in a small scale suggested that individual behavior and socioeconomic status are the most important risk factors in the transmission of schistosomiasis japonica. It was reviewed that the young population (≤15) in higher-risk areas was the main target to be intervened for the disease transmission control. PMID:23556015

  4. A Novel Classification Approach through Integration of Rough Sets and Back-Propagation Neural Network

    Directory of Open Access Journals (Sweden)

    Lei Si

    2014-01-01

    Full Text Available Classification is an important theme in data mining. Rough sets and neural networks are the most common techniques applied in data mining problems. In order to extract useful knowledge and classify ambiguous patterns effectively, this paper presented a hybrid algorithm based on the integration of rough sets and BP neural network to construct a novel classification system. The attribution values were discretized through PSO algorithm firstly to establish a decision table. The attribution reduction algorithm and rules extraction method based on rough sets were proposed, and the flowchart of proposed approach was designed. Finally, a prototype system was developed and some simulation examples were carried out. Simulation results indicated that the proposed approach was feasible and accurate and was outperforming others.

  5. Conjugate descent formulation of backpropagation error in ...

    African Journals Online (AJOL)

    The feedforward neural network architecture uses backpropagation learning to ... the training of a multilayer neural network using a gradient descent approach ...... IEEE Transactions on Pattern Analysis and Machine Intelligence, 18, pp.

  6. Scheduling the blended solution as industrial CO2 absorber in separation process by back-propagation artificial neural networks.

    Science.gov (United States)

    Abdollahi, Yadollah; Sairi, Nor Asrina; Said, Suhana Binti Mohd; Abouzari-lotf, Ebrahim; Zakaria, Azmi; Sabri, Mohd Faizul Bin Mohd; Islam, Aminul; Alias, Yatimah

    2015-11-05

    It is believe that 80% industrial of carbon dioxide can be controlled by separation and storage technologies which use the blended ionic liquids absorber. Among the blended absorbers, the mixture of water, N-methyldiethanolamine (MDEA) and guanidinium trifluoromethane sulfonate (gua) has presented the superior stripping qualities. However, the blended solution has illustrated high viscosity that affects the cost of separation process. In this work, the blended fabrication was scheduled with is the process arranging, controlling and optimizing. Therefore, the blend's components and operating temperature were modeled and optimized as input effective variables to minimize its viscosity as the final output by using back-propagation artificial neural network (ANN). The modeling was carried out by four mathematical algorithms with individual experimental design to obtain the optimum topology using root mean squared error (RMSE), R-squared (R(2)) and absolute average deviation (AAD). As a result, the final model (QP-4-8-1) with minimum RMSE and AAD as well as the highest R(2) was selected to navigate the fabrication of the blended solution. Therefore, the model was applied to obtain the optimum initial level of the input variables which were included temperature 303-323 K, x[gua], 0-0.033, x[MDAE], 0.3-0.4, and x[H2O], 0.7-1.0. Moreover, the model has obtained the relative importance ordered of the variables which included x[gua]>temperature>x[MDEA]>x[H2O]. Therefore, none of the variables was negligible in the fabrication. Furthermore, the model predicted the optimum points of the variables to minimize the viscosity which was validated by further experiments. The validated results confirmed the model schedulability. Accordingly, ANN succeeds to model the initial components of the blended solutions as absorber of CO2 capture in separation technologies that is able to industries scale up.

  7. Prediction of capillary gas chromatographic retention times of fatty acid methyl esters in human blood using MLR, PLS and back-propagation artificial neural networks.

    Science.gov (United States)

    Gupta, Vinod Kumar; Khani, Hadi; Ahmadi-Roudi, Behzad; Mirakhorli, Shima; Fereyduni, Ehsan; Agarwal, Shilpi

    2011-01-15

    Quantitative structure-retention relationship (QSRR) models correlating the retention times of fatty acid methyl esters in high resolution capillary gas chromatography and their structures were developed based on non-linear and linear modeling methods. Genetic algorithm (GA) was used for the selection of the variables that resulted in the best-fitted models. Gravitational index (G2), number of cis double bond (NcDB) and number of trans double bond (NtDB) were selected among a large number of descriptors. The selected descriptors were considered as inputs for artificial neural networks (ANNs) with three different weights update functions including Levenberg-Marquardt backpropagation network (LM-ANN), BFGS (Broyden, Fletcher, Goldfarb, and Shanno) quasi-Newton backpropagation (BFG-ANN) and conjugate gradient backpropagation with Polak-Ribiére updates (CGP-ANN). Computational result indicates that the LM-ANN method has better predictive power than the other methods. The model was also tested successfully for external validation criteria. Standard error for the training set using LM-ANN was SE=0.932 with correlation coefficient R=0.996. For the prediction and validation sets, standard error was SE=0.645 and SE=0.445 and correlation coefficient was R=0.999 and R=0.999, respectively. The accuracy of 3-2-1 LM-ANN model was illustrated using leave multiple out-cross validations (LMO-CVs) and Y-randomization.

  8. Real-time applications of neural nets

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, J.E.

    1989-05-01

    Producing, accelerating and colliding very high power, low emittance beams for long periods is a formidable problem in real-time control. As energy has grown exponentially in time so has the complexity of the machines and their control systems. Similar growth rates have occurred in many areas, e.g., improved integrated circuits have been paid for with comparable increases in complexity. However, in this case, reliability, capability and cost have improved due to reduced size, high production and increased integration which allow various kinds of feedback. In contrast, most large complex systems (LCS) are perceived to lack such possibilities because only one copy is made. Neural nets, as a metaphor for LCS, suggest ways to circumvent such limitations. It is argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems. While complimentary to AI, they mesh nicely with characteristics desired for real-time systems. Such issues are considered, examples given and possibilities discussed. 21 refs., 6 figs.

  9. Fuzzy-Neural Petri Net Distributed Control System Using Hybrid Wireless Sensor Network and CAN Fieldbus

    Directory of Open Access Journals (Sweden)

    Ali A. Abed

    2016-06-01

    Full Text Available The reluctance of industry to allow wireless paths to be incorporated in process control loops has limited the potential applications and benefits of wireless systems. The challenge is to maintain the performance of a control loop, which is degraded by slow data rates and delays in a wireless path. To overcome these challenges, this paper presents an application–level design for a wireless sensor/actuator network (WSAN based on the “automated architecture”. The resulting WSAN system is used in the developing of a wireless distributed control system (WDCS. The implementation of our wireless system involves the building of a wireless sensor network (WSN for data acquisition and controller area network (CAN protocol fieldbus system for plant actuation. The sensor/actuator system is controlled by an intelligent digital control algorithm that involves a controller developed with velocity PID-like Fuzzy Neural Petri Net (FNPN system. This control system satisfies two important real-time requirements: bumpless transfer and anti-windup, which are needed when manual/auto operating aspect is adopted in the system. The intelligent controller is learned by a learning algorithm based on back-propagation. The concept of petri net is used in the development of FNN to get a correlation between the error at the input of the controller and the number of rules of the fuzzy-neural controller leading to a reduction in the number of active rules. The resultant controller is called robust fuzzy neural petri net (RFNPN controller which is created as a software model developed with MATLAB. The developed concepts were evaluated through simulations as well validated by real-time experiments that used a plant system with a water bath to satisfy a temperature control. The effect of disturbance is also studied to prove the system's robustness.

  10. 22nd Italian Workshop on Neural Nets

    CERN Document Server

    Bassis, Simone; Esposito, Anna; Morabito, Francesco

    2013-01-01

    This volume collects a selection of contributions which has been presented at the 22nd Italian Workshop on Neural Networks, the yearly meeting of the Italian Society for Neural Networks (SIREN). The conference was held in Italy, Vietri sul Mare (Salerno), during May 17-19, 2012. The annual meeting of SIREN is sponsored by International Neural Network Society (INNS), European Neural Network Society (ENNS) and IEEE Computational Intelligence Society (CIS). The book – as well as the workshop-  is organized in three main components, two special sessions and a group of regular sessions featuring different aspects and point of views of artificial neural networks and natural intelligence, also including applications of present compelling interest.

  11. Implementation of a Neural Network Using Simulator and Petri Nets*

    Directory of Open Access Journals (Sweden)

    Nayden Valkov Nenkov

    2016-01-01

    Full Text Available This paper describes construction of multilayer perceptron by open source neural networks simulator - Neuroph and Petri net. The described multilayer perceptron solves logical function "xor "- exclusive or. The aim is to explore the possibilities of description of the neural networks by Petri Nets. The selected neural network (multilayer perceptron allows to be seen clearly the advantages and disadvantages of the realizing through simulator. The selected logical function does not have a linear separability. After consumption of a neural network on a simulator was investigated implementation by Petri Nets. The results are used to determine and to consider opportunities for different discrete representations of the same model and the same subject area.

  12. Model predictive combustion control based on neural nets

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, D. [Powitec Intelligent Technologies GmbH, Essen (Germany); Kampschreuer, T. [AVR Afvalverwerking B.V., Duiven/Arnheim (Netherlands)

    2008-07-01

    The first closed-loop Neural Net combustion controller in the Netherlands has been installed at the HVC plant in Alkmaar. During the summer 2006 the first of the 'old' three lines was equipped with an individually controllable primary air distribution. As 'fire controller' the combustion optimiser from Powitec, the PiT Navigator, was selected, a system using digital image processing and neural nets. This paper shows the results from operating the plant with and without the NMPC optimiser and from the performance tests. (orig.)

  13. Application of Gaussian beam ray-equivalent model and back-propagation artificial neural network in laser diode fast axis collimator assembly.

    Science.gov (United States)

    Yu, Hao; Rossi, Giammarco; Braglia, Andrea; Perrone, Guido

    2016-08-10

    The paper presents the development of a tool based on a back-propagation artificial neural network to assist in the accurate positioning of the lenses used to collimate the beam from semiconductor laser diodes along the so-called fast axis. After training using a Gaussian beam ray-equivalent model, the network is capable of indicating the tilt, decenter, and defocus of such lenses from the measured field distribution, so the operator can determine the errors with respect to the actual lens position and optimize the diode assembly procedure. An experimental validation using a typical configuration exploited in multi-emitter diode module assembly and fast axis collimating lenses with different focal lengths and numerical apertures is reported.

  14. Speech Recognition Using Neural Nets and Dynamic Time Warping

    Science.gov (United States)

    1988-12-01

    8217 Phonetic Typewriter", Computer, 21: 11-22 (March 1988). - - 7. Lippmann, Richard P. "An Introduction to Computing with Neural Nets," IEEE ASSP Mag...azine, 4: 4-22 (April 1987). 8. Kohonen, Teuvo and others. "Phonotopic Maps-Insightful Representation of Phonological Features for Speech Recognition

  15. Enhancing the top signal at Tevatron using Neural Nets

    CERN Document Server

    Ametller, L; Talavera, P; Ll Ametller; Ll Garrido

    1994-01-01

    We show that Neural Nets can be useful for top analysis at Tevatron. The main features of t\\bar t and background events on a mixed sample are projected in a single output, which controls the efficiency and purity of the t\\bar t signal.

  16. Classification of handwritten digits using a RAM neural net architecture

    DEFF Research Database (Denmark)

    Jørgensen, T.M.

    1997-01-01

    Results are reported on the task of recognizing handwritten digits without any advanced pre-processing. The result are obtained using a RAM-based neural network, making use of small receptive fields. Furthermore, a technique that introduces negative weights into the RAM net is reported. The results...

  17. An Expedient Study on Back-Propagation (BPN) Neural Networks for Modeling Automated Evaluation of the Answers and Progress of Deaf Students' That Possess Basic Knowledge of the English Language and Computer Skills

    Science.gov (United States)

    Vrettaros, John; Vouros, George; Drigas, Athanasios S.

    This article studies the expediency of using neural networks technology and the development of back-propagation networks (BPN) models for modeling automated evaluation of the answers and progress of deaf students' that possess basic knowledge of the English language and computer skills, within a virtual e-learning environment. The performance of the developed neural models is evaluated with the correlation factor between the neural networks' response values and the real value data as well as the percentage measurement of the error between the neural networks' estimate values and the real value data during its training process and afterwards with unknown data that weren't used in the training process.

  18. Computation and control with neural nets

    Energy Technology Data Exchange (ETDEWEB)

    Corneliusen, A.; Terdal, P.; Knight, T.; Spencer, J.

    1989-10-04

    As energies have increased exponentially with time so have the size and complexity of accelerators and control systems. NN may offer the kinds of improvements in computation and control that are needed to maintain acceptable functionality. For control their associative characteristics could provide signal conversion or data translation. Because they can do any computation such as least squares, they can close feedback loops autonomously to provide intelligent control at the point of action rather than at a central location that requires transfers, conversions, hand-shaking and other costly repetitions like input protection. Both computation and control can be integrated on a single chip, printed circuit or an optical equivalent that is also inherently faster through full parallel operation. For such reasons one expects lower costs and better results. Such systems could be optimized by integrating sensor and signal processing functions. Distributed nets of such hardware could communicate and provide global monitoring and multiprocessing in various ways e.g. via token, slotted or parallel rings (or Steiner trees) for compatibility with existing systems. Problems and advantages of this approach such as an optimal, real-time Turing machine are discussed. Simple examples are simulated and hardware implemented using discrete elements that demonstrate some basic characteristics of learning and parallelism. Future microprocessors' are predicted and requested on this basis. 19 refs., 18 figs.

  19. Back-propagation neural network-based approximate analysis of true stress-strain behaviors of high-strength metallic material

    Energy Technology Data Exchange (ETDEWEB)

    Doh, Jaeh Yeok; Lee, Jong Soo [Yonsei University, Seoul (Korea, Republic of); Lee, Seung Uk [Gyeongbuk Hybrid Technology Institute, Yeongcheon (Korea, Republic of)

    2016-03-15

    In this study, a Back-propagation neural network (BPN) is employed to conduct an approximation of a true stress-strain curve using the load-displacement experimental data of DP590, a high-strength material used in automobile bodies and chassis. The optimized interconnection weights are obtained with hidden layers and output layers of the BPN through intelligent learning and training of the experimental data; by using these weights, a mathematical model of the material's behavior is suggested through this feed-forward neural network. Generally, the material properties from the tensile test cannot be acquired until the fracture regions, since it is difficult to measure the cross-section area of a specimen after diffusion necking. For this reason, the plastic properties of the true stress-strain are extrapolated using the weighted-average method after diffusion necking. The accuracies of BPN-based meta-models for predicting material properties are validated in terms of the Root mean square error (RMSE). By applying the approximate material properties, the reliable finite element solution can be obtained to realize the different shapes of the finite element models. Furthermore, the sensitivity analysis of the approximate meta-model is performed using the first-order approximate derivatives of the BPN and is compared with the results of the finite difference method. In addition, we predict the tension velocity's effect on the material property through a first-order sensitivity analysis.

  20. Prediction of Prospective Mathematics Teachers' Academic Success in Entering Graduate Education by Using Back-Propagation Neural Network

    Science.gov (United States)

    Bahadir, Elif

    2016-01-01

    The purpose of this study is to examine a neural network based approach to predict achievement in graduate education for Elementary Mathematics prospective teachers. With the help of this study, it can be possible to make an effective prediction regarding the students' achievement in graduate education with Artificial Neural Networks (ANN). Two…

  1. A novel low-voltage low-power analogue VLSI implementation of neural networks with on-chip back-propagation learning

    Science.gov (United States)

    Carrasco, Manuel; Garde, Andres; Murillo, Pilar; Serrano, Luis

    2005-06-01

    In this paper a novel design and implementation of a VLSI Analogue Neural Net based on Multi-Layer Perceptron (MLP) with on-chip Back Propagation (BP) learning algorithm suitable for the resolution of classification problems is described. In order to implement a general and programmable analogue architecture, the design has been carried out in a hierarchical way. In this way the net has been divided in synapsis-blocks and neuron-blocks providing an easy method for the analysis. These blocks basically consist on simple cells, which are mainly, the activation functions (NAF), derivatives (DNAF), multipliers and weight update circuits. The analogue design is based on current-mode translinear techniques using MOS transistors working in the weak inversion region in order to reduce both the voltage supply and the power consumption. Moreover, with the purpose of minimizing the noise, offset and distortion of even order, the topologies are fully-differential and balanced. The circuit, named ANNE (Analogue Neural NEt), has been prototyped and characterized as a proof of concept on CMOS AMI-0.5A technology occupying a total area of 2.7mm2. The chip includes two versions of neural nets with on-chip BP learning algorithm, which are respectively a 2-1 and a 2-2-1 implementations. The proposed nets have been experimentally tested using supply voltages from 2.5V to 1.8V, which is suitable for single cell lithium-ion battery supply applications. Experimental results of both implementations included in ANNE exhibit a good performance on solving classification problems. These results have been compared with other proposed Analogue VLSI implementations of Neural Nets published in the literature demonstrating that our proposal is very efficient in terms of occupied area and power consumption.

  2. Artificial neural nets application in the cotton yarn industry

    Directory of Open Access Journals (Sweden)

    Gilberto Clóvis Antoneli

    2016-06-01

    Full Text Available The competitiveness in the yarn production sector has led companies to search for solutions to attain quality yarn at a low cost. Today, the difference between them, and thus the sector, is in the raw material, meaning processed cotton and its characteristics. There are many types of cotton with different characteristics due to its production region, harvest, storage and transportation. Yarn industries work with cotton mixtures, which makes it difficult to determine the quality of the yarn produced from the characteristics of the processed fibers. This study uses data from a conventional spinning, from a raw material made of 100% cotton, and presents a solution with artificial neural nets that determine the thread quality information, using the fibers’ characteristics values and settings of some process adjustments. In this solution a neural net of the type MultiLayer Perceptron with 11 entry neurons (8 characteristics of the fiber and 3 process adjustments, 7 output neurons (yarn quality and two types of training, Back propagation and Conjugate gradient descent. The selection and organization of the production data of the yarn industry of the cocamar® indústria de fios company are described, to apply the artificial neural nets developed. In the application of neural nets to determine yarn quality, one concludes that, although the ideal precision of absolute values is lacking, the presented solution represents an excellent tool to define yarn quality variations when modifying the raw material composition. The developed system enables a simulation to define the raw material percentage mixture to be processed in the plant using the information from the stocked cotton packs, thus obtaining a mixture that maintains the stability of the entire productive process.

  3. Neural Net Gains Estimation Based on an Equivalent Model

    Directory of Open Access Journals (Sweden)

    Karen Alicia Aguilar Cruz

    2016-01-01

    Full Text Available A model of an Equivalent Artificial Neural Net (EANN describes the gains set, viewed as parameters in a layer, and this consideration is a reproducible process, applicable to a neuron in a neural net (NN. The EANN helps to estimate the NN gains or parameters, so we propose two methods to determine them. The first considers a fuzzy inference combined with the traditional Kalman filter, obtaining the equivalent model and estimating in a fuzzy sense the gains matrix A and the proper gain K into the traditional filter identification. The second develops a direct estimation in state space, describing an EANN using the expected value and the recursive description of the gains estimation. Finally, a comparison of both descriptions is performed; highlighting the analytical method describes the neural net coefficients in a direct form, whereas the other technique requires selecting into the Knowledge Base (KB the factors based on the functional error and the reference signal built with the past information of the system.

  4. Neural Net Gains Estimation Based on an Equivalent Model

    Science.gov (United States)

    Aguilar Cruz, Karen Alicia; Medel Juárez, José de Jesús; Fernández Muñoz, José Luis; Esmeralda Vigueras Velázquez, Midory

    2016-01-01

    A model of an Equivalent Artificial Neural Net (EANN) describes the gains set, viewed as parameters in a layer, and this consideration is a reproducible process, applicable to a neuron in a neural net (NN). The EANN helps to estimate the NN gains or parameters, so we propose two methods to determine them. The first considers a fuzzy inference combined with the traditional Kalman filter, obtaining the equivalent model and estimating in a fuzzy sense the gains matrix A and the proper gain K into the traditional filter identification. The second develops a direct estimation in state space, describing an EANN using the expected value and the recursive description of the gains estimation. Finally, a comparison of both descriptions is performed; highlighting the analytical method describes the neural net coefficients in a direct form, whereas the other technique requires selecting into the Knowledge Base (KB) the factors based on the functional error and the reference signal built with the past information of the system. PMID:27366146

  5. Research on Neural Network Classifier of Target Based on Genetic-backpropagation Algorithm%基于遗传BP算法的神经网络目标分类器的研究

    Institute of Scientific and Technical Information of China (English)

    王菲; 曾庆军; 黄国建; 李洪瑞

    2001-01-01

    The development and system composition of underwater target recognition system is expounded at first, and then a novel method for training neural network target classifier by using genetic-backpropagation algorithm is proposed. The result of experiment shows that the performance of neural network target classifier based on genetic-backpropagation algorithm is better than that of neural network target classifier based on the improved backpropagation algorithm.%首先阐述了水下目标识别的研究发展和系统组成,然后提出了一种基于遗传BP算法训练神经网络目标分类器的新方法。实验结果表明采用新方法的神经网络分类器比采用改进BP算法的神经网络分类器具有更优的分类效果。

  6. A Hybrid Forecasting Model Based on Bivariate Division and a Backpropagation Artificial Neural Network Optimized by Chaos Particle Swarm Optimization for Day-Ahead Electricity Price

    Directory of Open Access Journals (Sweden)

    Zhilong Wang

    2014-01-01

    Full Text Available In the electricity market, the electricity price plays an inevitable role. Nevertheless, accurate price forecasting, a vital factor affecting both government regulatory agencies and public power companies, remains a huge challenge and a critical problem. Determining how to address the accurate forecasting problem becomes an even more significant task in an era in which electricity is increasingly important. Based on the chaos particle swarm optimization (CPSO, the backpropagation artificial neural network (BPANN, and the idea of bivariate division, this paper proposes a bivariate division BPANN (BD-BPANN method and the CPSO-BD-BPANN method for forecasting electricity price. The former method creatively transforms the electricity demand and price to be a new variable, named DV, which is calculated using the division principle, to forecast the day-ahead electricity by multiplying the forecasted values of the DVs and forecasted values of the demand. Next, to improve the accuracy of BD-BPANN, chaos particle swarm optimization and BD-BPANN are synthesized to form a novel model, CPSO-BD-BPANN. In this study, CPSO is utilized to optimize the initial parameters of BD-BPANN to make its output more stable than the original model. Finally, two forecasting strategies are proposed regarding different situations.

  7. Measurement and correlation study of silymarin solubility in supercritical carbon dioxide with and without a cosolvent using semi-empirical models and back-propagation artificial neural networks

    Directory of Open Access Journals (Sweden)

    Gang Yang

    2017-09-01

    Full Text Available The solubility data of compounds in supercritical fluids and the correlation between the experimental solubility data and predicted solubility data are crucial to the development of supercritical technologies. In the present work, the solubility data of silymarin (SM in both pure supercritical carbon dioxide (SCCO2 and SCCO2 with added cosolvent was measured at temperatures ranging from 308 to 338 K and pressures from 8 to 22 MPa. The experimental data were fit with three semi-empirical density-based models (Chrastil, Bartle and Mendez-Santiago and Teja models and a back-propagation artificial neural networks (BPANN model. Interaction parameters for the models were obtained and the percentage of average absolute relative deviation (AARD% in each calculation was determined. The correlation results were in good agreement with the experimental data. A comparison among the four models revealed that the experimental solubility data were more fit with the BPANN model with AARDs ranging from 1.14% to 2.15% for silymarin in pure SCCO2 and with added cosolvent. The results provide fundamental data for designing the extraction of SM or the preparation of its particle using SCCO2 techniques.

  8. Modeling the Hot Deformation Behaviors of As-Extruded 7075 Aluminum Alloy by an Artificial Neural Network with Back-Propagation Algorithm

    Science.gov (United States)

    Quan, Guo-zheng; Zou, Zhen-yu; Wang, Tong; Liu, Bo; Li, Jun-chao

    2017-01-01

    In order to investigate the hot deformation behaviors of as-extruded 7075 aluminum alloy, the isothermal compressive tests were conducted at the temperatures of 573, 623, 673 and 723 K and the strain rates of 0.01, 0.1, 1 and 10 s-1 on a Gleeble 1500 thermo-mechanical simulator. The flow behaviors showing complex characteristics are sensitive to strain, strain rate and temperature. The effects of strain, temperature and strain rate on flow stress were analyzed and dynamic recrystallization (DRX)-type softening characteristics of the flow behaviors with single peak were identified. An artificial neural network (ANN) with back-propagation (BP) algorithm was developed to deal with the complex deformation behavior characteristics based on the experimental data. The performance of ANN model has been evaluated in terms of correlation coefficient (R) and average absolute relative error (AARE). A comparative study on Arrhenius-type constitutive equation and ANN model for as-extruded 7075 aluminum alloy was conducted. Finally, the ANN model was successfully applied to the development of processing map and implanted into finite element simulation. The results have sufficiently articulated that the well-trained ANN model with BP algorithm has excellent capability to deal with the complex flow behaviors of as-extruded 7075 aluminum alloy and has great application potentiality in hot deformation processes.

  9. An improved approach based on fuzzy clustering and Back-Propagation Neural Networks with adaptive learning rate for sales forecasting: Case study of PCB industry

    Directory of Open Access Journals (Sweden)

    Attariuas Hicham

    2012-05-01

    Full Text Available This paper describes new hybrid sales forecasting system based on fuzzy clustering and Back-propagation (BP Neural Networks with adaptive learning rate (FCBPN.The proposed approach is composed of three stages: (1 Winters Exponential Smoothing method will be utilized to take the trend effect into consideration; (2 utilizing Fuzzy C-Means clustering method (Used in an clusters memberships fuzzy system (CMFS, the clusters membership levels of each normalized data records will be extracted; (3 Each cluster will be fed into parallel BP networks with a learning rate adapted as the level of cluster membership of training data records. Compared to many researches which use Hard clustering, we employ fuzzy clustering which permits each data record to belong to each cluster to a certain degree, which allows the clusters to be larger which consequently increases the accuracy of the proposed forecasting system . Printed Circuit Board (PCB will be used as a case study to evaluate the precision of our proposed architecture. Experimental results show that the proposed model outperforms the previous and traditional approaches. Therefore, it is a very promising solution for industrial forecasting.

  10. Unfolding code for neutron spectrometry based on neural nets technology

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz R, J. M.; Vega C, H. R., E-mail: morvymm@yahoo.com.mx [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Apdo. Postal 336, 98000 Zacatecas (Mexico)

    2012-10-15

    The most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Neural Networks have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This unfolding code called Neutron Spectrometry and Dosimetry by means of Artificial Neural Networks was designed in a graphical interface under LabVIEW programming environment. The core of the code is an embedded neural network architecture, previously optimized by the {sup R}obust Design of Artificial Neural Networks Methodology{sup .} The main features of the code are: is easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a {sup 6}Lil(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, only seven rate counts measurement with a Bonner spheres spectrometer are required for simultaneously unfold the 60 energy bins of the neutron spectrum and to calculate 15 dosimetric quantities, for radiation protection porpoises. This code generates a full report in html format with all relevant information. (Author)

  11. Data fusion in data scarce areas using a back-propagation artificial neural network model: a case study of the South China Sea

    Science.gov (United States)

    Wang, Zheng; Mao, Zhihua; Xia, Junshi; Du, Peijun; Shi, Liangliang; Huang, Haiqing; Wang, Tianyu; Gong, Fang; Zhu, Qiankun

    2017-06-01

    The cloud cover for the South China Sea and its coastal area is relatively large throughout the year, which limits the potential application of optical remote sensing. A HJ-charge-coupled device (HJ-CCD) has the advantages of wide field, high temporal resolution, and short repeat cycle. However, this instrument suffers from its use of only four relatively low-quality bands which can't adequately resolve the features of long wavelengths. The Landsat Enhanced Thematic Mapper-plus (ETM+) provides high-quality data, however, the Scan Line Corrector (SLC) stopped working and caused striping of remote sensed images, which dramatically reduced the coverage of the ETM+ data. In order to combine the advantages of the HJ-CCD and Landsat ETM+ data, we adopted a back-propagation artificial neural network (BP-ANN) to fuse these two data types for this study. The results showed that the fused output data not only have the advantage of data intactness for the HJ-CCD, but also have the advantages of the multi-spectral and high radiometric resolution of the ETM+ data. Moreover, the fused data were analyzed qualitatively, quantitatively and from a practical application point of view. Experimental studies indicated that the fused data have a full spatial distribution, multi-spectral bands, high radiometric resolution, a small difference between the observed and fused output data, and a high correlation between the observed and fused data. The excellent performance in its practical application is a further demonstration that the fused data are of high quality.

  12. Optimization of Operation Parameters for Helical Flow Cleanout with Supercritical CO2 in Horizontal Wells Using Back-Propagation Artificial Neural Network

    Science.gov (United States)

    Song, Xianzhi; Peng, Chi; Li, Gensheng

    2016-01-01

    Sand production and blockage are common during the drilling and production of horizontal oil and gas wells as a result of formation breakdown. The use of high-pressure rotating jets and annular helical flow is an effective way to enhance horizontal wellbore cleanout. In this paper, we propose the idea of using supercritical CO2 (SC-CO2) as washing fluid in water-sensitive formation. SC-CO2 is manifested to be effective in preventing formation damage and enhancing production rate as drilling fluid, which justifies tis potential in wellbore cleanout. In order to investigate the effectiveness of SC-CO2 helical flow cleanout, we perform the numerical study on the annular flow field, which significantly affects sand cleanout efficiency, of SC-CO2 jets in horizontal wellbore. Based on the field data, the geometry model and mathematical models were built. Then a numerical simulation of the annular helical flow field by SC-CO2 jets was accomplished. The influences of several key parameters were investigated, and SC-CO2 jets were compared to conventional water jets. The results show that flow rate, ambient temperature, jet temperature, and nozzle assemblies play the most important roles on wellbore flow field. Once the difference between ambient temperatures and jet temperatures is kept constant, the wellbore velocity distributions will not change. With increasing lateral nozzle size or decreasing rear/forward nozzle size, suspending ability of SC-CO2 flow improves obviously. A back-propagation artificial neural network (BP-ANN) was successfully employed to match the operation parameters and SC-CO2 flow velocities. A comprehensive model was achieved to optimize the operation parameters according to two strategies: cost-saving strategy and local optimal strategy. This paper can help to understand the distinct characteristics of SC-CO2 flow. And it is the first time that the BP-ANN is introduced to analyze the flow field during wellbore cleanout in horizontal wells. PMID

  13. Optimization of Operation Parameters for Helical Flow Cleanout with Supercritical CO2 in Horizontal Wells Using Back-Propagation Artificial Neural Network.

    Directory of Open Access Journals (Sweden)

    Xianzhi Song

    Full Text Available Sand production and blockage are common during the drilling and production of horizontal oil and gas wells as a result of formation breakdown. The use of high-pressure rotating jets and annular helical flow is an effective way to enhance horizontal wellbore cleanout. In this paper, we propose the idea of using supercritical CO2 (SC-CO2 as washing fluid in water-sensitive formation. SC-CO2 is manifested to be effective in preventing formation damage and enhancing production rate as drilling fluid, which justifies tis potential in wellbore cleanout. In order to investigate the effectiveness of SC-CO2 helical flow cleanout, we perform the numerical study on the annular flow field, which significantly affects sand cleanout efficiency, of SC-CO2 jets in horizontal wellbore. Based on the field data, the geometry model and mathematical models were built. Then a numerical simulation of the annular helical flow field by SC-CO2 jets was accomplished. The influences of several key parameters were investigated, and SC-CO2 jets were compared to conventional water jets. The results show that flow rate, ambient temperature, jet temperature, and nozzle assemblies play the most important roles on wellbore flow field. Once the difference between ambient temperatures and jet temperatures is kept constant, the wellbore velocity distributions will not change. With increasing lateral nozzle size or decreasing rear/forward nozzle size, suspending ability of SC-CO2 flow improves obviously. A back-propagation artificial neural network (BP-ANN was successfully employed to match the operation parameters and SC-CO2 flow velocities. A comprehensive model was achieved to optimize the operation parameters according to two strategies: cost-saving strategy and local optimal strategy. This paper can help to understand the distinct characteristics of SC-CO2 flow. And it is the first time that the BP-ANN is introduced to analyze the flow field during wellbore cleanout in

  14. 三维步态分析检测基于BP神经网络的膝踝运动%Three-dimensional gait analysis of the athletic relationship between knee and ankle based on back-propagation neural network

    Institute of Scientific and Technical Information of China (English)

    瞿晓娜; 张腾宇; 王喜太

    2012-01-01

    背景:虽然在人体步态方面已有大量研究,但针对膝踝协调运动的研究很少.目的:用BP神经网络分析膝踝协调运动关系.方法:利用三维步态分析系统检测了30名健康志愿者以快、中、慢3种步速行走时的步态数据,进行统计分析;并通过建立BP神经网络预测数据,同时对膝踝协调的控制方法进行探讨.结果与结论:不同的人步态不同,但BP神经网络预测所得曲线与实验基本一致,证实了用BP神经网络做膝踝运动关系预测的合理性和可行性,很好的研究了膝踝协调性,给全智能膝踝协调控制假肢的研发提供了理论依据.%BACKGROUND: The study of the relationship between knee and ankle is poor although there have been a lot of researches on gait of people. OBJECTIVE: To analyze the relationship between knee and ankle based on back-propagation network. METHODS: The gaits of 30 healthy young people walking at fast, normal, and low speeds separately were detected by three-dimensional gait analysis system, and the gait data were investigated and analyzed. The data were predicted through the establishment of the back-propagation neural network and the knee-ankle coordination control method was explored. RESULTS AND CONCLUSION: Different people had different gaits, but the curve obtained by back-propagation neural network was similar with the experimental curve. The paper investigated and validated that it was viable and reasonable to forecast the kinematic relationship between the knee and ankle by back-propagation network system. The paper studied the coordination between the knee and ankle well, and provided the theory foundation for the design of the intelligent prostheses.

  15. Research on Multilayer Feedforward Neural Networks ——A Unitary Backpropagation Algorithm%多层前馈神经网络研究——单位BP算法

    Institute of Scientific and Technical Information of China (English)

    韩明红; 韩捷; 关惠玲

    2001-01-01

    The reasons for the slowness in convergence of standard backpropagation algorithm and the imperfection of conventional improved algorithms have been fully analyzed. In order to improve the convergence rate of multilayer feedforward neural networks, a new highly efficent unitary backpropagation algorithm based on the unitary-function is proposed. Numerical simulation and experimental results show that the algorithm can greatly increase the convergence rate and highly improve their imminent accurary.%分析了引起标准BP算法收敛速度慢的原因,以及传统改进方法的不足之处,探讨了解决的途径。为了提高BP算法的收敛速度,定义并引入了基量函数的概念,并将其运用到BP算法中,给出了一种高效的单位BP算法。仿真和实例结构均表明该算法能够较好地克服标准BP算法收敛速度慢的缺点,并可以达到很高的网络逼近精度。

  16. Matrix representation of a Neural Network

    DEFF Research Database (Denmark)

    Christensen, Bjørn Klint

    This paper describes the implementation of a three-layer feedforward backpropagation neural network. The paper does not explain feedforward, backpropagation or what a neural network is. It is assumed, that the reader knows all this. If not please read chapters 2, 8 and 9 in Parallel Distributed...... Processing, by David Rummelhart (Rummelhart 1986) for an easy-to-read introduction. What the paper does explain is how a matrix representation of a neural net allows for a very simple implementation. The matrix representation is introduced in (Rummelhart 1986, chapter 9), but only for a two-layer linear...... network and the feedforward algorithm. This paper develops the idea further to three-layer non-linear networks and the backpropagation algorithm. Figure 1 shows the layout of a three-layer network. There are I input nodes, J hidden nodes and K output nodes all indexed from 0. Bias-node for the hidden...

  17. Classification Method of Acidic Dyes with the Pattern of Levenberg-Marquardt Backpropagation Neural Network%基于LM-BP神经网络模式的酸性染料分类方法

    Institute of Scientific and Technical Information of China (English)

    开小明; 沈玉华; 谢安建; 郑学根

    2004-01-01

    提出用Levenberg-Marquardt Backpropagation Neural Network (LM-BP)网络对酸性偶氮染料进行分类,网络结构为4-6-5.优化了隐含层神经元数和网络训练次数,表明隐含层神经元数应比输出层神经元数多一个.考察了训练集样本的选择对结果的影响,测试集的样本参数大小要处于训练集样本之间.本网络把其中22种染料作为训练集,把另外18种染料作为测试集,与采用GCEDM逐次分类法比较,测试集识别率为83%.

  18. DeepNet: An Ultrafast Neural Learning Code for Seismic Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Barhen, J.; Protopopescu, V.; Reister, D.

    1999-07-10

    A feed-forward multilayer neural net is trained to learn the correspondence between seismic data and well logs. The introduction of a virtual input layer, connected to the nominal input layer through a special nonlinear transfer function, enables ultrafast (single iteration), near-optimal training of the net using numerical algebraic techniques. A unique computer code, named DeepNet, has been developed, that has achieved, in actual field demonstrations, results unattainable to date with industry standard tools.

  19. Larger bases and mixed analog/digital neural nets

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1998-12-31

    The paper overviews results dealing with the approximation capabilities of neural networks, and bounds on the size of threshold gate circuits. Based on an explicit numerical algorithm for Kolmogorov`s superpositions the authors show that minimum size neural networks--for implementing any Boolean function--have the identity function as the activation function. Conclusions and several comments on the required precision are ending the paper.

  20. TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions.(Research Article)

    National Research Council Canada - National Science Library

    Cang, Zixuan; Wei, Guowei

    2017-01-01

    .... This representation reveals hidden structure-function relationships in biomolecules. We further integrate ESPH and deep convolutional neural networks to construct a multichannel topological neural network (TopologyNet...

  1. Modeling of stage-discharge relationship for Gharraf River, southern Iraq using backpropagation artificial neural networks, M5 decision trees, and Takagi-Sugeno inference system technique: a comparative study

    Science.gov (United States)

    Al-Abadi, Alaa M.

    2016-11-01

    The potential of using three different data-driven techniques namely, multilayer perceptron with backpropagation artificial neural network (MLP), M5 decision tree model, and Takagi-Sugeno (TS) inference system for mimic stage-discharge relationship at Gharraf River system, southern Iraq has been investigated and discussed in this study. The study used the available stage and discharge data for predicting discharge using different combinations of stage, antecedent stages, and antecedent discharge values. The models' results were compared using root mean squared error (RMSE) and coefficient of determination ( R 2) error statistics. The results of the comparison in testing stage reveal that M5 and Takagi-Sugeno techniques have certain advantages for setting up stage-discharge than multilayer perceptron artificial neural network. Although the performance of TS inference system was very close to that for M5 model in terms of R 2, the M5 method has the lowest RMSE (8.10 m3/s). The study implies that both M5 and TS inference systems are promising tool for identifying stage-discharge relationship in the study area.

  2. Neural-net based unstable machine identification using individual energy functions. [Transient disturbances in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M. (Institut Nikola Tesla, Belgrade (Yugoslavia)); Sobajic, D.J.; Yohhan Pao (Case Western Reserve Univ., Cleveland, OH (United States))

    1991-10-01

    The identification of the mode of instability plays an essential role in generating principal energy boundary hypersurfaces. We present a new method for unstable machine identification based on the use of supervised learning neural-net technology, and the adaptive pattern recognition concept. It is shown that using individual energy functions as pattern features, appropriately trained neural-nets can retrieve the reliable characterization of the transient process including critical clearing time parameter, mode of instability and energy margins. Generalization capabilities of the neural-net processing allow for these assessments to be made independently of load levels. The results obtained from computer simulations are presented using the New England power system, as an example. (author).

  3. ER fluid applications to vibration control devices and an adaptive neural-net controller

    Science.gov (United States)

    Morishita, Shin; Ura, Tamaki

    1993-07-01

    Four applications of electrorheological (ER) fluid to vibration control actuators and an adaptive neural-net control system suitable for the controller of ER actuators are described: a shock absorber system for automobiles, a squeeze film damper bearing for rotational machines, a dynamic damper for multidegree-of-freedom structures, and a vibration isolator. An adaptive neural-net control system composed of a forward model network for structural identification and a controller network is introduced for the control system of these ER actuators. As an example study of intelligent vibration control systems, an experiment was performed in which the ER dynamic damper was attached to a beam structure and controlled by the present neural-net controller so that the vibration in several modes of the beam was reduced with a single dynamic damper.

  4. Neural-net based real-time economic dispatch for thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M.; Milosevic, B. [Inst. Nikola Tesla, Belgrade (Yugoslavia). Dept. of Power Systems; Calovic, M. [Univ. of Belgrade (Yugoslavia). Dept. of Electrical Engineering; Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1996-12-01

    This paper proposes the application of artificial neural networks to real-time optimal generation dispatch of thermal units. The approach can take into account the operational requirements and network losses. The proposed economic dispatch uses an artificial neural network (ANN) for generation of penalty factors, depending on the input generator powers and identified system load change. Then, a few additional iterations are performed within an iterative computation procedure for the solution of coordination equations, by using reference-bus penalty-factors derived from the Newton-Raphson load flow. A coordination technique for environmental and economic dispatch of pure thermal systems, based on the neural-net theory for simplified solution algorithms and improved man-machine interface is introduced. Numerical results on two test examples show that the proposed algorithm can efficiently and accurately develop optimal and feasible generator output trajectories, by applying neural-net forecasts of system load patterns.

  5. Vector control of wind turbine on the basis of the fuzzy selective neural net*

    Science.gov (United States)

    Engel, E. A.; Kovalev, I. V.; Engel, N. E.

    2016-04-01

    An article describes vector control of wind turbine based on fuzzy selective neural net. Based on the wind turbine system’s state, the fuzzy selective neural net tracks an maximum power point under random perturbations. Numerical simulations are accomplished to clarify the applicability and advantages of the proposed vector wind turbine’s control on the basis of the fuzzy selective neuronet. The simulation results show that the proposed intelligent control of wind turbine achieves real-time control speed and competitive performance, as compared to a classical control model with PID controllers based on traditional maximum torque control strategy.

  6. Fast neural-net based fake track rejection

    CERN Document Server

    De Cian, Michel; Seyfert, Paul; Stahl, Sascha

    2017-01-01

    A neural-network based algorithm to identify fake tracks in the LHCb pattern recognition is presented. This algorithm, called ghost probability, is fast enough to fit into the CPU time budget of the software trigger farm. It allows reducing the fake rate and consequently the combinatorics of the decay reconstructions, as well as the number of tracks that need to be processed by the particle identification algorithms. As a result, it strongly contributes to the achievement of having the same reconstruction online and offline in the LHCb experiment.

  7. Prediction of Welded Joint Strength in Plasma Arc Welding: A Comparative Study Using Back-Propagation and Radial Basis Neural Networks

    Science.gov (United States)

    Srinivas, Kadivendi; Vundavilli, Pandu R.; Manzoor Hussain, M.; Saiteja, M.

    2016-09-01

    Welding input parameters such as current, gas flow rate and torch angle play a significant role in determination of qualitative mechanical properties of weld joint. Traditionally, it is necessary to determine the weld input parameters for every new welded product to obtain a quality weld joint which is time consuming. In the present work, the effect of plasma arc welding parameters on mild steel was studied using a neural network approach. To obtain a response equation that governs the input-output relationships, conventional regression analysis was also performed. The experimental data was constructed based on Taguchi design and the training data required for neural networks were randomly generated, by varying the input variables within their respective ranges. The responses were calculated for each combination of input variables by using the response equations obtained through the conventional regression analysis. The performances in Levenberg-Marquardt back propagation neural network and radial basis neural network (RBNN) were compared on various randomly generated test cases, which are different from the training cases. From the results, it is interesting to note that for the above said test cases RBNN analysis gave improved training results compared to that of feed forward back propagation neural network analysis. Also, RBNN analysis proved a pattern of increasing performance as the data points moved away from the initial input values.

  8. Calibration of a portable cost-effective chemical residue detection system with adaptive neural net control

    Science.gov (United States)

    Tripp, Alan C.; Walker, James C.

    2003-07-01

    The Sensory Research Institute at the Florida State University has quantitatively characterized a chemical residue detection system with adaptive neural net data processing. Two separate configurations, "Stormy" and "Gaea", were trained by exposure to decreasing amounts of n-amyl acetate from chemical emitters randomly distributed among a collection of non-emitters. The concentration of chemical in the sampled air stream was controlled precisely. The detection threshold for "Stormy" was 1.14 ppt; that for "Gaea" was 1.9 ppt. Cycle time for sampling and chemical analysis of each sample port was on the order of seconds. Possible effects on the sensors of environmental factors such as ambient humidity, temperature, and air velocity were not considered. Besides processing individual air sample data, the neural nets can sense concentration gradients and track to chemical source. The adaptive neural nets are accessed by a voice recognition system and are capable of point testing or free-ranging search. The service life of the detectors, the neural net processors, and auxiliary packaging is approximately 8 years under normal field use. Maintenance requires a good quality kibble and an occasional romp in the park.

  9. A hybrid architecture for the implementation of the Athena neural net model

    Science.gov (United States)

    Koutsougeras, C.; Papachristou, C.

    1989-01-01

    The implementation of an earlier introduced neural net model for pattern classification is considered. Data flow principles are employed in the development of a machine that efficiently implements the model and can be useful for real time classification tasks. Further enhancement with optical computing structures is also considered.

  10. Neural net classification of x-ray pistachio nut data

    Science.gov (United States)

    Casasent, David P.; Sipe, Michael A.; Schatzki, Thomas F.; Keagy, Pamela M.; Le, Lan Chau

    1996-12-01

    Classification results for agricultural products are presented using a new neural network. This neural network inherently produces higher-order decision surfaces. It achieves this with fewer hidden layer neurons than other classifiers require. This gives better generalization. It uses new techniques to select the number of hidden layer neurons and adaptive algorithms that avoid other such ad hoc parameter selection problems; it allows selection of the best classifier parameters without the need to analyze the test set results. The agriculture case study considered is the inspection and classification of pistachio nuts using x- ray imagery. Present inspection techniques cannot provide good rejection of worm damaged nuts without rejecting too many good nuts. X-ray imagery has the potential to provide 100% inspection of such agricultural products in real time. Only preliminary results are presented, but these indicate the potential to reduce major defects to 2% of the crop with 1% of good nuts rejected. Future image processing techniques that should provide better features to improve performance and allow inspection of a larger variety of nuts are noted. These techniques and variations of them have uses in a number of other agricultural product inspection problems.

  11. Back-propagation neural network in tidal-level forecasting by Ching-PiaoTsai and Tsong-Lin Lee - Discussion

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.

    an interesting study on the ap- plication of an artificial neural network (ANN) for forecasting tidal levels. This technique is comparable to the already pop- ular time series modeling with an added advantage in that the functional form between the input variable... of hydrologic models.’’ J. Hydrology, 81, 57–77. McCuen, R. H. (1993). Statistical hydrology, Prentice-Hall, Englewood Cliffs, N.J. Tokar, A. S., and Johnson, P. A. (1999). ‘‘Rainfall-runoff modeling using artificial neural networks.’’ J. Hydrologic Engrg., ASCE...

  12. A new neural net approach to robot 3D perception and visuo-motor coordination

    Science.gov (United States)

    Lee, Sukhan

    1992-01-01

    A novel neural network approach to robot hand-eye coordination is presented. The approach provides a true sense of visual error servoing, redundant arm configuration control for collision avoidance, and invariant visuo-motor learning under gazing control. A 3-D perception network is introduced to represent the robot internal 3-D metric space in which visual error servoing and arm configuration control are performed. The arm kinematic network performs the bidirectional association between 3-D space arm configurations and joint angles, and enforces the legitimate arm configurations. The arm kinematic net is structured by a radial-based competitive and cooperative network with hierarchical self-organizing learning. The main goal of the present work is to demonstrate that the neural net representation of the robot 3-D perception net serves as an important intermediate functional block connecting robot eyes and arms.

  13. Intelligent control based on fuzzy logic and neural net theory

    Science.gov (United States)

    Lee, Chuen-Chien

    1991-01-01

    In the conception and design of intelligent systems, one promising direction involves the use of fuzzy logic and neural network theory to enhance such systems' capability to learn from experience and adapt to changes in an environment of uncertainty and imprecision. Here, an intelligent control scheme is explored by integrating these multidisciplinary techniques. A self-learning system is proposed as an intelligent controller for dynamical processes, employing a control policy which evolves and improves automatically. One key component of the intelligent system is a fuzzy logic-based system which emulates human decision making behavior. It is shown that the system can solve a fairly difficult control learning problem. Simulation results demonstrate that improved learning performance can be achieved in relation to previously described systems employing bang-bang control. The proposed system is relatively insensitive to variations in the parameters of the system environment.

  14. Development of a neural net paradigm that predicts simulator sickness

    Energy Technology Data Exchange (ETDEWEB)

    Allgood, G.O.

    1993-03-01

    A disease exists that affects pilots and aircrew members who use Navy Operational Flight Training Systems. This malady, commonly referred to as simulator sickness and whose symptomatology closely aligns with that of motion sickness, can compromise the use of these systems because of a reduced utilization factor, negative transfer of training, and reduction in combat readiness. A report is submitted that develops an artificial neural network (ANN) and behavioral model that predicts the onset and level of simulator sickness in the pilots and aircrews who sue these systems. It is proposed that the paradigm could be implemented in real time as a biofeedback monitor to reduce the risk to users of these systems. The model captures the neurophysiological impact of use (human-machine interaction) by developing a structure that maps the associative and nonassociative behavioral patterns (learned expectations) and vestibular (otolith and semicircular canals of the inner ear) and tactile interaction, derived from system acceleration profiles, onto an abstract space that predicts simulator sickness for a given training flight.

  15. Neural net classification and LMS reconstruction to halftone images

    Science.gov (United States)

    Chang, Pao-Chi; Yu, Che-Sheng

    1998-01-01

    The objective of this work is to reconstruct high quality gray-level images from halftone images, or the inverse halftoning process. We develop high performance halftone reconstruction methods for several commonly used halftone techniques. For better reconstruction quality, image classification based on halftone techniques is placed before the reconstruction process so that the halftone reconstruction process can be fine tuned for each halftone technique. The classification is based on enhanced 1D correlation of halftone images and processed with a three- layer back propagation neural network. This classification method reached 100 percent accuracy with a limited set of images processed by dispersed-dot ordered dithering, clustered-dot ordered dithering, constrained average, and error diffusion methods in our experiments. For image reconstruction, we apply the least-mean-square adaptive filtering algorithm which intends to discover the optimal filter weights and the mask shapes. As a result, it yields very good reconstruction image quality. The error diffusion yields the best reconstructed quality among the halftone methods. In addition, the LMS method generates optimal image masks which are significantly different for each halftone method. These optimal masks can also be applied to more sophisticated reconstruction methods as the default filter masks.

  16. Development of a neural net paradigm that predicts simulator sickness

    Energy Technology Data Exchange (ETDEWEB)

    Allgood, G.O.

    1993-03-01

    A disease exists that affects pilots and aircrew members who use Navy Operational Flight Training Systems. This malady, commonly referred to as simulator sickness and whose symptomatology closely aligns with that of motion sickness, can compromise the use of these systems because of a reduced utilization factor, negative transfer of training, and reduction in combat readiness. A report is submitted that develops an artificial neural network (ANN) and behavioral model that predicts the onset and level of simulator sickness in the pilots and aircrews who sue these systems. It is proposed that the paradigm could be implemented in real time as a biofeedback monitor to reduce the risk to users of these systems. The model captures the neurophysiological impact of use (human-machine interaction) by developing a structure that maps the associative and nonassociative behavioral patterns (learned expectations) and vestibular (otolith and semicircular canals of the inner ear) and tactile interaction, derived from system acceleration profiles, onto an abstract space that predicts simulator sickness for a given training flight.

  17. NIRFaceNet: A Convolutional Neural Network for Near-Infrared Face Identification

    Directory of Open Access Journals (Sweden)

    Min Peng

    2016-10-01

    Full Text Available Near-infrared (NIR face recognition has attracted increasing attention because of its advantage of illumination invariance. However, traditional face recognition methods based on NIR are designed for and tested in cooperative-user applications. In this paper, we present a convolutional neural network (CNN for NIR face recognition (specifically face identification in non-cooperative-user applications. The proposed NIRFaceNet is modified from GoogLeNet, but has a more compact structure designed specifically for the Chinese Academy of Sciences Institute of Automation (CASIA NIR database and can achieve higher identification rates with less training time and less processing time. The experimental results demonstrate that NIRFaceNet has an overall advantage compared to other methods in the NIR face recognition domain when image blur and noise are present. The performance suggests that the proposed NIRFaceNet method may be more suitable for non-cooperative-user applications.

  18. BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment.

    Science.gov (United States)

    Kawahara, Jeremy; Brown, Colin J; Miller, Steven P; Booth, Brian G; Chau, Vann; Grunau, Ruth E; Zwicker, Jill G; Hamarneh, Ghassan

    2017-02-01

    We propose BrainNetCNN, a convolutional neural network (CNN) framework to predict clinical neurodevelopmental outcomes from brain networks. In contrast to the spatially local convolutions done in traditional image-based CNNs, our BrainNetCNN is composed of novel edge-to-edge, edge-to-node and node-to-graph convolutional filters that leverage the topological locality of structural brain networks. We apply the BrainNetCNN framework to predict cognitive and motor developmental outcome scores from structural brain networks of infants born preterm. Diffusion tensor images (DTI) of preterm infants, acquired between 27 and 46 weeks gestational age, were used to construct a dataset of structural brain connectivity networks. We first demonstrate the predictive capabilities of BrainNetCNN on synthetic phantom networks with simulated injury patterns and added noise. BrainNetCNN outperforms a fully connected neural-network with the same number of model parameters on both phantoms with focal and diffuse injury patterns. We then apply our method to the task of joint prediction of Bayley-III cognitive and motor scores, assessed at 18 months of age, adjusted for prematurity. We show that our BrainNetCNN framework outperforms a variety of other methods on the same data. Furthermore, BrainNetCNN is able to identify an infant's postmenstrual age to within about 2 weeks. Finally, we explore the high-level features learned by BrainNetCNN by visualizing the importance of each connection in the brain with respect to predicting the outcome scores. These findings are then discussed in the context of the anatomy and function of the developing preterm infant brain.

  19. Neural network design with combined backpropagation and creeping random search learning algorithms applied to the determination of retained austenite in TRIP steels; Diseno de redes neuronales con aprendizaje combinado de retropropagacion y busqueda aleatoria progresiva aplicado a la determinacion de austenita retenida en aceros TRIP

    Energy Technology Data Exchange (ETDEWEB)

    Toda-Caraballo, I.; Garcia-Mateo, C.; Capdevila, C.

    2010-07-01

    At the beginning of the decade of the nineties, the industrial interest for TRIP steels leads to a significant increase of the investigation and application in this field. In this work, the flexibility of neural networks for the modelling of complex properties is used to tackle the problem of determining the retained austenite content in TRIP-steel. Applying a combination of two learning algorithms (backpropagation and creeping-random-search) for the neural network, a model has been created that enables the prediction of retained austenite in low-Si / low-Al multiphase steels as a function of processing parameters. (Author). 34 refs.

  20. tf_unet: Generic convolutional neural network U-Net implementation in Tensorflow

    Science.gov (United States)

    Akeret, Joel; Chang, Chihway; Lucchi, Aurelien; Refregier, Alexandre

    2016-11-01

    tf_unet mitigates radio frequency interference (RFI) signals in radio data using a special type of Convolutional Neural Network, the U-Net, that enables the classification of clean signal and RFI signatures in 2D time-ordered data acquired from a radio telescope. The code is not tied to a specific segmentation and can be used, for example, to detect radio frequency interference (RFI) in radio astronomy or galaxies and stars in widefield imaging data. This U-Net implementation can outperform classical RFI mitigation algorithms.

  1. 利用BP神经网络进行伺服系统间隙非线性补偿%Backlash Nonlinear Compensation of Servo Systems Using Backpropagation Neural Networks

    Institute of Scientific and Technical Information of China (English)

    何超; 徐立新; 张宇河

    1999-01-01

    目的为了消除普遍存在于伺服系统中的间隙非线性的影响,提出一种利用BP神经网络进行非线性补偿的方法.方法以某武器跟踪伺服系统为例,采用一个3层BP神经网络对其间隙非线性特性进行离线辨识,然后根据辨识结果设计一个非线性补偿器.结果仿真结果表明所提出的方法能够有效消除间隙特性引起的系统自振荡(极限环),并且能够提高系统精度.结论利用BP神经网络进行间隙非线性补偿的方法能够有效解决伺服系统中间隙特性带来的影响,且易于在工程中实现.%Aim To eliminate the influences of backlash nonlinear characteristics generally existing in servo systems, a nonlinear compensation method using backpropagation neural networks(BPNN) is presented. Methods Based on some weapon tracking servo system, a three-layer BPNN was used to off-line identify the backlash characteristics, then a nonlinear compensator was designed according to the identification results. Results The simulation results show that the method can effectively get rid of the sustained oscillation(limit cycle) of the system caused by the backlash characteristics, and can improve the system accuracy. Conclusion The method is effective on sloving the problems produced by the backlash characteristics in servo systems, and it can be easily accomplished in engineering.

  2. Establishment of turbidity forecasting model and early-warning system for source water turbidity management using back-propagation artificial neural network algorithm and probability analysis.

    Science.gov (United States)

    Yang, Tsung-Ming; Fan, Shu-Kai; Fan, Chihhao; Hsu, Nien-Sheng

    2014-08-01

    The purpose of this study is to establish a turbidity forecasting model as well as an early-warning system for turbidity management using rainfall records as the input variables. The Taipei Water Source Domain was employed as the study area, and ANOVA analysis showed that the accumulative rainfall records of 1-day Ping-lin, 2-day Ping-lin, 2-day Fei-tsui, 2-day Shi-san-gu, 2-day Tai-pin and 2-day Tong-hou were the six most significant parameters for downstream turbidity development. The artificial neural network model was developed and proven capable of predicting the turbidity concentration in the investigated catchment downstream area. The observed and model-calculated turbidity data were applied to developing the turbidity early-warning system. Using a previously determined turbidity as the threshold, the rainfall criterion, above which the downstream turbidity would possibly exceed this respective threshold turbidity, for the investigated rain gauge stations was determined. An exemplary illustration demonstrated the effectiveness of the proposed turbidity early-warning system as a precautionary alarm of possible significant increase of downstream turbidity. This study is the first report of the establishment of the turbidity early-warning system. Hopefully, this system can be applied to source water turbidity forecasting during storm events and provide a useful reference for subsequent adjustment of drinking water treatment operation.

  3. Neural net based determination of generator-shedding requirements in electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M. (Electrical Engineering Inst. ' Nikola Tesla' , Belgrade (Yugoslavia)); Sobajic, D.J.; Pao, Y.-H. (Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Electrical Engineering and Applied Physics Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Computer Engineering and Science AI WARE Inc., Cleveland, OH (United States))

    1992-09-01

    This paper presents an application of artificial neural networks (ANN) in support of a decision-making process by power system operators directed towards the fast stabilisation of multi-machine systems. The proposed approach considers generator shedding as the most effective discrete supplementary control for improving the dynamic performance of faulted power systems and preventing instabilities. The sensitivity of the transient energy function (TEF) with respect to changes in the amount of dropped generation is used during the training phase of ANNs to assess the critical amount of generator shedding required to prevent the loss of synchronism. The learning capabilities of neural nets are used to establish complex mappings between fault information and the amount of generation to be shed, suggesting it as the control signal to the power system operator. (author)

  4. Bayesian Inference using Neural Net Likelihood Models for Protein Secondary Structure Prediction

    Directory of Open Access Journals (Sweden)

    Seong-Gon Kim

    2011-06-01

    Full Text Available Several techniques such as Neural Networks, Genetic Algorithms, Decision Trees and other statistical or heuristic methods have been used to approach the complex non-linear task of predicting Alpha-helicies, Beta-sheets and Turns of a proteins secondary structure in the past. This project introduces a new machine learning method by using an offline trained Multilayered Perceptrons (MLP as the likelihood models within a Bayesian Inference framework to predict secondary structures proteins. Varying window sizes are used to extract neighboring amino acid information and passed back and forth between the Neural Net models and the Bayesian Inference process until there is a convergence of the posterior secondary structure probability.

  5. Model and simulink of anaerobic baffled reactor treating sulfate organic wastewater based on back-propagation neural network%ABR处理硫酸盐有机废水的BP神经网络建模

    Institute of Scientific and Technical Information of China (English)

    韦添尹; 蒋永荣; 刘可慧; 刘成良; 张威

    2013-01-01

    The back-propagation neural network (BPNN) trained with the data from the sulfate organic wastewater treatment of anaerobic baffled reactor(ABR) and a network model was buih.The better training function and times were ‘ traingda' and 1 900,respectively.Partition connection weights (PCW) was adopted to analyze the dominant factors of effluent COD and SO42-.The results showed that all of the factors (feed COD,SO42-,pH,COD/SO42-and HRT) had an influence on effluent COD and SO42-.Nevertheless,the feed pH was the dominant factor,which relative importance (RI) were 30.79% and 23.44%,respectively.The model and simulink on restrictive factors for COD and SO42-removal were built respectively,which can be used for prediction on sulfate organic wastewater treatment.%通过厌氧折流板反应器(ABR)处理硫酸盐有机废水的实验数据对BP神经网络进行训练,建立了ABR处理硫酸盐有机废水的BPNN模型,通过测试对比,找出了较优训练函数为traingda,较优训练次数为1 900.利用分割连接权值法(PCW)对影响出水SO42-和COD的主要因素进行分析,结果显示进水COD、SO42-、pH、COD/SO42-和HRT对出水SO42-和COD均产生一定影响,其中进水pH对出水SO42-和COD的影响最大,相对重要性(RI)指数分别为30.79%和23.44%;并通过样本试验数据分别建立了对SO42-和COD去除率的限制因子仿真模型,为预测硫酸盐有机废水的厌氧处理过程提供指导.

  6. Predictive model based on artificial neural net for purity of perovskite-type SrTiO3 nanocrystalline

    Institute of Scientific and Technical Information of China (English)

    REN Qing-li; CAO Quan-xi

    2006-01-01

    A three-layer structure back-propagation network model based on the non-linear relationship between the purity of the perovskite-type SrTiO3 nano-crystal samples and the technology factors,such as reaction time,reaction temperature,raw material adding amount of NaOH and SrCl2,and the rate of TiCl4/Hl,was established. The input variables were pretreated by using the main component analysis firstly. Moreover,the momentum terms were introduced so as to accelerate the converging rate and avoid the non-converging situation. At the same time,the variable learning speed was adopted. The results show that the improved back propagation neural network model is very efficient for the prediction of the perovskite-type SrTiO3 nano-crystal sample purity.

  7. Assessment of the expected construction company’s net profit using neural network and multiple regression models

    Directory of Open Access Journals (Sweden)

    H.H. Mohamad

    2013-09-01

    This research aims to develop a mathematical model for assessing the expected net profit of any construction company. To achieve the research objective, four steps were performed. First, the main factors affecting firms’ net profit were identified. Second, pertinent data regarding the net profit factors were collected. Third, two different net profit models were developed using the Multiple Regression (MR and the Neural Network (NN techniques. The validity of the proposed models was also investigated. Finally, the results of both MR and NN models were compared to investigate the predictive capabilities of the two models.

  8. Multilayer discrete-time neural-net controller with guaranteed performance.

    Science.gov (United States)

    Jagannathan, S; Lewis, F L

    1996-01-01

    A family of novel multilayer discrete-time neural-net (NN) controllers is presented for the control of a class of multi-input multi-output (MIMO) dynamical systems. The neural net controller includes modified delta rule weight tuning and exhibits a learning while-functioning-features. The structure of the NN controller is derived using a filtered error/passivity approach. Linearity in the parameters is not required and certainty equivalence is not used. This overcomes several limitations of standard adaptive control. The notion of persistency of excitation (PE) for multilayer NN is defined and explored. New online improved tuning algorithms for discrete-time systems are derived, which are similar to sigma or epsilon-modification for the case of continuous-time systems, that include a modification to the learning rate parameter plus a correction term. These algorithms guarantee tracking as well as bounded NN weights in nonideal situations so that PE is not needed. An extension of these novel weight tuning updates to NN with an arbitrary number of hidden layers is discussed. The notions of discrete-time passive NN, dissipative NN, and robust NN are introduced. The NN makes the closed-loop system passive.

  9. Neural-Net Based Optical NDE Method for Structural Health Monitoring

    Science.gov (United States)

    Decker, Arthur J.; Weiland, Kenneth E.

    2003-01-01

    This paper answers some performance and calibration questions about a non-destructive-evaluation (NDE) procedure that uses artificial neural networks to detect structural damage or other changes from sub-sampled characteristic patterns. The method shows increasing sensitivity as the number of sub-samples increases from 108 to 6912. The sensitivity of this robust NDE method is not affected by noisy excitations of the first vibration mode. A calibration procedure is proposed and demonstrated where the output of a trained net can be correlated with the outputs of the point sensors used for vibration testing. The calibration procedure is based on controlled changes of fastener torques. A heterodyne interferometer is used as a displacement sensor for a demonstration of the challenges to be handled in using standard point sensors for calibration.

  10. Accelerometer signal-based human activity recognition using augmented autoregressive model coefficients and artificial neural nets.

    Science.gov (United States)

    Khan, A M; Lee, Y K; Kim, T S

    2008-01-01

    Automatic recognition of human activities is one of the important and challenging research areas in proactive and ubiquitous computing. In this work, we present some preliminary results of recognizing human activities using augmented features extracted from the activity signals measured using a single triaxial accelerometer sensor and artificial neural nets. The features include autoregressive (AR) modeling coefficients of activity signals, signal magnitude areas (SMA), and title angles (TA). We have recognized four human activities using AR coefficients (ARC) only, ARC with SMA, and ARC with SMA and TA. With the last augmented features, we have achieved the recognition rate above 99% for all four activities including lying, standing, walking, and running. With our proposed technique, real time recognition of some human activities is possible.

  11. Discussion of using artificial neural nets to identify the well-test interpretation model

    Energy Technology Data Exchange (ETDEWEB)

    Yeung, K. (Univ. of Alberta, Edmonton, Alberta (Canada)); Chakrabarty, C. (Golder Associates, Nottingham (United Kingdom)); Wu, S. (Univ. of Melbourne (Australia))

    1994-09-01

    Use of artificial neural nets (ANN's) to identify noisy and apparently unrecognizable patterns is common for many real-world problems, ranging from applications such as speech recognition to stock market prediction. ANN approaches are often good candidates for recognizing patterns when rigid mathematical models do not exist or are insufficient to meet a full-scale identification requirement. Al-Kaabi and Lee's proposal of using ANN's to identify the well-test interpretation model is appropriate because well-test data is often highly nonlinear and noisy. The purpose of this discussion is to present some of the authors results in a similar study and to suggest a simple technique that would enhance the use of ANN's in Al-Kaabi and Lee's approach.

  12. Investigation of neural-net based control strategies for improved power system dynamic performance

    Energy Technology Data Exchange (ETDEWEB)

    Sobajic, D.J. [Electric Power Research Institute, Palo Alto, CA (United States)

    1995-12-31

    The ability to accurately predict the behavior of a dynamic system is of essential importance in monitoring and control of complex processes. In this regard recent advances in neural-net base system identification represent a significant step toward development and design of a new generation of control tools for increased system performance and reliability. The enabling functionality is the one of accurate representation of a model of a nonlinear and nonstationary dynamic system. This functionality provides valuable new opportunities including: (1) The ability to predict future system behavior on the basis of actual system observations, (2) On-line evaluation and display of system performance and design of early warning systems, and (3) Controller optimization for improved system performance. In this presentation, we discuss the issues involved in definition and design of learning control systems and their impact on power system control. Several numerical examples are provided for illustrative purpose.

  13. BACKPROPAGATION TRAINING ALGORITHM WITH ADAPTIVE PARAMETERS TO SOLVE DIGITAL PROBLEMS

    Directory of Open Access Journals (Sweden)

    R. Saraswathi

    2011-01-01

    Full Text Available An efficient technique namely Backpropagation training with adaptive parameters using Lyapunov Stability Theory for training single hidden layer feed forward network is proposed. A three-layered Feedforward neural network architecture is used to solve the selected problems. Sequential Training Mode is used to train the network. Lyapunov stability theory is employed to ensure the faster and steady state error convergence and to construct and energy surface with a single global minimum point through the adaptive adjustment of the weights and the adaptive parameter ß. To avoid local minima entrapment, an adaptive backpropagation algorithm based on Lyapunov stability theory is used. Lyapunov stability theory gives the algorithm, the efficiency of attaining a single global minimum point. The learning parameters used in this algorithm is responsible for the faster error convergence. The adaptive learning parameter used in this algorithm is chosen properly for faster error convergence. The error obtained has been asymptotically converged to zero according to Lyapunov Stability theory. The performance of the adaptive Backpropagation algorithm is measured by solving parity problem, half adder and full adder problems.

  14. SU-F-BRD-11: Prediction of Dosimetric Endpoints From Patient Geometry Using Neural Nets

    Energy Technology Data Exchange (ETDEWEB)

    O' Connell, D; Chow, P; Agazaryan, N; Jani, S; Low, D; Lamb, J [Department of Radiation Oncology, University of California, Los Angeles, CA (United States)

    2014-06-15

    Purpose: The previously-published overlap volume histogram (OVH) technique lends itself naturally to prediction of the dose received by a given volume of tissue (e.g. D90) in intensity-modulated radiotherapy (IMRT) treatment plans. Here we extend the OVH technique using artificial neural networks in order to predict the volume of tissue receiving a given dose (e.g. V90) in both prostate IMRT and conventional breast radiotherapy. Methods: Twenty-nine prostate treatment plans and forty-three breast treatment plans were analyzed. The spatial relationships between the prostate and rectum and between the breast and ipsilateral lung were characterized using OVHs. The OVH is a cumulative histogram representing the fractional volume of the risk organ overlapped by a series of isotropic expansions of the planning target volume (PTV). Seven cases were identified as outliers and replanned. OVH points were used as inputs to a one hidden layer feed forward artificial neural network with quality parameters of the corresponding plan, such as the rectum V50, as targets. A 3-fold cross-validation was used to estimate the prediction error. Results: The root mean square (RMS) error between the predicted rectum V50s and the planned values was 2.3, which was 35% of the standard deviation of V50 for the twenty-nine plans. The RMS error of prediction of V20 of the ipsilateral lung in breast cases was 3.9, which was 90% of the standard deviation of the V20 values in the breast plan database. Conclusion: This study demonstrates that artificial neural nets can be used to extend the OVH technique to predict dosimetric endpoints taking the form of a volume receiving a given dose, rather than the minimum dose received by a given volume. Prediction of ipsilateral lung dose in breast radiotherapy using the OVH technique remains a work in progress.

  15. Prediction of Disease Causing Non-Synonymous SNPs by the Artificial Neural Network Predictor NetDiseaseSNP

    DEFF Research Database (Denmark)

    Johansen, Morten Bo; Gonzalez-Izarzugaza, Jose Maria; Brunak, Søren

    2013-01-01

    We have developed a sequence conservation-based artificial neural network predictor called NetDiseaseSNP which classifies nsSNPs as disease-causing or neutral. Our method uses the excellent alignment generation algorithm of SIFT to identify related sequences and a combination of 31 features...

  16. Forecasting the Number of Patients Diseases Using Backpropagation

    Directory of Open Access Journals (Sweden)

    Rachmad Aeri

    2016-01-01

    Full Text Available Forecasting with various types of disease is important for health centers, because it can be used to help the health center management in conducting strategic planning and decision making. Health Care Center Torjun in Indonesiahas made estimationabout the number of patients with various types of diseases, such as Acute Respiratory Infections(ISPA, RA(Rheumatoid Arthritis, diarrhea, HT(Hypertension, Skin Allergies, Conjunctivitis, Asthma, Febrile, TB(Tuberculosis. Lung, scabies, Gastritis, typus and scarlet fever with reports the number of patients with certain diseases in the coming period and prepare the necessary needs both medical services and as well as drugs for use later. In this study, Artificial Neural Network (ANN is one model that is used to identify patterns of images of people with various kinds of diseases. Backpropagation is one of the popular models of Neural Networkwhich is used for forecasting, prediction, and decision makers based on the input of data entry that has been studied in advance. The resultsis HT (0.35 %with parameters for forecasting system using Neural Network Backpropagation is the best of the trial results that shows disease HT which are obtained from the experiments. They predict the number of patients with a disease that needs to be watched for in the coming period and prepare all the needs of both medical and medication needed to handle the number of people with the disease.

  17. 模糊反向传播神经网络FBP的函数逼近能力研究%Research on Function Approximation Capabilities of Fuzzy Backpropagation Neural Networks

    Institute of Scientific and Technical Information of China (English)

    王士同; 朱晓铭

    2001-01-01

    研究了模糊反向传播神经网络FBP(Fuzzy Backpropagation)的函数逼近能力.给出了单调连续函数的FBP按序单调特性、连续映射定理以及非函数一致逼近定理,并且说明了FBP虽然能保持连续性映射,但不如原神经网络具有函数逼近能力.

  18. Self-Organized Robust Principal Component Analysis by Back-Propagation Learning

    OpenAIRE

    樋口, 勇夫

    2004-01-01

    The purpose of this study is the suggestion of a self-organized back-propagation algorithm for robust principal component analysis. The self-organizing algorithm that discriminates the influence of data automatically is applied to learning of a sandglass type neural network.

  19. Digital Backpropagation in the Nonlinear Fourier Domain

    CERN Document Server

    Wahls, Sander; Prilepsky, Jaroslaw E; Poor, H Vincent; Turitsyn, Sergei K

    2015-01-01

    Nonlinear and dispersive transmission impairments in coherent fiber-optic communication systems are often compensated by reverting the nonlinear Schr\\"odinger equation, which describes the evolution of the signal in the link, numerically. This technique is known as digital backpropagation. Typical digital backpropagation algorithms are based on split-step Fourier methods in which the signal has to be discretized in time and space. The need to discretize in both time and space however makes the real-time implementation of digital backpropagation a challenging problem. In this paper, a new fast algorithm for digital backpropagation based on nonlinear Fourier transforms is presented. Aiming at a proof of concept, the main emphasis will be put on fibers with normal dispersion in order to avoid the issue of solitonic components in the signal. However, it is demonstrated that the algorithm also works for anomalous dispersion if the signal power is low enough. Since the spatial evolution of a signal governed by the ...

  20. Development of welding defects identifier application on radiographic film using gray level co-occurrence matrix and backpropagation

    Science.gov (United States)

    Abidin, Zaenal; Anompa, Muhammad Angger; Muhtadan

    2013-09-01

    Development of Welding Defect Identifiers for application in Radiographic Film by using Gray Level Co-Occurrence Matrix and Back-Propagation. A research on the application development to interpret the welding defects in industrial radiographic films by using neural networks has been conducted. This research is aimed to produce an application that implement the digital image processing, feature extraction and pattern recognition using artificial neural networks. Digital image processing applied in the development is the technique of noise removal using median filter, contrast stretching and image sharpening by Laplacian filter. Method of Grey level co-occurrence matrix (GLCM) is applied to extract features from digital images radiographic films. Back-propagation artificial neural network method is used for defect classification and interpretation of welding defect in radiographic films. The result of this research is an application of back-propagation neural networks with classification results for 60 simulated data with 95% of classification successful rate.

  1. Schema generation in recurrent neural nets for intercepting a moving target.

    Science.gov (United States)

    Fleischer, Andreas G

    2010-06-01

    The grasping of a moving object requires the development of a motor strategy to anticipate the trajectory of the target and to compute an optimal course of interception. During the performance of perception-action cycles, a preprogrammed prototypical movement trajectory, a motor schema, may highly reduce the control load. Subjects were asked to hit a target that was moving along a circular path by means of a cursor. Randomized initial target positions and velocities were detected in the periphery of the eyes, resulting in a saccade toward the target. Even when the target disappeared, the eyes followed the target's anticipated course. The Gestalt of the trajectories was dependent on target velocity. The prediction capability of the motor schema was investigated by varying the visibility range of cursor and target. Motor schemata were determined to be of limited precision, and therefore visual feedback was continuously required to intercept the moving target. To intercept a target, the motor schema caused the hand to aim ahead and to adapt to the target trajectory. The control of cursor velocity determined the point of interception. From a modeling point of view, a neural network was developed that allowed the implementation of a motor schema interacting with feedback control in an iterative manner. The neural net of the Wilson type consists of an excitation-diffusion layer allowing the generation of a moving bubble. This activation bubble runs down an eye-centered motor schema and causes a planar arm model to move toward the target. A bubble provides local integration and straightening of the trajectory during repetitive moves. The schema adapts to task demands by learning and serves as forward controller. On the basis of these model considerations the principal problem of embedding motor schemata in generalized control strategies is discussed.

  2. Neural-net based coordinated stabilizing control for the exciter and governor loops of low head hydropower plants

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M.; Novicevic, M.; Dobrijevic, D.; Babic, B. [Electrical Engineering Inst. Nikola Tesla, Belgrade (Yugoslavia); Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States); Pao, Y.H. [Case Western Reserve Univ., Cleveland, OH (United States)]|[AI WARE, Inc., Cleveland, OH (United States)

    1995-12-01

    This paper presents a design technique of a new adaptive optimal controller of the low head hydropower plant using artificial neural networks (ANN). The adaptive controller is to operate in real time to improve the generating unit transients through the exciter input, the guide vane position and the runner blade position. The new design procedure is based on self-organization and the predictive estimation capabilities of neural-nets implemented through the cluster-wise segmented associative memory scheme. The developed neural-net based controller (NNC) whose control signals are adjusted using the on-line measurements, can offer better damping effects for generator oscillations over a wide range of operating conditions than conventional controllers. Digital simulations of hydropower plant equipped with low head Kaplan turbine are performed and the comparisons of conventional excitation-governor control, state-space optimal control and neural-net based control are presented. Results obtained on the non-linear mathematical model demonstrate that the effects of the NNC closely agree with those obtained using the state-space multivariable discrete-time optimal controllers.

  3. A Restricted Boltzman Neural Net to Infer Carbon Uptake from OCO-2 Satellite Data

    Science.gov (United States)

    Halem, M.; Dorband, J. E.; Radov, A.; Barr-Dallas, M.; Gentine, P.

    2015-12-01

    For several decades, scientists have been using satellite observations to infer climate budgets of terrestrial carbon uptake employing inverse methods in conjunction with ecosystem models and coupled global climate models. This is an extremely important Big Data calculation today since the net annual photosynthetic carbon uptake changes annually over land and removes on average ~20% of the emissions from human contributions to atmospheric loading of CO2 from fossil fuels. Unfortunately, such calculations have large uncertainties validated with in-situ networks of measuring stations across the globe. One difficulty in using satellite data for these budget calculations is that the models need to assimilate surface fluxes of CO2 as well as soil moisture, vegatation cover and the eddy covariance of latent and sensible heat to calculate the carbon fixed in the soil while satellite spectral observations only provide near surface concentrations of CO2. In July 2014, NASA successfully launched OCO-2 which provides 3km surface measurements of CO2 over land and oceans. We have collected nearly one year of Level 2 XCO2 data from the OCO-2 satellite for 3 sites of ~200 km2 at equatorial, temperate and high latitudes. Each selected site was part of the Fluxnet or ARM system with tower stations for measuring and collecting CO2 fluxes on an hourly basis, in addition to eddy transports of the other parameters. We are also planning to acquire the 4km NDVI products from MODIS and registering the data to the 3km XCO2 footprints for the three sites. We have implemented a restricted Boltzman machine on the quantum annealing D-Wave computer, a novel deep learning neural net, to be used for training with station data to infer CO2 fluxes from collocated XCO2, MODIS vegetative land cover and MERRA reanalysis surface exchange products. We will present performance assessments of the D-Wave Boltzman machine for generating XCO2 fluxes from the OCO-2 satellite observations for the 3 sites by

  4. NNF and NNPrF—Fuzzy Petri Nets Based on Neural Network for Knowledge Representation,Reasoning and Learning

    Institute of Scientific and Technical Information of China (English)

    周奕; 吴时霖

    1996-01-01

    This paper proposes NNF-a fuzzy Petri Net system based on neural network for proposition logic repesentation,and gives the formal definition of NNF.For the NNF model,forward reasoning algorithm,backward reasoning algorithm and knowledge learning algorithm are discussed based on weight training algorithm of neural network-Back Propagation algorithm.Thus NNF is endowed with the ability of learning a rule.The paper concludes with a discussion on extending NNF to predicate logic,forming NNPrF,and proposing the formal definition and a reasoning algorithm of NNPrF.

  5. Modularity and Sparsity: Evolution of Neural Net Controllers in Physically Embodied Robots

    Directory of Open Access Journals (Sweden)

    Nicholas Livingston

    2016-12-01

    Full Text Available While modularity is thought to be central for the evolution of complexity and evolvability, it remains unclear how systems boot-strap themselves into modularity from random or fully integrated starting conditions. Clune et al. (2013 suggested that a positive correlation between sparsity and modularity is the prime cause of this transition. We sought to test the generality of this modularity-sparsity hypothesis by testing it for the first time in physically embodied robots. A population of ten Tadros — autonomous, surface-swimming robots propelled by a flapping tail — was used. Individuals varied only in the structure of their neural net control, a 2 x 6 x 2 network with recurrence in the hidden layer. Each of the 60 possible connections was coded in the genome, and could achieve one of three states: -1, 0, 1. Inputs were two light-dependent resistors and outputs were two motor control variables to the flapping tail, one for the frequency of the flapping and the other for the turning offset. Each Tadro was tested separately in a circular tank lit by a single overhead light source. Fitness was the amount of light gathered by a vertically oriented sensor that was disconnected from the controller net. Reproduction was asexual, with the top performer cloned and then all individuals entered into a roulette wheel selection process, with genomes mutated to create the offspring. The starting population of networks was randomly generated. Over ten generations, the population’s mean fitness increased two-fold. This evolution occurred in spite of an unintentional integer overflow problem in recurrent nodes in the hidden layer that caused outputs to oscillate. Our investigation of the oscillatory behavior showed that the mutual information of inputs and outputs was sufficient for the reactive behaviors observed. While we had predicted that both modularity and sparsity would follow the same trend as fitness, neither did so. Instead, selection gradients

  6. An MLP Neural Net with L1 and L2 Regularizers for Real Conditions of Deblurring

    Directory of Open Access Journals (Sweden)

    Bernués Emiliano

    2010-01-01

    Full Text Available Abstract Real conditions of deblurring involve a spatially nonlinear process since the borders are truncated, causing significant artifacts in the restored results. Typically, it is assumed to have boundary conditions to reduce ringing; in contrast, this paper proposes a restoration method which simply deals with null borders. We minimize a deterministic regularized function in a Multilayer Perceptron (MLP with no training and follow a back-propagation algorithm with the L1 and L2 norm-based regularizers. As a result, the truncated borders are regenerated while adapting the center of the image to the optimum linear solution. We report experimental results showing the good performance of our approach in a real model without borders. Even if using boundary conditions, the quality of restoration is comparable to other recent researches.

  7. 基于粗糙集和改进遗传算法优化BP神经网络的算法研究%An Effective Backpropagation Algorithm for Optimizing BP Neural Network Based on Rough Set and Modified Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    李伟; 何鹏举; 杨恒; 陈明

    2012-01-01

    针对BP神经网络结构由于特征维数增多变得复杂,以及网络易陷入局部极值点,提出了粗糙集和改进遗传算法结合共同优化神经网络的方法.首先利用粗糙集对样本空间进行属性约简,降低特征维数,进而简化BP神经网络的结构;然后训练过程中先用改进的遗传算法全局搜索网络的权值和阀值,再使用BP算法局部搜索细化,避免网络过早收敛.试验分析证明优化后BP神经网络比传统BP网络的预测精度得到了极大提高,泛化能力得到了增强,说明了该方法的可行性、有效性.%Considering that the BP neural network became complex due to the increase of the sample dimension and it fell easily into local maximums or minimums, we combined genetic algorithm and rough set to optimize the BP neural network. Sections 1 through 3 explain our backpropagation algorithm mentioned in the title, which we believe is effective and whose core consists of; (1) rough set was applied to simplify the network by reducing the attribute dimension; (2) modified genetic algorithm was used to globally search the weights and bios and, further, the BP algorithm was to locally optimize them to avoid the network falling into the local extremes. Simulation results, presented in Fig. 1 and Table 2 in subsection 3. 4, and their analysis indicated preliminarily that prediction accuracy was increased greatly over that of the traditional BP neural network and that generalization was enhanced, thus showing that our backpropagation algorithm is indeed effective.

  8. Prediction of disease causing non-synonymous SNPs by the Artificial Neural Network Predictor NetDiseaseSNP.

    Directory of Open Access Journals (Sweden)

    Morten Bo Johansen

    Full Text Available We have developed a sequence conservation-based artificial neural network predictor called NetDiseaseSNP which classifies nsSNPs as disease-causing or neutral. Our method uses the excellent alignment generation algorithm of SIFT to identify related sequences and a combination of 31 features assessing sequence conservation and the predicted surface accessibility to produce a single score which can be used to rank nsSNPs based on their potential to cause disease. NetDiseaseSNP classifies successfully disease-causing and neutral mutations. In addition, we show that NetDiseaseSNP discriminates cancer driver and passenger mutations satisfactorily. Our method outperforms other state-of-the-art methods on several disease/neutral datasets as well as on cancer driver/passenger mutation datasets and can thus be used to pinpoint and prioritize plausible disease candidates among nsSNPs for further investigation. NetDiseaseSNP is publicly available as an online tool as well as a web service: http://www.cbs.dtu.dk/services/NetDiseaseSNP.

  9. LM优化反向传播网络测定多组分%Simultaneous Determination of Calcium, Magnesium and Iron by Spectrophotometry Using Backpropagation Neural Network Optimized with Levenberg-Marquart Algorithm

    Institute of Scientific and Technical Information of China (English)

    易忠胜; 吴永华

    2001-01-01

    为了提高此网络算法的学习效率及稳定性,在反向传播算法(backpropagation(BP))中引入了基于非线性最小二乘法的Levenberg-Marquart(LM)最优算法,替代原BP算法中的梯度下降法寻找最佳网络连接权值.LM优化算法其学习效率比带动量项的BP算法高一个数量级以上,值得推广应用.将其用于混合体系的多组份CAS-CTMAB显色体系光度法同时测定Ca、Mg、Fe,得到平均预测误差为2.6534 mg/L,平均预测方差为1.9580,能够满足多组分测定的需要.

  10. BP神经网络在雌二醇衍生物QSAR中的应用研究%Study on the QSAR of Estradiol Derivatives Using the Backpropagation Neural Network

    Institute of Scientific and Technical Information of China (English)

    杜雨静; 范英芳

    2011-01-01

    目的:探讨误差反向传播(backpropagation,BP)神经网络在雌二醇衍生物定量结构-活性关系(quantitative structure-activity relationships,QSAR)研究中的应用.方法:采用BP神经网络法和多元线性回归法,分别建立了30个雌二醇衍生物在0℃下与羔羊子宫雌激素受体间亲合力logRBA与疏水性参数logP、分子的体积V和9号碳原子的净电荷Q之间的QSAR模型.结果:BP模型的相关系数R=0.9962,标准偏差SD=0.0588;MLR模型的相关系数R=0.9090,标准偏差SD=0.2904.结论:BP神经网络是一种比较精密的拟合方法,具有良好的预测效果.

  11. Evolving Resilient Back-Propagation Algorithm for Energy Efficiency Problem

    Directory of Open Access Journals (Sweden)

    Yang Fei

    2016-01-01

    Full Text Available Energy efficiency is one of our most economical sources of new energy. When it comes to efficient building design, the computation of the heating load (HL and cooling load (CL is required to determine the specifications of the heating and cooling equipment. The objective of this paper is to model heating load and cooling load buildings using neural networks in order to predict HL load and CL load. Rprop with genetic algorithm was proposed to increase the global convergence capability of Rprop by modifying a corresponding weight. Comparison results show that Rprop with GA can successfully improve the global convergence capability of Rprop and achieve lower MSE than other perceptron training algorithms, such as Back-Propagation or original Rprop. In addition, the trained network has better generalization ability and stabilization performance.

  12. Comparison of variable learning rate and Levenberg-Marquardt back-propagation training algorithms for detecting attacks in Intrusion Detection Systems

    Directory of Open Access Journals (Sweden)

    Tummala Pradeep

    2011-11-01

    Full Text Available This paper investigates the use of variable learning rate back-propagation algorithm and Levenberg-Marquardt back-propagation algorithm in Intrusion detection system for detecting attacks. Inthe present study, these 2 neural network (NN algorithms are compared according to their speed,accuracy and, performance using mean squared error (MSE (Closer the value of MSE to 0, higher willbe the performance. Based on the study and test results, the Levenberg-Marquardt algorithm has been found to be faster and having more accuracy and performance than variable learning rate backpropagation algorithm.

  13. Pengenalan Citra Wajah Dengan Menggunakan Transformasi Wavelet Diskrit dan Jaringan Saraf Tiruan Back-Propagation

    Directory of Open Access Journals (Sweden)

    Suhendry Effendy

    2010-12-01

    Full Text Available This paper discusses the facial image recognition system using Discrete Wavelet Transform and back-propagation artificial neural network. Discrete Wavelet Transform processes the input image to obtain the essential features found on the face image. These features are then classified using an back-propagation artificial neural network for the input image to be identified. Testing the system using facial images in AT & T Database of Faces of 400 images comprising 40 facial images of individuals and web-camera catches as many as 100 images of 10 individuals. The accuracy of level of recognition on AT & T Database of Faces reaches 93.5%, while the accuracy of level of recognition on a web-camera capture images up to 96%. Testing is also done on image of AT & T Database of Faces with given noise. Apparently the noise in the image does not give meaningful effect on the level of recognition accuracy. 

  14. Improved transformer protection using probabilistic neural network ...

    African Journals Online (AJOL)

    user

    This article presents a novel technique to distinguish between magnetizing inrush ... Protective relaying, Probabilistic neural network, Active power relays, Power ... Forward Neural Network (MFFNN) with back-propagation learning technique.

  15. Competition and Cooperation in Neural Nets : U.S.-Japan Joint Seminar

    CERN Document Server

    Arbib, Michael

    1982-01-01

    The human brain, wi th its hundred billion or more neurons, is both one of the most complex systems known to man and one of the most important. The last decade has seen an explosion of experimental research on the brain, but little theory of neural networks beyond the study of electrical properties of membranes and small neural circuits. Nonetheless, a number of workers in Japan, the United States and elsewhere have begun to contribute to a theory which provides techniques of mathematical analysis and computer simulation to explore properties of neural systems containing immense numbers of neurons. Recently, it has been gradually recognized that rather independent studies of the dynamics of pattern recognition, pattern format::ion, motor control, self-organization, etc. , in neural systems do in fact make use of common methods. We find that a "competition and cooperation" type of interaction plays a fundamental role in parallel information processing in the brain. The present volume brings together 23 papers ...

  16. The EB Factory Project I. A Fast, Neural Net Based, General Purpose Light Curve Classifier Optimized for Eclipsing Binaries

    CERN Document Server

    Paegert, M; Burger, D M

    2014-01-01

    We describe a new neural-net based light curve classifier and provide it with documentation as a ready-to-use tool for the community. While optimized for identification and classification of eclipsing binary stars, the classifier is general purpose, and has been developed for speed in the context of upcoming massive surveys such as LSST. A challenge for classifiers in the context of neural-net training and massive data sets is to minimize the number of parameters required to describe each light curve. We show that a simple and fast geometric representation that encodes the overall light curve shape, together with a chi-square parameter to capture higher-order morphology information results in efficient yet robust light curve classification, especially for eclipsing binaries. Testing the classifier on the ASAS light curve database, we achieve a retrieval rate of 98\\% and a false-positive rate of 2\\% for eclipsing binaries. We achieve similarly high retrieval rates for most other periodic variable-star classes,...

  17. Stochastic Digital Backpropagation with Residual Memory Compensation

    CERN Document Server

    Irukulapati, Naga V; Johannisson, Pontus; Agrell, Erik; Secondini, Marco; Wymeersch, Henk

    2015-01-01

    Stochastic digital backpropagation (SDBP) is an extension of digital backpropagation (DBP) and is based on the maximum a posteriori principle. SDBP takes into account noise from the optical amplifiers in addition to handling deterministic linear and nonlinear impairments. The decisions in SDBP are taken on a symbol-by-symbol (SBS) basis, ignoring any residual memory, which may be present due to matched filtering in SDBP. In this paper, we extend SDBP to account for memory between symbols. In particular, two different methods are proposed: a Viterbi algorithm (VA) and a decision directed approach. Symbol error rate (SER) for memory-based SDBP is significantly lower than the previously proposed SBS-SDBP. For inline dispersion-managed links, the VA-SDBP has 10 and 14 times lower SER than DBP for QPSK and 16-QAM, respectively.

  18. Towards a Unified Recurrent Neural Network Theory:The Uniformly Pseudo-Projection-Anti-Monotone Net

    Institute of Scientific and Technical Information of China (English)

    Zong Ben XU; Chen QIAO

    2011-01-01

    In the past decades, various neural network models have been developed for modeling the behavior of human brain or performing problem-solving through simulating the behavior of human brain. The recurrent neural networks are the type of neural networks to model or simulate associative memory behavior of human being. A recurrent neural network (RNN) can be generally formalized as a dynamic system associated with two fundamental operators: one is the nonlinear activation operator deduced from the input-output properties of the involved neurons, and the other is the synaptic connections (a matrix) among the neurons. Through carefully examining properties of various activation functions used, we introduce a novel type of monotone operators, the uniformly pseudo-projectionanti-monotone (UPPAM) operators, to unify the various RNN models appeared in the literature. We develop a unified encoding and stability theory for the UPPAM network model when the time is discrete.The established model and theory not only unify but also jointly generalize the most known results of RNNs. The approach has lunched a visible step towards establishment of a unified mathematical theory of recurrent neural networks.

  19. Application of ultrasonic combined with Back-propagation neural network in the diagnosis of central precocious puberty%超声结合 BP 神经网络技术诊断女童中枢性性早熟

    Institute of Scientific and Technical Information of China (English)

    梁哲浩; 鲁伟

    2015-01-01

    目的:探讨超声结合人工神经网络技术在女童中枢性性早熟诊断中的应用价值。方法选用170例性早熟女童进行常规超声检查子宫、卵巢,以其中130例的子宫体积、卵巢体积以及双侧卵巢最大卵泡内径为输入变量,以中枢性性早熟或非中枢性性早熟为输出变量,建立反向传播(BP)神经网络,并对另40例性早熟病例分类。结果利用 BP 神经网络结合常规超声检查对中枢性性早熟诊断的敏感性、特异性和准确率分别为95.0%、85.0%、90.0%。结论神经网络结合超声检查对中枢性性早熟的诊断和鉴别诊断具有较大的价值。%Objective To explore the value of ultrasonic combined with Back‐propagation artificial neural network in the diagnosis of central precocious puberty .Methods In 170 girls with precocious puberty ,the uterine and ovarian were ex‐amined with ultrasound ,in which 130 cases of uterine volume ,ovarian volume and bilateral ovarian follicles biggest diame‐ter were taken as inputs ,the central precocious puberty or non‐central precocious puberty as output variable .The back‐propagation (BP) neural network was established using such data .The other 40 cases were sorted by this BP neural net‐work .Results The diagnostic sensitivity ,specificity and accuracy of the BP neural network combination of ultrasound were 95 .0% ,85 .0% and 90 .0% ,respectively .Conclusion The BP neural network in combination of ultrasound is help‐ful in diagnosing central precocious puberty .

  20. ENGINE SENSOR FAULT DIAGNOSIS USING MAIN AND DECENTRALIZED NEURAL NET WORKS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    This Paper presents a methodology for solving the sensor failure detection, isolation and accommodation of aeroengine control systems using on-line learning neural networks(NN), which has one main NN and a set of decentralized NNs. Changes in the system dynamics are monitored by the on-line learning NN. When a failure occurs in some sensor, the sensor failure detection can be accomplished with high precision, and the sensor failure accommodation can be achieved by replacing the value from the failed sensor with its estimate from the decentralized NN. By integrating the optimal estimation and failure logic, this method can detect soft failures. Simulation of one kind of turboshaft engine control system with this multiple neural network architecture shows that the ANN developed can detect and isolate hard and soft sensor failures timely and provide accurate accommodation.

  1. A Selective Dynamic Sampling Back-Propagation Approach for Handling the Two-Class Imbalance Problem

    Directory of Open Access Journals (Sweden)

    Roberto Alejo

    2016-07-01

    Full Text Available In this work, we developed a Selective Dynamic Sampling Approach (SDSA to deal with the class imbalance problem. It is based on the idea of using only the most appropriate samples during the neural network training stage. The “average samples”are the best to train the neural network, they are neither hard, nor easy to learn, and they could improve the classifier performance. The experimental results show that the proposed method is a successful method to deal with the two-class imbalance problem. It is very competitive with respect to well-known over-sampling approaches and dynamic sampling approaches, even often outperforming the under-sampling and standard back-propagation methods. SDSA is a very simple method for automatically selecting the most appropriate samples (average samples during the training of the back-propagation, and it is very efficient. In the training stage, SDSA uses significantly fewer samples than the popular over-sampling approaches and even than the standard back-propagation trained with the original dataset.

  2. Sensitivity and Calibration of Non-Destructive Evaluation Method That Uses Neural-Net Processing of Characteristic Fringe Patterns

    Science.gov (United States)

    Decker, Arthur J.; Weiland, Kenneth E.

    2003-01-01

    This paper answers some performance and calibration questions about a non-destructive-evaluation (NDE) procedure that uses artificial neural networks to detect structural damage or other changes from sub-sampled characteristic patterns. The method shows increasing sensitivity as the number of sub-samples increases from 108 to 6912. The sensitivity of this robust NDE method is not affected by noisy excitations of the first vibration mode. A calibration procedure is proposed and demonstrated where the output of a trained net can be correlated with the outputs of the point sensors used for vibration testing. The calibration procedure is based on controlled changes of fastener torques. A heterodyne interferometer is used as a displacement sensor for a demonstration of the challenges to be handled in using standard point sensors for calibration.

  3. Door and cabinet recognition using convolutional neural nets and real-time method fusion for handle detection and grasping

    DEFF Research Database (Denmark)

    Maurin, Adrian Llopart; Ravn, Ole; Andersen, Nils Axel

    2017-01-01

    In this paper we present a new method that robustly identifies doors, cabinets and their respective handles, with special emphasis on extracting useful features from handles to be then manipulated. The novelty of this system relies on the combination of a Convolutional Neural Net (CNN), as a form...... of reducing the search space, several methods to extract point cloud data and a mobile robot to interact with the objects. The framework consists of the following components: The implementation of a CNN to extract a Region of Interest (ROI) from an image corresponding to a door or cabinet. Several vision...... based techniques to detect handles inside the ROI and its 3D positioning. A complementary plane segmentation method to differentiate door/cabinet from the handle. An algorithm to fuse both approaches robustly and extract essential information from the handle for robotic grasping (i.e. handle point cloud...

  4. Detecting and classifying faults on transmission systems using a backpropagation neural network; Deteccion y clasificacion de fallas en sistemas de transmision empleando una red neuronal con retropropagacion del error

    Energy Technology Data Exchange (ETDEWEB)

    Rosas Ortiz, German

    2000-01-01

    Fault detection and diagnosis on transmission systems is an interesting area of investigation to Artificial Intelligence (AI) based systems. Neurocomputing is one of fastest growing areas of research in the fields of AI and pattern recognition. This work explores the possible suitability of pattern recognition approach of neural networks for fault detection and classification on power systems. The conventional detection techniques in modern relays are based in digital processing of signals and it need some time (around 1 cycle) to send a tripping signal, also they are likely to make incorrect decisions if the signals are noisy. It's desirable to develop a fast, accurate and robust approach that perform accurately for changing system conditions (like load variations and fault resistance). The aim of this work is to develop a novel technique based on Artificial Neural Networks (ANN), which explores the suitability of a pattern classification approach for fault detection and diagnosis. The suggested approach is based in the fact that when a fault occurs, a change in the system impedance take place and, as a consequence changes in amplitude and phase of line voltage and current signals take place. The ANN-based fault discriminator is trained to detect this changes as indicators of the instant of fault inception. This detector uses instantaneous values of these signals to make decisions. Suitability of using neural network as pattern classifiers for transmission systems fault diagnosis is described in detail a neural network design and simulation environment for real-time is presented. Results showing the performance of this approach are presented and indicate that it is fast, secure and exact enough, and it can be used in high speed fault detection and classification schemes. [Spanish] El diagnostico y la deteccion de fallas en sistemas de transmision es una area de interes en investigacion para sistemas basados en Inteligencia Artificial (IA). El calculo neuronal

  5. Optimization neural net for multiple-target data association: real-time optical lab results

    Science.gov (United States)

    Yee, Mark L.; Casasent, David P.

    1991-08-01

    The Hopfield neural network was first used for optimization in solving the famous Traveling Salesman Problem. A similar approach has been applied to the solution of another problem, namely, data association for multiple targets. Simulation data are presented which demonstrate the network''s ability to successfully determine the optimum data association solutions, with target noise present. Simulations also indicate the ability to solve the problem on a low accuracy (analog optical) processor. Optical implementation issues are discussed, and an optical architecture is presented with laboratory results.

  6. LOGIC WITH EXCEPTION ON THE ALGEBRA OF FOURIER-DUAL OPERATIONS: NEURAL NET MECHANISM OF COGNITIVE DISSONANCE REDUCING

    Directory of Open Access Journals (Sweden)

    A. V. Pavlov

    2014-01-01

    Full Text Available A mechanism of cognitive dissonance reducing is demonstrated with approach for non-monotonic fuzzy-valued logics by Fourier-holography technique implementation developing. Cognitive dissonance occurs under perceiving of new information that contradicts to the existing subjective pattern of the outside world, represented by double Fourier-transform cascade with a hologram – neural layers interconnections matrix of inner information representation and logical conclusion. The hologram implements monotonic logic according to “General Modus Ponens” rule. New information is represented by a hologram of exclusion that implements interconnections of logical conclusion and exclusion for neural layers. The latter are linked by Fourier transform that determines duality of the algebra forming operations of conjunction and disjunction. Hologram of exclusion forms conclusion that is dual to the “General Modus Ponens” conclusion. It is shown, that trained for the main rule and exclusion system can be represented by two-layered neural network with separate interconnection matrixes for direct and inverse iterations. The network energy function is involved determining the cyclic dynamics character; dissipative factor causing convergence type of the dynamics is analyzed. Both “General Modus Ponens” and exclusion holograms recording conditions on the dynamics and convergence of the system are demonstrated. The system converges to a stable status, in which logical conclusion doesn’t depend on the inner information. Such kind of dynamics, leading to tolerance forming, is typical for ordinary kind of thinking, aimed at inner pattern of outside world stability. For scientific kind of thinking, aimed at adequacy of the inner pattern of the world, a mechanism is needed to stop the net relaxation; the mechanism has to be external relative to the model of logic. Computer simulation results for the learning conditions adequate to real holograms recording are

  7. A new approach to the spatial analysis of temporal change using todes and neural nets.

    Directory of Open Access Journals (Sweden)

    Peter J Halls

    2000-10-01

    Full Text Available The term 'temporal' in spatial analysis has a number of potential meanings, each of which requires an alternative approach for the provision of analytic support. Much present work in spatio-temporal information is concerned with transaction versioning. Object based representations often demand a high level of initial understanding of object relationships. Many GIS users are seeking to understand the object relationships over time, past, present and future ; their research focus is how real-world features interact in time and space. Despite this requirement, little present work will support this requirement to understand the drivers of change, rather than simply to report what changed. A number of workers have / are attempting to formalise a theory of spatio-temporal reasoning (eg Hermosilla, 1994, Qian, et al, 1997, Claramunt et al, 1997, in the most part working from a theoretical abstraction. Worboys, 1998, uses a problem oriented approach, as does Halls and Miller (1995, 1996. Representation of change over time by means of spline curves offers possibilities for this type of work, Neural Networks are explored as an implementation solution. We show that the AURA neural network architecture offers particular hope and that the proposals of Yeh & de Cambray and Halls & Miller need to be recast in terms of the AURA architecture.

  8. 基于动态BP神经网络的财务危机预警算法研究%Efficient financial forecast based on dynamic back-propagation neural network

    Institute of Scientific and Technical Information of China (English)

    杨济亭

    2013-01-01

    Most of the classical methods in the investigations of financial forecast are generally based on a static pre-warning modeling by only exploring the single-period financial data, such as the signal-variable analysis, multiple-variables analysis, Logit regression analysis, which unfortunately ignores the potential influences from the historical data. In order to enhance the accuracy and stability of the financial forecasting, a promising dynamic back propagation ( BP) neural network relying on the Logit nonlinear mapping is proposed to perform financial forecasting. The historical panel data of financial companies is also fully taken into consideration in this new method, and different weights associated with different period data is used. The experimental results have demonstrated the effectiveness and the fair accuracy of the new forecasting model.%为进一步提升模型合理性和预测结果准确度,充分考虑公司财务情况历史值的影响,通过对不同时期的财务面板数据赋以不同权重,设计提出了一种基于Logit-动态BP神经网络的财务危机预警机制.实证结果显示,基于面板数据的新模型能更好地体现财务危机的发生机理,因而具备良好预警精度;在对财务危机公司及财务正常公司预警实验中,其预测性能均优于现有Logit回归分析模型和传统神经网络模型.

  9. Stability prediction of berm breakwater using neural network

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Rao, S.; Manjunath, Y.R.

    . In order to allow the network to learn both non-linear and linear relationships between input nodes and output nodes, multiple-layer networks are often used. Among many neural network architectures, the three layers feed forward backpropagation neural...

  10. HAWC Analysis of the Crab Nebula Using Neural-Net Energy Reconstruction

    Science.gov (United States)

    Marinelli, Samuel; HAWC Collaboration

    2017-01-01

    The HAWC (High-Altitude Water-Cherenkov) experiment is a TeV γ-ray observatory located 4100 m above sea level on the Sierra Negra mountain in Puebla, Mexico. The detector consists of 300 water-filled tanks, each instrumented with 4 photomuliplier tubes that utilize the water-Cherenkov technique to detect atmospheric air showers produced by cosmic γ rays. Construction of HAWC was completed in March, 2015. The experiment's wide field of view (2 sr) and high duty cycle (> 95 %) make it a powerful survey instrument sensitive to pulsar wind nebulae, supernova remnants, active galactic nuclei, and other γ-ray sources. The mechanisms of particle acceleration at these sources can be studied by analyzing their energy spectra. To this end, we have developed an event-by-event energy-reconstruction algorithm employing an artificial neural network to estimate energies of primary γ rays. The Crab Nebula, the brightest source of TeV photons, makes an excellent calibration source for this technique. We will present preliminary results from an analysis of the Crab energy spectrum using this new energy-reconstruction method. This work was supported by the National Science Foundation.

  11. Data Normalization to Accelerate Training for Linear Neural Net to Predict Tropical Cyclone Tracks

    Directory of Open Access Journals (Sweden)

    Jian Jin

    2015-01-01

    Full Text Available When pure linear neural network (PLNN is used to predict tropical cyclone tracks (TCTs in South China Sea, whether the data is normalized or not greatly affects the training process. In this paper, min.-max. method and normal distribution method, instead of standard normal distribution, are applied to TCT data before modeling. We propose the experimental schemes in which, with min.-max. method, the min.-max. value pair of each variable is mapped to (−1, 1 and (0, 1; with normal distribution method, each variable’s mean and standard deviation pair is set to (0, 1 and (100, 1. We present the following results: (1 data scaled to the similar intervals have similar effects, no matter the use of min.-max. or normal distribution method; (2 mapping data to around 0 gains much faster training speed than mapping them to the intervals far away from 0 or using unnormalized raw data, although all of them can approach the same lower level after certain steps from their training error curves. This could be useful to decide data normalization method when PLNN is used individually.

  12. Generalized Backpropagation Algorithms for Diffraction Tomography

    CERN Document Server

    Paladhi, Pavel Roy; Tayebi, Amin; Udpa, Lalita

    2016-01-01

    Filtered backpropagation (FBPP) is a well-known technique used for Diffraction Tomography (DT). For accurate reconstruction of a complex image using FBPP, full $360^{\\circ}$ angular coverage is necessary. However, it has been shown that using some inherent redundancies in projection data in a tomographic setup, accurate reconstruction is still possible with $270^{\\circ}$ coverage which is called the minimal-scan angle range. This can be done by applying weighing functions (or filters) on projection data of the object to eliminate the redundancies and accurately reconstruct the image from this lower angular coverage. This paper demonstrates procedures to generate many general classes of these weighing filters. These are all equivalent at $270^{\\circ}$ coverage but would perform differently at lower angular coverages and under presence of noise. This paper does a comparative analysis of different filters when angular coverage is lower than minimal-scan angle of $270^{\\circ}$. Simulation studies have been done t...

  13. Generation of daily solar irradiation by means of artificial neural net works

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, Adalberto N.; Tiba, Chigueru; Fraidenraich, Naum [Departamento de Energia Nuclear, da Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, 1000 - CDU, CEP 50.740-540 Recife, Pernambuco (Brazil)

    2010-11-15

    The present study proposes the utilization of Artificial Neural Networks (ANN) as an alternative for generating synthetic series of daily solar irradiation. The sequences were generated from the use of daily temporal series of a group of meteorological variables that were measured simultaneously. The data used were measured between the years of 1998 and 2006 in two temperate climate localities of Brazil, Ilha Solteira (Sao Paulo) and Pelotas (Rio Grande do Sul). The estimates were taken for the months of January, April, July and October, through two models which are distinguished regarding the use or nonuse of measured bright sunshine hours as an input variable. An evaluation of the performance of the 56 months of solar irradiation generated by way of ANN showed that by using the measured bright sunshine hours as an input variable (model 1), the RMSE obtained were less or equal to 23.2% being that of those, although 43 of those months presented RMSE less or equal to 12.3%. In the case of the model that did not use the measured bright sunshine hours but used a daylight length (model 2), RMSE were obtained that varied from 8.5% to 37.5%, although 38 of those months presented RMSE less or equal to 20.0%. A comparison of the monthly series for all of the years, achieved by means of the Kolmogorov-Smirnov test (to a confidence level of 99%), demonstrated that of the 16 series generated by ANN model only two, obtained by model 2 for the months of April and July in Pelotas, presented significant difference in relation to the distributions of the measured series and that all mean deviations obtained were inferior to 0.39 MJ/m{sup 2}. It was also verified that the two ANN models were able to reproduce the principal statistical characteristics of the frequency distributions of the measured series such as: mean, mode, asymmetry and Kurtosis. (author)

  14. Intraportal infusion of ghrelin could inhibit glucose-stimulated GLP-1 secretion by enteric neural net in Wistar rat.

    Science.gov (United States)

    Zhang, Xiyao; Li, Wensong; Li, Ping; Chang, Manli; Huang, Xu; Li, Qiang; Cui, Can

    2014-01-01

    As a regulator of food intake and energy metabolism, the role of ghrelin in glucose metabolism is still not fully understood. In this study, we determined the in vivo effect of ghrelin on incretin effect. We demonstrated that ghrelin inhibited the glucose-stimulated release of glucagon-like peptide-1 (GLP-1) when infused into the portal vein of Wistar rat. Hepatic vagotomy diminished the inhibitory effect of ghrelin on glucose-stimulated GLP-1 secretion. In addition, phentolamine, a nonselective α receptor antagonist, could recover the decrease of GLP-1 release induced by ghrelin infusion. Pralmorelin (an artificial growth hormone release peptide) infusion into the portal vein could also inhibit the glucose-stimulated release of GLP-1. And growth hormone secretagogue receptor antagonist, [D-lys3]-GHRP-6, infusion showed comparable increases of glucose stimulated GLP-1 release compared to ghrelin infusion into the portal vein. The data showed that intraportal infusion of ghrelin exerted an inhibitory effect on GLP-1 secretion through growth hormone secretagogue receptor 1α (GHS1α receptor), which indicated that the downregulation of ghrelin secretion after food intake was necessary for incretin effect. Furthermore, our results suggested that the enteric neural net involved hepatic vagal nerve and sympathetic nerve mediated inhibition effect of ghrelin on incretin effect.

  15. Intraportal Infusion of Ghrelin Could Inhibit Glucose-Stimulated GLP-1 Secretion by Enteric Neural Net in Wistar Rat

    Directory of Open Access Journals (Sweden)

    Xiyao Zhang

    2014-01-01

    Full Text Available As a regulator of food intake and energy metabolism, the role of ghrelin in glucose metabolism is still not fully understood. In this study, we determined the in vivo effect of ghrelin on incretin effect. We demonstrated that ghrelin inhibited the glucose-stimulated release of glucagon-like peptide-1 (GLP-1 when infused into the portal vein of Wistar rat. Hepatic vagotomy diminished the inhibitory effect of ghrelin on glucose-stimulated GLP-1 secretion. In addition, phentolamine, a nonselective α receptor antagonist, could recover the decrease of GLP-1 release induced by ghrelin infusion. Pralmorelin (an artificial growth hormone release peptide infusion into the portal vein could also inhibit the glucose-stimulated release of GLP-1. And growth hormone secretagogue receptor antagonist, [D-lys3]-GHRP-6, infusion showed comparable increases of glucose stimulated GLP-1 release compared to ghrelin infusion into the portal vein. The data showed that intraportal infusion of ghrelin exerted an inhibitory effect on GLP-1 secretion through growth hormone secretagogue receptor 1α (GHS1α receptor, which indicated that the downregulation of ghrelin secretion after food intake was necessary for incretin effect. Furthermore, our results suggested that the enteric neural net involved hepatic vagal nerve and sympathetic nerve mediated inhibition effect of ghrelin on incretin effect.

  16. Multigradient for Neural Networks for Equalizers

    Directory of Open Access Journals (Sweden)

    Chulhee Lee

    2003-06-01

    Full Text Available Recently, a new training algorithm, multigradient, has been published for neural networks and it is reported that the multigradient outperforms the backpropagation when neural networks are used as a classifier. When neural networks are used as an equalizer in communications, they can be viewed as a classifier. In this paper, we apply the multigradient algorithm to train the neural networks that are used as equalizers. Experiments show that the neural networks trained using the multigradient noticeably outperforms the neural networks trained by the backpropagation.

  17. A constrained backpropagation approach for the adaptive solution of partial differential equations.

    Science.gov (United States)

    Rudd, Keith; Di Muro, Gianluca; Ferrari, Silvia

    2014-03-01

    This paper presents a constrained backpropagation (CPROP) methodology for solving nonlinear elliptic and parabolic partial differential equations (PDEs) adaptively, subject to changes in the PDE parameters or external forcing. Unlike existing methods based on penalty functions or Lagrange multipliers, CPROP solves the constrained optimization problem associated with training a neural network to approximate the PDE solution by means of direct elimination. As a result, CPROP reduces the dimensionality of the optimization problem, while satisfying the equality constraints associated with the boundary and initial conditions exactly, at every iteration of the algorithm. The effectiveness of this method is demonstrated through several examples, including nonlinear elliptic and parabolic PDEs with changing parameters and nonhomogeneous terms.

  18. Antenna analysis using neural networks

    Science.gov (United States)

    Smith, William T.

    1992-01-01

    Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern

  19. Application of neural networks in coastal engineering

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.

    methods. That is why it is becoming popular in various fields including coastal engineering. Waves and tides will play important roles in coastal erosion or accretion. This paper briefly describes the back-propagation neural networks and its application...

  20. Neural Network Back-Propagation Algorithm for Sensing Hypergols

    Science.gov (United States)

    Perotti, Jose; Lewis, Mark; Medelius, Pedro; Bastin, Gary

    2013-01-01

    Fast, continuous detection of a wide range of hazardous substances simultaneously is needed to achieve improved safety for personnel working with hypergolic fuels and oxidizers, as well as other hazardous substances, with a requirement for such detection systems to warn personnel immediately upon the sudden advent of hazardous conditions, with a high probability of detection and a low false alarm rate. The primary purpose of this software is to read the voltage outputs from voltage dividers containing carbon nano - tube sensors as a variable resistance leg, and to recognize quickly when a leak has occurred through recognizing that a generalized pattern change in resistivity of a carbon nanotube sensor has occurred upon exposure to dangerous substances, and, further, to identify quickly just what substance is present through detailed pattern recognition of the shape of the response provided by the carbon nanotube sensor.

  1. 遗传算法-贝叶斯正则化BP神经网络拟合滴定糖蜜中有机酸%Titration Analysis of Multi-Organic Acids in Sugarcane Molasses by Back-Propagation Neural Network Integrated with Bayesian Regularization and Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    曹家兴; 陆建平

    2011-01-01

    分别用常规BP神经网络、贝叶斯正则化BP神经网络及遗传算法-贝叶斯正则化BP神经网络,对多组分有机酸的滴定数据进行主成分非线性拟合.结果显示,贝叶斯正则化能限制网络权值,避免过拟合;遗传算法则使网络的全局优化能力和稳健性提高.对26个测试样本中的乙酸、乳酸、草酸、琥珀酸、柠檬酸和乌头酸6种组分,以及柠檬酸和乌头酸的总量进行了15次拟合预测,平均预测相对误差(RSE)分别为10.02%,9.34%,10.66%,12.180%,29.81%,31.94%和3.80%;性质相似的柠檬酸和乌头酸的拟合预测能力较差,但其总量可得较好的预测结果.应用本法对两种糖蜜中有机酸进行了分析,并与离子色谱分析结果进行了对比.%Based on a back-propagation neural network (BP) integrated with Bayesian regularization and genetic algorithm, a nonlinear fitting of the principal component for the data obtained from titrating multi organic acids was proposed. Results reveal that the combination of the advantages from Bayesian regularization to adjust the effectively network parameters (weights and biases) adaptively for improving generalization and genetic algorithm to find the optimal initial weights and thresholds of neural network ensures global optimum solution with good performance. The method was applied to simultaneously determine acetic acid, lactic acid, oxalic acid, succinic acid, citric acid and aconitic acid in a converted titration data set. It was found that the more the similarities among the organic acids,the worse their predictive performance by models when they are treated individually, however, the result was good when they were treated together. For above six organic acid in sample set, their average relative mean square root errors of predicting results were 10. 02%, 9. 34%, 10. 66%,12.18%, 29.81%, 30.94%, respectively, and 3.8% for total amount of citric acid and aconitic acid.Some organic acids in two

  2. PENGENALAN CITRA WAJAH DENGAN MENGGUNAKAN TRANSFORMASI WAVELET DISKRIT DAN JARINGAN SARAF TIRUAN BACK-PROPAGATION

    Directory of Open Access Journals (Sweden)

    Suhendry Effendy

    2010-11-01

    artificial neural network. Discrete Wavelet Transform processes the input image to obtain the essential features found on the face image. These features are then classified using an back-propagation artificial neural network for the input image to be identified. Testing the system using facial images in AT & T Database of Faces of 400 images comprising 40 facial images of individuals and web-camera catches as many as 100 images of 10 individuals. The accuracy of level of recognition on AT & T Database of Faces reaches 93.5%, while the accuracy of level of recognition on a web-camera capture images up to 96%. Testing is also done on image of AT & T Database of Faces with given noise. Apparently the noise in the image does not give meaningful effect on the level of recognition accuracy.

  3. Neural network segmentation of magnetic resonance images

    Science.gov (United States)

    Frederick, Blaise

    1990-07-01

    Neural networks are well adapted to the task of grouping input patterns into subsets which share some similarity. Moreover once trained they can generalize their classification rules to classify new data sets. Sets of pixel intensities from magnetic resonance (MR) images provide a natural input to a neural network by varying imaging parameters MR images can reflect various independent physical parameters of tissues in their pixel intensities. A neural net can then be trained to classify physically similar tissue types based on sets of pixel intensities resulting from different imaging studies on the same subject. A neural network classifier for image segmentation was implemented on a Sun 4/60 and was tested on the task of classifying tissues of canine head MR images. Four images of a transaxial slice with different imaging sequences were taken as input to the network (three spin-echo images and an inversion recovery image). The training set consisted of 691 representative samples of gray matter white matter cerebrospinal fluid bone and muscle preclassified by a neuroscientist. The network was trained using a fast backpropagation algorithm to derive the decision criteria to classify any location in the image by its pixel intensities and the image was subsequently segmented by the classifier. The classifier''s performance was evaluated as a function of network size number of network layers and length of training. A single layer neural network performed quite well at

  4. The adaptation of spike backpropagation delays in cortical neurons

    Directory of Open Access Journals (Sweden)

    Yossi eBuskila

    2013-10-01

    Full Text Available We measured the action potential backpropagation delays in apical dendrites of layer 5 pyramidal neurons of the somatosensory cortex under different stimulation regimes that exclude synaptic involvement. These delays showed robust features and did not correlate to either transient change in the stimulus strength or low frequency stimulation of suprathreshold membrane oscillations. However, our results indicate that backpropagation delays correlate with high frequency (>10 Hz stimulation of membrane oscillations, and that persistent suprathreshold sinusoidal stimulation injected directly into the soma results in an increase of the backpropagation delay, suggesting an intrinsic adaptation of the bAP, which does not involve any synaptic modifications. Moreover, the calcium chelator BAPTA eliminated the alterations in the backpropagation delays, strengthening the hypothesis that increased calcium concentration in the dendrites modulates dendritic excitability and can impact the backpropagation velocity. These results emphasize the impact of dendritic excitability on bAP velocity along the dendritic tree, which affects the precision of the bAP arrival at the synapse during specific stimulus regimes, and is capable of shifting the extent and polarity of synaptic strength during suprathreshold synaptic processes such as STDP.

  5. Comparative study of Financial Time Series Prediction by Artificial Neural Network with Gradient Descent Learning

    CERN Document Server

    Ghosh, Arka

    2011-01-01

    Financial forecasting is an example of a signal processing problem which is challenging due to Small sample sizes, high noise, non-stationarity, and non-linearity,but fast forecasting of stock market price is very important for strategic business planning.Present study is aimed to develop a comparative predictive model with Feedforward Multilayer Artificial Neural Network & Recurrent Time Delay Neural Network for the Financial Timeseries Prediction.This study is developed with the help of historical stockprice dataset made available by GoogleFinance.To develop this prediction model Backpropagation method with Gradient Descent learning has been implemented.Finally the Neural Net, learned with said algorithm is found to be skillful predictor for non-stationary noisy Financial Timeseries.

  6. Simulation of oxygen saturation of hemoglobin solution, RBC suspension and hemosome by a neural network system.

    Science.gov (United States)

    Kan, P; Chen, W K; Lee, C J

    1996-03-01

    Hemoglobin-based artificial blood substitutes as oxygen carrier is advantageous over current plasma expander. In this study, oxygen saturation of hemoglobin solution, red blood cell suspension and artificial blood substitute under various conditions were measured by yeast-consuming-oxygen experiments instead of spectrophotometer. The empirical results were assigned into training feedforward back-propagation neural network system in order to simulate the oxygen saturation model modulated by those factors such as pH, [Cl-], [2,3-DPG], pO2 and pCO2. Consequently, this neural network is able to simulate accurately the oxygen saturation of Hb solution. The prediction of hemosome is not agreed well possible because of the resistance of transport of oxygen. However, the results showed neural net can offer a simple and convenient way in comparison with the conventional methods, especially in dealing with complex and ambiguous problem.

  7. 神经干细胞的迁移和网络化%Migration and nerve net building of neural stem cells

    Institute of Scientific and Technical Information of China (English)

    薛杉; 张旺明; 徐如祥

    2005-01-01

    目的:从神经干细胞的迁移现象及其定向迁移的可能机制,神经网络的研究进展和神经干细胞迁移和网络化的意义等方面进行综述.资料来源:应用计算机检索Pubmed数据库1970/2004期间的相关文章,限定文章语言种类为English,检索词为"neural stem cell,migration,nerve net".资料选择:对资料进行初审,选取神经干细胞迁移和网络化的随机和非随机对照实验.排除综述类和重复的文章.资料提炼:共收集到相关文献39篇,共检出16篇文献涉及神经干细胞的迁移和网络化研究的进展,其余文献均被排除.资料综合:对于神经系统退行性病变及严重损伤,神经干细胞移植有可能替代衰老变性和死亡的神经细胞,重建神经网络,恢复失去的脑功能.神经细胞的迁移和网络化原理可以应用以解决神经干细胞移植后的存活、分化、迁移及神经网络建立的问题,实现脑功能修复重建.结论:神经干细胞在特定的情况下可以迁移到预计的地方并建立神经网络.%OBJECTIVE: A series of recent studies have demonstrated the mechanism of migration and nerve net of neural stem cells. These theories have further substantiated neural stem cell transplantation. In view of these new findings, this paper reviewed the mode of migration and information of network. The significance of these theories was discussed.DATA SOURCE: We search on Pubmed with the key words "neural stem cell", "migration", and "nerve net", limiting the language to English and publication date from 1970 to 2004. At the same time we searched on CNKI.STUDY SELECTION: We selected the randomized and non-randomized controlled studies related to migration and nerve net building of neural stem cells. Review articles and articles with repetitive studies were excluded.DATA EXTRACTION: Among 39 papers selected, 16 papers concerning the development of this topic were selected, and the others were excluded.DATA SYNTHESIS: For

  8. Estimação do volume de árvores utilizando redes neurais artificiais Estimate of tree volume using artificial neural nets

    Directory of Open Access Journals (Sweden)

    Eric Bastos Gorgens

    2009-12-01

    Full Text Available Rede neural artificial consiste em um conjunto de unidades que contêm funções matemáticas, unidas por pesos. As redes são capazes de aprender, mediante modificação dos pesos sinápticos, e generalizar o aprendizado para outros arquivos desconhecidos. O projeto de redes neurais é composto por três etapas: pré-processamento, processamento e, por fim, pós-processamento dos dados. Um dos problemas clássicos que podem ser abordados por redes é a aproximação de funções. Nesse grupo, pode-se incluir a estimação do volume de árvores. Foram utilizados quatro arquiteturas diferentes, cinco pré-processamentos e duas funções de ativação. As redes que se apresentaram estatisticamente iguais aos dados observados também foram analisadas quanto ao resíduo e à distribuição dos volumes e comparadas com a estimação de volume pelo modelo de Schumacher e Hall. As redes neurais formadas por neurônios, cuja função de ativação era exponencial, apresentaram estimativas estatisticamente iguais aos dados observados. As redes treinadas com os dados normalizados pelo método da interpolação linear e equalizados tiveram melhor desempenho na estimação.The artificial neural network consists of a set of units containing mathematical functions connected by weights. Such nets are capable of learning by means of synaptic weight modification, generalizing learning for other unknown archives. The neural network project comprises three stages: pre-processing, processing and post-processing of data. One of the classical problems approached by networks is function approximation. Tree volume estimate can be included in this group. Four different architectures, five pre-processings and two activation functions were used. The nets which were statistically similar to the observed data were also analyzed in relation to residue and volume and compared to the volume estimate provided by the Schumacher and Hall equation. The neural nets formed by

  9. Using backpropagation artificial neural network to study the structure-activity relationship between aromatics compounds and rat LD50%BP人工神经网络用于芳香族化合物结构参数和大鼠LD50构效关系研究

    Institute of Scientific and Technical Information of China (English)

    黄德生; 刘延令; 金一和

    2001-01-01

    Objective Using BP Artificial Neural Network to study the Structure-Activity relationship between aromatics compounds and rat LD50, improved precision of toxicity prediction. Methods Firstly, Principal-Components-Analysis was adopted, then used BP ANN net-structure, and applied LM arithumetic as iteration method to train the network. Result We have discussed the relationship betwenn the structure parameter of 120 varieties of aromatics compound and rat LD50, and optimized the parameter design of the net to avoid over-fitting. I found that three-layer BP ANN which using log-sigmoid function, (i.e.) f(x)=1/1(+exp(-x)) as network transfer function got better fitting power. When the number of the hidden layer node is 13, the sum-square error is 0.36 which is far less than linear models. While the outer prediction precision of multiplayer BP ANN is higher than linear model in evidence, SSE=4.63. Conclusion We can consider that the classify power of multiplayer BP ANN is superior to linear nodels. Multilayer BP ANN can be use to predict toxicity of aromatics compounds, this method is better than traditional methods.%对结构参数采用主成分变换,再利用BP人工神经网络,采用LM算法作为迭代方法训练网络,预测检验集化合物的LD50。结果显示,BP人工神经网络可以用于定量毒性构效关系研究,含隐层的BP人工神经网络拟合能力明显优于传统方法,消除过度拟合后的多层BP网络预测能力也好于传统方法,可以用于预测。

  10. Learning associative memories by error backpropagation.

    Science.gov (United States)

    Zheng, Pengsheng; Zhang, Jianxiong; Tang, Wansheng

    2011-03-01

    In this paper, a method for the design of Hopfield networks, bidirectional and multidirectional associative memories with asymmetric connections, is proposed. The given patterns can be assigned as locally asymptotically stable equilibria of the network by training a single-layer feedforward network. It is shown that the robustness in respect to acceptable noise in the input of the constructed networks is enhanced as the memory dimension increases and weakened as the number of the stored patterns grows. More important is that the remembered patterns are not necessarily of binary forms. Neural associative memories for storing gray-level images are constructed based on the proposed method. Numerical simulations show that the proposed method is efficient for the design of Hopfield-type recurrent neural networks.

  11. Desain Sistem Pendeteksi untuk Citra Base Sub-assembly dengan Algoritma Backpropagation

    Directory of Open Access Journals (Sweden)

    Kasdianto Kasdianto

    2017-04-01

    Full Text Available Object identification technique using machine vision has been implemented in industrial of electronic manufacturers for years. This technique is commonly used for reject detection (for disqualified product based on existing standard or defect detection. This research aims to build a reject detector of sub-assembly condition which is differed by two conditions that are missing screw and wrong position screw using neural network backpropagation. The image taken using camera will be converted into grayscale before it is processed in backpropagation methods to generate a weight value. The experiment result shows that the network architecture with two layers has the most excellent accuracy level. Using learning rate of 0.5, target error 0.015%, and the number of node 1 of 100 and node 2 of 50, the successive rate for sub-assembly detection in right condition reached 99.02% while no error occurs in detecting the wrong condition of Sub-assembly (missing screw and wrong position screw.

  12. 基于神经网络的注射工艺分析模拟%Analysis and Simulation of the Injection Process Based on Neural Net

    Institute of Scientific and Technical Information of China (English)

    朱昱; 黄国立; 黄长征

    2001-01-01

    在一般注射模 CAE环境下,对某塑件输入一组工艺参数可得出相应的分析结果,但如何在不同工艺参数中确定一组值,使得工艺条件实现最优化,则需建立输入 (工艺参数 )与输出 (分析结果 )的对应关系,而通过人工神经网络则能反映输入转化成输出的数学表达式。通过对塑件工艺分析的人工神经网络模拟,建立了可供工艺优化计算的数学模型。%Under general CAE circumstances for injection moulds, the corresponding analysis result will be educed after inputting a group of technological data for a plastic part. But if to determine a group of parameters from different technological data so as to optimize the processing condition, the corresponding relations between input (technological data) and output (analysis result) must be established. However, through artificial neural net the mathematical expression expressing the input transforming into the output can be reflected. And the mathematical model for the calculation of the technological process optimization was built through artificial neural net simulation of the technological analysis of the plastic part.

  13. Impairment mitigation in superchannels with digital backpropagation and MLSD

    DEFF Research Database (Denmark)

    Porto da Silva, Edson; Larsen, Knud J.; Zibar, Darko

    2015-01-01

    We assess numerically the performance of single-carrier digital backpropagation (SC-DBP) and maximum-likelihood sequence detection (MLSD) for DP-QPSK and DP-16QAM superchannel transmission over dispersion uncompensated links for three different cases of spectral shaping: optical pre-filtering of ...

  14. 基于神经网络的翼型积冰预测%Prediction of ice accretions based on the neural net

    Institute of Scientific and Technical Information of China (English)

    张强; 高正红

    2011-01-01

    The ice accretions have been predicted using the neural net method. A curvature coordinates was established to change the ice accretion shape into a geometrical curve through coordinates transformation. The Fourier series was employed to fit the curve so as to parameterize the ice shape. The neural nets were established through regarding the icing conditions as inputs and the ice shape parameters as outputs. The ice accretions on a NACA 0012 airfoil were predicted using the trained net. The comparison among the predicted results, experimental data and numerical simulation results indicates that the method developed in this paper is feasible and effective.%采用神经网络方法对翼型表面的积冰进行了预测研究.建立了一种型面曲线坐标系,通过坐标变换将积冰外形转化为几何曲线.利用傅立叶级数对此曲线进行拟合,实现积冰外形的参数化.以结冰条件作为输人,冰形参数作为输出构建神经网络,对NACA 0012翼型表面的积冰进行预测.通过将预测结果与实验结果以及数值模拟结果进行对比,说明所提出的积冰预测方法是可行的.

  15. NetTurnP – Neural Network Prediction of Beta-turns by Use of Evolutionary Information and Predicted Protein Sequence Features

    Science.gov (United States)

    Petersen, Bent; Lundegaard, Claus; Petersen, Thomas Nordahl

    2010-01-01

    β-turns are the most common type of non-repetitive structures, and constitute on average 25% of the amino acids in proteins. The formation of β-turns plays an important role in protein folding, protein stability and molecular recognition processes. In this work we present the neural network method NetTurnP, for prediction of two-class β-turns and prediction of the individual β-turn types, by use of evolutionary information and predicted protein sequence features. It has been evaluated against a commonly used dataset BT426, and achieves a Matthews correlation coefficient of 0.50, which is the highest reported performance on a two-class prediction of β-turn and not-β-turn. Furthermore NetTurnP shows improved performance on some of the specific β-turn types. In the present work, neural network methods have been trained to predict β-turn or not and individual β-turn types from the primary amino acid sequence. The individual β-turn types I, I', II, II', VIII, VIa1, VIa2, VIba and IV have been predicted based on classifications by PROMOTIF, and the two-class prediction of β-turn or not is a superset comprised of all β-turn types. The performance is evaluated using a golden set of non-homologous sequences known as BT426. Our two-class prediction method achieves a performance of: MCC  = 0.50, Qtotal = 82.1%, sensitivity  = 75.6%, PPV  = 68.8% and AUC  = 0.864. We have compared our performance to eleven other prediction methods that obtain Matthews correlation coefficients in the range of 0.17 – 0.47. For the type specific β-turn predictions, only type I and II can be predicted with reasonable Matthews correlation coefficients, where we obtain performance values of 0.36 and 0.31, respectively. Conclusion The NetTurnP method has been implemented as a webserver, which is freely available at http://www.cbs.dtu.dk/services/NetTurnP/. NetTurnP is the only available webserver that allows submission of multiple sequences. PMID:21152409

  16. NetTurnP--neural network prediction of beta-turns by use of evolutionary information and predicted protein sequence features.

    Directory of Open Access Journals (Sweden)

    Bent Petersen

    Full Text Available UNLABELLED: β-turns are the most common type of non-repetitive structures, and constitute on average 25% of the amino acids in proteins. The formation of β-turns plays an important role in protein folding, protein stability and molecular recognition processes. In this work we present the neural network method NetTurnP, for prediction of two-class β-turns and prediction of the individual β-turn types, by use of evolutionary information and predicted protein sequence features. It has been evaluated against a commonly used dataset BT426, and achieves a Matthews correlation coefficient of 0.50, which is the highest reported performance on a two-class prediction of β-turn and not-β-turn. Furthermore NetTurnP shows improved performance on some of the specific β-turn types. In the present work, neural network methods have been trained to predict β-turn or not and individual β-turn types from the primary amino acid sequence. The individual β-turn types I, I', II, II', VIII, VIa1, VIa2, VIba and IV have been predicted based on classifications by PROMOTIF, and the two-class prediction of β-turn or not is a superset comprised of all β-turn types. The performance is evaluated using a golden set of non-homologous sequences known as BT426. Our two-class prediction method achieves a performance of: MCC=0.50, Qtotal=82.1%, sensitivity=75.6%, PPV=68.8% and AUC=0.864. We have compared our performance to eleven other prediction methods that obtain Matthews correlation coefficients in the range of 0.17-0.47. For the type specific β-turn predictions, only type I and II can be predicted with reasonable Matthews correlation coefficients, where we obtain performance values of 0.36 and 0.31, respectively. CONCLUSION: The NetTurnP method has been implemented as a webserver, which is freely available at http://www.cbs.dtu.dk/services/NetTurnP/. NetTurnP is the only available webserver that allows submission of multiple sequences.

  17. Backpropagation Learning Algorithms for Email Classification.

    Directory of Open Access Journals (Sweden)

    *David Ndumiyana and Tarirayi Mukabeta

    2016-07-01

    Full Text Available Today email has become one the fastest and most effective form of communication. The popularity of this mode of transmitting goods, information and services has motivated spammers to perfect their technical skills to fool spam filters. This development has worsened the problems faced by Internet users as they have to deal with email congestion, email overload and unprioritised email messages. The result was an exponential increase in the number of email classification management tools for the past few decades. In this paper we propose a new spam classifier using a learning process of multilayer neural network to implement back propagation technique. Our contribution to the body of knowledge is the use of an improved empirical analysis to choose an optimum, novel collection of attributes of a user’s email contents that allows a quick detection of most important words in emails. We also demonstrate the effectiveness of two equal sets of emails training and testing data.

  18. Application of BP neural networks in non-linearity correction of optical tweezers

    Institute of Scientific and Technical Information of China (English)

    Ziqiang WANG; Yinmei LI; Liren LOU; Henghua WEI; Zhong WANG

    2008-01-01

    The back-propagation (BP) neural network is proposed to correct nonlinearity and optimize the force measurement and calibration of an optical tweezer sys-tem. Considering the low convergence rate of the BP algo-rithm, the Levenberg-Marquardt (LM) algorithm is used to improve the BP network. The proposed method is experimentally studied for force calibration in a typical optical tweezer system using hydromechanics. The result shows that with the nonlinear correction using BP net-works, the range of force measurement of an optical tweezer system is enlarged by 30% and the precision is also improved compared with the polynomial fitting method. It is demonstrated that nonlinear correction by the neural network method effectively improves the per-formance of optical tweezers without adding or changing the measuring system.

  19. Event-Driven Random Back-Propagation: Enabling Neuromorphic Deep Learning Machines

    Science.gov (United States)

    Neftci, Emre O.; Augustine, Charles; Paul, Somnath; Detorakis, Georgios

    2017-01-01

    An ongoing challenge in neuromorphic computing is to devise general and computationally efficient models of inference and learning which are compatible with the spatial and temporal constraints of the brain. One increasingly popular and successful approach is to take inspiration from inference and learning algorithms used in deep neural networks. However, the workhorse of deep learning, the gradient descent Gradient Back Propagation (BP) rule, often relies on the immediate availability of network-wide information stored with high-precision memory during learning, and precise operations that are difficult to realize in neuromorphic hardware. Remarkably, recent work showed that exact backpropagated gradients are not essential for learning deep representations. Building on these results, we demonstrate an event-driven random BP (eRBP) rule that uses an error-modulated synaptic plasticity for learning deep representations. Using a two-compartment Leaky Integrate & Fire (I&F) neuron, the rule requires only one addition and two comparisons for each synaptic weight, making it very suitable for implementation in digital or mixed-signal neuromorphic hardware. Our results show that using eRBP, deep representations are rapidly learned, achieving classification accuracies on permutation invariant datasets comparable to those obtained in artificial neural network simulations on GPUs, while being robust to neural and synaptic state quantizations during learning. PMID:28680387

  20. Event-Driven Random Back-Propagation: Enabling Neuromorphic Deep Learning Machines.

    Science.gov (United States)

    Neftci, Emre O; Augustine, Charles; Paul, Somnath; Detorakis, Georgios

    2017-01-01

    An ongoing challenge in neuromorphic computing is to devise general and computationally efficient models of inference and learning which are compatible with the spatial and temporal constraints of the brain. One increasingly popular and successful approach is to take inspiration from inference and learning algorithms used in deep neural networks. However, the workhorse of deep learning, the gradient descent Gradient Back Propagation (BP) rule, often relies on the immediate availability of network-wide information stored with high-precision memory during learning, and precise operations that are difficult to realize in neuromorphic hardware. Remarkably, recent work showed that exact backpropagated gradients are not essential for learning deep representations. Building on these results, we demonstrate an event-driven random BP (eRBP) rule that uses an error-modulated synaptic plasticity for learning deep representations. Using a two-compartment Leaky Integrate & Fire (I&F) neuron, the rule requires only one addition and two comparisons for each synaptic weight, making it very suitable for implementation in digital or mixed-signal neuromorphic hardware. Our results show that using eRBP, deep representations are rapidly learned, achieving classification accuracies on permutation invariant datasets comparable to those obtained in artificial neural network simulations on GPUs, while being robust to neural and synaptic state quantizations during learning.

  1. Random synaptic feedback weights support error backpropagation for deep learning

    Science.gov (United States)

    Lillicrap, Timothy P.; Cownden, Daniel; Tweed, Douglas B.; Akerman, Colin J.

    2016-01-01

    The brain processes information through multiple layers of neurons. This deep architecture is representationally powerful, but complicates learning because it is difficult to identify the responsible neurons when a mistake is made. In machine learning, the backpropagation algorithm assigns blame by multiplying error signals with all the synaptic weights on each neuron's axon and further downstream. However, this involves a precise, symmetric backward connectivity pattern, which is thought to be impossible in the brain. Here we demonstrate that this strong architectural constraint is not required for effective error propagation. We present a surprisingly simple mechanism that assigns blame by multiplying errors by even random synaptic weights. This mechanism can transmit teaching signals across multiple layers of neurons and performs as effectively as backpropagation on a variety of tasks. Our results help reopen questions about how the brain could use error signals and dispel long-held assumptions about algorithmic constraints on learning. PMID:27824044

  2. Random synaptic feedback weights support error backpropagation for deep learning

    Science.gov (United States)

    Lillicrap, Timothy P.; Cownden, Daniel; Tweed, Douglas B.; Akerman, Colin J.

    2016-11-01

    The brain processes information through multiple layers of neurons. This deep architecture is representationally powerful, but complicates learning because it is difficult to identify the responsible neurons when a mistake is made. In machine learning, the backpropagation algorithm assigns blame by multiplying error signals with all the synaptic weights on each neuron's axon and further downstream. However, this involves a precise, symmetric backward connectivity pattern, which is thought to be impossible in the brain. Here we demonstrate that this strong architectural constraint is not required for effective error propagation. We present a surprisingly simple mechanism that assigns blame by multiplying errors by even random synaptic weights. This mechanism can transmit teaching signals across multiple layers of neurons and performs as effectively as backpropagation on a variety of tasks. Our results help reopen questions about how the brain could use error signals and dispel long-held assumptions about algorithmic constraints on learning.

  3. High-Performance Neural Networks for Visual Object Classification

    CERN Document Server

    Cireşan, Dan C; Masci, Jonathan; Gambardella, Luca M; Schmidhuber, Jürgen

    2011-01-01

    We present a fast, fully parameterizable GPU implementation of Convolutional Neural Network variants. Our feature extractors are neither carefully designed nor pre-wired, but rather learned in a supervised way. Our deep hierarchical architectures achieve the best published results on benchmarks for object classification (NORB, CIFAR10) and handwritten digit recognition (MNIST), with error rates of 2.53%, 19.51%, 0.35%, respectively. Deep nets trained by simple back-propagation perform better than more shallow ones. Learning is surprisingly rapid. NORB is completely trained within five epochs. Test error rates on MNIST drop to 2.42%, 0.97% and 0.48% after 1, 3 and 17 epochs, respectively.

  4. SOLVING INVERSE KINEMATICS OF REDUNDANT MANIPULATOR BASED ON NEURAL NETWORK

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    For the redundant manipulators, neural network is used to tackle the velocity inverse kinematics of robot manipulators. The neural networks utilized are multi-layered perceptions with a back-propagation training algorithm. The weight table is used to save the weights solving the inverse kinematics based on the different optimization performance criteria. Simulations verify the effectiveness of using neural network.

  5. Author's reply to discussion of using artificial neural nets to identify the well-test interpretation model

    Energy Technology Data Exchange (ETDEWEB)

    Al-Kaabi, A.U.; Lee, W.J. (Texas A and M Univ., College Station, TX (United States))

    1994-09-01

    The authors thank Yeung et al. for their discussion about their original paper. They agree with Yeung et al. that their proposed scaling method, when applied to patterns with distinct subparts such as the one shown, represents an improvement on the method they proposed. This is particularly true because Yeung et al.'s method eliminates the need to train the artificial neural networks (ANN's) on different sizes (scales) of the same pattern of a specific interpretation model. This paper presents the following comments for discussion and suggestions for further improvement.

  6. Application of dynamic BP neural net in temperature control of cement rotary kiln%一种动态神经网络在水泥回转窑温度控制中的应用

    Institute of Scientific and Technical Information of China (English)

    张建民; 陈宏力; 魏秀兰

    2001-01-01

    A kind of dynamic neural net is introduced, and it is used for artificial temperature control of cement rotary kiln.%介绍了一种动态神经网络,并用此神经网络对水泥回转窑温度实行了仿真控制研究。

  7. Automated Separation of Stars and Normal Galaxies Based on Statistical Mixture Modeling with RBF Neural Net-works

    Institute of Scientific and Technical Information of China (English)

    Dong-Mei Qin; Ping Guo; Zhan-Yi Hu; Yong-Heng Zhao

    2003-01-01

    For LAMOST, the largest sky survey program in China, the solution ofthe problem of automatic discrimination of stars from galaxies by spectra has shownthat the results of the PSF test can be significantly refined. However, the problemis made worse when the redshifts of galaxies are not available. We present a newautomatic method of star/(normal) galaxy separation, which is based on StatisticalMixture Modeling with Radial Basis Function Neural Networks (SMM-RBFNN).This work is a continuation of our previous one, where active and non-active celestialobjects were successfully segregated. By combining the method in this paper andthe previous one, stars can now be effectively separated from galaxies and AGNs bytheir spectra-a major goal of LAMOST, and an indispensable step in any automaticspectrum classification system. In our work, the training set includes standardstellar spectra from Jacoby's spectrum library and simulated galaxy spectra of E0,SO, Sa, Sb types with redshift ranging from 0 to 1.2, and the test set of stellarspectra from Pickles' atlas and SDSS spectra of normal galaxies with SNR of 13.Experiments show that our SMM-RBFNN is more efficient in both the trainingand testing stages than the BPNN (back propagation neural networks), and moreimportantly, it can achieve a good classification accuracy of 99.22% and 96.52%,respectively for stars and normal galaxies.

  8. Automating parallel implementation of neural learning algorithms.

    Science.gov (United States)

    Rana, O F

    2000-06-01

    Neural learning algorithms generally involve a number of identical processing units, which are fully or partially connected, and involve an update function, such as a ramp, a sigmoid or a Gaussian function for instance. Some variations also exist, where units can be heterogeneous, or where an alternative update technique is employed, such as a pulse stream generator. Associated with connections are numerical values that must be adjusted using a learning rule, and and dictated by parameters that are learning rule specific, such as momentum, a learning rate, a temperature, amongst others. Usually, neural learning algorithms involve local updates, and a global interaction between units is often discouraged, except in instances where units are fully connected, or involve synchronous updates. In all of these instances, concurrency within a neural algorithm cannot be fully exploited without a suitable implementation strategy. A design scheme is described for translating a neural learning algorithm from inception to implementation on a parallel machine using PVM or MPI libraries, or onto programmable logic such as FPGAs. A designer must first describe the algorithm using a specialised Neural Language, from which a Petri net (PN) model is constructed automatically for verification, and building a performance model. The PN model can be used to study issues such as synchronisation points, resource sharing and concurrency within a learning rule. Specialised constructs are provided to enable a designer to express various aspects of a learning rule, such as the number and connectivity of neural nodes, the interconnection strategies, and information flows required by the learning algorithm. A scheduling and mapping strategy is then used to translate this PN model onto a multiprocessor template. We demonstrate our technique using a Kohonen and backpropagation learning rules, implemented on a loosely coupled workstation cluster, and a dedicated parallel machine, with PVM libraries.

  9. Unrepeatered Nyquist PDM-16QAM transmission over 364  km using Raman amplification and multi-channel digital back-propagation.

    Science.gov (United States)

    Galdino, Lidia; Tan, Mingming; Lavery, Domaniç; Rosa, Pawel; Maher, Robert; Phillips, Ian D; Ania Castañón, Juan D; Harper, Paul; Killey, Robert I; Thomsen, Benn C; Makovejs, Sergejs; Bayvel, Polina

    2015-07-01

    Transmission of a net 467-Gb/s PDM-16QAM Nyquist-spaced superchannel is reported with an intra-superchannel net spectral efficiency (SE) of 6.6 (b/s)/Hz, over 364-km SMF-28 ULL ultra-low loss optical fiber, enabled by bi-directional second-order Raman amplification and digital nonlinearity compensation. Multi-channel digital back-propagation (MC-DBP) was applied to compensate for nonlinear interference; an improvement of 2 dB in Q(2) factor was achieved when 70-GHz DBP bandwidth was applied, allowing an increase in span length of 37 km.

  10. A theory of local learning, the learning channel, and the optimality of backpropagation.

    Science.gov (United States)

    Baldi, Pierre; Sadowski, Peter

    2016-11-01

    In a physical neural system, where storage and processing are intimately intertwined, the rules for adjusting the synaptic weights can only depend on variables that are available locally, such as the activity of the pre- and post-synaptic neurons, resulting in local learning rules. A systematic framework for studying the space of local learning rules is obtained by first specifying the nature of the local variables, and then the functional form that ties them together into each learning rule. Such a framework enables also the systematic discovery of new learning rules and exploration of relationships between learning rules and group symmetries. We study polynomial local learning rules stratified by their degree and analyze their behavior and capabilities in both linear and non-linear units and networks. Stacking local learning rules in deep feedforward networks leads to deep local learning. While deep local learning can learn interesting representations, it cannot learn complex input-output functions, even when targets are available for the top layer. Learning complex input-output functions requires local deep learning where target information is communicated to the deep layers through a backward learning channel. The nature of the communicated information about the targets and the structure of the learning channel partition the space of learning algorithms. For any learning algorithm, the capacity of the learning channel can be defined as the number of bits provided about the error gradient per weight, divided by the number of required operations per weight. We estimate the capacity associated with several learning algorithms and show that backpropagation outperforms them by simultaneously maximizing the information rate and minimizing the computational cost. This result is also shown to be true for recurrent networks, by unfolding them in time. The theory clarifies the concept of Hebbian learning, establishes the power and limitations of local learning rules

  11. Computer-assisted detection of colonic polyps with CT colonography using neural networks and binary classification trees.

    Science.gov (United States)

    Jerebko, Anna K; Summers, Ronald M; Malley, James D; Franaszek, Marek; Johnson, C Daniel

    2003-01-01

    Detection of colonic polyps in CT colonography is problematic due to complexities of polyp shape and the surface of the normal colon. Published results indicate the feasibility of computer-aided detection of polyps but better classifiers are needed to improve specificity. In this paper we compare the classification results of two approaches: neural networks and recursive binary trees. As our starting point we collect surface geometry information from three-dimensional reconstruction of the colon, followed by a filter based on selected variables such as region density, Gaussian and average curvature and sphericity. The filter returns sites that are candidate polyps, based on earlier work using detection thresholds, to which the neural nets or the binary trees are applied. A data set of 39 polyps from 3 to 25 mm in size was used in our investigation. For both neural net and binary trees we use tenfold cross-validation to better estimate the true error rates. The backpropagation neural net with one hidden layer trained with Levenberg-Marquardt algorithm achieved the best results: sensitivity 90% and specificity 95% with 16 false positives per study.

  12. Mapping the Spatial Distribution of Winter Crops at Sub-Pixel Level Using AVHRR NDVI Time Series and Neural Nets

    Directory of Open Access Journals (Sweden)

    Felix Rembold

    2013-03-01

    Full Text Available For large areas, it is difficult to assess the spatial distribution and inter-annual variation of crop acreages through field surveys. Such information, however, is of great value for governments, land managers, planning authorities, commodity traders and environmental scientists. Time series of coarse resolution imagery offer the advantage of global coverage at low costs, and are therefore suitable for large-scale crop type mapping. Due to their coarse spatial resolution, however, the problem of mixed pixels has to be addressed. Traditional hard classification approaches cannot be applied because of sub-pixel heterogeneity. We evaluate neural networks as a modeling tool for sub-pixel crop acreage estimation. The proposed methodology is based on the assumption that different cover type proportions within coarse pixels prompt changes in time profiles of remotely sensed vegetation indices like the Normalized Difference Vegetation Index (NDVI. Neural networks can learn the relation between temporal NDVI signatures and the sought crop acreage information. This learning step permits a non-linear unmixing of the temporal information provided by coarse resolution satellite sensors. For assessing the feasibility and accuracy of the approach, a study region in central Italy (Tuscany was selected. The task consisted of mapping the spatial distribution of winter crops abundances within 1 km AVHRR pixels between 1988 and 2001. Reference crop acreage information for network training and validation was derived from high resolution Thematic Mapper/Enhanced Thematic Mapper (TM/ETM+ images and official agricultural statistics. Encouraging results were obtained demonstrating the potential of the proposed approach. For example, the spatial distribution of winter crop acreage at sub-pixel level was mapped with a cross-validated coefficient of determination of 0.8 with respect to the reference information from high resolution imagery. For the eight years for which

  13. Backpropagating Action Potentials Enable Detection of Extrasynaptic Glutamate by NMDA Receptors

    Directory of Open Access Journals (Sweden)

    Yu-Wei Wu

    2012-05-01

    Full Text Available Synaptic NMDA receptors (NMDARs are crucial for neural coding and plasticity. However, little is known about the adaptive function of extrasynaptic NMDARs occurring mainly on dendritic shafts. Here, we find that in CA1 pyramidal neurons, backpropagating action potentials (bAPs recruit shaft NMDARs exposed to ambient glutamate. In contrast, spine NMDARs are “protected,” under baseline conditions, from such glutamate influences by perisynaptic transporters: we detect bAP-evoked Ca2+ entry through these receptors upon local synaptic or photolytic glutamate release. During theta-burst firing, NMDAR-dependent Ca2+ entry either downregulates or upregulates an h-channel conductance (Gh of the cell depending on whether synaptic glutamate release is intact or blocked. Thus, the balance between activation of synaptic and extrasynaptic NMDARs can determine the sign of Gh plasticity. Gh plasticity in turn regulates dendritic input probed by local glutamate uncaging. These results uncover a metaplasticity mechanism potentially important for neural coding and memory formation.

  14. Spectral and bispectral feature-extraction neural networks for texture classification

    Science.gov (United States)

    Kameyama, Keisuke; Kosugi, Yukio

    1997-10-01

    A neural network model (Kernel Modifying Neural Network: KM Net) specialized for image texture classification, which unifies the filtering kernels for feature extraction and the layered network classifier, will be introduced. The KM Net consists of a layer of convolution kernels that are constrained to be 2D Gabor filters to guarantee efficient spectral feature localization. The KM Net enables an automated feature extraction in multi-channel texture classification through simultaneous modification of the Gabor kernel parameters (central frequency and bandwidth) and the connection weights of the subsequent classifier layers by a backpropagation-based training rule. The capability of the model and its training rule was verified via segmentation of common texture mosaic images. In comparison with the conventional multi-channel filtering method which uses numerous filters to cover the spatial frequency domain, the proposed strategy can greatly reduce the computational cost both in feature extraction and classification. Since the adaptive Gabor filtering scheme is also applicable to band selection in moment spectra of higher orders, the network model was extended for adaptive bispectral filtering for extraction of the phase relation among the frequency components. The ability of this Bispectral KM Net was demonstrated in the discrimination of visually discriminable synthetic textures with identical local power spectral distributions.

  15. Rule Extraction using Artificial Neural Networks

    OpenAIRE

    2010-01-01

    Artificial neural networks have been successfully applied to a variety of business application problems involving classification and regression. Although backpropagation neural networks generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions are not as interpretable as those of decision trees. In many applications, it is desirable to extract knowledge from trained neural networks so that the users can...

  16. Forecasting Exchange Rate Using Neural Networks

    OpenAIRE

    Raksaseree, Sukhita

    2009-01-01

    The artificial neural network models become increasingly popular among researchers and investors since many studies have shown that it has superior performance over the traditional statistical model. This paper aims to investigate the neural network performance in forecasting foreign exchange rates based on backpropagation algorithm. The forecast of Thai Baht against seven currencies are conducted to observe the performance of the neural network models using the performance criteria for both ...

  17. Sistem Informasi Penyebaran Penyakit Demam Berdarah Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation

    Directory of Open Access Journals (Sweden)

    Didi Supriyadi

    2014-01-01

    Full Text Available Dengue  disease  is  a  major  health  problem  and  endemic  in  several  countries  including  Indonesia.  Indonesia  is  included  in  the  category  "A"  in  the stratification of DHF by WHO in 2001 which indicates the high rate of treatment in hospital and deaths from dengue. The purpose of this study was to investigate the ability of artificial neural networks Backpropagation method for information of the spread of dengue fever in   a region. In this study uses six input variables which are environmental factors that influence the spread of dengue fever, include average temperature  -  average, rainfall, number of rainy days, the population density, sea surface height, and the percentage of larvae-free number for  which data is sourced from BMKG, BPS and the Public Health Service. Network architecture applied to a multilayer network that uses an input with 6 neurons, one hidden lay er and an output with the output neuron is one. From the results obtained by training  the best network architecture is the number one hidden layer with the number of neurons obtained a total of 110 neurons and also the system can recognize the entire training data. The best training algorithm using  a variable learning rate and momentum of 0.9 by 0.6 by the end of the training MSE 0.000999879. in the process of testing using test data obtained 17 tissue levels of  approximately 88.23% accuracy. Therefore we can conclude that the network is implemented in this study when subjected to the test  data other then the error rate of about 11.77%.Keywords : Artificial Neural Networks; Backpropagation; Dengue fever

  18. Net Operations

    Institute of Scientific and Technical Information of China (English)

    蒋昌俊; 吴哲辉

    1992-01-01

    Two kinds of net operations.addition and Cartesian production of P/T nets,are introduced.They are defined on the set of underlying net of P/T systems.The conditions for preserving structural properties of Petri net after these operations are discussed.It is shown that the set of P/T nets forms and Abelian group for net addition operation and the inverse net of a P/T net in usual meaning of net theory is exactly the inverse of this P/T net as an element of the P/T net group;and that the set of P/T nets forms an Abelian ring for net addition and Caresian product operations.

  19. Using a multi-port architecture of neural-net associative memory based on the equivalency paradigm for parallel cluster image analysis and self-learning

    Science.gov (United States)

    Krasilenko, Vladimir G.; Lazarev, Alexander A.; Grabovlyak, Sveta K.; Nikitovich, Diana V.

    2013-01-01

    We consider equivalency models, including matrix-matrix and matrix-tensor and with the dual adaptive-weighted correlation, multi-port neural-net auto-associative and hetero-associative memory (MP NN AAM and HAP), which are equivalency paradigm and the theoretical basis of our work. We make a brief overview of the possible implementations of the MP NN AAM and of their architectures proposed and investigated earlier by us. The main base unit of such architectures is a matrix-matrix or matrix-tensor equivalentor. We show that the MP NN AAM based on the equivalency paradigm and optoelectronic architectures with space-time integration and parallel-serial 2D images processing have advantages such as increased memory capacity (more than ten times of the number of neurons!), high performance in different modes (1010 - 1012 connections per second!) And the ability to process, store and associatively recognize highly correlated images. Next, we show that with minor modifications, such MP NN AAM can be successfully used for highperformance parallel clustering processing of images. We show simulation results of using these modifications for clustering and learning models and algorithms for cluster analysis of specific images and divide them into categories of the array. Show example of a cluster division of 32 images (40x32 pixels) letters and graphics for 12 clusters with simultaneous formation of the output-weighted space allocated images for each cluster. We discuss algorithms for learning and self-learning in such structures and their comparative evaluations based on Mathcad simulations are made. It is shown that, unlike the traditional Kohonen self-organizing maps, time of learning in the proposed structures of multi-port neuronet classifier/clusterizer (MP NN C) on the basis of equivalency paradigm, due to their multi-port, decreases by orders and can be, in some cases, just a few epochs. Estimates show that in the test clustering of 32 1280- element images into 12

  20. Advances in Artificial Neural Networks - Methodological Development and Application

    Science.gov (United States)

    Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other ne...

  1. Single-step digital backpropagation for nonlinearity mitigation

    DEFF Research Database (Denmark)

    Secondini, Marco; Rommel, Simon; Meloni, Gianluca;

    2015-01-01

    Nonlinearity mitigation based on the enhanced split-step Fourier method (ESSFM) for the implementation of low-complexity digital backpropagation (DBP) is investigated and experimentally demonstrated. After reviewing the main computational aspects of DBP and of the conventional split-step Fourier...... method (SSFM), the ESSFM for dual-polarization signals is introduced. Computational complexity, latency, and power consumption of DBP based on the SSFM and ESSFM algorithms are estimated and compared. Effective low-complexity nonlinearity mitigation in a 112 Gb/s polarization-multiplexed QPSK system...... of the SSFM algorithm to achieve the same performance. An analysis of the computational complexity and structure of the two algorithms reveals that the overall complexity and power consumption of DBP are reduced by a factor of 16 with respect to a conventional implementation, while the computation time...

  2. 基于SOM网的风电变流器故障诊断%Fault Diagnosis of Wind Turbine's Converter Based on SOM Neural Net

    Institute of Scientific and Technical Information of China (English)

    王占霞; 张晓波

    2011-01-01

    我国新疆、甘肃、宁夏、内蒙、浙江、黑龙江、江苏、广东等都在大规模建设风电场,这些风电场建成后,其故障维护就有了很大市场.以新疆风电场为基础,尝试开发用于风力机故障智能诊断的系统.首先介绍了风力机及其变频器系统的结构,分析了变频器的故障机理.使用SOM神经网络对风机变流器进行了诊断,用数据验证了诊断结果.把传统的电力电子设备故障诊断技术与新疆风力机变频器的故障诊断相结合,为风电大面积推广应用产生了积极作用.%Large-scaledwindpowerfarms are underconstruction at present in Xinjiang Gansu Ningxia Inner Magnolia,Heilongjiag Jiangsu Guangdong and other provinces and autonomous repons in China The completion and operation of these wind farms will create a huge market of wind farm maintenance service. This paper introduced a fault diagnosis system for converters of wind turbines based on wind farms in Xinjiang This paper firstly introduced the structure of the wind turbine and its converter and analyzed causes of converters' faults The SOM neural net was used to diagnose the faults and the data generated verified its effect The study innovatively combines the traditional fault diagnosis technology for electncal and electronic devices with the fault diagnosis technology for wind turbines'converters in Xinpang wind farms, and will play a positive role in popularization of the technique in more wind farms.

  3. A Novel Handwritten Letter Recognizer Using Enhanced Evolutionary Neural Network

    Science.gov (United States)

    Mahmoudi, Fariborz; Mirzashaeri, Mohsen; Shahamatnia, Ehsan; Faridnia, Saed

    This paper introduces a novel design for handwritten letter recognition by employing a hybrid back-propagation neural network with an enhanced evolutionary algorithm. Feeding the neural network consists of a new approach which is invariant to translation, rotation, and scaling of input letters. Evolutionary algorithm is used for the global search of the search space and the back-propagation algorithm is used for the local search. The results have been computed by implementing this approach for recognizing 26 English capital letters in the handwritings of different people. The computational results show that the neural network reaches very satisfying results with relatively scarce input data and a promising performance improvement in convergence of the hybrid evolutionary back-propagation algorithms is exhibited.

  4. Rule Extraction using Artificial Neural Networks

    CERN Document Server

    Kamruzzaman, S M

    2010-01-01

    Artificial neural networks have been successfully applied to a variety of business application problems involving classification and regression. Although backpropagation neural networks generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions are not as interpretable as those of decision trees. In many applications, it is desirable to extract knowledge from trained neural networks so that the users can gain a better understanding of the solution. This paper presents an efficient algorithm to extract rules from artificial neural networks. We use two-phase training algorithm for backpropagation learning. In the first phase, the number of hidden nodes of the network is determined automatically in a constructive fashion by adding nodes one after another based on the performance of the network on training data. In the second phase, the number of relevant input units of the network is determined using pruning algorithm. The ...

  5. Neural network-based estimates of Southern Ocean net community production from in-situ O2 / Ar and satellite observation: a methodological study

    Directory of Open Access Journals (Sweden)

    C.-H. Chang

    2013-10-01

    Full Text Available Southern Ocean organic carbon export plays an important role in the global carbon cycle, yet its basin-scale climatology and variability are uncertain due to limited coverage of in situ observations. In this study, a neural network approach based on the self-organizing map (SOM is adopted to construct weekly gridded (1° × 1° maps of organic carbon export for the Southern Ocean from 1998 to 2009. The SOM is trained with in situ measurements of O2 / Ar-derived net community production (NCP that are tightly linked to the carbon export in the mixed layer on timescales of 1–2 weeks, and six potential NCP predictors: photosynthetically available radiation (PAR, particulate organic carbon (POC, chlorophyll (Chl, sea surface temperature (SST, sea surface height (SSH, and mixed layer depth (MLD. This non-parametric approach is based entirely on the observed statistical relationships between NCP and the predictors, and therefore is strongly constrained by observations. A thorough cross-validation yields three retained NCP predictors, Chl, PAR, and MLD. Our constructed NCP is further validated by good agreement with previously published independent in situ derived NCP of weekly or longer temporal resolution through real-time and climatological comparisons at various sampling sites. The resulting November–March NCP climatology reveals a pronounced zonal band of high NCP roughly following the subtropical front in the Atlantic, Indian and western Pacific sectors, and turns southeastward shortly after the dateline. Other regions of elevated NCP include the upwelling zones off Chile and Namibia, Patagonian Shelf, Antarctic coast, and areas surrounding the Islands of Kerguelen, South Georgia, and Crozet. This basin-scale NCP climatology closely resembles that of the satellite POC field and observed air-sea CO2 flux. The long-term mean area-integrated NCP south of 50° S from our dataset, 14 mmol C m–2 d–1, falls within the range of 8.3–24 mmol C m

  6. Sistem Deteksi Penyakit Pengeroposan Tulang Dengan Metode Jaringan Syaraf Tiruan Backpropagation Dan Representasi Ciri Dalam Ruang Eigen

    Directory of Open Access Journals (Sweden)

    Is Mardianto

    2008-05-01

    Full Text Available There are various ways to detect osteoporosis disease (bone loss. One of them is by observing the osteoporosisimage through rontgen picture or X-ray. Then, it is analyzed manually by Rheumatology experts. Article present the creationof a system which could detect osteoporosis disease on human, by implementing the Rheumatology principles. The main areasidentified were between wrist and hand fingers. The working system in this software included 3 important processing, whichwere process of basic image processing, pixel reduction process, pixel reduction, and artificial neural networks. Initially, thecolor of digital X-ray image (30 x 30 pixels was converted from RGB to grayscale. Then, it was threshold and its gray levelvalue was taken. These values then were normalized to an interval [0.1, 0.9], then reduced using a PCA (Principal ComponentAnalysis method. The results were used as input on the process of Backpropagation artificial neural networks to detect thedisease analysis of X-ray being inputted. It can be concluded that from the testing result, with a learning rate of 0.7 andmomentum of 0.4, this system had a success rate of 73 to 100 percent for the non-learning data testing, and 100 percent forlearning data.Keywords: osteoporosis, image processing, PCA, artificial neural networks

  7. Neural-estimator for the surface emission rate of atmospheric gases

    CERN Document Server

    Paes, F F

    2009-01-01

    The emission rate of minority atmospheric gases is inferred by a new approach based on neural networks. The neural network applied is the multi-layer perceptron with backpropagation algorithm for learning. The identification of these surface fluxes is an inverse problem. A comparison between the new neural-inversion and regularized inverse solution id performed. The results obtained from the neural networks are significantly better. In addition, the inversion with the neural netwroks is fster than regularized approaches, after training.

  8. Learning Processes of Layered Neural Networks

    OpenAIRE

    Fujiki, Sumiyoshi; FUJIKI, Nahomi, M.

    1995-01-01

    A positive reinforcement type learning algorithm is formulated for a stochastic feed-forward neural network, and a learning equation similar to that of the Boltzmann machine algorithm is obtained. By applying a mean field approximation to the same stochastic feed-forward neural network, a deterministic analog feed-forward network is obtained and the back-propagation learning rule is re-derived.

  9. Learning Algorithms of Multilayer Neural Networks

    OpenAIRE

    Fujiki, Sumiyoshi; FUJIKI, Nahomi, M.

    1996-01-01

    A positive reinforcement type learning algorithm is formulated for a stochastic feed-forward multilayer neural network, with far interlayer synaptic connections, and we obtain a learning rule similar to that of the Boltzmann machine on the same multilayer structure. By applying a mean field approximation to the stochastic feed-forward neural network, the generalized error back-propagation learning rule is derived for a deterministic analog feed-forward multilayer network with the far interlay...

  10. Neural Approach for Calculating Permeability of Porous Medium

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ji-Cheng; LIU Li; SONG Kao-Ping

    2006-01-01

    @@ Permeability is one of the most important properties of porous media. It is considerably difficult to calculate reservoir permeability precisely by using single well-logging response and simple formula because reservoir is of serious heterogeneity, and well-logging response curves are badly affected by many complicated factors underground. We propose a neural network method to calculate permeability of porous media. By improving the algorithm of the back-propagation neural network, convergence speed is enhanced and better results can be achieved. A four-layer back-propagation network is constructed to effectively calculate permeability from well log data.

  11. FUZZY NEURAL NETWORK FOR MACHINE PARTS RECOGNITION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Luo Xiaobin; Yin Guofu; Chen Ke; Hu Xiaobing; Luo Yang

    2003-01-01

    The primary purpose is to develop a robust adaptive machine parts recognition system. A fuzzy neural network classifier is proposed for machine parts classifier. It is an efficient modeling method. Through learning, it can approach a random nonlinear function. A fuzzy neural network classifier is presented based on fuzzy mapping model. It is used for machine parts classification. The experimental system of machine parts classification is introduced. A robust least square back-propagation (RLSBP) training algorithm which combines robust least square (RLS) with back-propagation (BP) algorithm is put forward. Simulation and experimental results show that the learning property of RLSBP is superior to BP.

  12. Training product unit neural networks with genetic algorithms

    Science.gov (United States)

    Janson, D. J.; Frenzel, J. F.; Thelen, D. C.

    1991-01-01

    The training of product neural networks using genetic algorithms is discussed. Two unusual neural network techniques are combined; product units are employed instead of the traditional summing units and genetic algorithms train the network rather than backpropagation. As an example, a neural netork is trained to calculate the optimum width of transistors in a CMOS switch. It is shown how local minima affect the performance of a genetic algorithm, and one method of overcoming this is presented.

  13. Fish Classification Based on Robust Features Extraction From Color Signature Using Back-Propagation Classifier

    Directory of Open Access Journals (Sweden)

    Mutasem K. Alsmadi

    2011-01-01

    Full Text Available Problem statement: Image recognition was a challenging problem researchers had been research into this area for so long especially in the recent years, due to distortion, noise, segmentation errors, overlap and occlusion of objects in digital images. In our study, there are many fields concern with pattern recognition, for example, fingerprint verification, face recognition, iris discrimination, chromosome shape discrimination, optical character recognition, texture discrimination and speech recognition, the subject of pattern recognition appears. A system for recognizing isolated pattern of interest may be as an approach for dealing with such application. Scientists and engineers with interests in image processing and pattern recognition have developed various approaches to deal with digital image recognition problems such as, neural network, contour matching and statistics. Approach: In this study, our aim was to recognize an isolated pattern of interest (fish in the image based robust features extraction. Where depend on color signatures that are extracted by RGB color space, color histogram and gray level co-occurrence matrix. Results: We presented a system prototype for dealing with such problem. The system started by acquiring an image containing pattern of fish, then the image segmentation was performed relying on color signature. Our system has been applied on 20 different fish families, each family has a different number of fish types and our sample consists of distinct 610 of fish images. These images are divided into two datasets: 400 training images and 210 testing images. An overall accuracy was obtained using back-propagation classifier was 84% on the test dataset used. Conclusion: We developed a classifier for fish images recognition. We efficiently have chosen an image segmentation method to fit our demands. Our classifier successfully design and implement a decision which performed efficiently without any

  14. Optimized biogas-fermentation by neural network control.

    Science.gov (United States)

    Holubar, P; Zani, L; Hager, M; Fröschl, W; Radak, Z; Braun, R

    2003-01-01

    In this work several feed-forward back-propagation neural networks (FFBP) were trained in order to model, and subsequently control, methane production in anaerobic digesters. To produce data for the training of the neural nets, four anaerobic continuous stirred tank reactors (CSTR) were operated in steady-state conditions at organic loading rates (Br) of about 2 kg x m(-3) x d(-1) chemical oxygen demand (COD), and disturbed by pulse-like increase of the organic loading rate. For the pulses additional carbon sources were added to the basic feed (surplus- and primary sludge) to simulate cofermentation and to increase the COD. Measured parameters were: gas composition, methane production rate, volatile fatty acid concentration, pH, redox potential, volatile suspended solids and COD of feed and effluent. A hierarchical system of neural nets was developed and embedded in a Decision Support System (DSS). A 3-3-1 FFBP simulated the pH with a regression coefficient of 0.82. A 9-3-3 FFBP simulated the volatile fatty acid concentration in the sludge with a regression coefficient of 0.86. And a 9-3-2 FFBP simulated the gas production and gas composition with a regression coefficient of 0.90 and 0.80 respectively. A lab-scale anaerobic CSTR controlled by this tool was able to maintain a methane concentration of about 60% at a rather high gas production rate of between 5 to 5.6 m3 x m(-3) x d(-1).

  15. Bigraphical Nets

    Directory of Open Access Journals (Sweden)

    Ian Mackie

    2013-02-01

    Full Text Available Interaction nets are a graphical model of computation, which has been used to define efficient evaluators for functional calculi, and specifically lambda calculi with patterns. However, the flat structure of interaction nets forces pattern matching and functional behaviour to be encoded at the same level, losing some potential parallelism. In this paper, we introduce bigraphical nets, or binets for short, as a generalisation of interaction nets using ideas from bigraphs and port graphs, and we present a formal notation and operational semantics for binets. We illustrate their expressive power by examples of applications.

  16. Net Gains

    Science.gov (United States)

    Fielker, David

    2008-01-01

    The Easter conference 2008 had several activities which for the author raised the same questions on cube nets in some work with eight-year-olds some time ago. In this article, the author muses on some problems from the Easter conference regarding nets of shapes. (Contains 1 note.)

  17. Medical diagnosis using neural network

    CERN Document Server

    Kamruzzaman, S M; Siddiquee, Abu Bakar; Mazumder, Md Ehsanul Hoque

    2010-01-01

    This research is to search for alternatives to the resolution of complex medical diagnosis where human knowledge should be apprehended in a general fashion. Successful application examples show that human diagnostic capabilities are significantly worse than the neural diagnostic system. This paper describes a modified feedforward neural network constructive algorithm (MFNNCA), a new algorithm for medical diagnosis. The new constructive algorithm with backpropagation; offer an approach for the incremental construction of near-minimal neural network architectures for pattern classification. The algorithm starts with minimal number of hidden units in the single hidden layer; additional units are added to the hidden layer one at a time to improve the accuracy of the network and to get an optimal size of a neural network. The MFNNCA was tested on several benchmarking classification problems including the cancer, heart disease and diabetes. Experimental results show that the MFNNCA can produce optimal neural networ...

  18. Jet analysis by neural networks in high energy hadron-hadron collisions

    CERN Document Server

    De Felice, P; Pasquariello, G; De Felice, P; Nardulli, G; Pasquariello, G

    1995-01-01

    We study the possibility to employ neural networks to simulate jet clustering procedures in high energy hadron-hadron collisions. We concentrate our analysis on the Fermilab Tevatron energy and on the k_\\bot algorithm. We consider both supervised multilayer feed-forward network trained by the backpropagation algorithm and unsupervised learning, where the neural network autonomously organizes the events in clusters.

  19. Suppressing Halo-chaos for Intense Ion Beamby Neural Network Adaptation Control Strategy

    Institute of Scientific and Technical Information of China (English)

    FANGJin-qing; LUOXiao-shu; WENGJia-qiang; ZHULun-wu

    2003-01-01

    Neural network has some advantages of adaptation, learn-self, self-organization and suitable for high-dimension for various applications in many fields, especially among them the feed-forward back-propagating neural network self-adaptation method is suitable for control of nonlinear systems.

  20. Implementation of Artificial Neural Network applied for the solution of inverse kinematics of 2-link serial chain manipulator.

    Directory of Open Access Journals (Sweden)

    Satish Kumar

    2012-09-01

    Full Text Available In this study, a method of artificial neural network applied for the solution of inverse kinematics of 2-link serial chain manipulator. The method is multilayer perceptrons neural network has applied. This unsupervised method learns the functional relationship between input (Cartesian space and output (joint space based on a localized adaptation of the mapping, by using the manipulator itself under joint control and adapting the solution based on a comparison between the resulting locations of the manipulator's end effectors in Cartesian space with the desired location. Even when a manipulator is not available; the approach is still valid if the forward kinematic equations are used as a model of the manipulator. The forward kinematic equations always have a unique solution, and the resulting Neural net can be used as a starting point for further refinement when the manipulator does become available. Artificial neural network especially MLP are used to learn the forward and the inverse kinematic equations of two degrees freedom robot arm. A set of some data sets were first generated as per the formula equation for this the input parameter X and Y coordinates in inches. Using these data sets was basis for the training and evaluation or testing the MLP model. Out of the sets data points, maximum were used as training data and some were used for testing for MLP. Backpropagation algorithm was used for training the network and for updating the desired weights. In this work epoch based training method was applied.

  1. Load forecasting using different architectures of neural networks with the assistance of the MATLAB toolboxes; Previsao de cargas eletricas utilizando diferentes arquiteturas de redes neurais artificiais com o auxilio das toolboxes do MATLAB

    Energy Technology Data Exchange (ETDEWEB)

    Nose Filho, Kenji; Araujo, Klayton A.M.; Maeda, Jorge L.Y.; Lotufo, Anna Diva P. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil)], Emails: kenjinose@yahoo.com.br, klayton_ama@hotmail.com, jorge-maeda@hotmail.com, annadiva@dee.feis.unesp.br

    2009-07-01

    This paper presents a development and implementation of a program to electrical load forecasting with data from a Brazilian electrical company, using four different architectures of neural networks of the MATLAB toolboxes: multilayer backpropagation gradient descendent with momentum, multilayer backpropagation Levenberg-Marquardt, adaptive network based fuzzy inference system and general regression neural network. The program presented a satisfactory performance, guaranteeing very good results. (author)

  2. Image Filtering with Neural Networks: applications and performance evaluation

    NARCIS (Netherlands)

    Spreeuwers, Lieuwe Jan

    1992-01-01

    A simple and elegant method to design image filters with neural networks is proposed: using small networks that scan the image and perform position invariant filtering. In the theses examples of image filtering with error backpropagation networks for edge detection, image deblurring and noise

  3. Analysis of Salinity Intrusion in the San Francisco Bay-Delta Using a GA-Optimized Neural Net, and Application of the Model to Prediction in the Elkhorn Slough Habitat

    Science.gov (United States)

    Thompson, D. E.; Rajkumar, T.

    2002-12-01

    The San Francisco Bay Delta is a large hydrodynamic complex that incorporates the Sacramento and San Joaquin Estuaries, the Suisan Marsh, and the San Francisco Bay proper. Competition exists for the use of this extensive water system both from the fisheries industry, the agricultural industry, and from the marine and estuarine animal species within the Delta. As tidal fluctuations occur, more saline water pushes upstream allowing fish to migrate beyond the Suisan Marsh for breeding and habitat occupation. However, the agriculture industry does not want extensive salinity intrusion to impact water quality for human and plant consumption. The balance is regulated by pumping stations located along the estuaries and reservoirs whereby flushing of fresh water keeps the saline intrusion at bay. The pumping schedule is driven by data collected at various locations within the Bay Delta and by numerical models that predict the salinity intrusion as part of a larger model of the system. The Interagency Ecological Program (IEP) for the San Francisco Bay / Sacramento-San Joaquin Estuary collects, monitors, and archives the data, and the Department of Water Resources provides a numerical model simulation (DSM2) from which predictions are made that drive the pumping schedule. A problem with DSM2 is that the numerical simulation takes roughly 16 hours to complete a prediction. We have created a neural net, optimized with a genetic algorithm, that takes as input the archived data from multiple gauging stations and predicts stage, salinity, and flow at the Carquinez Straits (at the downstream end of the Suisan Marsh). This model seems to be robust in its predictions and operates much faster than the current numerical DSM2 model. Because the Bay-Delta is strongly tidally driven, we used both Principal Component Analysis and Fast Fourier Transforms to discover dominant features within the IEP data. We then filtered out the dominant tidal forcing to discover non-primary tidal effects

  4. Net Locality

    DEFF Research Database (Denmark)

    de Souza e Silva, Adriana Araujo; Gordon, Eric

    Provides an introduction to the new theory of Net Locality and the profound effect on individuals and societies when everything is located or locatable. Describes net locality as an emerging form of location awareness central to all aspects of digital media, from mobile phones, to Google Maps, to...... of emerging technologies, from GeoCities to GPS, Wi-Fi, Wiki Me, and Google Android....

  5. Net Locality

    DEFF Research Database (Denmark)

    de Souza e Silva, Adriana Araujo; Gordon, Eric

    Provides an introduction to the new theory of Net Locality and the profound effect on individuals and societies when everything is located or locatable. Describes net locality as an emerging form of location awareness central to all aspects of digital media, from mobile phones, to Google Maps, to...... of emerging technologies, from GeoCities to GPS, Wi-Fi, Wiki Me, and Google Android....

  6. Detection and classification of Non-Proliferative Diabetic Retinopathy using a Back-Propagation neural network

    Directory of Open Access Journals (Sweden)

    Jesús Salvador Velázquez-González

    2015-01-01

    Full Text Available Una de las complicaciones más graves de la Diabetes Mellitus tipo 2 es la Retinopatía Diabética (RD. La RD es una enfermedad silenciosa y solo es reconocida por el portador cuándo los cambios en la retina han progresado a un nivel en el cual el tratamiento se complica, por lo que el diagnóstico oportuno y la remisión al oftalmólogo u optometrista para el manejo de esta enfermedad pueden prevenir el 98% de la pérdida visual grave. El objetivo de este trabajo es identificar de manera automática la No Retinopatía Diabética (NRD y la Retinopatía de Fondo, utilizando imágenes del fondo de ojo. Nuestros resultados muestran una efectividad del 92%, con una sensitividad y especificidad del 95%.

  7. Nonlinear Time Series Prediction Using Chaotic Neural Networks

    Institute of Scientific and Technical Information of China (English)

    LI KePing; CHEN TianLun

    2001-01-01

    A nonlinear feedback term is introduced into the evaluation equation of weights of the backpropagation algorithm for neural network, the network becomes a chaotic one. For the purpose of that we can investigate how the different feedback terms affect the process of learning and forecasting, we use the model to forecast the nonlinear time series which is produced by Makey-Glass equation. By selecting the suitable feedback term, the system can escape from the local minima and converge to the global minimum or its approximate solutions, and the forecasting results are better than those of backpropagation algorithm.``

  8. Face Recognition using Eigenfaces and Neural Networks

    Directory of Open Access Journals (Sweden)

    Mohamed Rizon

    2006-01-01

    Full Text Available In this study, we develop a computational model to identify the face of an unknown person’s by applying eigenfaces. The eigenfaces has been applied to extract the basic face of the human face images. The eigenfaces is then projecting onto human faces to identify unique features vectors. This significant features vector can be used to identify an unknown face by using the backpropagation neural network that utilized euclidean distance for classification and recognition. The ORL database for this investigation consists of 40 people with various 400 face images had been used for the learning. The eigenfaces including implemented Jacobi’s method for eigenvalues and eigenvectors has been performed. The classification and recognition using backpropagation neural network showed impressive positive result to classify face images.

  9. Fast Back-Propagation Learning Using Steep Activation Functions and Automatic Weight

    Science.gov (United States)

    Tai-Hoon Cho; Richard W. Conners; Philip A. Araman

    1992-01-01

    In this paper, several back-propagation (BP) learning speed-up algorithms that employ the ãgainä parameter, i.e., steepness of the activation function, are examined. Simulations will show that increasing the gain seemingly increases the speed of convergence and that these algorithms can converge faster than the standard BP learning algorithm on some problems. However,...

  10. PENGENALAN KEPRIBADIAN SESEORANG BERDASARKAN SIDIK JARI DENGAN METODE FUZZY LEARNING VECTOR QUANTIZATION DAN FUZZY BACKPROPAGATION

    Directory of Open Access Journals (Sweden)

    I Gede Sujana Eka Putra

    2014-12-01

    Full Text Available Kepribadian dapat diidentifikasi melalui analisis pola sidik jari. Pengenalan kepribadian umumnyamenggunakan uji psikometri melalui serangkaian tahapan yang relatif panjang. Melalui analisis pola sidik jari, dapatdiidentifikasi kepribadian secara lebih efisien. Penelitian ini mengajukan algoritma klasifikasi Fuzzy LearningVector Quantization (Fuzzy LVQ karena waktu komputasi yang lebih cepat dan tingkat pengenalan yang tinggi, dandengan metode Fuzzy Backpropagation yang mampu menyelesaikan model data non linier. Tahapan penelitianterdiri dari akuisisi dan klasifikasi. Tahapan pertama melalui akuisisi sidik jari, ekstraksi fitur, proses pelatihan, danpre-klasifikasi. Selanjutnya tahap klasifikasi, melalui klasifikasi fitur sidik jari uji menggunakan algoritma FuzzyLVQ, dibandingkan dengan Fuzzy Backpropagation. Kepribadian diidentifikasi melalui pola hasil klasifikasimenggunakan basis pengetahuan dermatoglyphics. Unjuk kerja diukur dari pencocokan pola hasil pre-klasifikasidan hasil klasifikasi. Hasil penelitian menunjukkan klasifikasi Fuzzy LVQ tingkat kecocokan tertinggi 93,78%dengan iterasi pelatihan maksimum=100 epoh pada target error 10-6. Sedangkan Fuzzy Backpropagation dengantingkat kecocokan tertinggi 93,30% dengan iterasi maksimum diatas 1000 epoh pada target error 10-3. Hal inimenunjukkan Fuzzy LVQ memiliki unjuk kerja lebih baik dibandingkan Fuzzy Backpropagation. Survey respondendilakukan untuk menguji kesesuaian analisa kepribadian sistem dibandingkan dengan kepribadian responden, danhasil survey menunjukkan analisa kepribadian sistem sebagian besar cocok dengan kepribadian responden.

  11. Data fusion control and guidance of surface-to-air missile under the complex circumstance based on neural-net technology

    Institute of Scientific and Technical Information of China (English)

    Zhou Deyun; Zhou Feng

    2008-01-01

    Under the complicated electromagnetism circumstance,the model of data fusion control and guidance of surface-to-air missile weapon systems is established.Such ways and theories as Elman-NN,radar tracking and niter's data fusion net based on the group method for data-processing (GMRDF) are applied to constructing the model of data fusion.The highly reliable state estimation of the tracking targets and the improvement in accuracy of control and guidance are obtained.The purpose is optimization design of data fusion control and guidance of surface-to-air missile weapon systems and improving the fighting effectiveness of surface-to-air missile weapon systems.

  12. Forecasting foreign exchange rates with an improved back-propagation learning algorithm with adaptive smoothing momentum terms

    Institute of Scientific and Technical Information of China (English)

    Lean YU; Shouyang WANG; Kin Keung LAI

    2009-01-01

    The slow convergence of back-propagation neu-ral network (BPNN) has become a challenge in data-mining and knowledge discovery applications due to the drawbacks of the gradient descent (GD) optimization method, which is widely adopted in BPNN learning. To solve this problem,some standard Optimization techniques such as conjugate-gradient and Newton method have been proposed to improve the convergence rate of BP learning algorithm. This paper presents a heuristic method that adds an adaptive smooth-ing momentum term to original BP learning algorithm to speedup the convergence. In this improved BP learning al-gorithm, adaptive smoothing technique is used to adjust the momentums of weight updating formula automatically in terms of "3 σ limits theory." Using the adaptive smoothing momentum terms, the improved BP learning algorithm can make the network training and convergence process faster,and the network's generalization performance stronger than the standard BP learning algorithm can do. In order to ver-ify the effectiveness of the proposed BP learning algorithm,three typical foreign exchange rates, British pound (GBP),Euro (EUR), and Japanese yen (JPY), are chosen as the fore-casting targets for illustration purpose. Experimental results from homogeneous algorithm comparisons reveal that the proposed BP learning algorithm outperforms the other com-parable BP algorithms in performance and convergence rate.Furthermore, empirical results from heterogeneous model comparisons also show the effectiveness of the proposed BP learning algorithm.

  13. Application of Artificial Neural Network in Indicator Diagram

    Institute of Scientific and Technical Information of China (English)

    WuXiaodong; JiangHua; HanGuoqing

    2004-01-01

    Indicator diagram plays an important role in identifying the production state of oil wells. With an ability to reflect any non-linear mapping relationship, the artificial neural network (ANN) can be used in shape identification. This paper illuminates ANN realization in identifying fault kinds of indicator diagrams, including a back-propagation algorithm, characteristics of the indicator diagram and some examples. It is concluded that the buildup of a neural network and the abstract of indicator diagrams are important to successful application.

  14. Automatic detection of intruders using a neural network

    Science.gov (United States)

    Carvalho, Fernando D.; Novo, Pedro; Pais, Cassiano P.; Rodrigues, Fernando C.; Rego, Toste

    1992-09-01

    A system is presented that applies a neural network to a video surveillance system. It consists of a pre-processing unit that extract high level information from images and introduces it in the neural network. This system can learn in operational conditions while under the supervision of an unskilled operator. It uses the error backpropagation learning algorithm in a multilayer perceptron structure. The results obtained show that the system performs well, and with a high degree of efficiency.

  15. Research on freight train license recognition based on convolutional neural network LeNet-5%基于卷积神经网络LeNet-5的货运列车车号识别研究

    Institute of Scientific and Technical Information of China (English)

    王晓锋; 马钟

    2016-01-01

    针对货运列车车号字符识别,提出了基于卷积神经网络LeNet⁃5的改进识别方法,考虑到卷积神经网络的层次化以及局部领域等结构特点,对网络中各层特征图的数量及大小等参数进行相应的改进,形成了适用于货运车号识别的新网络模型。实验结果表明,该方法对车号的断裂、污损等问题的解决有较强的鲁棒性,达到了较高的识别率,为整个车号识别系统的精确性提供了保障。%For the character recognition of freight train license,the improved recognition method based on convolutional neu⁃ral network LeNet⁃5 is proposed. Considering the structural features of the hierarchical convolutional neural network and local field,the parameters of quantity and size of each layer feature pattern in the network were improved correspondingly to form the new network model suitable for the freight train license recognition. The experimental results show that the proposed method has strong robustness to solve the license breakage and stain,and high recognition rate,which provides a guarantee for the accuracy of the entire license recognition system.

  16. 基于神经网络的机动多目标数据关联算法%The Maneuvering Multi-Target Data Association Algorithm Based on Neural Net

    Institute of Scientific and Technical Information of China (English)

    范跃华; 徐永红; 辛大欣

    2000-01-01

    Though the Joint of Probabilistic Data Association (JPDA) algorithm has been previouslyreported to be suitable for the problem of tracking multiple targets in the presence of clutter, thecomplexity of this algorithm increases rapidly with the number of targets and returns. A neural algorithmhas been suggested after studying how the Hopfield neural net resolved the traveling salesman problem%虽然JPDA被公认为是杂波多目标环境下跟踪效果最理想的数据关联算法之一,但在密集回波情况下其计算量易出现组合爆炸现象,难于实时处理。通过对Hopfield网络解决TSP问题的研究,探讨用神经网络解决联合概率数据关联(JPDA)中数据运算的组合爆炸问题的办法

  17. A CFBPN Artificial Neural Network Model for Educational Qualitative Data Analyses: Example of Students' Attitudes Based on Kellerts' Typologies

    Science.gov (United States)

    Yorek, Nurettin; Ugulu, Ilker

    2015-01-01

    In this study, artificial neural networks are suggested as a model that can be "trained" to yield qualitative results out of a huge amount of categorical data. It can be said that this is a new approach applied in educational qualitative data analysis. In this direction, a cascade-forward back-propagation neural network (CFBPN) model was…

  18. RESTful NET

    CERN Document Server

    Flanders, Jon

    2008-01-01

    RESTful .NET is the first book that teaches Windows developers to build RESTful web services using the latest Microsoft tools. Written by Windows Communication Foundation (WFC) expert Jon Flanders, this hands-on tutorial demonstrates how you can use WCF and other components of the .NET 3.5 Framework to build, deploy and use REST-based web services in a variety of application scenarios. RESTful architecture offers a simpler approach to building web services than SOAP, SOA, and the cumbersome WS- stack. And WCF has proven to be a flexible technology for building distributed systems not necessa

  19. [The pattern of Levenberg-Marquardt backpropagation algorithm for recognition of coronary heart disease patients based on microamount of elements in human blood].

    Science.gov (United States)

    Kai, Xiao-ming

    2004-11-01

    The contents of four microamount elements (Sr, Cu, Mg and Zn) in human blood were chosen as recognition index of coronary heart disease patients and normal persons. The recognition pattern of Levenberg-Marquardt Backpropagation algorithm has been established. The first-layer transfer function is Tansig function; the second-layer transfer function is linear Purelin function. There are four input vectors, eight neurons on hidden layer, and one neuron of output vector. Four samples were chosen as a teat group and 22 samples as a training group. The weights and biases of the neural network were given. The given data could be completely identified, which predicted that this method could be a supplementary tool to diagnose this kind of disease with the determined contents of microamount of elements in human blood.

  20. Stability Analysis of Neural Networks-Based System Identification

    Directory of Open Access Journals (Sweden)

    Talel Korkobi

    2008-01-01

    Full Text Available This paper treats some problems related to nonlinear systems identification. A stability analysis neural network model for identifying nonlinear dynamic systems is presented. A constrained adaptive stable backpropagation updating law is presented and used in the proposed identification approach. The proposed backpropagation training algorithm is modified to obtain an adaptive learning rate guarantying convergence stability. The proposed learning rule is the backpropagation algorithm under the condition that the learning rate belongs to a specified range defining the stability domain. Satisfying such condition, unstable phenomena during the learning process are avoided. A Lyapunov analysis leads to the computation of the expression of a convenient adaptive learning rate verifying the convergence stability criteria. Finally, the elaborated training algorithm is applied in several simulations. The results confirm the effectiveness of the CSBP algorithm.

  1. Boundness of a Neural Network Weights Using the Notion of a Limit of a Sequence

    Directory of Open Access Journals (Sweden)

    Hazem Migdady

    2014-06-01

    Full Text Available feed forward neural network with backpropagation learning algorithm is considered as a black box learning classifier since there is no certain interpretation or nticipation of the behavior of a neural network weights. The weights of a neural network ar e considered as the learning tool of the classifier, and the learning task is performed by the repetition modification of those weights. This modification is performed using the delta rule which is mainly usedin the gradient descent technique. In this article a proof is provided that helps to understand and explain the behavior of the weights in a feed forward neural network with backpropagation learning algorithm. Also, it illustrates why a feed forward neural network is not always guaranteed to converge in a global minimum. Moreover, the proof shows that the weights in t he neural network are upper bounded (i.e. they do not approach infinity.

  2. Boundness of a Neural Network Weights Using the Notion of a Limit of a Sequence

    Directory of Open Access Journals (Sweden)

    Hazem Migdady

    2014-05-01

    Full Text Available feed forward neural network with backpropagation learning algorithm is considered as a black box learning classifier since there is no certain interpretation or anticipation of the behavior of a neural network weights. The weights of a neural network are considered as the learning tool of the classifier, and the learning task is performed by the repetition modification of those weights. This modification is performed using the delta rule which is mainly used in the gradient descent technique. In this article a proof is provided that helps to understand and explain the behavior of the weights in a feed forward neural network with backpropagation learning algorithm. Also, it illustrates why a feed forward neural network is not always guaranteed to converge in a global minimum. Moreover, the proof shows that the weights in the neural network are upper bounded (i.e. they do not approach infinity.

  3. Dynamic Analysis of Structures Using Neural Networks

    Directory of Open Access Journals (Sweden)

    N. Ahmadi

    2008-01-01

    Full Text Available In the recent years, neural networks are considered as the best candidate for fast approximation with arbitrary accuracy in the time consuming problems. Dynamic analysis of structures against earthquake has the time consuming process. We employed two kinds of neural networks: Generalized Regression neural network (GR and Back-Propagation Wavenet neural network (BPW, for approximating of dynamic time history response of frame structures. GR is a traditional radial basis function neural network while BPW categorized as a wavelet neural network. In BPW, sigmoid activation functions of hidden layer neurons are substituted with wavelets and weights training are achieved using Scaled Conjugate Gradient (SCG algorithm. Comparison the results of BPW with those of GR in the dynamic analysis of eight story steel frame indicates that accuracy of the properly trained BPW was better than that of GR and therefore, BPW can be efficiently used for approximate dynamic analysis of structures.

  4. NetTurnP – Neural Network Prediction of Beta-turns by Use of Evolutionary Information and Predicted Protein Sequence Features

    DEFF Research Database (Denmark)

    Petersen, Bent; Lundegaard, Claus; Petersen, Thomas Nordahl

    2010-01-01

    NetTurnP, for prediction of two-class β-turns and prediction of the individual β-turn types, by use of evolutionary information and predicted protein sequence features. It has been evaluated against a commonly used dataset BT426, and achieves a Matthews correlation coefficient of 0.50, which......-homologous sequences known as BT426. Our two-class prediction method achieves a performance of: MCC = 0.50, Qtotal = 82.1%, sensitivity = 75.6%, PPV = 68.8% and AUC = 0.864. We have compared our performance to eleven other prediction methods that obtain Matthews correlation coefficients in the range of 0.17 – 0.......47. For the type specific β-turn predictions, only type I and II can be predicted with reasonable Matthews correlation coefficients, where we obtain performance values of 0.36 and 0.31, respectively....

  5. Role of neural networks in the search of the Higgs boson at LHC

    Science.gov (United States)

    Maggipinto, T.; Nardulli, G.; Dusini, S.; Ferrari, F.; Lazzizzera, I.; Sidoti, A.; Sartori, A.; Tecchiolli, G. P.

    1997-02-01

    We show that neural network classifiers can be helpful to discriminate Higgs production from background at LHC in the Higgs mass range MH ~ 200 GeV. We employ a common feed-forward neural network trained by the backpropagation algorithm for off-line analysis and the neural chip Totem, trained by the Reactive Tabu Search algorithm, which could be used for on-line analysis.

  6. Neural networks for function approximation in nonlinear control

    Science.gov (United States)

    Linse, Dennis J.; Stengel, Robert F.

    1990-01-01

    Two neural network architectures are compared with a classical spline interpolation technique for the approximation of functions useful in a nonlinear control system. A standard back-propagation feedforward neural network and a cerebellar model articulation controller (CMAC) neural network are presented, and their results are compared with a B-spline interpolation procedure that is updated using recursive least-squares parameter identification. Each method is able to accurately represent a one-dimensional test function. Tradeoffs between size requirements, speed of operation, and speed of learning indicate that neural networks may be practical for identification and adaptation in a nonlinear control environment.

  7. Optimize Short Term load Forcasting Anomalous Based Feed Forward Backpropagation

    Science.gov (United States)

    Mulyadi, Y.; Abdullah, A. G.; Rohmah, K. A.

    2017-03-01

    This paper contains the Short-Term Load Forecasting (STLF) using artificial neural network especially feed forward back propagation algorithm which is particularly optimized in order to getting a reduced error value result. Electrical load forecasting target is a holiday that hasn’t identical pattern and different from weekday’s pattern, in other words the pattern of holiday load is an anomalous. Under these conditions, the level of forecasting accuracy will be decrease. Hence we need a method that capable to reducing error value in anomalous load forecasting. Learning process of algorithm is supervised or controlled, then some parameters are arranged before performing computation process. Momentum constant a value is set at 0.8 which serve as a reference because it has the greatest converge tendency. Learning rate selection is made up to 2 decimal digits. In addition, hidden layer and input component are tested in several variation of number also. The test result leads to the conclusion that the number of hidden layer impact on the forecasting accuracy and test duration determined by the number of iterations when performing input data until it reaches the maximum of a parameter value.

  8. Unlearning in feed-forward multi-nets

    NARCIS (Netherlands)

    Spaanenburg, L; Kurkova,; Steele, NC; Neruda, R; Karny, M

    2001-01-01

    Multi-nets promise an improved performance over monolithic neural networks by virtue of their distributed implementation. Modular neural networks are multi-nets based on an judicious assembly of functionally different parts. This can be viewed as again a monolithic network, but with more complex neu

  9. Systolic implementation of neural networks

    Energy Technology Data Exchange (ETDEWEB)

    De Groot, A.J.; Parker, S.R.

    1989-01-01

    The backpropagation algorithm for error gradient calculations in multilayer, feed-forward neural networks is derived in matrix form involving inner and outer products. It is demonstrated that these calculations can be carried out efficiently using systolic processing techniques, particularly using the SPRINT, a 64-element systolic processor developed at Lawrence Livermore National Laboratory. This machine contains one million synapses, and forward-propagates 12 million connections per second, using 100 watts of power. When executing the algorithm, each SPRINT processor performs useful work 97% of the time. The theory and applications are confirmed by some nontrivial examples involving seismic signal recognition. 4 refs., 7 figs.

  10. Recognition of Roasted Coffee Bean Levels using Image Processing and Neural Network

    Science.gov (United States)

    Nasution, T. H.; Andayani, U.

    2017-03-01

    The coffee beans roast levels have some characteristics. However, some people cannot recognize the coffee beans roast level. In this research, we propose to design a method to recognize the coffee beans roast level of images digital by processing the image and classifying with backpropagation neural network. The steps consist of how to collect the images data with image acquisition, pre-processing, feature extraction using Gray Level Co-occurrence Matrix (GLCM) method and finally normalization of data extraction using decimal scaling features. The values of decimal scaling features become an input of classifying in backpropagation neural network. We use the method of backpropagation to recognize the coffee beans roast levels. The results showed that the proposed method is able to identify the coffee roasts beans level with an accuracy of 97.5%.

  11. Analysis of Salinity Intrusion in the San Francisco Bay-Delta using a GA- Optimized Neural Net, and Application of the Model to Prediction in the Elkhorn Slough Habitat

    Science.gov (United States)

    Thompson, David E.; Rajkumar, T.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    The San Francisco Bay Delta is a large hydrodynamic complex that incorporates the Sacramento and San Joaquin Estuaries, the Burman Marsh, and the San Francisco Bay proper. Competition exists for the use of this extensive water system both from the fisheries industry, the agricultural industry, and from the marine and estuarine animal species within the Delta. As tidal fluctuations occur, more saline water pushes upstream allowing fish to migrate beyond the Burman Marsh for breeding and habitat occupation. However, the agriculture industry does not want extensive salinity intrusion to impact water quality for human and plant consumption. The balance is regulated by pumping stations located alone the estuaries and reservoirs whereby flushing of fresh water keeps the saline intrusion at bay. The pumping schedule is driven by data collected at various locations within the Bay Delta and by numerical models that predict the salinity intrusion as part of a larger model of the system. The Interagency Ecological Program (IEP) for the San Francisco Bay/Sacramento-San Joaquin Estuary collects, monitors, and archives the data, and the Department of Water Resources provides a numerical model simulation (DSM2) from which predictions are made that drive the pumping schedule. A problem with this procedure is that the numerical simulation takes roughly 16 hours to complete a C: prediction. We have created a neural net, optimized with a genetic algorithm, that takes as input the archived data from multiple stations and predicts stage, salinity, and flow at the Carquinez Straits (at the downstream end of the Burman Marsh). This model seems to be robust in its predictions and operates much faster than the current numerical DSM2 model. Because the system is strongly tidal driven, we used both Principal Component Analysis and Fast Fourier Transforms to discover dominant features within the IEP data. We then filtered out the dominant tidal forcing to discover non-primary tidal effects

  12. 自组织增量神经网络IDS研究%Network anomaly detection with improved self-organizing incremental neural net-work

    Institute of Scientific and Technical Information of China (English)

    向直扬; 朱俊平

    2014-01-01

    理想的网络入侵检测系统(IDS)是无监督学习的、在线学习的。现有的满足这两个标准的方法训练速度较慢,无法保证入侵检测系统所需要的低丢包率。为了提高训练速度,提出一种基于改进的自组织增量神经网络(improved SOINN)的网络异常检测方法,用于在线地、无监督地训练网络数据分类器;并提出使用三种数据精简(Data Reduction)的方法,包括随机子集选取,k-means聚类和主成分分析的方法,来进一步加速改进的SOINN的训练。实验结果表明,提出的方法在保持较高检测率的前提下,减少了训练时间。%An ideal Intrusion Detection System(IDS)should implement unsupervised learning and online learning. Exist-ing methods suffice these two criterions requires too much training time, which would cause a high packet loss rate and is unacceptable. To overcome the difficulty, an intrusion detection method based on improved Self-Organizing Incremental Neural Network(SOINN)and data reduction is presented, which allows online training of network classifiers in an unsu-pervised fashion. Also, data reduction methods, including random subset selection, k-means clustering, and principle com-ponent analysis are employed to accelerate the training. Experimental results show that the proposed method requires less time in training while maintaining a high detection rate.

  13. Video Traffic Prediction Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Miloš Oravec

    2008-10-01

    Full Text Available In this paper, we consider video stream prediction for application in services likevideo-on-demand, videoconferencing, video broadcasting, etc. The aim is to predict thevideo stream for an efficient bandwidth allocation of the video signal. Efficient predictionof traffic generated by multimedia sources is an important part of traffic and congestioncontrol procedures at the network edges. As a tool for the prediction, we use neuralnetworks – multilayer perceptron (MLP, radial basis function networks (RBF networksand backpropagation through time (BPTT neural networks. At first, we briefly introducetheoretical background of neural networks, the prediction methods and the differencebetween them. We propose also video time-series processing using moving averages.Simulation results for each type of neural network together with final comparisons arepresented. For comparison purposes, also conventional (non-neural prediction isincluded. The purpose of our work is to construct suitable neural networks for variable bitrate video prediction and evaluate them. We use video traces from [1].

  14. ANT Advanced Neural Tool

    Energy Technology Data Exchange (ETDEWEB)

    Labrador, I.; Carrasco, R.; Martinez, L.

    1996-07-01

    This paper describes a practical introduction to the use of Artificial Neural Networks. Artificial Neural Nets are often used as an alternative to the traditional symbolic manipulation and first order logic used in Artificial Intelligence, due the high degree of difficulty to solve problems that can not be handled by programmers using algorithmic strategies. As a particular case of Neural Net a Multilayer Perception developed by programming in C language on OS9 real time operating system is presented. A detailed description about the program structure and practical use are included. Finally, several application examples that have been treated with the tool are presented, and some suggestions about hardware implementations. (Author) 15 refs.

  15. Artificial Neural Networks and Their Applications in Diagnostics of Incipient Faults in Rotating Machinery

    Science.gov (United States)

    1991-03-01

    20 2. Perceptrons..................21 3. Adaline /Madaline................24 4. Backpropagation................28 a. General Architecture...perceptron called an Adaline (Adaptive Linear Element) , which was the basis of the first commercially successful neural network enterprise, the...Memistor corporation. They also developed a theorem which stated that an adaline and a perceptron are each capable of classifying any input space that could

  16. Experimental calibration of forward and inverse neural networks for rotary type magnetorheological damper

    DEFF Research Database (Denmark)

    Bhowmik, Subrata; Weber, Felix; Høgsberg, Jan Becker

    2013-01-01

    This paper presents a systematic design and training procedure for the feed-forward backpropagation neural network (NN) modeling of both forward and inverse behavior of a rotary magnetorheological (MR) damper based on experimental data. For the forward damper model, with damper force as output an...

  17. Engineering Applications of Neural Computing: A State-of-the-Art Survey

    Science.gov (United States)

    1991-05-01

    Himmelblau , D. M., "Introducing Efficient Second Order Effects into Backpropagation Learning," Proceedings of the International Joint Conference on...Conference on Neural Networks, 1-569. 10. Hoskins, J. C., Kaliyur, K. M., Himmelblau , D. M., "Insipient Fault Detection and Diagnosis Using Artificial

  18. Learning behavior and temporary minima of two-layer neural networks

    NARCIS (Netherlands)

    Annema, Anne J.; Hoen, Klaas; Hoen, Klaas; Wallinga, Hans

    1994-01-01

    This paper presents a mathematical analysis of the occurrence of temporary minima during training of a single-output, two-layer neural network, with learning according to the back-propagation algorithm. A new vector decomposition method is introduced, which simplifies the mathematical analysis of

  19. Artificial neural network estimation of soil erosion and nutrient concentrations in runoff from land application areas

    Science.gov (United States)

    The transport of sediment and nutrients from land application areas is an environmental concern. New methods are needed for estimating soil and nutrient concentrations of runoff from cropland areas on which manure is applied. Artificial Neural Networks (ANN) trained with a Backpropagation (BP) algor...

  20. Vibration Based Damage Assessment of a Civil Engineering Structures using a Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Rytter, A.

    In this paper the possibility of using a Multilayer Perceptron (MLP) network trained with the Backpropagation Algorith as a non-destructive damage assessment technique to locate and quantify a damage in Civil Engineering structures is investigated. Since artificial neural networks are proving...

  1. Advances in Artificial Neural Networks – Methodological Development and Application

    Directory of Open Access Journals (Sweden)

    Yanbo Huang

    2009-08-01

    Full Text Available Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other networks such as radial basis function, recurrent network, feedback network, and unsupervised Kohonen self-organizing network. These networks, especially the multilayer perceptron network with a backpropagation training algorithm, have gained recognition in research and applications in various scientific and engineering areas. In order to accelerate the training process and overcome data over-fitting, research has been conducted to improve the backpropagation algorithm. Further, artificial neural networks have been integrated with other advanced methods such as fuzzy logic and wavelet analysis, to enhance the ability of data interpretation and modeling and to avoid subjectivity in the operation of the training algorithm. In recent years, support vector machines have emerged as a set of high-performance supervised generalized linear classifiers in parallel with artificial neural networks. A review on development history of artificial neural networks is presented and the standard architectures and algorithms of artificial neural networks are described. Furthermore, advanced artificial neural networks will be introduced with support vector machines, and limitations of ANNs will be identified. The future of artificial neural network development in tandem with support vector machines will be discussed in conjunction with further applications to food science and engineering, soil and water relationship for crop management, and decision support for precision agriculture. Along with the network structures and training algorithms, the applications of artificial neural networks will be reviewed as well, especially in the fields of agricultural and biological

  2. Neural and Cognitive Modeling with Networks of Leaky Integrator Units

    Science.gov (United States)

    Graben, Peter beim; Liebscher, Thomas; Kurths, Jürgen

    After reviewing several physiological findings on oscillations in the electroencephalogram (EEG) and their possible explanations by dynamical modeling, we present neural networks consisting of leaky integrator units as a universal paradigm for neural and cognitive modeling. In contrast to standard recurrent neural networks, leaky integrator units are described by ordinary differential equations living in continuous time. We present an algorithm to train the temporal behavior of leaky integrator networks by generalized back-propagation and discuss their physiological relevance. Eventually, we show how leaky integrator units can be used to build oscillators that may serve as models of brain oscillations and cognitive processes.

  3. Assessment of highway slope failure using neural networks

    Institute of Scientific and Technical Information of China (English)

    Tsung-lin LEE; Hung-ming LIN; Yuh-pin LU

    2009-01-01

    An artificial intelligence technique of back-propagation neural networks is used to assess the slope failure. On-site slope failure data from the South Cross-Island Highway in southern Taiwan are used to test the performance of the neural network model. The numerical results demonstrate the effectiveness of artificial neural networks in the evaluation of slope failure potential based on five major factors, such as the slope gradient angle, the slope height, the cumulative precipitation, daily rainfall and strength of materials.

  4. Scaling-efficient in-situ training of CMOL CrossNet classifiers.

    Science.gov (United States)

    Lee, Jung Hoon

    2011-12-01

    CMOL CrossNets, hybrid CMOS/nanoelectronic neuromorphic circuits, may open up exciting opportunities to build artificial intelligence similar to the brain. However, limited functionality of nanodevices used in CMOL circuits causes significant challenges to train CrossNets with the usual algorithms. In order to overcome these challenges, we developed an in-situ variety of the error backpropagation method for supervised training of CrossNet-based pattern classifiers. Although this algorithm successfully trained CrossNets to perform simple benchmark classification tasks in Proben1, we found that it did not scale up to larger problems such as the MNIST dataset. Therefore, we propose an alternative in-situ method, combining training with the hidden layer build-up. Simulated results suggest that our new in-situ approach is appropriate to train CrossNets to perform classification on practical problems.

  5. Pattern Recognition and Classification of Fatal Traffic Accidents in Israel A Neural Network Approach

    DEFF Research Database (Denmark)

    Prato, Carlo Giacomo; Gitelman, Victoria; Bekhor, Shlomo

    2011-01-01

    on 1,793 fatal traffic accidents occurred during the period between 2003 and 2006 and applies Kohonen and feed-forward back-propagation neural networks with the objective of extracting from the data typical patterns and relevant factors. Kohonen neural networks reveal five compelling accident patterns....... Feed-forward back-propagation neural networks indicate that sociodemographic characteristics of drivers and victims, accident location, and period of the day are extremely relevant factors. Accident patterns suggest that countermeasures are necessary for identified problems concerning mainly vulnerable...... road users such as pedestrians, cyclists, motorcyclists and young drivers. A “safe-system” integrating a system approach for the design of countermeasures and a monitoring process of performance indicators might address the priorities highlighted by the neural networks....

  6. [The Identification of the Origin of Chinese Wolfberry Based on Infrared Spectral Technology and the Artificial Neural Network].

    Science.gov (United States)

    Li, Zhong; Liu, Ming-de; Ji, Shou-xiang

    2016-03-01

    The Fourier Transform Infrared Spectroscopy (FTIR) is established to find the geographic origins of Chinese wolfberry quickly. In the paper, the 45 samples of Chinese wolfberry from different places of Qinghai Province are to be surveyed by FTIR. The original data matrix of FTIR is pretreated with common preprocessing and wavelet transform. Compared with common windows shifting smoothing preprocessing, standard normal variation correction and multiplicative scatter correction, wavelet transform is an effective spectrum data preprocessing method. Before establishing model through the artificial neural networks, the spectra variables are compressed by means of the wavelet transformation so as to enhance the training speed of the artificial neural networks, and at the same time the related parameters of the artificial neural networks model are also discussed in detail. The survey shows even if the infrared spectroscopy data is compressed to 1/8 of its original data, the spectral information and analytical accuracy are not deteriorated. The compressed spectra variables are used for modeling parameters of the backpropagation artificial neural network (BP-ANN) model and the geographic origins of Chinese wolfberry are used for parameters of export. Three layers of neural network model are built to predict the 10 unknown samples by using the MATLAB neural network toolbox design error back propagation network. The number of hidden layer neurons is 5, and the number of output layer neuron is 1. The transfer function of hidden layer is tansig, while the transfer function of output layer is purelin. Network training function is trainl and the learning function of weights and thresholds is learngdm. net. trainParam. epochs=1 000, while net. trainParam. goal = 0.001. The recognition rate of 100% is to be achieved. It can be concluded that the method is quite suitable for the quick discrimination of producing areas of Chinese wolfberry. The infrared spectral analysis technology

  7. Neural networks convergence using physicochemical data.

    Science.gov (United States)

    Karelson, Mati; Dobchev, Dimitar A; Kulshyn, Oleksandr V; Katritzky, Alan R

    2006-01-01

    An investigation of the neural network convergence and prediction based on three optimization algorithms, namely, Levenberg-Marquardt, conjugate gradient, and delta rule, is described. Several simulated neural networks built using the above three algorithms indicated that the Levenberg-Marquardt optimizer implemented as a back-propagation neural network converged faster than the other two algorithms and provides in most of the cases better prediction. These conclusions are based on eight physicochemical data sets, each with a significant number of compounds comparable to that usually used in the QSAR/QSPR modeling. The superiority of the Levenberg-Marquardt algorithm is revealed in terms of functional dependence of the change of the neural network weights with respect to the gradient of the error propagation as well as distribution of the weight values. The prediction of the models is assessed by the error of the validation sets not used in the training process.

  8. Comparison of Back propagation neural network and Back propagation neural network Based Particle Swarm intelligence in Diagnostic Breast Cancer

    Directory of Open Access Journals (Sweden)

    Farahnaz SADOUGHI

    2014-03-01

    Full Text Available Breast cancer is the most commonly diagnosed cancer and the most common cause of death in women all over the world. Use of computer technology supporting breast cancer diagnosing is now widespread and pervasive across a broad range of medical areas. Early diagnosis of this disease can greatly enhance the chances of long-term survival of breast cancer victims. Artificial Neural Networks (ANN as mainly method play important role in early diagnoses breast cancer. This paper studies Levenberg Marquardet Backpropagation (LMBP neural network and Levenberg Marquardet Backpropagation based Particle Swarm Optimization(LMBP-PSO for the diagnosis of breast cancer. The obtained results show that LMBP and LMBP based PSO system provides higher classification efficiency. But LMBP based PSO needs minimum training and testing time. It helps in developing Medical Decision System (MDS for breast cancer diagnosing. It can also be used as secondary observer in clinical decision making.

  9. Applying Neural Network in Evaporative Cooler Performance Prediction

    Institute of Scientific and Technical Information of China (English)

    QIANG Tian-wei; SHEN Heng-gen; HUANG Xiang; XUAN Yong-mei

    2007-01-01

    The back-propagation (BP) neural network is created to predict the performance of a direct evaporative cooling (DEC) air conditioner with GLASdek pads. The experiment data about the performance of the DEC air conditioner are obtained. Some experiment data are used to train the network until these data can approximate a function, then, simulate the network with the remanent data. The predicted result shows satisfying effects.

  10. Robot manipulator identification based on adaptive multiple-input and multiple-output neural model optimized by advanced differential evolution algorithm

    Directory of Open Access Journals (Sweden)

    Nguyen Ngoc Son

    2016-12-01

    Full Text Available This article proposes a novel advanced differential evolution method which combines the differential evolution with the modified back-propagation algorithm. This new proposed approach is applied to train an adaptive enhanced neural model for approximating the inverse model of the industrial robot arm. Experimental results demonstrate that the proposed modeling procedure using the new identification approach obtains better convergence and more precision than the traditional back-propagation method or the lonely differential evolution approach. Furthermore, the inverse model of the industrial robot arm using the adaptive enhanced neural model performs outstanding results.

  11. Implementation of neural network for color properties of polycarbonates

    Science.gov (United States)

    Saeed, U.; Ahmad, S.; Alsadi, J.; Ross, D.; Rizvi, G.

    2014-05-01

    In present paper, the applicability of artificial neural networks (ANN) is investigated for color properties of plastics. The neural networks toolbox of Matlab 6.5 is used to develop and test the ANN model on a personal computer. An optimal design is completed for 10, 12, 14,16,18 & 20 hidden neurons on single hidden layer with five different algorithms: batch gradient descent (GD), batch variable learning rate (GDX), resilient back-propagation (RP), scaled conjugate gradient (SCG), levenberg-marquardt (LM) in the feed forward back-propagation neural network model. The training data for ANN is obtained from experimental measurements. There were twenty two inputs including resins, additives & pigments while three tristimulus color values L*, a* and b* were used as output layer. Statistical analysis in terms of Root-Mean-Squared (RMS), absolute fraction of variance (R squared), as well as mean square error is used to investigate the performance of ANN. LM algorithm with fourteen neurons on hidden layer in Feed Forward Back-Propagation of ANN model has shown best result in the present study. The degree of accuracy of the ANN model in reduction of errors is proven acceptable in all statistical analysis and shown in results. However, it was concluded that ANN provides a feasible method in error reduction in specific color tristimulus values.

  12. Financial Time Series Prediction Using Elman Recurrent Random Neural Networks.

    Science.gov (United States)

    Wang, Jie; Wang, Jun; Fang, Wen; Niu, Hongli

    2016-01-01

    In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods and taking the model compared with different models such as the backpropagation neural network (BPNN), the stochastic time effective neural network (STNN), and the Elman recurrent neural network (ERNN), the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices.

  13. Application of Artificial Neural Network to Predict Colour Change, Shrinkage and Texture of Osmotically Dehydrated Pumpkin

    Science.gov (United States)

    Tang, S. Y.; Lee, J. S.; Loh, S. P.; Tham, H. J.

    2017-06-01

    The objectives of this study were to use Artificial Neural Network (ANN) to predict colour change, shrinkage and texture of osmotically dehydrated pumpkin slices. The effects of process variables such as concentration of osmotic solution, immersion temperature and immersion time on the above mentioned physical properties were studied. The colour of the samples was measured using a colorimeter and the net colour difference changes, ΔE were determined. The texture was measured in terms of hardness by using a Texture Analyzer. As for the shrinkage, displacement of volume method was applied and percentage of shrinkage was obtained in terms of volume changes. A feed-forward backpropagation network with sigmoidal function was developed and best network configuration was chosen based on the highest correlation coefficients between the experimental values versus predicted values. As a comparison, Response Surface Methodology (RSM) statistical analysis was also employed. The performances of both RSM and ANN modelling were evaluated based on absolute average deviation (AAD), correlation of determination (R2) and root mean square error (RMSE). The results showed that ANN has higher prediction capability as compared to RSM. The relative importance of the variables on the physical properties were also determined by using connection weight approach in ANN. It was found that solution concentration showed the highest influence on all three physical properties.

  14. The quadriceps muscle of knee joint modelling Using Hybrid Particle Swarm Optimization-Neural Network (PSO-NN)

    Science.gov (United States)

    Kamaruddin, Saadi Bin Ahmad; Marponga Tolos, Siti; Hee, Pah Chin; Ghani, Nor Azura Md; Ramli, Norazan Mohamed; Nasir, Noorhamizah Binti Mohamed; Ksm Kader, Babul Salam Bin; Saiful Huq, Mohammad

    2017-03-01

    Neural framework has for quite a while been known for its ability to handle a complex nonlinear system without a logical model and can learn refined nonlinear associations gives. Theoretically, the most surely understood computation to set up the framework is the backpropagation (BP) count which relies on upon the minimization of the mean square error (MSE). However, this algorithm is not totally efficient in the presence of outliers which usually exist in dynamic data. This paper exhibits the modelling of quadriceps muscle model by utilizing counterfeit smart procedures named consolidated backpropagation neural network nonlinear autoregressive (BPNN-NAR) and backpropagation neural network nonlinear autoregressive moving average (BPNN-NARMA) models in view of utilitarian electrical incitement (FES). We adapted particle swarm optimization (PSO) approach to enhance the performance of backpropagation algorithm. In this research, a progression of tests utilizing FES was led. The information that is gotten is utilized to build up the quadriceps muscle model. 934 preparing information, 200 testing and 200 approval information set are utilized as a part of the improvement of muscle model. It was found that both BPNN-NAR and BPNN-NARMA performed well in modelling this type of data. As a conclusion, the neural network time series models performed reasonably efficient for non-linear modelling such as active properties of the quadriceps muscle with one input, namely output namely muscle force.

  15. Curriculum Assessment Using Artificial Neural Network and Support Vector Machine Modeling Approaches: A Case Study. IR Applications. Volume 29

    Science.gov (United States)

    Chen, Chau-Kuang

    2010-01-01

    Artificial Neural Network (ANN) and Support Vector Machine (SVM) approaches have been on the cutting edge of science and technology for pattern recognition and data classification. In the ANN model, classification accuracy can be achieved by using the feed-forward of inputs, back-propagation of errors, and the adjustment of connection weights. In…

  16. Compressing Convolutional Neural Networks

    OpenAIRE

    Chen, Wenlin; Wilson, James T.; Tyree, Stephen; Weinberger, Kilian Q.; Chen, Yixin

    2015-01-01

    Convolutional neural networks (CNN) are increasingly used in many areas of computer vision. They are particularly attractive because of their ability to "absorb" great quantities of labeled data through millions of parameters. However, as model sizes increase, so do the storage and memory requirements of the classifiers. We present a novel network architecture, Frequency-Sensitive Hashed Nets (FreshNets), which exploits inherent redundancy in both convolutional layers and fully-connected laye...

  17. Learning feed-forward multi-nets

    NARCIS (Netherlands)

    Venema, RS; Spaanenburg, L; Kurkova,; Steele, NC; Neruda, R; Karny, M

    2001-01-01

    Multi-nets promise an improved performance over monolithic neural networks by virtue of their distributed implementation. This potential lacks popularity as, without precautions, the learning rate has to drop considerably to eliminate the occurrence of unlearning. This paper introduces extensions of

  18. An analysis of various elastic net algorithms

    NARCIS (Netherlands)

    J.H. van den Berg (Jan); J.H. Geselschap

    1995-01-01

    textabstractThe Elastic Net Algorithm (ENA) for solving the Traveling Salesman Problem is analyzed applying statistical mechanics. Using some general properties of the free energy function of stochastic Hopfield Neural Networks, we argue why Simic's derivation of the ENA from a Hopfield network

  19. Computationally Efficient Neural Network Intrusion Security Awareness

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Milos Manic

    2009-08-01

    An enhanced version of an algorithm to provide anomaly based intrusion detection alerts for cyber security state awareness is detailed. A unique aspect is the training of an error back-propagation neural network with intrusion detection rule features to provide a recognition basis. Network packet details are subsequently provided to the trained network to produce a classification. This leverages rule knowledge sets to produce classifications for anomaly based systems. Several test cases executed on ICMP protocol revealed a 60% identification rate of true positives. This rate matched the previous work, but 70% less memory was used and the run time was reduced to less than 1 second from 37 seconds.

  20. Deep learning in neural networks: an overview.

    Science.gov (United States)

    Schmidhuber, Jürgen

    2015-01-01

    In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.

  1. Reconstruction of periodic signals using neural networks

    Directory of Open Access Journals (Sweden)

    José Danilo Rairán Antolines

    2014-01-01

    Full Text Available In this paper, we reconstruct a periodic signal by using two neural networks. The first network is trained to approximate the period of a signal, and the second network estimates the corresponding coefficients of the signal's Fourier expansion. The reconstruction strategy consists in minimizing the mean-square error via backpro-pagation algorithms over a single neuron with a sine transfer function. Additionally, this paper presents mathematical proof about the quality of the approximation as well as a first modification of the algorithm, which requires less data to reach the same estimation; thus making the algorithm suitable for real-time implementations.

  2. Computationally Efficient Neural Network Intrusion Security Awareness

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Milos Manic

    2009-08-01

    An enhanced version of an algorithm to provide anomaly based intrusion detection alerts for cyber security state awareness is detailed. A unique aspect is the training of an error back-propagation neural network with intrusion detection rule features to provide a recognition basis. Network packet details are subsequently provided to the trained network to produce a classification. This leverages rule knowledge sets to produce classifications for anomaly based systems. Several test cases executed on ICMP protocol revealed a 60% identification rate of true positives. This rate matched the previous work, but 70% less memory was used and the run time was reduced to less than 1 second from 37 seconds.

  3. Do Deep Nets Really Need to be Deep?

    OpenAIRE

    Ba, Lei Jimmy; Caruana, Rich

    2013-01-01

    Currently, deep neural networks are the state of the art on problems such as speech recognition and computer vision. In this extended abstract, we show that shallow feed-forward networks can learn the complex functions previously learned by deep nets and achieve accuracies previously only achievable with deep models. Moreover, in some cases the shallow neural nets can learn these deep functions using a total number of parameters similar to the original deep model. We evaluate our method on th...

  4. File access prediction using neural networks.

    Science.gov (United States)

    Patra, Prashanta Kumar; Sahu, Muktikanta; Mohapatra, Subasish; Samantray, Ronak Kumar

    2010-06-01

    One of the most vexing issues in design of a high-speed computer is the wide gap of access times between the memory and the disk. To solve this problem, static file access predictors have been used. In this paper, we propose dynamic file access predictors using neural networks to significantly improve upon the accuracy, success-per-reference, and effective-success-rate-per-reference by using neural-network-based file access predictor with proper tuning. In particular, we verified that the incorrect prediction has been reduced from 53.11% to 43.63% for the proposed neural network prediction method with a standard configuration than the recent popularity (RP) method. With manual tuning for each trace, we are able to improve upon the misprediction rate and effective-success-rate-per-reference using a standard configuration. Simulations on distributed file system (DFS) traces reveal that exact fit radial basis function (RBF) gives better prediction in high end system whereas multilayer perceptron (MLP) trained with Levenberg-Marquardt (LM) backpropagation outperforms in system having good computational capability. Probabilistic and competitive predictors are the most suitable for work stations having limited resources to deal with and the former predictor is more efficient than the latter for servers having maximum system calls. Finally, we conclude that MLP with LM backpropagation algorithm has better success rate of file prediction than those of simple perceptron, last successor, stable successor, and best k out of m predictors.

  5. Application of Partially Connected Neural Network

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper focuses mainly on application of Partially Connected Backpropagation Neural Network (PCBP) instead of typical Fully Connected Neural Network (FCBP). The initial neural network is fully connected, after training with sample data using cross-entropy as error function, a clustering method is employed to cluster weights between inputs to hidden layer and from hidden to output layer, and connections that are relatively unnecessary are deleted, thus the initial network becomes a PCBP network.Then PCBP can be used in prediction or data mining by training PCBP with data that comes from database. At the end of this paper, several experiments are conducted to illustrate the effects of PCBP using Iris data set.

  6. Classification of radar clutter using neural networks.

    Science.gov (United States)

    Haykin, S; Deng, C

    1991-01-01

    A classifier that incorporates both preprocessing and postprocessing procedures as well as a multilayer feedforward network (based on the back-propagation algorithm) in its design to distinguish between several major classes of radar returns including weather, birds, and aircraft is described. The classifier achieves an average classification accuracy of 89% on generalization for data collected during a single scan of the radar antenna. The procedures of feature selection for neural network training, the classifier design considerations, the learning algorithm development, the implementation, and the experimental results of the neural clutter classifier, which is simulated on a Warp systolic computer, are discussed. A comparative evaluation of the multilayer neural network with a traditional Bayes classifier is presented.

  7. Ca2+ imaging of mouse neocortical interneurone dendrites: Ia-type K+ channels control action potential backpropagation

    Science.gov (United States)

    Goldberg, Jesse H; Tamas, Gabor; Yuste, Rafael

    2003-01-01

    GABAergic interneurones are essential in cortical processing, yet the functional properties of their dendrites are still poorly understood. In this first study, we combined two-photon calcium imaging with whole-cell recording and anatomical reconstructions to examine the calcium dynamics during action potential (AP) backpropagation in three types of V1 supragranular interneurones: parvalbumin-positive fast spikers (FS), calretinin-positive irregular spikers (IS), and adapting cells (AD). Somatically generated APs actively backpropagated into the dendritic tree and evoked instantaneous calcium accumulations. Although voltage-gated calcium channels were expressed throughout the dendritic arbor, calcium signals during backpropagation of both single APs and AP trains were restricted to proximal dendrites. This spatial control of AP backpropagation was mediated by Ia-type potassium currents and could be mitigated by by previous synaptic activity. Further, we observed supralinear summation of calcium signals in synaptically activated dendritic compartments. Together, these findings indicate that in interneurons, dendritic AP propagation is synaptically regulated. We propose that interneurones have a perisomatic and a distal dendritic functional compartment, with different integrative functions. PMID:12844506

  8. Compressor performance prediction using a novel feed-forward neural network based on Gaussian kernel function

    Directory of Open Access Journals (Sweden)

    Jingzhou Fei

    2016-01-01

    Full Text Available In this article, a novel artificial neural network integrating feed-forward back-propagation neural network with Gaussian kernel function is proposed for the prediction of compressor performance map. To demonstrate the potential capability of the proposed approach for the typical interpolated and extrapolated predictions, other two classical data-driven modeling methods including feed-forward back-propagation neural network and support vector machine are compared. An assessment is performed and discussed on the sensitivity of different models to the number of training samples (48 training samples, 32 training samples, and 18 training samples. All the results indicate that the proposed neural network in this article has superior prediction performance to the existing feed-forward back-propagation neural network and support vector machine, especially for the extrapolation with small samples. Furthermore, this study can be utilized in refining the existing performance-based modeling for improved simulation analysis, condition monitoring, and fault diagnosis of gas turbine compressor.

  9. Application of neural networks for permanent magnet synchronous motor direct torque control

    Institute of Scientific and Technical Information of China (English)

    Zhang Chunmei; Liu Heping; Chen Shujin; Wang Fangjun

    2008-01-01

    Neural networks require a lot of training to understand the model of a plant or a process. Issues such as learning speed, stability, and weight convergence remain as areas of research and comparison of many training algorithms. The application of neural networks to control interior permanent magnet synchronous motor using direct torque control (DTC) is discussed. A neural network is used to emulate the state selector of the DTC. The neural networks used are the back-propagation and radial basis function. To reduce the training patterns and increase the execution speed of the training process, the inputs of switching table are converted to digital signals, i.e., one bit represent the flux error, one bit the torque error, and three bits the region of stator flux. Computer simulations of the motor and neural-network system using the two approaches are presented and compared. Discussions about the back-propagation and radial basis function as the most promising training techniques are presented, giving its advantages and disadvantages. The system using back-propagation and radial basis function networks controller has quick parallel speed and high torque response.

  10. Application of wavelet transformation and adaptive neighborhood based modified backpropagation (ANMBP) for classification of brain cancer

    Science.gov (United States)

    Werdiningsih, Indah; Zaman, Badrus; Nuqoba, Barry

    2017-08-01

    This paper presents classification of brain cancer using wavelet transformation and Adaptive Neighborhood Based Modified Backpropagation (ANMBP). Three stages of the processes, namely features extraction, features reduction, and classification process. Wavelet transformation is used for feature extraction and ANMBP is used for classification process. The result of features extraction is feature vectors. Features reduction used 100 energy values per feature and 10 energy values per feature. Classifications of brain cancer are normal, alzheimer, glioma, and carcinoma. Based on simulation results, 10 energy values per feature can be used to classify brain cancer correctly. The correct classification rate of proposed system is 95 %. This research demonstrated that wavelet transformation can be used for features extraction and ANMBP can be used for classification of brain cancer.

  11. Nonlinear inverse modeling of sensor based on back-propagation fuzzy logical system

    Institute of Scientific and Technical Information of China (English)

    Li Jun; Liu Junhua

    2007-01-01

    Objective To correct the nonlinear error of sensor output, a new approach to sensor inverse modeling based on Back-Propagation Fuzzy Logical System (BP FS) is presented. Methods The BP FS is a computationally efficient nonlinear universal approximator, which is capable of implementing complex nonlinear mapping from its input pattern space to the output with fast convergence speed. Results The neuro-fuzzy hybrid system, i.e. BP FS, is then applied to construct nonlinear inverse model of pressure sensor. The experimental results show that the proposed inverse modeling method automatically compensates the associated nonlinear error in pressure estimation, and thus the performance of pressure sensor is significantly improved. Conclusion The proposed method can be widely used in nonlinearity correction of various kinds of sensors to compensate the effects of nonlinearity and temperature on sensor output.

  12. Prediction of the breakdown voltage of transformer oil based on a backpropagation network

    Energy Technology Data Exchange (ETDEWEB)

    Cao Shun' an; Li Rui; Sheng Kai [Wuhan Univ., Hubei Province (China). Dept. of Water Quality Engineering

    2008-03-15

    Prediction of the breakdown voltage of transformer oil facilitates the early fault diagnosis of transformers, and provides a scientific basis for the prevention of faults in transformer oil. In this paper, based on the correlation between performance parameters of transformer oil, along with the excellent fault-tolerant ability, prominent non-linear approximation capability and self-learning capacity of backpropagation (BP) networks, a BP network with a BP algorithm and a BP network with an improved BP algorithm are developed to simulate the correlation between breakdown voltage and four relevant parameters, using the monitoring data of transformer oil. The results show that the latter algorithm gives more accurate predicted values, which proves to be of high application value. (orig.)

  13. On-line learning algorithms for locally recurrent neural networks.

    Science.gov (United States)

    Campolucci, P; Uncini, A; Piazza, F; Rao, B D

    1999-01-01

    This paper focuses on on-line learning procedures for locally recurrent neural networks with emphasis on multilayer perceptron (MLP) with infinite impulse response (IIR) synapses and its variations which include generalized output and activation feedback multilayer networks (MLN's). We propose a new gradient-based procedure called recursive backpropagation (RBP) whose on-line version, causal recursive backpropagation (CRBP), presents some advantages with respect to the other on-line training methods. The new CRBP algorithm includes as particular cases backpropagation (BP), temporal backpropagation (TBP), backpropagation for sequences (BPS), Back-Tsoi algorithm among others, thereby providing a unifying view on gradient calculation techniques for recurrent networks with local feedback. The only learning method that has been proposed for locally recurrent networks with no architectural restriction is the one by Back and Tsoi. The proposed algorithm has better stability and higher speed of convergence with respect to the Back-Tsoi algorithm, which is supported by the theoretical development and confirmed by simulations. The computational complexity of the CRBP is comparable with that of the Back-Tsoi algorithm, e.g., less that a factor of 1.5 for usual architectures and parameter settings. The superior performance of the new algorithm, however, easily justifies this small increase in computational burden. In addition, the general paradigms of truncated BPTT and RTRL are applied to networks with local feedback and compared with the new CRBP method. The simulations show that CRBP exhibits similar performances and the detailed analysis of complexity reveals that CRBP is much simpler and easier to implement, e.g., CRBP is local in space and in time while RTRL is not local in space.

  14. NEURAL NETWORK FOR THE QUANTUM CORRECTION OF NANOSCALE SOI MOSFETS

    Institute of Scientific and Technical Information of China (English)

    Li Zunchao; Jiang Yaolin; Zhang Lili

    2006-01-01

    The quantum effect of carrier distribution in nanoscale SOI MOSFETs is evident and must be taken into consideration in device modeling and simulation. In this paper, a backpropagation neural network was applied to predict the quantum density of carriers from the classical density, and the influence of the network structure on training speed and accuracy was studied. It was concluded that a carefully trained neural network with two hidden layers using the Levenberg-Marquardt learning algorithm could predict the carrier quantum density of SOI MOSFETs in very good agreement with Schrdinger Poisson equations.

  15. Nonlinear wind prediction using a fuzzy modular temporal neural network

    Energy Technology Data Exchange (ETDEWEB)

    Wu, G.G. [GeoControl Systems, Inc., Houston, TX (United States); Zhijie Dou [West Texas A& M Univ., Canyon, TX (United States)

    1995-12-31

    This paper introduces a new approach utilizing a fuzzy classifier and a modular temporal neural network to predict wind speed and direction for advanced wind turbine control systems. The fuzzy classifier estimates wind patterns and then assigns weights accordingly to each module of the temporal neural network. A temporal network with the finite-duration impulse response and multiple-layer structure is used to represent the underlying dynamics of physical phenomena. Using previous wind measurements and information given by the classifier, the modular network trained by a standard back-propagation algorithm predicts wind speed and direction effectively. Meanwhile, the feedback from the network helps auto-tuning the classifier.

  16. Nonlinear system identification based on internal recurrent neural networks.

    Science.gov (United States)

    Puscasu, Gheorghe; Codres, Bogdan; Stancu, Alexandru; Murariu, Gabriel

    2009-04-01

    A novel approach for nonlinear complex system identification based on internal recurrent neural networks (IRNN) is proposed in this paper. The computational complexity of neural identification can be greatly reduced if the whole system is decomposed into several subsystems. This approach employs internal state estimation when no measurements coming from the sensors are available for the system states. A modified backpropagation algorithm is introduced in order to train the IRNN for nonlinear system identification. The performance of the proposed design approach is proven on a car simulator case study.

  17. Comparison of Neural Networks, Evolutionary Techniques and Thermodynamic Group Contribution Methods for the Prediction of Heats of Vaporization

    OpenAIRE

    Geyer, Hannes; Mandischer, Martin; Ulbig, Peter

    2001-01-01

    In this paper we report results for the prediction of thermodynamic properties based on neural networks, evolutionary algorithms and a combination of them. We compare backpropagation trained networks and evolution strategy trained networks with two physical models. Experimental data for the enthalpy of vaporization were taken from the literature in our investigation. The input information for both neural network and physical models consists of parameters describing the molecular structure of ...

  18. Speech Recognizing for Presentation Tool Navigation Using Back Propagation Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Hasanah Nur

    2016-01-01

    Full Text Available Backpropagation Artificial Neural Network (ANN is a well known branch of Artificial Intelligence and has been proven to solve various problems of complex speech recognizing in health [1], [2], education [4] and engineering [3]. Today, many kinds of presentation tools are used by society. One popular example is MsPowerpoint. The transition process between slides in presentation tools will be more easily done through speech, the sound emitted directly by the user during the presentation. This study uses research and development to create a simulation using Backpropagation ANN for speech recognition from number one to five to navigate slides of the presentation tool. The Backpropagation ANN consists of one input layer, one hidden layer with 100 neurons and one output layer. The simulation is built by using a Neural Network Toolbox Matlab R2014a. Speech samples were taken from five different people with wav format. This research shows that the Backpropagation ANN can be used as navigation through speech with 96% accuracy rate based on the network training result. Thesimulation can produce 63% accuracy based on 100 new speech samples from various sources.

  19. Handwritten Javanese Character Recognition Using Several Artificial Neural Network Methods

    Directory of Open Access Journals (Sweden)

    Gregorius Satia Budhi

    2015-07-01

    Full Text Available Javanese characters are traditional characters that are used to write the Javanese language. The Javanese language is a language used by many people on the island of Java, Indonesia. The use of Javanese characters is diminishing more and more because of the difficulty of studying the Javanese characters themselves. The Javanese character set consists of basic characters, numbers, complementary characters, and so on. In this research we have developed a system to recognize Javanese characters. Input for the system is a digital image containing several handwritten Javanese characters. Preprocessing and segmentation are performed on the input image to get each character. For each character, feature extraction is done using the ICZ-ZCZ method. The output from feature extraction will become input for an artificial neural network. We used several artificial neural networks, namely a bidirectional associative memory network, a counterpropagation network, an evolutionary network, a backpropagation network, and a backpropagation network combined with chi2. From the experimental results it can be seen that the combination of chi2 and backpropagation achieved better recognition accuracy than the other methods.

  20. A comparative study for the concrete compressive strength estimation using neural network and neuro-fuzzy modelling approaches

    Science.gov (United States)

    Bilgehan, Mahmut

    2011-03-01

    In this paper, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN) model have been successfully used for the evaluation of relationships between concrete compressive strength and ultrasonic pulse velocity (UPV) values using the experimental data obtained from many cores taken from different reinforced concrete structures having different ages and unknown ratios of concrete mixtures. A comparative study is made using the neural nets and neuro-fuzzy (NF) techniques. Statistic measures were used to evaluate the performance of the models. Comparing of the results, it is found that the proposed ANFIS architecture with Gaussian membership function is found to perform better than the multilayer feed-forward ANN learning by backpropagation algorithm. The final results show that especially the ANFIS modelling may constitute an efficient tool for prediction of the concrete compressive strength. Architectures of the ANFIS and neural network established in the current study perform sufficiently in the estimation of concrete compressive strength, and particularly ANFIS model estimates closely follow the desired values. Both ANFIS and ANN techniques can be used in conditions where too many structures are to be examined in a restricted time. The presented approaches enable to practically find concrete strengths in the existing reinforced concrete structures, whose records of concrete mixture ratios are not available or present. Thus, researchers can easily evaluate the compressive strength of concrete specimens using UPV and density values. These methods also contribute to a remarkable reduction in the computational time without any significant loss of accuracy. A comparison of the results clearly shows that particularly the NF approach can be used effectively to predict the compressive strength of concrete using UPV and density values. In addition, these model architectures can be used as a nondestructive procedure for health monitoring of

  1. NA-NET numerical analysis net

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J. (Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science Oak Ridge National Lab., TN (United States)); Rosener, B. (Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science)

    1991-12-01

    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host na-net.ornl.gov'' at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message send index'' to netlib{at}ornl.gov. The following report describes the current NA-NET system from both a user's perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  2. NA-NET numerical analysis net

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J. [Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science]|[Oak Ridge National Lab., TN (United States); Rosener, B. [Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science

    1991-12-01

    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host ``na-net.ornl.gov`` at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message ``send index`` to netlib{at}ornl.gov. The following report describes the current NA-NET system from both a user`s perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  3. Feasibility of estimating isokinetic knee torque using a neural network model.

    Science.gov (United States)

    Hahn, Michael E

    2007-01-01

    Many studies have investigated the relationships between electromyography (EMG) and torque production. A few investigators have used adjusted learning algorithms and feed-forward artificial neural networks (ANNs) to estimate joint torque in the elbow. This study sought to estimate net isokinetic knee torque using ANN models. Isokinetic knee extensor and flexor torque data were measured simultaneously with agonist and antagonist EMG during concentric and eccentric contractions at joint velocities of 30 degrees /s and 60 degrees /s. Age, gender, height, body mass, agonist EMG, antagonist EMG, joint position and joint velocity were entered as predictive variables of net torque. A three-layer ANN model was developed and trained using an adjusted back-propagation algorithm. Accuracy results were compared against those of forward stepwise regression models. Stepwise regression models included body mass, body height and joint position as the most influential predictors, followed by agonist EMG for concentric and eccentric contractions. Estimation of eccentric torque included antagonist EMG following the agonist activation. ANN models resulted in more accurate torque estimation (R=0.96), compared to the stepwise regression models (R=0.71). ANN model accuracy increased greatly when the number of hidden units increased from 5 to 10, continuing to increase gradually with additional hidden units. The average number of training epochs necessary for solution convergence and the relative accuracy of the model indicate a strong ability for the ANN model to generalize these estimations to a broader sample. The ANN model appears to be a feasible technique for estimating joint torque in the knee.

  4. Analysis of the experimental positron lifetime spectra by neural networks

    Directory of Open Access Journals (Sweden)

    Avdić Senada

    2003-01-01

    Full Text Available This paper deals with the analysis of experimental positron lifetime spectra in polymer materials by using various algorithms of neural networks. A method based on the use of artificial neural networks for unfolding the mean lifetime and intensity of the spectral components of simulated positron lifetime spectra was previously suggested and tested on simulated data [Pžzsitetal, Applied Surface Science, 149 (1998, 97]. In this work, the applicability of the method to the analysis of experimental positron spectra has been verified in the case of spectra from polymer materials with three components. It has been demonstrated that the backpropagation neural network can determine the spectral parameters with a high accuracy and perform the decomposi-tion of lifetimes which differ by 10% or more. The backpropagation network has not been suitable for the identification of both the parameters and the number of spectral components. Therefore, a separate artificial neural network module has been designed to solve the classification problem. Module types based on self-organizing map and learning vector quantization algorithms have been tested. The learning vector quantization algorithm was found to have better performance and reliability. A complete artificial neural network analysis tool of positron lifetime spectra has been constructed to include a spectra classification module and parameter evaluation modules for spectra with a different number of components. In this way, both flexibility and high resolution can be achieved.

  5. Extraction of Symbolic Rules from Artificial Neural Networks

    CERN Document Server

    Kamruzzaman, S M

    2010-01-01

    Although backpropagation ANNs generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions cannot be explained as those of decision trees. In many applications, it is desirable to extract knowledge from trained ANNs for the users to gain a better understanding of how the networks solve the problems. A new rule extraction algorithm, called rule extraction from artificial neural networks (REANN) is proposed and implemented to extract symbolic rules from ANNs. A standard three-layer feedforward ANN is the basis of the algorithm. A four-phase training algorithm is proposed for backpropagation learning. Explicitness of the extracted rules is supported by comparing them to the symbolic rules generated by other methods. Extracted rules are comparable with other methods in terms of number of rules, average number of conditions for a rule, and predictive accuracy. Extensive experimental studies on several benchmarks classification ...

  6. Handwritten Farsi Character Recognition using Artificial Neural Network

    CERN Document Server

    Ahangar, Reza Gharoie

    2009-01-01

    Neural Networks are being used for character recognition from last many years but most of the work was confined to English character recognition. Till date, a very little work has been reported for Handwritten Farsi Character recognition. In this paper, we have made an attempt to recognize handwritten Farsi characters by using a multilayer perceptron with one hidden layer. The error backpropagation algorithm has been used to train the MLP network. In addition, an analysis has been carried out to determine the number of hidden nodes to achieve high performance of backpropagation network in the recognition of handwritten Farsi characters. The system has been trained using several different forms of handwriting provided by both male and female participants of different age groups. Finally, this rigorous training results an automatic HCR system using MLP network. In this work, the experiments were carried out on two hundred fifty samples of five writers. The results showed that the MLP networks trained by the err...

  7. A Neural-Network-Based Semi-Automated Geospatial Classification Tool

    Science.gov (United States)

    Hale, R. G.; Herzfeld, U. C.

    2014-12-01

    North America's largest glacier system, the Bering Bagley Glacier System (BBGS) in Alaska, surged in 2011-2013, as shown by rapid mass transfer, elevation change, and heavy crevassing. Little is known about the physics controlling surge glaciers' semi-cyclic patterns; therefore, it is crucial to collect and analyze as much data as possible so that predictive models can be made. In addition, physical signs frozen in ice in the form of crevasses may help serve as a warning for future surges. The BBGS surge provided an opportunity to develop an automated classification tool for crevasse classification based on imagery collected from small aircraft. The classification allows one to link image classification to geophysical processes associated with ice deformation. The tool uses an approach that employs geostatistical functions and a feed-forward perceptron with error back-propagation. The connectionist-geostatistical approach uses directional experimental (discrete) variograms to parameterize images into a form that the Neural Network (NN) can recognize. In an application to preform analysis on airborne video graphic data from the surge of the BBGS, an NN was able to distinguish 18 different crevasse classes with 95 percent or higher accuracy, for over 3,000 images. Recognizing that each surge wave results in different crevasse types and that environmental conditions affect the appearance in imagery, we designed the tool's semi-automated pre-training algorithm to be adaptable. The tool can be optimized to specific settings and variables of image analysis: (airborne and satellite imagery, different camera types, observation altitude, number and types of classes, and resolution). The generalization of the classification tool brings three important advantages: (1) multiple types of problems in geophysics can be studied, (2) the training process is sufficiently formalized to allow non-experts in neural nets to perform the training process, and (3) the time required to

  8. The design and analysis of effective and efficient neural networks and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Makovoz, W.V.

    1989-01-01

    A complicated design issue of efficient Multilayer neural networks is addressed, and the perception and similar neural networks are examined. It shows that a three-layer perceptron neural network with specially designed learning algorithms provides an efficient framework to solve an exclusive OR problem using only n {minus} 1 processing elements in the second layer. Two efficient rapidly converging algorithms for any symmetric Boolean function were developed using only n {minus} 1 processing elements in the perceptron neural network and int(n/2) processing elements in the Adaline and perceptron neural network with the stepfunction transfer function. Similar results were obtained for the quasi-symmetric Boolean functions using a linear number of processing elements in perceptron neural networks, Adaline's, and perceptron neural networks with the stepfunction transfer functions. Generalized Boolean functions are discussed and two rapidly converging algorithms are shown for perceptron neural networks, Adaline's, and perceptron neural network with stepfunction transfer function. Many other interesting perceptron neural networks are discussed in the dissertation. Perceptron neural networks are applied to find the largest value of the n inputs. A new perceptron neural network is designed to find the largest value of the n inputs with the minimum number of inputs and the minimum number of layers. New perceptron neural networks are developed to sort n inputs. New, effective and efficient back-propagation Neural networks are designed to sort n inputs. The Sigmoid transfer function was discussed and a generalized Sigmoid function to improve Neural network performance was developed. A modified back-propagation learning algorithm was developed that builds any n input symmetric Boolean function using only int(n/2) processing elements in the second layer.

  9. Net Ecosystem Carbon Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Net Ecosystem Carbon Flux is defined as the year-over-year change in Total Ecosystem Carbon Stock, or the net rate of carbon exchange between an ecosystem and the...

  10. Neural network method for damage identification of prestressed concrete beams%预应力混凝土梁损伤识别的神经网络方法研究

    Institute of Scientific and Technical Information of China (English)

    刘君; 周朝阳; 陈振富

    2016-01-01

    In this paper ,through simulating modal analysis of damage beams with ABAQUS ,it is ex-pounded that both natural frequency change ratio and modal assurance criterion are of great signifi-cance for damage identification .Backpropagation (BP) neural network and probabilistic neural net-work(PNN) for damage identification based on these modal parameters are proposed .Through the ex-perimental analysis of 11 prestressed concrete beams under multistage damage status and the compari-son between the proposed method and the theoretical method based on natural frequency change ratio and modal assurance criterion ,it is show n that the theoretical method based on these damage indexes is hardly practical in engineering application ,while the BP and PNN neural networks can be effectively applied to identifying damages with high precision .The study results can offer a new idea for damage identification researches .%文章通过有限元分析阐明了固有频率变化率和模态置信度在损伤识别研究中的重要意义,提出了以其为损伤指标的反向传播(backpropagation,BP)神经网络和概率神经网络(probabilistic neural network,PNN)的损伤状态识别方法.为验证所提方法的实用性,对11根多级损伤状态的真实预应力混凝土梁进行识别,并与基于固有频率变化率和模态置信度的普通理论方法进行比较.研究表明,普通理论方法实用性较差,很难有效识别各梁损伤状态;而BP神经网络和PNN识别方法均能有效应用于实际中,且具有很高的损伤识别精度,为结构损伤识别方法研究提供了新思路.

  11. Multi-agent reinforcement learning using modular neural network Q-learning algorithms

    Institute of Scientific and Technical Information of China (English)

    YANG Yin-xian; FANG Kai

    2005-01-01

    Reinforcement learning is an excellent approach which is used in artificial intelligence,automatic control, etc. However, ordinary reinforcement learning algorithm, such as Q-learning with lookup table cannot cope with extremely complex and dynamic environment due to the huge state space. To reduce the state space, modular neural network Q-learning algorithm is proposed, which combines Q-learning algorithm with neural network and module method. Forward feedback neural network, Elman neural network and radius-basis neural network are separately employed to construct such algorithm. It is revealed that Elman neural network Q-learning algorithm has the best performance under the condition that the same neural network training method, i.e. gradient descent error back-propagation algorithm is applied.

  12. A SIMULATION OF THE PENICILLIN G PRODUCTION BIOPROCESS APPLYING NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    A.J.G. da Cruz

    1997-12-01

    Full Text Available The production of penicillin G by Penicillium chrysogenum IFO 8644 was simulated employing a feedforward neural network with three layers. The neural network training procedure used an algorithm combining two procedures: random search and backpropagation. The results of this approach were very promising, and it was observed that the neural network was able to accurately describe the nonlinear behavior of the process. Besides, the results showed that this technique can be successfully applied to control process algorithms due to its long processing time and its flexibility in the incorporation of new data

  13. Detection of Denial of Service Attacks against Domain Name System Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Mohd Fadlee A. Rasid

    2009-11-01

    Full Text Available In this paper we introduce an intrusion detection system for Denial of Service (DoS attacks against Domain Name System (DNS. Our system architecture consists of two most important parts: a statistical preprocessor and a neural network classifier. The preprocessor extracts required statistical features in a short-time frame from traffic received by the target name server. We compared three different neural networks for detecting and classifying different types of DoS attacks. The proposed system is evaluated in a simulated network and showed that the best performed neural network is a feed-forward backpropagation with an accuracy of 99%.

  14. A Worsted Yarn Virtual Production System Based on BP Neural Network

    Institute of Scientific and Technical Information of China (English)

    董奎勇; 于伟东

    2004-01-01

    Back-Propagation (BP) neural network and its modified algorithm are introduced. Two series of BP neural network models have been established to predict yarn properties and to deduce wool fiber qualities. The results from these two series of models have been compared with the measured values respectively, proving that the accuracy in both the prediction model and the deduction model is high. The experimental results and the corresponding analysis show that the BP neural network is an efficient technique for the quality prediction and has wide prospect in the application of worsted yarn production system.

  15. Professional Enterprise NET

    CERN Document Server

    Arking, Jon

    2010-01-01

    Comprehensive coverage to help experienced .NET developers create flexible, extensible enterprise application code If you're an experienced Microsoft .NET developer, you'll find in this book a road map to the latest enterprise development methodologies. It covers the tools you will use in addition to Visual Studio, including Spring.NET and nUnit, and applies to development with ASP.NET, C#, VB, Office (VBA), and database. You will find comprehensive coverage of the tools and practices that professional .NET developers need to master in order to build enterprise more flexible, testable, and ext

  16. Annotating Coloured Petri Nets

    DEFF Research Database (Denmark)

    Lindstrøm, Bo; Wells, Lisa Marie

    2002-01-01

    Coloured Petri nets (CP-nets) can be used for several fundamentally different purposes like functional analysis, performance analysis, and visualisation. To be able to use the corresponding tool extensions and libraries it is sometimes necessary to include extra auxiliary information in the CP-ne...... a certain use of the CP-net. We define the semantics of annotations by describing a translation from a CP-net and the corresponding annotation layers to another CP-net where the annotations are an integrated part of the CP-net....... a method which makes it possible to associate auxiliary information, called annotations, with tokens without modifying the colour sets of the CP-net. Annotations are pieces of information that are not essential for determining the behaviour of the system being modelled, but are rather added to support...

  17. A hybrid Evolutionary Functional Link Artificial Neural Network for Data mining and Classification

    Directory of Open Access Journals (Sweden)

    Faissal MILI

    2012-08-01

    Full Text Available This paper presents a specific structure of neural network as the functional link artificial neural network (FLANN. This technique has been employed for classification tasks of data mining. In fact, there are a few studies that used this tool for solving classification problems. In this present research, we propose a hybrid FLANN (HFLANN model, where the optimization process is performed using 3 known population based techniques such as genetic algorithms, particle swarm and differential evolution. This model will be empirically compared to FLANN based back-propagation algorithm and to others classifiers as decision tree, multilayer perceptron based back-propagation algorithm, radical basic function, support vector machine, and K-nearest Neighbor. Our results proved that the proposed model outperforms the other single model. (Abstract

  18. Temporal solar irradiance variability analysis using neural networks

    Science.gov (United States)

    Tebabal, Ambelu; Damtie, Baylie; Nigussie, Melessew

    A feed-forward neural network which can account for nonlinear relationship was used to model total solar irradiance (TSI). A single layer feed-forward neural network with Levenberg-marquardt back-propagation algorithm have been implemented for modeling daily total solar irradiance from daily photometric sunspot index, and core-to-wing ratio of Mg II index data. In order to obtain the optimum neural network for TSI modeling, the root mean square error (RMSE) and mean absolute error (MAE) have been taken into account. The modeled and measured TSI have the correlation coefficient of about R=0.97. The neural networks (NNs) model output indicates that reconstructed TSI from solar proxies (photometric sunspot index and Mg II) can explain 94% of the variance of TSI. This modeled TSI using NNs further strengthens the view that surface magnetism indeed plays a dominant role in modulating solar irradiance.

  19. A hybrid training method for neural energy estimation in calorimetry

    CERN Document Server

    Da Silva, P V M; Seixas, J

    2001-01-01

    A neural mapping is developed to improve the overall performance of Tilecal, which is the hadronic calorimeter of the ATLAS detector. Feeding the input nodes of a multilayer feedforward neural network with the energy values sampled by the calorimeter cells in beam tests, it is shown that the original energy scale of pion beams is reconstructed over a wide energy range and linearity is significantly improved. As it happens for classical methods, a compromise between nonlinearity correction and the optimization of the energy resolution of the detector has to be accomplished. A hybrid training method for the neural mapping is proposed to achieve this design goal. Using the backpropagation algorithm, the method intercalates an epoch of training steps, for which the neural mapping mainly focus on linearity correction, with another block of training steps, in which the original energy resolution obtained by linearly combining the calorimeter cells becomes the main target. (6 refs).

  20. Prediction of Double Layer Grids' Maximum Deflection Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Reza K. Moghadas

    2008-01-01

    Full Text Available Efficient neural networks models are trained to predict the maximum deflection of two-way on two-way grids with variable geometrical parameters (span and height as well as cross-sectional areas of the element groups. Backpropagation (BP and Radial Basis Function (RBF neural networks are employed for the mentioned purpose. The inputs of the neural networks are the length of the spans, L, the height, h and cross-sectional areas of the all groups, A and the outputs are maximum deflections of the corresponding double layer grids, respectively. The numerical results indicate that the RBF neural network is better than BP in terms of training time and performance generality.

  1. Class of backpropagation techniques for limited-angle reconstruction in microwave tomography

    Energy Technology Data Exchange (ETDEWEB)

    Paladhi, P. Roy; Tayebi, A.; Udpa, L.; Udpa, S. [Non-destructive Evaluation Lab, Dept. of Electrical and Computer Engineering, College of Engineering, Michigan State University, Lansing, MI 48824-1226 (United States); Sinha, A. [Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824 (United States)

    2015-03-31

    Filtered backpropagation (FBPP) is a well-known technique used in Diffraction Tomography (DT). For accurate reconstruction using FBPP, full 360° angular coverage is necessary. However, it has been shown that using some inherent redundancies in the projection data in a tomographic setup, accurate reconstruction is still possible with 270° coverage which is called the minimal-scan angle range. This can be done by applying weighing functions (or filters) on projection data of the object to eliminate the redundancies and accurately reconstruct the image from 270° coverage. This paper demonstrates procedures to generate many general classes of these weighing filters. These are all equivalent at 270° coverage but vary in performance at lower angular coverages and in presence of noise. This paper does a comparative analysis of different filters when angular coverage is lower than minimal-scan angle of 270°. Simulation studies have been done to find optimum weight filters for sub-minimal angular coverage (<270°)

  2. Low complexity digital backpropagation for high baud subcarrier-multiplexing systems.

    Science.gov (United States)

    Zhang, Fangyuan; Zhuge, Qunbi; Qiu, Meng; Plant, David V

    2016-07-25

    In this paper, we propose two modifications to reduce the complexity of the subcarrier-multiplexing (SCM) based digital backpropagation (DBP) for high symbol rate SCM systems. The first one is to reduce the number of interfering subcarriers (RS-SCM-DBP) when evaluating the cross-subcarrier nonlinearity (CSN). The second one is to replace the original frequency domain CSN filters with the infinite impulse response (IIR) filters (IIR-RS-SCM-DBP) in the CSN compensation. The performance of the proposed schemes are numerically evaluated in three-channel dual-polarization (DP) 16QAM wavelength-division multiplexing (WDM) transmissions. The aggregate symbol rate for each channel is 120 GBaud and the transmission distance is 1600 km. For the SCM system with 16 subcarriers, the IIR-RS-SCM-DBP with only 4 interfering subcarriers and 2 steps can achieve a 0.3 dB Q-factor improvement in the WDM transmission. Compared to the original SCM-DBP, the proposed IIR-RS-SCM-DBP reduces the complexity by 48% at a performance loss of only 0.07 dB.

  3. The labeled systems of multiple neural networks.

    Science.gov (United States)

    Nemissi, M; Seridi, H; Akdag, H

    2008-08-01

    This paper proposes an implementation scheme of K-class classification problem using systems of multiple neural networks. Usually, a multi-class problem is decomposed into simple sub-problems solved independently using similar single neural networks. For the reason that these sub-problems are not equivalent in their complexity, we propose a system that includes reinforced networks destined to solve complicated parts of the entire problem. Our approach is inspired from principles of the multi-classifiers systems and the labeled classification, which aims to improve performances of the networks trained by the Back-Propagation algorithm. We propose two implementation schemes based on both OAO (one-against-all) and OAA (one-against-one). The proposed models are evaluated using iris and human thigh databases.

  4. Neural Network-Based Modeling of PEM fuel cell and Controller Synthesis of a stand-alone system for residential application

    OpenAIRE

    Khaled Mammar; Abdelkader Chaker

    2012-01-01

    The paper is focused especially on presenting possibilities of applying artificial neural networks at creating the optimal model PEM fuel cell. Various ANN approaches have been tested; the back-propagation feed-forward networks show satisfactory performance with regard to cell voltage prediction. The model is then used in a power system for residential application. This models include an ANN fuel cell stack model, reformer model and DC/AC inverter model. Furthermore a neural network (NNTC) an...

  5. A selective learning method to improve the generalization of multilayer feedforward neural networks.

    OpenAIRE

    2001-01-01

    Multilayer feedforward neural networks with backpropagation algorithm have been used successfully in many applications. However, the level of generalization is heavily dependent on the quality of the training data. That is, some of the training patterns can be redundant or irrelevant. It has been shown that with careful dynamic selection of training patterns, better generalization performance may be obtained. Nevertheless, generalization is carried out independently of the novel patterns to b...

  6. Viscosity of carbon nanotube suspension using artificial neural networks with principal component analysis

    Science.gov (United States)

    Yousefi, Fakhri; Karimi, Hajir; Mohammadiyan, Somayeh

    2016-11-01

    This paper applies the model including back-propagation network (BPN) and principal component analysis (PCA) to estimate the effective viscosity of carbon nanotubes suspension. The effective viscosities of multiwall carbon nanotubes suspension are examined as a function of the temperature, nanoparticle volume fraction, effective length of nanoparticle and the viscosity of base fluids using artificial neural network. The obtained results by BPN-PCA model have good agreement with the experimental data.

  7. A new formulation for feedforward neural networks.

    Science.gov (United States)

    Razavi, Saman; Tolson, Bryan A

    2011-10-01

    Feedforward neural network is one of the most commonly used function approximation techniques and has been applied to a wide variety of problems arising from various disciplines. However, neural networks are black-box models having multiple challenges/difficulties associated with training and generalization. This paper initially looks into the internal behavior of neural networks and develops a detailed interpretation of the neural network functional geometry. Based on this geometrical interpretation, a new set of variables describing neural networks is proposed as a more effective and geometrically interpretable alternative to the traditional set of network weights and biases. Then, this paper develops a new formulation for neural networks with respect to the newly defined variables; this reformulated neural network (ReNN) is equivalent to the common feedforward neural network but has a less complex error response surface. To demonstrate the learning ability of ReNN, in this paper, two training methods involving a derivative-based (a variation of backpropagation) and a derivative-free optimization algorithms are employed. Moreover, a new measure of regularization on the basis of the developed geometrical interpretation is proposed to evaluate and improve the generalization ability of neural networks. The value of the proposed geometrical interpretation, the ReNN approach, and the new regularization measure are demonstrated across multiple test problems. Results show that ReNN can be trained more effectively and efficiently compared to the common neural networks and the proposed regularization measure is an effective indicator of how a network would perform in terms of generalization.

  8. Reliability analysis of C-130 turboprop engine components using artificial neural network

    Science.gov (United States)

    Qattan, Nizar A.

    In this study, we predict the failure rate of Lockheed C-130 Engine Turbine. More than thirty years of local operational field data were used for failure rate prediction and validation. The Weibull regression model and the Artificial Neural Network model including (feed-forward back-propagation, radial basis neural network, and multilayer perceptron neural network model); will be utilized to perform this study. For this purpose, the thesis will be divided into five major parts. First part deals with Weibull regression model to predict the turbine general failure rate, and the rate of failures that require overhaul maintenance. The second part will cover the Artificial Neural Network (ANN) model utilizing the feed-forward back-propagation algorithm as a learning rule. The MATLAB package will be used in order to build and design a code to simulate the given data, the inputs to the neural network are the independent variables, the output is the general failure rate of the turbine, and the failures which required overhaul maintenance. In the third part we predict the general failure rate of the turbine and the failures which require overhaul maintenance, using radial basis neural network model on MATLAB tool box. In the fourth part we compare the predictions of the feed-forward back-propagation model, with that of Weibull regression model, and radial basis neural network model. The results show that the failure rate predicted by the feed-forward back-propagation artificial neural network model is closer in agreement with radial basis neural network model compared with the actual field-data, than the failure rate predicted by the Weibull model. By the end of the study, we forecast the general failure rate of the Lockheed C-130 Engine Turbine, the failures which required overhaul maintenance and six categorical failures using multilayer perceptron neural network (MLP) model on DTREG commercial software. The results also give an insight into the reliability of the engine

  9. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1991-01-01

    This paper describes how Coloured Petri Nets (CP-nets) have been developed — from being a promising theoretical model to being a full-fledged language for the design, specification, simulation, validation and implementation of large software systems (and other systems in which human beings and...... use of CP-nets — because it means that the function representation and the translations (which are a bit mathematically complex) no longer are parts of the basic definition of CP-nets. Instead they are parts of the invariant method (which anyway demands considerable mathematical skills...

  10. Programming NET Web Services

    CERN Document Server

    Ferrara, Alex

    2007-01-01

    Web services are poised to become a key technology for a wide range of Internet-enabled applications, spanning everything from straight B2B systems to mobile devices and proprietary in-house software. While there are several tools and platforms that can be used for building web services, developers are finding a powerful tool in Microsoft's .NET Framework and Visual Studio .NET. Designed from scratch to support the development of web services, the .NET Framework simplifies the process--programmers find that tasks that took an hour using the SOAP Toolkit take just minutes. Programming .NET

  11. Game Coloured Petri Nets

    DEFF Research Database (Denmark)

    Westergaard, Michael

    2006-01-01

    This paper introduces the notion of game coloured Petri nets. This allows the modeler to explicitly model what parts of the model comprise the modeled system and what parts are the environment of the modeled system. We give the formal definition of game coloured Petri nets, a means of reachability...... analysis of this net class, and an application of game coloured Petri nets to automatically generate easy-to-understand visualizations of the model by exploiting the knowledge that some parts of the model are not interesting from a visualization perspective (i.e. they are part of the environment...

  12. Noise-enhanced convolutional neural networks.

    Science.gov (United States)

    Audhkhasi, Kartik; Osoba, Osonde; Kosko, Bart

    2016-06-01

    Injecting carefully chosen noise can speed convergence in the backpropagation training of a convolutional neural network (CNN). The Noisy CNN algorithm speeds training on average because the backpropagation algorithm is a special case of the generalized expectation-maximization (EM) algorithm and because such carefully chosen noise always speeds up the EM algorithm on average. The CNN framework gives a practical way to learn and recognize images because backpropagation scales with training data. It has only linear time complexity in the number of training samples. The Noisy CNN algorithm finds a special separating hyperplane in the network's noise space. The hyperplane arises from the likelihood-based positivity condition that noise-boosts the EM algorithm. The hyperplane cuts through a uniform-noise hypercube or Gaussian ball in the noise space depending on the type of noise used. Noise chosen from above the hyperplane speeds training on average. Noise chosen from below slows it on average. The algorithm can inject noise anywhere in the multilayered network. Adding noise to the output neurons reduced the average per-iteration training-set cross entropy by 39% on a standard MNIST image test set of handwritten digits. It also reduced the average per-iteration training-set classification error by 47%. Adding noise to the hidden layers can also reduce these performance measures. The noise benefit is most pronounced for smaller data sets because the largest EM hill-climbing gains tend to occur in the first few iterations. This noise effect can assist random sampling from large data sets because it allows a smaller random sample to give the same or better performance than a noiseless sample gives.

  13. Implementation of artificial neural networks with optics

    Science.gov (United States)

    Yu, Francis T. S.

    1999-04-01

    Optical implementation of artificial neural nets (ANNs) with electronically addressable liquid crystal televisions (LCTVs) are presented. The major advantages of the proposed ANNs must be the low cost and the flexibility to operate. To test the performance, several artificial neural net models have been implemented in the LCTV ANNs. These models include the Hopfield, Interpattern Association, Hetero-association, and Unsupervised ANNs. System design considerations and experimental demonstrates are provided.

  14. The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process.

    Science.gov (United States)

    Elmolla, Emad S; Chaudhuri, Malay; Eltoukhy, Mohamed Meselhy

    2010-07-15

    The study examined the implementation of artificial neural network (ANN) for the prediction and simulation of antibiotic degradation in aqueous solution by the Fenton process. A three-layer backpropagation neural network was optimized to predict and simulate the degradation of amoxicillin, ampicillin and cloxacillin in aqueous solution in terms of COD removal. The configuration of the backpropagation neural network giving the smallest mean square error (MSE) was three-layer ANN with tangent sigmoid transfer function (tansig) at hidden layer with 14 neurons, linear transfer function (purelin) at output layer and Levenberg-Marquardt backpropagation training algorithm (LMA). ANN predicted results are very close to the experimental results with correlation coefficient (R(2)) of 0.997 and MSE 0.000376. The sensitivity analysis showed that all studied variables (reaction time, H(2)O(2)/COD molar ratio, H(2)O(2)/Fe(2+) molar ratio, pH and antibiotics concentration) have strong effect on antibiotic degradation in terms of COD removal. In addition, H(2)O(2)/Fe(2+) molar ratio is the most influential parameter with relative importance of 25.8%. The results showed that neural network modeling could effectively predict and simulate the behavior of the Fenton process. 2010 Elsevier B.V. All rights reserved.

  15. SolNet

    DEFF Research Database (Denmark)

    Jordan, Ulrike; Vajen, Klaus; Bales, Chris;

    2014-01-01

    SolNet, founded in 2006, is the first coordinated International PhD education program on Solar Thermal Engineering. The SolNet network is coordinated by the Institute of Thermal Engineering at Kassel University, Germany. The network offers PhD courses on solar heating and cooling, conference...

  16. Net zero water

    CSIR Research Space (South Africa)

    Lindeque, M

    2013-01-01

    Full Text Available Is it possible to develop a building that uses a net zero amount of water? In recent years it has become evident that it is possible to have buildings that use a net zero amount of electricity. This is possible when the building is taken off...

  17. Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, Julien S.; Musall, Eike

    2010-01-01

    and identify possible renewable energy supply options which may be considered in calculations. Finally, the gap between the methodology proposed by each organisation and their respective national building code is assessed; providing an overview of the possible changes building codes will need to undergo......The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). The understanding of such buildings...... and how the Net ZEB status should be calculated differs in most countries. This paper presents an overview of Net ZEBs energy calculation methodologies proposed by organisations representing eight different countries: Austria, Canada, Denmark, Germany, Italy, Norway, Switzerland and the USA. The different...

  18. A NET Outcome

    Directory of Open Access Journals (Sweden)

    Thea eLu

    2012-12-01

    Full Text Available Neutrophils constitute a critical part of innate immunity and are well known for their ability to phagocytose and kill invading microorganisms. The microbicidal processes employed by neutrophils are highly effective at killing most ingested bacteria and fungi. However, an alternative non-phagocytic antimicrobial mechanism of neutrophils has been proposed whereby microorganisms are eliminated by neutrophil extracellular traps (NETs. NETs are comprised of DNA, histones, and antimicrobial proteins extruded by neutrophils during NETosis, a cell death pathway reported to be distinct from apoptosis, phagocytosis-induced cell death, and necrosis. Although multiple laboratories have reported NETs using various stimuli in vitro, the molecular mechanisms involved in this process have yet to be definitively elucidated, and many questions regarding the formation and putative role or function of NETs in innate host defense remain unanswered. It is with these questions in mind that we provide some reflection and perspective on NETs and NETosis.

  19. Prospects of real-time ion temperature and rotation profiles based on neural-network charge exchange analysis

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, R.W.T.; Von Hellermann, M. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Svensson, J. [Royal Inst. of Tech., Stockholm (Sweden)

    1994-07-01

    A back-propagation neural network technique is used at JET to extract plasma parameters like ion temperature, rotation velocities or spectral line intensities from charge exchange (CX) spectra. It is shown that in the case of the C VI CX spectra, neural networks can give a good estimation (better than +-20% accuracy) for the main plasma parameters (Ti, V{sub rot}). Since the neural network approach involves no iterations or initial guesses the speed with which a spectrum is processed is so high (0.2 ms/spectrum) that real time analysis will be achieved in the near future. 4 refs., 8 figs.

  20. Tutorial on neural network applications in high energy physics: A 1992 perspective

    Energy Technology Data Exchange (ETDEWEB)

    Denby, B.

    1992-04-01

    Feed forward and recurrent neural networks are introduced and related to standard data analysis tools. Tips are given on applications of neural nets to various areas of high energy physics. A review of applications within high energy physics and a summary of neural net hardware status are given.

  1. A neural feedforward network with a polynomial nonlinearity

    DEFF Research Database (Denmark)

    Hoffmann, Nils

    1992-01-01

    A novel neural network based on the Wiener model is proposed. The network is composed of a hidden layer of preprocessing neurons followed by a polynomial nonlinearity and a linear output neuron. The author tries to solve the problem of finding an appropriate preprocessing method by using a modified...... backpropagation algorithm. It is shown by the use of calculation trees that the proposed approach is simple to implement, and that the computational complexity is not much larger than for the alternative method of using PCA to determine the weights in the preprocessing network. A simulation is given which...... indicates superior performance of the proposed network compared to the PCA network...

  2. Eukaryotic Promoter Recognition Using Back propagation Neural Network

    Institute of Scientific and Technical Information of China (English)

    XIONGQing; WANGYuan-Qiang; LIZhi-Liang

    2004-01-01

    A new system is developed to recognize promoter sequences from non-promoter sequences based on position weight matrix and backpropagation neural network in this paper. The system performs significantly better on the training set and the test set, the mean recognition rate is as high as 99% on the training set and 97% on the testing set. Experimental results demonstrate the effectiveness of the system to recognize the promoter sequences that have been trained and the promoter sequences that have not been seen previously.

  3. Intelligent Surveillance Robot with Obstacle Avoidance Capabilities Using Neural Network.

    Science.gov (United States)

    Budiharto, Widodo

    2015-01-01

    For specific purpose, vision-based surveillance robot that can be run autonomously and able to acquire images from its dynamic environment is very important, for example, in rescuing disaster victims in Indonesia. In this paper, we propose architecture for intelligent surveillance robot that is able to avoid obstacles using 3 ultrasonic distance sensors based on backpropagation neural network and a camera for face recognition. 2.4 GHz transmitter for transmitting video is used by the operator/user to direct the robot to the desired area. Results show the effectiveness of our method and we evaluate the performance of the system.

  4. Fault Tolerant Neural Network for ECG Signal Classification Systems

    Directory of Open Access Journals (Sweden)

    MERAH, M.

    2011-08-01

    Full Text Available The aim of this paper is to apply a new robust hardware Artificial Neural Network (ANN for ECG classification systems. This ANN includes a penalization criterion which makes the performances in terms of robustness. Specifically, in this method, the ANN weights are normalized using the auto-prune method. Simulations performed on the MIT ? BIH ECG signals, have shown that significant robustness improvements are obtained regarding potential hardware artificial neuron failures. Moreover, we show that the proposed design achieves better generalization performances, compared to the standard back-propagation algorithm.

  5. Estimation of Solar Radiation using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Slamet Suprayogi

    2004-01-01

    Full Text Available The solar radiation is the most important fator affeccting evapotranspiration, the mechanism of transporting the vapor from the water surface has also a great effect. The main objectives of this study were to investigate the potential of using Artificial Neural Network (ANN to predict solar radiation related to temperature. The three-layer backpropagation were developed, trained, and tested to forecast solar radiation for Ciriung sub Cachment. Result revealed that the ANN were able to well learn the events they were trained to recognize. Moreover, they were capable of effecctively generalize their training by predicting solar radiation for sets unseen cases.

  6. Star pattern recognition method based on neural network

    Institute of Scientific and Technical Information of China (English)

    LI Chunyan; LI Ke; ZHANG Longyun; JIN Shengzhen; ZU Jifeng

    2003-01-01

    Star sensor is an avionics instrument used to provide the absolute 3-axis attitude of a spacecraft by utilizing star observations. The key function is to recognize the observed stars by comparing them with the reference catalogue. Autonomous star pattern recognition requires that similar patterns can be distinguished from each other with a small training set. Therefore, a new method based on neural network technology is proposed and a recognition system containing parallel backpropagation (BP) multi-subnets is designed. The simulation results show that the method performs much better than traditional algorithms and the proposed system can achieve both higher recognition accuracy and faster recognition speed.

  7. Pulse frequency classification based on BP neural network

    Institute of Scientific and Technical Information of China (English)

    WANG Rui; WANG Xu; YANG Dan; FU Rong

    2006-01-01

    In Traditional Chinese Medicine (TCM), it is an important parameter of the clinic disease diagnosis to analysis the pulse frequency. This article accords to pulse eight major essentials to identify pulse type of the pulse frequency classification based on back-propagation neural networks (BPNN). The pulse frequency classification includes slow pulse, moderate pulse, rapid pulse etc. By feature parameter of the pulse frequency analysis research and establish to identify system of pulse frequency features. The pulse signal from detecting system extracts period, frequency etc feature parameter to compare with standard feature value of pulse type. The result shows that identify-rate attains 92.5% above.

  8. A Neural Network Appraoch to Fault Diagnosis in Analog Circuits

    Institute of Scientific and Technical Information of China (English)

    尉乃红; 杨士元; 等

    1996-01-01

    Thia paper presents a neural network based fault diagnosis approach for analog circuits,taking the tolerances of circuit elements into account.Specifically,a normalization rule of input information,a pseudo-fault domain border(PFDB)pattern selection method and a new output error function are proposed for training the backpropagation(BP) network to be a fault diagnoser.Experimental results demonstrate that the diagnoser performs as well as or better than any classical approaches in terms of accuracy,and provides at least an order-of-magnitude improvement in post-fault diagnostic speed.

  9. Artificial Neural Network Approach in Radar Target Classification

    Directory of Open Access Journals (Sweden)

    N. K. Ibrahim

    2009-01-01

    Full Text Available Problem statement: This study unveils the potential and utilization of Neural Network (NN in radar applications for target classification. The radar system under test is a special of it kinds and known as Forward Scattering Radar (FSR. In this study the target is a ground vehicle which is represented by typical public road transport. The features from raw radar signal were extracted manually prior to classification process using Neural Network (NN. Features given to the proposed network model are identified through radar theoretical analysis. Multi-Layer Perceptron (MLP back-propagation neural network trained with three back-propagation algorithm was implemented and analyzed. In NN classifier, the unknown target is sent to the network trained by the known targets to attain the accurate output. Approach: Two types of classifications were analyzed. The first one is to classify the exact type of vehicle, four vehicle types were selected. The second objective is to grouped vehicle into their categories. The proposed NN architecture is compared to the K Nearest Neighbor classifier and the performance is evaluated. Results: Based on the results, the proposed NN provides a higher percentage of successful classification than the KNN classifier. Conclusion/Recommendation: The result presented here show that NN can be effectively employed in radar classification applications.

  10. Human activity recognition based on feature selection in smart home using back-propagation algorithm.

    Science.gov (United States)

    Fang, Hongqing; He, Lei; Si, Hao; Liu, Peng; Xie, Xiaolei

    2014-09-01

    In this paper, Back-propagation(BP) algorithm has been used to train the feed forward neural network for human activity recognition in smart home environments, and inter-class distance method for feature selection of observed motion sensor events is discussed and tested. And then, the human activity recognition performances of neural network using BP algorithm have been evaluated and compared with other probabilistic algorithms: Naïve Bayes(NB) classifier and Hidden Markov Model(HMM). The results show that different feature datasets yield different activity recognition accuracy. The selection of unsuitable feature datasets increases the computational complexity and degrades the activity recognition accuracy. Furthermore, neural network using BP algorithm has relatively better human activity recognition performances than NB classifier and HMM.

  11. Hybrid Neural Network Architecture for On-Line Learning

    CERN Document Server

    Chen, Yuhua; Wang, Lei

    2008-01-01

    Approaches to machine intelligence based on brain models have stressed the use of neural networks for generalization. Here we propose the use of a hybrid neural network architecture that uses two kind of neural networks simultaneously: (i) a surface learning agent that quickly adapt to new modes of operation; and, (ii) a deep learning agent that is very accurate within a specific regime of operation. The two networks of the hybrid architecture perform complementary functions that improve the overall performance. The performance of the hybrid architecture has been compared with that of back-propagation perceptrons and the CC and FC networks for chaotic time-series prediction, the CATS benchmark test, and smooth function approximation. It has been shown that the hybrid architecture provides a superior performance based on the RMS error criterion.

  12. Short Term Load Forecast Using Wavelet Neural Network

    Institute of Scientific and Technical Information of China (English)

    Gui Min; Rong Fei; Luo An

    2005-01-01

    This paper presents a wavelet neural network (WNN) model combining wavelet transform and artificial neural networks for short term load forecast (STLF). Both historical load and temperature data having important impacts on load level were used in the proposed forecasting model. The model used the three-layer feed forward network trained by the error back-propagation algorithm. To enhance the forecasting accuracy by neural networks, wavelet multi-resolution analysis method was introduced to pre-process these data and reconstruct the predicted output. The proposed model has been evaluated with actual data of electricity load and temperature of Hunan Province. The simulation results show that the model is capable of providing a reasonable forecasting accuracy in STLF.

  13. Morphological Classification of Galaxies Using Artificial Neural Networks

    CERN Document Server

    Ball, N M

    2001-01-01

    The results of morphological galaxy classifications performed by humans and by automated methods are compared. In particular, a comparison is made between the eyeball classifications of 454 galaxies in the Sloan Digital Sky Survey (SDSS) commissioning data (Shimasaku et al. 2001) with those of supervised artificial neural network programs constructed using the MATLAB Neural Network Toolbox package. Networks in this package have not previously been used for galaxy classification. It is found that simple neural networks are able to improve on the results of linear classifiers, giving correlation coefficients of the order of 0.8 +/- 0.1, compared with those of around 0.7 +/- 0.1 for linear classifiers. The networks are trained using the resilient backpropagation algorithm, which, to the author's knowledge, has not been specifically used in the galaxy classification literature. The galaxy parameters used and the network architecture are both important, and in particular the galaxy concentration index, a measure o...

  14. Using fuzzy logic to integrate neural networks and knowledge-based systems

    Science.gov (United States)

    Yen, John

    1991-01-01

    Outlined here is a novel hybrid architecture that uses fuzzy logic to integrate neural networks and knowledge-based systems. The author's approach offers important synergistic benefits to neural nets, approximate reasoning, and symbolic processing. Fuzzy inference rules extend symbolic systems with approximate reasoning capabilities, which are used for integrating and interpreting the outputs of neural networks. The symbolic system captures meta-level information about neural networks and defines its interaction with neural networks through a set of control tasks. Fuzzy action rules provide a robust mechanism for recognizing the situations in which neural networks require certain control actions. The neural nets, on the other hand, offer flexible classification and adaptive learning capabilities, which are crucial for dynamic and noisy environments. By combining neural nets and symbolic systems at their system levels through the use of fuzzy logic, the author's approach alleviates current difficulties in reconciling differences between low-level data processing mechanisms of neural nets and artificial intelligence systems.

  15. Modelling of multi-nutrient interactions in growth of the dinoflagellate microalga Protoceratium reticulatum using artificial neural networks.

    Science.gov (United States)

    López-Rosales, L; Gallardo-Rodríguez, J J; Sánchez-Mirón, A; Contreras-Gómez, A; García-Camacho, F; Molina-Grima, E

    2013-10-01

    This study examines the use of artificial neural networks as predictive tools for the growth of the dinoflagellate microalga Protoceratium reticulatum. Feed-forward back-propagation neural networks (FBN), using Levenberg-Marquardt back-propagation or Bayesian regularization as training functions, offered the best results in terms of representing the nonlinear interactions among all nutrients in a culture medium containing 26 different components. A FBN configuration of 26-14-1 layers was selected. The FBN model was trained using more than 500 culture experiments on a shake flask scale. Garson's algorithm provided a valuable means of evaluating the relative importance of nutrients in terms of microalgal growth. Microelements and vitamins had a significant importance (approximately 70%) in relation to macronutrients (nearly 25%), despite their concentrations in the culture medium being various orders of magnitude smaller. The approach presented here may be useful for modelling multi-nutrient interactions in photobioreactors.

  16. Pro NET Best Practices

    CERN Document Server

    Ritchie, Stephen D

    2011-01-01

    Pro .NET Best Practices is a practical reference to the best practices that you can apply to your .NET projects today. You will learn standards, techniques, and conventions that are sharply focused, realistic and helpful for achieving results, steering clear of unproven, idealistic, and impractical recommendations. Pro .NET Best Practices covers a broad range of practices and principles that development experts agree are the right ways to develop software, which includes continuous integration, automated testing, automated deployment, and code analysis. Whether the solution is from a free and

  17. Getting to Net Zero

    Energy Technology Data Exchange (ETDEWEB)

    2016-09-01

    The technology necessary to build net zero energy buildings (NZEBs) is ready and available today, however, building to net zero energy performance levels can be challenging. Energy efficiency measures, onsite energy generation resources, load matching and grid interaction, climatic factors, and local policies vary from location to location and require unique methods of constructing NZEBs. It is recommended that Components start looking into how to construct and operate NZEBs now as there is a learning curve to net zero construction and FY 2020 is just around the corner.

  18. Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, Julien S.; Musall, Eike

    2010-01-01

    The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). The understanding of such buildings...... and identify possible renewable energy supply options which may be considered in calculations. Finally, the gap between the methodology proposed by each organisation and their respective national building code is assessed; providing an overview of the possible changes building codes will need to undergo...

  19. Compressing Neural Networks with the Hashing Trick

    OpenAIRE

    Chen, Wenlin; Wilson, James T.; Tyree, Stephen; Weinberger, Kilian Q.; Chen, Yixin

    2015-01-01

    As deep nets are increasingly used in applications suited for mobile devices, a fundamental dilemma becomes apparent: the trend in deep learning is to grow models to absorb ever-increasing data set sizes; however mobile devices are designed with very little memory and cannot store such large models. We present a novel network architecture, HashedNets, that exploits inherent redundancy in neural networks to achieve drastic reductions in model sizes. HashedNets uses a low-cost hash function to ...

  20. Artificial neural network models for biomass gasification in fluidized bed gasifiers

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Hernández, J. Alfredo; Bruno, Joan Carles

    2013-01-01

    bed gasifier can be successfully predicted by applying neural networks. ANNs models use in the input layer the biomass composition and few operating parameters, two neurons in the hidden layer and the backpropagation algorithm. The results obtained by these ANNs show high agreement with published......Artificial neural networks (ANNs) have been applied for modeling biomass gasification process in fluidized bed reactors. Two architectures of ANNs models are presented; one for circulating fluidized bed gasifiers (CFB) and the other for bubbling fluidized bed gasifiers (BFB). Both models determine...

  1. A System for Predicting Subcellular Localization of Yeast Genome Using Neural Network

    CERN Document Server

    Thampi, Sabu M

    2007-01-01

    The subcellular location of a protein can provide valuable information about its function. With the rapid increase of sequenced genomic data, the need for an automated and accurate tool to predict subcellular localization becomes increasingly important. Many efforts have been made to predict protein subcellular localization. This paper aims to merge the artificial neural networks and bioinformatics to predict the location of protein in yeast genome. We introduce a new subcellular prediction method based on a backpropagation neural network. The results show that the prediction within an error limit of 5 to 10 percentage can be achieved with the system.

  2. Improved Marquardt Algorithm for Training Neural Networks for Chemical Process Modeling

    Institute of Scientific and Technical Information of China (English)

    吴建昱; 何小荣

    2002-01-01

    Back-propagation (BP) artificial neural networks have been widely used to model chemical processes. BP networks are often trained using the generalized delta-rule (GDR) algorithm but application of such networks is limited because of the low convergent speed of the algorithm. This paper presents a new algorithm incorporating the Marquardt algorithm into the BP algorithm for training feedforward BP neural networks. The new algorithm was tested with several case studies and used to model the Reid vapor pressure (RVP) of stabilizer gasoline. The new algorithm has faster convergence and is much more efficient than the GDR algorithm.

  3. Direct Adaptive Soft Computing Neural Control of a Continuous Bioprocess via Second Order Learning

    Science.gov (United States)

    Baruch, Ieroham; Mariaca-Gaspar, Carlos-Roman; Barrera-Cortes, Josefina

    This paper proposes a new Kalman Filter Recurrent Neural Network (KFRNN) topology and a recursive Levenberg-Marquardt (L-M) second order learning algorithm capable to estimate parameters and states of highly nonlinear bioprocess in a noisy environment. The proposed KFRNN identifier, learned by the Backpropagation and L-M learning algorithm, was incorporated in a direct adaptive neural control scheme. The proposed control scheme was applied for real-time soft computing identification and control of a continuous stirred tank bioreactor model, where fast convergence, noise filtering and low mean squared error of reference tracking were achieved.

  4. Expansion Nets and Expansion Processes of Elementary Net Systems

    Institute of Scientific and Technical Information of China (English)

    曹存根

    1995-01-01

    Occurrence nets are insufficient to precisely describe executions of elementary net systems with contacts.Traditionally,S-complementation is used for removal of contacts from the systems.Although the main behavior and properties of the original elementary net systems are preserved during S-complementation,their topologies may be changed greatly.This paper introduces a new kind of nets-expansion nets-for representing behavior of elementary net systems.As shown in the paper,expansion nets are natural as well as sufficient for describing the precise behavior of elementary net systems with or without contactks.

  5. PhysioNet

    Data.gov (United States)

    U.S. Department of Health & Human Services — The PhysioNet Resource is intended to stimulate current research and new investigations in the study of complex biomedical and physiologic signals. It offers free...

  6. An optimized recursive learning algorithm for three-layer feedforward neural networks for mimo nonlinear system identifications

    OpenAIRE

    2010-01-01

    Back-propagation with gradient method is the most popular learning algorithm for feed-forward neural networks. However, it is critical to determine a proper fixed learning rate for the algorithm. In this paper, an optimized recursive algorithm is presented for online learning based on matrix operation and optimization methods analytically, which can avoid the trouble to select a proper learning rate for the gradient method. The proof of weak convergence of the proposed algorithm also is given...

  7. Programming NET 35

    CERN Document Server

    Liberty, Jesse

    2009-01-01

    Bestselling author Jesse Liberty and industry expert Alex Horovitz uncover the common threads that unite the .NET 3.5 technologies, so you can benefit from the best practices and architectural patterns baked into the new Microsoft frameworks. The book offers a Grand Tour" of .NET 3.5 that describes how the principal technologies can be used together, with Ajax, to build modern n-tier and service-oriented applications. "

  8. Game Coloured Petri Nets

    DEFF Research Database (Denmark)

    Westergaard, Michael

    2006-01-01

    This paper introduces the notion of game coloured Petri nets. This allows the modeler to explicitly model what parts of the model comprise the modeled system and what parts are the environment of the modeled system. We give the formal definition of game coloured Petri nets, a means of reachabilit......, and not controllable by the system itself, or they are part of the system itself and therefore we need not worry about them)....

  9. Corneal power evaluation after myopic corneal refractive surgery using artificial neural networks.

    Science.gov (United States)

    Koprowski, Robert; Lanza, Michele; Irregolare, Carlo

    2016-11-15

    Efficacy and high availability of surgery techniques for refractive defect correction increase the number of patients who undergo to this type of surgery. Regardless of that, with increasing age, more and more patients must undergo cataract surgery. Accurate evaluation of corneal power is an extremely important element affecting the precision of intraocular lens (IOL) power calculation and errors in this procedure could affect quality of life of patients and satisfaction with the service provided. The available device able to measure corneal power have been tested to be not reliable after myopic refractive surgery. Artificial neural networks with error backpropagation and one hidden layer were proposed for corneal power prediction. The article analysed the features acquired from the Pentacam HR tomograph, which was necessary to measure the corneal power. Additionally, several billion iterations of artificial neural networks were conducted for several hundred simulations of different network configurations and different features derived from the Pentacam HR. The analysis was performed on a PC with Intel(®) Xeon(®) X5680 3.33 GHz CPU in Matlab(®) Version 7.11.0.584 (R2010b) with Signal Processing Toolbox Version 7.1 (R2010b), Neural Network Toolbox 7.0 (R2010b) and Statistics Toolbox (R2010b). A total corneal power prediction error was obtained for 172 patients (113 patients forming the training set and 59 patients in the test set) with an average age of 32 ± 9.4 years, including 67% of men. The error was at an average level of 0.16 ± 0.14 diopters and its maximum value did not exceed 0.75 dioptres. The Pentacam parameters (measurement results) providing the above result are tangential anterial/posterior. The corneal net power and equivalent k-reading power. The analysis time for a single patient (a single eye) did not exceed 0.1 s, whereas the time of network training was about 3 s for 1000 iterations (the number of neurons in the hidden layer was 400).

  10. Modeling and simulation of speech emotional recognition based on process neural net-work%基于过程神经元的语音情感识别的建模与仿真

    Institute of Scientific and Technical Information of China (English)

    叶吉祥; 陈晋芳

    2014-01-01

    为克服由传统语音情感识别模型的缺陷导致的识别正确率不高的问题,将过程神经元网络引入到语音情感识别中来。通过提取基频、振幅、音质特征参数作为语音情感特征参数,利用小波分析去噪,主成分分析(PCA)消除冗余,用过程神经元网络对生气、高兴、悲伤和惊奇四种情感进行识别。实验结果表明,与传统的识别模型相比,使用过程神经元网络具有较好的识别效果。%To improve the problem of the low recognition accuracy caused by the defect of the traditional speech emotion recognition model, this algorithm of process neural networks is introduced to the speech emotion recognition. This paper extracts the speech emotion features of fundamental frequency, amplitude, sound characteristic, and uses the method of wavelet analysis to reduce noise, the Principal Component Analysis(PCA)to reduce the redundancy, and carries on the experiment of classification and recognition of the four speech emotions of anger, happiness, sadness and surprise. The result proves that the method of process neural network has better recognition effect on the four speech emotions compared with the traditional recognition model.

  11. Porosity Log Prediction Using Artificial Neural Network

    Science.gov (United States)

    Dwi Saputro, Oki; Lazuardi Maulana, Zulfikar; Dzar Eljabbar Latief, Fourier

    2016-08-01

    Well logging is important in oil and gas exploration. Many physical parameters of reservoir is derived from well logging measurement. Geophysicists often use well logging to obtain reservoir properties such as porosity, water saturation and permeability. Most of the time, the measurement of the reservoir properties are considered expensive. One of method to substitute the measurement is by conducting a prediction using artificial neural network. In this paper, artificial neural network is performed to predict porosity log data from other log data. Three well from ‘yy’ field are used to conduct the prediction experiment. The log data are sonic, gamma ray, and porosity log. One of three well is used as training data for the artificial neural network which employ the Levenberg-Marquardt Backpropagation algorithm. Through several trials, we devise that the most optimal input training is sonic log data and gamma ray log data with 10 hidden layer. The prediction result in well 1 has correlation of 0.92 and mean squared error of 5.67 x10-4. Trained network apply to other well data. The result show that correlation in well 2 and well 3 is 0.872 and 0.9077 respectively. Mean squared error in well 2 and well 3 is 11 x 10-4 and 9.539 x 10-4. From the result we can conclude that sonic log and gamma ray log could be good combination for predicting porosity with neural network.

  12. IMPLEMENTATION OF NEURAL - CRYPTOGRAPHIC SYSTEM USING FPGA

    Directory of Open Access Journals (Sweden)

    KARAM M. Z. OTHMAN

    2011-08-01

    Full Text Available Modern cryptography techniques are virtually unbreakable. As the Internet and other forms of electronic communication become more prevalent, electronic security is becoming increasingly important. Cryptography is used to protect e-mail messages, credit card information, and corporate data. The design of the cryptography system is a conventional cryptography that uses one key for encryption and decryption process. The chosen cryptography algorithm is stream cipher algorithm that encrypt one bit at a time. The central problem in the stream-cipher cryptography is the difficulty of generating a long unpredictable sequence of binary signals from short and random key. Pseudo random number generators (PRNG have been widely used to construct this key sequence. The pseudo random number generator was designed using the Artificial Neural Networks (ANN. The Artificial Neural Networks (ANN providing the required nonlinearity properties that increases the randomness statistical properties of the pseudo random generator. The learning algorithm of this neural network is backpropagation learning algorithm. The learning process was done by software program in Matlab (software implementation to get the efficient weights. Then, the learned neural network was implemented using field programmable gate array (FPGA.

  13. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network

    Directory of Open Access Journals (Sweden)

    Lukas Falat

    2016-01-01

    Full Text Available This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.

  14. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network.

    Science.gov (United States)

    Falat, Lukas; Marcek, Dusan; Durisova, Maria

    2016-01-01

    This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.

  15. Crop classification by forward neural network with adaptive chaotic particle swarm optimization.

    Science.gov (United States)

    Zhang, Yudong; Wu, Lenan

    2011-01-01

    This paper proposes a hybrid crop classifier for polarimetric synthetic aperture radar (SAR) images. The feature sets consisted of span image, the H/A/α decomposition, and the gray-level co-occurrence matrix (GLCM) based texture features. Then, the features were reduced by principle component analysis (PCA). Finally, a two-hidden-layer forward neural network (NN) was constructed and trained by adaptive chaotic particle swarm optimization (ACPSO). K-fold cross validation was employed to enhance generation. The experimental results on Flevoland sites demonstrate the superiority of ACPSO to back-propagation (BP), adaptive BP (ABP), momentum BP (MBP), Particle Swarm Optimization (PSO), and Resilient back-propagation (RPROP) methods. Moreover, the computation time for each pixel is only 1.08 × 10(-7) s.

  16. Crop Classification by Forward Neural Network with Adaptive Chaotic Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Yudong Zhang

    2011-05-01

    Full Text Available This paper proposes a hybrid crop classifier for polarimetric synthetic aperture radar (SAR images. The feature sets consisted of span image, the H/A/α decomposition, and the gray-level co-occurrence matrix (GLCM based texture features. Then, the features were reduced by principle component analysis (PCA. Finally, a two-hidden-layer forward neural network (NN was constructed and trained by adaptive chaotic particle swarm optimization (ACPSO. K-fold cross validation was employed to enhance generation. The experimental results on Flevoland sites demonstrate the superiority of ACPSO to back-propagation (BP, adaptive BP (ABP, momentum BP (MBP, Particle Swarm Optimization (PSO, and Resilient back-propagation (RPROP methods. Moreover, the computation time for each pixel is only 1.08 × 10−7 s.

  17. Artificial Neural Networks, Symmetries and Differential Evolution

    CERN Document Server

    Urfalioglu, Onay

    2010-01-01

    Neuroevolution is an active and growing research field, especially in times of increasingly parallel computing architectures. Learning methods for Artificial Neural Networks (ANN) can be divided into two groups. Neuroevolution is mainly based on Monte-Carlo techniques and belongs to the group of global search methods, whereas other methods such as backpropagation belong to the group of local search methods. ANN's comprise important symmetry properties, which can influence Monte-Carlo methods. On the other hand, local search methods are generally unaffected by these symmetries. In the literature, dealing with the symmetries is generally reported as being not effective or even yielding inferior results. In this paper, we introduce the so called Minimum Global Optimum Proximity principle derived from theoretical considerations for effective symmetry breaking, applied to offline supervised learning. Using Differential Evolution (DE), which is a popular and robust evolutionary global optimization method, we experi...

  18. Self-organizing nets for optimization.

    Science.gov (United States)

    Milano, Michele; Koumoutsakos, Petros; Schmidhuber, Jürgen

    2004-05-01

    Given some optimization problem and a series of typically expensive trials of solution candidates sampled from a search space, how can we efficiently select the next candidate? We address this fundamental problem by embedding simple optimization strategies in learning algorithms inspired by Kohonen's self-organizing maps and neural gas networks. Our adaptive nets or grids are used to identify and exploit search space regions that maximize the probability of generating points closer to the optima. Net nodes are attracted by candidates that lead to improved evaluations, thus, quickly biasing the active data selection process toward promising regions, without loss of ability to escape from local optima. On standard benchmark functions, our techniques perform more reliably than the widely used covariance matrix adaptation evolution strategy. The proposed algorithm is also applied to the problem of drag reduction in a flow past an actively controlled circular cylinder, leading to unprecedented drag reduction.

  19. 利用神经网络建立GPS网络RTK的双差对流层误差模型%A TROPOSPHERIC DELAY MODEL FOR GPS NET RTK ESTABLISHED BY USE OF ARTIFICIAL NEURAL NETWORK

    Institute of Scientific and Technical Information of China (English)

    陈远鸿; 邱蕾; 冯玉钊

    2011-01-01

    为减小对流层误差改正数中系统偏差的影响以提高对流层改正精度,提出了基于神经网络的顾及空间的对流层误差建模模型,该模型的对流层延迟误差改正在网内外精度均达5 cm.%In the Virtual Reference Station ( VRS) technology, atmospheric refraction error is the main factor affecting the accuracy of the long-distance RTK. However, the elevation difference between the reference plane and the roving station will cause the deviation of tropospheric error in the system and then the accuracy of troposphere correction will be lowered. A new tropospheric error model based on neural network, taking into account the space troposphere error, is presented. The accuracy of tropospheric delay model is within 5 cm, in spite of interpolation points in the network or out of network.

  20. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1991-01-01

    use of CP-nets — because it means that the function representation and the translations (which are a bit mathematically complex) no longer are parts of the basic definition of CP-nets. Instead they are parts of the invariant method (which anyway demands considerable mathematical skills...... the different kinds of analysis. It has, however, turned out that it only is necessary to turn to functions when we deal with invariant analysis, and this means that we now use the expression representation for all purposes — except for the calculation of invariants. This change is important for the practical...

  1. Biological Petri Nets

    CERN Document Server

    Wingender, E

    2011-01-01

    It was suggested some years ago that Petri nets might be well suited to modeling metabolic networks, overcoming some of the limitations encountered by the use of systems employing ODEs (ordinary differential equations). Much work has been done since then which confirms this and demonstrates the usefulness of this concept for systems biology. Petri net technology is not only intuitively understood by scientists trained in the life sciences, it also has a robust mathematical foundation and provides the required degree of flexibility. As a result it appears to be a very promising approach to mode

  2. RANCANG BANGUN SISTEM PENGENALAN EKSPRESI WAJAH MENGGUNAKAN FISHERFACE DAN JARINGAN SYARAF TIRUAN BACKPROPAGATION

    Directory of Open Access Journals (Sweden)

    Z Abidin

    2013-07-01

    Full Text Available Di dalam kehidupan sehari-hari, khususnya dalam komunikasi interpersonal, wajah sering digunakan untuk berekspresi. Melalui ekspresi wajah, maka dapat dipahami emosi yang sedang bergejolak pada diri individu. Ekspresi wajah merupakan salah satu karakteristik perilaku. Penggunaan sistem teknologi biometrika dengan karakteristik ekspresi wajah memungkinkan untuk mengenali mood atau emosi seseorang. Komponen dasar sistem analisis ekspresi wajah adalah deteksi wajah, ekstraksi data wajah, dan pengenalan ekspresi wajah. Sehingga untuk membangun sebuah sistem pengenal ekspersi wajah, maka perlu dirancang tiga buah sub sistem yaitu sistem deteksi wajah, sistem pembelajaran jaringan syaraf tiruan. Prinsipnya data wajah yang telah dideteksi, diolah menggunakan fisherface, yang selanjutnya hasilnya digunakan sebagai input untuk jaringan syaraf tiruan. Bobot yang dihasilkan pada saat proses pembelajaran jaringan syaraf tiruan inilah yang akan digunakan untuk pengenalan ekspresi wajah. In daily life, especially in interpersonal communication, face often used for express of emotions. Facial expressions are the facial changes in response to a person’s internal emotional states. A facial expression is one of the behavioral characteristics. The use of facial expression characteristics enables to recognize of person’s mood. Basic components of a facial expression analysis system are face detection, face data extraction, and facial expression recognition. So that, to build a facial expression recognition system, it should be designed three subsystems, namely face detection system, learning of neural network system, and facial expression recognition system itself. In principle, face data that has been successfully detected, then it will be constructed by fisherface, and the results of it will be used as an input of neural network. Afterwards, the weights of neural network learning will be used to recognize facial expression.

  3. Experimental Comparison of Gains in Achievable Information Rates from Probabilistic Shaping and Digital Backpropagation for DP-256QAM/1024QAM WDM Systems

    DEFF Research Database (Denmark)

    Porto da Silva, Edson; Yankov, Metodi Plamenov; Da Ros, Francesco;

    2016-01-01

    Gains in achievable information rates from probabilistic shaping and digital backpropagation are compared for WDM transmission of 5 × 10 GBd DP-256QAM/1024QAM up to 1700 km of reach. The combination of both techniques its shown to provide gains of up to ∼0.5 bits/QAM symbol...

  4. Tire Lateral-slip Characteristics Based on Agent-neural Net%基于智能体—神经网络的轮胎侧偏特性

    Institute of Scientific and Technical Information of China (English)

    陈龙; 黄晨; 江浩斌; 王志忠

    2012-01-01

    在轮胎接地压力试验台上测量轮胎在充气气压、垂直载荷、轮速等变化的18种工况下获得的轮胎侧偏特性,并定性地分析侧偏特性与侧偏角、轮速、垂直载荷和充气压力等众多因素关系,揭示出它们之间的函数关系表现出复杂的非线性.据此,将558个样本数据点作为网络特征参数,训练和建立自适应神经网络模型,进行网络逼近.由于存在网络层数和节点的增加带来的计算量大和众多非线性传递函数相互叠加造成的网络不确定性以及误差大的问题,应用智能体技术,对神经网络的训练过程进行优化.仿真结果表明,效果较好,该曲线的平均误差小于1.5%.通过与魔术公式轮胎模型比较分析,得到所采用的模型更加逼近轮胎试验曲线,表现出明显的优越性,可为汽车理论研究提供一定参考.%Under the combined action of inflation pressure, vertical load and wheel velocity, the lateral forces of 18 working conditions are measured by the analytic system of tire contact pressure on ground. And the complex relations between them are analyzed qualitatively, which they are the complicated nonlinear implicit function. For samples, 558 test dates are selected and used as the network characteristic parameters, an agent-neural network for kind identification is trained and constructed. Because the increasing of network nodes and layers and the superposition principle of nonlinear transfer function, the identification rate is low and node positions are uncertainty in networks. In order to solve these problems, the agent is introduced to optimize the training process of the artificial neural networks. Simulation results showed that the mean error achieves 1.5%. According to the analysis of simulation results compared with magic formula, adaptive model based on agent has the advantage of numerical approximation the for test curve. This method can provide support for car safety design.

  5. Backpropagation-Based Cooperative Localization of Primary User for Avoiding Hidden-Node Problem in Cognitive Networks

    Directory of Open Access Journals (Sweden)

    Lin Liu

    2010-01-01

    Full Text Available Cognitive radio (CR is a technology to implement opportunistic spectrum sharing to improve the spectrum utilization. However, there exists a hidden-node problem, which can be a big challenge to solve especially when the primary receiver is passive listening. We aim to provide a solution to the hidden-node problem for passive-listening receiver based on cooperation of multiple CRs. Specifically, we consider a cooperative GPS-enabled cognitive network. Once the existence of PU is detected, a localization algorithm will be employed to first estimate the path loss model for the environment based on backpropagation method and then to locate the position of PU. Finally, a disable region is identified taking into account the communication range of both the PU and the CR. The CRs within the disabled region are prohibited to transmit in order to avoid interfering with the primary receiver. Both analysis and simulation results are provided.

  6. Safety nets or straitjackets?

    DEFF Research Database (Denmark)

    Ilsøe, Anna

    2012-01-01

    Does regulation of working hours at national and sector level impose straitjackets, or offer safety nets to employees seeking working time flexibility? This article compares legislation and collective agreements in the metal industries of Denmark, Germany and the USA. The industry has historically...

  7. Nonmetro Net Outmigration Stops.

    Science.gov (United States)

    Cromartie, John B.

    1992-01-01

    Annual population losses from net migration for nonmetro areas declined from 0.38-0.20 percent during the period of 1988-91. However, annual inmigration and outmigration flows were consistently above 1.5 million (about 3 percent of nonmetro population). During the three-year period, nonmetro areas consistently lost young adults and those with…

  8. Net4Care platform

    DEFF Research Database (Denmark)

    2012-01-01

    , that in turn enables general practitioners and clinical staff to view observations. Use the menus above to explore the site's information resources. To get started, follow the short Hello, World! tutorial. The Net4Care project is funded by The Central Denmark Region and EU via Caretech Innovation....

  9. Coloured Petri Nets

    CERN Document Server

    Jensen, Kurt

    2009-01-01

    Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. This book introduces the constructs of the CPN modelling language and presents the related analysis methods. It provides a comprehensive road map for the practical use of CPN.

  10. Mobile robot sense net

    Science.gov (United States)

    Konolige, Kurt G.; Gutmann, Steffen; Guzzoni, Didier; Ficklin, Robert W.; Nicewarner, Keith E.

    1999-08-01

    Mobile robot hardware and software is developing to the point where interesting applications for groups of such robots can be contemplated. We envision a set of mobots acting to map and perform surveillance or other task within an indoor environment (the Sense Net). A typical application of the Sense Net would be to detect survivors in buildings damaged by earthquake or other disaster, where human searchers would be put a risk. As a team, the Sense Net could reconnoiter a set of buildings faster, more reliably, and more comprehensibly than an individual mobot. The team, for example, could dynamically form subteams to perform task that cannot be done by individual robots, such as measuring the range to a distant object by forming a long baseline stereo sensor form a pari of mobots. In addition, the team could automatically reconfigure itself to handle contingencies such as disabled mobots. This paper is a report of our current progress in developing the Sense Net, after the first year of a two-year project. In our approach, each mobot has sufficient autonomy to perform several tasks, such as mapping unknown areas, navigating to specific positions, and detecting, tracking, characterizing, and classifying human and vehicular activity. We detail how some of these tasks are accomplished, and how the mobot group is tasked.

  11. Net4Care platform

    DEFF Research Database (Denmark)

    2012-01-01

    , that in turn enables general practitioners and clinical staff to view observations. Use the menus above to explore the site's information resources. To get started, follow the short Hello, World! tutorial. The Net4Care project is funded by The Central Denmark Region and EU via Caretech Innovation....

  12. Game Theory .net.

    Science.gov (United States)

    Shor, Mikhael

    2003-01-01

    States making game theory relevant and accessible to students is challenging. Describes the primary goal of GameTheory.net is to provide interactive teaching tools. Indicates the site strives to unite educators from economics, political and computer science, and ecology by providing a repository of lecture notes and tests for courses using…

  13. NEURAL NETWORK TRAINING WITH PARALLEL PARTICLE SWARM OPTIMIZER

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Feed forward neural net works such as multi-layer perceptron,radial basis function neural net-works,have been widely applied to classification,function approxi mation and data mining.Evolu-tionary computation has been explored to train neu-ral net works as a very promising and competitive al-ternative learning method,because it has potentialto produce global mini mum in the weight space.Recently,an emerging evolutionary computationtechnique,Particle Swar m Opti mization(PSO)be-comes a hot topic because of i...

  14. LOGIKA FUZZY DAN JARINGAN SYARAT TIRUAN UNTUK PENINGKATAN MUTU TEH HITAM [Fuzzy Logic an Artificial Neural Network for Quality Improvement of Black Tea

    Directory of Open Access Journals (Sweden)

    Rohmatulloh 1

    2007-12-01

    Full Text Available This paper discussed quality improvement of black tea using fuzzy approach on quality functions deployment and the development of backpropagation neural the software NWP II plus. The research was conducted at PTPN VIII tea industry, Goalpara plantation. Result of the study showed that, parameter first priority based on customer evaluation was tea flavour. The Important process parameter of black tea based on result of fuzzy relationship matrix was the withering process. Based on the test of “trial and error” of network training process, the best network architecture for withering process monitoring [3-15-1] was obtained, that is 3 neurons in input layer, 15 neurons in hidden layer and 1 neuron in output layer. Three inputs and output consist of time, flow, temperature and moisture content. The result sugges that development of backpropagation neural network can be used for process evaluation of withering processes.

  15. A Constructive Algorithm for Feedforward Neural Networks for Medical Diagnostic Reasoning

    CERN Document Server

    Siddiquee, Abu Bakar; Kamruzzaman, S M

    2010-01-01

    This research is to search for alternatives to the resolution of complex medical diagnosis where human knowledge should be apprehended in a general fashion. Successful application examples show that human diagnostic capabilities are significantly worse than the neural diagnostic system. Our research describes a constructive neural network algorithm with backpropagation; offer an approach for the incremental construction of nearminimal neural network architectures for pattern classification. The algorithm starts with minimal number of hidden units in the single hidden layer; additional units are added to the hidden layer one at a time to improve the accuracy of the network and to get an optimal size of a neural network. Our algorithm was tested on several benchmarking classification problems including Cancer1, Heart, and Diabetes with good generalization ability.

  16. Parsing recursive sentences with a connectionist model including a neural stack and synaptic gating.

    Science.gov (United States)

    Fedor, Anna; Ittzés, Péter; Szathmáry, Eörs

    2011-02-21

    It is supposed that humans are genetically predisposed to be able to recognize sequences of context-free grammars with centre-embedded recursion while other primates are restricted to the recognition of finite state grammars with tail-recursion. Our aim was to construct a minimalist neural network that is able to parse artificial sentences of both grammars in an efficient way without using the biologically unrealistic backpropagation algorithm. The core of this network is a neural stack-like memory where the push and pop operations are regulated by synaptic gating on the connections between the layers of the stack. The network correctly categorizes novel sentences of both grammars after training. We suggest that the introduction of the neural stack memory will turn out to be substantial for any biological 'hierarchical processor' and the minimalist design of the model suggests a quest for similar, realistic neural architectures.

  17. Research on color prediction of laminated prints based on neural net-work%基于神经网络的覆膜产品颜色预测研究

    Institute of Scientific and Technical Information of China (English)

    陈思思; 万晓霞; 孙鹏; 徐宏平; 鞠龙

    2015-01-01

    由于印刷品在覆膜前后存在着明显的颜色偏差,在实际生产中需要根据覆膜颜色的变化规律建立一套新的标准来指导机台生产,以保证印刷成品与客户签样的一致性。为了实现覆膜后的印刷样与客户签订的标准样之间的匹配,提出采用数码打样模拟印刷样的方式研究覆膜色彩变化规律,并利用BP神经网络建立覆膜前后色度值的映射关系,从而建立新的适用于覆膜工艺的特性文件进行数码打样,以输出的数码样来指导印刷环节,为企业提供一种低成本、高效率的色彩管理解决方案,实验数据表明该方案的可行性和准确性。%Due to the obvious color deviation exists after lamination, a set of new standard is to be built to guide production according to the color change regulation before and after lamination, to make sure the color consistency between prints and approval samples. To match the laminated prints and approval samples, the color change rule of lamination is researched with digital proofing. The mapping relation of chromatic values before and after lamination is set up by BP neural network. Meanwhile, the new ICC profile is built for digital proofing, and the proofing sheets an guide printing process. It may provide relative printing enterprises with a low-cost and high-efficiency color management solution and the statistic shows its feasibility and accuracy.

  18. Mammographic mass detection using wavelets as input to neural networks.

    Science.gov (United States)

    Kilic, Niyazi; Gorgel, Pelin; Ucan, Osman N; Sertbas, Ahmet

    2010-12-01

    The objective of this paper is to demonstrate the utility of artificial neural networks, in combination with wavelet transforms for the detection of mammogram masses as malign or benign. A total of 45 patients who had breast masses in their mammography were enrolled in the study. The neural network was trained on the wavelet based feature vectors extracted from the mammogram masses for both benign and malign data. Therefore, in this study, Multilayer ANN was trained with the Backpropagation, Conjugate Gradient and Levenberg-Marquardt algorithms and ten-fold cross validation procedure was used. A satisfying sensitivity percentage of 89.2% was achieved with Levenberg-Marquardt algorithm. Since, this algorithm combines the best features of the Gauss-Newton technique and the other steepest-descent algorithms and thus it reaches desired results very fast.

  19. Neural Network Control of a Magnetically Suspended Rotor System

    Science.gov (United States)

    Choi, Benjamin B.

    1998-01-01

    Magnetic bearings offer significant advantages because they do not come into contact with other parts during operation, which can reduce maintenance. Higher speeds, no friction, no lubrication, weight reduction, precise position control, and active damping make them far superior to conventional contact bearings. However, there are technical barriers that limit the application of this technology in industry. One of them is the need for a nonlinear controller that can overcome the system nonlinearity and uncertainty inherent in magnetic bearings. At the NASA Lewis Research Center, a neural network was selected as a nonlinear controller because it generates a neural model without any detailed information regarding the internal working of the magnetic bearing system. It can be used even for systems that are too complex for an accurate system model to be derived. A feed-forward architecture with a back-propagation learning algorithm was selected because of its proven performance, accuracy, and relatively easy implementation.

  20. Artificial Neural Networks for Thermochemical Conversion of Biomass

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Bruno, Joan Carles

    2015-01-01

    Artificial neural networks (ANNs), extensively used in different fields, have been applied for modeling biomass gasification processes in fluidized bed reactors. Two ANN models are presented, one for circulating fluidized bed gasifiers and another for bubbling fluidized bed gasifiers. Both models...... determine the producer gas composition and gas yield, using the biomass composition and only a few operating parameters in the input layer. Each model is composed of five ANNs with two neurons in the hidden layer. The backpropagation algorithm is used to train them with published experimental data from...... other authors. The obtained results show that the percentage composition of the main four gas species in producer gas (CO, CO2, H2, CH4) and producer gas yield for a biomass fluidized bed gasifier, can be successfully predicted by applying neural networks. The results obtained show high agreement...

  1. An Artificial Neural Network for Data Forecasting Purposes

    Directory of Open Access Journals (Sweden)

    Catalina Lucia COCIANU

    2015-01-01

    Full Text Available Considering the fact that markets are generally influenced by different external factors, the stock market prediction is one of the most difficult tasks of time series analysis. The research reported in this paper aims to investigate the potential of artificial neural networks (ANN in solving the forecast task in the most general case, when the time series are non-stationary. We used a feed-forward neural architecture: the nonlinear autoregressive network with exogenous inputs. The network training function used to update the weight and bias parameters corresponds to gradient descent with adaptive learning rate variant of the backpropagation algorithm. The results obtained using this technique are compared with the ones resulted from some ARIMA models. We used the mean square error (MSE measure to evaluate the performances of these two models. The comparative analysis leads to the conclusion that the proposed model can be successfully applied to forecast the financial data.

  2. Neural PID Control Strategy for Networked Process Control

    Directory of Open Access Journals (Sweden)

    Jianhua Zhang

    2013-01-01

    Full Text Available A new method with a two-layer hierarchy is presented based on a neural proportional-integral-derivative (PID iterative learning method over the communication network for the closed-loop automatic tuning of a PID controller. It can enhance the performance of the well-known simple PID feedback control loop in the local field when real networked process control applied to systems with uncertain factors, such as external disturbance or randomly delayed measurements. The proposed PID iterative learning method is implemented by backpropagation neural networks whose weights are updated via minimizing tracking error entropy of closed-loop systems. The convergence in the mean square sense is analysed for closed-loop networked control systems. To demonstrate the potential applications of the proposed strategies, a pressure-tank experiment is provided to show the usefulness and effectiveness of the proposed design method in network process control systems.

  3. Synthesis of recurrent neural networks for dynamical system simulation.

    Science.gov (United States)

    Trischler, Adam P; D'Eleuterio, Gabriele M T

    2016-08-01

    We review several of the most widely used techniques for training recurrent neural networks to approximate dynamical systems, then describe a novel algorithm for this task. The algorithm is based on an earlier theoretical result that guarantees the quality of the network approximation. We show that a feedforward neural network can be trained on the vector-field representation of a given dynamical system using backpropagation, then recast it as a recurrent network that replicates the original system's dynamics. After detailing this algorithm and its relation to earlier approaches, we present numerical examples that demonstrate its capabilities. One of the distinguishing features of our approach is that both the original dynamical systems and the recurrent networks that simulate them operate in continuous time.

  4. Neural networks and wavelet analysis in the computer interpretation of pulse oximetry data

    Energy Technology Data Exchange (ETDEWEB)

    Dowla, F.U.; Skokowski, P.G.; Leach, R.R. Jr.

    1996-03-01

    Pulse oximeters determine the oxygen saturation level of blood by measuring the light absorption of arterial blood. The sensor consists of red and infrared light sources and photodetectors. A method based on neural networks and wavelet analysis is developed for improved saturation estimation in the presence of sensor motion. Spectral and correlation functions of the dual channel oximetry data are used by a backpropagation neural network to characterize the type of motion. Amplitude ratios of red to infrared signals as a function of time scale are obtained from the multiresolution wavelet decomposition of the two-channel data. Motion class and amplitude ratios are then combined to obtain a short-time estimate of the oxygen saturation level. A final estimate of oxygen saturation is obtained by applying a 15 s smoothing filter on the short-time measurements based on 3.5 s windows sampled every 1.75 s. The design employs two backpropagation neural networks. The first neural network determines the motion characteristics and the second network determines the saturation estimate. Our approach utilizes waveform analysis in contrast to the standard algorithms that are based on the successful detection of peaks and troughs in the signal. The proposed algorithm is numerically efficient and has stable characteristics with a reduced false alarm rate with a small loss in detection. The method can be rapidly developed on a digital signal processing platform.

  5. Sensorless control for permanent magnet synchronous motor using a neural network based adaptive estimator

    Science.gov (United States)

    Kwon, Chung-Jin; Kim, Sung-Joong; Han, Woo-Young; Min, Won-Kyoung

    2005-12-01

    The rotor position and speed estimation of permanent-magnet synchronous motor(PMSM) was dealt with. By measuring the phase voltages and currents of the PMSM drive, two diagonally recurrent neural network(DRNN) based observers, a neural current observer and a neural velocity observer were developed. DRNN which has self-feedback of the hidden neurons ensures that the outputs of DRNN contain the whole past information of the system even if the inputs of DRNN are only the present states and inputs of the system. Thus the structure of DRNN may be simpler than that of feedforward and fully recurrent neural networks. If the backpropagation method was used for the training of the DRNN the problem of slow convergence arise. In order to reduce this problem, recursive prediction error(RPE) based learning method for the DRNN was presented. The simulation results show that the proposed approach gives a good estimation of rotor speed and position, and RPE based training has requires a shorter computation time compared to backpropagation based training.

  6. Artificial Neural Network Model for Predicting Compressive

    Directory of Open Access Journals (Sweden)

    Salim T. Yousif

    2013-05-01

    Full Text Available   Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature.    The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor  affecting the output of the model.     The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.

  7. Handwritten Digits Recognition Using Neural Computing

    Directory of Open Access Journals (Sweden)

    Călin Enăchescu

    2009-12-01

    Full Text Available In this paper we present a method for the recognition of handwritten digits and a practical implementation of this method for real-time recognition. A theoretical framework for the neural networks used to classify the handwritten digits is also presented.The classification task is performed using a Convolutional Neural Network (CNN. CNN is a special type of multy-layer neural network, being trained with an optimized version of the back-propagation learning algorithm.CNN is designed to recognize visual patterns directly from pixel images with minimal preprocessing, being capable to recognize patterns with extreme variability (such as handwritten characters, and with robustness to distortions and simple geometric transformations.The main contributions of this paper are related to theoriginal methods for increasing the efficiency of the learning algorithm by preprocessing the images before the learning process and a method for increasing the precision and performance for real-time applications, by removing the non useful information from the background.By combining these strategies we have obtained an accuracy of 96.76%, using as training set the NIST (National Institute of Standards and Technology database.

  8. Development and evaluation of neural network models to estimate daily solar radiation at Córdoba, Argentina Desenvolvimento e avaliação de modelos de redes neurais para estimação da irradiação solar diária em Córdoba, Argentina

    OpenAIRE

    Mónica Bocco; Gustavo Ovando; Silvina Sayago

    2006-01-01

    The objective of this work was to develop neural network models of backpropagation type to estimate solar radiation based on extraterrestrial radiation data, daily temperature range, precipitation, cloudiness and relative sunshine duration. Data from Córdoba, Argentina, were used for development and validation. The behaviour and adjustment between values observed and estimates obtained by neural networks for different combinations of input were assessed. These estimations showed root mean squ...

  9. An Adaptive Filtering Algorithm Based on Genetic Algorithm-Backpropagation Network

    Directory of Open Access Journals (Sweden)

    Kai Hu

    2013-01-01

    Full Text Available A new image filtering algorithm is proposed. GA-BPN algorithm uses genetic algorithm (GA to decide weights in a back propagation neural network (BPN. It has better global optimal characteristics than traditional optimal algorithm. In this paper, we used GA-BPN to do image noise filter researching work. Firstly, this paper uses training samples to train GA-BPN as the noise detector. Then, we utilize the well-trained GA-BPN to recognize noise pixels in target image. And at last, an adaptive weighted average algorithm is used to recover noise pixels recognized by GA-BPN. Experiment data shows that this algorithm has better performance than other filters.

  10. Beyond Feedforward Models Trained by Backpropagation: a Practical Training Tool for a More Efficient Universal Approximator

    CERN Document Server

    Ilin, Roman; Werbos, Paul J

    2007-01-01

    Cellular Simultaneous Recurrent Neural Network (SRN) has been shown to be a function approximator more powerful than the MLP. This means that the complexity of MLP would be prohibitively large for some problems while SRN could realize the desired mapping with acceptable computational constraints. The speed of training of complex recurrent networks is crucial to their successful application. Present work improves the previous results by training the network with extended Kalman filter (EKF). We implemented a generic Cellular SRN and applied it for solving two challenging problems: 2D maze navigation and a subset of the connectedness problem. The speed of convergence has been improved by several orders of magnitude in comparison with the earlier results in the case of maze navigation, and superior generalization has been demonstrated in the case of connectedness. The implications of this improvements are discussed.

  11. Trainable hardware for dynamical computing using error backpropagation through physical media

    Science.gov (United States)

    Hermans, Michiel; Burm, Michaël; van Vaerenbergh, Thomas; Dambre, Joni; Bienstman, Peter

    2015-03-01

    Neural networks are currently implemented on digital Von Neumann machines, which do not fully leverage their intrinsic parallelism. We demonstrate how to use a novel class of reconfigurable dynamical systems for analogue information processing, mitigating this problem. Our generic hardware platform for dynamic, analogue computing consists of a reciprocal linear dynamical system with nonlinear feedback. Thanks to reciprocity, a ubiquitous property of many physical phenomena like the propagation of light and sound, the error backpropagation—a crucial step for tuning such systems towards a specific task—can happen in hardware. This can potentially speed up the optimization process significantly, offering important benefits for the scalability of neuro-inspired hardware. In this paper, we show, using one experimentally validated and one conceptual example, that such systems may provide a straightforward mechanism for constructing highly scalable, fully dynamical analogue computers.

  12. Temporal and Spatial prediction of groundwater levels using Artificial Neural Networks, Fuzzy logic and Kriging interpolation.

    Science.gov (United States)

    Tapoglou, Evdokia; Karatzas, George P.; Trichakis, Ioannis C.; Varouchakis, Emmanouil A.

    2014-05-01

    The purpose of this study is to examine the use of Artificial Neural Networks (ANN) combined with kriging interpolation method, in order to simulate the hydraulic head both spatially and temporally. Initially, ANNs are used for the temporal simulation of the hydraulic head change. The results of the most appropriate ANNs, determined through a fuzzy logic system, are used as an input for the kriging algorithm where the spatial simulation is conducted. The proposed algorithm is tested in an area located across Isar River in Bayern, Germany and covers an area of approximately 7800 km2. The available data extend to a time period from 1/11/2008 to 31/10/2012 (1460 days) and include the hydraulic head at 64 wells, temperature and rainfall at 7 weather stations and surface water elevation at 5 monitoring stations. One feedforward ANN was trained for each of the 64 wells, where hydraulic head data are available, using a backpropagation algorithm. The most appropriate input parameters for each wells' ANN are determined considering their proximity to the measuring station, as well as their statistical characteristics. For the rainfall, the data for two consecutive time lags for best correlated weather station, as well as a third and fourth input from the second best correlated weather station, are used as an input. The surface water monitoring stations with the three best correlations for each well are also used in every case. Finally, the temperature for the best correlated weather station is used. Two different architectures are considered and the one with the best results is used henceforward. The output of the ANNs corresponds to the hydraulic head change per time step. These predictions are used in the kriging interpolation algorithm. However, not all 64 simulated values should be used. The appropriate neighborhood for each prediction point is constructed based not only on the distance between known and prediction points, but also on the training and testing error of

  13. Modeling the dynamics of the lead bismuth eutectic experimental accelerator driven system by an infinite impulse response locally recurrent neural network

    Energy Technology Data Exchange (ETDEWEB)

    Zio, Enrico; Pedroni, Nicola; Broggi, Matteo; Golea, Lucia Roxana [Polytechnic of Milan, Milan (Italy)

    2009-12-15

    In this paper, an infinite impulse response locally recurrent neural network (IIR-LRNN) is employed for modelling the dynamics of the Lead Bismuth Eutectic eXperimental Accelerator Driven System (LBE-XADS). The network is trained by recursive back-propagation (RBP) and its ability in estimating transients is tested under various conditions. The results demonstrate the robustness of the locally recurrent scheme in the reconstruction of complex nonlinear dynamic relationships

  14. Army Net Zero Prove Out. Net Zero Waster Best Practices

    Science.gov (United States)

    2014-11-18

    Colorado • Fort Bliss, Texas These sites served as test beds for the Army’s Net Zero Initiative, specifically, Net Zero Water , and the Army provided...have sustainability, energy efficiency, water conservation, recycling, pollution prevention, and green procurement programs in place that they can...ARMY NET ZERO PROVE OUT Final Net Zero Water Best Practices November 18, 2014 Distribution A Approved for public release

  15. Optimization of the processing parameters during internal oxidation of Cu-Al alloy powders using an artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Song Kexing; Xing Jiandong; Dong Qiming; Liu Ping; Tian Baohong; Cao Xianjie

    2005-06-15

    Internal oxidation is a commercial method for producing oxide dispersion strengthened copper (ODS Cu). In this paper, the dilute Cu-Al alloy powders containing 0.26 wt% of Al have been internally oxidized at temperatures (T) from 700 to 1000 deg. C, for holding times (t) up to 10 h. The alumina particle size has been observed and determined by electron microscopy using the two-stage preshadowed carbon replica method. By the use of backpropagation network, the non-linear relationship between internal oxidation process parameters (T,t) and alumina particle size has been established on the base of dealing with the experimental data. The results show that the well-trained backpropagation neural network can predict the alumina particle size during internal oxidation precisely and the prediction values have sufficiently mined the basic domain knowledge of internal oxidation process. Therefore, a new way of optimizing process parameters has been provided by the authors.

  16. Net one, net two: the primary care network income statement.

    Science.gov (United States)

    Halley, M D; Little, A W

    1999-10-01

    Although hospital-owned primary care practices have been unprofitable for most hospitals, some hospitals are achieving competitive advantage and sustainable practice operations. A key to the success of some has been a net income reporting tool that separates practice operating expenses from the costs of creating and operating a network of practices to help healthcare organization managers, physicians, and staff to identify opportunities to improve the network's financial performance. This "Net One, Net Two" reporting allows operations leadership to be held accountable for Net One expenses and strategic leadership to be held accountable for Net Two expenses.

  17. Proof nets for lingusitic analysis

    NARCIS (Netherlands)

    Moot, R.C.A.

    2002-01-01

    This book investigates the possible linguistic applications of proof nets, redundancy free representations of proofs, which were introduced by Girard for linear logic. We will adapt the notion of proof net to allow the formulation of a proof net calculus which is soundand complete for the multimoda

  18. Intelligent Intrusion Detection System Model Using Rough Neural Network

    Institute of Scientific and Technical Information of China (English)

    YAN Huai-zhi; HU Chang-zhen; TAN Hui-min

    2005-01-01

    A model of intelligent intrusion detection based on rough neural network (RNN), which combines the neural network and rough set, is presented. It works by capturing network packets to identify network intrusions or malicious attacks using RNN with sub-nets. The sub-net is constructed by detection-oriented signatures extracted using rough set theory to detect different intrusions. It is proved that RNN detection method has the merits of adaptive, high universality,high convergence speed, easy upgrading and management.

  19. Universal approximation in p-mean by neural networks

    NARCIS (Netherlands)

    Burton, R.M; Dehling, H.G

    A feedforward neural net with d input neurons and with a single hidden layer of n neurons is given by [GRAPHICS] where a(j), theta(j), w(ji) is an element of R. In this paper we study the approximation of arbitrary functions f: R-d --> R by a neural net in an L-p(mu) norm for some finite measure mu

  20. Boom Booom Net Radio

    DEFF Research Database (Denmark)

    Grimshaw, Mark Nicholas; Yong, Louisa; Dobie, Ian

    1999-01-01

    of an existing Internet radio station; Boom Booom Net Radio. Whilst necessity dictates some use of technology-related terminology, wherever possible we have endeavoured to keep such jargon to a minimum and to either explain it in the text or to provide further explanation in the appended glossary.......Internet radio is one of the growth areas of the Internet but, as this article will show, is fraught with difficulties and frustration for both the modestly-funded broadcaster (bitcaster) and the listener. The article will illustrate some of these problems by means of a short case study...

  1. Safety nets or straitjackets?

    DEFF Research Database (Denmark)

    Ilsøe, Anna

    2012-01-01

    Does regulation of working hours at national and sector level impose straitjackets, or offer safety nets to employees seeking working time flexibility? This article compares legislation and collective agreements in the metal industries of Denmark, Germany and the USA. The industry has historically...... been trend-setting for collective bargaining in all three countries, but with very different effects on working time. Organized decentralization seems to pave the way for fewer straitjackets, whereas the opposite seems to be the case with regard to disorganized decentralization....

  2. Master Robotic Net

    Directory of Open Access Journals (Sweden)

    Vladimir Lipunov

    2010-01-01

    Full Text Available The main goal of the MASTER-Net project is to produce a unique fast sky survey with all sky observed over a single night down to a limiting magnitude of 19-20. Such a survey will make it possible to address a number of fundamental problems: search for dark energy via the discovery and photometry of supernovae (including SNIa, search for exoplanets, microlensing effects, discovery of minor bodies in the Solar System, and space-junk monitoring. All MASTER telescopes can be guided by alerts, and we plan to observe prompt optical emission from gamma-ray bursts synchronously in several filters and in several polarization planes.

  3. Spectral classification using convolutional neural networks

    CERN Document Server

    Hála, Pavel

    2014-01-01

    There is a great need for accurate and autonomous spectral classification methods in astrophysics. This thesis is about training a convolutional neural network (ConvNet) to recognize an object class (quasar, star or galaxy) from one-dimension spectra only. Author developed several scripts and C programs for datasets preparation, preprocessing and postprocessing of the data. EBLearn library (developed by Pierre Sermanet and Yann LeCun) was used to create ConvNets. Application on dataset of more than 60000 spectra yielded success rate of nearly 95%. This thesis conclusively proved great potential of convolutional neural networks and deep learning methods in astrophysics.

  4. High-level Petri Nets

    DEFF Research Database (Denmark)

    to their work can be found in the individual papers and in the available bibliographies of Petri nets, e.g., Stefan Dress et. al: Bibliography of Petri Nets. In: G. Rozenberg (ed.): Advances in Petri Nets 1987, Lecture Notes in Computer Science, vol. 266, Springer-Verlag 1987, 309-451. Updated versions...... of this bibliography will appear in Advances of Petri Nets with regular intervals. In the preparation of the book the editors have been assisted by an advisory board consisting of the following well-known Petri net researchers: M. Ajmone-Marsan, H.J. Genrich, C. Girault, W. Reisig, M. Silva and P.S. Thiagarajan...

  5. From neural-based object recognition toward microelectronic eyes

    Science.gov (United States)

    Sheu, Bing J.; Bang, Sa Hyun

    1994-01-01

    Engineering neural network systems are best known for their abilities to adapt to the changing characteristics of the surrounding environment by adjusting system parameter values during the learning process. Rapid advances in analog current-mode design techniques have made possible the implementation of major neural network functions in custom VLSI chips. An electrically programmable analog synapse cell with large dynamic range can be realized in a compact silicon area. New designs of the synapse cells, neurons, and analog processor are presented. A synapse cell based on Gilbert multiplier structure can perform the linear multiplication for back-propagation networks. A double differential-pair synapse cell can perform the Gaussian function for radial-basis network. The synapse cells can be biased in the strong inversion region for high-speed operation or biased in the subthreshold region for low-power operation. The voltage gain of the sigmoid-function neurons is externally adjustable which greatly facilitates the search of optimal solutions in certain networks. Various building blocks can be intelligently connected to form useful industrial applications. Efficient data communication is a key system-level design issue for large-scale networks. We also present analog neural processors based on perceptron architecture and Hopfield network for communication applications. Biologically inspired neural networks have played an important role towards the creation of powerful intelligent machines. Accuracy, limitations, and prospects of analog current-mode design of the biologically inspired vision processing chips and cellular neural network chips are key design issues.

  6. Mandarin Chinese Tone Recognition with an Artificial Neural Network

    Institute of Scientific and Technical Information of China (English)

    XU Li; ZHANG Wenle; ZHOU Ning; LEE Chaoyang; LI Yongxin; CHEN Xiuwu; ZHAO Xiaoyan

    2006-01-01

    Mandarin Chinese tone patterns vary in one of the four ways, i.e, (1) high level; (2) rising; (3) low falling and rising; and (4) high falling. The present study is to examine the efficacy of an artificial neural network in recognizing these tone patterns. Speech data were recorded from 12 children (3-6 years of age) and 15 adults. All subjects were native Mandarin Chinese speakers. The fundamental frequencies (FO) of each monosyllabic word of the speech data were extracted with an autocorrelation method. The pitch data(i.e., the FO contours) were the inputs to a feed-forward backpropagation artificial neural network. The number of inputs to the neural network varied from 1 to 16 and the hidden layer of the network contained neurons that varied from 1 to 16 in number. The output of the network consisted of four neurons representing the four tone patterns of Mandarin Chinese. After being trained with the Levenberg-Marquardt optimization, the neural network was able to successfully classify the tone patterns with an accuracy of about 90% correct for speech samples from both adults and children. The artificial neural network may provide an objective and effective way of assessing tone production in prelingually-deafened children who have received cochlear implants.

  7. NETS FOR PEACH PROTECTED CULTIVATION

    Directory of Open Access Journals (Sweden)

    Evelia Schettini

    2012-06-01

    Full Text Available The aim of this paper was to investigate the radiometric properties of coloured nets used to protect a peach cultivation. The modifications of the solar spectral distribution, mainly in the R and FR wavelength band, influence plant photomorphogenesis by means of the phytochrome and cryptochrome. The phytochrome response is characterized in terms of radiation rate in the red wavelengths (R, 600-700 nm to that in the farred radiation (FR, 700-800 nm, i.e. the R/FR ratio. The effects of the blue radiation (B, 400-500 nm is investigated by the ratio between the blue radiation and the far-red radiation, i.e. the B/FR ratio. A BLUE net, a RED net, a YELLOW net, a PEARL net, a GREY net and a NEUTRAL net were tested in Bari (Italy, latitude 41° 05’ N. Peach trees were located in pots inside the greenhouses and in open field. The growth of the trees cultivated in open field was lower in comparison to the growth of the trees grown under the nets. The RED, PEARL, YELLOW and GREY nets increased the growth of the trees more than the other nets. The nets positively influenced the fruit characteristics, such as fruit weight and flesh firmness.

  8. NetPhosBac - A predictor for Ser/Thr phosphorylation sites in bacterial proteins

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Soufi, Boumediene; Jers, Carsten;

    2009-01-01

    predictors on bacterial systems. We used these large bacterial datasets and neural network algorithms to create the first bacteria-specific protein phosphorylation predictor: NetPhosBac. With respect to predicting bacterial phosphorylation sites, NetPhosBac significantly outperformed all benchmark predictors....... Moreover, NetPhosBac predictions of phosphorylation sites in E. coli proteins were experimentally verified on protein and site-specific levels. In conclusion, NetPhosBac clearly illustrates the advantage of taxa-specific predictors and we hope it will provide a useful asset to the microbiological community....

  9. Mixed Analog/Digital Matrix-Vector Multiplier for Neural Network Synapses

    DEFF Research Database (Denmark)

    Lehmann, Torsten; Bruun, Erik; Dietrich, Casper

    1996-01-01

    In this work we present a hardware efficient matrix-vector multiplier architecture for artificial neural networks with digitally stored synapse strengths. We present a novel technique for manipulating bipolar inputs based on an analog two's complements method and an accurate current rectifier....../sign detector. Measurements on a CMOS test chip are presented and validates the techniques. Further, we propose to use an analog extension, based on a simple capacitive storage, for enhancing weight resolution during learning. It is shown that the implementation of Hebbian learning and back-propagation learning...

  10. Artificial Neural Network Model for Predicting Ultimate Tensile Capacity of Adhesive Anchors

    Institute of Scientific and Technical Information of China (English)

    XU Bo; WU Zhi-min; SONG Zhi-fei

    2007-01-01

    To predict the tensile capacity of adhesive anchors, a multilayered feed-forward neural network trained with the backpropagation algorithm is constructed. The ANN model have 5 inputs, including the compressive strength of concrete, tensile strength of concrete, anchor diameter, hole diameter, embedment of anchors, and ultimate load. The predictions obtained from the trained ANN show a good agreement with the experiments. Meanwhile, the predicted ultinate tensile capacity of anchors is close to the one calculated from the strength formula of the combined cone-bond failure model.

  11. Simulation of an industrial wastewater treatment plant using artificial neural networks and principal components analysis

    Directory of Open Access Journals (Sweden)

    Oliveira-Esquerre K.P.

    2002-01-01

    Full Text Available This work presents a way to predict the biochemical oxygen demand (BOD of the output stream of the biological wastewater treatment plant at RIPASA S/A Celulose e Papel, one of the major pulp and paper plants in Brazil. The best prediction performance is achieved when the data are preprocessed using principal components analysis (PCA before they are fed to a backpropagated neural network. The influence of input variables is analyzed and satisfactory prediction results are obtained for an optimized situation.

  12. Identification of Nonlinear Dynamic Systems Using Hammerstein-Type Neural Network

    Directory of Open Access Journals (Sweden)

    Hongshan Yu

    2014-01-01

    Full Text Available Hammerstein model has been popularly applied to identify the nonlinear systems. In this paper, a Hammerstein-type neural network (HTNN is derived to formulate the well-known Hammerstein model. The HTNN consists of a nonlinear static gain in cascade with a linear dynamic part. First, the Lipschitz criterion for order determination is derived. Second, the backpropagation algorithm for updating the network weights is presented, and the stability analysis is also drawn. Finally, simulation results show that HTNN identification approach demonstrated identification performances.

  13. Application of artificial neural network for prediction of marine diesel engine performance

    Science.gov (United States)

    Mohd Noor, C. W.; Mamat, R.; Najafi, G.; Nik, W. B. Wan; Fadhil, M.

    2015-12-01

    This study deals with an artificial neural network (ANN) modelling of a marine diesel engine to predict the brake power, output torque, brake specific fuel consumption, brake thermal efficiency and volumetric efficiency. The input data for network training was gathered from engine laboratory testing running at various engine speed. The prediction model was developed based on standard back-propagation Levenberg-Marquardt training algorithm. The performance of the model was validated by comparing the prediction data sets with the measured experiment data. Results showed that the ANN model provided good agreement with the experimental data with high accuracy.

  14. A BOD-DO coupling model for water quality simulation by artificial neural network

    Institute of Scientific and Technical Information of China (English)

    郭劲松; LONG; Tengrui; 等

    2002-01-01

    A one-dimensional BOD-DO coupling model for water quality simulation is presented,which adopts Streeter-Phelps equations and the theory of back-propagation artificial neural network.The water quality data of Yangtze River in the Chongqing region in the year of 1989 are divided into 5 groups and used in the learning and testing courses of this model.The result shows that such model is feasible for water quality simulation and is more accurate than traditional models.

  15. Use of artificial neural networks in drug and explosive detection through tomographic images with thermal neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Francisco J.O.; Crispim, Verginia R.; Silva, Ademir X., E-mail: fferreira@ien.gov.b, E-mail: verginia@con.ufri.b, E-mail: ademir@con.ufri.b [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2009-07-01

    The artificial neural network technique was used to identify drugs and plastic explosives, from a tomography composed by a set of six neutrongraphic projections obtained in real time. Bidimensional tomographic images of samples of drugs, explosives and other materials, when digitally processed, yield the characteristic spectra of each type of material. The information contained in those spectra was then used for ANN training, the best images being obtained when the multilayer perceptron model, the back-propagation training algorithm and the Cross-validation interruption criterion were used. ANN showed to be useful in forecasting presence of drugs and explosives hitting a rate of success above 97 %. (author)

  16. Intelligent neural-network-based adaptive power-line conditioner for real-time harmonics filtering

    Energy Technology Data Exchange (ETDEWEB)

    Lin, H.C. [Chien Kuo Institute of Technology (China). Dept. of Automation Engineering

    2004-09-01

    Conventional approaches for harmonic filtering usually employ either passive or active filtering techniques or a combination of both. The paper proposes an alternative intelligent adaptive power line conditioner (I-APLC), which. is a form of neural-network- based adaptive harmonic filtering. The I-APLC makes use of one supervised learning rule (backpropagation) which underlies the adaptive self-learning in realising the optimal filter weight vector. Experimental. results obtained via a prototype model of the DC variable-speed motor verified that I-APLC is feasible in terms of real-time tracking, adaptive harmonic filtering, faster training mid convergence speeds, and simplicity in the online hardware implementation. (author)

  17. ANOMALY INTRUSION DETECTION DESIGN USING HYBRID OF UNSUPERVISED AND SUPERVISED NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    M. Bahrololum

    2009-07-01

    Full Text Available This paper proposed a new approach to design the system using a hybrid of misuse and anomalydetection for training of normal and attack packets respectively. The utilized method for attack training isthe combination of unsupervised and supervised Neural Network (NN for Intrusion Detection System. Bythe unsupervised NN based on Self Organizing Map (SOM, attacks will be classified into smallercategories considering their similar features, and then unsupervised NN based on Backpropagation willbe used for clustering. By misuse approach known packets would be identified fast and unknown attackswill be able to detect by this method.

  18. Use of Neural Networks for Damage Assessment in a Steel Mast

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Rytter, A.

    1994-01-01

    In this paper the possibility of using a Multilayer Perceptron (MLP) network trained with the Backpropagation Algorithm for detecting location and size of a damage in a civil engineering structure is investigated. The structure considered is a 20 m high steel lattice mast subjected to wind excita...... as well as full-scale tests where the mast is identified by an ARMA-model. The results show that a neural network trained with simulated data is capable for detecting location of a damage in a steel lattice mast when the network is subjected to experimental data.·...

  19. A Neural Network Based Recognition and Classification of Commonly Used Indian Non Leafy Vegetables

    Directory of Open Access Journals (Sweden)

    Ajit Danti

    2014-09-01

    Full Text Available A methodology to characterize the commonly used Indian non-leafy vegetables’ images is developed. From the captured images of Indian non-leafy vegetables, color components, namely, RGB and HSV features are extracted, analyzed and classified. A feed forward backpropagation artificial neural network (BPNN is used for the classification. The results show that it has good robustness and a very high success rate in the range of 96-100% for eight types of vegetables. The work finds usefulness in developing recognition system for super market, automatic vending, packing and grading of vegetables, food preparation and Agriculture Produce Market Committee (APMC.

  20. Role of AMPA and NMDA receptors and back-propagating action potentials in spike timing-dependent plasticity.

    Science.gov (United States)

    Fuenzalida, Marco; Fernández de Sevilla, David; Couve, Alejandro; Buño, Washington

    2010-01-01

    The cellular mechanisms that mediate spike timing-dependent plasticity (STDP) are largely unknown. We studied in vitro in CA1 pyramidal neurons the contribution of AMPA and N-methyl-d-aspartate (NMDA) components of Schaffer collateral (SC) excitatory postsynaptic potentials (EPSPs; EPSP(AMPA) and EPSP(NMDA)) and of the back-propagating action potential (BAP) to the long-term potentiation (LTP) induced by a STDP protocol that consisted in pairing an EPSP and a BAP. Transient blockade of EPSP(AMPA) with 7-nitro-2,3-dioxo-1,4-dihydroquinoxaline-6-carbonitrile (CNQX) during the STDP protocol prevented LTP. Contrastingly LTP was induced under transient inhibition of EPSP(AMPA) by combining SC stimulation, an imposed EPSP(AMPA)-like depolarization, and BAP or by coupling the EPSP(NMDA) evoked under sustained depolarization (approximately -40 mV) and BAP. In Mg(2+)-free solution EPSP(NMDA) and BAP also produced LTP. Suppression of EPSP(NMDA) or BAP always prevented LTP. Thus activation of NMDA receptors and BAPs are needed but not sufficient because AMPA receptor activation is also obligatory for STDP. However, a transient depolarization of another origin that unblocks NMDA receptors and a BAP may also trigger LTP.

  1. Spectrally Shaped DP-16QAM Super-Channel Transmission with Multi-Channel Digital Back-Propagation

    Science.gov (United States)

    Maher, Robert; Xu, Tianhua; Galdino, Lidia; Sato, Masaki; Alvarado, Alex; Shi, Kai; Savory, Seb J.; Thomsen, Benn C.; Killey, Robert I.; Bayvel, Polina

    2015-02-01

    The achievable transmission capacity of conventional optical fibre communication systems is limited by nonlinear distortions due to the Kerr effect and the difficulty in modulating the optical field to effectively use the available fibre bandwidth. In order to achieve a high information spectral density (ISD), while simultaneously maintaining transmission reach, multi-channel fibre nonlinearity compensation and spectrally efficient data encoding must be utilised. In this work, we use a single coherent super-receiver to simultaneously receive a DP-16QAM super-channel, consisting of seven spectrally shaped 10GBd sub-carriers spaced at the Nyquist frequency. Effective nonlinearity mitigation is achieved using multi-channel digital back-propagation (MC-DBP) and this technique is combined with an optimised forward error correction implementation to demonstrate a record gain in transmission reach of 85%; increasing the maximum transmission distance from 3190 km to 5890 km, with an ISD of 6.60 b/s/Hz. In addition, this report outlines for the first time, the sensitivity of MC-DBP gain to linear transmission line impairments and defines a trade-off between performance and complexity.

  2. Equalization enhanced phase noise in Nyquist-spaced superchannel transmission systems using multi-channel digital back-propagation

    Science.gov (United States)

    Xu, Tianhua; Liga, Gabriele; Lavery, Domaniç; Thomsen, Benn C.; Savory, Seb J.; Killey, Robert I.; Bayvel, Polina

    2015-09-01

    Superchannel transmission spaced at the symbol rate, known as Nyquist spacing, has been demonstrated for effectively maximizing the optical communication channel capacity and spectral efficiency. However, the achievable capacity and reach of transmission systems using advanced modulation formats are affected by fibre nonlinearities and equalization enhanced phase noise (EEPN). Fibre nonlinearities can be effectively compensated using digital back-propagation (DBP). However EEPN which arises from the interaction between laser phase noise and dispersion cannot be efficiently mitigated, and can significantly degrade the performance of transmission systems. Here we report the first investigation of the origin and the impact of EEPN in Nyquist-spaced superchannel system, employing electronic dispersion compensation (EDC) and multi-channel DBP (MC-DBP). Analysis was carried out in a Nyquist-spaced 9-channel 32-Gbaud DP-64QAM transmission system. Results confirm that EEPN significantly degrades the performance of all sub-channels of the superchannel system and that the distortions are more severe for the outer sub-channels, both using EDC and MC-DBP. It is also found that the origin of EEPN depends on the relative position between the carrier phase recovery module and the EDC (or MC-DBP) module. Considering EEPN, diverse coding techniques and modulation formats have to be applied for optimizing different sub-channels in superchannel systems.

  3. Equalization enhanced phase noise in Nyquist-spaced superchannel transmission systems using multi-channel digital back-propagation.

    Science.gov (United States)

    Xu, Tianhua; Liga, Gabriele; Lavery, Domaniç; Thomsen, Benn C; Savory, Seb J; Killey, Robert I; Bayvel, Polina

    2015-09-14

    Superchannel transmission spaced at the symbol rate, known as Nyquist spacing, has been demonstrated for effectively maximizing the optical communication channel capacity and spectral efficiency. However, the achievable capacity and reach of transmission systems using advanced modulation formats are affected by fibre nonlinearities and equalization enhanced phase noise (EEPN). Fibre nonlinearities can be effectively compensated using digital back-propagation (DBP). However EEPN which arises from the interaction between laser phase noise and dispersion cannot be efficiently mitigated, and can significantly degrade the performance of transmission systems. Here we report the first investigation of the origin and the impact of EEPN in Nyquist-spaced superchannel system, employing electronic dispersion compensation (EDC) and multi-channel DBP (MC-DBP). Analysis was carried out in a Nyquist-spaced 9-channel 32-Gbaud DP-64QAM transmission system. Results confirm that EEPN significantly degrades the performance of all sub-channels of the superchannel system and that the distortions are more severe for the outer sub-channels, both using EDC and MC-DBP. It is also found that the origin of EEPN depends on the relative position between the carrier phase recovery module and the EDC (or MC-DBP) module. Considering EEPN, diverse coding techniques and modulation formats have to be applied for optimizing different sub-channels in superchannel systems.

  4. Supervised artificial neural network-based method for conversion of solar radiation data (case study: Algeria)

    Science.gov (United States)

    Laidi, Maamar; Hanini, Salah; Rezrazi, Ahmed; Yaiche, Mohamed Redha; El Hadj, Abdallah Abdallah; Chellali, Farouk

    2016-01-01

    In this study, a backpropagation artificial neural network (BP-ANN) model is used as an alternative approach to predict solar radiation on tilted surfaces (SRT) using a number of variables involved in physical process. These variables are namely the latitude of the site, mean temperature and relative humidity, Linke turbidity factor and Angstrom coefficient, extraterrestrial solar radiation, solar radiation data measured on horizontal surfaces (SRH), and solar zenith angle. Experimental solar radiation data from 13 stations spread all over Algeria around the year (2004) were used for training/validation and testing the artificial neural networks (ANNs), and one station was used to make the interpolation of the designed ANN. The ANN model was trained, validated, and tested using 60, 20, and 20 % of all data, respectively. The configuration 8-35-1 (8 inputs, 35 hidden, and 1 output neurons) presented an excellent agreement between the prediction and the experimental data during the test stage with determination coefficient of 0.99 and root meat squared error of 5.75 Wh/m2, considering a three-layer feedforward backpropagation neural network with Levenberg-Marquardt training algorithm, a hyperbolic tangent sigmoid and linear transfer function at the hidden and the output layer, respectively. This novel model could be used by researchers or scientists to design high-efficiency solar devices that are usually tilted at an optimum angle to increase the solar incident on the surface.

  5. Optimizing the De-Noise Neural Network Model for GPS Time-Series Monitoring of Structures

    Directory of Open Access Journals (Sweden)

    Mosbeh R. Kaloop

    2015-09-01

    Full Text Available The Global Positioning System (GPS is recently used widely in structures and other applications. Notwithstanding, the GPS accuracy still suffers from the errors afflicting the measurements, particularly the short-period displacement of structural components. Previously, the multi filter method is utilized to remove the displacement errors. This paper aims at using a novel application for the neural network prediction models to improve the GPS monitoring time series data. Four prediction models for the learning algorithms are applied and used with neural network solutions: back-propagation, Cascade-forward back-propagation, adaptive filter and extended Kalman filter, to estimate which model can be recommended. The noise simulation and bridge’s short-period GPS of the monitoring displacement component of one Hz sampling frequency are used to validate the four models and the previous method. The results show that the Adaptive neural networks filter is suggested for de-noising the observations, specifically for the GPS displacement components of structures. Also, this model is expected to have significant influence on the design of structures in the low frequency responses and measurements’ contents.

  6. Supervised artificial neural network-based method for conversion of solar radiation data (case study: Algeria)

    Science.gov (United States)

    Laidi, Maamar; Hanini, Salah; Rezrazi, Ahmed; Yaiche, Mohamed Redha; El Hadj, Abdallah Abdallah; Chellali, Farouk

    2017-04-01

    In this study, a backpropagation artificial neural network (BP-ANN) model is used as an alternative approach to predict solar radiation on tilted surfaces (SRT) using a number of variables involved in physical process. These variables are namely the latitude of the site, mean temperature and relative humidity, Linke turbidity factor and Angstrom coefficient, extraterrestrial solar radiation, solar radiation data measured on horizontal surfaces (SRH), and solar zenith angle. Experimental solar radiation data from 13 stations spread all over Algeria around the year (2004) were used for training/validation and testing the artificial neural networks (ANNs), and one station was used to make the interpolation of the designed ANN. The ANN model was trained, validated, and tested using 60, 20, and 20 % of all data, respectively. The configuration 8-35-1 (8 inputs, 35 hidden, and 1 output neurons) presented an excellent agreement between the prediction and the experimental data during the test stage with determination coefficient of 0.99 and root meat squared error of 5.75 Wh/m2, considering a three-layer feedforward backpropagation neural network with Levenberg-Marquardt training algorithm, a hyperbolic tangent sigmoid and linear transfer function at the hidden and the output layer, respectively. This novel model could be used by researchers or scientists to design high-efficiency solar devices that are usually tilted at an optimum angle to increase the solar incident on the surface.

  7. Convolutional Neural Networks Applied to House Numbers Digit Classification

    CERN Document Server

    Sermanet, Pierre; LeCun, Yann

    2012-01-01

    We classify digits of real-world house numbers using convolutional neural networks (ConvNets). ConvNets are hierarchical feature learning neural networks whose structure is biologically inspired. Unlike many popular vision approaches that are hand-designed, ConvNets can automatically learn a unique set of features optimized for a given task. We augmented the traditional ConvNet architecture by learning multi-stage features and by using Lp pooling and establish a new state-of-the-art of 94.85% accuracy on the SVHN dataset (45.2% error improvement). Furthermore, we analyze the benefits of different pooling methods and multi-stage features in ConvNets. The source code and a tutorial are available at eblearn.sf.net.

  8. F77NNS - A FORTRAN-77 NEURAL NETWORK SIMULATOR

    Science.gov (United States)

    Mitchell, P. H.

    1994-01-01

    F77NNS (A FORTRAN-77 Neural Network Simulator) simulates the popular back error propagation neural network. F77NNS is an ANSI-77 FORTRAN program designed to take advantage of vectorization when run on machines having this capability, but it will run on any computer with an ANSI-77 FORTRAN Compiler. Artificial neural networks are formed from hundreds or thousands of simulated neurons, connected to each other in a manner similar to biological nerve cells. Problems which involve pattern matching or system modeling readily fit the class of problems which F77NNS is designed to solve. The program's formulation trains a neural network using Rumelhart's back-propagation algorithm. Typically the nodes of a network are grouped together into clumps called layers. A network will generally have an input layer through which the various environmental stimuli are presented to the network, and an output layer for determining the network's response. The number of nodes in these two layers is usually tied to features of the problem being solved. Other layers, which form intermediate stops between the input and output layers, are called hidden layers. The back-propagation training algorithm can require massive computational resources to implement a large network such as a network capable of learning text-to-phoneme pronunciation rules as in the famous Sehnowski experiment. The Sehnowski neural network learns to pronounce 1000 common English words. The standard input data defines the specific inputs that control the type of run to be made, and input files define the NN in terms of the layers and nodes, as well as the input/output (I/O) pairs. The program has a restart capability so that a neural network can be solved in stages suitable to the user's resources and desires. F77NNS allows the user to customize the patterns of connections between layers of a network. The size of the neural network to be solved is limited only by the amount of random access memory (RAM) available to the

  9. Using Artificial Neural Networks and Function Points to Estimate 4GL Software Development Effort

    Directory of Open Access Journals (Sweden)

    G.E. Wittig

    1994-05-01

    Full Text Available Hie value of neural network modelling techniques in performing complicated pattern recognition and nonlinear estimation tasks has been demonstrated across an impressive spectrum of applications. Software development is a complex environment with many interrelated factors affecting development effort and productivity. Accurate forecasting has proved difficult since many of these interrelationships are not fully understood. An attempt to capture the significant attributes of the software development environment to enable improved accuracy in forecasting of development effort is made using backpropagation artificial neural networks. The data for this study was gathered from commercial 4GL software development projects, across a large range of sizes. As is typical of software developments, the range in productivity and other development factors in the data set is also large, accentuating the estimation problem. Despite these difficulties the neural network model predictions were reasonably accurate in comparison with other published results, indicating the potential of the use of this approach.

  10. Prediction of flow stress of Ti-15-3 alloy with artificial neural network

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Hot compression experiments were conducted on Ti-15-3 alloy specimens using Gleeble-1500 Thermal Simulator.These tests were focused to obtain the flow stress data under various conditions of strain,strain rate and temperature. On the basis of these data, the predicting model for the nonlinear relation between flow stress and deformation strain,strain rate and temperature for Ti-15-3 alloy was developed with a back-propagation artificial neural network method. Results show that the neural network can reproduce the flow stress in the sampled data and predict the nonsampled data well. Thus the neural network method has been verified to be used to tackle hot deformation problems of Ti-15-3 alloy.

  11. SPATIAL DATA MINING TOOLBOX FOR MAPPING SUITABILITY OF LANDFILL SITES USING NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    S. K. M. Abujayyab

    2016-09-01

    Full Text Available Mapping the suitability of landfill sites is a complex field and is involved with multidiscipline. The purpose of this research is to create an ArcGIS spatial data mining toolbox for mapping the suitability of landfill sites at a regional scale using neural networks. The toolbox is constructed from six sub-tools to prepare, train, and process data. The employment of the toolbox is straightforward. The multilayer perceptron (MLP neural networks structure with a backpropagation learning algorithm is used. The dataset is mined from the north states in Malaysia. A total of 14 criteria are utilized to build the training dataset. The toolbox provides a platform for decision makers to implement neural networks for mapping the suitability of landfill sites in the ArcGIS environment. The result shows the ability of the toolbox to produce suitability maps for landfill sites.

  12. Adaptive learning with guaranteed stability for discrete-time recurrent neural networks

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To avoid unstable learning, a stable adaptive learning algorithm was proposed for discrete-time recurrent neural networks. Unlike the dynamic gradient methods, such as the backpropagation through time and the real time recurrent learning, the weights of the recurrent neural networks were updated online in terms of Lyapunov stability theory in the proposed learning algorithm, so the learning stability was guaranteed. With the inversion of the activation function of the recurrent neural networks, the proposed learning algorithm can be easily implemented for solving varying nonlinear adaptive learning problems and fast convergence of the adaptive learning process can be achieved. Simulation experiments in pattern recognition show that only 5 iterations are needed for the storage of a 15X15 binary image pattern and only 9 iterations are needed for the perfect realization of an analog vector by an equilibrium state with the proposed learning algorithm.

  13. APPLICATION OF ARTIFICIAL NEURAL NETWORKS FOR PREDICTION OF AIR POLLUTION LEVELS IN ENVIRONMENTAL MONITORING

    Directory of Open Access Journals (Sweden)

    Małgorzata Pawul

    2016-09-01

    Full Text Available Recently, a lot of attention was paid to the improvement of methods which are used to air quality forecasting. Artificial neural networks can be applied to model these problems. Their advantage is that they can solve the problem in the conditions of incomplete information, without the knowledge of the analytical relationship between the input and output data. In this paper we applied artificial neural networks to predict the PM 10 concentrations as factors determining the occurrence of smog phenomena. To create these networks we used meteorological data and concentrations of PM 10. The data were recorded in 2014 and 2015 at three measuring stations operating in Krakow under the State Environmental Monitoring. The best results were obtained by three-layer perceptron with back-propagation algorithm. The neural networks received a good fit in all cases.

  14. Forecasting TRY/USD Exchange Rate with Various Artificial Neural Network Models

    Directory of Open Access Journals (Sweden)

    Cagatay Bal

    2017-02-01

    Full Text Available Exchange rate forecasting is one of the most common subjects among the forecasting problem field. Researchers and academicians from many different disciplines proposed various approaches for better exchange rate forecasting. In recent years, for solving the stated forecasting problem artificial neural networks have become successful tool to obtain solutions. Many different artificial neural networks have been used, developed and still developing for even better and trustable forecasts. In this study, TRY/USD exchange rate forecasting is modeled with different learning algorithms, activations functions and performance measures. Various Artificial Neural Network (ANN models for better forecasting were investigated, compared and the obtained forecasting results interpreted respectively. The results of the application show that Variable Learning Rate Backpropagation learning algorithm with tan-sigmoid activation function has the best performance for TRY/USD exchange rate forecasting.

  15. Application of Artificial Neural Network to Predict the use of Runway at Juanda International Airport

    Science.gov (United States)

    Putra, J. C. P.; Safrilah

    2017-06-01

    Artificial neural network approaches are useful to solve many complicated problems. It solves a number of problems in various areas such as engineering, medicine, business, manufacturing, etc. This paper presents an application of artificial neural network to predict a runway capacity at Juanda International Airport. An artificial neural network model of backpropagation and multi-layer perceptron is adopted to this research to learning process of runway capacity at Juanda International Airport. The results indicate that the training data is successfully recognizing the certain pattern of runway use at Juanda International Airport. Whereas, testing data indicate vice versa. Finally, it can be concluded that the approach of uniformity data and network architecture is the critical part to determine the accuracy of prediction results.

  16. Predicting Model forComplex Production Process Based on Dynamic Neural Network

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the comparison of several methods of time series predicting, this paper points out that it is nec-essary to use dynamic neural network in modeling of complex production process. Because self-feedback and mutu-al-feedback are adopted among nodes at the same layer in Elman network, it has stronger ability of dynamic ap-proximation, and can describe any non-linear dynamic system. After the structure and mathematical description be-ing given, dynamic back-propagation (BP) algorithm of training weights of Elman neural network is deduced. Atlast, the network is used to predict ash content of black amber in jigging production process. The results show thatthis neural network is powerful in predicting and suitable for modeling, predicting, and controling of complex pro-duction process.

  17. Modeling and prediction of Turkey's electricity consumption using Artificial Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Kavaklioglu, Kadir; Ozturk, Harun Kemal; Canyurt, Olcay Ersel [Pamukkale University, Mechanical Engineering Department, Denizli (Turkey); Ceylan, Halim [Pamukkale University, Civil Engineering Department, Denizli (Turkey)

    2009-11-15

    Artificial Neural Networks are proposed to model and predict electricity consumption of Turkey. Multi layer perceptron with backpropagation training algorithm is used as the neural network topology. Tangent-sigmoid and pure-linear transfer functions are selected in the hidden and output layer processing elements, respectively. These input-output network models are a result of relationships that exist among electricity consumption and several other socioeconomic variables. Electricity consumption is modeled as a function of economic indicators such as population, gross national product, imports and exports. It is also modeled using export-import ratio and time input only. Performance comparison among different models is made based on absolute and percentage mean square error. Electricity consumption of Turkey is predicted until 2027 using data from 1975 to 2006 along with other economic indicators. The results show that electricity consumption can be modeled using Artificial Neural Networks, and the models can be used to predict future electricity consumption. (author)

  18. Robust recurrent neural network modeling for software fault detection and correction prediction

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Q.P. [Quality and Innovation Research Centre, Department of Industrial and Systems Engineering, National University of Singapore, Singapore 119260 (Singapore)]. E-mail: g0305835@nus.edu.sg; Xie, M. [Quality and Innovation Research Centre, Department of Industrial and Systems Engineering, National University of Singapore, Singapore 119260 (Singapore)]. E-mail: mxie@nus.edu.sg; Ng, S.H. [Quality and Innovation Research Centre, Department of Industrial and Systems Engineering, National University of Singapore, Singapore 119260 (Singapore)]. E-mail: isensh@nus.edu.sg; Levitin, G. [Israel Electric Corporation, Reliability and Equipment Department, R and D Division, Aaifa 31000 (Israel)]. E-mail: levitin@iec.co.il

    2007-03-15

    Software fault detection and correction processes are related although different, and they should be studied together. A practical approach is to apply software reliability growth models to model fault detection, and fault correction process is assumed to be a delayed process. On the other hand, the artificial neural networks model, as a data-driven approach, tries to model these two processes together with no assumptions. Specifically, feedforward backpropagation networks have shown their advantages over analytical models in fault number predictions. In this paper, the following approach is explored. First, recurrent neural networks are applied to model these two processes together. Within this framework, a systematic networks configuration approach is developed with genetic algorithm according to the prediction performance. In order to provide robust predictions, an extra factor characterizing the dispersion of prediction repetitions is incorporated into the performance function. Comparisons with feedforward neural networks and analytical models are developed with respect to a real data set.

  19. Butterfly Classification by HSI and RGB Color Models Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Jorge E. Grajales-Múnera

    2013-11-01

    Full Text Available This study aims the classification of Butterfly species through the implementation of Neural Networks and Image Processing. A total of 9 species of Morpho genre which has blue as a characteristic color are processed. For Butterfly segmentation we used image processing tools such as: Binarization, edge processing and mathematical morphology. For data processing RGB values are obtained for every image which are converted to HSI color model to identify blue pixels and obtain the data to the proposed Neural Networks: Back-Propagation and Perceptron. For analysis and verification of results confusion matrix are built and analyzed with the results of neural networks with the lowest error levels. We obtain error levels close to 1% in classification of some Butterfly species.

  20. Spatial Data Mining Toolbox for Mapping Suitability of Landfill Sites Using Neural Networks

    Science.gov (United States)

    Abujayyab, S. K. M.; Ahamad, M. S. S.; Yahya, A. S.; Aziz, H. A.

    2016-09-01

    Mapping the suitability of landfill sites is a complex field and is involved with multidiscipline. The purpose of this research is to create an ArcGIS spatial data mining toolbox for mapping the suitability of landfill sites at a regional scale using neural networks. The toolbox is constructed from six sub-tools to prepare, train, and process data. The employment of the toolbox is straightforward. The multilayer perceptron (MLP) neural networks structure with a backpropagation learning algorithm is used. The dataset is mined from the north states in Malaysia. A total of 14 criteria are utilized to build the training dataset. The toolbox provides a platform for decision makers to implement neural networks for mapping the suitability of landfill sites in the ArcGIS environment. The result shows the ability of the toolbox to produce suitability maps for landfill sites.