WorldWideScience

Sample records for neural language organization

  1. Delayed development of neural language organization in very preterm born children.

    Science.gov (United States)

    Mürner-Lavanchy, Ines; Steinlin, Maja; Kiefer, Claus; Weisstanner, Christian; Ritter, Barbara Catherine; Perrig, Walter; Everts, Regula

    2014-01-01

    This study investigates neural language organization in very preterm born children compared to control children and examines the relationship between language organization, age, and language performance. Fifty-six preterms and 38 controls (7-12 y) completed a functional magnetic resonance imaging language task. Lateralization and signal change were computed for language-relevant brain regions. Younger preterms showed a bilateral language network whereas older preterms revealed left-sided language organization. No age-related differences in language organization were observed in controls. Results indicate that preterms maintain atypical bilateral language organization longer than term born controls. This might reflect a delay of neural language organization due to very premature birth.

  2. Learning to Read Words in a New Language Shapes the Neural Organization of the Prior Languages

    Science.gov (United States)

    Mei, Leilei; Xue, Gui; Lu, Zhong-Lin; Chen, Chuansheng; Zhang, Mingxia; He, Qinghua; Wei, Miao; Dong, Qi

    2014-01-01

    Learning a new language entails interactions with one's prior language(s). Much research has shown how native language affects the cognitive and neural mechanisms of a new language, but little is known about whether and how learning a new language shapes the neural mechanisms of prior language(s). In two experiments in the current study, we used an artificial language training paradigm in combination with fMRI to examine (1) the effects of different linguistic components (phonology and semantics) of a new language on the neural process of prior languages (i.e., native and second languages), and (2) whether such effects were modulated by the proficiency level in the new language. Results of Experiment 1 showed that when the training in a new language involved semantics (as opposed to only visual forms and phonology), neural activity during word reading in the native language (Chinese) was reduced in several reading-related regions, including the left pars opercularis, pars triangularis, bilateral inferior temporal gyrus, fusiform gyrus, and inferior occipital gyrus. Results of Experiment 2 replicated the results of Experiment 1 and further found that semantic training also affected neural activity during word reading in the subjects’ second language (English). Furthermore, we found that the effects of the new language were modulated by the subjects’ proficiency level in the new language. These results provide critical imaging evidence for the influence of learning to read words in a new language on word reading in native and second languages. PMID:25447375

  3. Learning to read words in a new language shapes the neural organization of the prior languages.

    Science.gov (United States)

    Mei, Leilei; Xue, Gui; Lu, Zhong-Lin; Chen, Chuansheng; Zhang, Mingxia; He, Qinghua; Wei, Miao; Dong, Qi

    2014-12-01

    Learning a new language entails interactions with one׳s prior language(s). Much research has shown how native language affects the cognitive and neural mechanisms of a new language, but little is known about whether and how learning a new language shapes the neural mechanisms of prior language(s). In two experiments in the current study, we used an artificial language training paradigm in combination with an fMRI to examine (1) the effects of different linguistic components (phonology and semantics) of a new language on the neural process of prior languages (i.e., native and second languages), and (2) whether such effects were modulated by the proficiency level in the new language. Results of Experiment 1 showed that when the training in a new language involved semantics (as opposed to only visual forms and phonology), neural activity during word reading in the native language (Chinese) was reduced in several reading-related regions, including the left pars opercularis, pars triangularis, bilateral inferior temporal gyrus, fusiform gyrus, and inferior occipital gyrus. Results of Experiment 2 replicated the results of Experiment 1 and further found that semantic training also affected neural activity during word reading in the subjects׳ second language (English). Furthermore, we found that the effects of the new language were modulated by the subjects׳ proficiency level in the new language. These results provide critical imaging evidence for the influence of learning to read words in a new language on word reading in native and second languages. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Lexical organization and competition in first and second languages: computational and neural mechanisms.

    Science.gov (United States)

    Li, Ping

    2009-06-01

    How does a child rapidly acquire and develop a structured mental organization for the vast number of words in the first years of life? How does a bilingual individual deal with the even more complicated task of learning and organizing two lexicons? It is only until recently have we started to examine the lexicon as a dynamical system with regard to its acquisition, representation, and organization. In this article, I outline a proposal based on our research that takes the dynamical approach to the lexicon, and I discuss how this proposal can be applied to account for lexical organization, structural representation, and competition within and between languages. In particular, I provide computational evidence based on the DevLex model, a self-organizing neural network model, and neuroimaging evidence based on functional magnetic resonance imaging (fMRI) studies, to illustrate how children and adults learn and represent the lexicon in their first and second languages. In the computational research, our goal has been to identify, through linguistically and developmentally realistic models, detailed cognitive mechanisms underlying the dynamic self-organizing processes in monolingual and bilingual lexical development; in the neuroimaging research, our goal has been to identify the neural substrates that subserve lexical organization and competition in the monolingual and the bilingual brain. In both cases, our findings lead to a better understanding of the interactive dynamics involved in the acquisition and representation of one or multiple languages. Copyright © 2009 Cognitive Science Society, Inc.

  5. How sensory-motor systems impact the neural organization for language: direct contrasts between spoken and signed language

    Science.gov (United States)

    Emmorey, Karen; McCullough, Stephen; Mehta, Sonya; Grabowski, Thomas J.

    2014-01-01

    To investigate the impact of sensory-motor systems on the neural organization for language, we conducted an H215O-PET study of sign and spoken word production (picture-naming) and an fMRI study of sign and audio-visual spoken language comprehension (detection of a semantically anomalous sentence) with hearing bilinguals who are native users of American Sign Language (ASL) and English. Directly contrasting speech and sign production revealed greater activation in bilateral parietal cortex for signing, while speaking resulted in greater activation in bilateral superior temporal cortex (STC) and right frontal cortex, likely reflecting auditory feedback control. Surprisingly, the language production contrast revealed a relative increase in activation in bilateral occipital cortex for speaking. We speculate that greater activation in visual cortex for speaking may actually reflect cortical attenuation when signing, which functions to distinguish self-produced from externally generated visual input. Directly contrasting speech and sign comprehension revealed greater activation in bilateral STC for speech and greater activation in bilateral occipital-temporal cortex for sign. Sign comprehension, like sign production, engaged bilateral parietal cortex to a greater extent than spoken language. We hypothesize that posterior parietal activation in part reflects processing related to spatial classifier constructions in ASL and that anterior parietal activation may reflect covert imitation that functions as a predictive model during sign comprehension. The conjunction analysis for comprehension revealed that both speech and sign bilaterally engaged the inferior frontal gyrus (with more extensive activation on the left) and the superior temporal sulcus, suggesting an invariant bilateral perisylvian language system. We conclude that surface level differences between sign and spoken languages should not be dismissed and are critical for understanding the neurobiology of language

  6. How sensory-motor systems impact the neural organization for language: Direct contrasts between spoken and signed language

    Directory of Open Access Journals (Sweden)

    Karen eEmmorey

    2014-05-01

    Full Text Available To investigate the impact of sensory-motor systems on the neural organization for language, we conducted an H215O-PET study of sign and spoken word production (picture-naming and an fMRI study of sign and audio-visual spoken language comprehension (detection of a semantically anomalous sentence with hearing bilinguals who are native users of American Sign Language (ASL and English. Directly contrasting speech and sign production revealed greater activation in bilateral parietal cortex for signing, while speaking resulted in greater activation in bilateral superior temporal cortex (STC and right frontal cortex, likely reflecting auditory feedback control. Surprisingly, the language production contrast revealed a relative increase in activation in bilateral occipital cortex for speaking. We speculate that greater activation in visual cortex for speaking may actually reflect cortical attenuation when signing, which functions to distinguish self-produced from externally generated visual input. Directly contrasting speech and sign comprehension revealed greater activation in bilateral STC for speech and greater activation in bilateral occipital-temporal cortex for sign. Sign comprehension, like sign production, engaged bilateral parietal cortex to a greater extent than spoken language. We hypothesize that posterior parietal activation in part reflects processing related to spatial classifier constructions in ASL and that anterior parietal activation may reflect covert imitation that functions as a predictive model during sign comprehension. The conjunction analysis for comprehension revealed that both speech and sign bilaterally engaged the inferior frontal gyrus (with more extensive activation on the left and the superior temporal sulcus, suggesting an invariant bilateral perisylvian language system. We conclude that surface level differences between sign and spoken languages should not be dismissed and are critical for understanding the

  7. A semantic model to study neural organization of language in bilingualism.

    Science.gov (United States)

    Ursino, M; Cuppini, C; Magosso, E

    2010-01-01

    A neural network model of object semantic representation is used to simulate learning of new words from a foreign language. The network consists of feature areas, devoted to description of object properties, and a lexical area, devoted to words representation. Neurons in the feature areas are implemented as Wilson-Cowan oscillators, to allow segmentation of different simultaneous objects via gamma-band synchronization. Excitatory synapses among neurons in the feature and lexical areas are learned, during a training phase, via a Hebbian rule. In this work, we first assume that some words in the first language (L1) and the corresponding object representations are initially learned during a preliminary training phase. Subsequently, second-language (L2) words are learned by simultaneously presenting the new word together with the L1 one. A competitive mechanism between the two words is also implemented by the use of inhibitory interneurons. Simulations show that, after a weak training, the L2 word allows retrieval of the object properties but requires engagement of the first language. Conversely, after a prolonged training, the L2 word becomes able to retrieve object per se. In this case, a conflict between words can occur, requiring a higher-level decision mechanism.

  8. Neural language processing in adolescent first-language learners.

    Science.gov (United States)

    Ferjan Ramirez, Naja; Leonard, Matthew K; Torres, Christina; Hatrak, Marla; Halgren, Eric; Mayberry, Rachel I

    2014-10-01

    The relation between the timing of language input and development of neural organization for language processing in adulthood has been difficult to tease apart because language is ubiquitous in the environment of nearly all infants. However, within the congenitally deaf population are individuals who do not experience language until after early childhood. Here, we investigated the neural underpinnings of American Sign Language (ASL) in 2 adolescents who had no sustained language input until they were approximately 14 years old. Using anatomically constrained magnetoencephalography, we found that recently learned signed words mainly activated right superior parietal, anterior occipital, and dorsolateral prefrontal areas in these 2 individuals. This spatiotemporal activity pattern was significantly different from the left fronto-temporal pattern observed in young deaf adults who acquired ASL from birth, and from that of hearing young adults learning ASL as a second language for a similar length of time as the cases. These results provide direct evidence that the timing of language experience over human development affects the organization of neural language processing. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Neural Language Processing in Adolescent First-Language Learners: Longitudinal Case Studies in American Sign Language.

    Science.gov (United States)

    Ferjan Ramirez, Naja; Leonard, Matthew K; Davenport, Tristan S; Torres, Christina; Halgren, Eric; Mayberry, Rachel I

    2016-03-01

    One key question in neurolinguistics is the extent to which the neural processing system for language requires linguistic experience during early life to develop fully. We conducted a longitudinal anatomically constrained magnetoencephalography (aMEG) analysis of lexico-semantic processing in 2 deaf adolescents who had no sustained language input until 14 years of age, when they became fully immersed in American Sign Language. After 2 to 3 years of language, the adolescents' neural responses to signed words were highly atypical, localizing mainly to right dorsal frontoparietal regions and often responding more strongly to semantically primed words (Ferjan Ramirez N, Leonard MK, Torres C, Hatrak M, Halgren E, Mayberry RI. 2014. Neural language processing in adolescent first-language learners. Cereb Cortex. 24 (10): 2772-2783). Here, we show that after an additional 15 months of language experience, the adolescents' neural responses remained atypical in terms of polarity. While their responses to less familiar signed words still showed atypical localization patterns, the localization of responses to highly familiar signed words became more concentrated in the left perisylvian language network. Our findings suggest that the timing of language experience affects the organization of neural language processing; however, even in adolescence, language representation in the human brain continues to evolve with experience. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Neural Language Processing in Adolescent First-Language Learners: Longitudinal Case Studies in American Sign Language

    Science.gov (United States)

    Ferjan Ramirez, Naja; Leonard, Matthew K.; Davenport, Tristan S.; Torres, Christina; Halgren, Eric; Mayberry, Rachel I.

    2016-01-01

    One key question in neurolinguistics is the extent to which the neural processing system for language requires linguistic experience during early life to develop fully. We conducted a longitudinal anatomically constrained magnetoencephalography (aMEG) analysis of lexico-semantic processing in 2 deaf adolescents who had no sustained language input until 14 years of age, when they became fully immersed in American Sign Language. After 2 to 3 years of language, the adolescents' neural responses to signed words were highly atypical, localizing mainly to right dorsal frontoparietal regions and often responding more strongly to semantically primed words (Ferjan Ramirez N, Leonard MK, Torres C, Hatrak M, Halgren E, Mayberry RI. 2014. Neural language processing in adolescent first-language learners. Cereb Cortex. 24 (10): 2772–2783). Here, we show that after an additional 15 months of language experience, the adolescents' neural responses remained atypical in terms of polarity. While their responses to less familiar signed words still showed atypical localization patterns, the localization of responses to highly familiar signed words became more concentrated in the left perisylvian language network. Our findings suggest that the timing of language experience affects the organization of neural language processing; however, even in adolescence, language representation in the human brain continues to evolve with experience. PMID:25410427

  11. Brain and language: evidence for neural multifunctionality.

    Science.gov (United States)

    Cahana-Amitay, Dalia; Albert, Martin L

    2014-01-01

    This review paper presents converging evidence from studies of brain damage and longitudinal studies of language in aging which supports the following thesis: the neural basis of language can best be understood by the concept of neural multifunctionality. In this paper the term "neural multifunctionality" refers to incorporation of nonlinguistic functions into language models of the intact brain, reflecting a multifunctional perspective whereby a constant and dynamic interaction exists among neural networks subserving cognitive, affective, and praxic functions with neural networks specialized for lexical retrieval, sentence comprehension, and discourse processing, giving rise to language as we know it. By way of example, we consider effects of executive system functions on aspects of semantic processing among persons with and without aphasia, as well as the interaction of executive and language functions among older adults. We conclude by indicating how this multifunctional view of brain-language relations extends to the realm of language recovery from aphasia, where evidence of the influence of nonlinguistic factors on the reshaping of neural circuitry for aphasia rehabilitation is clearly emerging.

  12. Neural constraints and flexibility in language processing.

    Science.gov (United States)

    Huyck, Christian R

    2016-01-01

    Humans process language with their neurons. Memory in neurons is supported by neural firing and by short- and long-term synaptic weight change; the emergent behaviour of neurons, synchronous firing, and cell assembly dynamics is also a form of memory. As the language signal moves to later stages, it is processed with different mechanisms that are slower but more persistent.

  13. Identifying bilingual semantic neural representations across languages

    Science.gov (United States)

    Buchweitz, Augusto; Shinkareva, Svetlana V.; Mason, Robert A.; Mitchell, Tom M.; Just, Marcel Adam

    2015-01-01

    The goal of the study was to identify the neural representation of a noun's meaning in one language based on the neural representation of that same noun in another language. Machine learning methods were used to train classifiers to identify which individual noun bilingual participants were thinking about in one language based solely on their brain activation in the other language. The study shows reliable (p languages. It also shows that the stable voxels used to classify the brain activation were located in areas associated with encoding information about semantic dimensions of the words in the study. The identification of the semantic trace of individual nouns from the pattern of cortical activity demonstrates the existence of a multi-voxel pattern of activation across the cortex for a single noun common to both languages in bilinguals. PMID:21978845

  14. Language and Cognition Interaction Neural Mechanisms

    Science.gov (United States)

    2011-06-01

    2007. [72] L. I. Perlovsky, “Symbols: integrated cognition and language ,” in Semiotics and Intelligent Systems Development, R. Gudwin and J. Queiroz...Article Language and Cognition Interaction Neural Mechanisms Leonid Perlovsky Harvard University and Air Force Research Laboratory, Harvard University...Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. How language

  15. Neural network approaches for noisy language modeling.

    Science.gov (United States)

    Li, Jun; Ouazzane, Karim; Kazemian, Hassan B; Afzal, Muhammad Sajid

    2013-11-01

    Text entry from people is not only grammatical and distinct, but also noisy. For example, a user's typing stream contains all the information about the user's interaction with computer using a QWERTY keyboard, which may include the user's typing mistakes as well as specific vocabulary, typing habit, and typing performance. In particular, these features are obvious in disabled users' typing streams. This paper proposes a new concept called noisy language modeling by further developing information theory and applies neural networks to one of its specific application-typing stream. This paper experimentally uses a neural network approach to analyze the disabled users' typing streams both in general and specific ways to identify their typing behaviors and subsequently, to make typing predictions and typing corrections. In this paper, a focused time-delay neural network (FTDNN) language model, a time gap model, a prediction model based on time gap, and a probabilistic neural network model (PNN) are developed. A 38% first hitting rate (HR) and a 53% first three HR in symbol prediction are obtained based on the analysis of a user's typing history through the FTDNN language modeling, while the modeling results using the time gap prediction model and the PNN model demonstrate that the correction rates lie predominantly in between 65% and 90% with the current testing samples, and 70% of all test scores above basic correction rates, respectively. The modeling process demonstrates that a neural network is a suitable and robust language modeling tool to analyze the noisy language stream. The research also paves the way for practical application development in areas such as informational analysis, text prediction, and error correction by providing a theoretical basis of neural network approaches for noisy language modeling.

  16. Neural aspects of second language representation and language control.

    Science.gov (United States)

    Abutalebi, Jubin

    2008-07-01

    A basic issue in the neurosciences of language is whether an L2 can be processed through the same neural mechanism underlying L1 acquisition and processing. In the present paper I review data from functional neuroimaging studies focusing on grammatical and lexico-semantic processing in bilinguals. The available evidence indicates that the L2 seems to be acquired through the same neural structures responsible for L1 acquisition. This fact is also observed for grammar acquisition in late L2 learners contrary to what one may expect from critical period accounts. However, neural differences for an L2 may be observed, in terms of more extended activity of the neural system mediating L1 processing. These differences may disappear once a more 'native-like' proficiency is established, reflecting a change in language processing mechanisms: from controlled processing for a weak L2 system (i.e., a less proficient L2) to more automatic processing. The neuroimaging data reviewed in this paper also support the notion that language control is a crucial aspect specific to the bilingual language system. The activity of brain areas related to cognitive control during the processing of a 'weak' L2 may reflect competition and conflict between languages which may be resolved with the intervention of these areas.

  17. Gesture’s neural language

    Directory of Open Access Journals (Sweden)

    Michael eAndric

    2012-04-01

    Full Text Available When people talk to each other, they often make arm and hand movements that accompany what they say. These manual movements, called co-speech gestures, can convey meaning by way of their interaction with the oral message. Another class of manual gestures, called emblematic gestures or emblems, also convey meaning, but in contrast to co-speech gestures, they can do so directly and independent of speech. There is currently significant interest in the behavioral and biological relationships between action and language. Since co-speech gestures are actions that rely on spoken language, while emblems convey meaning to the effect that they can sometimes substitute for speech, these represent important and potentially very informative examples of language-motor interactions. Researchers have recently been examining how the brain processes these actions, and the findings do not yet paint an unambiguous picture. For the most part, however, it seems that two complimentary sets of brain areas respond when people see gestures, reflecting their role in disambiguating meaning. These include areas thought to be important for understanding actions, and areas ordinarily related to processing language. What is just beginning to emerge are the shared and distinct responses across these two networks during communication. In this review, we talk about how the brain responds when we see gestures, how these responses relate to brain activity when we process language, and how these might relate in what we know as normal, everyday communication.

  18. Neural networks for sign language translation

    Science.gov (United States)

    Wilson, Beth J.; Anspach, Gretel

    1993-09-01

    A neural network is used to extract relevant features of sign language from video images of a person communicating in American Sign Language or Signed English. The key features are hand motion, hand location with respect to the body, and handshape. A modular hybrid design is under way to apply various techniques, including neural networks, in the development of a translation system that will facilitate communication between deaf and hearing people. One of the neural networks described here is used to classify video images of handshapes into their linguistic counterpart in American Sign Language. The video image is preprocessed to yield Fourier descriptors that encode the shape of the hand silhouette. These descriptors are then used as inputs to a neural network that classifies their shapes. The network is trained with various examples from different signers and is tested with new images from new signers. The results have shown that for coarse handshape classes, the network is invariant to the type of camera used to film the various signers and to the segmentation technique.

  19. Neural Correlates of Subliminal Language Processing.

    Science.gov (United States)

    Axelrod, Vadim; Bar, Moshe; Rees, Geraint; Yovel, Galit

    2015-08-01

    Language is a high-level cognitive function, so exploring the neural correlates of unconscious language processing is essential for understanding the limits of unconscious processing in general. The results of several functional magnetic resonance imaging studies have suggested that unconscious lexical and semantic processing is confined to the posterior temporal lobe, without involvement of the frontal lobe-the regions that are indispensable for conscious language processing. However, previous studies employed a similarly designed masked priming paradigm with briefly presented single and contextually unrelated words. It is thus possible, that the stimulation level was insufficiently strong to be detected in the high-level frontal regions. Here, in a high-resolution fMRI and multivariate pattern analysis study we explored the neural correlates of subliminal language processing using a novel paradigm, where written meaningful sentences were suppressed from awareness for extended duration using continuous flash suppression. We found that subjectively and objectively invisible meaningful sentences and unpronounceable nonwords could be discriminated not only in the left posterior superior temporal sulcus (STS), but critically, also in the left middle frontal gyrus. We conclude that frontal lobes play a role in unconscious language processing and that activation of the frontal lobes per se might not be sufficient for achieving conscious awareness. © The Author 2014. Published by Oxford University Press.

  20. Thought beyond language: neural dissociation of algebra and natural language.

    Science.gov (United States)

    Monti, Martin M; Parsons, Lawrence M; Osherson, Daniel N

    2012-08-01

    A central question in cognitive science is whether natural language provides combinatorial operations that are essential to diverse domains of thought. In the study reported here, we addressed this issue by examining the role of linguistic mechanisms in forging the hierarchical structures of algebra. In a 3-T functional MRI experiment, we showed that processing of the syntax-like operations of algebra does not rely on the neural mechanisms of natural language. Our findings indicate that processing the syntax of language elicits the known substrate of linguistic competence, whereas algebraic operations recruit bilateral parietal brain regions previously implicated in the representation of magnitude. This double dissociation argues against the view that language provides the structure of thought across all cognitive domains.

  1. Sign Language Recognition using Neural Networks

    Directory of Open Access Journals (Sweden)

    Sabaheta Djogic

    2014-11-01

    Full Text Available – Sign language plays a great role as communication media for people with hearing difficulties.In developed countries, systems are made for overcoming a problem in communication with deaf people. This encouraged us to develop a system for the Bosnian sign language since there is a need for such system. The work is done with the use of digital image processing methods providing a system that teaches a multilayer neural network using a back propagation algorithm. Images are processed by feature extraction methods, and by masking method the data set has been created. Training is done using cross validation method for better performance thus; an accuracy of 84% is achieved.

  2. Flexible and Organic Neural Interfaces: A Review

    Directory of Open Access Journals (Sweden)

    Nicolò Lago

    2017-12-01

    Full Text Available Neural interfaces are a fundamental tool to interact with neurons and to study neural networks by transducing cellular signals into electronics signals and vice versa. State-of-the-art technologies allow both in vivo and in vitro recording of neural activity. However, they are mainly made of stiff inorganic materials that can limit the long-term stability of the implant due to infection and/or glial scars formation. In the last decade, organic electronics is digging its way in the field of bioelectronics and researchers started to develop neural interfaces based on organic semiconductors, creating more flexible and conformable neural interfaces that can be intrinsically biocompatible. In this manuscript, we are going to review the latest achievements in flexible and organic neural interfaces for the recording of neuronal activity.

  3. Neural Networks for Language Identification: A Comparative Study.

    Science.gov (United States)

    MacNamara, Shane; Cunningham, Padraig; Byrne, John

    1998-01-01

    Analyzes a neural network for its ability to perform a task involving identification of the language entries in a 19th-century library catalog containing entries in 14 different languages. Compares the neural network's performance with that of trigrams and a suffix/morphology analysis; the trigrams prove to be superior. (AEF)

  4. Neural bases of congenital amusia in tonal language speakers.

    Science.gov (United States)

    Zhang, Caicai; Peng, Gang; Shao, Jing; Wang, William S-Y

    2017-03-01

    Congenital amusia is a lifelong neurodevelopmental disorder of fine-grained pitch processing. In this fMRI study, we examined the neural bases of congenial amusia in speakers of a tonal language - Cantonese. Previous studies on non-tonal language speakers suggest that the neural deficits of congenital amusia lie in the music-selective neural circuitry in the right inferior frontal gyrus (IFG). However, it is unclear whether this finding can generalize to congenital amusics in tonal languages. Tonal language experience has been reported to shape the neural processing of pitch, which raises the question of how tonal language experience affects the neural bases of congenital amusia. To investigate this question, we examined the neural circuitries sub-serving the processing of relative pitch interval in pitch-matched Cantonese level tone and musical stimuli in 11 Cantonese-speaking amusics and 11 musically intact controls. Cantonese-speaking amusics exhibited abnormal brain activities in a widely distributed neural network during the processing of lexical tone and musical stimuli. Whereas the controls exhibited significant activation in the right superior temporal gyrus (STG) in the lexical tone condition and in the cerebellum regardless of the lexical tone and music conditions, no activation was found in the amusics in those regions, which likely reflects a dysfunctional neural mechanism of relative pitch processing in the amusics. Furthermore, the amusics showed abnormally strong activation of the right middle frontal gyrus and precuneus when the pitch stimuli were repeated, which presumably reflect deficits of attending to repeated pitch stimuli or encoding them into working memory. No significant group difference was found in the right IFG in either the whole-brain analysis or region-of-interest analysis. These findings imply that the neural deficits in tonal language speakers might differ from those in non-tonal language speakers, and overlap partly with the

  5. Speaking in Multiple Languages: Neural Correlates of Language Proficiency in Multilingual Word Production

    Science.gov (United States)

    Videsott, Gerda; Herrnberger, Barbel; Hoenig, Klaus; Schilly, Edgar; Grothe, Jo; Wiater, Werner; Spitzer, Manfred; Kiefer, Markus

    2010-01-01

    The human brain has the fascinating ability to represent and to process several languages. Although the first and further languages activate partially different brain networks, the linguistic factors underlying these differences in language processing have to be further specified. We investigated the neural correlates of language proficiency in a…

  6. Language and the Newborn Brain: Does Prenatal Language Experience Shape the Neonate Neural Response to Speech?

    OpenAIRE

    Lillian eMay; Krista eByers-Heinlein; Judit eGervain; Werker, Janet F.

    2011-01-01

    Previous research has shown that by the time of birth, the neonate brain responds specially to the native language when compared to acoustically similar non-language stimuli. In the current study, we use Near Infrared Spectroscopy to ask how prenatal language experience might shape the brain response to language in newborn infants. To do so, we examine the neural response of neonates when listening to familiar versus unfamiliar language, as well as to non-linguistic backwards language. Twenty...

  7. Neurally and mathematically motivated architecture for language and thought.

    Science.gov (United States)

    Perlovsky, L I; Ilin, R

    2010-01-01

    Neural structures of interaction between thinking and language are unknown. This paper suggests a possible architecture motivated by neural and mathematical considerations. A mathematical requirement of computability imposes significant constraints on possible architectures consistent with brain neural structure and with a wealth of psychological knowledge. How language interacts with cognition. Do we think with words, or is thinking independent from language with words being just labels for decisions? Why is language learned by the age of 5 or 7, but acquisition of knowledge represented by learning to use this language knowledge takes a lifetime? This paper discusses hierarchical aspects of language and thought and argues that high level abstract thinking is impossible without language. We discuss a mathematical technique that can model the joint language-thought architecture, while overcoming previously encountered difficulties of computability. This architecture explains a contradiction between human ability for rational thoughtful decisions and irrationality of human thinking revealed by Tversky and Kahneman; a crucial role in this contradiction might be played by language. The proposed model resolves long-standing issues: how the brain learns correct words-object associations; why animals do not talk and think like people. We propose the role played by language emotionality in its interaction with thought. We relate the mathematical model to Humboldt's "firmness" of languages; and discuss possible influence of language grammar on its emotionality. Psychological and brain imaging experiments related to the proposed model are discussed. Future theoretical and experimental research is outlined.

  8. Bayesian Recurrent Neural Network for Language Modeling.

    Science.gov (United States)

    Chien, Jen-Tzung; Ku, Yuan-Chu

    2016-02-01

    A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.

  9. Language evolution: neural homologies and neuroinformatics.

    Science.gov (United States)

    Arbib, Michael; Bota, Mihail

    2003-11-01

    This paper contributes to neurolinguistics by grounding an evolutionary account of the readiness of the human brain for language in the search for homologies between different cortical areas in macaque and human. We consider two hypotheses for this grounding, that of Aboitiz and Garci;a [Brain Res. Rev. 25 (1997) 381] and the Mirror System Hypothesis of Rizzolatti and Arbib [Trends Neurosci. 21 (1998) 188] and note the promise of computational modeling of neural circuitry of the macaque and its linkage to analysis of human brain imaging data. In addition to the functional differences between the two hypotheses, problems arise because they are grounded in different cortical maps of the macaque brain. In order to address these divergences, we have developed several neuroinformatics tools included in an on-line knowledge management system, the NeuroHomology Database, which is equipped with inference engines both to relate and translate information across equivalent cortical maps and to evaluate degrees of homology for brain regions of interest in different species.

  10. On the design of script languages for neural simulation.

    Science.gov (United States)

    Brette, Romain

    2012-01-01

    In neural network simulators, models are specified according to a language, either specific or based on a general programming language (e.g. Python). There are also ongoing efforts to develop standardized languages, for example NeuroML. When designing these languages, efforts are often focused on expressivity, that is, on maximizing the number of model types than can be described and simulated. I argue that a complementary goal should be to minimize the cognitive effort required on the part of the user to use the language. I try to formalize this notion with the concept of "language entropy", and I propose a few practical guidelines to minimize the entropy of languages for neural simulation.

  11. Recognition of sign language gestures using neural networks

    Directory of Open Access Journals (Sweden)

    Simon Vamplew

    2007-04-01

    Full Text Available This paper describes the structure and performance of the SLARTI sign language recognition system developed at the University of Tasmania. SLARTI uses a modular architecture consisting of multiple feature-recognition neural networks and a nearest-neighbour classifier to recognise Australian sign language (Auslan hand gestures.

  12. Neural systems supporting linguistic structure, linguistic experience, and symbolic communication in sign language and gesture.

    Science.gov (United States)

    Newman, Aaron J; Supalla, Ted; Fernandez, Nina; Newport, Elissa L; Bavelier, Daphne

    2015-09-15

    Sign languages used by deaf communities around the world possess the same structural and organizational properties as spoken languages: In particular, they are richly expressive and also tightly grammatically constrained. They therefore offer the opportunity to investigate the extent to which the neural organization for language is modality independent, as well as to identify ways in which modality influences this organization. The fact that sign languages share the visual-manual modality with a nonlinguistic symbolic communicative system-gesture-further allows us to investigate where the boundaries lie between language and symbolic communication more generally. In the present study, we had three goals: to investigate the neural processing of linguistic structure in American Sign Language (using verbs of motion classifier constructions, which may lie at the boundary between language and gesture); to determine whether we could dissociate the brain systems involved in deriving meaning from symbolic communication (including both language and gesture) from those specifically engaged by linguistically structured content (sign language); and to assess whether sign language experience influences the neural systems used for understanding nonlinguistic gesture. The results demonstrated that even sign language constructions that appear on the surface to be similar to gesture are processed within the left-lateralized frontal-temporal network used for spoken languages-supporting claims that these constructions are linguistically structured. Moreover, although nonsigners engage regions involved in human action perception to process communicative, symbolic gestures, signers instead engage parts of the language-processing network-demonstrating an influence of experience on the perception of nonlinguistic stimuli.

  13. Native language shapes automatic neural processing of speech.

    Science.gov (United States)

    Intartaglia, Bastien; White-Schwoch, Travis; Meunier, Christine; Roman, Stéphane; Kraus, Nina; Schön, Daniele

    2016-08-01

    The development of the phoneme inventory is driven by the acoustic-phonetic properties of one's native language. Neural representation of speech is known to be shaped by language experience, as indexed by cortical responses, and recent studies suggest that subcortical processing also exhibits this attunement to native language. However, most work to date has focused on the differences between tonal and non-tonal languages that use pitch variations to convey phonemic categories. The aim of this cross-language study is to determine whether subcortical encoding of speech sounds is sensitive to language experience by comparing native speakers of two non-tonal languages (French and English). We hypothesized that neural representations would be more robust and fine-grained for speech sounds that belong to the native phonemic inventory of the listener, and especially for the dimensions that are phonetically relevant to the listener such as high frequency components. We recorded neural responses of American English and French native speakers, listening to natural syllables of both languages. Results showed that, independently of the stimulus, American participants exhibited greater neural representation of the fundamental frequency compared to French participants, consistent with the importance of the fundamental frequency to convey stress patterns in English. Furthermore, participants showed more robust encoding and more precise spectral representations of the first formant when listening to the syllable of their native language as compared to non-native language. These results align with the hypothesis that language experience shapes sensory processing of speech and that this plasticity occurs as a function of what is meaningful to a listener. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Comparable mechanisms for action and language: Neural systems behind intentions, goals and means

    NARCIS (Netherlands)

    Schie, H.T. van; Toni, I.; Bekkering, H.

    2006-01-01

    In this position paper we explore correspondence between neural systems for language and action starting from recent electrophysiological findings on the roles of posterior and frontal areas in goal-directed grasping actions. The paper compares the perceptual and motor organization for action and

  15. Learning language with the wrong neural scaffolding: The cost of neural commitment to sounds.

    Directory of Open Access Journals (Sweden)

    Amy Sue Finn

    2013-11-01

    Full Text Available Does tuning to one’s native language explain the sensitive period for language learning? We explore the idea that tuning to (or becoming more selective for the properties of one’s native-language could result in being less open (or plastic for tuning to the properties of a new language. To explore how this might lead to the sensitive period for grammar learning, we ask if tuning to an earlier-learned aspect of language (sound structure has an impact on the neural representation of a later-learned aspect (grammar. English-speaking adults learned one of two miniature artificial languages over 4 days in the lab. Compared to English, both languages had novel grammar, but only one was comprised of novel sounds. After learning a language, participants were scanned while judging the grammaticality of sentences. Judgments were performed for the newly learned language and English. Learners of the similar-sounds language recruited regions that overlapped more with English. Learners of the distinct-sounds language, however, recruited the Superior Temporal Gyrus (STG to a greater extent, which was coactive with the Inferior Frontal Gyrus (IFG. Across learners, recruitment of IFG (but not STG predicted both learning success in tests conducted prior to the scan and grammatical judgment ability during the scan. Data suggest that adults’ difficulty learning language, especially grammar, could be due, at least in part, to the neural commitments they have made to the lower level linguistic components of their native language.

  16. Learning language with the wrong neural scaffolding: the cost of neural commitment to sounds

    Science.gov (United States)

    Finn, Amy S.; Hudson Kam, Carla L.; Ettlinger, Marc; Vytlacil, Jason; D'Esposito, Mark

    2013-01-01

    Does tuning to one's native language explain the “sensitive period” for language learning? We explore the idea that tuning to (or becoming more selective for) the properties of one's native-language could result in being less open (or plastic) for tuning to the properties of a new language. To explore how this might lead to the sensitive period for grammar learning, we ask if tuning to an earlier-learned aspect of language (sound structure) has an impact on the neural representation of a later-learned aspect (grammar). English-speaking adults learned one of two miniature artificial languages (MALs) over 4 days in the lab. Compared to English, both languages had novel grammar, but only one was comprised of novel sounds. After learning a language, participants were scanned while judging the grammaticality of sentences. Judgments were performed for the newly learned language and English. Learners of the similar-sounds language recruited regions that overlapped more with English. Learners of the distinct-sounds language, however, recruited the Superior Temporal Gyrus (STG) to a greater extent, which was coactive with the Inferior Frontal Gyrus (IFG). Across learners, recruitment of IFG (but not STG) predicted both learning success in tests conducted prior to the scan and grammatical judgment ability during the scan. Data suggest that adults' difficulty learning language, especially grammar, could be due, at least in part, to the neural commitments they have made to the lower level linguistic components of their native language. PMID:24273497

  17. LANGUAGE SYSTEM MECHANISMS OF ORGANIZATION AND DISORGANIZATION

    Directory of Open Access Journals (Sweden)

    Irina Mikhaylovna Nekipelova

    2014-09-01

    Full Text Available The article is devoted to research of processes organization and disorganization of language system as language optimization mechanisms. The research shows, that divergence of human thinking, overlapping logical and figurative types, detects divergence of language development. And analysis and synthesis, taking part in formalization of phenomena of the world in language, have deterministic and stochastic character. Language optimization assumes aspiration of language for satisfaction of human needs, but not for perfection.

  18. Language and cognition interaction neural mechanisms.

    Science.gov (United States)

    Perlovsky, Leonid

    2011-01-01

    How language and cognition interact in thinking? Is language just used for communication of completed thoughts, or is it fundamental for thinking? Existing approaches have not led to a computational theory. We develop a hypothesis that language and cognition are two separate but closely interacting mechanisms. Language accumulates cultural wisdom; cognition develops mental representations modeling surrounding world and adapts cultural knowledge to concrete circumstances of life. Language is acquired from surrounding language "ready-made" and therefore can be acquired early in life. This early acquisition of language in childhood encompasses the entire hierarchy from sounds to words, to phrases, and to highest concepts existing in culture. Cognition is developed from experience. Yet cognition cannot be acquired from experience alone; language is a necessary intermediary, a "teacher." A mathematical model is developed; it overcomes previous difficulties and leads to a computational theory. This model is consistent with Arbib's "language prewired brain" built on top of mirror neuron system. It models recent neuroimaging data about cognition, remaining unnoticed by other theories. A number of properties of language and cognition are explained, which previously seemed mysterious, including influence of language grammar on cultural evolution, which may explain specifics of English and Arabic cultures.

  19. Language and Cognition Interaction Neural Mechanisms

    Directory of Open Access Journals (Sweden)

    Leonid Perlovsky

    2011-01-01

    Full Text Available How language and cognition interact in thinking? Is language just used for communication of completed thoughts, or is it fundamental for thinking? Existing approaches have not led to a computational theory. We develop a hypothesis that language and cognition are two separate but closely interacting mechanisms. Language accumulates cultural wisdom; cognition develops mental representations modeling surrounding world and adapts cultural knowledge to concrete circumstances of life. Language is acquired from surrounding language “ready-made” and therefore can be acquired early in life. This early acquisition of language in childhood encompasses the entire hierarchy from sounds to words, to phrases, and to highest concepts existing in culture. Cognition is developed from experience. Yet cognition cannot be acquired from experience alone; language is a necessary intermediary, a “teacher.” A mathematical model is developed; it overcomes previous difficulties and leads to a computational theory. This model is consistent with Arbib's “language prewired brain” built on top of mirror neuron system. It models recent neuroimaging data about cognition, remaining unnoticed by other theories. A number of properties of language and cognition are explained, which previously seemed mysterious, including influence of language grammar on cultural evolution, which may explain specifics of English and Arabic cultures.

  20. Self-organizing map models of language acquisition

    Science.gov (United States)

    Li, Ping; Zhao, Xiaowei

    2013-01-01

    Connectionist models have had a profound impact on theories of language. While most early models were inspired by the classic parallel distributed processing architecture, recent models of language have explored various other types of models, including self-organizing models for language acquisition. In this paper, we aim at providing a review of the latter type of models, and highlight a number of simulation experiments that we have conducted based on these models. We show that self-organizing connectionist models can provide significant insights into long-standing debates in both monolingual and bilingual language development. We suggest future directions in which these models can be extended, to better connect with behavioral and neural data, and to make clear predictions in testing relevant psycholinguistic theories. PMID:24312061

  1. Self-organizing map models of language acquisition.

    Science.gov (United States)

    Li, Ping; Zhao, Xiaowei

    2013-11-19

    Connectionist models have had a profound impact on theories of language. While most early models were inspired by the classic parallel distributed processing architecture, recent models of language have explored various other types of models, including self-organizing models for language acquisition. In this paper, we aim at providing a review of the latter type of models, and highlight a number of simulation experiments that we have conducted based on these models. We show that self-organizing connectionist models can provide significant insights into long-standing debates in both monolingual and bilingual language development. We suggest future directions in which these models can be extended, to better connect with behavioral and neural data, and to make clear predictions in testing relevant psycholinguistic theories.

  2. Neural Correlates of High Performance in Foreign Language Vocabulary Learning

    Science.gov (United States)

    Macedonia, Manuela; Muller, Karsten; Friederici, Angela D.

    2010-01-01

    Learning vocabulary in a foreign language is a laborious task which people perform with varying levels of success. Here, we investigated the neural underpinning of high performance on this task. In a within-subjects paradigm, participants learned 92 vocabulary items under two multimodal conditions: one condition paired novel words with iconic…

  3. Recurrent Artificial Neural Networks and Finite State Natural Language Processing.

    Science.gov (United States)

    Moisl, Hermann

    It is argued that pessimistic assessments of the adequacy of artificial neural networks (ANNs) for natural language processing (NLP) on the grounds that they have a finite state architecture are unjustified, and that their adequacy in this regard is an empirical issue. First, arguments that counter standard objections to finite state NLP on the…

  4. Arabic Morphology in the Neural Language System

    Science.gov (United States)

    Boudelaa, Sami; Pulvermuller, Friedemann; Hauk, Olaf; Shtyrov, Yury; Marslen-Wilson, William

    2010-01-01

    There are two views about morphology, the aspect of language concerned with the internal structure of words. One view holds that morphology is a domain of knowledge with a specific type of neurocognitive representation supported by specific brain mechanisms lateralized to left fronto-temporal cortex. The alternate view characterizes morphological…

  5. Neural Cognition and Affective Computing on Cyber Language.

    Science.gov (United States)

    Huang, Shuang; Zhou, Xuan; Xue, Ke; Wan, Xiqiong; Yang, Zhenyi; Xu, Duo; Ivanović, Mirjana; Yu, Xueer

    2015-01-01

    Characterized by its customary symbol system and simple and vivid expression patterns, cyber language acts as not only a tool for convenient communication but also a carrier of abundant emotions and causes high attention in public opinion analysis, internet marketing, service feedback monitoring, and social emergency management. Based on our multidisciplinary research, this paper presents a classification of the emotional symbols in cyber language, analyzes the cognitive characteristics of different symbols, and puts forward a mechanism model to show the dominant neural activities in that process. Through the comparative study of Chinese, English, and Spanish, which are used by the largest population in the world, this paper discusses the expressive patterns of emotions in international cyber languages and proposes an intelligent method for affective computing on cyber language in a unified PAD (Pleasure-Arousal-Dominance) emotional space.

  6. Neural Cognition and Affective Computing on Cyber Language

    Science.gov (United States)

    Huang, Shuang; Zhou, Xuan; Xue, Ke; Wan, Xiqiong; Yang, Zhenyi; Xu, Duo; Ivanović, Mirjana

    2015-01-01

    Characterized by its customary symbol system and simple and vivid expression patterns, cyber language acts as not only a tool for convenient communication but also a carrier of abundant emotions and causes high attention in public opinion analysis, internet marketing, service feedback monitoring, and social emergency management. Based on our multidisciplinary research, this paper presents a classification of the emotional symbols in cyber language, analyzes the cognitive characteristics of different symbols, and puts forward a mechanism model to show the dominant neural activities in that process. Through the comparative study of Chinese, English, and Spanish, which are used by the largest population in the world, this paper discusses the expressive patterns of emotions in international cyber languages and proposes an intelligent method for affective computing on cyber language in a unified PAD (Pleasure-Arousal-Dominance) emotional space. PMID:26491431

  7. Neural Cognition and Affective Computing on Cyber Language

    Directory of Open Access Journals (Sweden)

    Shuang Huang

    2015-01-01

    Full Text Available Characterized by its customary symbol system and simple and vivid expression patterns, cyber language acts as not only a tool for convenient communication but also a carrier of abundant emotions and causes high attention in public opinion analysis, internet marketing, service feedback monitoring, and social emergency management. Based on our multidisciplinary research, this paper presents a classification of the emotional symbols in cyber language, analyzes the cognitive characteristics of different symbols, and puts forward a mechanism model to show the dominant neural activities in that process. Through the comparative study of Chinese, English, and Spanish, which are used by the largest population in the world, this paper discusses the expressive patterns of emotions in international cyber languages and proposes an intelligent method for affective computing on cyber language in a unified PAD (Pleasure-Arousal-Dominance emotional space.

  8. Neural systems language: a formal modeling language for the systematic description, unambiguous communication, and automated digital curation of neural connectivity.

    Science.gov (United States)

    Brown, Ramsay A; Swanson, Larry W

    2013-09-01

    Systematic description and the unambiguous communication of findings and models remain among the unresolved fundamental challenges in systems neuroscience. No common descriptive frameworks exist to describe systematically the connective architecture of the nervous system, even at the grossest level of observation. Furthermore, the accelerating volume of novel data generated on neural connectivity outpaces the rate at which this data is curated into neuroinformatics databases to synthesize digitally systems-level insights from disjointed reports and observations. To help address these challenges, we propose the Neural Systems Language (NSyL). NSyL is a modeling language to be used by investigators to encode and communicate systematically reports of neural connectivity from neuroanatomy and brain imaging. NSyL engenders systematic description and communication of connectivity irrespective of the animal taxon described, experimental or observational technique implemented, or nomenclature referenced. As a language, NSyL is internally consistent, concise, and comprehensible to both humans and computers. NSyL is a promising development for systematizing the representation of neural architecture, effectively managing the increasing volume of data on neural connectivity and streamlining systems neuroscience research. Here we present similar precedent systems, how NSyL extends existing frameworks, and the reasoning behind NSyL's development. We explore NSyL's potential for balancing robustness and consistency in representation by encoding previously reported assertions of connectivity from the literature as examples. Finally, we propose and discuss the implications of a framework for how NSyL will be digitally implemented in the future to streamline curation of experimental results and bridge the gaps among anatomists, imagers, and neuroinformatics databases. Copyright © 2013 Wiley Periodicals, Inc.

  9. The shared neural basis of music and language.

    Science.gov (United States)

    Yu, Mengxia; Xu, Miao; Li, Xueting; Chen, Zhencai; Song, Yiying; Liu, Jia

    2017-08-15

    Human musical ability is proposed to play a key phylogenetical role in the evolution of language, and the similarity of hierarchical structure in music and language has led to considerable speculation about their shared mechanisms. While behavioral and electrophysioglocial studies have revealed associations between music and linguistic abilities, results from functional magnetic resonance imaging (fMRI) studies on their relations are contradictory, possibly because these studies usually treat music or language as single entities without breaking down to their components. Here, we examined the relations between different components of music (i.e., melodic and rhythmic analysis) and language (i.e., semantic and phonological processing) using both behavioral tests and resting-state fMRI. Behaviorally, we found that individuals with music training experiences were better at semantic processing, but not at phonological processing, than those without training. Further correlation analyses showed that semantic processing of language was related to melodic, but not rhythmic, analysis of music. Neurally, we found that performances in both semantic processing and melodic analysis were correlated with spontaneous brain activities in the bilateral precentral gyrus (PCG) and superior temporal plane at the regional level, and with the resting-state functional connectivity of the left PCG with the left supramarginal gyrus and left superior temporal gyrus at the network level. Together, our study revealed the shared spontaneous neural basis of music and language based on the behavioral link between melodic analysis and semantic processing, which possibly relied on a common mechanism of automatic auditory-motor integration. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Neural Circuitry of the Bilingual Mental Lexicon: Effect of Age of Second Language Acquisition

    Science.gov (United States)

    Isel, Frederic; Baumgaertner, Annette; Thran, Johannes; Meisel, Jurgen M.; Buchel, Christian

    2010-01-01

    Numerous studies have proposed that changes of the human language faculty caused by neural maturation can explain the substantial differences in ultimate attainment of grammatical competences between first language (L1) acquirers and second language (L2) learners. However, little evidence on the effect of neural maturation on the attainment of…

  11. Natural language acquisition in large scale neural semantic networks

    Science.gov (United States)

    Ealey, Douglas

    This thesis puts forward the view that a purely signal- based approach to natural language processing is both plausible and desirable. By questioning the veracity of symbolic representations of meaning, it argues for a unified, non-symbolic model of knowledge representation that is both biologically plausible and, potentially, highly efficient. Processes to generate a grounded, neural form of this model-dubbed the semantic filter-are discussed. The combined effects of local neural organisation, coincident with perceptual maturation, are used to hypothesise its nature. This theoretical model is then validated in light of a number of fundamental neurological constraints and milestones. The mechanisms of semantic and episodic development that the model predicts are then used to explain linguistic properties, such as propositions and verbs, syntax and scripting. To mimic the growth of locally densely connected structures upon an unbounded neural substrate, a system is developed that can grow arbitrarily large, data- dependant structures composed of individual self- organising neural networks. The maturational nature of the data used results in a structure in which the perception of concepts is refined by the networks, but demarcated by subsequent structure. As a consequence, the overall structure shows significant memory and computational benefits, as predicted by the cognitive and neural models. Furthermore, the localised nature of the neural architecture also avoids the increasing error sensitivity and redundancy of traditional systems as the training domain grows. The semantic and episodic filters have been demonstrated to perform as well, or better, than more specialist networks, whilst using significantly larger vocabularies, more complex sentence forms and more natural corpora.

  12. Speaking in multiple languages: neural correlates of language proficiency in multilingual word production.

    Science.gov (United States)

    Videsott, Gerda; Herrnberger, Bärbel; Hoenig, Klaus; Schilly, Edgar; Grothe, Jo; Wiater, Werner; Spitzer, Manfred; Kiefer, Markus

    2010-06-01

    The human brain has the fascinating ability to represent and to process several languages. Although the first and further languages activate partially different brain networks, the linguistic factors underlying these differences in language processing have to be further specified. We investigated the neural correlates of language proficiency in a homogeneous sample of multilingual native Ladin speakers from a mountain valley in South Tyrol, Italy, who speak Italian as second language at a high level, and English at an intermediate level. In a constrained word production task under functional magnetic resonance imaging (fMRI), participants had to name pictures of objects in Ladin, Italian and English in separate blocks. Overall, multilingual word production activated a common set of brain areas dedicated to known subcomponents of picture naming. In comparison to English, the fluently spoken languages Ladin and Italian were associated with enhanced right prefrontal activity. In addition, the MR signal in right prefrontal cortex correlated with naming accuracy as a measure of language proficiency. Our results demonstrate the significance of right prefrontal areas for language proficiency. Based on the role of these areas for cognitive control, our findings suggest that right prefrontal cortex supports language proficiency by effectively supervising word retrieval. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  13. The Language Organ: Linguistics as Cognitive Physiology.

    Science.gov (United States)

    Anderson, Stephen R.; Lightfoot, David W.

    This book treats human language as the manifestation of a faculty of the mind, a mental organ whose nature is determined by human biology, suggesting that its functional properties should be explored just as physiology explores the functional properties of physical organs. The book asserts that linguistics investigates cognition, taking as its…

  14. Self-organization of neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Clark, J.W.; Winston, J.V.; Rafelski, J.

    1984-05-14

    The plastic development of a neural-network model operating autonomously in discrete time is described by the temporal modification of interneuronal coupling strengths according to momentary neural activity. A simple algorithm (brainwashing) is found which, applied to nets with initially quasirandom connectivity, leads to model networks with properties conducive to the simulation of memory and learning phenomena. 18 references, 2 figures.

  15. Neural constructivism or self-organization?

    NARCIS (Netherlands)

    van der Maas, H.L.J.; Molenaar, P.C.M.

    2000-01-01

    Comments on the article by S. R. Quartz et al (see record 1998-00749-001) which discussed the constructivist perspective of interaction between cognition and neural processes during development and consequences for theories of learning. Three arguments are given to show that neural constructivism

  16. Social Interaction Affects Neural Outcomes of Sign Language Learning As a Foreign Language in Adults.

    Science.gov (United States)

    Yusa, Noriaki; Kim, Jungho; Koizumi, Masatoshi; Sugiura, Motoaki; Kawashima, Ryuta

    2017-01-01

    Children naturally acquire a language in social contexts where they interact with their caregivers. Indeed, research shows that social interaction facilitates lexical and phonological development at the early stages of child language acquisition. It is not clear, however, whether the relationship between social interaction and learning applies to adult second language acquisition of syntactic rules. Does learning second language syntactic rules through social interactions with a native speaker or without such interactions impact behavior and the brain? The current study aims to answer this question. Adult Japanese participants learned a new foreign language, Japanese sign language (JSL), either through a native deaf signer or via DVDs. Neural correlates of acquiring new linguistic knowledge were investigated using functional magnetic resonance imaging (fMRI). The participants in each group were indistinguishable in terms of their behavioral data after the instruction. The fMRI data, however, revealed significant differences in the neural activities between two groups. Significant activations in the left inferior frontal gyrus (IFG) were found for the participants who learned JSL through interactions with the native signer. In contrast, no cortical activation change in the left IFG was found for the group who experienced the same visual input for the same duration via the DVD presentation. Given that the left IFG is involved in the syntactic processing of language, spoken or signed, learning through social interactions resulted in an fMRI signature typical of native speakers: activation of the left IFG. Thus, broadly speaking, availability of communicative interaction is necessary for second language acquisition and this results in observed changes in the brain.

  17. Cultural and linguistic influence on brain organization for language and possible consequences for dyslexia: a review.

    Science.gov (United States)

    Johansson, Barbro B

    2006-06-01

    Current neuroimaging and neurophysiologic techniques have substantially increased our possibilities to study processes related to various language functions in the intact human brain. Learning to read and write influences the functional organization of the brain. What is universal and what is specific in the languages of the world are important issues. Most studies on healthy bilinguals indicate that essentially the same neural mechanisms are used for first and second languages, albeit with some linguistic and cultural influences related to speech and writing systems, particularly between alphabetical and nonalphabetical languages. Proficiency, age of acquisition, and amount of exposure can affect the cerebral representations of the languages. Accumulating data support the important role of working memory for acquiring high proficiency in the reading of native and second languages. It is proposed that longitudinal studies on second language acquisition are essential and that the specific problems related to second language learning in dyslexic children should have high priority.

  18. A View of the Neural Representation of Second Language Syntax through Artificial Language Learning under Implicit Contexts of Exposure

    Science.gov (United States)

    Morgan-Short, Kara; Deng, ZhiZhou; Brill-Schuetz, Katherine A.; Faretta- Stutenberg, Mandy; Wong, Patrick C. M.; Wong, Francis C. K.

    2015-01-01

    The current study aims to make an initial neuroimaging contribution to central implicit-explicit issues in second language (L2) acquisition by considering how implicit and explicit contexts mediate the neural representation of L2. Focusing on implicit contexts, the study employs a longitudinal design to examine the neural representation of L2…

  19. Epigenetic learning in non-neural organisms

    Indian Academy of Sciences (India)

    2008-09-19

    Sep 19, 2008 ... ... some physical traces of the relation persist and can later be the basis of a more effective response. Using toy models we show that this characterization applies not only to the paradigmatic case of neural learning, but also to cellular responses that are based on epigenetic mechanisms of cell memory.

  20. Précis of Neural organization: structure, function, and dynamics.

    Science.gov (United States)

    Arbib, M A; Erdi, P

    2000-08-01

    NEURAL ORGANIZATION: Structure, function, and dynamics shows how theory and experiment can supplement each other in an integrated, evolving account of the brain's structure, function, and dynamics. (1) STRUCTURE: Studies of brain function and dynamics build on and contribute to an understanding of many brain regions, the neural circuits that constitute them, and their spatial relations. We emphasize Szentágothai's modular architectonics principle, but also stress the importance of the microcomplexes of cerebellar circuitry and the lamellae of hippocampus. (2) FUNCTION: Control of eye movements, reaching and grasping, cognitive maps, and the roles of vision receive a functional decomposition in terms of schemas. Hypotheses as to how each schema is implemented through the interaction of specific brain regions provide the basis for modeling the overall function by neural networks constrained by neural data. Synthetic PET integrates modeling of primate circuitry with data from human brain imaging. (3) DYNAMICS: Dynamic system theory analyzes spatiotemporal neural phenomena, such as oscillatory and chaotic activity in both single neurons and (often synchronized) neural networks, the self-organizing development and plasticity of ordered neural structures, and learning and memory phenomena associated with synaptic modification. Rhythm generation involves multiple levels of analysis, from intrinsic cellular processes to loops involving multiple brain regions. A variety of rhythms are related to memory functions. The Précis presents a multifaceted case study of the hippocampus. We conclude with the claim that language and other cognitive processes can be fruitfully studied within the framework of neural organization that the authors have charted with John Szentágothai.

  1. Creating metaphors: The neural basis of figurative language production☆

    Science.gov (United States)

    Benedek, Mathias; Beaty, Roger; Jauk, Emanuel; Koschutnig, Karl; Fink, Andreas; Silvia, Paul J.; Dunst, Beate; Neubauer, Aljoscha C.

    2014-01-01

    Neuroscience research has thoroughly studied how nonliteral language is processed during metaphor comprehension. However, it is not clear how the brain actually creates nonliteral language. Therefore, the present study for the first time investigates the neural correlates of metaphor production. Participants completed sentences by generating novel metaphors or literal synonyms during functional imaging. Responses were spoken aloud in the scanner, recorded, and subsequently rated for their creative quality. We found that metaphor production was associated with focal activity in predominantly left-hemispheric brain regions, specifically the left angular gyrus, the left middle and superior frontal gyri—corresponding to the left dorsomedial prefrontal (DMPFC) cortex—and the posterior cingulate cortex. Moreover, brain activation in the left anterior DMPFC and the right middle temporal gyrus was found to linearly increase with the creative quality of metaphor responses. These findings are related to neuroscientific evidence on metaphor comprehension, creative idea generation and episodic future thought, suggesting that creating metaphors involves the flexible adaptation of semantic memory to imagine and construct novel figures of speech. Furthermore, the left DMPFC may exert executive control to maintain strategic search and selection, thus facilitating creativity of thought. PMID:24384149

  2. Creating metaphors: the neural basis of figurative language production.

    Science.gov (United States)

    Benedek, Mathias; Beaty, Roger; Jauk, Emanuel; Koschutnig, Karl; Fink, Andreas; Silvia, Paul J; Dunst, Beate; Neubauer, Aljoscha C

    2014-04-15

    Neuroscience research has thoroughly studied how nonliteral language is processed during metaphor comprehension. However, it is not clear how the brain actually creates nonliteral language. Therefore, the present study for the first time investigates the neural correlates of metaphor production. Participants completed sentences by generating novel metaphors or literal synonyms during functional imaging. Responses were spoken aloud in the scanner, recorded, and subsequently rated for their creative quality. We found that metaphor production was associated with focal activity in predominantly left-hemispheric brain regions, specifically the left angular gyrus, the left middle and superior frontal gyri-corresponding to the left dorsomedial prefrontal (DMPFC) cortex-and the posterior cingulate cortex. Moreover, brain activation in the left anterior DMPFC and the right middle temporal gyrus was found to linearly increase with the creative quality of metaphor responses. These findings are related to neuroscientific evidence on metaphor comprehension, creative idea generation and episodic future thought, suggesting that creating metaphors involves the flexible adaptation of semantic memory to imagine and construct novel figures of speech. Furthermore, the left DMPFC may exert executive control to maintain strategic search and selection, thus facilitating creativity of thought. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Phonological memory in sign language relies on the visuomotor neural system outside the left hemisphere language network.

    Science.gov (United States)

    Kanazawa, Yuji; Nakamura, Kimihiro; Ishii, Toru; Aso, Toshihiko; Yamazaki, Hiroshi; Omori, Koichi

    2017-01-01

    Sign language is an essential medium for everyday social interaction for deaf people and plays a critical role in verbal learning. In particular, language development in those people should heavily rely on the verbal short-term memory (STM) via sign language. Most previous studies compared neural activations during signed language processing in deaf signers and those during spoken language processing in hearing speakers. For sign language users, it thus remains unclear how visuospatial inputs are converted into the verbal STM operating in the left-hemisphere language network. Using functional magnetic resonance imaging, the present study investigated neural activation while bilinguals of spoken and signed language were engaged in a sequence memory span task. On each trial, participants viewed a nonsense syllable sequence presented either as written letters or as fingerspelling (4-7 syllables in length) and then held the syllable sequence for 12 s. Behavioral analysis revealed that participants relied on phonological memory while holding verbal information regardless of the type of input modality. At the neural level, this maintenance stage broadly activated the left-hemisphere language network, including the inferior frontal gyrus, supplementary motor area, superior temporal gyrus and inferior parietal lobule, for both letter and fingerspelling conditions. Interestingly, while most participants reported that they relied on phonological memory during maintenance, direct comparisons between letters and fingers revealed strikingly different patterns of neural activation during the same period. Namely, the effortful maintenance of fingerspelling inputs relative to letter inputs activated the left superior parietal lobule and dorsal premotor area, i.e., brain regions known to play a role in visuomotor analysis of hand/arm movements. These findings suggest that the dorsal visuomotor neural system subserves verbal learning via sign language by relaying gestural inputs to

  4. Computational modeling of neural plasticity for self-organization of neural networks.

    Science.gov (United States)

    Chrol-Cannon, Joseph; Jin, Yaochu

    2014-11-01

    Self-organization in biological nervous systems during the lifetime is known to largely occur through a process of plasticity that is dependent upon the spike-timing activity in connected neurons. In the field of computational neuroscience, much effort has been dedicated to building up computational models of neural plasticity to replicate experimental data. Most recently, increasing attention has been paid to understanding the role of neural plasticity in functional and structural neural self-organization, as well as its influence on the learning performance of neural networks for accomplishing machine learning tasks such as classification and regression. Although many ideas and hypothesis have been suggested, the relationship between the structure, dynamics and learning performance of neural networks remains elusive. The purpose of this article is to review the most important computational models for neural plasticity and discuss various ideas about neural plasticity's role. Finally, we suggest a few promising research directions, in particular those along the line that combines findings in computational neuroscience and systems biology, and their synergetic roles in understanding learning, memory and cognition, thereby bridging the gap between computational neuroscience, systems biology and computational intelligence. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Language aptitude for pronunciation in advanced second language (L2) learners: behavioural predictors and neural substrates.

    Science.gov (United States)

    Hu, Xiaochen; Ackermann, Hermann; Martin, Jason A; Erb, Michael; Winkler, Susanne; Reiterer, Susanne M

    2013-12-01

    Individual differences in second language (L2) aptitude have been assumed to depend upon a variety of cognitive and personality factors. Especially, the cognitive factor phonological working memory has been conceptualised as language learning device. However, strong associations between phonological working memory and L2 aptitude have been previously found in early-stage learners only, not in advanced learners. The current study aimed at investigating the behavioural and neurobiological predictors of advanced L2 learning. Our behavioural results showed that phonetic coding ability and empathy, but not phonological working memory, predict L2 pronunciation aptitude in advanced learners. Second, functional neuroimaging revealed this behavioural trait to be correlated with hemodynamic responses of the cerebral network of speech motor control and auditory-perceptual areas. We suggest that the acquisition of L2 pronunciation aptitude is a dynamic process, requiring a variety of neural resources at different processing stages over time. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Neural correlates of second-language communication and the effect of language anxiety.

    Science.gov (United States)

    Jeong, Hyeonjeong; Sugiura, Motoaki; Suzuki, Wataru; Sassa, Yuko; Hashizume, Hiroshi; Kawashima, Ryuta

    2015-01-01

    Communicative speech is a type of language use that involves goal-directed action targeted at another person based on social interactive knowledge. Previous studies regarding one's first language (L1) have treated the theory of mind system, which is associated with understanding others, and the sensorimotor system, which is associated with action simulation, as important contributors to communication. However, little is known about the neural basis of communication in a second language (L2), which is limited in terms of its use as a communication tool. In this fMRI study, we manipulated the type of speech (i.e., communication vs. description) and the type of language (L1 vs. L2) to identify the specific brain areas involved in L2 communication. We also attempted to examine how the cortical mechanisms underlying L2 speech production are influenced by oral proficiency and anxiety regarding L2. Thirty native Japanese speakers who had learned English as an L2, performed communicative and descriptive speech-production tasks in both L1 and L2 while undergoing fMRI scanning. We found that the only the L2 communication task recruited the left posterior supramarginal gyrus (pSMG), which may be associated with the action simulation or prediction involved in generating goal-directed actions. Furthermore, the neural mechanisms underlying L2 communication, but not L2 description, were sensitive to both oral proficiency and anxiety levels; (a) activation in the left middle temporal gyrus (MTG) increased as oral proficiency levels increased, and (b) activation in the orbitofrontal cortex (OFC), including the left insula, decreased as L2 anxiety levels increased. These results reflect the successful retrieval of lexical information in a pragmatic context and an inability to monitor social behaviors due to anxiety. Taken together, the present results suggest that L2 communication relies on social skills and is mediated by anxiety and oral proficiency. Copyright © 2014. Published

  7. Neural networks for the prediction organic chemistry reactions

    CERN Document Server

    Wei, Jennifer N; Aspuru-Guzik, Alán

    2016-01-01

    Reaction prediction remains one of the great challenges for organic chemistry. Solving this problem computationally requires the programming of a vast amount of knowledge and intuition of the rules of organic chemistry and the development of algorithms for their application. It is desirable to develop algorithms that, like humans, "learn" from being exposed to examples of the application of the rules of organic chemistry. In this work, we introduce a novel algorithm for predicting the products of organic chemistry reactions using machine learning to first identify the reaction type. In particular, we trained deep convolutional neural networks to predict the outcome of reactions based example reactions, using a new reaction fingerprint model. Due to the flexibility of neural networks, the system can attempt to predict reactions outside the domain where it was trained. We test this capability on problems from a popular organic chemistry textbook.

  8. Neural Differences in Bilingual Children's Arithmetic Processing Depending on Language of Instruction

    NARCIS (Netherlands)

    Mondt, K.; Struys, E.; Noort, M.W.M.L. van den; Balériaux, D.; Metens, T.; Paquier, P.; Craen, P. van de; Bosch, M.P.C.; Denolin, V.

    2011-01-01

    Many children in bilingual regions follow lessons in a language at school (school-language) that they hardly ever speak at home or in other informal settings. What are the neural effects of this phenomenon? This functional magnetic resonance imaging (fMRI) study investigates the effects of using

  9. Cross-linguistic differences in the neural representation of human language: evidence from users of signed languages.

    Science.gov (United States)

    Corina, David P; Lawyer, Laurel A; Cates, Deborah

    2012-01-01

    Studies of deaf individuals who are users of signed languages have provided profound insight into the neural representation of human language. Case studies of deaf signers who have incurred left- and right-hemisphere damage have shown that left-hemisphere resources are a necessary component of sign language processing. These data suggest that, despite frank differences in the input and output modality of language, core left perisylvian regions universally serve linguistic function. Neuroimaging studies of deaf signers have generally provided support for this claim. However, more fine-tuned studies of linguistic processing in deaf signers are beginning to show evidence of important differences in the representation of signed and spoken languages. In this paper, we provide a critical review of this literature and present compelling evidence for language-specific cortical representations in deaf signers. These data lend support to the claim that the neural representation of language may show substantive cross-linguistic differences. We discuss the theoretical implications of these findings with respect to an emerging understanding of the neurobiology of language.

  10. Cross-linguistic differences in the neural representation of human language: evidence from users of signed languages.

    Directory of Open Access Journals (Sweden)

    David eCorina

    2013-01-01

    Full Text Available Studies of deaf individuals who are users of signed languages have provided profound insight into the neural representation of human language. Case studies of deaf signers who have incurred left- and right-hemisphere damage have shown that left-hemisphere resources are a necessary component of sign language processing. These data suggest that, despite frank differences in the input and output modality of language,; core left perisylvian regions universally serve linguistic function. Neuroimaging studies of deaf signers have generally provided support for this claim. However, more fine-tuned studies of linguistic processing in deaf signers are beginning to show evidence of important differences in the representation of signed and spoken languages. In this paper, we provide a critical review of this literature and present compelling evidence for language-specific cortical representations in deaf signers. These data lend support to the claim that the neural representation of language may show substantive cross-linguistic differences. We discuss the theoretical implications of these findings with respect to an emerging understanding of the neurobiology of language.

  11. Cross-Linguistic Differences in the Neural Representation of Human Language: Evidence from Users of Signed Languages

    Science.gov (United States)

    Corina, David P.; Lawyer, Laurel A.; Cates, Deborah

    2013-01-01

    Studies of deaf individuals who are users of signed languages have provided profound insight into the neural representation of human language. Case studies of deaf signers who have incurred left- and right-hemisphere damage have shown that left-hemisphere resources are a necessary component of sign language processing. These data suggest that, despite frank differences in the input and output modality of language, core left perisylvian regions universally serve linguistic function. Neuroimaging studies of deaf signers have generally provided support for this claim. However, more fine-tuned studies of linguistic processing in deaf signers are beginning to show evidence of important differences in the representation of signed and spoken languages. In this paper, we provide a critical review of this literature and present compelling evidence for language-specific cortical representations in deaf signers. These data lend support to the claim that the neural representation of language may show substantive cross-linguistic differences. We discuss the theoretical implications of these findings with respect to an emerging understanding of the neurobiology of language. PMID:23293624

  12. Natural Language Video Description using Deep Recurrent Neural Networks

    Science.gov (United States)

    2015-11-23

    computer vision and natural language processing ( NLP ) and leveraging transformative advances in “deep” machine learning. Most prior work on NL-description of...generate descriptions of videos. 2.1 Background: Language and Vision Both natural language processing ( NLP ) and computer vision (CV) have made great strides...of work at the intersection of NLP and CV on topics like connecting words to pictures [8, 9, 22], describing images in natural language (NL) [30, 53

  13. Native language experience shapes neural basis of addressed and assembled phonologies.

    Science.gov (United States)

    Mei, Leilei; Xue, Gui; Lu, Zhong-Lin; He, Qinghua; Wei, Miao; Zhang, Mingxia; Dong, Qi; Chen, Chuansheng

    2015-07-01

    Previous studies have suggested differential engagement of addressed and assembled phonologies in reading Chinese and alphabetic languages (e.g., English) and the modulatory role of native language in learning to read a second language. However, it is not clear whether native language experience shapes the neural mechanisms of addressed and assembled phonologies. To address this question, we trained native Chinese and native English speakers to read the same artificial language (based on Korean Hangul) either through addressed (i.e., whole-word mapping) or assembled (i.e., grapheme-to-phoneme mapping) phonology. We found that, for both native Chinese and native English speakers, addressed phonology relied on the regions in the ventral pathway, whereas assembled phonology depended on the regions in the dorsal pathway. More importantly, we found that the neural mechanisms of addressed and assembled phonologies were shaped by native language experience. Specifically, one key region for addressed phonology (i.e., the left middle temporal gyrus) showed greater activation for addressed phonology in native Chinese speakers, while one key region for assembled phonology (i.e., the left supramarginal gyrus) showed more activation for assembled phonology in native English speakers. These results provide direct neuroimaging evidence for the effect of native language experience on the neural mechanisms of phonological access in a new language and support the assimilation-accommodation hypothesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Native Language Experience Shapes Neural Basis of Addressed and Assembled Phonologies

    Science.gov (United States)

    Mei, Leilei; Xue, Gui; Lu, Zhong-Lin; He, Qinghua; Wei, Miao; Zhang, Mingxia; Dong, Qi; Chen, Chuansheng

    2015-01-01

    Previous studies have suggested differential engagement of addressed and assembled phonologies in reading Chinese and alphabetic languages (e.g., English) and the modulatory role of native language in learning to read a second language. However, it is not clear whether native language experience shapes the neural mechanisms of addressed and assembled phonologies. To address this question, we trained native Chinese and native English speakers to read the same artificial language (based on Korean Hangul) either through addressed (i.e., whole-word mapping) or assembled (i.e., grapheme-to-phoneme mapping) phonology. We found that, for both native Chinese and native English speakers, addressed phonology relied on the regions in the ventral pathway, whereas assembled phonology depended on the regions in the dorsal pathway. More importantly, we found that the neural mechanisms of addressed and assembled phonologies were shaped by native language experience. Specifically, two key regions for addressed phonology (i.e., the left middle temporal gyrus and right inferior temporal gyrus) showed greater activation for addressed phonology in native Chinese speakers, while one key region for assembled phonology (i.e., the left supramarginal gyrus) showed more activation for assembled phonology in native English speakers. These results provide direct neuroimaging evidence for the effect of native language experience on the neural mechanisms of phonological access in a new language and support the assimilation-accommodation hypothesis. PMID:25858447

  15. The human infant brain: A neural architecture able to learn language.

    Science.gov (United States)

    Dehaene-Lambertz, Ghislaine

    2017-02-01

    To understand the type of neural computations that may explain how human infants acquire their native language in only a few months, the study of their neural architecture is necessary. The development of brain imaging techniques has opened the possibilities of studying human infants without discomfort, and although these studies are still sparse, several characteristics are noticeable in the human infant's brain: first, parallel and hierarchical processing pathways are observed before intense exposure to speech with an efficient temporal coding in the left hemisphere and, second, frontal regions are involved from the start in infants' cognition. These observations are certainly not sufficient to explain language acquisition but illustrate a new approach that relies on a better description of infants' brain activity during linguistic tasks, which is compared to results in animals and human adults to clarify the neural bases of language in humans.

  16. Differential neural contributions to native- and foreign-language talker identification.

    Science.gov (United States)

    Perrachione, Tyler K; Pierrehumbert, Janet B; Wong, Patrick C M

    2009-12-01

    Humans are remarkably adept at identifying individuals by the sound of their voice, a behavior supported by the nervous system's ability to integrate information from voice and speech perception. Talker-identification abilities are significantly impaired when listeners are unfamiliar with the language being spoken. Recent behavioral studies describing the language-familiarity effect implicate functionally integrated neural systems for speech and voice perception, yet specific neuroscientific evidence demonstrating the basis for such integration has not yet been shown. Listeners in the present study learned to identify voices speaking a familiar (native) or unfamiliar (foreign) language. The talker-identification performance of neural circuitry in each cerebral hemisphere was assessed using dichotic listening. To determine the relative contribution of circuitry in each hemisphere to ecological (binaural) talker identification abilities, we compared the predictive capacity of dichotic performance on binaural performance across languages. Listeners' right-ear (left hemisphere) performance was a better predictor of binaural accuracy in their native language than a foreign one. This enhanced role of the classically language-dominant left hemisphere in listeners' native language demonstrates functionally integrated neural systems for speech and voice perception during talker identification.

  17. Age of language acquisition and cortical language organization in multilingual patients undergoing awake brain mapping.

    Science.gov (United States)

    Fernández-Coello, Alejandro; Havas, Viktória; Juncadella, Montserrat; Sierpowska, Joanna; Rodríguez-Fornells, Antoni; Gabarrós, Andreu

    2017-06-01

    OBJECTIVE Most knowledge regarding the anatomical organization of multilingualism is based on aphasiology and functional imaging studies. However, the results have still to be validated by the gold standard approach, namely electrical stimulation mapping (ESM) during awake neurosurgical procedures. In this ESM study the authors describe language representation in a highly specific group of 13 multilingual individuals, focusing on how age of acquisition may influence the cortical organization of language. METHODS Thirteen patients who had a high degree of proficiency in multiple languages and were harboring lesions within the dominant, left hemisphere underwent ESM while being operated on under awake conditions. Demographic and language data were recorded in relation to age of language acquisition (for native languages and early- and late-acquired languages), neuropsychological pre- and postoperative language testing, the number and location of language sites, and overlapping distribution in terms of language acquisition time. Lesion growth patterns and histopathological characteristics, location, and size were also recorded. The distribution of language sites was analyzed with respect to age of acquisition and overlap. RESULTS The functional language-related sites were distributed in the frontal (55%), temporal (29%), and parietal lobes (16%). The total number of native language sites was 47. Early-acquired languages (including native languages) were represented in 97 sites (55 overlapped) and late-acquired languages in 70 sites (45 overlapped). The overlapping distribution was 20% for early-early, 71% for early-late, and 9% for late-late. The average lesion size (maximum diameter) was 3.3 cm. There were 5 fast-growing and 7 slow-growing lesions. CONCLUSIONS Cortical language distribution in multilingual patients is not homogeneous, and it is influenced by age of acquisition. Early-acquired languages have a greater cortical representation than languages acquired

  18. Sign Language Recognition System using Neural Network for Digital Hardware Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Lorena P [Lorena Vargas Quintero, Optic and Computer Science Group - Universidad Popular del Cesar (Colombia); Barba, Leiner; Torres, C O; Mattos, L, E-mail: vargas.lorena@yahoo.com [Optic and Computer Science Group - Popular of Cesar University, Km 12, Valledupar (Colombia)

    2011-01-01

    This work presents an image pattern recognition system using neural network for the identification of sign language to deaf people. The system has several stored image that show the specific symbol in this kind of language, which is employed to teach a multilayer neural network using a back propagation algorithm. Initially, the images are processed to adapt them and to improve the performance of discriminating of the network, including in this process of filtering, reduction and elimination noise algorithms as well as edge detection. The system is evaluated using the signs without including movement in their representation.

  19. Neural circuitry of the bilingual mental lexicon: effect of age of second language acquisition.

    Science.gov (United States)

    Isel, Frédéric; Baumgaertner, Annette; Thrän, Johannes; Meisel, Jürgen M; Büchel, Christian

    2010-03-01

    Numerous studies have proposed that changes of the human language faculty caused by neural maturation can explain the substantial differences in ultimate attainment of grammatical competences between first language (L1) acquirers and second language (L2) learners. However, little evidence on the effect of neural maturation on the attainment of lexical knowledge in L2 is available. The present functional magnetic resonance study addresses this question via a cross-linguistic neural adaptation paradigm. Age of acquisition (AoA) of L2 was systematically manipulated. Concrete nouns were repeated across language (e.g., French-German, valise(suitcase)-Koffer(suitcase)). Whereas early bilinguals (AoA of L210years) showed larger RE effects in the middle portion of the left insula and in the right middle frontal gyrus (MFG). We suggest that, as for grammatical knowledge, the attainment of lexical knowledge in L2 is affected by neural maturation. The present findings lend support to neurocognitive models of bilingual word recognition postulating that, for both early and late bilinguals, the two languages are interconnected at the conceptual level. Copyright 2009 Elsevier Inc. All rights reserved.

  20. Neural signatures of second language learning and control.

    Science.gov (United States)

    Bartolotti, James; Bradley, Kailyn; Hernandez, Arturo E; Marian, Viorica

    2017-04-01

    Experience with multiple languages has unique effects on cortical structure and information processing. Differences in gray matter density and patterns of cortical activation are observed in lifelong bilinguals compared to monolinguals as a result of their experience managing interference across languages. Monolinguals who acquire a second language later in life begin to encounter the same type of linguistic interference as bilinguals, but with a different pre-existing language architecture. The current study used functional magnetic resonance imaging to explore the beginning stages of second language acquisition and cross-linguistic interference in monolingual adults. We found that after English monolinguals learned novel Spanish vocabulary, English and Spanish auditory words led to distinct patterns of cortical activation, with greater recruitment of posterior parietal regions in response to English words and of left hippocampus in response to Spanish words. In addition, cross-linguistic interference from English influenced processing of newly-learned Spanish words, decreasing hippocampus activity. Results suggest that monolinguals may rely on different memory systems to process a newly-learned second language, and that the second language system is sensitive to native language interference. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Review of Data Preprocessing Methods for Sign Language Recognition Systems based on Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Zorins Aleksejs

    2016-12-01

    Full Text Available The article presents an introductory analysis of relevant research topic for Latvian deaf society, which is the development of the Latvian Sign Language Recognition System. More specifically the data preprocessing methods are discussed in the paper and several approaches are shown with a focus on systems based on artificial neural networks, which are one of the most successful solutions for sign language recognition task.

  2. A Cognitive Neural Architecture Able to Learn and Communicate through Natural Language.

    Science.gov (United States)

    Golosio, Bruno; Cangelosi, Angelo; Gamotina, Olesya; Masala, Giovanni Luca

    2015-01-01

    Communicative interactions involve a kind of procedural knowledge that is used by the human brain for processing verbal and nonverbal inputs and for language production. Although considerable work has been done on modeling human language abilities, it has been difficult to bring them together to a comprehensive tabula rasa system compatible with current knowledge of how verbal information is processed in the brain. This work presents a cognitive system, entirely based on a large-scale neural architecture, which was developed to shed light on the procedural knowledge involved in language elaboration. The main component of this system is the central executive, which is a supervising system that coordinates the other components of the working memory. In our model, the central executive is a neural network that takes as input the neural activation states of the short-term memory and yields as output mental actions, which control the flow of information among the working memory components through neural gating mechanisms. The proposed system is capable of learning to communicate through natural language starting from tabula rasa, without any a priori knowledge of the structure of phrases, meaning of words, role of the different classes of words, only by interacting with a human through a text-based interface, using an open-ended incremental learning process. It is able to learn nouns, verbs, adjectives, pronouns and other word classes, and to use them in expressive language. The model was validated on a corpus of 1587 input sentences, based on literature on early language assessment, at the level of about 4-years old child, and produced 521 output sentences, expressing a broad range of language processing functionalities.

  3. Control Mechanisms in Bilingual Language Production: Neural Evidence from Language Switching Studies

    Science.gov (United States)

    Abutalebi, Jubin; Green, David

    2008-01-01

    A key question in bilingual language production research is how bilingual individuals control the use of their two languages. The psycholinguistic literature concerning language control is unresolved. It is a matter of controversy whether (a) issues to do with control are central to understanding bilingual language processing; and (b) if they are,…

  4. Self-Organizing Map Models of Language Acquisition

    Directory of Open Access Journals (Sweden)

    Ping eLi

    2013-11-01

    Full Text Available Connectionist models have had a profound impact on theories of language. While most early models were inspired by the classic PDP architecture, recent models of language have explored various other types of models, including self-organizing models for language acquisition. In this paper we aim at providing a review of the latter type of models, and highlight a number of simulation experiments that we have conducted based on these models. We show that self-organizing connectionist models can provide significant insights into long-standing debates in both monolingual and bilingual language development.

  5. Neural Correlates of Developmental Speech and Language Disorders: Evidence from Neuroimaging.

    Science.gov (United States)

    Liégeois, Frédérique; Mayes, Angela; Morgan, Angela

    2014-01-01

    Disorders of speech and language arise out of a complex interaction of genetic, environmental, and neural factors. Little is understood about the neural bases of these disorders. Here we systematically reviewed neuroimaging findings in Speech disorders (SD) and Language disorders (LD) over the last five years (2008-2013; 10 articles). In participants with SD, structural and functional anomalies in the left supramarginal gyrus suggest a possible deficit in sensory feedback or integration. In LD, cortical and subcortical anomalies were reported in a widespread language network, with little consistency across studies except in the superior temporal gyri. In summary, both functional and structural anomalies are associated with LD and SD, including greater activity and volumes relative to controls. The variability in neuroimaging approach and heterogeneity within and across participant samples restricts our full understanding of the neurobiology of these conditions- reducing the potential for devising novel interventions targeted at the underlying pathology.

  6. Neural correlates of pragmatic language comprehension in autism spectrum disorders.

    NARCIS (Netherlands)

    Tesink, C.M.J.Y.; Buitelaar, J.K.; Petersson, K.M.; Gaag, R.J. van der; Kan, C.C.; Tendolkar, I.; Hagoort, P.

    2009-01-01

    Difficulties with pragmatic aspects of communication are universal across individuals with autism spectrum disorders (ASDs). Here we focused on an aspect of pragmatic language comprehension that is relevant to social interaction in daily life: the integration of speaker characteristics inferred from

  7. Training Feedforward Neural Networks Using Symbiotic Organisms Search Algorithm.

    Science.gov (United States)

    Wu, Haizhou; Zhou, Yongquan; Luo, Qifang; Basset, Mohamed Abdel

    2016-01-01

    Symbiotic organisms search (SOS) is a new robust and powerful metaheuristic algorithm, which stimulates the symbiotic interaction strategies adopted by organisms to survive and propagate in the ecosystem. In the supervised learning area, it is a challenging task to present a satisfactory and efficient training algorithm for feedforward neural networks (FNNs). In this paper, SOS is employed as a new method for training FNNs. To investigate the performance of the aforementioned method, eight different datasets selected from the UCI machine learning repository are employed for experiment and the results are compared among seven metaheuristic algorithms. The results show that SOS performs better than other algorithms for training FNNs in terms of converging speed. It is also proven that an FNN trained by the method of SOS has better accuracy than most algorithms compared.

  8. Taxonomic Classification for Living Organisms Using Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Saed Khawaldeh

    2017-11-01

    Full Text Available Taxonomic classification has a wide-range of applications such as finding out more about evolutionary history. Compared to the estimated number of organisms that nature harbors, humanity does not have a thorough comprehension of to which specific classes they belong. The classification of living organisms can be done in many machine learning techniques. However, in this study, this is performed using convolutional neural networks. Moreover, a DNA encoding technique is incorporated in the algorithm to increase performance and avoid misclassifications. The algorithm proposed outperformed the state of the art algorithms in terms of accuracy and sensitivity, which illustrates a high potential for using it in many other applications in genome analysis.

  9. Social Interaction Affects Neural Outcomes of Sign Language Learning As a Foreign Language in Adults

    OpenAIRE

    Yusa, Noriaki; Kim, Jungho; Koizumi, Masatoshi; Sugiura, Motoaki; Kawashima, Ryuta

    2017-01-01

    Children naturally acquire a language in social contexts where they interact with their caregivers. Indeed, research shows that social interaction facilitates lexical and phonological development at the early stages of child language acquisition. It is not clear, however, whether the relationship between social interaction and learning applies to adult second language acquisition of syntactic rules. Does learning second language syntactic rules through social interactions with a native speake...

  10. Towards Incremental Parsing of Natural Language using Recursive Neural Networks

    OpenAIRE

    Costa, Fabrizio; Frasconi, Paolo; Lombardo, Vincenzo; Soda, Giovanni

    2002-01-01

    In this paper we develop novel algorithmic ideas for building a natural language parser grounded upon the hypothesis of incrementality. Although widely accepted and experimentally supported under a cognitive perspective as a model of the human parser, the incrementality assumption has never been exploited for building automatic parsers of unconstrained real texts. The essentials of the hypothesis are that words are processed in a left-to-right fashion, and the syntactic structu...

  11. ORGANIC ELECTRODE COATINGS FOR NEXT-GENERATION NEURAL INTERFACES

    Directory of Open Access Journals (Sweden)

    Ulises A Aregueta-Robles

    2014-05-01

    Full Text Available Traditional neuronal interfaces utilize metallic electrodes which in recent years have reached a plateau in terms of the ability to provide safe stimulation at high resolution or rather with high densities of microelectrodes with improved spatial selectivity. To achieve higher resolution it has become clear that reducing the size of electrodes is required to enable higher electrode counts from the implant device. The limitations of interfacing electrodes including low charge injection limits, mechanical mismatch and foreign body response can be addressed through the use of organic electrode coatings which typically provide a softer, more roughened surface to enable both improved charge transfer and lower mechanical mismatch with neural tissue. Coating electrodes with conductive polymers or carbon nanotubes offers a substantial increase in charge transfer area compared to conventional platinum electrodes. These organic conductors provide safe electrical stimulation of tissue while avoiding undesirable chemical reactions and cell damage. However, the mechanical properties of conductive polymers are not ideal, as they are quite brittle. Hydrogel polymers present a versatile coating option for electrodes as they can be chemically modified to provide a soft and conductive scaffold. However, the in vivo chronic inflammatory response of these conductive hydrogels remains unknown. A more recent approach proposes tissue engineering the electrode interface through the use of encapsulated neurons within hydrogel coatings. This approach may provide a method for activating tissue at the cellular scale, however several technological challenges must be addressed to demonstrate feasibility of this innovative idea. The review focuses on the various organic coatings which have been investigated to improve neural interface electrodes.

  12. N-gram Language Modeling using Recurrent Neural Network Estimation

    OpenAIRE

    Chelba, Ciprian; Norouzi, Mohammad; Bengio, Samy

    2017-01-01

    We investigate the effective memory depth of RNN models by using them for $n$-gram language model (LM) smoothing. Experiments on a small corpus (UPenn Treebank, one million words of training data and 10k vocabulary) have found the LSTM cell with dropout to be the best model for encoding the $n$-gram state when compared with feed-forward and vanilla RNN models. When preserving the sentence independence assumption the LSTM $n$-gram matches the LSTM LM performance for $n=9$ and slightly outperfo...

  13. The Common Language Question Before International Organizations

    Science.gov (United States)

    Lapenna, Ivo

    1971-01-01

    Third report on a petition submitted to the United Nations by the Universal Esperanto Association (UEA) in 1950 to promote Esperanto as the universal language. The petition was forwarded for action to Unesco which in 1954 resolved to support any efforts in this direction undertaken within a member state. Available from Humanities Press, Inc.,…

  14. Three-dimensional grammar in the brain: Dissociating the neural correlates of natural sign language and manually coded spoken language.

    Science.gov (United States)

    Jednoróg, Katarzyna; Bola, Łukasz; Mostowski, Piotr; Szwed, Marcin; Boguszewski, Paweł M; Marchewka, Artur; Rutkowski, Paweł

    2015-05-01

    In several countries natural sign languages were considered inadequate for education. Instead, new sign-supported systems were created, based on the belief that spoken/written language is grammatically superior. One such system called SJM (system językowo-migowy) preserves the grammatical and lexical structure of spoken Polish and since 1960s has been extensively employed in schools and on TV. Nevertheless, the Deaf community avoids using SJM for everyday communication, its preferred language being PJM (polski język migowy), a natural sign language, structurally and grammatically independent of spoken Polish and featuring classifier constructions (CCs). Here, for the first time, we compare, with fMRI method, the neural bases of natural vs. devised communication systems. Deaf signers were presented with three types of signed sentences (SJM and PJM with/without CCs). Consistent with previous findings, PJM with CCs compared to either SJM or PJM without CCs recruited the parietal lobes. The reverse comparison revealed activation in the anterior temporal lobes, suggesting increased semantic combinatory processes in lexical sign comprehension. Finally, PJM compared with SJM engaged left posterior superior temporal gyrus and anterior temporal lobe, areas crucial for sentence-level speech comprehension. We suggest that activity in these two areas reflects greater processing efficiency for naturally evolved sign language. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Linguistic diversity and English language use in multicultural organizations

    DEFF Research Database (Denmark)

    Lauring, Jakob; Selmer, Jan

    2013-01-01

    organizations. Accordingly, the link between employee age and language use is of increasing importance. In this study, we report on the findings of a survey using responses from 489 members of Danish multicultural organizations. We studied the effect of linguistic diversity on English language communication...... as well as the moderating effect of respondents’ age.Wefound linguistic diversity to have positive associations with the two English language communication variables. We also found age to moderate the relationship between linguistic diversity and perceived use of English language by management. Since......Two great human resource management challenges face organizations in many parts of the world. The workforce is aging leaving fewer young people to take over. At the same time, globalization leads to a pressure for internationalization with great consequences for internal collaboration in many...

  16. Neural activation in speech production and reading aloud in native and non-native languages.

    Science.gov (United States)

    Berken, Jonathan A; Gracco, Vincent L; Chen, Jen-Kai; Soles, Jennika; Watkins, Kate E; Baum, Shari; Callahan, Megan; Klein, Denise

    2015-05-15

    We used fMRI to investigate neural activation in reading aloud in bilinguals differing in age of acquisition. Three groups were compared: French-English bilinguals who acquired two languages from birth (simultaneous), French-English bilinguals who learned their L2 after the age of 5 years (sequential), and English-speaking monolinguals. While the bilingual groups contrasted in age of acquisition, they were matched for language proficiency, although sequential bilinguals produced speech with a less native-like accent in their L2 than in their L1. Simultaneous bilinguals activated similar brain regions to an equivalent degree when reading in their two languages. In contrast, sequential bilinguals more strongly activated areas related to speech-motor control and orthographic to phonological mapping, the left inferior frontal gyrus, left premotor cortex, and left fusiform gyrus, when reading aloud in L2 compared to L1. In addition, the activity in these regions showed a significant positive correlation with age of acquisition. The results provide evidence for the engagement of overlapping neural substrates for processing two languages when acquired in native context from birth. However, it appears that the maturation of certain brain regions for both speech production and phonological encoding is limited by a sensitive period for L2 acquisition regardless of language proficiency. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Musical aptitude and second language pronunciation skills in school-aged children: neural and behavioral evidence.

    Science.gov (United States)

    Milovanov, Riia; Huotilainen, Minna; Välimäki, Vesa; Esquef, Paulo A A; Tervaniemi, Mari

    2008-02-15

    The main focus of this study was to examine the relationship between musical aptitude and second language pronunciation skills. We investigated whether children with superior performance in foreign language production represent musical sound features more readily in the preattentive level of neural processing compared with children with less-advanced production skills. Sound processing accuracy was examined in elementary school children by means of event-related potential (ERP) recordings and behavioral measures. Children with good linguistic skills had better musical skills as measured by the Seashore musicality test than children with less accurate linguistic skills. The ERP data accompany the results of the behavioral tests: children with good linguistic skills showed more pronounced sound-change evoked activation with the music stimuli than children with less accurate linguistic skills. Taken together, the results imply that musical and linguistic skills could partly be based on shared neural mechanisms.

  18. An MEG Investigation of Neural Biomarkers and Language in Nonverbal Children with Autism Spectrum Disorders

    Science.gov (United States)

    2014-09-01

    specific processing in nonverbal children with ASD, in comparison to verbal children with ASD and typically developing healthy comparison children ...outside the MEG using the Preschool Language Scale-5 (PLS-5), the Peabody Picture Vocabulary Test (PPVT-III), and the Token Test for Children , 2nd...this project can inform development of future studies assessing speech intervention outcome in nonverbal children with ASD using neural markers. This

  19. A Hybrid Neural Network and Virtual Reality System for Spatial Language Processing

    OpenAIRE

    Martinez, Guillermina; Cangelosi, Angelo; Coventry, Kenny

    2001-01-01

    This paper describes a neural network model for the study of spatial language. It deals with both geometric and functional variables, which have been shown to play an important role in the comprehension of spatial prepositions. The network is integrated with a virtual reality interface for the direct manipulation of geometric and functional factors. The training uses experimental stimuli and data. Results show that the networks reach low training and generalization errors. Cluster analyses of...

  20. Commonalities and differences in the neural representations of English, Portuguese, and Mandarin sentences: When knowledge of the brain-language mappings for two languages is better than one.

    Science.gov (United States)

    Yang, Ying; Wang, Jing; Bailer, Cyntia; Cherkassky, Vladimir; Just, Marcel Adam

    2017-12-01

    This study extended cross-language semantic decoding (based on a concept's fMRI signature) to the decoding of sentences across three different languages (English, Portuguese and Mandarin). A classifier was trained on either the mapping between words and activation patterns in one language or the mappings in two languages (using an equivalent amount of training data), and then tested on its ability to decode the semantic content of a third language. The model trained on two languages was reliably more accurate than a classifier trained on one language for all three pairs of languages. This two-language advantage was selective to abstract concept domains such as social interactions and mental activity. Representational Similarity Analyses (RSA) of the inter-sentence neural similarities resulted in similar clustering of sentences in all the three languages, indicating a shared neural concept space among languages. These findings identify semantic domains that are common across these three languages versus those that are more language or culture-specific. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Bilingual speech-in-noise: neural bases of semantic context use in the native language.

    Science.gov (United States)

    Hervais-Adelman, Alexis; Pefkou, Maria; Golestani, Narly

    2014-05-01

    Bilingual listeners comprehend speech-in-noise better in their native than non-native language. This native-language benefit is thought to arise from greater use of top-down linguistic information to assist degraded speech comprehension. Using functional magnetic resonance imaging, we recently showed that left angular gyrus activation is modulated when semantic context is used to assist native language speech-in-noise comprehension (Golestani, Hervais-Adelman, Obleser, & Scott, 2013). Here, we extend the previous work, by reanalyzing the previous data alongside the results obtained in the non-native language of the same late bilingual participants. We found a behavioral benefit of semantic context in processing speech-in-noise in the native language only, and the imaging results also revealed a native language context effect in the left angular gyrus. We also find a complementary role of lower-level auditory regions during stimulus-driven processing. Our findings help to elucidate the neural basis of the established native language behavioral benefit of speech-in-noise processing. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. A Language as a Self-Organized Critical System

    Directory of Open Access Journals (Sweden)

    Vasilii A. Gromov

    2017-01-01

    Full Text Available A natural language (represented by texts generated by native speakers is considered as a complex system, and the type thereof to which natural languages belong is ascertained. Namely, the authors hypothesize that a language is a self-organized critical system and that the texts of a language are “avalanches” flowing down its word cooccurrence graph. The respective statistical characteristics for distributions of the number of words in the texts of English and Russian languages are calculated; the samples were constructed on the basis of corpora of literary texts and of a set of social media messages (as a substitution to the oral speech. The analysis found that the number of words in the texts obeys power-law distribution.

  3. Dynamic neural network reorganization associated with second language vocabulary acquisition: a multimodal imaging study.

    Science.gov (United States)

    Hosoda, Chihiro; Tanaka, Kanji; Nariai, Tadashi; Honda, Manabu; Hanakawa, Takashi

    2013-08-21

    It remains unsettled whether human language relies exclusively on innately privileged brain structure in the left hemisphere or is more flexibly shaped through experiences, which induce neuroplastic changes in potentially relevant neural circuits. Here we show that learning of second language (L2) vocabulary and its cessation can induce bidirectional changes in the mirror-reverse of the traditional language areas. A cross-sectional study identified that gray matter volume in the inferior frontal gyrus pars opercularis (IFGop) and connectivity of the IFGop with the caudate nucleus and the superior temporal gyrus/supramarginal (STG/SMG), predominantly in the right hemisphere, were positively correlated with L2 vocabulary competence. We then implemented a cohort study involving 16 weeks of L2 training in university students. Brain structure before training did not predict the later gain in L2 ability. However, training intervention did increase IFGop volume and reorganization of white matter including the IFGop-caudate and IFGop-STG/SMG pathways in the right hemisphere. These "positive" plastic changes were correlated with the gain in L2 ability in the trained group but were not observed in the control group. We propose that the right hemispheric network can be reorganized into language-related areas through use-dependent plasticity in young adults, reflecting a repertoire of flexible reorganization of the neural substrates responding to linguistic experiences.

  4. Neural differences between monolinguals and early bilinguals in their native language during comprehension.

    Science.gov (United States)

    Román, P; González, J; Ventura-Campos, N; Rodríguez-Pujadas, A; Sanjuán, A; Ávila, C

    2015-11-01

    Research has shown that semantic processing of sentences engages more activity in the bilingual compared to the monolingual brain and, more specifically, in the inferior frontal gyrus. The present study aims to extend those results and examines whether semantic and also grammatical sentence processing involve different cerebral structures when testing in the native language. In this regard, highly proficient Spanish/Catalan bilinguals and Spanish monolinguals made grammatical and semantic judgments in Spanish while being scanned. Results showed that both types of judgments recruited more cerebral activity for bilinguals in language-related areas including the superior and middle temporal gyri. Such neural differences co-occurred with similar performance at the behavioral level. Taken together, these data suggest that early bilingualism shapes the brain and cognitive processes in sentence comprehension even in their native language; on the other hand, they indicate that brain over activation in bilinguals is not constrained to a specific area. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Static sign language recognition using 1D descriptors and neural networks

    Science.gov (United States)

    Solís, José F.; Toxqui, Carina; Padilla, Alfonso; Santiago, César

    2012-10-01

    A frame work for static sign language recognition using descriptors which represents 2D images in 1D data and artificial neural networks is presented in this work. The 1D descriptors were computed by two methods, first one consists in a correlation rotational operator.1 and second is based on contour analysis of hand shape. One of the main problems in sign language recognition is segmentation; most of papers report a special color in gloves or background for hand shape analysis. In order to avoid the use of gloves or special clothing, a thermal imaging camera was used to capture images. Static signs were picked up from 1 to 9 digits of American Sign Language, a multilayer perceptron reached 100% recognition with cross-validation.

  6. Neural correlates of language variability in preschool-aged boys with autism spectrum disorder.

    Science.gov (United States)

    Naigles, Letitia R; Johnson, Ryan; Mastergeorge, Ann; Ozonoff, Sally; Rogers, Sally J; Amaral, David G; Nordahl, Christine Wu

    2017-06-01

    Children with autism vary widely in their language abilities, yet the neural correlates of this language variability remain unclear, especially early in development. Diffusion tensor imaging (DTI) was used to examine diffusivity measures along the length of 18 major fiber tracts in 104 preschool-aged boys with autism spectrum disorder (ASD). The boys were assigned to subgroups according to their level of language development (Low: no/low language, Middle: small vocabulary, High: large vocabulary and grammar), based on their raw scores on the expressive language (EL) and receptive language (RL) sections of the Mullen Scales of Early Learning (MSEL). Results indicate that the subgroups differed in fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD) along the inferior longitudinal fasciculus (ILF) in both hemispheres. Moreover, FA correlated significantly with Mullen EL and RL raw scores, but not ADOS severity score, along the left and right ILF. Subgroups also differed in MD (but not FA) along the left superior longitudinal fasiculus and left corticospinal tract, but these differences were not correlated with language scores. These findings suggest that white matter microstructure in the left and right ILF varies in relation to lexical development in young males with ASD. The findings also support the use of raw scores on language-relevant standardized tests for assessing early language-brain relationships. Autism Res 2017. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Autism Res 2017, 10: 1107-1119. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  7. Different functional neural substrates for good and poor language outcome in autism.

    Science.gov (United States)

    Lombardo, Michael V; Pierce, Karen; Eyler, Lisa T; Carter Barnes, Cindy; Ahrens-Barbeau, Clelia; Solso, Stephanie; Campbell, Kathleen; Courchesne, Eric

    2015-04-22

    Autism (ASD) is vastly heterogeneous, particularly in early language development. While ASD language trajectories in the first years of life are highly unstable, by early childhood these trajectories stabilize and are predictive of longer-term outcome. Early neural substrates that predict/precede such outcomes are largely unknown, but could have considerable translational and clinical impact. Pre-diagnosis fMRI response to speech in ASD toddlers with relatively good language outcome was highly similar to non-ASD comparison groups and robustly recruited language-sensitive superior temporal cortices. In contrast, language-sensitive superior temporal cortices were hypoactive in ASD toddlers with poor language outcome. Brain-behavioral relationships were atypically reversed in ASD, and a multimodal combination of pre-diagnostic clinical behavioral measures and speech-related fMRI response showed the most promise as an ASD prognosis classifier. Thus, before ASD diagnoses and outcome become clinically clear, distinct functional neuroimaging phenotypes are already present that can shed insight on an ASD toddler's later outcome. VIDEO ABSTRACT. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Neural convergence for language comprehension and grammatical class production in highly proficient bilinguals is independent of age of acquisition.

    Science.gov (United States)

    Consonni, Monica; Cafiero, Riccardo; Marin, Dario; Tettamanti, Marco; Iadanza, Antonella; Fabbro, Franco; Perani, Daniela

    2013-05-01

    In bilinguals, native (L1) and second (L2) languages are processed by the same neural resources that can be modulated by age of second language acquisition (AOA), proficiency level, and daily language exposure and usage. AOA seems to particularly affect grammar processing, where a complete neural convergence has been shown only in bilinguals with parallel language acquisition from birth. Despite the fact that proficiency-related neuroanatomical differences have been well documented in language comprehension (LC) and production, few reports have addressed the influence of language exposure. A still unanswered question pertains to the role of AOA, when proficiency is comparably high across languages, with respect to its modulator effects both on LC and production. Here, we evaluated with fMRI during sentence comprehension and verb and noun production tasks, two groups of highly proficient bilinguals only differing in AOA. One group learned Italian and Friulian in parallel from birth, whereas the second group learned Italian between 3 and 6 years. All participants were highly exposed to both languages, but more to Italian than Friulian. The results indicate a complete overlap of neural activations for the comprehension of both languages, not only in bilinguals from birth, but also in late bilinguals. A slightly extra activation in the left thalamus for the less-exposed language confirms that exposure may affect language processing. Noteworthy, we report for the first time that, when proficiency and exposure are kept high, noun and verb production recruit the same neural networks for L1 and L2, independently of AOA. These results support the neural convergence hypothesis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Second language processing shows increased native-like neural responses after months of no exposure.

    Science.gov (United States)

    Morgan-Short, Kara; Finger, Ingrid; Grey, Sarah; Ullman, Michael T

    2012-01-01

    Although learning a second language (L2) as an adult is notoriously difficult, research has shown that adults can indeed attain native language-like brain processing and high proficiency levels. However, it is important to then retain what has been attained, even in the absence of continued exposure to the L2--particularly since periods of minimal or no L2 exposure are common. This event-related potential (ERP) study of an artificial language tested performance and neural processing following a substantial period of no exposure. Adults learned to speak and comprehend the artificial language to high proficiency with either explicit, classroom-like, or implicit, immersion-like training, and then underwent several months of no exposure to the language. Surprisingly, proficiency did not decrease during this delay. Instead, it remained unchanged, and there was an increase in native-like neural processing of syntax, as evidenced by several ERP changes--including earlier, more reliable, and more left-lateralized anterior negativities, and more robust P600s, in response to word-order violations. Moreover, both the explicitly and implicitly trained groups showed increased native-like ERP patterns over the delay, indicating that such changes can hold independently of L2 training type. The results demonstrate that substantial periods with no L2 exposure are not necessarily detrimental. Rather, benefits may ensue from such periods of time even when there is no L2 exposure. Interestingly, both before and after the delay the implicitly trained group showed more native-like processing than the explicitly trained group, indicating that type of training also affects the attainment of native-like processing in the brain. Overall, the findings may be largely explained by a combination of forgetting and consolidation in declarative and procedural memory, on which L2 grammar learning appears to depend. The study has a range of implications, and suggests a research program with

  10. Second language processing shows increased native-like neural responses after months of no exposure.

    Directory of Open Access Journals (Sweden)

    Kara Morgan-Short

    Full Text Available Although learning a second language (L2 as an adult is notoriously difficult, research has shown that adults can indeed attain native language-like brain processing and high proficiency levels. However, it is important to then retain what has been attained, even in the absence of continued exposure to the L2--particularly since periods of minimal or no L2 exposure are common. This event-related potential (ERP study of an artificial language tested performance and neural processing following a substantial period of no exposure. Adults learned to speak and comprehend the artificial language to high proficiency with either explicit, classroom-like, or implicit, immersion-like training, and then underwent several months of no exposure to the language. Surprisingly, proficiency did not decrease during this delay. Instead, it remained unchanged, and there was an increase in native-like neural processing of syntax, as evidenced by several ERP changes--including earlier, more reliable, and more left-lateralized anterior negativities, and more robust P600s, in response to word-order violations. Moreover, both the explicitly and implicitly trained groups showed increased native-like ERP patterns over the delay, indicating that such changes can hold independently of L2 training type. The results demonstrate that substantial periods with no L2 exposure are not necessarily detrimental. Rather, benefits may ensue from such periods of time even when there is no L2 exposure. Interestingly, both before and after the delay the implicitly trained group showed more native-like processing than the explicitly trained group, indicating that type of training also affects the attainment of native-like processing in the brain. Overall, the findings may be largely explained by a combination of forgetting and consolidation in declarative and procedural memory, on which L2 grammar learning appears to depend. The study has a range of implications, and suggests a research

  11. Brief Report: Anomalous Neural Deactivations and Functional Connectivity during Receptive Language in Autism Spectrum Disorder--A Functional MRI Study

    Science.gov (United States)

    Karten, Ariel; Hirsch, Joy

    2015-01-01

    Neural mechanisms that underlie language disability in autism spectrum disorder (ASD) have been associated with reduced excitatory processes observed as positive blood oxygen level dependent (BOLD) responses. However, negative BOLD responses (NBR) associated with language and inhibitory processes have been less studied in ASD. In this study,…

  12. On the nature and evolution of the neural bases of human language

    Science.gov (United States)

    Lieberman, Philip

    2002-01-01

    The traditional theory equating the brain bases of language with Broca's and Wernicke's neocortical areas is wrong. Neural circuits linking activity in anatomically segregated populations of neurons in subcortical structures and the neocortex throughout the human brain regulate complex behaviors such as walking, talking, and comprehending the meaning of sentences. When we hear or read a word, neural structures involved in the perception or real-world associations of the word are activated as well as posterior cortical regions adjacent to Wernicke's area. Many areas of the neocortex and subcortical structures support the cortical-striatal-cortical circuits that confer complex syntactic ability, speech production, and a large vocabulary. However, many of these structures also form part of the neural circuits regulating other aspects of behavior. For example, the basal ganglia, which regulate motor control, are also crucial elements in the circuits that confer human linguistic ability and abstract reasoning. The cerebellum, traditionally associated with motor control, is active in motor learning. The basal ganglia are also key elements in reward-based learning. Data from studies of Broca's aphasia, Parkinson's disease, hypoxia, focal brain damage, and a genetically transmitted brain anomaly (the putative "language gene," family KE), and from comparative studies of the brains and behavior of other species, demonstrate that the basal ganglia sequence the discrete elements that constitute a complete motor act, syntactic process, or thought process. Imaging studies of intact human subjects and electrophysiologic and tracer studies of the brains and behavior of other species confirm these findings. As Dobzansky put it, "Nothing in biology makes sense except in the light of evolution" (cited in Mayr, 1982). That applies with as much force to the human brain and the neural bases of language as it does to the human foot or jaw. The converse follows: the mark of evolution on

  13. Tracking down abstract linguistic meaning: neural correlates of spatial frame of reference ambiguities in language.

    Directory of Open Access Journals (Sweden)

    Gabriele Janzen

    Full Text Available This functional magnetic resonance imaging (fMRI study investigates a crucial parameter in spatial description, namely variants in the frame of reference chosen. Two frames of reference are available in European languages for the description of small-scale assemblages, namely the intrinsic (or object-oriented frame and the relative (or egocentric frame. We showed participants a sentence such as "the ball is in front of the man", ambiguous between the two frames, and then a picture of a scene with a ball and a man--participants had to respond by indicating whether the picture did or did not match the sentence. There were two blocks, in which we induced each frame of reference by feedback. Thus for the crucial test items, participants saw exactly the same sentence and the same picture but now from one perspective, now the other. Using this method, we were able to precisely pinpoint the pattern of neural activation associated with each linguistic interpretation of the ambiguity, while holding the perceptual stimuli constant. Increased brain activity in bilateral parahippocampal gyrus was associated with the intrinsic frame of reference whereas increased activity in the right superior frontal gyrus and in the parietal lobe was observed for the relative frame of reference. The study is among the few to show a distinctive pattern of neural activation for an abstract yet specific semantic parameter in language. It shows with special clarity the nature of the neural substrate supporting each frame of spatial reference.

  14. 3-D components of a biological neural network visualized in computer generated imagery. II - Macular neural network organization

    Science.gov (United States)

    Ross, Muriel D.; Meyer, Glenn; Lam, Tony; Cutler, Lynn; Vaziri, Parshaw

    1990-01-01

    Computer-assisted reconstructions of small parts of the macular neural network show how the nerve terminals and receptive fields are organized in 3-dimensional space. This biological neural network is anatomically organized for parallel distributed processing of information. Processing appears to be more complex than in computer-based neural network, because spatiotemporal factors figure into synaptic weighting. Serial reconstruction data show anatomical arrangements which suggest that (1) assemblies of cells analyze and distribute information with inbuilt redundancy, to improve reliability; (2) feedforward/feedback loops provide the capacity for presynaptic modulation of output during processing; (3) constrained randomness in connectivities contributes to adaptability; and (4) local variations in network complexity permit differing analyses of incoming signals to take place simultaneously. The last inference suggests that there may be segregation of information flow to central stations subserving particular functions.

  15. International language management and diversity climate in multicultural organizations

    DEFF Research Database (Denmark)

    Lauring, Jakob; Selmer, Jan

    2012-01-01

    Increasing globalization has made the use and management of language a vital element of engaging in international business activities. Despite this fact, empirical surveys with many respondents examining language management are extremely rare. Another equally important issue related...... association with openness to value and informational diversity. Since there is no similar study on international language management with so many respondents, the findings may be of considerable theoretical and practical importance. Implications of these findings are discussed in detail....... to internationalization is how to develop and support an environment that is tolerant of the diversity which exists in multicultural organizations. Based on questionnaire responses from 489 members of academic multicultural departments, we examined the relation between the management of a common language and a positive...

  16. Sex differences in the neural basis of false-belief and pragmatic language comprehension.

    Science.gov (United States)

    Frank, Chiyoko Kobayashi; Baron-Cohen, Simon; Ganzel, Barbara L

    2015-01-15

    Increasing research evidence suggests that women are more advanced than men in pragmatic language comprehension and Theory of Mind (ToM), which is a cognitive component of empathy. We measured the hemodynamic responses of men and women while they performed a second-order false-belief (FB) task and a coherent story (CS) task. During the FB condition relative to the baseline (unlinked sentences [US]), we found convergent activity in ToM network regions, such as the temporoparietal junction (TPJ) bilaterally and precuneus, in both sexes. We also found a greater activity in the left medial prefrontal cortex (mPFC) and a greater deactivation in the ventromedial prefrontal cortex (vmPFC)/orbitofrontal cortex (OFC) bilaterally in women compared to men. However, we did not find difference in the brain activity between the sexes during the FB condition relative to the CS condition. The results suggest a significant overlap between neural bases of pragmatic language comprehension and ToM in both men and women. Taken together, these results are in line with the extreme male brain (EMB) hypothesis by demonstrating sex difference in the neural basis of ToM and pragmatic language, both of which are found to be impaired in individuals with Autism Spectrum Conditions (ASC). In addition, the results also suggest that on average women use both cognitive empathy (dorsal mPFC) and affective empathy (vmPFC) networks more than men for false-belief reasoning. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Specific aspects of cognitive and language proficiency account for variability in neural indices of semantic and syntactic processing in children.

    Science.gov (United States)

    Hampton Wray, Amanda; Weber-Fox, Christine

    2013-07-01

    The neural activity mediating language processing in young children is characterized by large individual variability that is likely related in part to individual strengths and weakness across various cognitive abilities. The current study addresses the following question: How does proficiency in specific cognitive and language functions impact neural indices mediating language processing in children? Thirty typically developing seven- and eight-year-olds were divided into high-normal and low-normal proficiency groups based on performance on nonverbal IQ, auditory word recall, and grammatical morphology tests. Event-related brain potentials (ERPs) were elicited by semantic anomalies and phrase structure violations in naturally spoken sentences. The proficiency for each of the specific cognitive and language tasks uniquely contributed to specific aspects (e.g., timing and/or resource allocation) of neural indices underlying semantic (N400) and syntactic (P600) processing. These results suggest that distinct aptitudes within broader domains of cognition and language, even within the normal range, influence the neural signatures of semantic and syntactic processing. Furthermore, the current findings have important implications for the design and interpretation of developmental studies of ERPs indexing language processing, and they highlight the need to take into account cognitive abilities both within and outside the classic language domain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. ALPHABET SIGN LANGUAGE RECOGNITION USING LEAP MOTION TECHNOLOGY AND RULE BASED BACKPROPAGATION-GENETIC ALGORITHM NEURAL NETWORK (RBBPGANN

    Directory of Open Access Journals (Sweden)

    Wijayanti Nurul Khotimah

    2017-01-01

    Full Text Available Sign Language recognition was used to help people with normal hearing communicate effectively with the deaf and hearing-impaired. Based on survey that conducted by Multi-Center Study in Southeast Asia, Indonesia was on the top four position in number of patients with hearing disability (4.6%. Therefore, the existence of Sign Language recognition is important. Some research has been conducted on this field. Many neural network types had been used for recognizing many kinds of sign languages. However, their performance are need to be improved. This work focuses on the ASL (Alphabet Sign Language in SIBI (Sign System of Indonesian Language which uses one hand and 26 gestures. Here, thirty four features were extracted by using Leap Motion. Further, a new method, Rule Based-Backpropagation Genetic Al-gorithm Neural Network (RB-BPGANN, was used to recognize these Sign Languages. This method is combination of Rule and Back Propagation Neural Network (BPGANN. Based on experiment this pro-posed application can recognize Sign Language up to 93.8% accuracy. It was very good to recognize large multiclass instance and can be solution of overfitting problem in Neural Network algorithm.

  19. Beyond the language given: the neural correlates of inferring speaker meaning.

    Science.gov (United States)

    Bašnáková, Jana; Weber, Kirsten; Petersson, Karl Magnus; van Berkum, Jos; Hagoort, Peter

    2014-10-01

    Even though language allows us to say exactly what we mean, we often use language to say things indirectly, in a way that depends on the specific communicative context. For example, we can use an apparently straightforward sentence like "It is hard to give a good presentation" to convey deeper meanings, like "Your talk was a mess!" One of the big puzzles in language science is how listeners work out what speakers really mean, which is a skill absolutely central to communication. However, most neuroimaging studies of language comprehension have focused on the arguably much simpler, context-independent process of understanding direct utterances. To examine the neural systems involved in getting at contextually constrained indirect meaning, we used functional magnetic resonance imaging as people listened to indirect replies in spoken dialog. Relative to direct control utterances, indirect replies engaged dorsomedial prefrontal cortex, right temporo-parietal junction and insula, as well as bilateral inferior frontal gyrus and right medial temporal gyrus. This suggests that listeners take the speaker's perspective on both cognitive (theory of mind) and affective (empathy-like) levels. In line with classic pragmatic theories, our results also indicate that currently popular "simulationist" accounts of language comprehension fail to explain how listeners understand the speaker's intended message. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Neural basis of first and second language processing of sentence-level linguistic prosody.

    Science.gov (United States)

    Gandour, Jackson; Tong, Yunxia; Talavage, Thomas; Wong, Donald; Dzemidzic, Mario; Xu, Yisheng; Li, Xiaojian; Lowe, Mark

    2007-02-01

    A fundamental question in multilingualism is whether the neural substrates are shared or segregated for the two or more languages spoken by polyglots. This study employs functional MRI to investigate the neural substrates underlying the perception of two sentence-level prosodic phenomena that occur in both Mandarin Chinese (L1) and English (L2): sentence focus (sentence-initial vs. -final position of contrastive stress) and sentence type (declarative vs. interrogative modality). Late-onset, medium proficiency Chinese-English bilinguals were asked to selectively attend to either sentence focus or sentence type in paired three-word sentences in both L1 and L2 and make speeded-response discrimination judgments. L1 and L2 elicited highly overlapping activations in frontal, temporal, and parietal lobes. Furthermore, region of interest analyses revealed that for both languages the sentence focus task elicited a leftward asymmetry in the supramarginal gyrus; both tasks elicited a rightward asymmetry in the mid-portion of the middle frontal gyrus. A direct comparison between L1 and L2 did not show any difference in brain activation in the sentence type task. In the sentence focus task, however, greater activation for L2 than L1 occurred in the bilateral anterior insula and superior frontal sulcus. The sentence focus task also elicited a leftward asymmetry in the posterior middle temporal gyrus for L1 only. Differential activation patterns are attributed primarily to disparities between L1 and L2 in the phonetic manifestation of sentence focus. Such phonetic divergences lead to increased computational demands for processing L2. These findings support the view that L1 and L2 are mediated by a unitary neural system despite late age of acquisition, although additional neural resources may be required in task-specific circumstances for unequal bilinguals.

  1. Mexican sign language recognition using normalized moments and artificial neural networks

    Science.gov (United States)

    Solís-V., J.-Francisco; Toxqui-Quitl, Carina; Martínez-Martínez, David; H.-G., Margarita

    2014-09-01

    This work presents a framework designed for the Mexican Sign Language (MSL) recognition. A data set was recorded with 24 static signs from the MSL using 5 different versions, this MSL dataset was captured using a digital camera in incoherent light conditions. Digital Image Processing was used to segment hand gestures, a uniform background was selected to avoid using gloved hands or some special markers. Feature extraction was performed by calculating normalized geometric moments of gray scaled signs, then an Artificial Neural Network performs the recognition using a 10-fold cross validation tested in weka, the best result achieved 95.83% of recognition rate.

  2. Contemporary model of language organization: an overview for neurosurgeons.

    Science.gov (United States)

    Chang, Edward F; Raygor, Kunal P; Berger, Mitchel S

    2015-02-01

    Classic models of language organization posited that separate motor and sensory language foci existed in the inferior frontal gyrus (Broca's area) and superior temporal gyrus (Wernicke's area), respectively, and that connections between these sites (arcuate fasciculus) allowed for auditory-motor interaction. These theories have predominated for more than a century, but advances in neuroimaging and stimulation mapping have provided a more detailed description of the functional neuroanatomy of language. New insights have shaped modern network-based models of speech processing composed of parallel and interconnected streams involving both cortical and subcortical areas. Recent models emphasize processing in "dorsal" and "ventral" pathways, mediating phonological and semantic processing, respectively. Phonological processing occurs along a dorsal pathway, from the posterosuperior temporal to the inferior frontal cortices. On the other hand, semantic information is carried in a ventral pathway that runs from the temporal pole to the basal occipitotemporal cortex, with anterior connections. Functional MRI has poor positive predictive value in determining critical language sites and should only be used as an adjunct for preoperative planning. Cortical and subcortical mapping should be used to define functional resection boundaries in eloquent areas and remains the clinical gold standard. In tracing the historical advancements in our understanding of speech processing, the authors hope to not only provide practicing neurosurgeons with additional information that will aid in surgical planning and prevent postoperative morbidity, but also underscore the fact that neurosurgeons are in a unique position to further advance our understanding of the anatomy and functional organization of language.

  3. Innovative and Organized Approaches to Foreign Language Teaching

    Directory of Open Access Journals (Sweden)

    Max Florian Hertsch

    2013-03-01

    Full Text Available Innovation and organization in language education are more than just a teacher and students gathered in the same classroom at the same time, using the same materials and current motivation. The importance of innovations is highlighted by the European Label for innovative projects in language teaching and learning. For Turkey and its European Union membership ambitions, education is a prior section whose standard can be raised by innovations in foreign language education. Heyworth created a formula for innovations [C=(abc>x] which declares changes and its costs. The formula expresses that change for innovation equals several factors which must be more effective than the costs. In this article, Heyworth’s formula is transferred towards the language education system in Turkey. It will theoretically show advantages and changes and a way how Turkish organizations could change to provide more sustainable language education. Furthermore, the article will explain the already existing approaches and show their advantages and disadvantages. As a conclusion, a theoretical approach for innovations will be given and discussed.

  4. Neural Substrates of Processing Anger in Language: Contributions of Prosody and Semantics.

    Science.gov (United States)

    Castelluccio, Brian C; Myers, Emily B; Schuh, Jillian M; Eigsti, Inge-Marie

    2016-12-01

    Emotions are conveyed primarily through two channels in language: semantics and prosody. While many studies confirm the role of a left hemisphere network in processing semantic emotion, there has been debate over the role of the right hemisphere in processing prosodic emotion. Some evidence suggests a preferential role for the right hemisphere, and other evidence supports a bilateral model. The relative contributions of semantics and prosody to the overall processing of affect in language are largely unexplored. The present work used functional magnetic resonance imaging to elucidate the neural bases of processing anger conveyed by prosody or semantic content. Results showed a robust, distributed, bilateral network for processing angry prosody and a more modest left hemisphere network for processing angry semantics when compared to emotionally neutral stimuli. Findings suggest the nervous system may be more responsive to prosodic cues in speech than to the semantic content of speech.

  5. An Adaptive-PSO-Based Self-Organizing RBF Neural Network.

    Science.gov (United States)

    Han, Hong-Gui; Lu, Wei; Hou, Ying; Qiao, Jun-Fei

    2018-01-01

    In this paper, a self-organizing radial basis function (SORBF) neural network is designed to improve both accuracy and parsimony with the aid of adaptive particle swarm optimization (APSO). In the proposed APSO algorithm, to avoid being trapped into local optimal values, a nonlinear regressive function is developed to adjust the inertia weight. Furthermore, the APSO algorithm can optimize both the network size and the parameters of an RBF neural network simultaneously. As a result, the proposed APSO-SORBF neural network can effectively generate a network model with a compact structure and high accuracy. Moreover, the analysis of convergence is given to guarantee the successful application of the APSO-SORBF neural network. Finally, multiple numerical examples are presented to illustrate the effectiveness of the proposed APSO-SORBF neural network. The results demonstrate that the proposed method is more competitive in solving nonlinear problems than some other existing SORBF neural networks.

  6. Early neural disruption and auditory processing outcomes in rodent models: Implications for developmental language disability

    Directory of Open Access Journals (Sweden)

    Roslyn Holly Fitch

    2013-10-01

    Full Text Available Most researchers in the field of neural plasticity are familiar with the Kennard Principle," which purports a positive relationship between age at brain injury and severity of subsequent deficits (plateauing in adulthood. As an example, a child with left hemispherectomy can recover seemingly normal language, while an adult with focal injury to sub-regions of left temporal and/or frontal cortex can suffer dramatic and permanent language loss. Here we present data regarding the impact of early brain injury in rat models as a function of type and timing, measuring long-term behavioral outcomes via auditory discrimination tasks varying in temporal demand. These tasks were created to model (in rodents aspects of human sensory processing that may correlate – both developmentally and functionally – with typical and atypical language. We found that bilateral focal lesions to the cortical plate in rats during active neuronal migration led to worse auditory outcomes than comparable lesions induced after cortical migration was complete. Conversely, unilateral hypoxic-ischemic injuries (similar to those seen in premature infants and term infants with birth complications led to permanent auditory processing deficits when induced at a neurodevelopmental point comparable to human "term," but only transient deficits (undetectable in adulthood when induced in a "preterm" window. Convergent evidence suggests that regardless of when or how disruption of early neural development occurs, the consequences may be particularly deleterious to rapid auditory processing outcomes when they trigger developmental alterations that extend into subcortical structures (i.e., lower sensory processing stations. Collective findings hold implications for the study of behavioral outcomes following early brain injury as well as genetic/environmental disruption, and are relevant to our understanding of the neurologic risk factors underlying developmental language disability in

  7. Neural signatures of language co-activation and control in bilingual spoken word comprehension.

    Science.gov (United States)

    Chen, Peiyao; Bobb, Susan C; Hoshino, Noriko; Marian, Viorica

    2017-06-15

    To examine the neural signatures of language co-activation and control during bilingual spoken word comprehension, Korean-English bilinguals and English monolinguals were asked to make overt or covert semantic relatedness judgments on auditorily-presented English word pairs. In two critical conditions, participants heard word pairs consisting of an English-Korean interlingual homophone (e.g., the sound /mu:n/ means "moon" in English and "door" in Korean) as the prime and an English word as the target. In the homophone-related condition, the target (e.g., "lock") was related to the homophone's Korean meaning, but not related to the homophone's English meaning. In the homophone-unrelated condition, the target was unrelated to either the homophone's Korean meaning or the homophone's English meaning. In overtly responded situations, ERP results revealed that the reduced N400 effect in bilinguals for homophone-related word pairs correlated positively with the amount of their daily exposure to Korean. In covertly responded situations, ERP results showed a reduced late positive component for homophone-related word pairs in the right hemisphere, and this late positive effect was related to the neural efficiency of suppressing interference in a non-linguistic task. Together, these findings suggest 1) that the degree of language co-activation in bilingual spoken word comprehension is modulated by the amount of daily exposure to the non-target language; and 2) that bilinguals who are less influenced by cross-language activation may also have greater efficiency in suppressing interference in a non-linguistic task. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Early neural disruption and auditory processing outcomes in rodent models: implications for developmental language disability.

    Science.gov (United States)

    Fitch, R Holy; Alexander, Michelle L; Threlkeld, Steven W

    2013-10-21

    Most researchers in the field of neural plasticity are familiar with the "Kennard Principle," which purports a positive relationship between age at brain injury and severity of subsequent deficits (plateauing in adulthood). As an example, a child with left hemispherectomy can recover seemingly normal language, while an adult with focal injury to sub-regions of left temporal and/or frontal cortex can suffer dramatic and permanent language loss. Here we present data regarding the impact of early brain injury in rat models as a function of type and timing, measuring long-term behavioral outcomes via auditory discrimination tasks varying in temporal demand. These tasks were created to model (in rodents) aspects of human sensory processing that may correlate-both developmentally and functionally-with typical and atypical language. We found that bilateral focal lesions to the cortical plate in rats during active neuronal migration led to worse auditory outcomes than comparable lesions induced after cortical migration was complete. Conversely, unilateral hypoxic-ischemic (HI) injuries (similar to those seen in premature infants and term infants with birth complications) led to permanent auditory processing deficits when induced at a neurodevelopmental point comparable to human "term," but only transient deficits (undetectable in adulthood) when induced in a "preterm" window. Convergent evidence suggests that regardless of when or how disruption of early neural development occurs, the consequences may be particularly deleterious to rapid auditory processing (RAP) outcomes when they trigger developmental alterations that extend into subcortical structures (i.e., lower sensory processing stations). Collective findings hold implications for the study of behavioral outcomes following early brain injury as well as genetic/environmental disruption, and are relevant to our understanding of the neurologic risk factors underlying developmental language disability in human

  9. Developmental word acquisition and grammar learning by humanoid robots through a self-organizing incremental neural network.

    Science.gov (United States)

    He, Xiaoyuan; Ogura, Tomotaka; Satou, Akihiro; Hasegawa, Osamu

    2007-10-01

    We present a new approach for online incremental word acquisition and grammar learning by humanoid robots. Using no data set provided in advance, the proposed system grounds language in a physical context, as mediated by its perceptual capacities. It is carried out using show-and-tell procedures, interacting with its human partner. Moreover, this procedure is open-ended for new words and multiword utterances. These facilities are supported by a self-organizing incremental neural network, which can execute online unsupervised classification and topology learning. Embodied with a mental imagery, the system also learns by both top-down and bottom-up processes, which are the syntactic structures that are contained in utterances. Thereby, it performs simple grammar learning. Under such a multimodal scheme, the robot is able to describe online a given physical context (both static and dynamic) through natural language expressions. It can also perform actions through verbal interactions with its human partner.

  10. Self-Organizing Neural Circuits for Sensory-Guided Motor Control

    National Research Council Canada - National Science Library

    Grossberg, Stephen

    1999-01-01

    The reported projects developed mathematical models to explain how self-organizing neural circuits that operate under continuous or intermittent sensory guidance achieve flexible and accurate control of human movement...

  11. Age and experience shape developmental changes in the neural basis of language-related learning.

    Science.gov (United States)

    McNealy, Kristin; Mazziotta, John C; Dapretto, Mirella

    2011-11-01

    Very little is known about the neural underpinnings of language learning across the lifespan and how these might be modified by maturational and experiential factors. Building on behavioral research highlighting the importance of early word segmentation (i.e. the detection of word boundaries in continuous speech) for subsequent language learning, here we characterize developmental changes in brain activity as this process occurs online, using data collected in a mixed cross-sectional and longitudinal design. One hundred and fifty-six participants, ranging from age 5 to adulthood, underwent functional magnetic resonance imaging (fMRI) while listening to three novel streams of continuous speech, which contained either strong statistical regularities, strong statistical regularities and speech cues, or weak statistical regularities providing minimal cues to word boundaries. All age groups displayed significant signal increases over time in temporal cortices for the streams with high statistical regularities; however, we observed a significant right-to-left shift in the laterality of these learning-related increases with age. Interestingly, only the 5- to 10-year-old children displayed significant signal increases for the stream with low statistical regularities, suggesting an age-related decrease in sensitivity to more subtle statistical cues. Further, in a sample of 78 10-year-olds, we examined the impact of proficiency in a second language and level of pubertal development on learning-related signal increases, showing that the brain regions involved in language learning are influenced by both experiential and maturational factors. 2011 Blackwell Publishing Ltd.

  12. Neural correlates of foreign-language learning in childhood: a 3-year longitudinal ERP study.

    Science.gov (United States)

    Ojima, Shiro; Nakamura, Naoko; Matsuba-Kurita, Hiroko; Hoshino, Takahiro; Hagiwara, Hiroko

    2011-01-01

    A foreign language (a language not spoken in one's community) is difficult to master completely. Early introduction of foreign-language (FL) education during childhood is becoming a standard in many countries. However, the neural process of child FL learning still remains largely unknown. We longitudinally followed 322 school-age children with diverse FL proficiency for three consecutive years, and acquired children's ERP responses to FL words that were semantically congruous or incongruous with the preceding picture context. As FL proficiency increased, various ERP components previously reported in mother-tongue (L1) acquisition (such as a broad negativity, an N400, and a late positive component) appeared sequentially, critically in an identical order to L1 acquisition. This finding was supported not only by cross-sectional analyses of children at different proficiency levels but also by longitudinal analyses of the same children over time. Our data are consistent with the hypothesis that FL learning in childhood reproduces identical developmental stages in an identical order to L1 acquisition, suggesting that the nature of the child's brain itself may determine the normal course of FL learning. Future research should test the generalizability of the results in other aspects of language such as syntax.

  13. Magnetoencephalography of language: new approaches to understanding the cortical organization of Chinese processing.

    Science.gov (United States)

    Zhang, Yumei; Zhang, Ning; Han, Zaizhu; Wang, Yilong; Wang, Chunxue; Chen, Hongyan; Wang, Yongjun; Zhang, Xinghu

    2010-07-01

    Chinese is a logographic language. Many of its psycholinguistic characteristics differ from those of alphabetic languages. These differences might be expected to entail a different pattern of neural activity underpinning Chinese language processing compared to the processing of alphabetic languages. The aim of the current study was to investigate neural language centers for processing Chinese language information in healthy Chinese speakers using magnetoencephalography (MEG). Overall, we aimed to elucidate language-specific and language-general characteristics of processing across different language scripts. Ten healthy Chinese-speaking subjects were asked to silently read genuine Chinese characters and view pseudo-characters in a MEG scanner. The functional language areas were located by overlapping the MEG results over magnetic resonance imaging (MRI) images. Distinctive late magnetic response waves were observed in both hemispheres while the subjects were reading genuine Chinese characters. The polarization of the response waveforms was found to be greater in the left than the right hemisphere. Broca's area was found to be located at the back of gyrus frontalis inferior or gyrus frontalis medius. Wernicke's area was located at gyrus temporalis medius, gyrus temporalis superior and gyrus supramariginalis. In addition, Wernicke's area was activated earlier than Broca's area. Native Chinese speakers reading Chinese characters showed neural responses that were lateralized to the left hemisphere. Overall, the functional brain areas activated by reading Chinese in this study corresponded to classical language centers found for alphabetic languages in previous studies, but some differences were also found in the specific patterns of activation.

  14. The Language, Tone and Prosody of Emotions: Neural Substrates and Dynamics of Spoken-Word Emotion Perception.

    Science.gov (United States)

    Liebenthal, Einat; Silbersweig, David A; Stern, Emily

    2016-01-01

    Rapid assessment of emotions is important for detecting and prioritizing salient input. Emotions are conveyed in spoken words via verbal and non-verbal channels that are mutually informative and unveil in parallel over time, but the neural dynamics and interactions of these processes are not well understood. In this paper, we review the literature on emotion perception in faces, written words, and voices, as a basis for understanding the functional organization of emotion perception in spoken words. The characteristics of visual and auditory routes to the amygdala-a subcortical center for emotion perception-are compared across these stimulus classes in terms of neural dynamics, hemispheric lateralization, and functionality. Converging results from neuroimaging, electrophysiological, and lesion studies suggest the existence of an afferent route to the amygdala and primary visual cortex for fast and subliminal processing of coarse emotional face cues. We suggest that a fast route to the amygdala may also function for brief non-verbal vocalizations (e.g., laugh, cry), in which emotional category is conveyed effectively by voice tone and intensity. However, emotional prosody which evolves on longer time scales and is conveyed by fine-grained spectral cues appears to be processed via a slower, indirect cortical route. For verbal emotional content, the bulk of current evidence, indicating predominant left lateralization of the amygdala response and timing of emotional effects attributable to speeded lexical access, is more consistent with an indirect cortical route to the amygdala. Top-down linguistic modulation may play an important role for prioritized perception of emotions in words. Understanding the neural dynamics and interactions of emotion and language perception is important for selecting potent stimuli and devising effective training and/or treatment approaches for the alleviation of emotional dysfunction across a range of neuropsychiatric states.

  15. Sign language recognition using competitive learning in the HAVNET neural network

    Science.gov (United States)

    Sujan, Vivek A.; Meggiolaro, Marco A.

    2000-04-01

    An optical modeless Sign Language Recognition (SLR) system is presented. The system uses the HAusdorf-Voronoi NETwork (HAVNET), an artificial neural network designed for 2D binary pattern recognition. It uses adaptation of the Hausdorff distance to determine the similarity between an input pattern and a learned representation. A detailed review of the architecture, the learning equations, and the recognition equations for the HAVNET network are presented. Competitive learning has been implemented in training the network using a nearest-neighbor technique. The SLR system is applied to the optical recognition of 24 static symbols from the American Sign Language convention. The SLR system represents the target images in a 80 X 80 pixel format. The implemented HAVNET network classifies the inputs into categories representing each of the symbols, using an output layer of 24 nodes. The network is trained with 5 different formats for each symbol and is tested with all 24 symbols in 15 new formats. Results from the SLR system without competitive training show shape identification problems, when distinguishing symbols with similar shapes. Implementation of competitive learning in the HAVNET neural network improved recognition accuracy on this task to 89%. The hand gestures are identified through a window search algorithm. Feature recognition is obtained from edge enhancement by applying a Laplacian filter and thresholding, which provides robustness to pose, color and background variations.

  16. Neural substrates of figurative language during natural speech perception: an fMRI study.

    Science.gov (United States)

    Nagels, Arne; Kauschke, Christina; Schrauf, Judith; Whitney, Carin; Straube, Benjamin; Kircher, Tilo

    2013-01-01

    Many figurative expressions are fully conventionalized in everyday speech. Regarding the neural basis of figurative language processing, research has predominantly focused on metaphoric expressions in minimal semantic context. It remains unclear in how far metaphoric expressions during continuous text comprehension activate similar neural networks as isolated metaphors. We therefore investigated the processing of similes (figurative language, e.g., "He smokes like a chimney!") occurring in a short story. Sixteen healthy, male, native German speakers listened to similes that came about naturally in a short story, while blood-oxygenation-level-dependent (BOLD) responses were measured with functional magnetic resonance imaging (fMRI). For the event-related analysis, similes were contrasted with non-figurative control sentences (CS). The stimuli differed with respect to figurativeness, while they were matched for frequency of words, number of syllables, plausibility, and comprehensibility. Similes contrasted with CS resulted in enhanced BOLD responses in the left inferior (IFG) and adjacent middle frontal gyrus. Concrete CS as compared to similes activated the bilateral middle temporal gyri as well as the right precuneus and the left middle frontal gyrus (LMFG). Activation of the left IFG for similes in a short story is consistent with results on single sentence metaphor processing. The findings strengthen the importance of the left inferior frontal region in the processing of abstract figurative speech during continuous, ecologically-valid speech comprehension; the processing of concrete semantic contents goes along with a down-regulation of bilateral temporal regions.

  17. Neural substrates of figurative language during natural speech perception: an fMRI study

    Directory of Open Access Journals (Sweden)

    Arne eNagels

    2013-09-01

    Full Text Available Many figurative expressions are fully conventionalized in everyday speech. Regarding the neural basis of figurative language processing, research has predominantly focused on metaphoric expressions in minimal semantic context. It remains unclear in how far metaphoric expressions during continuous text comprehension activate similar neural networks as isolated metaphors. We therefore investigated the processing of similes (figurative language, e.g. He smokes like a chimney! occurring in a short story.Sixteen healthy, male, native German speakers listened to similes that came about naturally in a short story, while blood-oxygenation-level-dependent (BOLD responses were measured with functional magnetic resonance imaging (fMRI. For the event-related analysis, similes were contrasted with non-figurative control sentences. The stimuli differed with respect to figurativeness, while they were matched for frequency of words, number of syllables, plausibility and comprehensibility.Similes contrasted with control sentences resulted in enhanced BOLD responses in the left inferior (IFG and adjacent middle frontal gyrus. Concrete control sentences as compared to similes activated the bilateral middle temporal gyri as well as the right precuneus and the left middle frontal gyrus.Activation of the left IFG for similes in a short story is consistent with results on single sentence metaphor processing. The findings strengthen the importance of the left inferior frontal region in the processing of abstract figurative speech during continuous, ecologically-valid speech comprehension; the processing of concrete semantic contents goes along with a down-regulation of bilateral temporal regions.

  18. Unique Neural Characteristics of Atypical Lateralization of Language in Healthy Individuals

    Directory of Open Access Journals (Sweden)

    Szymon P. Biduła

    2017-09-01

    Full Text Available Using functional magnetic resonance imaging (fMRI in 63 healthy participants, including left-handed and ambidextrous individuals, we tested how atypical lateralization of language—i. e., bilateral or right hemispheric language representation—differs from the typical left-hemisphere dominance. Although regardless of their handedness, all 11 participants from the atypical group engaged classical language centers, i.e., Broca's and Wernicke's areas, the right-hemisphere components of the default mode network (DMN, including the angular gyrus and middle temporal gyrus, were also critically involved during the verbal fluency task. Importantly, activity in these regions could not be explained in terms of mirroring the typical language pattern because left-hemisphere dominant individuals did not exhibit similar significant signal modulations. Moreover, when spatial extent of language-related activity across whole brain was considered, the bilateral language organization entailed more diffuse functional processing. Finally, we detected significant differences between the typical and atypical group in the resting-state connectivity at the global and local level. These findings suggest that the atypical lateralization of language has unique features, and is not a simple mirror image of the typical left hemispheric language representation.

  19. Unique Neural Characteristics of Atypical Lateralization of Language in Healthy Individuals

    Science.gov (United States)

    Biduła, Szymon P.; Przybylski, Łukasz; Pawlak, Mikołaj A.; Króliczak, Gregory

    2017-01-01

    Using functional magnetic resonance imaging (fMRI) in 63 healthy participants, including left-handed and ambidextrous individuals, we tested how atypical lateralization of language—i. e., bilateral or right hemispheric language representation—differs from the typical left-hemisphere dominance. Although regardless of their handedness, all 11 participants from the atypical group engaged classical language centers, i.e., Broca's and Wernicke's areas, the right-hemisphere components of the default mode network (DMN), including the angular gyrus and middle temporal gyrus, were also critically involved during the verbal fluency task. Importantly, activity in these regions could not be explained in terms of mirroring the typical language pattern because left-hemisphere dominant individuals did not exhibit similar significant signal modulations. Moreover, when spatial extent of language-related activity across whole brain was considered, the bilateral language organization entailed more diffuse functional processing. Finally, we detected significant differences between the typical and atypical group in the resting-state connectivity at the global and local level. These findings suggest that the atypical lateralization of language has unique features, and is not a simple mirror image of the typical left hemispheric language representation. PMID:28983238

  20. Artificial language training reveals the neural substrates underlying addressed and assembled phonologies.

    Directory of Open Access Journals (Sweden)

    Leilei Mei

    Full Text Available Although behavioral and neuropsychological studies have suggested two distinct routes of phonological access, their neural substrates have not been clearly elucidated. Here, we designed an artificial language (based on Korean Hangul that can be read either through addressed (i.e., whole word mapping or assembled (i.e., grapheme-to-phoneme mapping phonology. Two matched groups of native English-speaking participants were trained in one of the two conditions, one hour per day for eight days. Behavioral results showed that both groups correctly named more than 90% of the trained words after training. At the neural level, we found a clear dissociation of the neural pathways for addressed and assembled phonologies: There was greater involvement of the anterior cingulate cortex, posterior cingulate cortex, right orbital frontal cortex, angular gyrus and middle temporal gyrus for addressed phonology, but stronger activation in the left precentral gyrus/inferior frontal gyrus and supramarginal gyrus for assembled phonology. Furthermore, we found evidence supporting the strategy-shift hypothesis, which postulates that, with practice, reading strategy shifts from assembled to addressed phonology. Specifically, compared to untrained words, trained words in the assembled phonology group showed stronger activation in the addressed phonology network and less activation in the assembled phonology network. Our results provide clear brain-imaging evidence for the dual-route models of reading.

  1. A new approach to the automatic identification of organism evolution using neural networks.

    Science.gov (United States)

    Kasperski, Andrzej; Kasperska, Renata

    2016-01-01

    Automatic identification of organism evolution still remains a challenging task, which is especially exiting, when the evolution of human is considered. The main aim of this work is to present a new idea to allow organism evolution analysis using neural networks. Here we show that it is possible to identify evolution of any organisms in a fully automatic way using the designed EvolutionXXI program, which contains implemented neural network. The neural network has been taught using cytochrome b sequences of selected organisms. Then, analyses have been carried out for the various exemplary organisms in order to demonstrate capabilities of the EvolutionXXI program. It is shown that the presented idea allows supporting existing hypotheses, concerning evolutionary relationships between selected organisms, among others, Sirenia and elephants, hippopotami and whales, scorpions and spiders, dolphins and whales. Moreover, primate (including human), tree shrew and yeast evolution has been reconstructed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Androgenic influences on neural asymmetry: Handedness and language lateralization in individuals with congenital adrenal hyperplasia.

    Science.gov (United States)

    Mathews, Greta A; Fane, Briony A; Pasterski, Vickie L; Conway, Gerard S; Brook, Charles; Hines, Melissa

    2004-07-01

    This study tested the hypothesis that prenatal androgen levels influence hand preferences and language lateralization, two manifestations of neural asymmetry. Participants were individuals with congenital adrenal hyperplasia (CAH, a genetic disorder that results in excess adrenal androgen production beginning prenatally) (40 females; 29 males) and their unaffected relatives (29 females; 30 males) who ranged in age from 12-45 years. The Edinburgh-Crovitz Inventory and the performance of five simple tasks (the Handedness Activities Test) were the measures of hand preferences, and a dichotic listening task composed of consonant-vowel nonsense syllables was the measure of language lateralization. No sex differences were observed among relative controls in hand preferences or language lateralization. Male participants with CAH were less consistently right-handed for writing than unaffected male relatives, when those who had been forced to switch writing hands from left to right were considered with left-handers as being not consistently right-handed. There were no other significant differences between individuals with CAH and unaffected relatives. These results do not support the hypothesis that prenatal androgens influence language lateralization, nor do they support the Geschwind-Behan-Galaburda model that posits a key role for testosterone in the development of cognitive problems in males, secondary to changes in hemispheric development and cognitive lateralization. Hormonal influences on handedness, although not always consistent, may be more likely. However, given that sex differences in both language lateralization and handedness are small, it is possible that limited sample size precludes the detection of consistent group differences.

  3. Effects of task language and second-language proficiency on the neural correlates of phonemic fluency in native Japanese speakers: a functional near-infrared spectroscopy study.

    Science.gov (United States)

    Wroblewski, Greggory J; Matsuo, Koji; Hirata, Keiko; Matsubara, Toshio; Harada, Kenichiro; Watanabe, Yoshifumi; Shinoda, Koh

    2017-09-27

    Data collected during a phonemic fluency task (or 'FAS test'), a standard component of neuropsychological batteries for assessment of cognitive deficits, may be language-dependent and may differ depending on second-language proficiency. The unique orthographic/phonological system of the task language, and the reported cognitive advantages inherent to bilinguals, may each influence the task's neural correlates. However, language background is not currently assessed in most studies testing phonemic fluency. Here, we used 52-channel functional near-infrared spectroscopy in college-aged native-Japanese subjects to examine functional changes in oxygenated hemoglobin elicited during a phonemic fluency task performed in Japanese and in English. We found activity differences that were related to task language and second-language proficiency. Besides loci activated in the Japanese test, bilateral precentral channels were specifically recruited in the English test. Furthermore, the higher-proficiency group showed almost no increase in oxygenated hemoglobin in either language context, whereas participants with lower proficiency showed widespread increases for both contexts. We interpret precentral increases as the consequence of additional articulatory resource recruitment in a second-language context. As for the lack of such variation in the higher-proficiency group, it may reflect an advantage in nonverbal executive control in this group. Together, our results point to language background and proficiency as confounding variables in neuroimaging studies of phonemic fluency and that the adequacy of such measures in populations with varying language backgrounds needs to be considered in future studies.

  4. Hox genes: choreographers in neural development, architects of circuit organization.

    Science.gov (United States)

    Philippidou, Polyxeni; Dasen, Jeremy S

    2013-10-02

    The neural circuits governing vital behaviors, such as respiration and locomotion, are comprised of discrete neuronal populations residing within the brainstem and spinal cord. Work over the past decade has provided a fairly comprehensive understanding of the developmental pathways that determine the identity of major neuronal classes within the neural tube. However, the steps through which neurons acquire the subtype diversities necessary for their incorporation into a particular circuit are still poorly defined. Studies on the specification of motor neurons indicate that the large family of Hox transcription factors has a key role in generating the subtypes required for selective muscle innervation. There is also emerging evidence that Hox genes function in multiple neuronal classes to shape synaptic specificity during development, suggesting a broader role in circuit assembly. This Review highlights the functions and mechanisms of Hox gene networks and their multifaceted roles during neuronal specification and connectivity. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. On the Computational Power of Spiking Neural P Systems with Self-Organization

    Science.gov (United States)

    Wang, Xun; Song, Tao; Gong, Faming; Zheng, Pan

    2016-06-01

    Neural-like computing models are versatile computing mechanisms in the field of artificial intelligence. Spiking neural P systems (SN P systems for short) are one of the recently developed spiking neural network models inspired by the way neurons communicate. The communications among neurons are essentially achieved by spikes, i. e. short electrical pulses. In terms of motivation, SN P systems fall into the third generation of neural network models. In this study, a novel variant of SN P systems, namely SN P systems with self-organization, is introduced, and the computational power of the system is investigated and evaluated. It is proved that SN P systems with self-organization are capable of computing and accept the family of sets of Turing computable natural numbers. Moreover, with 87 neurons the system can compute any Turing computable recursive function, thus achieves Turing universality. These results demonstrate promising initiatives to solve an open problem arisen by Gh Păun.

  6. Organic and Non-Organic Language Disorders after Awake Brain Surgery

    Directory of Open Access Journals (Sweden)

    Elke De Witte

    2014-04-01

    Full Text Available INTRODUCTION: Awake surgery with Direct Electrical Stimulation (DES is considered the ‘gold standard’ to resect brain tumours in the language dominant hemisphere (De Witte & Mariën, 2013. Although transient language impairments are common in the immediate postoperative phase, permanent postoperative language deficits seem to be rare (Duffau, 2007. Milian et al. (2014 stated that most patients tolerate the awake procedure well and would undergo a similar procedure again. However, postoperative psychological symptoms including recurrent distressing dreams and persistent avoidance of stimuli have been recorded following awake surgery (Goebel, Nabavi, Schubert, & Mehdorn, 2010; Milian et al., 2014. To the best of our knowledge, psychogenic language disturbances have never been described after awake surgery. In general, only a handful of non-organic, psychogenic language disorders have been reported in the literature (De Letter et al., 2012. We report three patients with left brain tumours (see table 1 who presented linguistic symptoms after awake surgery that were incompatible with the lesion location, suggesting a psychogenic origin. METHODS: Neurocognitive (language, memory, executive functions investigations were carried out before, during and after awake surgery (6 weeks, 6 months postsurgery on the basis of standardised tests. Pre- and postoperative (fMRI images, DTI results and intraoperative DES findings were analysed. A selection of tasks was used to map language intraoperatively (De Witte et al., 2013. In the postoperative phase spontaneous speech and behavioural phenomena to errors were video-recorded. RESULTS: Preoperative language tests did not reveal any speech or language problems. Intraoperatively, eloquent sites were mapped and preserved enabling good language skills at the end of the awake procedure. However, assessments in the first weeks postsurgery disclosed language and behavioural symptoms that support the hypothesis of a

  7. Neural Representations of Emotion Are Organized around Abstract Event Features

    Science.gov (United States)

    Skerry, Amy E.; Saxe, Rebecca

    2016-01-01

    Summary Research on emotion attribution has tended to focus on the perception of overt expressions of at most five or six basic emotions. However, our ability to identify others' emotional states is not limited to perception of these canonical expressions. Instead, we make fine-grained inferences about what others feel based on the situations they encounter, relying on knowledge of the eliciting conditions for different emotions. In the present research, we provide convergent behavioral and neural evidence concerning the representations underlying these concepts. First, we find that patterns of activity in mentalizing regions contain information about subtle emotional distinctions conveyed through verbal descriptions of eliciting situations. Second, we identify a space of abstract situation features that well captures the emotion discriminations subjects make behaviorally and show that this feature space outperforms competing models in capturing the similarity space of neural patterns in these regions. Together, the data suggest that our knowledge of others' emotions is abstract and high dimensional, that brain regions selective for mental state reasoning support relatively subtle distinctions between emotion concepts, and that the neural representations in these regions are not reducible to more primitive affective dimensions such as valence and arousal. PMID:26212878

  8. Invertebrate diversity classification using self-organizing map neural network: with some special topological functions

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2014-06-01

    Full Text Available In present study we used self-organizing map (SOM neural network to conduct the non-supervisory clustering of invertebrate orders in rice field. Four topological functions, i.e., cossintopf, sincostopf, acossintopf, and expsintopf, established on the template in toolbox of Matlab, were used in SOM neural network learning. Results showed that clusters were different when using different topological functions because different topological functions will generate different spatial structure of neurons in neural network. We may chose these functions and results based on comparison with the practical situation.

  9. Avalanches in self-organized critical neural networks: a minimal model for the neural SOC universality class.

    Directory of Open Access Journals (Sweden)

    Matthias Rybarsch

    Full Text Available The brain keeps its overall dynamics in a corridor of intermediate activity and it has been a long standing question what possible mechanism could achieve this task. Mechanisms from the field of statistical physics have long been suggesting that this homeostasis of brain activity could occur even without a central regulator, via self-organization on the level of neurons and their interactions, alone. Such physical mechanisms from the class of self-organized criticality exhibit characteristic dynamical signatures, similar to seismic activity related to earthquakes. Measurements of cortex rest activity showed first signs of dynamical signatures potentially pointing to self-organized critical dynamics in the brain. Indeed, recent more accurate measurements allowed for a detailed comparison with scaling theory of non-equilibrium critical phenomena, proving the existence of criticality in cortex dynamics. We here compare this new evaluation of cortex activity data to the predictions of the earliest physics spin model of self-organized critical neural networks. We find that the model matches with the recent experimental data and its interpretation in terms of dynamical signatures for criticality in the brain. The combination of signatures for criticality, power law distributions of avalanche sizes and durations, as well as a specific scaling relationship between anomalous exponents, defines a universality class characteristic of the particular critical phenomenon observed in the neural experiments. Thus the model is a candidate for a minimal model of a self-organized critical adaptive network for the universality class of neural criticality. As a prototype model, it provides the background for models that may include more biological details, yet share the same universality class characteristic of the homeostasis of activity in the brain.

  10. Dynamical Integration of Language and Behavior in a Recurrent Neural Network for Human–Robot Interaction

    Science.gov (United States)

    Yamada, Tatsuro; Murata, Shingo; Arie, Hiroaki; Ogata, Tetsuya

    2016-01-01

    To work cooperatively with humans by using language, robots must not only acquire a mapping between language and their behavior but also autonomously utilize the mapping in appropriate contexts of interactive tasks online. To this end, we propose a novel learning method linking language to robot behavior by means of a recurrent neural network. In this method, the network learns from correct examples of the imposed task that are given not as explicitly separated sets of language and behavior but as sequential data constructed from the actual temporal flow of the task. By doing this, the internal dynamics of the network models both language–behavior relationships and the temporal patterns of interaction. Here, “internal dynamics” refers to the time development of the system defined on the fixed-dimensional space of the internal states of the context layer. Thus, in the execution phase, by constantly representing where in the interaction context it is as its current state, the network autonomously switches between recognition and generation phases without any explicit signs and utilizes the acquired mapping in appropriate contexts. To evaluate our method, we conducted an experiment in which a robot generates appropriate behavior responding to a human’s linguistic instruction. After learning, the network actually formed the attractor structure representing both language–behavior relationships and the task’s temporal pattern in its internal dynamics. In the dynamics, language–behavior mapping was achieved by the branching structure. Repetition of human’s instruction and robot’s behavioral response was represented as the cyclic structure, and besides, waiting to a subsequent instruction was represented as the fixed-point attractor. Thanks to this structure, the robot was able to interact online with a human concerning the given task by autonomously switching phases. PMID:27471463

  11. Neural reuse of action perception circuits for language, concepts and communication.

    Science.gov (United States)

    Pulvermüller, Friedemann

    2018-01-01

    Neurocognitive and neurolinguistics theories make explicit statements relating specialized cognitive and linguistic processes to specific brain loci. These linking hypotheses are in need of neurobiological justification and explanation. Recent mathematical models of human language mechanisms constrained by fundamental neuroscience principles and established knowledge about comparative neuroanatomy offer explanations for where, when and how language is processed in the human brain. In these models, network structure and connectivity along with action- and perception-induced correlation of neuronal activity co-determine neurocognitive mechanisms. Language learning leads to the formation of action perception circuits (APCs) with specific distributions across cortical areas. Cognitive and linguistic processes such as speech production, comprehension, verbal working memory and prediction are modelled by activity dynamics in these APCs, and combinatorial and communicative-interactive knowledge is organized in the dynamics within, and connections between APCs. The network models and, in particular, the concept of distributionally-specific circuits, can account for some previously not well understood facts about the cortical 'hubs' for semantic processing and the motor system's role in language understanding and speech sound recognition. A review of experimental data evaluates predictions of the APC model and alternative theories, also providing detailed discussion of some seemingly contradictory findings. Throughout, recent disputes about the role of mirror neurons and grounded cognition in language and communication are assessed critically. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  12. An instruction language for self-construction in the context of neural networks

    Directory of Open Access Journals (Sweden)

    Frederic eZubler

    2011-12-01

    Full Text Available Biological systems are based on an entirely different concept of construction than human artifacts. They construct themselves by a process of self-organization that is a systematic spatio-temporal generation of, and interaction between, various specialized cell types. We propose a framework for designing gene-like codes for guiding the self-construction of neural networks. The description of neural development is formalized by defining a set of primitive actions taken locally by neural precursors during corticogenesis. These primitives can be combined into networks of instructions similar to biochemical pathways, capable of reproducing complex developmental sequences in a biologically plausible way. Moreover, the conditional activation and deactivation of these instruction networks can also be controlled by these primitives, allowing for the design of a `genetic code' containing both coding and regulating elements. We demonstrate in a simulation of physical cell development how this code can be incorporated into a single progenitor, which then by replication and differentiation, reproduces important aspects of corticogenesis.

  13. Examining the Effectiveness of an Academic Language Planning Organizer as a Tool for Planning Science Academic Language Instruction and Supports

    Science.gov (United States)

    Jung, Karl G.; Brown, Julie C.

    2016-12-01

    To engage in the practices of science, students must have a strong command of science academic language. However, content area teachers often make academic language an incidental part of their lesson planning, which leads to missed opportunities to enhance students' language development. To support pre-service elementary science teachers (PSTs) in making language planning an explicit part of their science lessons, we created the Academic Language Planning Organizer (ALPO). The purpose of this study was to determine the effectiveness of the ALPO on two levels: first, by examining participants' interactions with the ALPO as they identified academic language features, objectives and supports; and second, by exploring the ways that participants translated identified language supports to planned science activities. Findings indicated that, when using the ALPO, PSTs identified clear language functions and relevant vocabulary terms, and also frequently developed clear, observable and measurable language objectives. When lesson planning, PSTs were largely successful in translating previously identified language supports to their lesson plans, and often planned additional language supports beyond what was required. We also found, however, that the ALPO did not meet its intended use in supporting PSTs in identifying discourse and syntax demands associated with specific academic language functions, suggesting that revisions to the ALPO could better support PSTs in identifying these academic language demands. Implications for supporting PSTs' planning for and scaffolding of science academic language use are presented.

  14. Neural oscillatory mechanisms during novel grammar learning underlying language analytical abilities.

    Science.gov (United States)

    Kepinska, Olga; Pereda, Ernesto; Caspers, Johanneke; Schiller, Niels O

    2017-12-01

    The goal of the present study was to investigate the initial phases of novel grammar learning on a neural level, concentrating on mechanisms responsible for individual variability between learners. Two groups of participants, one with high and one with average language analytical abilities, performed an Artificial Grammar Learning (AGL) task consisting of learning and test phases. During the task, EEG signals from 32 cap-mounted electrodes were recorded and epochs corresponding to the learning phases were analysed. We investigated spectral power modulations over time, and functional connectivity patterns by means of a bivariate, frequency-specific index of phase synchronization termed Phase Locking Value (PLV). Behavioural data showed learning effects in both groups, with a steeper learning curve and higher ultimate attainment for the highly skilled learners. Moreover, we established that cortical connectivity patterns and profiles of spectral power modulations over time differentiated L2 learners with various levels of language analytical abilities. Over the course of the task, the learning process seemed to be driven by whole-brain functional connectivity between neuronal assemblies achieved by means of communication in the beta band frequency. On a shorter time-scale, increasing proficiency on the AGL task appeared to be supported by stronger local synchronisation within the right hemisphere regions. Finally, we observed that the highly skilled learners might have exerted less mental effort, or reduced attention for the task at hand once the learning was achieved, as evidenced by the higher alpha band power. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The impact of iconic gestures on foreign language word learning and its neural substrate.

    Science.gov (United States)

    Macedonia, Manuela; Müller, Karsten; Friederici, Angela D

    2011-06-01

    Vocabulary acquisition represents a major challenge in foreign language learning. Research has demonstrated that gestures accompanying speech have an impact on memory for verbal information in the speakers' mother tongue and, as recently shown, also in foreign language learning. However, the neural basis of this effect remains unclear. In a within-subjects design, we compared learning of novel words coupled with iconic and meaningless gestures. Iconic gestures helped learners to significantly better retain the verbal material over time. After the training, participants' brain activity was registered by means of fMRI while performing a word recognition task. Brain activations to words learned with iconic and with meaningless gestures were contrasted. We found activity in the premotor cortices for words encoded with iconic gestures. In contrast, words encoded with meaningless gestures elicited a network associated with cognitive control. These findings suggest that memory performance for newly learned words is not driven by the motor component as such, but by the motor image that matches an underlying representation of the word's semantics. Copyright © 2010 Wiley-Liss, Inc.

  16. The neural organization of perception in chess experts.

    Science.gov (United States)

    Krawczyk, Daniel C; Boggan, Amy L; McClelland, M Michelle; Bartlett, James C

    2011-07-20

    The human visual system responds to expertise, and it has been suggested that regions that process faces also process other objects of expertise including chess boards by experts. We tested whether chess and face processing overlap in brain activity using fMRI. Chess experts and novices exhibited face selective areas, but these regions showed no selectivity to chess configurations relative to other stimuli. We next compared neural responses to chess and to scrambled chess displays to isolate areas relevant to expertise. Areas within the posterior cingulate, orbitofrontal cortex, and right temporal cortex were active in this comparison in experts over novices. We also compared chess and face responses within the posterior cingulate and found this area responsive to chess only in experts. These findings indicate that the configurations in chess are not strongly processed by face-selective regions that are selective for faces in individuals who have expertise in both domains. Further, the area most consistently involved in chess did not show overlap with faces. Overall, these results suggest that expert visual processing may be similar at the level of recognition, but need not show the same neural correlates. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Synaptic organizations and dynamical properties of weakly connected neural oscillators. I. Analysis of a canonical model.

    Science.gov (United States)

    Hoppensteadt, F C; Izhikevich, E M

    1996-08-01

    We study weakly connected networks of neural oscillators near multiple Andronov-Hopf bifurcation points. We analyze relationships between synaptic organizations (anatomy) of the networks and their dynamical properties (function). Our principal assumptions are: (1) Each neural oscillator comprises two populations of neurons; excitatory and inhibitory ones; (2) activity of each population of neurons is described by a scalar (one-dimensional) variable; (3) each neural oscillator is near a nondegenerate supercritical Andronov-Hopf bifurcation point; (4) the synaptic connections between the neural oscillators are weak. All neural networks satisfying these hypotheses are governed by the same dynamical system, which we call the canonical model. Studying the canonical model shows that: (1) A neural oscillator can communicate only with those oscillators which have roughly the same natural frequency. That is, synaptic connections between a pair of oscillators having different natural frequencies are functionally insignificant. (2) Two neural oscillators having the same natural frequencies might not communicate if the connections between them are from among a class of pathological synaptic configurations. In both cases the anatomical presence of synaptic connections between neural oscillators does not necessarily guarantee that the connections are functionally significant. (3) There can be substantial phase differences (time delays) between the neural oscillators, which result from the synaptic organization of the network, not from the transmission delays. Using the canonical model we can illustrate self-ignition and autonomous quiescence (oscillator death) phenomena. That is, a network of passive elements can exhibit active properties and vice versa. We also study how Dale's principle affects dynamics of the networks, in particular, the phase differences that the network can reproduce. We present a complete classification of all possible synaptic organizations from this

  18. Language Learning Enhanced by Massive Multiple Online Role-Playing Games (MMORPGs) and the Underlying Behavioral and Neural Mechanisms

    Science.gov (United States)

    Zhang, Yongjun; Song, Hongwen; Liu, Xiaoming; Tang, Dinghong; Chen, Yue-e; Zhang, Xiaochu

    2017-01-01

    Massive Multiple Online Role-Playing Games (MMORPGs) have increased in popularity among children, juveniles, and adults since MMORPGs’ appearance in this digital age. MMORPGs can be applied to enhancing language learning, which is drawing researchers’ attention from different fields and many studies have validated MMORPGs’ positive effect on language learning. However, there are few studies on the underlying behavioral or neural mechanism of such effect. This paper reviews the educational application of the MMORPGs based on relevant macroscopic and microscopic studies, showing that gamers’ overall language proficiency or some specific language skills can be enhanced by real-time online interaction with peers and game narratives or instructions embedded in the MMORPGs. Mechanisms underlying the educational assistant role of MMORPGs in second language learning are discussed from both behavioral and neural perspectives. We suggest that attentional bias makes gamers/learners allocate more cognitive resources toward task-related stimuli in a controlled or an automatic way. Moreover, with a moderating role played by activation of reward circuit, playing the MMORPGs may strengthen or increase functional connectivity from seed regions such as left anterior insular/frontal operculum (AI/FO) and visual word form area to other language-related brain areas. PMID:28303097

  19. Language Learning Enhanced by Massive Multiple Online Role-Playing Games (MMORPGs) and the Underlying Behavioral and Neural Mechanisms.

    Science.gov (United States)

    Zhang, Yongjun; Song, Hongwen; Liu, Xiaoming; Tang, Dinghong; Chen, Yue-E; Zhang, Xiaochu

    2017-01-01

    Massive Multiple Online Role-Playing Games (MMORPGs) have increased in popularity among children, juveniles, and adults since MMORPGs' appearance in this digital age. MMORPGs can be applied to enhancing language learning, which is drawing researchers' attention from different fields and many studies have validated MMORPGs' positive effect on language learning. However, there are few studies on the underlying behavioral or neural mechanism of such effect. This paper reviews the educational application of the MMORPGs based on relevant macroscopic and microscopic studies, showing that gamers' overall language proficiency or some specific language skills can be enhanced by real-time online interaction with peers and game narratives or instructions embedded in the MMORPGs. Mechanisms underlying the educational assistant role of MMORPGs in second language learning are discussed from both behavioral and neural perspectives. We suggest that attentional bias makes gamers/learners allocate more cognitive resources toward task-related stimuli in a controlled or an automatic way. Moreover, with a moderating role played by activation of reward circuit, playing the MMORPGs may strengthen or increase functional connectivity from seed regions such as left anterior insular/frontal operculum (AI/FO) and visual word form area to other language-related brain areas.

  20. Speech versus nonspeech: different tasks, different neural organization.

    Science.gov (United States)

    Bunton, Kate

    2008-11-01

    This article reviews the extant studies of the relation of oromotor nonspeech activities to speech production. The relevancy of nonspeech oral motor behaviors to speech motor performance in assessment and treatment is challenged on several grounds. First, contemporary motor theory suggests that movement control is task specific. In other words, it is tied to the unique goals, sources of information, and characteristics of varying motor acts. Documented differences in movement characteristics for speech production versus nonspeech oral motor tasks support this claim. Second, advantages of training nonspeech oral motor tasks versus training speech production are not supported by current principles of motor learning and neural plasticity. Empirical data supports experience-specific training. Finally, functional imaging studies document differences in activation patterns for speech compared with nonspeech oral motor tasks in neurologically healthy individuals.

  1. Self-organization in neural networks - Applications in structural optimization

    Science.gov (United States)

    Hajela, Prabhat; Fu, B.; Berke, Laszlo

    1993-01-01

    The present paper discusses the applicability of ART (Adaptive Resonance Theory) networks, and the Hopfield and Elastic networks, in problems of structural analysis and design. A characteristic of these network architectures is the ability to classify patterns presented as inputs into specific categories. The categories may themselves represent distinct procedural solution strategies. The paper shows how this property can be adapted in the structural analysis and design problem. A second application is the use of Hopfield and Elastic networks in optimization problems. Of particular interest are problems characterized by the presence of discrete and integer design variables. The parallel computing architecture that is typical of neural networks is shown to be effective in such problems. Results of preliminary implementations in structural design problems are also included in the paper.

  2. Speech versus Nonspeech: Different Tasks, Different Neural Organization

    Science.gov (United States)

    Bunton, Kate

    2009-01-01

    This article reviews the extant studies of the relation of oromotor nonspeech activities to speech production. The relevancy of nonspeech oral motor behaviors to speech motor performance in assessment and treatment is challenged on several grounds. First, contemporary motor theory suggests that movement control is task-specific; in other words, tied to the unique goals, sources of information and characteristics of varying motor acts. Documented differences in movement characteristics for speech production versus nonspeech oral motor tasks support this claim. Second, advantages of training nonspeech oral motor tasks versus training speech production are not supported by current principles of motor learning and neural plasticity. Empirical data supports experience-specific training. Finally, functional imaging studies document differences in activation patterns for speech compared to nonspeech oral motor tasks in neurologically healthy individuals. PMID:19058113

  3. Low-level neural auditory discrimination dysfunctions in specific language impairment-A review on mismatch negativity findings.

    Science.gov (United States)

    Kujala, Teija; Leminen, Miika

    2017-12-01

    In specific language impairment (SLI), there is a delay in the child's oral language skills when compared with nonverbal cognitive abilities. The problems typically relate to phonological and morphological processing and word learning. This article reviews studies which have used mismatch negativity (MMN) in investigating low-level neural auditory dysfunctions in this disorder. With MMN, it is possible to tap the accuracy of neural sound discrimination and sensory memory functions. These studies have found smaller response amplitudes and longer latencies for speech and non-speech sound changes in children with SLI than in typically developing children, suggesting impaired and slow auditory discrimination in SLI. Furthermore, they suggest shortened sensory memory duration and vulnerability of the sensory memory to masking effects. Importantly, some studies reported associations between MMN parameters and language test measures. In addition, it was found that language intervention can influence the abnormal MMN in children with SLI, enhancing its amplitude. These results suggest that the MMN can shed light on the neural basis of various auditory and memory impairments in SLI, which are likely to influence speech perception. Copyright © 2017. Published by Elsevier Ltd.

  4. Triangulation of language-cognitive impairments, naming errors and their neural bases post-stroke.

    Science.gov (United States)

    Halai, Ajay D; Woollams, Anna M; Lambon Ralph, Matthew A

    2018-01-01

    In order to gain a better understanding of aphasia one must consider the complex combinations of language impairments along with the pattern of paraphasias. Despite the fact that both deficits and paraphasias feature in diagnostic criteria, most research has focused only on the lesion correlates of language deficits, with minimal attention on the pattern of patients' paraphasias. In this study, we used a data-driven approach (principal component analysis - PCA) to fuse patient impairments and their pattern of errors into one unified model of chronic post-stroke aphasia. This model was subsequently mapped onto the patients' lesion profiles to generate the triangulation of language-cognitive impairments, naming errors and their neural correlates. Specifically, we established the pattern of co-occurrence between fifteen error types, which avoids focussing on a subset of errors or the use of experimenter-derived methods to combine across error types. We obtained five principal components underlying the patients' errors: omission errors; semantically-related responses; phonologically-related responses; dysfluent responses; and a combination of circumlocutions with mixed errors. In the second step, we aligned these paraphasia-related principal components with the patients' performance on a detailed language and cognitive assessment battery, utilising an additional PCA. This omnibus PCA revealed seven unique fused impairment-paraphasia factors: output phonology; semantics; phonological working memory; speech quanta; executive-cognitive skill; phonological (input) discrimination; and the production of circumlocution errors. In doing so we were able to resolve the complex relationships between error types and impairments. Some are relatively straightforward: circumlocution errors formed their own independent factor; there was a one-to-one mapping for phonological errors with expressive phonological abilities and for dysfluent errors with speech fluency. In contrast

  5. ARTIFICIAL NEURAL NETWORK BASED METHOD OF ASSESSMENT OF STUDENTS` FOREIGN LANGUAGE COMPETENCE BY THE GROUP OF EXPERTS

    Directory of Open Access Journals (Sweden)

    Olha V. Zastelo

    2015-09-01

    Full Text Available In this article the method of the integral assessment of the level of students` foreign language communicative competence by the group of experts through the complex test in a foreign language is considered. The use of mathematical methods and modern specialized software during complex testing of students significantly improves the expert methods, particularly in the direction of increasing the reliability of the assessment. Capitalizing analytical software environment realizes the simulation of non-linear generalizations based on artificial neural networks, which increases the accuracy of the estimate and allows further efficient use of the competent experts` experience gained in the model.

  6. Linking the Neural Machine Translation and the Prediction of Organic Chemistry Reactions

    OpenAIRE

    Nam, Juno; Kim, Jurae

    2016-01-01

    Finding the main product of a chemical reaction is one of the important problems of organic chemistry. This paper describes a method of applying a neural machine translation model to the prediction of organic chemical reactions. In order to translate 'reactants and reagents' to 'products', a gated recurrent unit based sequence-to-sequence model and a parser to generate input tokens for model from reaction SMILES strings were built. Training sets are composed of reactions from the patent datab...

  7. Neural correlates of Early Stone Age toolmaking: technology, language and cognition in human evolution.

    Science.gov (United States)

    Stout, Dietrich; Toth, Nicholas; Schick, Kathy; Chaminade, Thierry

    2008-06-12

    Archaeological and palaeontological evidence from the Early Stone Age (ESA) documents parallel trends of brain expansion and technological elaboration in human evolution over a period of more than 2Myr. However, the relationship between these defining trends remains controversial and poorly understood. Here, we present results from a positron emission tomography study of functional brain activation during experimental ESA (Oldowan and Acheulean) toolmaking by expert subjects. Together with a previous study of Oldowan toolmaking by novices, these results document increased demands for effective visuomotor coordination and hierarchical action organization in more advanced toolmaking. This includes an increased activation of ventral premotor and inferior parietal elements of the parietofrontal praxis circuits in both the hemispheres and of the right hemisphere homologue of Broca's area. The observed patterns of activation and of overlap with language circuits suggest that toolmaking and language share a basis in more general human capacities for complex, goal-directed action. The results are consistent with coevolutionary hypotheses linking the emergence of language, toolmaking, population-level functional lateralization and association cortex expansion in human evolution.

  8. American Sign Language Alphabet Recognition Using a Neuromorphic Sensor and an Artificial Neural Network.

    Science.gov (United States)

    Rivera-Acosta, Miguel; Ortega-Cisneros, Susana; Rivera, Jorge; Sandoval-Ibarra, Federico

    2017-09-22

    This paper reports the design and analysis of an American Sign Language (ASL) alphabet translation system implemented in hardware using a Field-Programmable Gate Array. The system process consists of three stages, the first being the communication with the neuromorphic camera (also called Dynamic Vision Sensor, DVS) sensor using the Universal Serial Bus protocol. The feature extraction of the events generated by the DVS is the second part of the process, consisting of a presentation of the digital image processing algorithms developed in software, which aim to reduce redundant information and prepare the data for the third stage. The last stage of the system process is the classification of the ASL alphabet, achieved with a single artificial neural network implemented in digital hardware for higher speed. The overall result is the development of a classification system using the ASL signs contour, fully implemented in a reconfigurable device. The experimental results consist of a comparative analysis of the recognition rate among the alphabet signs using the neuromorphic camera in order to prove the proper operation of the digital image processing algorithms. In the experiments performed with 720 samples of 24 signs, a recognition accuracy of 79.58% was obtained.

  9. Impaired neural discrimination of emotional speech prosody in children with autism spectrum disorder and language impairment.

    Science.gov (United States)

    Lindström, R; Lepistö-Paisley, T; Vanhala, R; Alén, R; Kujala, T

    2016-08-15

    Autism spectrum disorders (ASD) are characterized by deficient social and communication skills, including difficulties in perceiving speech prosody. The present study addressed processing of emotional prosodic changes (sad, scornful and commanding) in natural word stimuli in typically developed school-aged children and in children with ASD and language impairment. We found that the responses to a repetitive word were diminished in amplitude in the children with ASD, reflecting impaired speech encoding. Furthermore, the amplitude of the MMN/LDN component, reflecting cortical discrimination of sound changes, was diminished in the children with ASD for the scornful deviant. In addition, the amplitude of the P3a, reflecting involuntary orienting to attention-catching changes, was diminished in the children with ASD for the scornful deviant and tended to be smaller for the sad deviant. These results suggest that prosody processing in ASD is impaired at various levels of neural processing, including deficient pre-attentive discrimination and involuntary orientation to speech prosody. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. American Sign Language Alphabet Recognition Using a Neuromorphic Sensor and an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Miguel Rivera-Acosta

    2017-09-01

    Full Text Available This paper reports the design and analysis of an American Sign Language (ASL alphabet translation system implemented in hardware using a Field-Programmable Gate Array. The system process consists of three stages, the first being the communication with the neuromorphic camera (also called Dynamic Vision Sensor, DVS sensor using the Universal Serial Bus protocol. The feature extraction of the events generated by the DVS is the second part of the process, consisting of a presentation of the digital image processing algorithms developed in software, which aim to reduce redundant information and prepare the data for the third stage. The last stage of the system process is the classification of the ASL alphabet, achieved with a single artificial neural network implemented in digital hardware for higher speed. The overall result is the development of a classification system using the ASL signs contour, fully implemented in a reconfigurable device. The experimental results consist of a comparative analysis of the recognition rate among the alphabet signs using the neuromorphic camera in order to prove the proper operation of the digital image processing algorithms. In the experiments performed with 720 samples of 24 signs, a recognition accuracy of 79.58% was obtained.

  11. Dissociative neural correlates of semantic processing of nouns and verbs in Chinese--a language with minimal inflectional morphology.

    Science.gov (United States)

    Yu, Xi; Law, Sam Po; Han, Zaizhu; Zhu, Caozhe; Bi, Yanchao

    2011-10-01

    Numerous studies using various techniques and methodologies have demonstrated distinctive responses to nouns and verbs both at the behavioral and neurological levels. However, since the great majority of these studies involved tasks employing pictorial stimuli and languages with rich inflectional morphology, it is not clear whether word class effects resulted from semantic differences between objects and actions or different inflectional operations associated with the two word classes. Such shortcomings were addressed in this study by using a language with impoverished inflectional morphology - Chinese. Both concrete and abstract words were included, while controlling for nuisance variables between the two word classes, including imageability, word frequency, age-of-acquisition, and number of stroke. Participants were asked to judge the semantic relatedness of noun or verb pairs by pressing different buttons. The results revealed specific neural correlates for verb class in left lateral temporal and inferior frontal regions. Furthermore, the patterns of neural distribution of nouns and verbs were consistent with observations from Indo-European languages. Plausible accounts for neural separation of word classes were considered. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Neural modularity helps organisms evolve to learn new skills without forgetting old skills.

    Science.gov (United States)

    Ellefsen, Kai Olav; Mouret, Jean-Baptiste; Clune, Jeff

    2015-04-01

    A long-standing goal in artificial intelligence is creating agents that can learn a variety of different skills for different problems. In the artificial intelligence subfield of neural networks, a barrier to that goal is that when agents learn a new skill they typically do so by losing previously acquired skills, a problem called catastrophic forgetting. That occurs because, to learn the new task, neural learning algorithms change connections that encode previously acquired skills. How networks are organized critically affects their learning dynamics. In this paper, we test whether catastrophic forgetting can be reduced by evolving modular neural networks. Modularity intuitively should reduce learning interference between tasks by separating functionality into physically distinct modules in which learning can be selectively turned on or off. Modularity can further improve learning by having a reinforcement learning module separate from sensory processing modules, allowing learning to happen only in response to a positive or negative reward. In this paper, learning takes place via neuromodulation, which allows agents to selectively change the rate of learning for each neural connection based on environmental stimuli (e.g. to alter learning in specific locations based on the task at hand). To produce modularity, we evolve neural networks with a cost for neural connections. We show that this connection cost technique causes modularity, confirming a previous result, and that such sparsely connected, modular networks have higher overall performance because they learn new skills faster while retaining old skills more and because they have a separate reinforcement learning module. Our results suggest (1) that encouraging modularity in neural networks may help us overcome the long-standing barrier of networks that cannot learn new skills without forgetting old ones, and (2) that one benefit of the modularity ubiquitous in the brains of natural animals might be to

  13. Neural Modularity Helps Organisms Evolve to Learn New Skills without Forgetting Old Skills

    Science.gov (United States)

    Ellefsen, Kai Olav; Mouret, Jean-Baptiste; Clune, Jeff

    2015-01-01

    A long-standing goal in artificial intelligence is creating agents that can learn a variety of different skills for different problems. In the artificial intelligence subfield of neural networks, a barrier to that goal is that when agents learn a new skill they typically do so by losing previously acquired skills, a problem called catastrophic forgetting. That occurs because, to learn the new task, neural learning algorithms change connections that encode previously acquired skills. How networks are organized critically affects their learning dynamics. In this paper, we test whether catastrophic forgetting can be reduced by evolving modular neural networks. Modularity intuitively should reduce learning interference between tasks by separating functionality into physically distinct modules in which learning can be selectively turned on or off. Modularity can further improve learning by having a reinforcement learning module separate from sensory processing modules, allowing learning to happen only in response to a positive or negative reward. In this paper, learning takes place via neuromodulation, which allows agents to selectively change the rate of learning for each neural connection based on environmental stimuli (e.g. to alter learning in specific locations based on the task at hand). To produce modularity, we evolve neural networks with a cost for neural connections. We show that this connection cost technique causes modularity, confirming a previous result, and that such sparsely connected, modular networks have higher overall performance because they learn new skills faster while retaining old skills more and because they have a separate reinforcement learning module. Our results suggest (1) that encouraging modularity in neural networks may help us overcome the long-standing barrier of networks that cannot learn new skills without forgetting old ones, and (2) that one benefit of the modularity ubiquitous in the brains of natural animals might be to

  14. Neural modularity helps organisms evolve to learn new skills without forgetting old skills.

    Directory of Open Access Journals (Sweden)

    Kai Olav Ellefsen

    2015-04-01

    Full Text Available A long-standing goal in artificial intelligence is creating agents that can learn a variety of different skills for different problems. In the artificial intelligence subfield of neural networks, a barrier to that goal is that when agents learn a new skill they typically do so by losing previously acquired skills, a problem called catastrophic forgetting. That occurs because, to learn the new task, neural learning algorithms change connections that encode previously acquired skills. How networks are organized critically affects their learning dynamics. In this paper, we test whether catastrophic forgetting can be reduced by evolving modular neural networks. Modularity intuitively should reduce learning interference between tasks by separating functionality into physically distinct modules in which learning can be selectively turned on or off. Modularity can further improve learning by having a reinforcement learning module separate from sensory processing modules, allowing learning to happen only in response to a positive or negative reward. In this paper, learning takes place via neuromodulation, which allows agents to selectively change the rate of learning for each neural connection based on environmental stimuli (e.g. to alter learning in specific locations based on the task at hand. To produce modularity, we evolve neural networks with a cost for neural connections. We show that this connection cost technique causes modularity, confirming a previous result, and that such sparsely connected, modular networks have higher overall performance because they learn new skills faster while retaining old skills more and because they have a separate reinforcement learning module. Our results suggest (1 that encouraging modularity in neural networks may help us overcome the long-standing barrier of networks that cannot learn new skills without forgetting old ones, and (2 that one benefit of the modularity ubiquitous in the brains of natural animals

  15. Cochlear implantation (CI) for prelingual deafness: the relevance of studies of brain organization and the role of first language acquisition in considering outcome success.

    Science.gov (United States)

    Campbell, Ruth; MacSweeney, Mairéad; Woll, Bencie

    2014-01-01

    Cochlear implantation (CI) for profound congenital hearing impairment, while often successful in restoring hearing to the deaf child, does not always result in effective speech processing. Exposure to non-auditory signals during the pre-implantation period is widely held to be responsible for such failures. Here, we question the inference that such exposure irreparably distorts the function of auditory cortex, negatively impacting the efficacy of CI. Animal studies suggest that in congenital early deafness there is a disconnection between (disordered) activation in primary auditory cortex (A1) and activation in secondary auditory cortex (A2). In humans, one factor contributing to this functional decoupling is assumed to be abnormal activation of A1 by visual projections-including exposure to sign language. In this paper we show that that this abnormal activation of A1 does not routinely occur, while A2 functions effectively supramodally and multimodally to deliver spoken language irrespective of hearing status. What, then, is responsible for poor outcomes for some individuals with CI and for apparent abnormalities in cortical organization in these people? Since infancy is a critical period for the acquisition of language, deaf children born to hearing parents are at risk of developing inefficient neural structures to support skilled language processing. A sign language, acquired by a deaf child as a first language in a signing environment, is cortically organized like a heard spoken language in terms of specialization of the dominant perisylvian system. However, very few deaf children are exposed to sign language in early infancy. Moreover, no studies to date have examined sign language proficiency in relation to cortical organization in individuals with CI. Given the paucity of such relevant findings, we suggest that the best guarantee of good language outcome after CI is the establishment of a secure first language pre-implant-however that may be achieved, and

  16. Proposed entry of organization in bilingual glossaries terminology - sign language and brazilian portuguese language

    Directory of Open Access Journals (Sweden)

    Patricia Tuxi

    2015-10-01

    Full Text Available This work, which is inserted in the research line of Translation and Terminology, presented as an object of study the basic terms used in political and educational discourses that permeate national conference events. In respect to the Law 10436/2002 and Decree 5626/2005 is right for the Deaf have access to information in Brazilian Sign Language - Libras. One way to ensure this right is the presence of translator and interpreter to act in areas with specialized subjects should retain the knowledge of the specific terminology used in different contexts. The current study is based on the methodology for the preparation of dictionaries and glossaries Faulstich (1995. The research follows the approach of Socioterminology and as following: i recognition and identification of the target audience; ii delimitation of the surveyed area; iii collection and organization of data; iv organization glossary and validity test. The search result is the presentation of a proposal for entry of organizing a Terminology Glossary Bilingual facing the conference area that can serve as a reference source and training of translators and interpreters who work in the national conference events.

  17. Proposed entry of organization in bilingual glossaries terminology - sign language and brazilian portuguese language

    Directory of Open Access Journals (Sweden)

    Patricia Tuxi

    2015-12-01

    Full Text Available This work, which is inserted in the research line of Translation and Terminology, presented as an object of study the basic terms used in political and educational discourses that permeate national conference events. In respect to the Law 10436/2002 and Decree 5626/2005 is right for the Deaf have access to information in Brazilian Sign Language - Libras. One way to ensure this right is the presence of translator and interpreter to act in areas with specialized subjects should retain the knowledge of the specific terminology used in different contexts. The current study is based on the methodology for the preparation of dictionaries and glossaries Faulstich (1995. The research follows the approach of Socioterminology and as following: i recognition and identification of the target audience; ii delimitation of the surveyed area; iii collection and organization of data; iv organization glossary and validity test. The search result is the presentation of a proposal for entry of organizing a Terminology Glossary Bilingual facing the conference area that can serve as a reference source and training of translators and interpreters who work in the national conference events.

  18. Multiple cranial organ defects after conditionally knocking out Fgf10 in the neural crest

    Directory of Open Access Journals (Sweden)

    Tathyane H.N. Teshima

    2016-10-01

    Full Text Available Fgf10 is necessary for the development of a number of organs that fail to develop or are reduced in size in the null mutant. Here we have knocked out Fgf10 specifically in the neural crest driven by Wnt1cre. The Wnt1creFgf10fl/fl mouse phenocopies many of the null mutant defects, including cleft palate, loss of salivary glands and ocular glands, highlighting the neural crest origin of the Fgf10 expressing mesenchyme surrounding these organs. In contrast tissues such as the limbs and lungs, where Fgf10 is expressed by the surrounding mesoderm, were unaffected, as was the pituitary gland where Fgf10 is expressed by the neuroepithelium. The circumvallate papilla of the tongue formed but was hypoplastic in the conditional and Fgf10 null embryos, suggesting that other sources of FGF can compensate in development of this structure. The tracheal cartilage rings showed normal patterning in the conditional knockout, indicating that the source of Fgf10 for this tissue is mesodermal, which was confirmed using Wnt1cre-dtTom to lineage trace the boundary of the neural crest in this region. The thyroid, thymus and parathyroid glands surrounding the trachea were present but hypoplastic in the conditional mutant, indicating that a neighbouring source of mesodermal Fgf10 might be able to partially compensate for loss of neural crest derived Fgf10.

  19. Category-Specific Neural Oscillations Predict Recall Organization During Memory Search

    Science.gov (United States)

    Morton, Neal W.; Kahana, Michael J.; Rosenberg, Emily A.; Baltuch, Gordon H.; Litt, Brian; Sharan, Ashwini D.; Sperling, Michael R.; Polyn, Sean M.

    2013-01-01

    Retrieved-context models of human memory propose that as material is studied, retrieval cues are constructed that allow one to target particular aspects of past experience. We examined the neural predictions of these models by using electrocorticographic/depth recordings and scalp electroencephalography (EEG) to characterize category-specific oscillatory activity, while participants studied and recalled items from distinct, neurally discriminable categories. During study, these category-specific patterns predict whether a studied item will be recalled. In the scalp EEG experiment, category-specific activity during study also predicts whether a given item will be recalled adjacent to other same-category items, consistent with the proposal that a category-specific retrieval cue is used to guide memory search. Retrieved-context models suggest that integrative neural circuitry is involved in the construction and maintenance of the retrieval cue. Consistent with this hypothesis, we observe category-specific patterns that rise in strength as multiple same-category items are studied sequentially, and find that individual differences in this category-specific neural integration during study predict the degree to which a participant will use category information to organize memory search. Finally, we track the deployment of this retrieval cue during memory search: Category-specific patterns are stronger when participants organize their responses according to the category of the studied material. PMID:22875859

  20. A common neural system is activated in hearing non-signers to process French sign language and spoken French.

    Science.gov (United States)

    Courtin, Cyril; Jobard, Gael; Vigneau, Mathieu; Beaucousin, Virginie; Razafimandimby, Annick; Hervé, Pierre-Yves; Mellet, Emmanuel; Zago, Laure; Petit, Laurent; Mazoyer, Bernard; Tzourio-Mazoyer, Nathalie

    2011-01-15

    We used functional magnetic resonance imaging to investigate the areas activated by signed narratives in non-signing subjects naïve to sign language (SL) and compared it to the activation obtained when hearing speech in their mother tongue. A subset of left hemisphere (LH) language areas activated when participants watched an audio-visual narrative in their mother tongue was activated when they observed a signed narrative. The inferior frontal (IFG) and precentral (Prec) gyri, the posterior parts of the planum temporale (pPT) and of the superior temporal sulcus (pSTS), and the occipito-temporal junction (OTJ) were activated by both languages. The activity of these regions was not related to the presence of communicative intent because no such changes were observed when the non-signers watched a muted video of a spoken narrative. Recruitment was also not triggered by the linguistic structure of SL, because the areas, except pPT, were not activated when subjects listened to an unknown spoken language. The comparison of brain reactivity for spoken and sign languages shows that SL has a special status in the brain compared to speech; in contrast to unknown oral language, the neural correlates of SL overlap LH speech comprehension areas in non-signers. These results support the idea that strong relationships exist between areas involved in human action observation and language, suggesting that the observation of hand gestures have shaped the lexico-semantic language areas as proposed by the motor theory of speech. As a whole, the present results support the theory of a gestural origin of language. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Selective metabolic stimulation of the subfornical organ and pituitary neural lobe by peripheral angiotensin II

    Energy Technology Data Exchange (ETDEWEB)

    Gross, P.M.; Kadekaro, M.; Andrews, D.W.; Sokoloff, L.; Saavedra, J.M.

    1985-01-01

    The subfornical organ is a major receptor area for one of the principal stimuli of thirst, the octapeptide, angiotensin II. In conscious water-sated rats, the authors examined the effects of intravenous infusion of angiotensin II on the rate of glucose utilization in the subfornical organ and in structures anatomically and functionally connected with it. Angiotensin II produced pressor and drinking responses and increased glucose utilization selectively in the subfornical organ and pituitary neural lobe and in no other brain structure. Treatment with the angiotensin II antagonist, sar1-leu8-angiotensin II, before intravenous administration of angiotensin II prevented metabolic stimulation of the subfornical organ and neural lobe. Captopril, an inhibitor of angiotensin-converting enzyme, reduced subfornical organ glucose metabolism to a level similar to that found in control animals. These results demonstrate that peripheral angiotensin II stimulates glucose metabolism in the subfornical organ under conditions in which it provokes drinking and pressor responses. The findings suggest that circulating angiotensin II is responsible for the high rate of glucose utilization observed in the subfornical organ of Brattleboro rats homozygous for diabetes insipidus.

  2. Lexical Organization in Second Language Acquisition: Does the Critical Period Matter?

    Science.gov (United States)

    Cardimona, Kimberly; Smith, Pamela; Roberts, Lauren Sones

    2016-01-01

    This study examined lexical organization in English language learners (ELLs) who acquired their second language (L2) either during or after the period of maximal sensitivity related to the critical period hypothesis. Twenty-three native-Spanish-speaking ELLs completed psycholinguistic tasks to examine age effects in bilingual lexical organization.…

  3. Changes in pitch height elicit both language-universal and language-dependent changes in neural representation of pitch in the brainstem and auditory cortex.

    Science.gov (United States)

    Krishnan, Ananthanarayan; Suresh, Chandan H; Gandour, Jackson T

    2017-03-27

    Language experience shapes encoding of pitch-relevant information at both brainstem and cortical levels of processing. Pitch height is a salient dimension that orders pitch from low to high. Herein we investigate the effects of language experience (Chinese, English) in the brainstem and cortex on (i) neural responses to variations in pitch height, (ii) presence of asymmetry in cortical pitch representation, and (iii) patterns of relative changes in magnitude of pitch height between these two levels of brain structure. Stimuli were three nonspeech homologs of Mandarin Tone 2 varying in pitch height only. The frequency-following response (FFR) and the cortical pitch-specific response (CPR) were recorded concurrently. At the Fz-linked T7/T8 site, peak latency of Na, Pb, and Nb decreased with increasing pitch height for both groups. Peak-to-peak amplitude of Na-Pb and Pb-Nb increased with increasing pitch height across groups. A language-dependent effect was restricted to Na-Pb; the Chinese had larger amplitude than the English group. At temporal sites (T7/T8), the Chinese group had larger amplitude, as compared to English, across stimuli, but also limited to the Na-Pb component and right temporal site. In the brainstem, F0 magnitude decreased with increasing pitch height; Chinese had larger magnitude across stimuli. A comparison of CPR and FFR responses revealed distinct patterns of relative changes in magnitude common to both groups. CPR amplitude increased and FFR amplitude decreased with increasing pitch height. Experience-dependent effects on CPR components vary as a function of neural sensitivity to pitch height within a particular temporal window (Na-Pb). Differences between the auditory brainstem and cortex imply distinct neural mechanisms for pitch extraction at both levels of brain structure. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Neural Network Based on Quantum Chemistry for Predicting Melting Point of Organic Compounds

    Science.gov (United States)

    Lazzús, Juan A.

    2009-02-01

    The melting points of organic compounds were estimated using a combined method that includes a backpropagation neural network and quantitative structure property relationship (QSPR) parameters in quantum chemistry. Eleven descriptors that reflect the intermolecular forces and molecular symmetry were used as input variables. QSPR parameters were calculated using molecular modeling and PM3 semi-empirical molecular orbital theories. A total of 260 compounds were used to train the network, which was developed using MatLab. Then, the melting points of 73 other compounds were predicted and results were compared to experimental data from the literature. The study shows that the chosen artificial neural network and the quantitative structure property relationships method present an excellent alternative for the estimation of the melting point of an organic compound, with average absolute deviation of 5%.

  5. Artificial neural networks applied to quantitative elemental analysis of organic material using PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Correa, R. [Universidad Tecnologica Metropolitana, Departamento de Fisica, Av. Jose Pedro Alessandri 1242, Nunoa, Santiago (Chile)]. E-mail: rcorrea@utem.cl; Chesta, M.A. [Universidad Nacional de Cordoba, Facultad de Matematica, Astronomia y Fisica, Medina Allende s/n Ciudad Universitaria, 5000 Cordoba (Argentina)]. E-mail: chesta@famaf.unc.edu.ar; Morales, J.R. [Universidad de Chile, Facultad de Ciencias, Departamento de Fisica, Las Palmeras 3425, Nunoa, Santiago (Chile)]. E-mail: rmorales@uchile.cl; Dinator, M.I. [Universidad de Chile, Facultad de Ciencias, Departamento de Fisica, Las Palmeras 3425, Nunoa, Santiago (Chile)]. E-mail: mdinator@uchile.cl; Requena, I. [Universidad de Granada, Departamento de Ciencias de la Computacion e Inteligencia Artificial, Daniel Saucedo Aranda s/n, 18071 Granada (Spain)]. E-mail: requena@decsai.ugr.es; Vila, I. [Universidad de Chile, Facultad de Ciencias, Departamento de Ecologia, Las Palmeras 3425, Nunoa, Santiago (Chile)]. E-mail: limnolog@uchile.cl

    2006-08-15

    An artificial neural network (ANN) has been trained with real-sample PIXE (particle X-ray induced emission) spectra of organic substances. Following the training stage ANN was applied to a subset of similar samples thus obtaining the elemental concentrations in muscle, liver and gills of Cyprinus carpio. Concentrations obtained with the ANN method are in full agreement with results from one standard analytical procedure, showing the high potentiality of ANN in PIXE quantitative analyses.

  6. Learning, neural plasticity and sensitive periods: implications for language acquisition, music training and transfer across the lifespan

    Directory of Open Access Journals (Sweden)

    Erin Jacquelyn White

    2013-11-01

    Full Text Available Sensitive periods in human development have often been proposed to explain age-related differences in the attainment of a number of skills, such as a second language and musical expertise. It is difficult to reconcile the negative consequence this traditional view entails for learning after a sensitive period with our current understanding of the brain’s ability for experience-dependent plasticity across the lifespan. What is needed is a better understanding of the mechanisms underlying auditory learning and plasticity at different points in development. Drawing on research in language development and music training, this review examines not only what we learn and when we learn it, but also how learning occurs at different ages. First, we discuss differences in the mechanism of learning and plasticity during and after a sensitive period by examining how language exposure versus training forms language-specific phonetic representations in infants and adult second language learners, respectively. Second, we examine the impact of musical training that begins at different ages on behavioural and neural indices of auditory and motor processing as well as sensorimotor integration. Third, we examine the extent to which childhood training in one auditory domain can enhance processing in another domain via the transfer of learning between shared neuro-cognitive systems. Specifically, we review evidence for a potential bi-directional transfer of skills between music and language by examining how speaking a tonal language may enhance music processing and, conversely, how early music training can enhance language processing. We conclude with a discussion of the role of attention in auditory learning for learning during and after sensitive periods and outline avenues of future research.

  7. Learning, neural plasticity and sensitive periods: implications for language acquisition, music training and transfer across the lifespan.

    Science.gov (United States)

    White, Erin J; Hutka, Stefanie A; Williams, Lynne J; Moreno, Sylvain

    2013-11-20

    Sensitive periods in human development have often been proposed to explain age-related differences in the attainment of a number of skills, such as a second language (L2) and musical expertise. It is difficult to reconcile the negative consequence this traditional view entails for learning after a sensitive period with our current understanding of the brain's ability for experience-dependent plasticity across the lifespan. What is needed is a better understanding of the mechanisms underlying auditory learning and plasticity at different points in development. Drawing on research in language development and music training, this review examines not only what we learn and when we learn it, but also how learning occurs at different ages. First, we discuss differences in the mechanism of learning and plasticity during and after a sensitive period by examining how language exposure versus training forms language-specific phonetic representations in infants and adult L2 learners, respectively. Second, we examine the impact of musical training that begins at different ages on behavioral and neural indices of auditory and motor processing as well as sensorimotor integration. Third, we examine the extent to which childhood training in one auditory domain can enhance processing in another domain via the transfer of learning between shared neuro-cognitive systems. Specifically, we review evidence for a potential bi-directional transfer of skills between music and language by examining how speaking a tonal language may enhance music processing and, conversely, how early music training can enhance language processing. We conclude with a discussion of the role of attention in auditory learning for learning during and after sensitive periods and outline avenues of future research.

  8. Learning, neural plasticity and sensitive periods: implications for language acquisition, music training and transfer across the lifespan

    Science.gov (United States)

    White, Erin J.; Hutka, Stefanie A.; Williams, Lynne J.; Moreno, Sylvain

    2013-01-01

    Sensitive periods in human development have often been proposed to explain age-related differences in the attainment of a number of skills, such as a second language (L2) and musical expertise. It is difficult to reconcile the negative consequence this traditional view entails for learning after a sensitive period with our current understanding of the brain’s ability for experience-dependent plasticity across the lifespan. What is needed is a better understanding of the mechanisms underlying auditory learning and plasticity at different points in development. Drawing on research in language development and music training, this review examines not only what we learn and when we learn it, but also how learning occurs at different ages. First, we discuss differences in the mechanism of learning and plasticity during and after a sensitive period by examining how language exposure versus training forms language-specific phonetic representations in infants and adult L2 learners, respectively. Second, we examine the impact of musical training that begins at different ages on behavioral and neural indices of auditory and motor processing as well as sensorimotor integration. Third, we examine the extent to which childhood training in one auditory domain can enhance processing in another domain via the transfer of learning between shared neuro-cognitive systems. Specifically, we review evidence for a potential bi-directional transfer of skills between music and language by examining how speaking a tonal language may enhance music processing and, conversely, how early music training can enhance language processing. We conclude with a discussion of the role of attention in auditory learning for learning during and after sensitive periods and outline avenues of future research. PMID:24312022

  9. Nodes and networks in the neural architecture for language: Broca's region and beyond

    NARCIS (Netherlands)

    Hagoort, Peter

    2014-01-01

    Current views on the neurobiological underpinnings of language are discussed that deviate in a number of ways from the classical Wernicke-Lichtheim-Geschwind model. More areas than Broca's and Wernicke's region are involved in language. Moreover, a division along the axis of language production and

  10. Lifelong learning of human actions with deep neural network self-organization.

    Science.gov (United States)

    Parisi, German I; Tani, Jun; Weber, Cornelius; Wermter, Stefan

    2017-12-01

    Lifelong learning is fundamental in autonomous robotics for the acquisition and fine-tuning of knowledge through experience. However, conventional deep neural models for action recognition from videos do not account for lifelong learning but rather learn a batch of training data with a predefined number of action classes and samples. Thus, there is the need to develop learning systems with the ability to incrementally process available perceptual cues and to adapt their responses over time. We propose a self-organizing neural architecture for incrementally learning to classify human actions from video sequences. The architecture comprises growing self-organizing networks equipped with recurrent neurons for processing time-varying patterns. We use a set of hierarchically arranged recurrent networks for the unsupervised learning of action representations with increasingly large spatiotemporal receptive fields. Lifelong learning is achieved in terms of prediction-driven neural dynamics in which the growth and the adaptation of the recurrent networks are driven by their capability to reconstruct temporally ordered input sequences. Experimental results on a classification task using two action benchmark datasets show that our model is competitive with state-of-the-art methods for batch learning also when a significant number of sample labels are missing or corrupted during training sessions. Additional experiments show the ability of our model to adapt to non-stationary input avoiding catastrophic interference. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  11. Sustained activity in hierarchical modular neural networks: self-organized criticality and oscillations

    Directory of Open Access Journals (Sweden)

    Sheng-Jun Wang

    2011-06-01

    Full Text Available Cerebral cortical brain networks possess a number of conspicuous features of structure and dynamics. First, these networks have an intricate, non-random organization. They are structured in a hierarchical modular fashion, from large-scale regions of the whole brain, via cortical areas and area subcompartments organized as structural and functional maps to cortical columns, and finally circuits made up of individual neurons. Second, the networks display self-organized sustained activity, which is persistent in the absence of external stimuli. At the systems level, such activity is characterized by complex rhythmical oscillations over a broadband background, while at the cellular level, neuronal discharges have been observed to display avalanches, indicating that cortical networks are at the state of self-organized criticality. We explored the relationship between hierarchical neural network organization and sustained dynamics using large-scale network modeling. It was shown that sparse random networks with balanced excitation and inhibition can sustain neural activity without external stimulation. We find that a hierarchical modular architecture can generate sustained activity better than random networks. Moreover, the system can simultaneously support rhythmical oscillations and self-organized criticality, which are not present in the respective random networks. The underlying mechanism is that each dense module cannot sustain activity on its own, but displays self-organized criticality in the presence of weak perturbations. The hierarchical modular networks provide the coupling among subsystems with self-organized criticality. These results imply that the hierarchical modular architecture of cortical networks plays an important role in shaping the ongoing spontaneous activity of the brain, potentially allowing the system to take advantage of both the sensitivityof critical state and predictability and timing of oscillations for efficient

  12. Effects of Interactive Function Forms and Refractoryperiod in a Self-Organized Critical Model Based on Neural Networks

    Institute of Scientific and Technical Information of China (English)

    ZHOU Li-Ming; CHEN Tian-Lun

    2004-01-01

    Based on the standard self-organizing map neural network model and an integrate-and-tire mechanism, we investigate the effect of the nonlinear interactive function on the self-organized criticality in our model. Based on these we also investigate the effect of the refractoryperiod on the self-organized criticality of the system.

  13. Self-organized noise resistance of oscillatory neural networks with spike timing-dependent plasticity.

    Science.gov (United States)

    Popovych, Oleksandr V; Yanchuk, Serhiy; Tass, Peter A

    2013-10-11

    Intuitively one might expect independent noise to be a powerful tool for desynchronizing a population of synchronized neurons. We here show that, intriguingly, for oscillatory neural populations with adaptive synaptic weights governed by spike timing-dependent plasticity (STDP) the opposite is true. We found that the mean synaptic coupling in such systems increases dynamically in response to the increase of the noise intensity, and there is an optimal noise level, where the amount of synaptic coupling gets maximal in a resonance-like manner as found for the stochastic or coherence resonances, although the mechanism in our case is different. This constitutes a noise-induced self-organization of the synaptic connectivity, which effectively counteracts the desynchronizing impact of independent noise over a wide range of the noise intensity. Given the attempts to counteract neural synchrony underlying tinnitus with noisers and maskers, our results may be of clinical relevance.

  14. Extrapolating a hierarchy of building block systems towards future neural network organisms.

    Science.gov (United States)

    Jagers op Akkerhuis, G

    2001-01-01

    Is it possible to predict future life forms? In this paper it is argued that the answer to this question may well be positive. As a basis for predictions a rationale is used that is derived from historical data, e.g. from a hierarchical classification that ranks all building block systems, that have evolved so far. This classification is based on specific emergent properties that allow stepwise transitions, from low level building blocks to higher level ones. This paper shows how this hierarchy can be used for predicting future life forms. The extrapolations suggest several future neural network organisms. Major aspects of the structures of these organisms are predicted. The results can be considered of fundamental importance for several reasons. Firstly, assuming that the operator hierarchy is a proper basis for predictions, the result yields insight into the structure of future organisms. Secondly, the predictions are not extrapolations of presently observed trends, but are fully integrated with all historical system transitions in evolution. Thirdly, the extrapolations suggest the structures of intelligences that, one day, will possess more powerful brains than human beings. This study ends with a discussion of possibilities for falsification of the present theory, the implications of the present predictions in relation to recent developments in artificial intelligence and the philosophical implications of the role of humanity in evolution with regard to the creation of future neural network organisms.

  15. Neural basis of phonological processing in second language reading: an fMRI study of Chinese regularity effect.

    Science.gov (United States)

    Zhao, Jing; Li, Qing-Lin; Wang, Jiu-Ju; Yang, Yang; Deng, Yuan; Bi, Hong-Yan

    2012-03-01

    The present study examined the neural basis of phonological processing in Chinese later acquired as a second language (L2). The regularity effect of Chinese was selected to elucidate the addressed phonological processing. We recruited a group of alphabetic language speakers who had been learning Chinese as L2 for at least one year, and a control group of native Chinese speakers. Participants from both groups exhibited a regularity effect in a pilot behavioral test. Neuroimaging results revealed that L2 learners exhibited stronger activation than native Chinese speakers in the right occipitotemporal region (i.e. right lingual gyrus and right fusiform gyrus). Moreover, L2 learners exhibited greater activations in the ventral aspects of the left inferior parietal lobule (LIPL) and the left inferior frontal gyrus (LIFG) for irregular character reading minus regular character reading. In contrast, native Chinese speakers exhibited more dorsal activations in the LIPL and LIFG. According to the "accommodation/assimilation" hypothesis of second language reading, the current findings suggest that native speakers of alphabetic languages utilized an accommodation pattern for the specific requirements of the visual form of Chinese characters, and an assimilation pattern for orthography-to-phonology transformation in Chinese reading. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  16. Organization of Language Behavior and Cognitive Performance in Chronic Schizophrenia

    Science.gov (United States)

    Grand, Stanley; And Others

    1975-01-01

    The present study reports data obtained from chronic schizophrenic patients which relate formal categories of language behavior to performance on the Stroop Color-Word Interference Test--a task of verbal encoding under distracting and nondistracting conditions. (Editor)

  17. Effects of Narrative Script Advance Organizer Strategies Used to Introduce Video in the Foreign Language Classroom

    Science.gov (United States)

    Ambard, Philip D.; Ambard, Linda K.

    2012-01-01

    The study compared participant comprehension of foreign language video content using two advance organizer (AO) strategies while exploring the benefits of AOs as proficiency increases. Participants were 50 advanced-beginner Spanish college students in three sections. Collaborative reading condition participants read a target language narrative…

  18. Conceptual Scoring of Lexical Organization in Bilingual Children with Language Impairment

    Science.gov (United States)

    Holmström, Ketty; Salameh, Eva-Kristina; Nettelbladt, Ulrika; Dahlgren-Sandberg, Annika

    2016-01-01

    The aim was to evaluate conceptual scoring of lexical organization in bilingual children with language impairment (BLI) and to compare BLI performance with monolingual children with language impairment (MLI). Word associations were assessed in 15 BLI and 9 MLI children. BLI were assessed in Arabic and Swedish, MLI in Swedish only. A number of…

  19. The effect of age of acquisition, socioeducational status, and proficiency on the neural processing of second language speech sounds.

    Science.gov (United States)

    Archila-Suerte, Pilar; Zevin, Jason; Hernandez, Arturo E

    2015-02-01

    This study investigates the role of age of acquisition (AoA), socioeducational status (SES), and second language (L2) proficiency on the neural processing of L2 speech sounds. In a task of pre-attentive listening and passive viewing, Spanish-English bilinguals and a control group of English monolinguals listened to English syllables while watching a film of natural scenery. Eight regions of interest were selected from brain areas involved in speech perception and executive processes. The regions of interest were examined in 2 separate two-way ANOVA (AoA×SES; AoA×L2 proficiency). The results showed that AoA was the main variable affecting the neural response in L2 speech processing. Direct comparisons between AoA groups of equivalent SES and proficiency level enhanced the intensity and magnitude of the results. These results suggest that AoA, more than SES and proficiency level, determines which brain regions are recruited for the processing of second language speech sounds. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Commonality of neural representations of sentences across languages: Predicting brain activation during Portuguese sentence comprehension using an English-based model of brain function.

    Science.gov (United States)

    Yang, Ying; Wang, Jing; Bailer, Cyntia; Cherkassky, Vladimir; Just, Marcel Adam

    2017-02-01

    The aim of the study was to test the cross-language generative capability of a model that predicts neural activation patterns evoked by sentence reading, based on a semantic characterization of the sentence. In a previous study on English monolingual speakers (Wang et al., submitted), a computational model performed a mapping from a set of 42 concept-level semantic features (Neurally Plausible Semantic Features, NPSFs) as well as 6 thematic role markers to neural activation patterns (assessed with fMRI), to predict activation levels in a network of brain locations. The model used two types of information gained from the English-based fMRI data to predict the activation for individual sentences in Portuguese. First, it used the mapping weights from NPSFs to voxel activation levels derived from the model for English reading. Second, the brain locations for which the activation levels were predicted were derived from a factor analysis of the brain activation patterns during English reading. These meta-language locations were defined by the clusters of voxels with high loadings on each of the four main dimensions (factors), namely people, places, actions and feelings, underlying the neural representations of the stimulus sentences. This cross-language model succeeded in predicting the brain activation patterns associated with the reading of 60 individual Portuguese sentences that were entirely new to the model, attaining accuracies reliably above chance level. The prediction accuracy was not affected by whether the Portuguese speaker was monolingual or Portuguese-English bilingual. The model's confusion errors indicated an accurate capture of the events or states described in the sentence at a conceptual level. Overall, the cross-language predictive capability of the model demonstrates the neural commonality between speakers of different languages in the representations of everyday events and states, and provides an initial characterization of the common meta-language

  1. Neural pathways for language in autism: the potential for music-based treatments

    OpenAIRE

    Wan, Catherine Y; Schlaug, Gottfried

    2010-01-01

    Language deficits represent the core diagnostic characteristics of autism, and some of these individuals never develop functional speech. The language deficits in autism may be due to structural and functional abnormalities in certain language regions (e.g., frontal and temporal), or due to altered connectivity between these brain regions. In particular, a number of anatomical pathways that connect auditory and motor brain regions (e.g., the arcuate fasciculus, the uncinate fasciculus and the...

  2. Neural resources for processing language and environmental sounds: evidence from aphasia

    National Research Council Canada - National Science Library

    Saygin, Ayşe Pinar; Dick, Frederic; Wilson, Stephen M; Dronkers, Nina F; Bates, Elizabeth

    2003-01-01

    Although aphasia is often characterized as a selective impairment in language function, left hemisphere lesions may cause impairments in semantic processing of auditory information, not only in verbal...

  3. Organization of anti-phase synchronization pattern in neural networks: what are the key factors?

    Directory of Open Access Journals (Sweden)

    Dong eLi

    2011-12-01

    Full Text Available Anti-phase oscillation has been widely observed in cortical neuralnetwork. Elucidating the mechanism underlying the organization ofanti-phase pattern is of significance for better understanding morecomplicated pattern formations in brain networks. In dynamicalsystems theory, the organization of anti-phase oscillation patternhas usually been considered to relate to time-delay in coupling.This is consistent to conduction delays in real neural networks inthe brain due to finite propagation velocity of action potentials.However, other structural factors in cortical neural network, suchas modular organization (connection density and the coupling types(excitatory or inhibitory, could also play an important role. Inthis work, we investigate the anti-phase oscillation patternorganized on a two-module network of either neuronal cell model orneural mass model, and analyze the impact of the conduction delaytimes, the connection densities, and coupling types. Our resultsshow that delay times and coupling types can play key roles in thisorganization. The connection densities may have an influence on thestability if an anti-phase pattern exists due to the other factors.Furthermore, we show that anti-phase synchronization of slowoscillations can be achieved with small delay times if there isinteraction between slow and fast oscillations. These results aresignificant for further understanding more realistic spatiotemporaldynamics of cortico-cortical communications.

  4. Fluorescent diagnostics of organic pollution in natural waters: A neural network approach

    Energy Technology Data Exchange (ETDEWEB)

    Orlov, Y.V.; Persiantsev, I.G.; Rebrik, S.P. [Nuclear Physics Institute, Moscow (Russian Federation)] [and others

    1995-12-31

    Rapid diagnosis of pollution is one of the key tasks in the field of ecological monitoring of natural and technogeneous environment. One of the promising methods of fluorescent diagnosis of organic pollution of water environment is the registration and analysis of two-dimensional Spectral Fluorescent Signatures (SFS). The neural networks - based system suggested in this paper is intended for solving the problem of detection, identification, and concentration measurement of water environmental pollution. The suggested system uses SFS as input pattern and allows one to build a rapid diagnosis system for ecological monitoring.

  5. The N400 effect during speaker-switch – Towards a conversational approach of measuring neural correlates of language

    Directory of Open Access Journals (Sweden)

    Tatiana Goregliad Fjaellingsdal

    2016-11-01

    Full Text Available Language occurs naturally in conversations. However, the study of the neural underpinnings of language has mainly taken place in single individuals using controlled language material. The interactive elements of a conversation (e.g., turn-taking are often not part of neurolinguistic setups. The prime reason is the difficulty to combine open unrestricted conversations with the requirements of neuroimaging. It is necessary to find a trade-off between the naturalness of a conversation and the restrictions imposed by neuroscientific methods to allow for ecologically more valid studies.Here we make an attempt to study the effects of a conversational element, namely turn-taking, on linguistic neural correlates, specifically the N400 effect. We focus on the physiological aspect of turn-taking, the speaker-switch, and its effect on the detectability of the N400 effect. The N400 event-related potential reflects expectation violations in a semantic context; the N400 effect describes the difference of the N400 amplitude between semantically expected and unexpected items.Sentences with semantically congruent and incongruent final words were presented in two turn-taking modes: (1 reading aloud first part of the sentence and listening to speaker-switch for the final word, and (2 listening to first part of the sentence and speaker-switch for the final word.A significant N400 effect was found for both turn-taking modes, which was not influenced by the mode itself. However, the mode significantly affected the P200, which was increased for the reading aloud mode compared to the listening mode.Our results show that an N400 effect can be detected during a speaker-switch. Speech articulation (reading aloud before the analyzed sentence fragment did also not impede the N400 effect detection for the final word. The speaker-switch, however, seems to influence earlier components of the electroencephalogram, related to processing of salient stimuli. We conclude that the N

  6. Word Translation Prediction for Morphologically Rich Languages with Bilingual Neural Networks

    NARCIS (Netherlands)

    Tran, K.; Bisazza, A.; Monz, C.

    2014-01-01

    Translating into morphologically rich languages is a particularly difficult problem in machine translation due to the high degree of inflectional ambiguity in the target language, often only poorly captured by existing word translation models. We present a general approach that exploits source-side

  7. Beyond the language given: The neural correlates of inferring speaker meaning

    NARCIS (Netherlands)

    Bašnáková, J.; Weber, K.; Petersson, K.M.; van Berkum, J.J.A.|info:eu-repo/dai/nl/146736842; Hagoort, P.

    2014-01-01

    Even though language allows us to say exactly what we mean, we often use language to say things indirectly, in a way that depends on the specific communicative context. For example, we can use an apparently straightforward sentence like “It is hard to give a good presentation” to convey deeper

  8. Beyond the language given: The neural correlates of inferring speaker meaning

    NARCIS (Netherlands)

    Bašnáková, J.; Weber, K.M.; Petersson, K.M.; Berkum, J. van; Hagoort, Peter

    2013-01-01

    Even though language allows us to say exactly what we mean, we often use language to say things indirectly, in a way that depends on the specific communicative context. For example, we can use an apparently straightforward sentence like “It is hard to give a good presentation” to convey deeper

  9. Development of objective flow regime identification method using self-organizing neural network

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Young; Kim, Nam Seok; Kwak, Nam Yee [Handong Global Univ., Pohang (Korea, Republic of)

    2004-07-01

    Two-phase flow shows various flow patterns according to the amount of the void and its relative velocity to the liquid flow. This variation directly affect the interfacial transfer which is the key factor for the design or analysis of the phase change systems. Especially the safety analysis of the nuclear power plant has been performed based on the numerical code furnished with the proper constitutive relations depending highly upon the flow regimes. Heavy efforts have been focused to identify the flow regime and at this moment we stand on relative very stable engineering background compare to the other research field. However, the issues related to objectiveness and transient flow regime are still open to study. Lee et al. and Ishii developed the method for the objective and instantaneous flow regime identification based on the neural network and new index of probability distribution of the flow regime which allows just one second observation for the flow regime identification. In the present paper, we developed the self-organized neural network for more objective approach to this problem. Kohonen's Self-Organizing Map (SOM) has been used for clustering, visualization, and abstraction. The SOM is trained through unsupervised competitive learning using a 'winner takes it all' policy. Therefore, its unsupervised training character delete the possible interference of the regime developer to the neural network training. After developing the computer code, we evaluate the performance of the code with the vertically upward two-phase flow in the pipes of 25.4 and 50.4 cmm I.D. Also, the sensitivity of the number of the clusters to the flow regime identification was made.

  10. Neural mechanisms of selective auditory attention are enhanced by computerized training: electrophysiological evidence from language-impaired and typically developing children.

    Science.gov (United States)

    Stevens, Courtney; Fanning, Jessica; Coch, Donna; Sanders, Lisa; Neville, Helen

    2008-04-18

    Recent proposals suggest that some interventions designed to improve language skills might also target or train selective attention. The present study examined whether six weeks of high-intensity (100 min/day) training with a computerized intervention program designed to improve language skills would also influence neural mechanisms of selective auditory attention previously shown to be deficient in children with specific language impairment (SLI). Twenty children received computerized training, including 8 children diagnosed with SLI and 12 children with typically developing language. An additional 13 children with typically developing language received no specialized training (NoTx control group) but were tested and retested after a comparable time period to control for maturational and test-retest effects. Before and after training (or a comparable delay period for the NoTx control group), children completed standardized language assessments and an event-related brain potential (ERP) measure of selective auditory attention. Relative to the NoTx control group, children receiving training showed increases in standardized measures of receptive language. In addition, children receiving training showed larger increases in the effects of attention on neural processing following training relative to the NoTx control group. The enhanced effect of attention on neural processing represented a large effect size (Cohen's d=0.8), and was specific to changes in signal enhancement of attended stimuli. These findings indicate that the neural mechanisms of selective auditory attention, previously shown to be deficient in children with SLI, can be remediated through training and can accompany improvements on standardized measures of language.

  11. Investigation of Back-off Based Interpolation Between Recurrent Neural Network and N-gram Language Models (Author’s Manuscript)

    Science.gov (United States)

    2016-02-11

    2011. [3] Martin Sundermeyer, Ilya Oparin , Jean-Luc Gauvain, Ben Freiberg, Ralf Schluter, and Hermann Ney, “Comparison of feedforward and recurrent...model interpolation and adaptation,” Com- puter Speech & Language, pp. 301–321, 2013. [14] Ilya Oparin , Martin Sundermeyer, Hermann Ney, and Jean-Luc...Improved neural network based language modelling and adaptation,” in Proc. ISCA Interspeech, 2010. [20] Hai-Son Le, Ilya Oparin , Alexandre Allauzen, J

  12. Drums for pump organs | Setiloane | Marang: Journal of Language ...

    African Journals Online (AJOL)

    Marang: Journal of Language and Literature. Journal Home · ABOUT · Advanced Search · Current Issue · Archives · Journal Home > Vol 2, No 1 (1978) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. DOWNLOAD FULL TEXT Open Access DOWNLOAD FULL ...

  13. A self-organized artificial neural network architecture for sensory integration with applications to letter-phoneme integration

    OpenAIRE

    Jantvik, Tamas; Gustafsson, Lennart; Paplinski, Andrew

    2011-01-01

    The multimodal self-organizing network (MMSON), an artificial neural network architecture carrying out sensory integration, is presented here. The architecture is designed using neurophysiological findings and imaging studies that pertain to sensory integration and consists of interconnected lattices of artificial neurons. In this artificial neural architecture, the degree of recognition of stimuli, that is, the perceived reliability of stimuli in the various subnetworks, is included in the c...

  14. Neurolinguistics Aspects of Second Language Acquisition

    Directory of Open Access Journals (Sweden)

    Laleh Fakhraee Faruji

    2011-12-01

    Full Text Available   Fundamental breakthroughs in the neurosciences, combined with technical innovations for measuring brain activity, are shedding new light on the neural basis of second language (L2
    processing, and on its relationship to native language processing (L1 (Perani & Abutalebi, 2005.  Over the past two decades, a large body of neuroimaging studies has been devoted to the study of the neural organization of language (De´monet, Thierry, & Cardebat, 2005; Indefrey & Levelt, 2004; Price, 2000 as cited in Abutalebi, 2008. The value that functional neuroimaging adds to language research is to improve the perspective on the distributed anatomy of language. Thus, it can be used with considerable precision to identify the neural networks underlying the different domains of language processing. In this paper some main issues related to neurolinguistics and second language acquisition with a focus on bilingualism will be discussed.

  15. What changes in neural oscillations can reveal about developmental cognitive neuroscience: language development as a case in point.

    Science.gov (United States)

    Maguire, Mandy J; Abel, Alyson D

    2013-10-01

    EEG is a primary method for studying temporally precise neuronal processes across the lifespan. Most of this work focuses on event related potentials (ERPs); however, using time-locked time frequency analysis to decompose the EEG signal can identify and distinguish multiple changes in brain oscillations underlying cognition (Bastiaansen et al., 2010). Further this measure is thought to reflect changes in inter-neuronal communication more directly than ERPs (Nunez and Srinivasan, 2006). Although time frequency has elucidated cognitive processes in adults, applying it to cognitive development is still rare. Here, we review the basics of neuronal oscillations, some of what they reveal about adult cognitive function, and what little is known relating to children. We focus on language because it develops early and engages complex cortical networks. Additionally, because time frequency analysis of the EEG related to adult language comprehension has been incredibly informative, using similar methods with children will shed new light on current theories of language development and increase our understanding of how neural processes change over the lifespan. Our goal is to emphasize the power of this methodology and encourage its use throughout developmental cognitive neuroscience. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Synaptic organizations and dynamical properties of weakly connected neural oscillators. II. Learning phase information.

    Science.gov (United States)

    Hoppensteadt, F C; Izhikevich, E M

    1996-08-01

    This is the second of two articles devoted to analyzing the relationship between synaptic organizations (anatomy) and dynamical properties (function) of networks of neural oscillators near multiple supercritical Andronov-Hopf bifurcation points. Here we analyze learning processes in such networks. Regarding learning dynamics, we assume (1) learning is local (i.e. synaptic modification depends on pre- and postsynaptic neurons but not on others), (2) synapses modify slowly relative to characteristic neuron response times, (3) in the absence of either pre- or postsynaptic activity, the synapse weakens (forgets). Our major goal is to analyze all synaptic organizations of oscillatory neural networks that can memorize and retrieve phase information or time delays. We show that such network have the following attributes: (1) the rate of synaptic plasticity connected with learning is determined locally by the presynaptic neurons, (2) the excitatory neurons must be long-axon relay neurons capable of forming distant connections with other excitatory and inhibitory neurons, (3) if inhibitory neurons have long axons, then the network can learn, passively forget and actively unlearn information by adjusting synaptic plasticity rates.

  17. Effects of different language and tDCS interventions in PPA and their neural correlates

    Directory of Open Access Journals (Sweden)

    Kyrana Tsapkini

    2015-05-01

    Results: First, we replicated our previous results obtained with fewer participants: all improved in both tDCS and sham conditions on trained items. Generalization of treatment on untrained items was significant only in tDCS condition. Therapy gains lasted longer in tDCS condition as well. Second, preliminary analyses of rs-fMRI show changes of functional connectivity between written language areas in the tDCS and sham conditions. Conclusions: tDCS represents an increasingly valuable treatment option in language rehabilitation even in neurodegeneration. Late intervention is as beneficial as early intervention but improvement seems more dramatic in early cases. Different possibilities are discussed: tDCS may indeed change the course of the disease, i.e., it may slow down the rate of decline or, language improvement due to tDCS (or delay in language deterioration due to the course of the disease may hold the spread of decline in other cognitive functions, thus, early interventions appear more beneficial. The correlation between functional connectivity and language production outcomes is expected to shed light on how tDCS works in the brains of people with a neurodegenerative disease. Implications of functional connectivity changes between language areas involved in the targeted language function will inform further interventions.

  18. Speaking Two Languages Enhances an Auditory but Not a Visual Neural Marker of Cognitive Inhibition

    Directory of Open Access Journals (Sweden)

    Mercedes Fernandez

    2014-09-01

    Full Text Available The purpose of the present study was to replicate and extend our original findings of enhanced neural inhibitory control in bilinguals. We compared English monolinguals to Spanish/English bilinguals on a non-linguistic, auditory Go/NoGo task while recording event-related brain potentials. New to this study was the visual Go/NoGo task, which we included to investigate whether enhanced neural inhibition in bilinguals extends from the auditory to the visual modality. Results confirmed our original findings and revealed greater inhibition in bilinguals compared to monolinguals. As predicted, compared to monolinguals, bilinguals showed increased N2 amplitude during the auditory NoGo trials, which required inhibitory control, but no differences during the Go trials, which required a behavioral response and no inhibition. Interestingly, during the visual Go/NoGo task, event related brain potentials did not distinguish the two groups, and behavioral responses were similar between the groups regardless of task modality. Thus, only auditory trials that required inhibitory control revealed between-group differences indicative of greater neural inhibition in bilinguals. These results show that experience-dependent neural changes associated with bilingualism are specific to the auditory modality and that the N2 event-related brain potential is a sensitive marker of this plasticity.

  19. Neural pathways for language in autism: the potential for music-based treatments

    Science.gov (United States)

    Wan, Catherine Y; Schlaug, Gottfried

    2010-01-01

    Language deficits represent the core diagnostic characteristics of autism, and some of these individuals never develop functional speech. The language deficits in autism may be due to structural and functional abnormalities in certain language regions (e.g., frontal and temporal), or due to altered connectivity between these brain regions. In particular, a number of anatomical pathways that connect auditory and motor brain regions (e.g., the arcuate fasciculus, the uncinate fasciculus and the extreme capsule) may be altered in individuals with autism. These pathways may also provide targets for experimental treatments to facilitate communication skills in autism. We propose that music-based interventions (e.g., auditory–motor mapping training) would take advantage of the musical strengths of these children, and are likely to engage, and possibly strengthen, the connections between frontal and temporal regions bilaterally. Such treatments have important clinical potential in facilitating expressive language in nonverbal children with autism. PMID:21197137

  20. Neural Systems for Speech and Song in Autism

    Science.gov (United States)

    Lai, Grace; Pantazatos, Spiro P.; Schneider, Harry; Hirsch, Joy

    2012-01-01

    Despite language disabilities in autism, music abilities are frequently preserved. Paradoxically, brain regions associated with these functions typically overlap, enabling investigation of neural organization supporting speech and song in autism. Neural systems sensitive to speech and song were compared in low-functioning autistic and age-matched…

  1. Neural Network Processing of Natural Language: II. Towards a Unified Model of Corticostriatal Function in Learning Sentence Comprehension and Non-Linguistic Sequencing

    Science.gov (United States)

    Dominey, Peter Ford; Inui, Toshio; Hoen, Michel

    2009-01-01

    A central issue in cognitive neuroscience today concerns how distributed neural networks in the brain that are used in language learning and processing can be involved in non-linguistic cognitive sequence learning. This issue is informed by a wealth of functional neurophysiology studies of sentence comprehension, along with a number of recent…

  2. Signaling Organization and Stance: Academic Language Use in Middle Grade Persuasive Writing

    Science.gov (United States)

    Dobbs, Christina L.

    2014-01-01

    Effective academic writing is accessible to readers because writers follow shared conventions for organization and signal their stance on particular topics; however, few specifics are known about how middle graders might develop knowledge of and use these academic language forms and functions to signal their organization and stance in persuasive…

  3. Use of Graphic Organizers in a Language Teachers' Professional Development

    Science.gov (United States)

    Chien, Chin-Wen

    2012-01-01

    Starting from 2009 academic year, the instructional coaches in a school district in a northwest American city began to provide Workshop II (pseudonym) to elementary school English teachers. This study aims to discuss the use of graphic organizers in English teachers' professional development. Different types of graphic organizers such as…

  4. Self-organization of spiking neural network that generates autonomous behavior in a real mobile robot.

    Science.gov (United States)

    Alnajjar, Fady; Murase, Kazuyuki

    2006-08-01

    In this paper, we propose self-organization algorithm of spiking neural network (SNN) applicable to autonomous robot for generation of adoptive and goal-directed behavior. First, we formulated a SNN model whose inputs and outputs were analog and the hidden unites are interconnected each other. Next, we implemented it into a miniature mobile robot Khepera. In order to see whether or not a solution(s) for the given task(s) exists with the SNN, the robot was evolved with the genetic algorithm in the environment. The robot acquired the obstacle avoidance and navigation task successfully, exhibiting the presence of the solution. After that, a self-organization algorithm based on a use-dependent synaptic potentiation and depotentiation at synapses of input layer to hidden layer and of hidden layer to output layer was formulated and implemented into the robot. In the environment, the robot incrementally organized the network and the given tasks were successfully performed. The time needed to acquire the desired adoptive and goal-directed behavior using the proposed self-organization method was much less than that with the genetic evolution, approximately one fifth.

  5. Switching language switches mind: linguistic effects on developmental neural bases of ‘Theory of Mind’

    Science.gov (United States)

    Glover, Gary H.; Temple, Elise

    2008-01-01

    Theory of mind (ToM)—our ability to predict behaviors of others in terms of their underlying intentions—has been examined through false-belief (FB) tasks. We studied 12 Japanese early bilingual children (8−12 years of age) and 16 late bilingual adults (18−40 years of age) with FB tasks in Japanese [first language (L1)] and English [second language (L2)], using fMRI. Children recruited more brain regions than adults for processing ToM tasks in both languages. Moreover, children showed an overlap in brain activity between the L1 and L2 ToM conditions in the medial prefrontal cortex (mPFC). Adults did not show such a convergent activity in the mPFC region, but instead, showed brain activity that varied depending on the language used in the ToM task. The developmental shift from more to less ToM specific brain activity may reflect increasing automatization of ToM processing as people age. These results also suggest that bilinguals recruit different resources to understand ToM depending on the language used in the task, and this difference is greater later in life. PMID:19015096

  6. Distinct representations of subtraction and multiplication in the neural systems for numerosity and language

    Science.gov (United States)

    Prado, Jérôme; Mutreja, Rachna; Zhang, Hongchuan; Mehta, Rucha; Desroches, Amy S.; Minas, Jennifer E.; Booth, James R.

    2010-01-01

    It has been proposed that recent cultural inventions such as symbolic arithmetic recycle evolutionary older neural mechanisms. A central assumption of this hypothesis is that the degree to which a pre-existing mechanism is recycled depends upon the degree of similarity between its initial function and the novel task. To test this assumption, we investigated whether the brain region involved in magnitude comparison in the intraparietal sulcus (IPS), localized by a numerosity comparison task, is recruited to a greater degree by arithmetic problems that involve number comparison (single-digit subtractions) than by problems that involve retrieving facts from memory (single-digit multiplications). Our results confirmed that subtractions are associated with greater activity in the IPS than multiplications, whereas multiplications elicit greater activity than subtractions in regions involved in verbal processing including the middle temporal gyrus and inferior frontal gyrus that were localized by a phonological processing task. Pattern analyses further indicated that the neural mechanisms more active for subtraction than multiplication in the IPS overlap with those involved in numerosity comparison, and that the strength of this overlap predicts inter-individual performance in the subtraction task. These findings provide novel evidence that elementary arithmetic relies on the co-option of evolutionary older neural circuits. PMID:21246667

  7. High-Dimensional Neural Network Potentials for Organic Reactions and an Improved Training Algorithm.

    Science.gov (United States)

    Gastegger, Michael; Marquetand, Philipp

    2015-05-12

    Artificial neural networks (NNs) represent a relatively recent approach for the prediction of molecular potential energies, suitable for simulations of large molecules and long time scales. By using NNs to fit electronic structure data, it is possible to obtain empirical potentials of high accuracy combined with the computational efficiency of conventional force fields. However, as opposed to the latter, changing bonding patterns and unusual coordination geometries can be described due to the underlying flexible functional form of the NNs. One of the most promising approaches in this field is the high-dimensional neural network (HDNN) method, which is especially adapted to the prediction of molecular properties. While HDNNs have been mostly used to model solid state systems and surface interactions, we present here the first application of the HDNN approach to an organic reaction, the Claisen rearrangement of allyl vinyl ether to 4-pentenal. To construct the corresponding HDNN potential, a new training algorithm is introduced. This algorithm is termed "element-decoupled" global extended Kalman filter (ED-GEKF) and is based on the decoupled Kalman filter. Using a metadynamics trajectory computed with density functional theory as reference data, we show that the ED-GEKF exhibits superior performance - both in terms of accuracy and training speed - compared to other variants of the Kalman filter hitherto employed in HDNN training. In addition, the effect of including forces during ED-GEKF training on the resulting potentials was studied.

  8. Self: an adaptive pressure arising from self-organization, chaotic dynamics, and neural Darwinism.

    Science.gov (United States)

    Bruzzo, Angela Alessia; Vimal, Ram Lakhan Pandey

    2007-12-01

    In this article, we establish a model to delineate the emergence of "self" in the brain making recourse to the theory of chaos. Self is considered as the subjective experience of a subject. As essential ingredients of subjective experiences, our model includes wakefulness, re-entry, attention, memory, and proto-experiences. The stability as stated by chaos theory can potentially describe the non-linear function of "self" as sensitive to initial conditions and can characterize it as underlying order from apparently random signals. Self-similarity is discussed as a latent menace of a pathological confusion between "self" and "others". Our test hypothesis is that (1) consciousness might have emerged and evolved from a primordial potential or proto-experience in matter, such as the physical attractions and repulsions experienced by electrons, and (2) "self" arises from chaotic dynamics, self-organization and selective mechanisms during ontogenesis, while emerging post-ontogenically as an adaptive pressure driven by both volume and synaptic-neural transmission and influencing the functional connectivity of neural nets (structure).

  9. Towards a self-organizing pre-symbolic neural model representing sensorimotor primitives

    Directory of Open Access Journals (Sweden)

    Junpei eZhong

    2014-02-01

    Full Text Available The acquisition of symbolic and linguistic representations of sensorimotor behavior is a cognitive process performed by an agent when it is executing and/or observing own and others' actions. According to Piaget's theory of cognitive development, these representations develop during the sensorimotor stage and the pre-operational stage. We propose a model that relates the conceptualization of the higher-level information from visual stimuli to the development of ventral/dorsal visual streams. This model employs neural network architecture incorporating a predictive sensory module based on an RNNPB (Recurrent Neural Network with Parametric Biases and a horizontal product model. We exemplify this model through a robot passively observing an object to learn its features and movements. During the learning process of observing sensorimotor primitives, i.e. observing a set of trajectories of arm movements and its oriented object features, the pre-symbolic representation is self-organized in the parametric units. These representational units act as bifurcation parameters, guiding the robot to recognize and predict various learned sensorimotor primitives. The pre-symbolic representation also accounts for the learning of sensorimotor primitives in a latent learning context.

  10. FPGA Implementation of Self-Organized Spiking Neural Network Controller for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Fangzheng Xue

    2014-06-01

    Full Text Available Spiking neural network, a computational model which uses spikes to process the information, is good candidate for mobile robot controller. In this paper, we present a novel mechanism for controlling mobile robots based on self-organized spiking neural network (SOSNN and introduce a method for FPGA implementation of this SOSNN. The spiking neuron we used is Izhikevich model. A key feature of this controller is that it can simulate the process of unconditioned reflex (avoid obstacles using infrared sensor signals and conditioned reflex (make right choices in multiple T-maze by spike timing-dependent plasticity (STDP learning and dopamine-receptor modulation. Experimental results show that the proposed controller is effective and is easy to implement. The FPGA implementation method aims to build up a specific network using generic blocks designed in the MATLAB Simulink environment. The main characteristics of this original solution are: on-chip learning algorithm implementation, high reconfiguration capability, and operation under real time constraints. An extended analysis has been carried out on the hardware resources used to implement the whole SOSNN network, as well as each individual component block.

  11. Toward a self-organizing pre-symbolic neural model representing sensorimotor primitives.

    Science.gov (United States)

    Zhong, Junpei; Cangelosi, Angelo; Wermter, Stefan

    2014-01-01

    The acquisition of symbolic and linguistic representations of sensorimotor behavior is a cognitive process performed by an agent when it is executing and/or observing own and others' actions. According to Piaget's theory of cognitive development, these representations develop during the sensorimotor stage and the pre-operational stage. We propose a model that relates the conceptualization of the higher-level information from visual stimuli to the development of ventral/dorsal visual streams. This model employs neural network architecture incorporating a predictive sensory module based on an RNNPB (Recurrent Neural Network with Parametric Biases) and a horizontal product model. We exemplify this model through a robot passively observing an object to learn its features and movements. During the learning process of observing sensorimotor primitives, i.e., observing a set of trajectories of arm movements and its oriented object features, the pre-symbolic representation is self-organized in the parametric units. These representational units act as bifurcation parameters, guiding the robot to recognize and predict various learned sensorimotor primitives. The pre-symbolic representation also accounts for the learning of sensorimotor primitives in a latent learning context.

  12. Low-level neural auditory discrimination dysfunctions in specific language impairment—A review on mismatch negativity findings

    Directory of Open Access Journals (Sweden)

    Teija Kujala

    2017-12-01

    Full Text Available In specific language impairment (SLI, there is a delay in the child’s oral language skills when compared with nonverbal cognitive abilities. The problems typically relate to phonological and morphological processing and word learning. This article reviews studies which have used mismatch negativity (MMN in investigating low-level neural auditory dysfunctions in this disorder. With MMN, it is possible to tap the accuracy of neural sound discrimination and sensory memory functions. These studies have found smaller response amplitudes and longer latencies for speech and non-speech sound changes in children with SLI than in typically developing children, suggesting impaired and slow auditory discrimination in SLI. Furthermore, they suggest shortened sensory memory duration and vulnerability of the sensory memory to masking effects. Importantly, some studies reported associations between MMN parameters and language test measures. In addition, it was found that language intervention can influence the abnormal MMN in children with SLI, enhancing its amplitude. These results suggest that the MMN can shed light on the neural basis of various auditory and memory impairments in SLI, which are likely to influence speech perception. Keywords: Specific language impairment, Auditory processing, Mismatch negativity (MMN

  13. Evolutionary Neural Gas (ENG): A Model of Self Organizing Network from Input Categorization

    CERN Document Server

    Licata, Ignazio

    2010-01-01

    Despite their claimed biological plausibility, most self organizing networks have strict topological constraints and consequently they cannot take into account a wide range of external stimuli. Furthermore their evolution is conditioned by deterministic laws which often are not correlated with the structural parameters and the global status of the network, as it should happen in a real biological system. In nature the environmental inputs are noise affected and fuzzy. Which thing sets the problem to investigate the possibility of emergent behaviour in a not strictly constrained net and subjected to different inputs. It is here presented a new model of Evolutionary Neural Gas (ENG) with any topological constraints, trained by probabilistic laws depending on the local distortion errors and the network dimension. The network is considered as a population of nodes that coexist in an ecosystem sharing local and global resources. Those particular features allow the network to quickly adapt to the environment, accor...

  14. Circumventricular organs: a novel site of neural stem cells in the adult brain.

    Science.gov (United States)

    Bennett, Lori; Yang, Ming; Enikolopov, Grigori; Iacovitti, Lorraine

    2009-07-01

    Neurogenesis in the adult mammalian nervous system is now well established in the subventricular zone of the anterolateral ventricle and subgranular zone of the hippocampus. In these regions, neurons are thought to arise from neural stem cells, identified by their expression of specific intermediate filament proteins (nestin, vimentin, GFAP) and transcription factors (Sox2). In the present study, we show that in adult rat and mouse, the circumventricular organs (CVOs) are rich in nestin+, GFAP+, vimentin+ cells which express Sox2 and the cell cycle-regulating protein Ki67. In culture, these cells proliferate as neurospheres and express neuronal (doublecortin+, beta-tubulin III+) and glial (S100beta+, GFAP+, RIP+) phenotypic traits. Further, our in vivo studies using bromodeoxyuridine show that CVO cells proliferate and undergo constitutive neurogenesis and gliogenesis. These findings suggest that CVOs may constitute a heretofore unknown source of stem/progenitor cells, capable of giving rise to new neurons and/or glia in the adult brain.

  15. The phenotype and neural correlates of language in autism: an integrative review.

    NARCIS (Netherlands)

    Groen, W.B.; Zwiers, M.P.; Gaag, R.J. van der; Buitelaar, J.K.

    2008-01-01

    Although impaired communication is one of the defining criteria in autism, linguistic functioning is highly variable among people with this disorder. Accumulating evidence shows that language impairments in autism are more extensive than commonly assumed and described by formal diagnostic criteria

  16. Perceptual Filtering in L2 Lexical Memory: A Neural Network Approach to Second Language Acquisition

    Science.gov (United States)

    Nelson, Robert

    2012-01-01

    A number of asymmetries in lexical memory emerge when monolinguals and early bilinguals are compared to (relatively) late second language (L2) learners. Their study promises to provide insight into the internal processes that both support and ultimately limit L2 learner achievement. Generally, theory building in L2 and bilingual lexical memory has…

  17. Exploiting Hidden Layer Responses of Deep Neural Networks for Language Recognition

    Science.gov (United States)

    2016-09-08

    American Spanish, Brazilian Portuguese All the experimental results shown in this paper are per- formed on primary condition of NIST LRE 2015. The...UBM is trained on the balanced training set in 5 iterations (up to 15 hours of ran- domly selected training utterances per language). The dimen

  18. Tracking Down Abstract Linguistic Meaning: Neural Correlates of Spatial Frame of Reference Ambiguities in Language

    NARCIS (Netherlands)

    Janzen, G.; Haun, D.B.M.; Levinson, S.C.

    2012-01-01

    This functional magnetic resonance imaging (fMRI) study investigates a crucial parameter in spatial description, namely variants in the frame of reference chosen. Two frames of reference are available in European languages for the description of small-scale assemblages, namely the intrinsic (or

  19. A Common Neural Substrate for Language Production and Verbal Working Memory

    Science.gov (United States)

    Acheson, Daniel J.; Hamidi, Massihullah; Binder, Jeffrey R.; Postle, Bradley R.

    2011-01-01

    Verbal working memory (VWM), the ability to maintain and manipulate representations of speech sounds over short periods, is held by some influential models to be independent from the systems responsible for language production and comprehension [e.g., Baddeley, A. D. "Working memory, thought, and action." New York, NY: Oxford University Press,…

  20. Recognition System of Indonesia Sign Language based on Sensor and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Endang Supriyati

    2013-09-01

    Full Text Available Sign language as a kind of gestures is one of the most natural ways of communication for most people in deaf community. The aim of the sign language recognition is to provide a translation for sign gestures into meaningful text or speech so that communication between deaf and hearing society can easily be made. In this research, the Indonesian sign language recognition system based on flex sensors and an accelerometer is developed. This recognition system uses a sensory glove to capture data. The sensor data that are processed into feature vector are the 5-fingers bending andthe palm acceleration when performing the sign language. The most important part of the recognition system is a featureextraction. In this research, histogram is used as feature extraction. The extracted features are used as data training and data testing for Adaptive Neighborhood based Modified Backpropagation (ANMBP. The system is implemented andtested using a data set of 1000 samples of 50 Indonesia sign, 20 samples for each sign. Among these 500 data were usedas the training data, and the remaining 500 data were used as the testing data. The system obtains the recognition rate of91.60% in offline mode.

  1. Organ detection in thorax abdomen CT using multi-label convolutional neural networks

    Science.gov (United States)

    Humpire Mamani, Gabriel Efrain; Setio, Arnaud Arindra Adiyoso; van Ginneken, Bram; Jacobs, Colin

    2017-03-01

    A convolutional network architecture is presented to determine bounding boxes around six organs in thoraxabdomen CT scans. A single network for each orthogonal view determines the presence of lungs, kidneys, spleen and liver. We show that an architecture that takes additional slices before and after the slice of interest as an additional input outperforms an architecture that processes single slices. From the slice-based analysis, a bounding box around the structures of interest can be computed. The system uses 6 convolutional, 4 pooling and one fully connected layer and uses 333 scans for training and 110 for validation. The test set contains 110 scans. The average Dice score of the proposed method was 0.95 and 0.95 for the lungs, 0.59 and 0.58 for the kidneys, 0.83 for the liver and 0.63 for the spleen. This paper shows that automatic localization of organs using multi-label convolution neural networks is possible. This architecture can likely be used to identify other organs of interest as well.

  2. Impulsivity and the modular organization of resting-state neural networks.

    Science.gov (United States)

    Davis, F Caroline; Knodt, Annchen R; Sporns, Olaf; Lahey, Benjamin B; Zald, David H; Brigidi, Bart D; Hariri, Ahmad R

    2013-06-01

    Impulsivity is a complex trait associated with a range of maladaptive behaviors, including many forms of psychopathology. Previous research has implicated multiple neural circuits and neurotransmitter systems in impulsive behavior, but the relationship between impulsivity and organization of whole-brain networks has not yet been explored. Using graph theory analyses, we characterized the relationship between impulsivity and the functional segregation ("modularity") of the whole-brain network architecture derived from resting-state functional magnetic resonance imaging (fMRI) data. These analyses revealed remarkable differences in network organization across the impulsivity spectrum. Specifically, in highly impulsive individuals, regulatory structures including medial and lateral regions of the prefrontal cortex were isolated from subcortical structures associated with appetitive drive, whereas these brain areas clustered together within the same module in less impulsive individuals. Further exploration of the modular organization of whole-brain networks revealed novel shifts in the functional connectivity between visual, sensorimotor, cortical, and subcortical structures across the impulsivity spectrum. The current findings highlight the utility of graph theory analyses of resting-state fMRI data in furthering our understanding of the neurobiological architecture of complex behaviors.

  3. Impulsivity and the Modular Organization of Resting-State Neural Networks

    Science.gov (United States)

    Davis, F. Caroline; Knodt, Annchen R.; Sporns, Olaf; Lahey, Benjamin B.; Zald, David H.; Brigidi, Bart D.; Hariri, Ahmad R.

    2013-01-01

    Impulsivity is a complex trait associated with a range of maladaptive behaviors, including many forms of psychopathology. Previous research has implicated multiple neural circuits and neurotransmitter systems in impulsive behavior, but the relationship between impulsivity and organization of whole-brain networks has not yet been explored. Using graph theory analyses, we characterized the relationship between impulsivity and the functional segregation (“modularity”) of the whole-brain network architecture derived from resting-state functional magnetic resonance imaging (fMRI) data. These analyses revealed remarkable differences in network organization across the impulsivity spectrum. Specifically, in highly impulsive individuals, regulatory structures including medial and lateral regions of the prefrontal cortex were isolated from subcortical structures associated with appetitive drive, whereas these brain areas clustered together within the same module in less impulsive individuals. Further exploration of the modular organization of whole-brain networks revealed novel shifts in the functional connectivity between visual, sensorimotor, cortical, and subcortical structures across the impulsivity spectrum. The current findings highlight the utility of graph theory analyses of resting-state fMRI data in furthering our understanding of the neurobiological architecture of complex behaviors. PMID:22645253

  4. Native and non-native speech sound processing and the neural mismatch responses: A longitudinal study on classroom-based foreign language learning.

    Science.gov (United States)

    Jost, Lea B; Eberhard-Moscicka, Aleksandra K; Pleisch, Georgette; Heusser, Veronica; Brandeis, Daniel; Zevin, Jason D; Maurer, Urs

    2015-06-01

    Learning a foreign language in a natural immersion context with high exposure to the new language has been shown to change the way speech sounds of that language are processed at the neural level. It remains unclear, however, to what extent this is also the case for classroom-based foreign language learning, particularly in children. To this end, we presented a mismatch negativity (MMN) experiment during EEG recordings as part of a longitudinal developmental study: 38 monolingual (Swiss-) German speaking children (7.5 years) were tested shortly before they started to learn English at school and followed up one year later. Moreover, 22 (Swiss-) German adults were recorded. Instead of the originally found positive mismatch response in children, an MMN emerged when applying a high-pass filter of 3 Hz. The overlap of a slow-wave positivity with the MMN indicates that two concurrent mismatch processes were elicited in children. The children's MMN in response to the non-native speech contrast was smaller compared to the native speech contrast irrespective of foreign language learning, suggesting that no additional neural resources were committed to processing the foreign language speech sound after one year of classroom-based learning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Pearls & Oy-sters: selective postictal aphasia: cerebral language organization in bilingual patients.

    Science.gov (United States)

    Aladdin, Yasser; Snyder, Thomas J; Ahmed, S Nizam

    2008-08-12

    Ictal and postictal language dysfunction is common and strongly predictive of language laterality in monolingual patients. For bilingual patients, selective dysfunction has been reported for a single language with focal cerebral lesions, electrical brain stimulation, and intracarotid sodium amytal. Two right-handed Ukrainian-English bilingual patients with left perisylvian structural lesions, late onset complex-partial seizures, and postictal aphasia for English are presented and discussed with regard to mechanisms of selective aphasia and factors contributory to language lateralization in bilingual patients. Ukrainian was the native language of both patients with English acquired after 7 years of age. Regular/video-EEG showed left temporal epileptogenesis. A 56-year-old man, who had a left hemorrhagic stroke at age 50 and had not spoken Ukrainian for 40 years, was unable to speak English for approximately 20 minutes postictally but had global preservation of Ukrainian. A 71-year-old woman, who had a left temporal epidermoid cyst and had not spoken Ukrainian since childhood, had 10- to 15-minute postictal expressive aphasia in English but not Ukrainian and preservation of comprehension in both languages. These cases are instructive and consistent with the literature on cerebral organization of language in bilingual individuals. For both patients, postictal aphasia with preservation of Ukrainian is consistent with findings from clinical and experimental studies indicating that later age of second language acquisition (>6 years) rather than language proficiency is a primary factor in language laterality. Second, global aphasia in the man with a late lesion vs expressive aphasia with preservation of comprehension of English in the woman with a prenatal/early lesion is consistent with the atypical language laterality described for individuals with left-sided lesions sustained prior to age 5. Although neither Wada test nor fMRI was done to assure left hemisphere

  6. Self-Organizing Neural Network Map for the Purpose of Visualizing the Concept Images of Students on Angles

    Science.gov (United States)

    Kaya, Deniz

    2017-01-01

    The purpose of the study is to perform a less-dimensional thorough visualization process for the purpose of determining the images of the students on the concept of angle. The Ward clustering analysis combined with Self-Organizing Neural Network Map (SOM) has been used for the dimension process. The Conceptual Understanding Tool, which consisted…

  7. An MEG Investigation of Neural Biomarkers and Language in Nonverbal Children with Autism Spectrum Disorders

    Science.gov (United States)

    2015-09-01

    complete two passive tasks not requiring a response. The first is a simple 5-minute auditory task during which participants hear a series of white...noise stimuli2, 3. The second is a 15-minute language task (with brief breaks throughout), in which participants hear spoken words followed by...nonverbal individuals with ASD through a neuroimaging protocol. Specifically, we have created a short film that illustrates the imaging process, which

  8. Prediction of the rejection of organic compounds (neutral and ionic) by nanofiltration and reverse osmosis membranes using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ammi, Yamina; Khaouane, Latifa; Hanini, Salah [University of Medea, Medea (Algeria)

    2015-11-15

    This work investigates the use of neural networks in modeling the rejection processes of organic compounds (neutral and ionic) by nanofiltration and reverse osmosis membranes. Three feed-forward neural network (NN) models, characterized by a similar structure (eleven neurons for NN1 and NN2 and twelve neurons for NN3 in the input layer, one hidden layer and one neuron in the output layer), are constructed with the aim of predicting the rejection of organic compounds (neutral and ionic). A set of 956 data points for NN1 and 701 data points for NN2 and NN3 were used to test the neural networks. 80%, 10%, and 10% of the total data were used, respectively, for the training, the validation, and the test of the three models. For the most promising neural network models, the predicted rejection values of the test dataset were compared to measured rejections values; good correlations were found (R= 0.9128 for NN1, R=0.9419 for NN2, and R=0.9527 for NN3). The root mean squared errors for the total dataset were 11.2430% for NN1, 9.0742% for NN2, and 8.2047% for NN3. Furthermore, the comparison between the predicted results and QSAR models shows that the neural network models gave far better.

  9. Lexical processing and organization in bilingual first language acquisition: Guiding future research.

    Science.gov (United States)

    DeAnda, Stephanie; Poulin-Dubois, Diane; Zesiger, Pascal; Friend, Margaret

    2016-06-01

    A rich body of work in adult bilinguals documents an interconnected lexical network across languages, such that early word retrieval is language independent. This literature has yielded a number of influential models of bilingual semantic memory. However, extant models provide limited predictions about the emergence of lexical organization in bilingual first language acquisition (BFLA). Empirical evidence from monolingual infants suggests that lexical networks emerge early in development as children integrate phonological and semantic information. These findings tell us little about the interaction between 2 languages in early bilingual memory. To date, an understanding of when and how languages interact in early bilingual development is lacking. In this literature review, we present research documenting lexical-semantic development across monolingual and bilingual infants. This is followed by a discussion of current models of bilingual language representation and organization and their ability to account for the available empirical evidence. Together, these theoretical and empirical accounts inform and highlight unexplored areas of research and guide future work on early bilingual memory. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. Language

    DEFF Research Database (Denmark)

    Sanden, Guro Refsum

    2016-01-01

    Purpose: – The purpose of this paper is to analyse the consequences of globalisation in the area of corporate communication, and investigate how language may be managed as a strategic resource. Design/methodology/approach: – A review of previous studies on the effects of globalisation on corporate...... communication and the implications of language management initiatives in international business. Findings: – Efficient language management can turn language into a strategic resource. Language needs analyses, i.e. linguistic auditing/language check-ups, can be used to determine the language situation...... of a company. Language policies and/or strategies can be used to regulate a company’s internal modes of communication. Language management tools can be deployed to address existing and expected language needs. Continuous feedback from the front line ensures strategic learning and reduces the risk of suboptimal...

  11. How age of bilingual exposure can change the neural systems for language in the developing brain: a functional near infrared spectroscopy investigation of syntactic processing in monolingual and bilingual children.

    Science.gov (United States)

    Jasinska, K K; Petitto, L A

    2013-10-01

    Is the developing bilingual brain fundamentally similar to the monolingual brain (e.g., neural resources supporting language and cognition)? Or, does early-life bilingual language experience change the brain? If so, how does age of first bilingual exposure impact neural activation for language? We compared how typically-developing bilingual and monolingual children (ages 7-10) and adults recruit brain areas during sentence processing using functional Near Infrared Spectroscopy (fNIRS) brain imaging. Bilingual participants included early-exposed (bilingual exposure from birth) and later-exposed individuals (bilingual exposure between ages 4-6). Both bilingual children and adults showed greater neural activation in left-hemisphere classic language areas, and additionally, right-hemisphere homologues (Right Superior Temporal Gyrus, Right Inferior Frontal Gyrus). However, important differences were observed between early-exposed and later-exposed bilinguals in their earliest-exposed language. Early bilingual exposure imparts fundamental changes to classic language areas instead of alterations to brain regions governing higher cognitive executive functions. However, age of first bilingual exposure does matter. Later-exposed bilinguals showed greater recruitment of the prefrontal cortex relative to early-exposed bilinguals and monolinguals. The findings provide fascinating insight into the neural resources that facilitate bilingual language use and are discussed in terms of how early-life language experiences can modify the neural systems underlying human language processing. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Detecting recalcitrant organic chemicals in water with microbial fuel cells and artificial neural networks.

    Science.gov (United States)

    King, Scott T; Sylvander, Marc; Kheperu, Mekhakhem; Racz, LeeAnn; Harper, Willie F

    2014-11-01

    This study integrates artificial neural network (ANN) processing with microbial fuel cell (MFC)-based biosensing in the detection of three organic pollutants: aldicarb, dimethyl-methylphosphonate (DMMP), and bisphenol-A (BPA). Overall, the use of the ANN proved to be more reliable than direct correlations for the determination of both chemical concentration and type. The ANN output matched the appropriate chemical concentration and type for three different concentrations and throughout a wide range of stepwise tests. Additionally, chemicals dissolved in the acetate-based feed medium (FM) were accurately identified by the ANN even though the acetate masked the pollutants' effects on electrical current. The ANN also accurately revealed the identity of chemical mixtures. This study is the first to incorporate ANN modeling with MFC-based biosensing for the detection and quantification of organic pollutants that are not readily biodegradable. Furthermore, this work provides insight into the flexibility of MFC-based biosensing as it pertains to limits of detection and its applicability to scenarios where mixtures of pollutants and unique solvents are involved. This research effort is expected to serve as a guide for future MFC-based biosensing efforts. Published by Elsevier B.V.

  13. Similarity Analysis of EEG Data Based on Self Organizing Map Neural Network

    Directory of Open Access Journals (Sweden)

    Ibrahim Salem Jahan

    2014-01-01

    Full Text Available The Electroencephalography (EEG is the recording of electrical activity along the scalp. This recorded data are very complex. EEG has a big role in several applications such as in the diagnosis of human brain diseases and epilepsy. Also, we can use the EEG signals to control an external device via Brain Computer Interface (BCI by our mind. There are many algorithms to analyse the recorded EEG data, but it still remains one of the big challenges in the world. In this article, we extended our previous proposed method. Our extended method uses Self-organizing Map (SOM as an EEG data classifier. The proposed method we can divide in following steps: capturing EEG raw data from the sensors, applying filters on this data, we will use the frequencies in the range from 0.5~Hz to 60~Hz, smoothing the data with 15-th order of Polynomial Curve Fitting, converting filtered data into text using Turtle Graphic, Lempel-Ziv complexity for measuring similarity between two EEG data trials and Self-Organizing Map Neural Network as a final classifiers. The experiment results show that our model is able to detect up to 96% finger movements correctly.

  14. Symbolic gestures and spoken language are processed by a common neural system.

    Science.gov (United States)

    Xu, Jiang; Gannon, Patrick J; Emmorey, Karen; Smith, Jason F; Braun, Allen R

    2009-12-08

    Symbolic gestures, such as pantomimes that signify actions (e.g., threading a needle) or emblems that facilitate social transactions (e.g., finger to lips indicating "be quiet"), play an important role in human communication. They are autonomous, can fully take the place of words, and function as complete utterances in their own right. The relationship between these gestures and spoken language remains unclear. We used functional MRI to investigate whether these two forms of communication are processed by the same system in the human brain. Responses to symbolic gestures, to their spoken glosses (expressing the gestures' meaning in English), and to visually and acoustically matched control stimuli were compared in a randomized block design. General Linear Models (GLM) contrasts identified shared and unique activations and functional connectivity analyses delineated regional interactions associated with each condition. Results support a model in which bilateral modality-specific areas in superior and inferior temporal cortices extract salient features from vocal-auditory and gestural-visual stimuli respectively. However, both classes of stimuli activate a common, left-lateralized network of inferior frontal and posterior temporal regions in which symbolic gestures and spoken words may be mapped onto common, corresponding conceptual representations. We suggest that these anterior and posterior perisylvian areas, identified since the mid-19th century as the core of the brain's language system, are not in fact committed to language processing, but may function as a modality-independent semiotic system that plays a broader role in human communication, linking meaning with symbols whether these are words, gestures, images, sounds, or objects.

  15. Pitch expertise is not created equal: Cross-domain effects of musicianship and tone language experience on neural and behavioural discrimination of speech and music.

    Science.gov (United States)

    Hutka, Stefanie; Bidelman, Gavin M; Moreno, Sylvain

    2015-05-01

    Psychophysiological evidence supports a music-language association, such that experience in one domain can impact processing required in the other domain. We investigated the bidirectionality of this association by measuring event-related potentials (ERPs) in native English-speaking musicians, native tone language (Cantonese) nonmusicians, and native English-speaking nonmusician controls. We tested the degree to which pitch expertise stemming from musicianship or tone language experience similarly enhances the neural encoding of auditory information necessary for speech and music processing. Early cortical discriminatory processing for music and speech sounds was characterized using the mismatch negativity (MMN). Stimuli included 'large deviant' and 'small deviant' pairs of sounds that differed minimally in pitch (fundamental frequency, F0; contrastive musical tones) or timbre (first formant, F1; contrastive speech vowels). Behavioural F0 and F1 difference limen tasks probed listeners' perceptual acuity for these same acoustic features. Musicians and Cantonese speakers performed comparably in pitch discrimination; only musicians showed an additional advantage on timbre discrimination performance and an enhanced MMN responses to both music and speech. Cantonese language experience was not associated with enhancements on neural measures, despite enhanced behavioural pitch acuity. These data suggest that while both musicianship and tone language experience enhance some aspects of auditory acuity (behavioural pitch discrimination), musicianship confers farther-reaching enhancements to auditory function, tuning both pitch and timbre-related brain processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Testing native language neural commitment at the brainstem level: A cross-linguistic investigation of the association between frequency-following response and speech perception.

    Science.gov (United States)

    Yu, Luodi; Zhang, Yang

    2017-12-12

    A current topic in auditory neurophysiology is how brainstem sensory coding contributes to higher-level perceptual, linguistic and cognitive skills. This cross-language study was designed to compare frequency following responses (FFRs) for lexical tones in tonal (Mandarin Chinese) and non-tonal (English) language users and test the correlational strength between FFRs and behavior as a function of language experience. The behavioral measures were obtained in the Garner paradigm to assess how lexical tones might interfere with vowel category and duration judgement. The FFR results replicated previous findings about between-group differences, showing enhanced pitch tracking responses in the Chinese subjects. The behavioral data from the two subject groups showed that lexical tone variation in the vowel stimuli significantly interfered with vowel identification with a greater effect in the Chinese group. Moreover, the FFRs for lexical tone contours were significantly correlated with the behavioral interference only in the Chinese group. This pattern of language-specific association between speech perception and brainstem-level neural phase-locking of linguistic pitch information provides evidence for a possible native language neural commitment at the subcortical level, highlighting the role of experience-dependent brainstem tuning in influencing subsequent linguistic processing in the adult brain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The small GTPase RhoA is required to maintain spinal cord neuroepithelium organization and the neural stem cell pool

    DEFF Research Database (Denmark)

    Herzog, Dominik; Loetscher, Pirmin; van Hengel, Jolanda

    2011-01-01

    ablation. We show that, in the spinal cord neuroepithelium, RhoA is essential to localize N-cadherin and ß-catenin to AJs and maintain apical-basal polarity of neural progenitor cells. Ablation of RhoA caused the loss of AJs and severe abnormalities in the organization of cells within the neuroepithelium......Dia1), does not localize to apical AJs in which it likely stabilizes intracellular adhesion by promoting local actin polymerization and microtubule organization. Furthermore, expressing a dominant-negative form of mDia1 in neural stem/progenitor cells results in a similar phenotype compared...... with that of the RhoA conditional knock-out, namely the loss of AJs and apical polarity. Together, our data show that RhoA signaling is necessary for AJ regulation and for the maintenance of mammalian neuroepithelium organization preventing precocious cell-cycle exit and differentiation....

  18. Self-organized annealing in laterally inhibited neural networks shows power law decay

    OpenAIRE

    Emmert-Streib, Frank

    2004-01-01

    In this paper we present a method which assigns to each layer of a multilayer neural network, whose network dynamics is governed by a noisy winner-take-all mechanism, a neural temperature. This neural temperature is obtained by a least mean square fit of the probability distribution of the noisy winner-take-all mechanism to the distribution of a softmax mechanism, which has a well defined temperature as free parameter. We call this approximated temperature resulting from the optimization step...

  19. N-gram analysis of 970 microbial organisms reveals presence of biological language models

    Directory of Open Access Journals (Sweden)

    Ganapathiraju Madhavi K

    2011-01-01

    Full Text Available Abstract Background It has been suggested previously that genome and proteome sequences show characteristics typical of natural-language texts such as "signature-style" word usage indicative of authors or topics, and that the algorithms originally developed for natural language processing may therefore be applied to genome sequences to draw biologically relevant conclusions. Following this approach of 'biological language modeling', statistical n-gram analysis has been applied for comparative analysis of whole proteome sequences of 44 organisms. It has been shown that a few particular amino acid n-grams are found in abundance in one organism but occurring very rarely in other organisms, thereby serving as genome signatures. At that time proteomes of only 44 organisms were available, thereby limiting the generalization of this hypothesis. Today nearly 1,000 genome sequences and corresponding translated sequences are available, making it feasible to test the existence of biological language models over the evolutionary tree. Results We studied whole proteome sequences of 970 microbial organisms using n-gram frequencies and cross-perplexity employing the Biological Language Modeling Toolkit and Patternix Revelio toolkit. Genus-specific signatures were observed even in a simple unigram distribution. By taking statistical n-gram model of one organism as reference and computing cross-perplexity of all other microbial proteomes with it, cross-perplexity was found to be predictive of branch distance of the phylogenetic tree. For example, a 4-gram model from proteome of Shigellae flexneri 2a, which belongs to the Gammaproteobacteria class showed a self-perplexity of 15.34 while the cross-perplexity of other organisms was in the range of 15.59 to 29.5 and was proportional to their branching distance in the evolutionary tree from S. flexneri. The organisms of this genus, which happen to be pathotypes of E.coli, also have the closest perplexity values with

  20. A Correlational Study of Graphic Organizers and Science Achievement of English Language Learners

    Science.gov (United States)

    Clarke, William Gordon

    English language learners (ELLs) demonstrate lower academic performance and have lower graduation and higher dropout rates than their non-ELL peers. The primary purpose of this correlational quantitative study was to investigate the relationship between the use of graphic organizer-infused science instruction and science learning of high school ELLs. Another objective was to determine if the method of instruction, socioeconomic status (SES), gender, and English language proficiency (ELP) were predictors of academic achievement of high school ELLs. Data were gathered from a New York City (NYC) high school fall 2012-2013 archival records of 145 ninth-grade ELLs who had received biology instruction in freestanding English as a second language (ESL) classes, followed by a test of their learning of the material. Fifty-four (37.2%) of these records were of students who had learned science by the conventional textbook method, and 91 (62.8%) by using graphic organizers. Data analysis employed the Statistical Package for the Social Sciences (SPSS) software for multiple regression analysis, which found graphic organizer use to be a significant predictor of New York State Regents Living Environment (NYSRLE) test scores (p study findings noted graphic organizer use as advantageous for ELL science achievement. Recommendations made for practice were for (a) the adoption of graphic organizer infused-instruction, (b) establishment of a protocol for the implementation of graphic organizer-infused instruction, and (c) increased length of graphic organizer instructional time. Recommendations made for future research were (a) a replication quantitative correlational study in two or more high schools, (b) a quantitative quasi-experimental quantitative study to determine the influence of graphic organizer instructional intervention and ELL science achievement, (c) a quantitative quasi-experimental study to determine the effect of teacher-based factors on graphic organizer

  1. The N400 event-related potential as a neural correlate of language proficiency

    Directory of Open Access Journals (Sweden)

    2015-09-01

    Results: A difference wave comparing ERPs to congruent and incongruent words was calculated over the time-window associated with N400 (350 to 500 ms. The size of this difference wave was correlated with scores on the NART, sentence discrimination task, and lexical decision task. Conclusions: The relation between psychophysiological and behavioural measures of linguistic ability are important as they help to inform both theories of such behaviour, and potential efforts to find effective means for the amelioration of deficient performance. The evidence described here provides the first such investigation in an adult higher education population. The results will be used in the development of teaching strategies designed to support the acquisition of high-level language skills.

  2. Learning second language vocabulary: neural dissociation of situation-based learning and text-based learning.

    Science.gov (United States)

    Jeong, Hyeonjeong; Sugiura, Motoaki; Sassa, Yuko; Wakusawa, Keisuke; Horie, Kaoru; Sato, Shigeru; Kawashima, Ryuta

    2010-04-01

    Second language (L2) acquisition necessitates learning and retrieving new words in different modes. In this study, we attempted to investigate the cortical representation of an L2 vocabulary acquired in different learning modes and in cross-modal transfer between learning and retrieval. Healthy participants learned new L2 words either by written translations (text-based learning) or in real-life situations (situation-based learning). Brain activity was then measured during subsequent retrieval of these words. The right supramarginal gyrus and left middle frontal gyrus were involved in situation-based learning and text-based learning, respectively, whereas the left inferior frontal gyrus was activated when learners used L2 knowledge in a mode different from the learning mode. Our findings indicate that the brain regions that mediate L2 memory differ according to how L2 words are learned and used. Copyright 2009 Elsevier Inc. All rights reserved.

  3. Stochastic Oscillation in Self-Organized Critical States of Small Systems: Sensitive Resting State in Neural Systems

    Science.gov (United States)

    Wang, Sheng-Jun; Ouyang, Guang; Guang, Jing; Zhang, Mingsha; Wong, K. Y. Michael; Zhou, Changsong

    2016-01-01

    Self-organized critical states (SOCs) and stochastic oscillations (SOs) are simultaneously observed in neural systems, which appears to be theoretically contradictory since SOCs are characterized by scale-free avalanche sizes but oscillations indicate typical scales. Here, we show that SOs can emerge in SOCs of small size systems due to temporal correlation between large avalanches at the finite-size cutoff, resulting from the accumulation-release process in SOCs. In contrast, the critical branching process without accumulation-release dynamics cannot exhibit oscillations. The reconciliation of SOCs and SOs is demonstrated both in the sandpile model and robustly in biologically plausible neuronal networks. The oscillations can be suppressed if external inputs eliminate the prominent slow accumulation process, providing a potential explanation of the widely studied Berger effect or event-related desynchronization in neural response. The features of neural oscillations and suppression are confirmed during task processing in monkey eye-movement experiments. Our results suggest that finite-size, columnar neural circuits may play an important role in generating neural oscillations around the critical states, potentially enabling functional advantages of both SOCs and oscillations for sensitive response to transient stimuli.

  4. Disrupted insula-based neural circuit organization and conflict interference in trauma-exposed youth

    Directory of Open Access Journals (Sweden)

    Hilary A. Marusak

    2015-01-01

    Full Text Available Childhood trauma exposure is a potent risk factor for psychopathology. Emerging research suggests that aberrant saliency processing underlies the link between early trauma exposure and later cognitive and socioemotional deficits that are hallmark of several psychiatric disorders. Here, we examine brain and behavioral responses during a face categorization conflict task, and relate these to intrinsic connectivity of the salience network (SN. The results demonstrate a unique pattern of SN dysfunction in youth exposed to trauma (n = 14 relative to comparison youth (n = 19 matched on age, sex, IQ, and sociodemographic risk. We find that trauma-exposed youth are more susceptible to conflict interference and this correlates with higher fronto-insular responses during conflict. Resting-state functional connectivity data collected in the same participants reveal increased connectivity of the insula to SN seed regions that is associated with diminished reward sensitivity, a critical risk/resilience trait following stress. In addition to altered intrinsic connectivity of the SN, we observed altered connectivity between the SN and default mode network (DMN in trauma-exposed youth. These data uncover network-level disruptions in brain organization following one of the strongest predictors of illness, early life trauma, and demonstrate the relevance of observed neural effects for behavior and specific symptom dimensions. SN dysfunction may serve as a diathesis that contributes to illness and negative outcomes following childhood trauma.

  5. Pattern recognition in lithology classification: modeling using neural networks, self-organizing maps and genetic algorithms

    Science.gov (United States)

    Sahoo, Sasmita; Jha, Madan K.

    2017-03-01

    Effective characterization of lithology is vital for the conceptualization of complex aquifer systems, which is a prerequisite for the development of reliable groundwater-flow and contaminant-transport models. However, such information is often limited for most groundwater basins. This study explores the usefulness and potential of a hybrid soft-computing framework; a traditional artificial neural network with gradient descent-momentum training (ANN-GDM) and a traditional genetic algorithm (GA) based ANN (ANN-GA) approach were developed and compared with a novel hybrid self-organizing map (SOM) based ANN (SOM-ANN-GA) method for the prediction of lithology at a basin scale. This framework is demonstrated through a case study involving a complex multi-layered aquifer system in India, where well-log sites were clustered on the basis of sand-layer frequencies; within each cluster, subsurface layers were reclassified into four depth classes based on the maximum drilling depth. ANN models for each depth class were developed using each of the three approaches. Of the three, the hybrid SOM-ANN-GA models were able to recognize incomplete geologic pattern more reasonably, followed by ANN-GA and ANN-GDM models. It is concluded that the hybrid soft-computing framework can serve as a promising tool for characterizing lithology in groundwater basins with missing lithologic patterns.

  6. Application of Self-Organizing Artificial Neural Networks on Simulated Diffusion Tensor Images

    Directory of Open Access Journals (Sweden)

    Dilek Göksel-Duru

    2013-01-01

    Full Text Available Diffusion tensor magnetic resonance imaging (DTMRI as a noninvasive modality providing in vivo anatomical information allows determination of fiber connections which leads to brain mapping. The success of DTMRI is very much algorithm dependent, and its verification is of great importance due to limited availability of a gold standard in the literature. In this study, unsupervised artificial neural network class, namely, self-organizing maps, is employed to discover the underlying fiber tracts. A common artificial diffusion tensor resource, named “phantom images for simulating tractography errors” (PISTE, is used for the accuracy verification and acceptability of the proposed approach. Four different tract geometries with varying SNRs and fractional anisotropy are investigated. The proposed method, SOFMAT, is able to define the predetermined fiber paths successfully with a standard deviation of (0.8–1.9 × 10−3 depending on the trajectory and the SNR value selected. The results illustrate the capability of SOFMAT to reconstruct complex fiber tract configurations. The ability of SOFMAT to detect fiber paths in low anisotropy regions, which physiologically may correspond to either grey matter or pathology (abnormality and uncertainty areas in real data, is an advantage of the method for future studies.

  7. Usage of self-organizing neural networks in evaluation of consumer behaviour

    Directory of Open Access Journals (Sweden)

    Jana Weinlichová

    2010-01-01

    Full Text Available This article deals with evaluation of consumer data by Artificial Intelligence methods. In methodical part there are described learning algorithms for Kohonen maps on the principle of supervised learning, unsupervised learning and semi-supervised learning. The principles of supervised learning and unsupervised learning are compared. On base of binding conditions of these principles there is pointed out an advantage of semi-supervised learning. Three algorithms are described for the semi-supervised learning: label propagation, self-training and co-training. Especially usage of co-training in Kohonen map learning seems to be promising point of other research. In concrete application of Kohonen neural network on consumer’s expense the unsupervised learning method has been chosen – the self-organization. So the features of data are evaluated by clustering method called Kohonen maps. These input data represents consumer expenses of households in countries of European union and are characterised by 12-dimension vector according to commodity classification. The data are evaluated in several years, so we can see their distribution, similarity or dissimilarity and also their evolution. In the article we discus other usage of this method for this type of data and also comparison of our results with results reached by hierarchical cluster analysis.

  8. Extending Deacon’s Notion of Teleodynamics to Culture, Language, Organization, Science, Economics and Technology (CLOSET

    Directory of Open Access Journals (Sweden)

    Robert K. Logan

    2015-10-01

    Full Text Available Terrence Deacon’s (2012 notion developed in his book Incomplete Nature (IN that living organisms are teleodynamic systems that are self-maintaining, self-correcting and self-reproducing is extended to human social systems. The hypothesis is developed that culture, language, organization, science, economics and technology (CLOSET can be construed as living organisms that evolve, maintain and reproduce themselves and are self-correcting, and hence are teleodynamic systems. The elements of CLOSET are to a certain degree autonomous, even though they are obligate symbionts dependent on their human hosts for the energy that sustains them.

  9. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks

    Science.gov (United States)

    Ibragimov, Bulat; Xing, Lei

    2017-01-01

    Purpose Accurate segmentation of organs-at-risks (OARs) is the key step for efficient planning of radiation therapy for head and neck (HaN) cancer treatment. In the work, we proposed the first deep learning-based algorithm, for segmentation of OARs in HaN CT images, and compared its performance against state-of-the-art automated segmentation algorithms, commercial software and inter-observer variability. Methods Convolutional neural networks (CNNs) – a concept from the field of deep learning – were used to study consistent intensity patterns of OARs from training CT images and to segment the OAR in a previously unseen test CT image. For CNN training, we extracted a representative number of positive intensity patches around voxels that belong to the OAR of interest in training CT images, and negative intensity patches around voxels that belong to the surrounding structures. These patches then passed through a sequence of CNN layers that captured local image features such as corners, end-points and edges, and combined them into more complex high-order features that can efficiently describe the OAR. The trained network was applied to classify voxels in a region of interest in the test image where the corresponding OAR is expected to be located. We then smoothed the obtained classification results by using Markov random fields algorithm. We finally extracted the largest connected component of the smoothed voxels classified as the OAR by CNN, performed dilate-erode operations to remov cavities of the component, which resulted in segmentation of the OAR in the test image. Results The performance of CNNs was validated on segmentation of spinal cord, mandible, parotid glands, submandibular glands, larynx, pharynx, eye globes, optic nerves and optic chiasm using 50 CT images. The obtained segmentation results varied from 37.4% Dice coefficient (DSC) for chiasm to 89.5% DSC for mandible. We also analyzed the performance of state-of-the-art algorithms and commercial

  10. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks.

    Science.gov (United States)

    Ibragimov, Bulat; Xing, Lei

    2017-02-01

    Accurate segmentation of organs-at-risks (OARs) is the key step for efficient planning of radiation therapy for head and neck (HaN) cancer treatment. In the work, we proposed the first deep learning-based algorithm, for segmentation of OARs in HaN CT images, and compared its performance against state-of-the-art automated segmentation algorithms, commercial software, and interobserver variability. Convolutional neural networks (CNNs)-a concept from the field of deep learning-were used to study consistent intensity patterns of OARs from training CT images and to segment the OAR in a previously unseen test CT image. For CNN training, we extracted a representative number of positive intensity patches around voxels that belong to the OAR of interest in training CT images, and negative intensity patches around voxels that belong to the surrounding structures. These patches then passed through a sequence of CNN layers that captured local image features such as corners, end-points, and edges, and combined them into more complex high-order features that can efficiently describe the OAR. The trained network was applied to classify voxels in a region of interest in the test image where the corresponding OAR is expected to be located. We then smoothed the obtained classification results by using Markov random fields algorithm. We finally extracted the largest connected component of the smoothed voxels classified as the OAR by CNN, performed dilate-erode operations to remove cavities of the component, which resulted in segmentation of the OAR in the test image. The performance of CNNs was validated on segmentation of spinal cord, mandible, parotid glands, submandibular glands, larynx, pharynx, eye globes, optic nerves, and optic chiasm using 50 CT images. The obtained segmentation results varied from 37.4% Dice coefficient (DSC) for chiasm to 89.5% DSC for mandible. We also analyzed the performance of state-of-the-art algorithms and commercial software reported in the

  11. Early gamma oscillations during rapid auditory processing in children with a language-learning impairment: changes in neural mass activity after training.

    Science.gov (United States)

    Heim, Sabine; Keil, Andreas; Choudhury, Naseem; Thomas Friedman, Jennifer; Benasich, April A

    2013-04-01

    Children with language-learning impairment (LLI) have consistently shown difficulty with tasks requiring precise, rapid auditory processing. Remediation based on neural plasticity assumes that the temporal precision of neural coding can be improved by intensive training protocols. Here, we examined the extent to which early oscillatory responses in auditory cortex change after audio-visual training, using combined source modeling and time-frequency analysis of the human electroencephalogram (EEG). Twenty-one elementary school students diagnosed with LLI underwent the intervention for an average of 32 days. Pre- and post-training assessments included standardized language/literacy tests and EEG recordings in response to fast-rate tone doublets. Twelve children with typical language development were also tested twice, with no intervention given. Behaviorally, improvements on measures of language were observed in the LLI group following completion of training. During the first EEG assessment, we found reduced amplitude and phase-locking of early (45-75 ms) oscillations in the gamma-band range (29-52 Hz), specifically in the LLI group, for the second stimulus of the tone doublet. Amplitude reduction for the second tone was no longer evident for the LLI children post-intervention, although these children still exhibited attenuated phase-locking. Our findings suggest that specific aspects of inefficient sensory cortical processing in LLI are ameliorated after training. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Self-Organizing Neural Integration of Pose-Motion Features for Human Action Recognition

    Directory of Open Access Journals (Sweden)

    German Ignacio Parisi

    2015-06-01

    Full Text Available The visual recognition of complex, articulated human movements is fundamental for a wide range of artificial systems oriented towards human-robot communication, action classification, and action-driven perception. These challenging tasks may generally involve the processing of a huge amount of visual information and learning-based mechanisms for generalizing a set of training actions and classifying new samples. To operate in natural environments, a crucial property is the efficient and robust recognition of actions, also under noisy conditions caused by, for instance, systematic sensor errors and temporarily occluded persons. Studies of the mammalian visual system and its outperforming ability to process biological motion information suggest separate neural pathways for the distinct processing of pose and motion features at multiple levels and the subsequent integration of these visual cues for action perception. We present a neurobiologically-motivated approach to achieve noise-tolerant action recognition in real time. Our model consists of self-organizing Growing When Required (GWR networks that obtain progressively generalized representations of sensory inputs and learn inherent spatiotemporal dependencies. During the training, the GWR networks dynamically change their topological structure to better match the input space. We first extract pose and motion features from video sequences and then cluster actions in terms of prototypical pose-motion trajectories. Multi-cue trajectories from matching action frames are subsequently combined to provide action dynamics in the joint feature space. Reported experiments show that our approach outperforms previous results on a dataset of full-body actions captured with a depth sensor, and ranks among the best 21 results for a public benchmark of domestic daily actions.

  13. PSYCHOLOGICAL AND PEDAGOGICAL FACTORS OF STUDENT SELF-STUDY ORGANIZATION ON ACQUIRING FOREIGN LANGUAGE COMMUNICATIVE COMPETENCE

    OpenAIRE

    Iryna Zadorozhna

    2016-01-01

    Psychological and pedagogical prerequisites of student self-study organization on acquiring foreign language communicative competence have been defined and characterized. It has been proved that self-study effectiveness depends on self-regulation and motivation. The latter is amplified by creating a situation of development, modelling personally meaningful learning context aimed at creating a real product; collaborative learning, incorporating modern technologies, using problematic tasks, reg...

  14. An Expedient Study on Back-Propagation (BPN) Neural Networks for Modeling Automated Evaluation of the Answers and Progress of Deaf Students' That Possess Basic Knowledge of the English Language and Computer Skills

    Science.gov (United States)

    Vrettaros, John; Vouros, George; Drigas, Athanasios S.

    This article studies the expediency of using neural networks technology and the development of back-propagation networks (BPN) models for modeling automated evaluation of the answers and progress of deaf students' that possess basic knowledge of the English language and computer skills, within a virtual e-learning environment. The performance of the developed neural models is evaluated with the correlation factor between the neural networks' response values and the real value data as well as the percentage measurement of the error between the neural networks' estimate values and the real value data during its training process and afterwards with unknown data that weren't used in the training process.

  15. Organic chemistry as a language and the implications of chemical linguistics for structural and retrosynthetic analyses.

    Science.gov (United States)

    Cadeddu, Andrea; Wylie, Elizabeth K; Jurczak, Janusz; Wampler-Doty, Matthew; Grzybowski, Bartosz A

    2014-07-28

    Methods of computational linguistics are used to demonstrate that a natural language such as English and organic chemistry have the same structure in terms of the frequency of, respectively, text fragments and molecular fragments. This quantitative correspondence suggests that it is possible to extend the methods of computational corpus linguistics to the analysis of organic molecules. It is shown that within organic molecules bonds that have highest information content are the ones that 1) define repeat/symmetry subunits and 2) in asymmetric molecules, define the loci of potential retrosynthetic disconnections. Linguistics-based analysis appears well-suited to the analysis of complex structural and reactivity patterns within organic molecules. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Model of the Dynamic Construction Process of Texts and Scaling Laws of Words Organization in Language Systems.

    Directory of Open Access Journals (Sweden)

    Shan Li

    Full Text Available Scaling laws characterize diverse complex systems in a broad range of fields, including physics, biology, finance, and social science. The human language is another example of a complex system of words organization. Studies on written texts have shown that scaling laws characterize the occurrence frequency of words, words rank, and the growth of distinct words with increasing text length. However, these studies have mainly concentrated on the western linguistic systems, and the laws that govern the lexical organization, structure and dynamics of the Chinese language remain not well understood. Here we study a database of Chinese and English language books. We report that three distinct scaling laws characterize words organization in the Chinese language. We find that these scaling laws have different exponents and crossover behaviors compared to English texts, indicating different words organization and dynamics of words in the process of text growth. We propose a stochastic feedback model of words organization and text growth, which successfully accounts for the empirically observed scaling laws with their corresponding scaling exponents and characteristic crossover regimes. Further, by varying key model parameters, we reproduce differences in the organization and scaling laws of words between the Chinese and English language. We also identify functional relationships between model parameters and the empirically observed scaling exponents, thus providing new insights into the words organization and growth dynamics in the Chinese and English language.

  17. Atypical language organization in temporal lobe epilepsy revealed by a passive semantic paradigm

    Science.gov (United States)

    2014-01-01

    Background Mesial temporal lobe epilepsy (MTLE) is the most common type of focal epilepsy in adults and can be successfully cured by surgery. One of the main complications of this surgery however is a decline in language abilities. The magnitude of this decline is related to the degree of language lateralization to the left hemisphere. Most fMRI paradigms used to determine language dominance in epileptic populations have used active language tasks. Sometimes, these paradigms are too complex and may result in patient underperformance. Only a few studies have used purely passive tasks, such as listening to standard speech. Methods In the present study we characterized language lateralization in patients with MTLE using a rapid and passive semantic language task. We used functional magnetic resonance imaging (fMRI) to study 23 patients [12 with Left (LMTLE), 11 with Right mesial temporal lobe epilepsy (RMTLE)] and 19 healthy right-handed controls using a 6 minute long semantic task in which subjects passively listened to groups of sentences (SEN) and pseudo sentences (PSEN). A lateralization index (LI) was computed using a priori regions of interest of the temporal lobe. Results The LI for the significant contrasts produced activations for all participants in both temporal lobes. 81.8% of RMTLE patients and 79% of healthy individuals had a bilateral language representation for this particular task. However, 50% of LMTLE patients presented an atypical right hemispheric dominance in the LI. More importantly, the degree of right lateralization in LMTLE patients was correlated with the age of epilepsy onset. Conclusions The simple, rapid, non-collaboration dependent, passive task described in this study, produces a robust activation in the temporal lobe in both patients and controls and is capable of illustrating a pattern of atypical language organization for LMTLE patients. Furthermore, we observed that the atypical right-lateralization patterns in LMTLE patients was

  18. Changes in neural activation patterns and brain anatomy as a function of non-pathological first language attrition

    NARCIS (Netherlands)

    Keijzer, Merel

    2014-01-01

    In recent years the Critical Period Hypothesis of language acquisition has come under close scrutiny. The premise that native-like language proficiency can only be attained if the language is learned early in life seems difficult to maintain, as neuroimaging data have revealed a greater plasticity

  19. Self-Organizing Maps Neural Networks Applied to the Classification of Ethanol Samples According to the Region of Commercialization

    Directory of Open Access Journals (Sweden)

    Aline Regina Walkoff

    2017-10-01

    Full Text Available Physical-chemical analysis data were collected, from 998 ethanol samples of automotive ethanol commercialized in the northern, midwestern and eastern regions of the state of Paraná. The data presented self-organizing maps (SOM neural networks, which classified them according to those regions. The self-organizing maps best configuration had a 45 x 45 topology and 5000 training epochs, with a final learning rate of 6.7x10-4, a final neighborhood relationship of 3x10-2 and a mean quantization error of 2x10-2. This neural network provided a topological map depicting three separated groups, each one corresponding to samples of a same region of commercialization. Four maps of weights, one for each parameter, were presented. The network established the pH was the most important variable for classification and electrical conductivity the least one. The self-organizing maps application allowed the segmentation of alcohol samples, therefore identifying them according to the region of commercialization. DOI: http://dx.doi.org/10.17807/orbital.v9i4.982

  20. Prediction of activity coefficients at infinite dilution for organic solutes in ionic liquids by artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Nami, Faezeh [Department of Chemistry, Shahid Beheshti University, G.C., Evin-Tehran 1983963113 (Iran, Islamic Republic of); Deyhimi, Farzad, E-mail: f-deyhimi@sbu.ac.i [Department of Chemistry, Shahid Beheshti University, G.C., Evin-Tehran 1983963113 (Iran, Islamic Republic of)

    2011-01-15

    To our knowledge, this work illustrates for the first time the ability of artificial neural network (ANN) to predict activity coefficients at infinite dilution for organic solutes in ionic liquids (ILs). Activity coefficient at infinite dilution ({gamma}{sup {infinity}}) is a useful parameter which can be used for the selection of effective solvent in the separation processes. Using a multi-layer feed-forward network with Levenberg-Marquardt optimization algorithm, the resulting ANN model generated activity coefficient at infinite dilution data over a temperature range of 298 to 363 K. The unavailable input data concerning softness (S) of organic compounds (solutes) and dipole moment ({mu}) of ionic liquids were calculated using GAMESS suites of quantum chemistry programs. The resulting ANN model and its validation are based on the investigation of up to 24 structurally different organic compounds (alkanes, alkenes, alkynes, cycloalkanes, aromatics, and alcohols) in 16 common imidazolium-based ionic liquids, at different temperatures within the range of 298 to 363 K (i.e. a total number of 914 {gamma}{sub Solute}{sup {infinity}}for each IL data point). The results show a satisfactory agreement between the predicted ANN and experimental data, where, the root mean square error (RMSE) and the determination coefficient (R{sup 2}) of the designed neural network were found to be 0.103, 0.996 for training data and 0.128, 0.994 for testing data, respectively.

  1. A self-organized artificial neural network architecture for sensory integration with applications to letter-phoneme integration.

    Science.gov (United States)

    Jantvik, Tamas; Gustafsson, Lennart; Papliński, Andrew P

    2011-08-01

    The multimodal self-organizing network (MMSON), an artificial neural network architecture carrying out sensory integration, is presented here. The architecture is designed using neurophysiological findings and imaging studies that pertain to sensory integration and consists of interconnected lattices of artificial neurons. In this artificial neural architecture, the degree of recognition of stimuli, that is, the perceived reliability of stimuli in the various subnetworks, is included in the computation. The MMSON's behavior is compared to aspects of brain function that deal with sensory integration. According to human behavioral studies, integration of signals from sensory receptors of different modalities enhances perception of objects and events and also reduces time to detection. In neocortex, integration takes place in bimodal and multimodal association areas and result, not only in feedback-mediated enhanced unimodal perception and shortened reaction time, but also in robust bimodal or multimodal percepts. Simulation data from the presented artificial neural network architecture show that it replicates these important psychological and neuroscientific characteristics of sensory integration.

  2. A Neural Assembly-Based View on Word Production: The Bilingual Test Case

    Science.gov (United States)

    Strijkers, Kristof

    2016-01-01

    I will propose a tentative framework of how words in two languages could be organized in the cerebral cortex based on neural assembly theory, according to which neurons that fire synchronously are bound into large-scale distributed functional units (assemblies), which represent a mental event as a whole ("gestalt"). For language this…

  3. A Study of the Relationship between Code Switching and the Bilingual Advantage: Evidence That Language Use Modulates Neural Indices of Language Processing and Cognitive Control

    Science.gov (United States)

    Blackburn, Angelique Michelle

    2013-01-01

    Bilinguals sometimes outperform age-matched monolinguals on non-language tasks involving cognitive control. But the bilingual advantage is not consistently found in every experiment and may reflect specific attributes of the bilinguals tested. The goal of this dissertation was to determine if the way in which bilinguals use language, specifically…

  4. 3-D components of a biological neural network visualized in computer generated imagery. I - Macular receptive field organization

    Science.gov (United States)

    Ross, Muriel D.; Cutler, Lynn; Meyer, Glenn; Lam, Tony; Vaziri, Parshaw

    1990-01-01

    Computer-assisted, 3-dimensional reconstructions of macular receptive fields and of their linkages into a neural network have revealed new information about macular functional organization. Both type I and type II hair cells are included in the receptive fields. The fields are rounded, oblong, or elongated, but gradations between categories are common. Cell polarizations are divergent. Morphologically, each calyx of oblong and elongated fields appears to be an information processing site. Intrinsic modulation of information processing is extensive and varies with the kind of field. Each reconstructed field differs in detail from every other, suggesting that an element of randomness is introduced developmentally and contributes to endorgan adaptability.

  5. Robots with language

    Directory of Open Access Journals (Sweden)

    Domenico Parisi

    2010-11-01

    Full Text Available Trying to understand human language by constructing robots that have language necessarily implies an embodied view of language, where the meaning of linguistic expressions is derived from the physical interactions of the organism with the environment. The paper describes a neural model of language according to which the robot’s behaviour is controlled by a neural network composed of two sub-networks, one dedicated to the non-linguistic interactions of the robot with the environment and the other one to processing linguistic input and producing linguistic output. We present the results of a number of simulations using the model and we suggest how the model can be used to account for various language-related phenomena such as disambiguation, the metaphorical use of words, the pervasive idiomaticity of multi-word expressions, and mental life as talking to oneself.. The model implies a view of the meaning of words and multi-word expressions as a temporal process that takes place in the entire brain and has no clearly defined boundaries. The model can also be extended to emotional words if we assume that an embodied view of language includes not only the interactions of the robot’s brain with the external environment but also the interactions of the brain with what is inside the body.

  6. The quiet organization - why a common language does not always create a linguistic community

    Directory of Open Access Journals (Sweden)

    Hanne Tange

    2012-08-01

    Full Text Available Imagine an office environment in an international company in Denmark. Around you employees are going about their daily routines. They write e-mails while chatting to their neighbours, exchange a few comments on their way to the photocopier, and gather in the break to discuss their boss, holiday plans or news on a joint project.  Try then to imagine the same space, only without the noise: A work environment where employees perform their duties quietly and most of the chit-chat has disappeared. This is the situation in many organizations that have adopted English as their corporate language.

  7. PSYCHOLOGICAL AND PEDAGOGICAL FACTORS OF STUDENT SELF-STUDY ORGANIZATION ON ACQUIRING FOREIGN LANGUAGE COMMUNICATIVE COMPETENCE

    Directory of Open Access Journals (Sweden)

    Iryna Zadorozhna

    2016-12-01

    Full Text Available Psychological and pedagogical prerequisites of student self-study organization on acquiring foreign language communicative competence have been defined and characterized. It has been proved that self-study effectiveness depends on self-regulation and motivation. The latter is amplified by creating a situation of development, modelling personally meaningful learning context aimed at creating a real product; collaborative learning, incorporating modern technologies, using problematic tasks, regular feedback, professionally-oriented learning. On the basis of scientific literature analysis it has been concluded that self-regulation of future foreign language teachers has the following structure: defining objectives, modelling meaningful conditions, action programming, results evaluation, program correction. Ways of developing self-control, self-evaluation and self-correction have been analyzed in the article. Pedagogical preconditions of effective self-study are the following: student knowledge of efficient methods and procedures of foreign language learning; selection of procedures and strategies adequate to the defined goals; an appropriate level of student information culture; ability to manage time and control results; timely correction on the basis of current control and self-control.

  8. Self-Organizing Neural-Net Control of Ship's Horizontal Motion

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X J; Zhao, X R [Automation College of Harbin Engineering University, Harbin 150001 (China)

    2006-10-15

    This paper describes the concept and an example of an adaptive neural-net controller system for ship's horizontal motion. The system consists of two parts, a real-world part and an imaginary-world part. The real-world part is a feedback control system for the actual ship. In the imaginary-world part, the model of ship and the controller are adjusted continuously in order to deal with changes of dynamic properties caused by disturbances and so on. In this paper, the adaptability of the controller system is investigated by controlling ship's horizontal motion including roll, yaw and sway. The results of simulation indicate that with selforganizing neural-net control, the mean square error of roll angle and yaw angle reduce to 0.92{sup 0}, and 0.74{sup 0} respectively. The control effect of SONC is better than conventional LQG controller.

  9. Educating the blind brain: a panorama of neural bases of vision and of training programs in organic neurovisual deficits

    Directory of Open Access Journals (Sweden)

    Olivier A. Coubard

    2014-12-01

    Full Text Available Vision is a complex function, which is achieved by movements of the eyes to properly foveate targets at any location in 3D space and to continuously refresh neural information in the different visual pathways. The visual system involves five routes originating in the retinas but varying in their destination within the brain: the occipital cortex, but also the superior colliculus, the pretectum, the supra-chiasmatic nucleus, the nucleus of the optic tract and terminal dorsal, medial and lateral nuclei. Visual pathway architecture obeys systematization in sagittal and transversal planes so that visual information from left/right and upper/lower hemi-retinas, corresponding respectively to right/left and lower/upper visual fields, is processed ipsilaterally and ipsialtitudinally to hemi-retinas in left/right hemispheres and upper/lower fibers. Organic neurovisual deficits may occur at any level of this circuitry from the optic nerve to subcortical and cortical destinations, resulting in low or high-level visual deficits. In this didactic review article, we provide a panorama of the neural bases of eye movements and visual systems, and of related neurovisual deficits. Additionally, we briefly review the different schools of rehabilitation of organic neurovisual deficits, and show that whatever the emphasis is put on action or perception, benefits may be observed at both motor and perceptual levels. Given the extent of its neural bases in the brain, vision in its motor and perceptual aspects is also a useful tool to assess and modulate central nervous system in general.

  10. The Value of a Thematic Organization for Language Arts, Grades 6-8. ERIC Topical Bibliography and Commentary.

    Science.gov (United States)

    Smith, Carl B., Ed.

    This topical bibliography and commentary highlights the major points of the available literature on the value of using a "thematic organization" for the teaching of language arts classes in grades 6 through 8. It begins with a definition of the thematic organization approach, as culled from the literature. It then presents briefly a few examples…

  11. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets.

    Science.gov (United States)

    Hu, Peijun; Wu, Fa; Peng, Jialin; Bao, Yuanyuan; Chen, Feng; Kong, Dexing

    2017-03-01

    Multi-organ segmentation from CT images is an essential step for computer-aided diagnosis and surgery planning. However, manual delineation of the organs by radiologists is tedious, time-consuming and poorly reproducible. Therefore, we propose a fully automatic method for the segmentation of multiple organs from three-dimensional abdominal CT images. The proposed method employs deep fully convolutional neural networks (CNNs) for organ detection and segmentation, which is further refined by a time-implicit multi-phase evolution method. Firstly, a 3D CNN is trained to automatically localize and delineate the organs of interest with a probability prediction map. The learned probability map provides both subject-specific spatial priors and initialization for subsequent fine segmentation. Then, for the refinement of the multi-organ segmentation, image intensity models, probability priors as well as a disjoint region constraint are incorporated into an unified energy functional. Finally, a novel time-implicit multi-phase level-set algorithm is utilized to efficiently optimize the proposed energy functional model. Our method has been evaluated on 140 abdominal CT scans for the segmentation of four organs (liver, spleen and both kidneys). With respect to the ground truth, average Dice overlap ratios for the liver, spleen and both kidneys are 96.0, 94.2 and 95.4%, respectively, and average symmetric surface distance is less than 1.3 mm for all the segmented organs. The computation time for a CT volume is 125 s in average. The achieved accuracy compares well to state-of-the-art methods with much higher efficiency. A fully automatic method for multi-organ segmentation from abdominal CT images was developed and evaluated. The results demonstrated its potential in clinical usage with high effectiveness, robustness and efficiency.

  12. PREDICTING SOIL SORPTION COEFFICIENTS OF ORGANIC CHEMICALS USING A NEURAL NETWORK MODEL

    Science.gov (United States)

    The soil/sediment adsorption partition coefficient normalized to organic carbon (Koc) is extensively used to assess the fate of organic chemicals in hazardous waste sites. Several attempts have been made to estimate the value of Koc from chemical structure ...

  13. Language and Recursion

    Science.gov (United States)

    Lowenthal, Francis

    2010-11-01

    This paper examines whether the recursive structure imbedded in some exercises used in the Non Verbal Communication Device (NVCD) approach is actually the factor that enables this approach to favor language acquisition and reacquisition in the case of children with cerebral lesions. For that a definition of the principle of recursion as it is used by logicians is presented. The two opposing approaches to the problem of language development are explained. For many authors such as Chomsky [1] the faculty of language is innate. This is known as the Standard Theory; the other researchers in this field, e.g. Bates and Elman [2], claim that language is entirely constructed by the young child: they thus speak of Language Acquisition. It is also shown that in both cases, a version of the principle of recursion is relevant for human language. The NVCD approach is defined and the results obtained in the domain of language while using this approach are presented: young subjects using this approach acquire a richer language structure or re-acquire such a structure in the case of cerebral lesions. Finally it is shown that exercises used in this framework imply the manipulation of recursive structures leading to regular grammars. It is thus hypothesized that language development could be favored using recursive structures with the young child. It could also be the case that the NVCD like exercises used with children lead to the elaboration of a regular language, as defined by Chomsky [3], which could be sufficient for language development but would not require full recursion. This double claim could reconcile Chomsky's approach with psychological observations made by adherents of the Language Acquisition approach, if it is confirmed by researches combining the use of NVCDs, psychometric methods and the use of Neural Networks. This paper thus suggests that a research group oriented towards this problematic should be organized.

  14. Neural network processing of natural language: II. Towards a unified model of corticostriatal function in learning sentence comprehension and non-linguistic sequencing.

    Science.gov (United States)

    Dominey, Peter Ford; Inui, Toshio; Hoen, Michel

    2009-01-01

    A central issue in cognitive neuroscience today concerns how distributed neural networks in the brain that are used in language learning and processing can be involved in non-linguistic cognitive sequence learning. This issue is informed by a wealth of functional neurophysiology studies of sentence comprehension, along with a number of recent studies that examined the brain processes involved in learning non-linguistic sequences, or artificial grammar learning (AGL). The current research attempts to reconcile these data with several current neurophysiologically based models of sentence processing, through the specification of a neural network model whose architecture is constrained by the known cortico-striato-thalamo-cortical (CSTC) neuroanatomy of the human language system. The challenge is to develop simulation models that take into account constraints both from neuranatomical connectivity, and from functional imaging data, and that can actually learn and perform the same kind of language and artificial syntax tasks. In our proposed model, structural cues encoded in a recurrent cortical network in BA47 activate a CSTC circuit to modulate the flow of lexical semantic information from BA45 to an integrated representation of meaning at the sentence level in BA44/6. During language acquisition, corticostriatal plasticity is employed to allow closed class structure to drive thematic role assignment. From the AGL perspective, repetitive internal structure in the AGL strings is encoded in BA47, and activates the CSTC circuit to predict the next element in the sequence. Simulation results from Caplan's [Caplan, D., Baker, C., & Dehaut, F. (1985). Syntactic determinants of sentence comprehension in aphasia. Cognition, 21, 117-175] test of syntactic comprehension, and from Gomez and Schvaneveldts' [Gomez, R. L., & Schvaneveldt, R. W. (1994). What is learned from artificial grammars?. Transfer tests of simple association. Journal of Experimental Psychology: Learning

  15. Family veto in organ donation in Canada: framing within English-language newspaper articles.

    Science.gov (United States)

    Anthony, Samantha J; Toews, Maeghan; Caulfield, Timothy; Wright, Linda

    2017-10-17

    Because organ transplantation relies on public support for donation, an analysis of public discourse around organ donation is essential. We investigated the portrayal of family veto - when a family overrides the deceased person's prior legally executed wishes to donate - in Canadian news media. Using the Canadian Newsstream database, we identified articles published in English-language newspapers addressing family veto between 2000 and 2016. Guided by the theoretical perspectives of framing of media effects, we conducted a systematic content analysis of the articles to examine how the Canadian media framed family veto. An initial in-depth analysis of the data set in which themes and patterns were captured and recorded identified coding categories, including primary framing of family veto, prevalence, reasons, ethical or legal concerns and overall tone of the article. Two coders analyzed the data set to ensure intercoder reliability. A total of 133 relevant articles were identified. Family veto was framed predominantly as something that should not be allowed (81 articles [60.9%]) and as a reality that is little understood outside the transplantation community (45 [33.8%]). One-quarter of the articles (32 [24.1%]) highlighted ethical principles of autonomy and justice associated with family veto. Family veto was represented as a stumbling block in the present organ donation system, with most publications (107 [80.4%]) calling for change. There were differing interpretations of organ donation legislation, with 82 articles (61.6%) erroneously stating or suggesting that existing legislation permits family veto. Family veto in organ donation was portrayed predominantly negatively. Many publications reflected a misunderstanding of the law concerning this issue. Although the framing of family veto highlighted important ethical and legal concerns as well as practice and policy considerations, research is needed to enhance the understanding of family veto in organ donation

  16. Organization of the sleep-related neural systems in the brain of the minke whale (Balaenoptera acutorostrata).

    Science.gov (United States)

    Dell, Leigh-Anne; Karlsson, Karl Ae; Patzke, Nina; Spocter, Muhammad A; Siegel, Jerome M; Manger, Paul R

    2016-07-01

    The current study analyzed the nuclear organization of the neural systems related to the control and regulation of sleep and wake in the basal forebrain, diencephalon, midbrain, and pons of the minke whale, a mysticete cetacean. While odontocete cetaceans sleep in an unusual manner, with unihemispheric slow wave sleep (USWS) and suppressed REM sleep, it is unclear whether the mysticete whales show a similar sleep pattern. Previously, we detailed a range of features in the odontocete brain that appear to be related to odontocete-type sleep, and here present our analysis of these features in the minke whale brain. All neural elements involved in sleep regulation and control found in bihemispheric sleeping mammals and the harbor porpoise were present in the minke whale, with no specific nuclei being absent, and no novel nuclei being present. This qualitative similarity relates to the cholinergic, noradrenergic, serotonergic and orexinergic systems, and the GABAergic elements of these nuclei. Quantitative analysis revealed that the numbers of pontine cholinergic (274,242) and noradrenergic (203,686) neurons, and hypothalamic orexinergic neurons (277,604), are markedly higher than other large-brained bihemispheric sleeping mammals. Small telencephalic commissures (anterior, corpus callosum, and hippocampal), an enlarged posterior commissure, supernumerary pontine cholinergic and noradrenergic cells, and an enlarged peripheral division of the dorsal raphe nuclear complex of the minke whale, all indicate that the suite of neural characteristics thought to be involved in the control of USWS and the suppression of REM in the odontocete cetaceans are present in the minke whale. J. Comp. Neurol. 524:2018-2035, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  17. Object segmentation and reconstruction via an oscillatory neural network: interaction among learning, memory, topological organization and gamma-band synchronization.

    Science.gov (United States)

    Magosso, E; Cuppini, C; Ursino, M

    2006-01-01

    Synchronization of neuronal activity in the gamma-band has been shown to play an important role in higher cognitive functions, by grouping together the necessary information in different cortical areas to achieve a coherent perception. In the present work, we used a neural network of Wilson-Cowan oscillators to analyze the problem of binding and segmentation of high-level objects. Binding is achieved by implementing in the network the similarity and prior knowledge Gestalt rules. Similarity law is realized via topological maps within the network. Prior knowledge originates by means of a Hebbian rule of synaptic change; objects are memorized in the network with different strengths. Segmentation is realized via a global inhibitor which allows desynchronisation among multiple objects avoiding interference. Simulation results performed with a 40x40 neural grid, using three simultaneous input objects, show that the network is able to recognize and segment objects in several different conditions (different degrees of incompleteness or distortion of input patterns), exhibiting the higher reconstruction performances the higher the strength of object memory. The presented model represents an integrated approach for investigating the relationships among learning, memory, topological organization and gamma-band synchronization.

  18. Documentary languages and knowledge organization systems in the context of the semantic web

    Directory of Open Access Journals (Sweden)

    Marilda Lopes Ginez de Lara

    Full Text Available The aim of this study was to discuss the need for formal documentary languages as a condition for it to function in the Semantic Web. Based on a bibliographic review, Linked Open Data is presented as an initial condition for the operationalization of the Semantic Web, similar to the movement of Linked Open Vocabularies that aimed to promote interoperability among vocabularies. We highlight the Simple Knowledge Organization System format by analyzing its main characteristics and presenting the new standard ISO 25964-1/2:2011/2012 -Thesauri and interoperability with other vocabularies, that revises previous recommendations, adding requirements for the interoperability and mapping of vocabularies. We discuss conceptual problems in the formalization of vocabularies and the need to invest critically in its operationalization, suggesting alternatives to harness the mapping of vocabularies.

  19. The organization of domains in proteins obeys Menzerath-Altmann's law of language.

    Science.gov (United States)

    Shahzad, Khuram; Mittenthal, Jay E; Caetano-Anollés, Gustavo

    2015-08-11

    The combination of domains in multidomain proteins enhances their function and structure but lengthens the molecules and increases their cost at cellular level. The dependence of domain length on the number of domains a protein holds was surveyed for a set of 60 proteomes representing free-living organisms from all kingdoms of life. Distributions were fitted using non-linear functions and fitted parameters interpreted with a formulation of decreasing returns. We find that domain length decreases with increasing number of domains in proteins, following the Menzerath-Altmann (MA) law of language. Highly significant negative correlations exist for the set of proteomes examined. Mathematically, the MA law expresses as a power law relationship that unfolds when molecular persistence P is a function of domain accretion. P holds two terms, one reflecting the matter-energy cost of adding domains and extending their length, the other reflecting how domain length and number impinges on information and biophysics. The pattern of diminishing returns can therefore be explained as a frustrated interplay between the strategies of economy, flexibility and robustness, matching previously observed trade-offs in the domain makeup of proteomes. Proteomes of Archaea, Fungi and to a lesser degree Plants show the largest push towards molecular economy, each at their own economic stratum. Fungi increase domain size in single domain proteins while reinforcing the pattern of diminishing returns. In contrast, Metazoa, and to lesser degrees Protista and Bacteria, relax economy. Metazoa achieves maximum flexibility and robustness by harboring compact molecules and complex domain organization, offering a new functional vocabulary for molecular biology. The tendency of parts to decrease their size when systems enlarge is universal for language and music, and now for parts of macromolecules, extending the MA law to natural systems.

  20. Building Neural Net Software

    OpenAIRE

    Neto, João Pedro; Costa, José Félix

    1999-01-01

    In a recent paper [Neto et al. 97] we showed that programming languages can be translated on recurrent (analog, rational weighted) neural nets. The goal was not efficiency but simplicity. Indeed we used a number-theoretic approach to machine programming, where (integer) numbers were coded in a unary fashion, introducing a exponential slow down in the computations, with respect to a two-symbol tape Turing machine. Implementation of programming languages in neural nets turns to be not only theo...

  1. Self-organized Evaluation of Dynamic Hand Gestures for Sign Language Recognition

    Science.gov (United States)

    Buciu, Ioan; Pitas, Ioannis

    Two main theories exist with respect to face encoding and representation in the human visual system (HVS). The first one refers to the dense (holistic) representation of the face, where faces have "holon"-like appearance. The second one claims that a more appropriate face representation is given by a sparse code, where only a small fraction of the neural cells corresponding to face encoding is activated. Theoretical and experimental evidence suggest that the HVS performs face analysis (encoding, storing, face recognition, facial expression recognition) in a structured and hierarchical way, where both representations have their own contribution and goal. According to neuropsychological experiments, it seems that encoding for face recognition, relies on holistic image representation, while a sparse image representation is used for facial expression analysis and classification. From the computer vision perspective, the techniques developed for automatic face and facial expression recognition fall into the same two representation types. Like in Neuroscience, the techniques which perform better for face recognition yield a holistic image representation, while those techniques suitable for facial expression recognition use a sparse or local image representation. The proposed mathematical models of image formation and encoding try to simulate the efficient storing, organization and coding of data in the human cortex. This is equivalent with embedding constraints in the model design regarding dimensionality reduction, redundant information minimization, mutual information minimization, non-negativity constraints, class information, etc. The presented techniques are applied as a feature extraction step followed by a classification method, which also heavily influences the recognition results.

  2. Analysis of short single rest/activation epoch fMRI by self-organizing map neural network

    Science.gov (United States)

    Erberich, Stephan G.; Dietrich, Thomas; Kemeny, Stefan; Krings, Timo; Willmes, Klaus; Thron, Armin; Oberschelp, Walter

    2000-04-01

    Functional magnet resonance imaging (fMRI) has become a standard non invasive brain imaging technique delivering high spatial resolution. Brain activation is determined by magnetic susceptibility of the blood oxygen level (BOLD effect) during an activation task, e.g. motor, auditory and visual tasks. Usually box-car paradigms have 2 - 4 rest/activation epochs with at least an overall of 50 volumes per scan in the time domain. Statistical test based analysis methods need a large amount of repetitively acquired brain volumes to gain statistical power, like Student's t-test. The introduced technique based on a self-organizing neural network (SOM) makes use of the intrinsic features of the condition change between rest and activation epoch and demonstrated to differentiate between the conditions with less time points having only one rest and one activation epoch. The method reduces scan and analysis time and the probability of possible motion artifacts from the relaxation of the patients head. Functional magnet resonance imaging (fMRI) of patients for pre-surgical evaluation and volunteers were acquired with motor (hand clenching and finger tapping), sensory (ice application), auditory (phonological and semantic word recognition task) and visual paradigms (mental rotation). For imaging we used different BOLD contrast sensitive Gradient Echo Planar Imaging (GE-EPI) single-shot pulse sequences (TR 2000 and 4000, 64 X 64 and 128 X 128, 15 - 40 slices) on a Philips Gyroscan NT 1.5 Tesla MR imager. All paradigms were RARARA (R equals rest, A equals activation) with an epoch width of 11 time points each. We used the self-organizing neural network implementation described by T. Kohonen with a 4 X 2 2D neuron map. The presented time course vectors were clustered by similar features in the 2D neuron map. Three neural networks were trained and used for labeling with the time course vectors of one, two and all three on/off epochs. The results were also compared by using a

  3. The New Approaches to Organization of Students' Individual Work in Foreign Language Learning in Ukraine and Abroad

    Science.gov (United States)

    Lysak, Halyna; Martynyuk, Olena

    2017-01-01

    Different approaches to organization of students' individual work using information technologies in Ukraine and abroad have been presented in the paper. The authors have analyzed the concept and role of students' individual work in the language learning process. It has been revealed that students' individual work is a rather flexible process and…

  4. Native experience with a tone language enhances pitch discrimination and the timing of neural responses to pitch change.

    Science.gov (United States)

    Giuliano, Ryan J; Pfordresher, Peter Q; Stanley, Emily M; Narayana, Shalini; Wicha, Nicole Y Y

    2011-01-01

    Native tone language experience has been linked with alterations in the production and perception of pitch in language, as well as with the brain response to linguistic and non-linguistic tones. Here we use two experiments to address whether these changes apply to the discrimination of simple pitch changes and pitch intervals. Event related potentials (ERPs) were recorded from native Mandarin speakers and a control group during a same/different task with pairs of pure tones differing only in pitch height, and with pure tone pairs differing only in interval distance. Behaviorally, Mandarin speakers were more accurate than controls at detecting both pitch and interval changes, showing a sensitivity to small pitch changes and interval distances that was absent in the control group. Converging evidence from ERPs obtained during the same tasks revealed an earlier response to change relative to no-change trials in Mandarin speakers, as well as earlier differentiation of trials by change direction relative to controls. These findings illustrate the cross-domain influence of language experience on the perception of pitch, suggesting that the native use of tonal pitch contours in language leads to a general enhancement in the acuity of pitch representations.

  5. Interfaces, syntactic movement, and neural activation: A new perspective on the implementation of language in the brain

    DEFF Research Database (Denmark)

    Christensen, Ken Ramshøj

    2008-01-01

    Studies of language deficits as well as neuroimaging studies indicate that syntactic processing of displaced constituents is implemented in the brain as a distributed cortical network of modules. The data from the present fMRI study on two types of syntactic movement in Danish offers further supp...

  6. Symbolic processing in neural networks

    OpenAIRE

    Neto, João Pedro; Hava T Siegelmann; Costa,J.Félix

    2003-01-01

    In this paper we show that programming languages can be translated into recurrent (analog, rational weighted) neural nets. Implementation of programming languages in neural nets turns to be not only theoretical exciting, but has also some practical implications in the recent efforts to merge symbolic and sub symbolic computation. To be of some use, it should be carried in a context of bounded resources. Herein, we show how to use resource bounds to speed up computations over neural nets, thro...

  7. AN EMBRYONIC CHICK PANCREAS ORGAN CULTURE MODEL: CHARACTERIZATION AND NEURAL CONTROL OF EXOCRINE RELEASE

    Science.gov (United States)

    An embryonic chick (Gallus domesticus) whole-organ pancreas culture system was developed for use as an in vitro model to study cholinergic regulation of exocrine pancreatic function. The culture system was examined for characteristic exocrine function and viability by measuring e...

  8. Organization of the sleep-related neural systems in the brain of the harbour porpoise (Phocoena phocoena).

    Science.gov (United States)

    Dell, Leigh-Anne; Patzke, Nina; Spocter, Muhammad A; Siegel, Jerome M; Manger, Paul R

    2016-07-01

    The present study provides the first systematic immunohistochemical neuroanatomical investigation of the systems involved in the control and regulation of sleep in an odontocete cetacean, the harbor porpoise (Phocoena phocoena). The odontocete cetaceans show an unusual form of mammalian sleep, with unihemispheric slow waves, suppressed REM sleep, and continuous bodily movement. All the neural elements involved in sleep regulation and control found in bihemispheric sleeping mammals were present in the harbor porpoise, with no specific nuclei being absent, and no novel nuclei being present. This qualitative similarity of nuclear organization relates to the cholinergic, noradrenergic, serotonergic, and orexinergic systems and is extended to the γ-aminobutyric acid (GABA)ergic elements involved with these nuclei. Quantitative analysis of the cholinergic and noradrenergic nuclei of the pontine region revealed that in comparison with other mammals, the numbers of pontine cholinergic (126,776) and noradrenergic (122,878) neurons are markedly higher than in other large-brained bihemispheric sleeping mammals. The diminutive telencephalic commissures (anterior commissure, corpus callosum, and hippocampal commissure) along with an enlarged posterior commissure and supernumerary pontine cholinergic and noradrenergic neurons indicate that the control of unihemispheric slow-wave sleep is likely to be a function of interpontine competition, facilitated through the posterior commissure, in response to unilateral telencephalic input related to the drive for sleep. In addition, an expanded peripheral division of the dorsal raphe nuclear complex appears likely to play a role in the suppression of REM sleep in odontocete cetaceans. Thus, the current study provides several clues to the understanding of the neural control of the unusual sleep phenomenology present in odontocete cetaceans. J. Comp. Neurol. 524:1999-2017, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals

  9. Neural evidence for phonologically based language production deficits in older adults: An fMRI investigation of age-related differences in picture-word interference.

    Science.gov (United States)

    Rizio, Avery A; Moyer, Karlee J; Diaz, Michele T

    2017-04-01

    Older adults often show declines in phonological aspects of language production, particularly for low-frequency words, but maintain strong semantic systems. However, there are different theories about the mechanism that may underlie such age-related differences in language (e.g., age-related declines in transmission of activation or inhibition). This study used fMRI to investigate whether age-related differences in language production are associated with transmission deficits or inhibition deficits. We used the picture-word interference paradigm to examine age-related differences in picture naming as a function of both target frequency and the relationship between the target picture and distractor word. We found that the presence of a categorically related distractor led to greater semantic elaboration by older adults compared to younger adults, as evidenced by older adults' increased recruitment of regions including the left middle frontal gyrus and bilateral precuneus. When presented with a phonologically related distractor, patterns of neural activation are consistent with previously observed age deficits in phonological processing, including age-related reductions in the recruitment of regions such as the left middle temporal gyrus and right supramarginal gyrus. Lastly, older, but not younger, adults show increased brain activation of the pre- and postcentral gyri as a function of decreasing target frequency when target pictures are paired with a phonological distractor, suggesting that cuing the phonology of the target disproportionately aids production of low-frequency items. Overall, this pattern of results is generally consistent with the transmission deficit hypothesis, illustrating that links within the phonological system, but not the semantic system, are weakened with age.

  10. ORGANIZATION AND CONTROL OF OUT-OF-CLASS STUDENTS’ SELF STUDY ACTIVITY IN LEARNING A FOREIGN LANGUAGE

    Directory of Open Access Journals (Sweden)

    Natalia Vladimirovna Malova

    2015-08-01

    Full Text Available Purpose. The new Federal State Educational Standard for Higher Professional Education demands the increase of out-of-class students’ self-study activity. The paper describes a pedagogical experiment aimed at optimization of self-study activities of students who are learning a foreign language at nonlinguistic faculties. The experiment was based on development and implementation of criteria-referenced testing for mastering vocabulary within the framework of extra curriculum activities. The proposed tests were graded into three levels (elementary, pre-intermediate, intermediate as relevant to the language level of the students. The experiment was carried out at the Foreign Language Department of Samara State Institute of Culture.Methodology. The experiment was based on the use of the following methods: questioning, interviewing, observation, statistic data processing.Results. The experiment proved that the out-of-class self-study activities of students learning a foreign language can be effectively organized and controlled by means of criteria-referenced testing. The use of tests showed a significant decrease (by 75% of the time spent by teachers on checking the self-study assignments and a marked increase in the quality of the work done by the students.Practical implications. The results can be used at Foreign Language Departments for organization and monitoring the self-study activities of students of nonlinguistic specialties.

  11. Real-time processing of ASL signs: Delayed first language acquisition affects organization of the mental lexicon.

    Science.gov (United States)

    Lieberman, Amy M; Borovsky, Arielle; Hatrak, Marla; Mayberry, Rachel I

    2015-07-01

    Sign language comprehension requires visual attention to the linguistic signal and visual attention to referents in the surrounding world, whereas these processes are divided between the auditory and visual modalities for spoken language comprehension. Additionally, the age-onset of first language acquisition and the quality and quantity of linguistic input for deaf individuals is highly heterogeneous, which is rarely the case for hearing learners of spoken languages. Little is known about how these modality and developmental factors affect real-time lexical processing. In this study, we ask how these factors impact real-time recognition of American Sign Language (ASL) signs using a novel adaptation of the visual world paradigm in deaf adults who learned sign from birth (Experiment 1), and in deaf adults who were late-learners of ASL (Experiment 2). Results revealed that although both groups of signers demonstrated rapid, incremental processing of ASL signs, only native signers demonstrated early and robust activation of sublexical features of signs during real-time recognition. Our findings suggest that the organization of the mental lexicon into units of both form and meaning is a product of infant language learning and not the sensory and motor modality through which the linguistic signal is sent and received. (c) 2015 APA, all rights reserved.

  12. When first language is not first: an functional magnetic resonance imaging investigation of the neural basis of diglossia in Arabic.

    Science.gov (United States)

    Nevat, Michael; Khateb, Asaid; Prior, Anat

    2014-11-01

    In Arabic, the language used for everyday conversation ('spoken Arabic' - SA) differs markedly from literary Arabic (LA), which is used for written communication and formal functions. This fact raises questions regarding the cognitive status of the two varieties and their processing in the brain. Previous studies using auditory stimuli suggested that LA is processed by Arabic native speakers as a second language. The current study examined this issue in the visual modality. Functional magnetic resonance imaging (fMRI) responses were collected while Arabic-Hebrew bilinguals performed a semantic categorization task on visually presented words in LA, SA and Hebrew. Performance on LA was better than SA and Hebrew, which did not differ from each other. Activation in SA was stronger than in LA in left inferior frontal, precentral, parietal and occipito-temporal regions, and stronger than in Hebrew in left precentral and parietal regions. Activation in SA was also less lateralized than activation for LA and Hebrew, which did not differ from each other in terms of lateralization, though activation for Hebrew was more extensive in both hemispheres than activation for LA. Altogether, these results indicate an advantage for LA in the current study, presumably due to participants' proficiency in reading in this language. Stronger activation for SA appears to be due to the relative unfamiliarity of written word forms in SA, which could also explain differences in performance between the two languages. However, the stronger activation observed in the left parietal cortex may also reflect stronger associations among words in SA. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. The New Approaches to Organization of Students’ Individual Work in Foreign Language Learning in Ukraine and Abroad

    Directory of Open Access Journals (Sweden)

    Lysak Halyna

    2017-03-01

    Full Text Available Different approaches to organization of students’ individual work using information technologies in Ukraine and abroad have been presented in the paper. The authors have analyzed the concept and role of students’ individual work in the language learning process. It has been revealed that students’ individual work is a rather flexible process and involves such activities as preparation for lectures, practical tasks, workshops, preparation for different types of control, solution of different complexity level problems in and out of class; work with various sources of information and writing essays, reports, summaries. It has been concluded that information technologies can be a powerful tool for everybody who wants to learn foreign languages through individual work and an efficient facility to enlarge students’ creative potential. The concept of “information technologies” in education has been analyzed and the advantages of using information technologies in organization of students’ individual work have been determined. Language practice at phono and video laboratories, the use of the Internet resources, special computer software and online courses, e-books, electronic encyclopedias and dictionaries have been analyzed as the most effective means to organize students’ individual work in the language learning process.

  14. Organic cation transporter-mediated ergothioneine uptake in mouse neural progenitor cells suppresses proliferation and promotes differentiation into neurons.

    Directory of Open Access Journals (Sweden)

    Takahiro Ishimoto

    Full Text Available The aim of the present study is to clarify the functional expression and physiological role in neural progenitor cells (NPCs of carnitine/organic cation transporter OCTN1/SLC22A4, which accepts the naturally occurring food-derived antioxidant ergothioneine (ERGO as a substrate in vivo. Real-time PCR analysis revealed that mRNA expression of OCTN1 was much higher than that of other organic cation transporters in mouse cultured cortical NPCs. Immunocytochemical analysis showed colocalization of OCTN1 with the NPC marker nestin in cultured NPCs and mouse embryonic carcinoma P19 cells differentiated into neural progenitor-like cells (P19-NPCs. These cells exhibited time-dependent [(3H]ERGO uptake. These results demonstrate that OCTN1 is functionally expressed in murine NPCs. Cultured NPCs and P19-NPCs formed neurospheres from clusters of proliferating cells in a culture time-dependent manner. Exposure of cultured NPCs to ERGO or other antioxidants (edaravone and ascorbic acid led to a significant decrease in the area of neurospheres with concomitant elimination of intracellular reactive oxygen species. Transfection of P19-NPCs with small interfering RNA for OCTN1 markedly promoted formation of neurospheres with a concomitant decrease of [(3H]ERGO uptake. On the other hand, exposure of cultured NPCs to ERGO markedly increased the number of cells immunoreactive for the neuronal marker βIII-tubulin, but decreased the number immunoreactive for the astroglial marker glial fibrillary acidic protein (GFAP, with concomitant up-regulation of neuronal differentiation activator gene Math1. Interestingly, edaravone and ascorbic acid did not affect such differentiation of NPCs, in contrast to the case of proliferation. Knockdown of OCTN1 increased the number of cells immunoreactive for GFAP, but decreased the number immunoreactive for βIII-tubulin, with concomitant down-regulation of Math1 in P19-NPCs. Thus, OCTN1-mediated uptake of ERGO in NPCs inhibits

  15. Validity and reliability on three European language versions of the Safety Organizing Scale.

    Science.gov (United States)

    Ausserhofer, Dietmar; Schubert, Maria; Blegen, Mary; De Geest, Sabina; Schwendimann, René

    2013-04-01

    The Safety Organizing Scale (SOS) offers a reliable snapshot of nurses' engagement in unit-level safety behaviors in hospitals. As no comparable questionnaire exists in German, French and Italian, we explored the psychometric properties of SOS translations into each of those languages. The psychometric properties of the nine-item SOS were tested according to American Educational Research Association guidelines. Between October 2009 and June 2010, 1633 registered medical and/or surgical nurses in 35 Swiss hospitals completed translated SOS questionnaires. For each translation, psychometric evaluation revealed evidence based on content (scale-content validity index >0.89), response patterns (e.g. average of missing values across all items = 0.80%), internal structure (e.g. comparative fit indices >0.90, root mean square error of approximation 0.79). We differentiated the scale regarding one related concept (implicit rationing of nursing care). Higher SOS scores correlated with supportive leadership and lower nurse-reported medication errors, but not with nurse-reported patient falls. The SOS offers a valuable measurement of engagement in safety practices that might influence patient outcomes. Initial evidence regarding the validity and reliability of the translated versions supports their use in German, French and Italian. Concurrent validity will require confirmation via further analysis using more reliable outcome measures (e.g. mortality rates). The translated versions' predictive validity needs to be established in prospective studies.

  16. Non parametric, self organizing, scalable modeling of spatiotemporal inputs: the sign language paradigm.

    Science.gov (United States)

    Caridakis, G; Karpouzis, K; Drosopoulos, A; Kollias, S

    2012-12-01

    Modeling and recognizing spatiotemporal, as opposed to static input, is a challenging task since it incorporates input dynamics as part of the problem. The vast majority of existing methods tackle the problem as an extension of the static counterpart, using dynamics, such as input derivatives, at feature level and adopting artificial intelligence and machine learning techniques originally designed for solving problems that do not specifically address the temporal aspect. The proposed approach deals with temporal and spatial aspects of the spatiotemporal domain in a discriminative as well as coupling manner. Self Organizing Maps (SOM) model the spatial aspect of the problem and Markov models its temporal counterpart. Incorporation of adjacency, both in training and classification, enhances the overall architecture with robustness and adaptability. The proposed scheme is validated both theoretically, through an error propagation study, and experimentally, on the recognition of individual signs, performed by different, native Greek Sign Language users. Results illustrate the architecture's superiority when compared to Hidden Markov Model techniques and variations both in terms of classification performance and computational cost. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Stable learning of functional maps in self-organizing spiking neural networks with continuous synaptic plasticity.

    Science.gov (United States)

    Srinivasa, Narayan; Jiang, Qin

    2013-01-01

    This study describes a spiking model that self-organizes for stable formation and maintenance of orientation and ocular dominance maps in the visual cortex (V1). This self-organization process simulates three development phases: an early experience-independent phase, a late experience-independent phase and a subsequent refinement phase during which experience acts to shape the map properties. The ocular dominance maps that emerge accommodate the two sets of monocular inputs that arise from the lateral geniculate nucleus (LGN) to layer 4 of V1. The orientation selectivity maps that emerge feature well-developed iso-orientation domains and fractures. During the last two phases of development the orientation preferences at some locations appear to rotate continuously through ±180° along circular paths and referred to as pinwheel-like patterns but without any corresponding point discontinuities in the orientation gradient maps. The formation of these functional maps is driven by balanced excitatory and inhibitory currents that are established via synaptic plasticity based on spike timing for both excitatory and inhibitory synapses. The stability and maintenance of the formed maps with continuous synaptic plasticity is enabled by homeostasis caused by inhibitory plasticity. However, a prolonged exposure to repeated stimuli does alter the formed maps over time due to plasticity. The results from this study suggest that continuous synaptic plasticity in both excitatory neurons and interneurons could play a critical role in the formation, stability, and maintenance of functional maps in the cortex.

  18. Distinct steps of neural induction revealed by Asterix, Obelix and TrkC, genes induced by different signals from the organizer.

    Directory of Open Access Journals (Sweden)

    Sonia Pinho

    2011-04-01

    Full Text Available The amniote organizer (Hensen's node can induce a complete nervous system when grafted into a peripheral region of a host embryo. Although BMP inhibition has been implicated in neural induction, non-neural cells cannot respond to BMP antagonists unless previously exposed to a node graft for at least 5 hours before BMP inhibitors. To define signals and responses during the first 5 hours of node signals, a differential screen was conducted. Here we describe three early response genes: two of them, Asterix and Obelix, encode previously undescribed proteins of unknown function but Obelix appears to be a nuclear RNA-binding protein. The third is TrkC, a neurotrophin receptor. All three genes are induced by a node graft within 4-5 hours but they differ in the extent to which they are inducible by FGF: FGF is both necessary and sufficient to induce Asterix, sufficient but not necessary to induce Obelix and neither sufficient nor necessary for induction of TrkC. These genes are also not induced by retinoic acid, Noggin, Chordin, Dkk1, Cerberus, HGF/SF, Somatostatin or ionomycin-mediated Calcium entry. Comparison of the expression and regulation of these genes with other early neural markers reveals three distinct "epochs", or temporal waves, of gene expression accompanying neural induction by a grafted organizer, which are mirrored by specific stages of normal neural plate development. The results are consistent with neural induction being a cascade of responses elicited by different signals, culminating in the formation of a patterned nervous system.

  19. Neural response in vestibular organ of Helix aspersa to centrifugation and re-adaptation to normal gravity.

    Science.gov (United States)

    Popova, Yekaterina; Boyle, Richard

    2015-07-01

    Gravity plays a key role in shaping the vestibular sensitivity (VS) of terrestrial organisms. We studied VS changes in the statocyst of the gastropod Helix aspersa immediately after 4-, 16-, and 32-day exposures to a 1.4G hypergravic field or following a 7-day recovery period. In the same animals we measured latencies of behavioral "negative gravitaxis" responses to a head-down pitch before and after centrifugation and found significant delays after 16- and 32-day runs. In an isolated neural preparation we recorded the electrophysiological responses of the statocyst nerve to static tilt (±19°) and sinusoids (±12°; 0.1 Hz). Spike sorting software was used to separate individual sensory cells' patterns out of a common trace. In correspondence with behavior we observed a VS decrease in animals after 16- (p < 0.05) and 32-day (p < 0.01) centrifugations. These findings reveal the capability of statoreceptors to adjust their sensitivity in response to a prolonged change in the force of gravity. Interestingly, background discharge rate increased after 16 and 32 days in hypergravity and continued to rise through the recovery period. This result indicates that adaptive mechanisms to novel gravity levels were long lasting, and re-adaptation from hypergravity is a more complex process than just "return to normal".

  20. Valence of Affective Verbal Fluency: fMRI Studies on Neural Organization of Emotional Concepts Joy and Fear.

    Science.gov (United States)

    Gawda, Barbara; Szepietowska, Ewa; Soluch, Pawel; Wolak, Tomasz

    2017-06-01

    The present study was designed to examine the underlying brain mechanisms of positive and negative emotional verbal fluency. Three verbal fluency tasks (one non-emotional phonemic task, two emotional tasks: Joy and Fear) were used in this study. The results were analyzed for 35 healthy, Polish-speaking, right-handed adults aged 20-35. Functional magnetic resonance imaging (3T) was used to show brain activity during active participation in emotional verbal fluency tasks. The results reported for emotional fluency confirmed activation of different brain regions for the negative and positive emotional verbal fluency: in positive emotional verbal fluency Joy elicits greater activation in the frontal regions and the cingulate cortex, while in negative verbal fluency Fear is reflected in activation of parietal and temporal areas. The study provides an evidence for differentiation in neural mechanisms between positive and negative emotional verbal fluency and/or positive and negative retrieving processes, and differentiation in brain-related determinants of the emotional concepts organization.

  1. Potentiation decay of synapses and length distributions of synfire chains self-organized in recurrent neural networks

    Science.gov (United States)

    Miller, Aaron; Jin, Dezhe Z.

    2013-12-01

    Synfire chains are thought to underlie precisely timed sequences of spikes observed in various brain regions and across species. How they are formed is not understood. Here we analyze self-organization of synfire chains through the spike-timing dependent plasticity (STDP) of the synapses, axon remodeling, and potentiation decay of synaptic weights in networks of neurons driven by noisy external inputs and subject to dominant feedback inhibition. Potentiation decay is the gradual, activity-independent reduction of synaptic weights over time. We show that potentiation decay enables a dynamic and statistically stable network connectivity when neurons spike spontaneously. Periodic stimulation of a subset of neurons leads to formation of synfire chains through a random recruitment process, which terminates when the chain connects to itself and forms a loop. We demonstrate that chain length distributions depend on the potentiation decay. Fast potentiation decay leads to long chains with wide distributions, while slow potentiation decay leads to short chains with narrow distributions. We suggest that the potentiation decay, which corresponds to the decay of early long-term potentiation of synapses, is an important synaptic plasticity rule in regulating formation of neural circuity through STDP.

  2. Organization of receptive language-specific cortex before and after left temporal lobectomy.

    Science.gov (United States)

    Pataraia, E; Billingsley-Marshall, R L; Castillo, E M; Breier, J I; Simos, P G; Sarkari, S; Fitzgerald, M; Clear, T; Papanicolaou, A C

    2005-02-08

    To examine brain activation associated with receptive language in patients with left temporal lobe epilepsy (TLE) before and after an anterior temporal lobectomy using magnetoencephalography (MEG), and to evaluate which patients were most likely to show a change in the lateralization and localization of the mechanisms supporting receptive language and if such changes were associated with neuropsychological function. Twelve patients with left TLE underwent preoperative Wada testing, and pre- and postoperative neuropsychological testing and MEG language mapping. The anatomic location of receptive language-related activity sources observed with MEG was determined by coregistering MEG data with structural MRI scans. Language laterality indices were calculated based on the number of reproducible activity sources in each hemisphere. The proximity of language-specific activity sources to Wernicke's area was also examined. Although the small sample size precluded formal statistical analyses, patients with atypical (bilateral) hemispheric dominance preoperatively were more likely than patients with typical (left-hemisphere) dominance to show evidence of increased right hemisphere participation in language functions after surgery. Patients with left hemispheric dominance preoperatively were more likely to show intrahemispheric changes involving a slight inferior shift of the putative location of Wernicke's area. Patients with bilateral representation tended to perform worse on neuropsychological test measures obtained both pre- and postoperatively. Interhemispheric functional reorganization of language-specific areas may occur in patients undergoing left anterior temporal lobectomy. Intrahemispheric reorganization may take place even when the resection does not directly impinge upon Wernicke's area.

  3. Lexical Organization in Deaf Children Who Use British Sign Language: Evidence from a Semantic Fluency Task

    Science.gov (United States)

    Marshall, Chloe R.; Rowley, Katherine; Mason, Kathryn; Herman, Rosalind; Morgan, Gary

    2013-01-01

    We adapted the semantic fluency task into British Sign Language (BSL). In Study 1, we present data from twenty-two deaf signers aged four to fifteen. We show that the same "cognitive signatures" that characterize this task in spoken languages are also present in deaf children, for example, the semantic clustering of responses. In Study…

  4. A WEARABLE NEURAL INTERFACE FOR REAL TIME TRANSLATION OF SPANISH DEAF SIGN LANGUAGE TO VOICE AND WRITING

    Directory of Open Access Journals (Sweden)

    H. Hidalgo-Silva

    2005-12-01

    Full Text Available This paper describes a work related to the design and implementation of a communication tool for persons withspeech and hearing disabilities. This tool provides to the user a Human-Computer interface capable of the captureand recognition of gestures belonging to the Mexican Spanish Sign Alphabet. To capture the manual expressions, adata-glove constructed to sense the position of fifteen articulations of one of the user’s hand is described. Alocation system that detects the position and movements of the hand with respect to the user’s body is alsoconstructed. The data-glove and location system signals are processed by a pair of programmable automatons. Theautomaton’s outputs are sent to a personal computer that realizes the gesture recognition and interpretation tasks.Artificial neural network techniques are utilized to implement the mappings of the space of information generatedby the instruments to the interpretation space, where the representation of the gestures are found. Once a gestureis captured and interpreted, it is presented in written form through a screen mounted in the clothes of the user,and in verbal form by a speaker.

  5. Why don't men understand women? Altered neural networks for reading the language of male and female eyes.

    Directory of Open Access Journals (Sweden)

    Boris Schiffer

    Full Text Available Men are traditionally thought to have more problems in understanding women compared to understanding other men, though evidence supporting this assumption remains sparse. Recently, it has been shown, however, that meńs problems in recognizing women's emotions could be linked to difficulties in extracting the relevant information from the eye region, which remain one of the richest sources of social information for the attribution of mental states to others. To determine possible differences in the neural correlates underlying emotion recognition from female, as compared to male eyes, a modified version of the Reading the Mind in the Eyes Test in combination with functional magnetic resonance imaging (fMRI was applied to a sample of 22 participants. We found that men actually had twice as many problems in recognizing emotions from female as compared to male eyes, and that these problems were particularly associated with a lack of activation in limbic regions of the brain (including the hippocampus and the rostral anterior cingulate cortex. Moreover, men revealed heightened activation of the right amygdala to male stimuli regardless of condition (sex vs. emotion recognition. Thus, our findings highlight the function of the amygdala in the affective component of theory of mind (ToM and in empathy, and provide further evidence that men are substantially less able to infer mental states expressed by women, which may be accompanied by sex-specific differences in amygdala activity.

  6. Neural reuse: a fundamental organizational principle of the brain.

    Science.gov (United States)

    Anderson, Michael L

    2010-08-01

    An emerging class of theories concerning the functional structure of the brain takes the reuse of neural circuitry for various cognitive purposes to be a central organizational principle. According to these theories, it is quite common for neural circuits established for one purpose to be exapted (exploited, recycled, redeployed) during evolution or normal development, and be put to different uses, often without losing their original functions. Neural reuse theories thus differ from the usual understanding of the role of neural plasticity (which is, after all, a kind of reuse) in brain organization along the following lines: According to neural reuse, circuits can continue to acquire new uses after an initial or original function is established; the acquisition of new uses need not involve unusual circumstances such as injury or loss of established function; and the acquisition of a new use need not involve (much) local change to circuit structure (e.g., it might involve only the establishment of functional connections to new neural partners). Thus, neural reuse theories offer a distinct perspective on several topics of general interest, such as: the evolution and development of the brain, including (for instance) the evolutionary-developmental pathway supporting primate tool use and human language; the degree of modularity in brain organization; the degree of localization of cognitive function; and the cortical parcellation problem and the prospects (and proper methods to employ) for function to structure mapping. The idea also has some practical implications in the areas of rehabilitative medicine and machine interface design.

  7. Age of acquisition effects on the functional organization of language in the adult brain.

    Science.gov (United States)

    Mayberry, Rachel I; Chen, Jen-Kai; Witcher, Pamela; Klein, Denise

    2011-10-01

    Using functional magnetic resonance imaging (fMRI), we neuroimaged deaf adults as they performed two linguistic tasks with sentences in American Sign Language, grammatical judgment and phonemic-hand judgment. Participants' age-onset of sign language acquisition ranged from birth to 14 years; length of sign language experience was substantial and did not vary in relation to age of acquisition. For both tasks, a more left lateralized pattern of activation was observed, with activity for grammatical judgment being more anterior than that observed for phonemic-hand judgment, which was more posterior by comparison. Age of acquisition was linearly and negatively related to activation levels in anterior language regions and positively related to activation levels in posterior visual regions for both tasks. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Thinking outside the Cortex: Social Motivation in the Evolution and Development of Language

    Science.gov (United States)

    Syal, Supriya; Finlay, Barbara L.

    2011-01-01

    Alteration of the organization of social and motivational neuroanatomical circuitry must have been an essential step in the evolution of human language. Development of vocal communication across species, particularly birdsong, and new research on the neural organization and evolution of social and motivational circuitry, together suggest that…

  9. Maternal occupational exposure to organic solvents during early pregnancy and risks of neural tube defects and orofacial clefts.

    Science.gov (United States)

    Desrosiers, Tania A; Lawson, Christina C; Meyer, Robert E; Richardson, David B; Daniels, Julie L; Waters, Martha A; van Wijngaarden, Edwin; Langlois, Peter H; Romitti, Paul A; Correa, Adolfo; Olshan, A

    2012-07-01

    Though toxicological experiments demonstrate the teratogenicity of organic solvents in animal models, epidemiologic studies have reported inconsistent results. Using data from the population-based National Birth Defects Prevention Study, the authors examined the relation between maternal occupational exposure to aromatic solvents, chlorinated solvents and Stoddard solvent during early pregnancy and neural tube defects (NTDs) and orofacial clefts (OFCs). Cases of NTDs (anencephaly, spina bifida and encephalocoele) and OFCs (cleft lip ± cleft palate and cleft palate alone) delivered between 1997 and 2002 were identified by birth defect surveillance registries in eight states; non-malformed control infants were selected using birth certificates or hospital records. Maternal solvent exposure was estimated by industrial hygienist review of self-reported occupational histories in combination with a literature-derived exposure database. ORs and 95% CIs for the association between solvent class and each birth defect group and component phenotype were estimated using multivariable logistic regression, adjusting for maternal age, race/ethnicity, education, pre-pregnancy body mass index, folic acid supplement use and smoking. The prevalence of exposure to any solvent among mothers of NTD cases (n = 511), OFC cases (n = 1163) and controls (n = 2977) was 13.1%, 9.6% and 8.2%, respectively. Exposure to chlorinated solvents was associated with increased odds of NTDs (OR = 1.96, CI 1.34 to 2.87), especially spina bifida (OR = 2.26, CI 1.44 to 3.53). No solvent class was strongly associated with OFCs in these data. The findings suggest that maternal occupational exposure to chlorinated solvents during early pregnancy is positively associated with the prevalence of NTDs in offspring.

  10. Self-Organizing Map Neural Network-Based Nearest Neighbor Position Estimation Scheme for Continuous Crystal PET Detectors

    Science.gov (United States)

    Wang, Yonggang; Li, Deng; Lu, Xiaoming; Cheng, Xinyi; Wang, Liwei

    2014-10-01

    Continuous crystal-based positron emission tomography (PET) detectors could be an ideal alternative for current high-resolution pixelated PET detectors if the issues of high performance γ interaction position estimation and its real-time implementation are solved. Unfortunately, existing position estimators are not very feasible for implementation on field-programmable gate array (FPGA). In this paper, we propose a new self-organizing map neural network-based nearest neighbor (SOM-NN) positioning scheme aiming not only at providing high performance, but also at being realistic for FPGA implementation. Benefitting from the SOM feature mapping mechanism, the large set of input reference events at each calibration position is approximated by a small set of prototypes, and the computation of the nearest neighbor searching for unknown events is largely reduced. Using our experimental data, the scheme was evaluated, optimized and compared with the smoothed k-NN method. The spatial resolutions of full-width-at-half-maximum (FWHM) of both methods averaged over the center axis of the detector were obtained as 1.87 ±0.17 mm and 1.92 ±0.09 mm, respectively. The test results show that the SOM-NN scheme has an equivalent positioning performance with the smoothed k-NN method, but the amount of computation is only about one-tenth of the smoothed k-NN method. In addition, the algorithm structure of the SOM-NN scheme is more feasible for implementation on FPGA. It has the potential to realize real-time position estimation on an FPGA with a high-event processing throughput.

  11. Neural Semantic Encoders.

    Science.gov (United States)

    Munkhdalai, Tsendsuren; Yu, Hong

    2017-04-01

    We present a memory augmented neural network for natural language understanding: Neural Semantic Encoders. NSE is equipped with a novel memory update rule and has a variable sized encoding memory that evolves over time and maintains the understanding of input sequences through read, compose and write operations. NSE can also access multiple and shared memories. In this paper, we demonstrated the effectiveness and the flexibility of NSE on five different natural language tasks: natural language inference, question answering, sentence classification, document sentiment analysis and machine translation where NSE achieved state-of-the-art performance when evaluated on publically available benchmarks. For example, our shared-memory model showed an encouraging result on neural machine translation, improving an attention-based baseline by approximately 1.0 BLEU.

  12. Cerebral and cerebellar language organization in a right-handed subject with a left temporal porencephalic cyst : An fMRI study

    NARCIS (Netherlands)

    De Coninck, Mattias; Van Hecke, Wim; Crols, Roe; van Dun, Kim; Van Dam, Debby; De Deyn, Peter P.; Brysbaert, Marc; Marien, Peter

    To test the hypothesis of crossed cerebro-cerebellar language dominance (Marien, Engelborghs, Fabbro, & De Deyn, 2001) in atypical populations, the pattern of cerebral and cerebellar language organization in a right-handed woman with a large porencephalic cyst in the left temporal lobe with no

  13. Context-sensitive neural responses to conflict resolution: electrophysiological evidence from subject-object ambiguities in language comprehension.

    Science.gov (United States)

    Schlesewsky, Matthias; Bornkessel, Ina

    2006-07-07

    Reanalysis in language comprehension provides a window on how superficially similar processes of conflict resolution may differ depending on the context in which they are initiated. Thus, previous ERP studies have shown that reanalyses towards object-initial orders in German sentences with dative-active verbs (e.g., folgen, 'to follow') engender N400 effects, while reanalyses with accusative verbs (e.g., besuchen, 'to visit') elicit P600 effects. This difference appears surprising since these two verb classes are both associated with a subject-initial base order. The present paper reports two ERP experiments designed to shed further light on the nature of the conflict resolution processes involved in each case by examining structures in which word order disambiguation is separated from verb class disambiguation. Experiment 1 contrasted dative-active verbs with accusative verbs, while Experiment 2 compared dative-active and dative object-experiencer verbs (which are associated with an object-initial base order). Our results show that the reanalysis pattern for dative-active constructions is context-dependent: when verb class disambiguation precedes word order disambiguation, an N400-P600 pattern results. By contrast, the reanalysis patterns for the other two verb types are context independent: object-experiencer verbs invariably show an N400 and accusative verbs invariably show a P600. We argue that (a) the N400 is a general marker of reanalysis in dative sentences, reflecting an argument reindexation, while (b) the P600 in accusative sentences reflects a structural recomputation. The variable pattern for dative-active sentences reflects the (in)applicability of "good-enough" representations during conflict resolution in garden path sentences.

  14. Organic Computing

    CERN Document Server

    Würtz, Rolf P

    2008-01-01

    Organic Computing is a research field emerging around the conviction that problems of organization in complex systems in computer science, telecommunications, neurobiology, molecular biology, ethology, and possibly even sociology can be tackled scientifically in a unified way. From the computer science point of view, the apparent ease in which living systems solve computationally difficult problems makes it inevitable to adopt strategies observed in nature for creating information processing machinery. In this book, the major ideas behind Organic Computing are delineated, together with a sparse sample of computational projects undertaken in this new field. Biological metaphors include evolution, neural networks, gene-regulatory networks, networks of brain modules, hormone system, insect swarms, and ant colonies. Applications are as diverse as system design, optimization, artificial growth, task allocation, clustering, routing, face recognition, and sign language understanding.

  15. Vectorized algorithms for spiking neural network simulation.

    Science.gov (United States)

    Brette, Romain; Goodman, Dan F M

    2011-06-01

    High-level languages (Matlab, Python) are popular in neuroscience because they are flexible and accelerate development. However, for simulating spiking neural networks, the cost of interpretation is a bottleneck. We describe a set of algorithms to simulate large spiking neural networks efficiently with high-level languages using vector-based operations. These algorithms constitute the core of Brian, a spiking neural network simulator written in the Python language. Vectorized simulation makes it possible to combine the flexibility of high-level languages with the computational efficiency usually associated with compiled languages.

  16. Neural overlap in processing music and speech

    Science.gov (United States)

    Peretz, Isabelle; Vuvan, Dominique; Lagrois, Marie-Élaine; Armony, Jorge L.

    2015-01-01

    Neural overlap in processing music and speech, as measured by the co-activation of brain regions in neuroimaging studies, may suggest that parts of the neural circuitries established for language may have been recycled during evolution for musicality, or vice versa that musicality served as a springboard for language emergence. Such a perspective has important implications for several topics of general interest besides evolutionary origins. For instance, neural overlap is an important premise for the possibility of music training to influence language acquisition and literacy. However, neural overlap in processing music and speech does not entail sharing neural circuitries. Neural separability between music and speech may occur in overlapping brain regions. In this paper, we review the evidence and outline the issues faced in interpreting such neural data, and argue that converging evidence from several methodologies is needed before neural overlap is taken as evidence of sharing. PMID:25646513

  17. ANT Advanced Neural Tool

    Energy Technology Data Exchange (ETDEWEB)

    Labrador, I.; Carrasco, R.; Martinez, L.

    1996-07-01

    This paper describes a practical introduction to the use of Artificial Neural Networks. Artificial Neural Nets are often used as an alternative to the traditional symbolic manipulation and first order logic used in Artificial Intelligence, due the high degree of difficulty to solve problems that can not be handled by programmers using algorithmic strategies. As a particular case of Neural Net a Multilayer Perception developed by programming in C language on OS9 real time operating system is presented. A detailed description about the program structure and practical use are included. Finally, several application examples that have been treated with the tool are presented, and some suggestions about hardware implementations. (Author) 15 refs.

  18. Le Rapport langue-culture dans les organisations internationales: Pour Une Sociologie des organisations internationales (The Relationship between Language and Culture in International Organizations: Toward a Sociology of International Organizations).

    Science.gov (United States)

    Jastrab de Saint Robert, de Marie-Josee

    1988-01-01

    Understanding the work of international organizations requires an understanding of the relationship between language and culture, a relationship evident in the activities of the international organizations. This relationship is partly responsible for the negative image of such organizations. Research in the sociology of international organizations…

  19. Shroom3 functions downstream of planar cell polarity to regulate myosin II distribution and cellular organization during neural tube closure

    Directory of Open Access Journals (Sweden)

    Erica M. McGreevy

    2015-01-01

    Full Text Available Neural tube closure is a critical developmental event that relies on actomyosin contractility to facilitate specific processes such as apical constriction, tissue bending, and directional cell rearrangements. These complicated processes require the coordinated activities of Rho-Kinase (Rock, to regulate cytoskeletal dynamics and actomyosin contractility, and the Planar Cell Polarity (PCP pathway, to direct the polarized cellular behaviors that drive convergent extension (CE movements. Here we investigate the role of Shroom3 as a direct linker between PCP and actomyosin contractility during mouse neural tube morphogenesis. In embryos, simultaneous depletion of Shroom3 and the PCP components Vangl2 or Wnt5a results in an increased liability to NTDs and CE failure. We further show that these pathways intersect at Dishevelled, as Shroom3 and Dishevelled 2 co-distribute and form a physical complex in cells. We observed that multiple components of the Shroom3 pathway are planar polarized along mediolateral cell junctions in the neural plate of E8.5 embryos in a Shroom3 and PCP-dependent manner. Finally, we demonstrate that Shroom3 mutant embryos exhibit defects in planar cell arrangement during neural tube closure, suggesting a role for Shroom3 activity in CE. These findings support a model in which the Shroom3 and PCP pathways interact to control CE and polarized bending of the neural plate and provide a clear illustration of the complex genetic basis of NTDs.

  20. [Self-organizing neural networks for automatic detection and classification of contrast (media) enhancement of lesions in dynamic MR-mammography].

    Science.gov (United States)

    Vomweg, T W; Teifke, A; Kauczor, H U; Achenbach, T; Rieker, O; Schreiber, W G; Heitmann, K R; Beier, T; Thelen, M

    2005-05-01

    Investigation and statistical evaluation of "Self-Organizing Maps," a special type of neural networks in the field of artificial intelligence, classifying contrast enhancing lesions in dynamic MR-mammography. 176 investigations with proven histology after core biopsy or operation were randomly divided into two groups. Several Self-Organizing Maps were trained by investigations of the first group to detect and classify contrast enhancing lesions in dynamic MR-mammography. Each single pixel's signal/time curve of all patients within the second group was analyzed by the Self-Organizing Maps. The likelihood of malignancy was visualized by color overlays on the MR-images. At last assessment of contrast-enhancing lesions by each different network was rated visually and evaluated statistically. A well balanced neural network achieved a sensitivity of 90.5 % and a specificity of 72.2 % in predicting malignancy of 88 enhancing lesions. Detailed analysis of false-positive results revealed that every second fibroadenoma showed a "typical malignant" signal/time curve without any chance to differentiate between fibroadenomas and malignant tissue regarding contrast enhancement alone; but this special group of lesions was represented by a well-defined area of the Self-Organizing Map. Self-Organizing Maps are capable of classifying a dynamic signal/time curve as "typical benign" or "typical malignant." Therefore, they can be used as second opinion. In view of the now known localization of fibroadenomas enhancing like malignant tumors at the Self-Organizing Map, these lesions could be passed to further analysis by additional post-processing elements (e.g., based on T2-weighted series or morphology analysis) in the future.

  1. A Proposal of 3-dimensional Self-organizing Memory and Its Application to Knowledge Extraction from Natural Language

    Science.gov (United States)

    Sakakibara, Kai; Hagiwara, Masafumi

    In this paper, we propose a 3-dimensional self-organizing memory and describe its application to knowledge extraction from natural language. First, the proposed system extracts a relation between words by JUMAN (morpheme analysis system) and KNP (syntax analysis system), and stores it in short-term memory. In the short-term memory, the relations are attenuated with the passage of processing. However, the relations with high frequency of appearance are stored in the long-term memory without attenuation. The relations in the long-term memory are placed to the proposed 3-dimensional self-organizing memory. We used a new learning algorithm called ``Potential Firing'' in the learning phase. In the recall phase, the proposed system recalls relational knowledge from the learned knowledge based on the input sentence. We used a new recall algorithm called ``Waterfall Recall'' in the recall phase. We added a function to respond to questions in natural language with ``yes/no'' in order to confirm the validity of proposed system by evaluating the quantity of correct answers.

  2. A self-organizing neural network for the traveling salesman problem that is competitive with simulated annealing.

    Science.gov (United States)

    Budinich, M

    1996-02-15

    Unsupervised learning applied to an unstructured neural network can give approximate solutions to the traveling salesman problem. For 50 cities in the plane this algorithm performs like the elastic net of Durbin and Willshaw (1987) and it improves when increasing the number of cities to get better than simulated annealing for problems with more than 500 cities. In all the tests this algorithm requires a fraction of the time taken by simulated annealing.

  3. Self-Organizing 3D Human Neural Tissue Derived from Induced Pluripotent Stem Cells Recapitulate Alzheimer's Disease Phenotypes.

    Directory of Open Access Journals (Sweden)

    Waseem K Raja

    Full Text Available The dismal success rate of clinical trials for Alzheimer's disease (AD motivates us to develop model systems of AD pathology that have higher predictive validity. The advent of induced pluripotent stem cells (iPSCs allows us to model pathology and study disease mechanisms directly in human neural cells from healthy individual as well as AD patients. However, two-dimensional culture systems do not recapitulate the complexity of neural tissue, and phenotypes such as extracellular protein aggregation are difficult to observe. We report brain organoids that use pluripotent stem cells derived from AD patients and recapitulate AD-like pathologies such as amyloid aggregation, hyperphosphorylated tau protein, and endosome abnormalities. These pathologies are observed in an age-dependent manner in organoids derived from multiple familial AD (fAD patients harboring amyloid precursor protein (APP duplication or presenilin1 (PSEN1 mutation, compared to controls. The incidence of AD pathology was consistent amongst several fAD lines, which carried different mutations. Although these are complex assemblies of neural tissue, they are also highly amenable to experimental manipulation. We find that treatment of patient-derived organoids with β- and γ-secretase inhibitors significantly reduces amyloid and tau pathology. Moreover, these results show the potential of this model system to greatly increase the translatability of pre-clinical drug discovery in AD.

  4. Language Philosophy in the context of knowledge organization in the interactive virtual platform

    Directory of Open Access Journals (Sweden)

    Luciana De Souza Gracioso

    2012-12-01

    Full Text Available Over the past years we have pursued epistemological paths that enabled us to reflect on the meaning of language as information, especially in the interactive virtual environments. The main objective of this investigation did not specifically aim at the identification or development of methodological tools, but rather the configuration of a theoretical discourse framework about the pragmatic epistemological possibilities of study and research in the Science of Information within the context of information actions in virtual technology. Thus, we present our thoughts and conjectures about the prerogatives and the obstacles encountered in that theoretical path, concluding with some communicative implications that are inherent to the meaning of information from its use, which in turn, configure the informational activities on the Internet with regard to the existing interactive platforms, better known as Web 2.0, or Pragmatic Web.

  5. From action to language: comparative perspectives on primate tool use, gesture and the evolution of human language

    Science.gov (United States)

    Steele, James; Ferrari, Pier Francesco; Fogassi, Leonardo

    2012-01-01

    The papers in this Special Issue examine tool use and manual gestures in primates as a window on the evolution of the human capacity for language. Neurophysiological research has supported the hypothesis of a close association between some aspects of human action organization and of language representation, in both phonology and semantics. Tool use provides an excellent experimental context to investigate analogies between action organization and linguistic syntax. Contributors report and contextualize experimental evidence from monkeys, great apes, humans and fossil hominins, and consider the nature and the extent of overlaps between the neural representations of tool use, manual gestures and linguistic processes. PMID:22106422

  6. Peer Acceptance of Children with Language and Communication Impairments in a Mainstream Primary School: Associations with Type of Language Difficulty, Problem Behaviours and a Change in Placement Organization

    Science.gov (United States)

    Laws, Glynis; Bates, Geraldine; Feuerstein, Maike; Mason-Apps, Emily; White, Catherine

    2012-01-01

    This research investigated peer acceptance of children with language and communication impairments attending a language resource base attached to a mainstream school. Compared to other children in their mainstream peer groups, peer acceptance was poor. Peer rejection was more common for children with profiles consistent with an autistic spectrum…

  7. Students' Interpretations of Mechanistic Language in Organic Chemistry before Learning Reactions

    Science.gov (United States)

    Galloway, Kelli R.; Stoyanovich, Carlee; Flynn, Alison B.

    2017-01-01

    Research on mechanistic thinking in organic chemistry has shown that students attribute little meaning to the electron-pushing (i.e., curved arrow) formalism. At the University of Ottawa, a new curriculum has been developed in which students are taught the electron-pushing formalism prior to instruction on specific reactions--this formalism is…

  8. Classroom Organization by Prior Performance Interactions as Predictors of Literacy and Language Achievement

    Science.gov (United States)

    Pilcher, Heather

    2016-01-01

    Teachers' interactions with children represent an important source of influence in children's learning and development. Classroom organization, or the way the teacher manages the physical and behavioral aspects of the classroom environment, is one way that teachers can provide needed support to students who might otherwise struggle to be…

  9. Artificial neural network based gynaecological image-guided adaptive brachytherapy treatment planning correction of intra-fractional organs at risk dose variation

    Directory of Open Access Journals (Sweden)

    Ramin Jaberi

    2017-12-01

    Full Text Available Purpose : Intra-fractional organs at risk (OARs deformations can lead to dose variation during image-guided adaptive brachytherapy (IGABT. The aim of this study was to modify the final accepted brachytherapy treatment plan to dosimetrically compensate for these intra-fractional organs-applicators position variations and, at the same time, fulfilling the dosimetric criteria. Material and methods : Thirty patients with locally advanced cervical cancer, after external beam radiotherapy (EBRT of 45-50 Gy over five to six weeks with concomitant weekly chemotherapy, and qualified for intracavitary high-dose-rate (HDR brachytherapy with tandem-ovoid applicators were selected for this study. Second computed tomography scan was done for each patient after finishing brachytherapy treatment with applicators in situ. Artificial neural networks (ANNs based models were used to predict intra-fractional OARs dose-volume histogram parameters variations and propose a new final plan. Results : A model was developed to estimate the intra-fractional organs dose variations during gynaecological intracavitary brachytherapy. Also, ANNs were used to modify the final brachytherapy treatment plan to compensate dosimetrically for changes in ‘organs-applicators’, while maintaining target dose at the original level. Conclusions : There are semi-automatic and fast responding models that can be used in the routine clinical workflow to reduce individually IGABT uncertainties. These models can be more validated by more patients’ plans to be able to serve as a clinical tool.

  10. USAGE OF SOCIAL SERVICES IN THE PROCESS OF ORGANIZATION OF COMMUNICATION FOR FOREIGN LANGUAGE TEACHERS

    Directory of Open Access Journals (Sweden)

    Myloslava M. Chernii

    2013-10-01

    Full Text Available Today especially urgent problem is communication and the development of communication skills of future teachers as well as communicative culture is the main structural component of his professionalism. Schools and classes, both conventional and virtual, must have teachers, armed with technology resources and skills, and able to effectively teach the subject using information and communication technologies. It all comes down to the fact that the modern teacher has to be aware of the latest technologies that can help him to organize trainings and communication. Therefore, a special role is given to the training of future teachers and vector of application of social services in the organization of communication in the learning process.

  11. Student''s linguistic personality and multicultural self-organization through foreign language teaching

    OpenAIRE

    E. Isaev

    2015-01-01

    The article traces the features of linguistic personality's formation in the context of globalization processes in the world. Multicultural self-organization is notable for students' ability to build up the dialogue of cultures in their professional occupation and considered to be a triune person's education, arising as the result of integration of cross-cultural linguistic personality's sphere, global attitude to foreign culture and cultural self-determination. The inclusion of the term "lin...

  12. Profile of the biodiesel B100 commercialized in the region of Londrina: application of artificial neural networks of the type self organizing maps

    Directory of Open Access Journals (Sweden)

    Vilson Machado de Campos Filho

    2015-10-01

    Full Text Available The 97 samples were grouped according to the year of analysis. For each year, letters from A to D were attributed, between 2010 and 2013; A (33 B (25 C (24 and D (15. The parameters of compliance previously analyzed are those established by the National Agency of Petroleum, Natural Gas and Biofuels (ANP, through resolution ANP 07/2008. The parameters analyzed were density, flash point, peroxide and acid value. The observed values were presented to Artificial Neural Network (ANN Self Organizing MAP (SOM in order to classify, by physical-chemical properties, each sample from year of production. The ANN was trained on different days and randomly divided samples into two groups, training and test set. It was found that SOM network differentiated samples by the year and the compliance parameters, allowing to identify that the density and the flash point were the most significant compliance parameters, so good for the distinction and classification of these samples.

  13. Cracking the neural code, treating paralysis and the future of bioelectronic medicine.

    Science.gov (United States)

    Bouton, C

    2017-07-01

    The human nervous system is a vast network carrying not only sensory and movement information, but also information to and from our organs, intimately linking it to our overall health. Scientists and engineers have been working for decades to tap into this network and 'crack the neural code' by decoding neural signals and learning how to 'speak' the language of the nervous system. Progress has been made in developing neural decoding methods to decipher brain activity and bioelectronic technologies to treat rheumatoid arthritis, paralysis, epilepsy and for diagnosing brain-related diseases such as Parkinson's and Alzheimer's disease. In a recent first-in-human study involving paralysis, a paralysed male study participant regained movement in his hand, years after his injury, through the use of a bioelectronic neural bypass. This work combined neural decoding and neurostimulation methods to translate and re-route signals around damaged neural pathways within the central nervous system. By extending these methods to decipher neural messages in the peripheral nervous system, status information from our bodily functions and specific organs could be gained. This, one day, could allow real-time diagnostics to be performed to give us a deeper insight into a patient's condition, or potentially even predict disease or allow early diagnosis. The future of bioelectronic medicine is extremely bright and is wide open as new diagnostic and treatment options are developed for patients around the world. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  14. Lexical-Semantic Organization in Bilingually Developing Deaf Children with ASL-Dominant Language Exposure: Evidence from a Repeated Meaning Association Task

    Science.gov (United States)

    Mann, Wolfgang; Sheng, Li; Morgan, Gary

    2016-01-01

    This study compared the lexical-semantic organization skills of bilingually developing deaf children in American Sign Language (ASL) and English with those of a monolingual hearing group. A repeated meaning-association paradigm was used to assess retrieval of semantic relations in deaf 6-10-year-olds exposed to ASL from birth by their deaf…

  15. Assessing Students' Use of Evidence and Organization in Response-to-Text Writing: Using Natural Language Processing for Rubric-Based Automated Scoring

    Science.gov (United States)

    Rahimi, Zahra; Litman, Diane; Correnti, Richard; Wang, Elaine; Matsumura, Lindsay Clare

    2017-01-01

    This paper presents an investigation of score prediction based on natural language processing for two targeted constructs within analytic text-based writing: 1) students' effective use of evidence and, 2) their organization of ideas and evidence in support of their claim. With the long-term goal of producing feedback for students and teachers, we…

  16. Real-Time Processing of ASL Signs: Delayed First Language Acquisition Affects Organization of the Mental Lexicon

    Science.gov (United States)

    Lieberman, Amy M.; Borovsky, Arielle; Hatrak, Marla; Mayberry, Rachel I.

    2015-01-01

    Sign language comprehension requires visual attention to the linguistic signal and visual attention to referents in the surrounding world, whereas these processes are divided between the auditory and visual modalities for spoken language comprehension. Additionally, the age-onset of first language acquisition and the quality and quantity of…

  17. French-language version of the World Health Organization quality of life spirituality, religiousness and personal beliefs instrument.

    Science.gov (United States)

    Mandhouj, Olfa; Etter, Jean-François; Courvoisier, Delphine; Aubin, Henri-Jean

    2012-04-19

    A valid assessment of spirituality and religiousness is necessary for clinical and research purposes. We developed and assessed the validity of a French-language version of the World Health Organization Quality of Life Spirituality, Religiousness and Personal Beliefs Instrument (WHOQOL-SRPB). The SRPB was translated into French according to the methods recommended by the WHOQOL group. An Internet survey was conducted in 561 people in 2010, with follow-up 2 weeks later (n = 231, 41%), to assess reliability, factor structure, social desirability bias and construct validity of this scale. Tests were performed based on item-response theory. A modal score of 1 (all answers="not at all") was observed for Faith (in 34% of participants), Connectedness (27%), and Spiritual Strength (14%). All scales had test-retest reliability coefficients ≥0.7. Cronbach's alpha coefficients were high for all subscales (0.74 to 0.98) and very high (>0.9) for three subscales (Connectedness, Spiritual Strength and Faith). Scores of Faith, Connectedness, Spiritual Strength and Meaning of Life were higher for respondents with religious practice than for those who had no religious practice. No association was found between SRPB and age or sex. The Awe subscale had a low information function for all levels of the Awe latent trait and may benefit from inclusion of an additional item. The French language version of the SRPB retained many properties of the original version. However, the SRPB could be improved by trimming redundant items. The strength of SRPB relies on its multinational development and validation, allowing for cross-cultural comparisons.

  18. French-language version of the World Health Organization quality of life spirituality, religiousness and personal beliefs instrument

    Directory of Open Access Journals (Sweden)

    Mandhouj Olfa

    2012-04-01

    Full Text Available Abstract Background A valid assessment of spirituality and religiousness is necessary for clinical and research purposes. We developed and assessed the validity of a French-language version of the World Health Organization Quality of Life Spirituality, Religiousness and Personal Beliefs Instrument (WHOQOL-SRPB. Methods The SRPB was translated into French according to the methods recommended by the WHOQOL group. An Internet survey was conducted in 561 people in 2010, with follow-up 2 weeks later (n = 231, 41%, to assess reliability, factor structure, social desirability bias and construct validity of this scale. Tests were performed based on item-response theory. Results A modal score of 1 (all answers=”not at all” was observed for Faith (in 34% of participants, Connectedness (27%, and Spiritual Strength (14%. All scales had test-retest reliability coefficients ≥0.7. Cronbach’s alpha coefficients were high for all subscales (0.74 to 0.98 and very high (>0.9 for three subscales (Connectedness, Spiritual Strength and Faith. Scores of Faith, Connectedness, Spiritual Strength and Meaning of Life were higher for respondents with religious practice than for those who had no religious practice. No association was found between SRPB and age or sex. The Awe subscale had a low information function for all levels of the Awe latent trait and may benefit from inclusion of an additional item. Conclusions The French language version of the SRPB retained many properties of the original version. However, the SRPB could be improved by trimming redundant items. The strength of SRPB relies on its multinational development and validation, allowing for cross-cultural comparisons.

  19. Noise-induced organized slow fluctuations in networks of neural areas with interarea feed-forward excitation and inhibition.

    Science.gov (United States)

    Lee, Dongmyeong; Kim, Seunghwan; Ko, Tae-Wook

    2014-06-01

    Slow coherent spontaneous fluctuations (feed-forward inhibition in addition to excitation between brain areas, which we assume to be in up (active) or down (quiescent) states, we propose a model for the generation and organization of the slow fluctuations. Connectivity with feed-forward excitation and inhibition between the areas makes the system have multiple stable states and organized slow fluctuations manifest as noise-induced slow transitions between the states. With various connectivities, we observe slow fluctuations and various organizations, including anticorrelated clusters, through numerical simulations.

  20. Structural and functional neural correlates of music perception.

    Science.gov (United States)

    Limb, Charles J

    2006-04-01

    This review article highlights state-of-the-art functional neuroimaging studies and demonstrates the novel use of music as a tool for the study of human auditory brain structure and function. Music is a unique auditory stimulus with properties that make it a compelling tool with which to study both human behavior and, more specifically, the neural elements involved in the processing of sound. Functional neuroimaging techniques represent a modern and powerful method of investigation into neural structure and functional correlates in the living organism. These methods have demonstrated a close relationship between the neural processing of music and language, both syntactically and semantically. Greater neural activity and increased volume of gray matter in Heschl's gyrus has been associated with musical aptitude. Activation of Broca's area, a region traditionally considered to subserve language, is important in interpreting whether a note is on or off key. The planum temporale shows asymmetries that are associated with the phenomenon of perfect pitch. Functional imaging studies have also demonstrated activation of primitive emotional centers such as ventral striatum, midbrain, amygdala, orbitofrontal cortex, and ventral medial prefrontal cortex in listeners of moving musical passages. In addition, studies of melody and rhythm perception have elucidated mechanisms of hemispheric specialization. These studies show the power of music and functional neuroimaging to provide singularly useful tools for the study of brain structure and function.

  1. Organização neural de diferentes tipos de medo e suas implicações na ansiedade Neural organization of different types of fear: implications for the understanding of anxiety

    Directory of Open Access Journals (Sweden)

    Marcus Lira Brandão

    2003-12-01

    espécie de interface comutando os estímulos para os substratos neurais apropriados para elaboração das respostas defensivas condicionadas ou incondicionadas.The dangerous stimuli may be potentially dangerous, distal or proximal and the recognition by the animals of each one of these conditions is determinant for the nature of the fear responses. In the present article a parallel with this particular process is drawn taking into account that different fear responses are generated by light, tones and contexts used as conditioned stimuli and by unconditioned stimulation of the dorsal periaqueductal gray (dPAG. In this review we summarize the efforts that have been made to characterize the neural circuits recruited in the organization of defensive reactions to the conditioned and unconditioned aversive stimulations, particularly evidence linking the brain's defense response systems to the concept of fear-stress-anxiety. The dPAG constitute the main neural substrates for the integration of aversive states in response to proximal aversive stimuli. In fact, panic-like behaviors often result when this structure is electrically or chemically stimulated. On the other hand, successful preparatory processes of danger-orientation and preparedness to flee seem to be linked to anxiety. The pre-frontal and cingulate cortex, median raphe nucleus, septum and hippocampus seem to be implicated in the elaboration and organization of these responses. As a working hypothesis, it is advanced that increasing the intensity and proximity of the danger may lead to an emotional shift. When the animals are submitted to this gradual increase in aversiveness there is a switch from the neural circuits responsible for the production of the orientated and organized motor patterns of appropriate defensive response to a conditioned stimulus towards the incomplete and uncoordinated defense responses related to panic attacks. The circuits in the amygdala and the medial hypothalamus responsible for the

  2. THE SEMANTIC ORGANIZATION STRUCTURE OF THE HYPERO-HYPONYMIC GROUP "NAMES OF REINDEER HERDERS" IN THE LANGUAGE OF THE ALUTOR KORYAKS

    Directory of Open Access Journals (Sweden)

    Sorokin, A.A.

    2017-03-01

    Full Text Available The article presents the analysis of the semantic structure of the names of reindeer herders in the language of one of the indigenous inhabitants of Kamchatka, i.e. the Alutor Koryaks. After the comparison of the characteristics of the nomadic reindeer herders group (the Chavchuvens with (semisettled reindeer herders group (the Alutors, distinctive features associated with the way of life of these groups have been revealed, which also finds its reflection in the language. The names of reindeer herders are accompanied by context, while the general table reflects the hierarchical organization of this hypero-hyponymic group.

  3. Elemental distribution in reproductive and neural organs of the Epilachna nylanderi (Coleoptera: Coccinellidae), a phytophage of nickel hyperaccumulator Berkheya coddii (Asterales: Asteraceae) by micro-PIXE.

    Science.gov (United States)

    Mesjasz-Przybyłowicz, Jolanta; Orłowska, Elżbieta; Augustyniak, Maria; Nakonieczny, Mirosław; Tarnawska, Monika; Przybyłowicz, Wojciech; Migula, Paweł

    2014-01-01

    The phenomenon of metal hyperaccumulation by plants is often explained by a pathogen or herbivore defense hypothesis. However, some insects feeding on metal hyperaccumulating plants are adapted to the high level of metals in plant tissues. Former studies on species that feed on the leaves of Berkheya coddii Roessler 1958 (Asteraceae), a nickel-hyperaccumulating plant, demonstrated several protective mechanisms involved in internal distribution, immobilization, and elimination of Ni from the midgut and Malpighian tubules. These species are mainly coleopterans, including the lady beetle, Epilachna nylanderi (Mulsant 1850) (Coleoptera: Coccinellidae), collected from the ultramafic ecosystem near Barberton in South Africa. By performing particle-induced X-ray emission microanalysis elemental microanalysis (PIXE), this study examined whether Ni may be harmful to internal body systems that decide on insect reactivity (central nervous system [CNS]), their reproduction, and the relationships between Ni and other micronutrients. Data on elemental distribution of nine selected elements in target organs of E. nylanderi were compared with the existing data for other insect species adapted to the excess of metals. Micro-PIXE maps of seven regions of the CNS showed Ni mainly in the neural connectives, while cerebral ganglia were better protected. Concentrations of other bivalent metals were lower than those of Ni. Testis, compared with other reproductive organs, showed low amounts of Ni. Zn was effectively regulated at physiological dietary levels. In insects exposed to excess dietary Zn, it was also accumulated in the reproductive organs. Comparison of E. nylanderii with other insects that ingest hyperaccumulating plants, especially chrysomelid Chrysolina clathrata (Clark) (Coleoptera: Chrysomelidae), showed lower protection of the CNS and reproductive organs. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  4. Analysis of brain fMRI time-series using HRF knowledge-based correlation classifier on unsupervised self-organizing neural network map

    Science.gov (United States)

    Erberich, Stephan G.; Bluml, Stefan; Nelson, Marvin D.

    2003-05-01

    Brain imaging and particular functional MRI (fMRI), which acquires brain volumes in time, reveals new understanding of the functional/structural relation in neuroscience. During fMRI imaging physiological state changes occur in the brain regions activated from the task paradigm which the subject performs in the scanner. These state changes can be depicted in the small veins of the activated region due to the blood oxygen level dependent (BOLD) effect. For each brain voxel in the fMRI experiment one accumulates a time series vector which has to be analyzed for similarity to the original task paradigm vector and its characteristic hemodynamic response function (HRF). Various analysis methods have been discussed for fMRI analysis, model-based statistical or unsupervised data-driven techniques. The purpose of this paper is to introduce a new method which combines two different approaches. We use an unsupervised self-organizing map (SOM) neural network to reduce the time series vector space by non-linear pattern recognition into a 2D table of representative time series wave-forms. Using a-priori knowledge of the HRF, either derived from a theoretical wave-form model or estimated from a brain region of interest (ROI), one can use correlation analysis between the time series patterns of the SOM table and the HRF to depict regions of activation specific to the HRF. An optional second SOM training with a reduce number of neurons of the best-matching time series to the HRF classification refines the second neural network pattern table. The learned time series pattern of each neuron and the corresponding brain voxels are superimposed onto the subject's brain image for visual investigation.

  5. Artificial neural networks environmental forecasting in comparison with multiple linear regression technique: From heavy metals to organic micropollutants screening in agricultural soils

    Science.gov (United States)

    Bonelli, Maria Grazia; Ferrini, Mauro; Manni, Andrea

    2016-12-01

    The assessment of metals and organic micropollutants contamination in agricultural soils is a difficult challenge due to the extensive area used to collect and analyze a very large number of samples. With Dioxins and dioxin-like PCBs measurement methods and subsequent the treatment of data, the European Community advises the develop low-cost and fast methods allowing routing analysis of a great number of samples, providing rapid measurement of these compounds in the environment, feeds and food. The aim of the present work has been to find a method suitable to describe the relations occurring between organic and inorganic contaminants and use the value of the latter in order to forecast the former. In practice, the use of a metal portable soil analyzer coupled with an efficient statistical procedure enables the required objective to be achieved. Compared to Multiple Linear Regression, the Artificial Neural Networks technique has shown to be an excellent forecasting method, though there is no linear correlation between the variables to be analyzed.

  6. Neural Oscillators Programming Simplified

    Directory of Open Access Journals (Sweden)

    Patrick McDowell

    2012-01-01

    Full Text Available The neurological mechanism used for generating rhythmic patterns for functions such as swallowing, walking, and chewing has been modeled computationally by the neural oscillator. It has been widely studied by biologists to model various aspects of organisms and by computer scientists and robotics engineers as a method for controlling and coordinating the gaits of walking robots. Although there has been significant study in this area, it is difficult to find basic guidelines for programming neural oscillators. In this paper, the authors approach neural oscillators from a programmer’s point of view, providing background and examples for developing neural oscillators to generate rhythmic patterns that can be used in biological modeling and robotics applications.

  7. Music and language: relations and disconnections.

    Science.gov (United States)

    Kraus, Nina; Slater, Jessica

    2015-01-01

    Music and language provide an important context in which to understand the human auditory system. While they perform distinct and complementary communicative functions, music and language are both rooted in the human desire to connect with others. Since sensory function is ultimately shaped by what is biologically important to the organism, the human urge to communicate has been a powerful driving force in both the evolution of auditory function and the ways in which it can be changed by experience within an individual lifetime. This chapter emphasizes the highly interactive nature of the auditory system as well as the depth of its integration with other sensory and cognitive systems. From the origins of music and language to the effects of auditory expertise on the neural encoding of sound, we consider key themes in auditory processing, learning, and plasticity. We emphasize the unique role of the auditory system as the temporal processing "expert" in the brain, and explore relationships between communication and cognition. We demonstrate how experience with music and language can have a significant impact on underlying neural function, and that auditory expertise strengthens some of the very same aspects of sound encoding that are deficient in impaired populations. © 2015 Elsevier B.V. All rights reserved.

  8. Neural Correlates of Task-Irrelevant First and Second Language Emotion Words — Evidence from the Face-Word Stroop Task

    Directory of Open Access Journals (Sweden)

    Lin Fan

    2016-11-01

    Full Text Available Emotionally valenced words have thus far not been empirically examined in a bilingual population with the emotional face-word Stroop paradigm. Chinese-English bilinguals were asked to identify the facial expressions of emotion with their first (L1 or second (L2 language task-irrelevant emotion words superimposed on the face pictures. We attempted to examine how the emotional content of words modulates behavioral performance and cerebral functioning in the bilinguals’ two languages. The results indicated that there were significant congruency effects for both L1 and L2 emotion words, and that identifiable differences in the magnitude of Stroop effect between the two languages were also observed, suggesting L1 is more capable of activating the emotional response to word stimuli. For event-related potentials (ERPs data, an N350-550 effect was observed only in L1 task with greater negativity for incongruent than congruent trials. The size of N350-550 effect differed across languages, whereas no identifiable language distinction was observed in the effect of conflict slow potential (conflict SP. Finally, more pronounced negative amplitude at 230-330 ms was observed in L1 than in L2, but only for incongruent trials. This negativity, likened to an orthographic decoding N250, may reflect the extent of attention to emotion word processing at word-form level, while N350-550 reflects a complicated set of processes in the conflict processing. Overall, the face-word congruency effect has reflected identifiable language distinction at 230-330 and 350-550 ms, which provides supporting evidence for the theoretical proposals assuming attenuated emotionality of L2 processing.

  9. Neural Plasticity in Speech Acquisition and Learning

    Science.gov (United States)

    Zhang, Yang; Wang, Yue

    2007-01-01

    Neural plasticity in speech acquisition and learning is concerned with the timeline trajectory and the mechanisms of experience-driven changes in the neural circuits that support or disrupt linguistic function. In this selective review, we discuss the role of phonetic learning in language acquisition, the "critical period" of learning, the agents…

  10. De la base cerebrale du fonctionnement phonique d'une langue (On the Neural Basis of Language at the Phonic Level). Publication B-189.

    Science.gov (United States)

    Martin, Pierre

    Current research on the contributions of neurobiology to the understanding of language, and more specifically of phonics, is reviewed. After an introductory section, the second section provides a brief historic perspective on neurolinguistic research, beginning in the early nineteenth century. The third section focuses on what is known about the…

  11. "Feeling good in your own skin" part II: Idiomatic expressions--the way language connects to the primary levels of mental organization.

    Science.gov (United States)

    Raufman, Ravit; Yigael, Yoav

    2011-03-01

    After describing the role of sensations in the primary levels of mental organization, this part of the article suggests viewing somatic idioms as the language's way to connect with these levels. We seek to exemplify the qualities, meanings and functioning of idioms, since they serve as a basic key in investigating the different layers of the mind. Examples taken from clinical cases, as well as from universal literary products, such as fairy tales, provide useful contributions to this argument.

  12. The neural response properties and cortical organization of a rapidly adapting muscle sensory group response that overlaps with the frequencies that elicit the kinesthetic illusion.

    Science.gov (United States)

    Marasco, Paul D; Bourbeau, Dennis J; Shell, Courtney E; Granja-Vazquez, Rafael; Ina, Jason G

    2017-01-01

    Kinesthesia is the sense of limb movement. It is fundamental to efficient motor control, yet its neurophysiological components remain poorly understood. The contributions of primary muscle spindles and cutaneous afferents to the kinesthetic sense have been well studied; however, potential contributions from muscle sensory group responses that are different than the muscle spindles have not been ruled out. Electrophysiological recordings in peripheral nerves and brains of male Sprague Dawley rats with a degloved forelimb preparation provide evidence of a rapidly adapting muscle sensory group response that overlaps with vibratory inputs known to generate illusionary perceptions of limb movement in humans (kinesthetic illusion). This group was characteristically distinct from type Ia muscle spindle fibers, the receptor historically attributed to limb movement sensation, suggesting that type Ia muscle spindle fibers may not be the sole carrier of kinesthetic information. The sensory-neural structure of muscles is complex and there are a number of possible sources for this response group; with Golgi tendon organs being the most likely candidate. The rapidly adapting muscle sensory group response projected to proprioceptive brain regions, the rodent homolog of cortical area 3a and the second somatosensory area (S2), with similar adaption and frequency response profiles between the brain and peripheral nerves. Their representational organization was muscle-specific (myocentric) and magnified for proximal and multi-articulate limb joints. Projection to proprioceptive brain areas, myocentric representational magnification of muscles prone to movement error, overlap with illusionary vibrational input, and resonant frequencies of volitional motor unit contraction suggest that this group response may be involved with limb movement processing.

  13. The modern era of research on language evolution: Moving forward. Comment on "Towards a computational comparative neuroprimatology: Framing the language-ready brain" by Michael A. Arbib

    Science.gov (United States)

    Stout, Dietrich

    2016-03-01

    Twenty-five years ago, Pinker and Bloom [1] helped reinvigorate research on language evolution by arguing that language ;shows signs of complex design for the communication of propositional structures, and the only explanation for the origin of organs with complex design is the process of natural selection.; Since then, empirical research has tested the assertions of (cross-cultural) universality, (cross-species) uniqueness, and (cross-domain) specificity underpinning this argument from design. Appearances aside, points of consensus have emerged. The existence of a core computational and neural substrate unique to language and/or humans is still debated, but it is widely agreed that: 1) human language performance overlaps with behaviors in other domains and species, and 2) such general, pre-existing capacities provided the context for language-specific evolution (e.g. [2]).

  14. Music and Language Syntax Interact in Broca's Area: An fMRI Study.

    Directory of Open Access Journals (Sweden)

    Richard Kunert

    Full Text Available Instrumental music and language are both syntactic systems, employing complex, hierarchically-structured sequences built using implicit structural norms. This organization allows listeners to understand the role of individual words or tones in the context of an unfolding sentence or melody. Previous studies suggest that the brain mechanisms of syntactic processing may be partly shared between music and language. However, functional neuroimaging evidence for anatomical overlap of brain activity involved in linguistic and musical syntactic processing has been lacking. In the present study we used functional magnetic resonance imaging (fMRI in conjunction with an interference paradigm based on sung sentences. We show that the processing demands of musical syntax (harmony and language syntax interact in Broca's area in the left inferior frontal gyrus (without leading to music and language main effects. A language main effect in Broca's area only emerged in the complex music harmony condition, suggesting that (with our stimuli and tasks a language effect only becomes visible under conditions of increased demands on shared neural resources. In contrast to previous studies, our design allows us to rule out that the observed neural interaction is due to: (1 general attention mechanisms, as a psychoacoustic auditory anomaly behaved unlike the harmonic manipulation, (2 error processing, as the language and the music stimuli contained no structural errors. The current results thus suggest that two different cognitive domains-music and language-might draw on the same high level syntactic integration resources in Broca's area.

  15. Music and Language Syntax Interact in Broca's Area: An fMRI Study.

    Science.gov (United States)

    Kunert, Richard; Willems, Roel M; Casasanto, Daniel; Patel, Aniruddh D; Hagoort, Peter

    2015-01-01

    Instrumental music and language are both syntactic systems, employing complex, hierarchically-structured sequences built using implicit structural norms. This organization allows listeners to understand the role of individual words or tones in the context of an unfolding sentence or melody. Previous studies suggest that the brain mechanisms of syntactic processing may be partly shared between music and language. However, functional neuroimaging evidence for anatomical overlap of brain activity involved in linguistic and musical syntactic processing has been lacking. In the present study we used functional magnetic resonance imaging (fMRI) in conjunction with an interference paradigm based on sung sentences. We show that the processing demands of musical syntax (harmony) and language syntax interact in Broca's area in the left inferior frontal gyrus (without leading to music and language main effects). A language main effect in Broca's area only emerged in the complex music harmony condition, suggesting that (with our stimuli and tasks) a language effect only becomes visible under conditions of increased demands on shared neural resources. In contrast to previous studies, our design allows us to rule out that the observed neural interaction is due to: (1) general attention mechanisms, as a psychoacoustic auditory anomaly behaved unlike the harmonic manipulation, (2) error processing, as the language and the music stimuli contained no structural errors. The current results thus suggest that two different cognitive domains-music and language-might draw on the same high level syntactic integration resources in Broca's area.

  16. Neural network technologies

    Science.gov (United States)

    Villarreal, James A.

    1991-01-01

    A whole new arena of computer technologies is now beginning to form. Still in its infancy, neural network technology is a biologically inspired methodology which draws on nature's own cognitive processes. The Software Technology Branch has provided a software tool, Neural Execution and Training System (NETS), to industry, government, and academia to facilitate and expedite the use of this technology. NETS is written in the C programming language and can be executed on a variety of machines. Once a network has been debugged, NETS can produce a C source code which implements the network. This code can then be incorporated into other software systems. Described here are various software projects currently under development with NETS and the anticipated future enhancements to NETS and the technology.

  17. [Spatio-Temporal Bioelectrical Brain Activity Organization during Reading Syntagmatic and Paradigmatic Collocations by Students with Different Foreign Language Proficiency].

    Science.gov (United States)

    Sokolova, L V; Cherkasova, A S

    2015-01-01

    Texts or words/pseudowords are often used as stimuli for human verbal activity research. Our study pays attention to decoding processes of grammatical constructions consisted of two-three words--collocations. Russian and English collocation sets without any narrative were presented to Russian-speaking students with different English language skill. Stimulus material had two types of collocations: paradigmatic and syntagmatic. 30 students (average age--20.4 ± 0.22) took part in the study, they were divided into two equal groups depending on their English language skill (linguists/nonlinguists). During reading brain bioelectrical activity of cortex has been registered from 12 electrodes in alfa-, beta-, theta-bands. Coherent function reflecting cooperation of different cortical areas during reading collocations has been analyzed. Increase of interhemispheric and diagonal connections while reading collocations in different languages in the group of students with low knowledge of foreign language testifies of importance of functional cooperation between the hemispheres. It has been found out that brain bioelectrical activity of students with good foreign language knowledge during reading of all collocation types in Russian and English is characterized by economization of nervous substrate resources compared to nonlinguists. Selective activation of certain cortical areas has also been observed (depending on the grammatical construction type) in nonlinguists group that is probably related to special decoding system which processes presented stimuli. Reading Russian paradigmatic constructions by nonlinguists entailed increase between left cortical areas, reading of English syntagmatic collocations--between right ones.

  18. Language and Culture

    Science.gov (United States)

    Kramsch, Claire

    2014-01-01

    This paper surveys the research methods and approaches used in the multidisciplinary field of applied language studies or language education over the last fourty years. Drawing on insights gained in psycho- and sociolinguistics, educational linguistics and linguistic anthropology with regard to language and culture, it is organized around five…

  19. Organization of the sleep-related neural systems in the brain of the river hippopotamus (Hippopotamus amphibius): A most unusual cetartiodactyl species.

    Science.gov (United States)

    Dell, Leigh-Anne; Patzke, Nina; Spocter, Muhammad A; Bertelsen, Mads F; Siegel, Jerome M; Manger, Paul R

    2016-07-01

    This study provides the first systematic analysis of the nuclear organization of the neural systems related to sleep and wake in the basal forebrain, diencephalon, midbrain, and pons of the river hippopotamus, one of the closest extant terrestrial relatives of the cetaceans. All nuclei involved in sleep regulation and control found in other mammals, including cetaceans, were present in the river hippopotamus, with no specific nuclei being absent, but novel features of the cholinergic system, including novel nuclei, were present. This qualitative similarity relates to the cholinergic, noradrenergic, serotonergic, and orexinergic systems and is extended to the γ-aminobutyric acid (GABA)ergic elements of these nuclei. Quantitative analysis reveals that the numbers of pontine cholinergic (259,578) and noradrenergic (127,752) neurons, and hypothalamic orexinergic neurons (68,398) are markedly higher than in other large-brained mammals. These features, along with novel cholinergic nuclei in the intralaminar nuclei of the dorsal thalamus and the ventral tegmental area of the midbrain, as well as a major expansion of the hypothalamic cholinergic nuclei and a large laterodorsal tegmental nucleus of the pons that has both parvocellular and magnocellular cholinergic neurons, indicates an unusual sleep phenomenology for the hippopotamus. Our observations indicate that the hippopotamus is likely to be a bihemispheric sleeper that expresses REM sleep. The novel features of the cholinergic system suggest the presence of an undescribed sleep state in the hippopotamus, as well as the possibility that this animal could, more rapidly than other mammals, switch cortical electroencephalographic activity from one state to another. J. Comp. Neurol. 524:2036-2058, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Urinary symptoms and urodynamic findings in women with pelvic organ prolapse: is there a correlation? Results of an artificial neural network analysis.

    Science.gov (United States)

    Serati, Maurizio; Salvatore, Stefano; Siesto, Gabriele; Cattoni, Elena; Braga, Andrea; Sorice, Paola; Cromi, Antonella; Ghezzi, Fabio; Bolis, Pierfrancesco

    2011-08-01

    International official guidelines recommend urodynamic (UDS) evaluation in patients with pelvic organ prolapse (POP). However, the real benefit of this examination is still the subject of heated and controversial debate. Therefore, we aimed to assess the correlation between urinary symptoms and UDS findings in women with POP through the implementation of a sophisticated computer-based technology in the outpatient workup. A prospective cohort study was performed in a single, tertiary, urogynaecologic referral department, enrolling consecutive women seeking care for pelvic floor dysfunctions. Patients underwent clinical and urodynamic evaluation. Data regarding baseline characteristics, symptoms, anatomic, and urodynamic findings were gathered for each patient. Multiple linear regression (MLR) and artificial neural networks (ANNs) were performed to design predicting models. A total of 802 women with POP were included. POP quantification stages and baseline data poorly correlated to final UDS findings. Stress urinary incontinence and overactive bladder were both independently associated to each UDS diagnosis, including detrusor overactivity (DO), urodynamic stress incontinence (USI), and mixed urinary incontinence (USI plus DO). Receiver operating characteristic comparison confirmed that ANNs were more accurate than MLR in identifying predictors of UDS diagnosis, but none of these methods could successfully overcome UDS. Case-control studies are needed to confirm our findings. Despite the current debate based on the actual value of UDS in women with POP, even the implementation of ANN, a sophisticated computer-based technology, does not permit an accurate diagnosis just on the basis of symptoms or avoiding UDS. Therefore, in women with POP, especially if scheduled for surgery, UDS should be considered as mandatory, since misleading counselling could result in unpleasant unexpected events. Copyright © 2011 European Association of Urology. Published by Elsevier B

  1. Neural mechanisms of sentence comprehension based on predictive processes and decision certainty: Electrophysiological evidence from non-canonical linearizations in a flexible word order language.

    Science.gov (United States)

    Dröge, Alexander; Fleischer, Jürg; Schlesewsky, Matthias; Bornkessel-Schlesewsky, Ina

    2016-02-15

    The specificity or generality of language-related event-related brain potentials (ERPs) has been a point of continuing debate in the cognitive neuroscience of language. The present study measured ERPs to (preferred) subject-before-object (SO) and (dispreferred) object-before-subject (OS) word orders in German while manipulating morphosyntactic and semantic cues to correct sentence interpretation. We presented sentence pairs as connected speech (context and target sentences) and examined ERPs at the position of the first argument (noun phrase) in the target sentence. At this position, word order was determinable by either (a) case marking (morphosyntactic cue); (b) animacy (semantic cue); or (c) the preceding context sentence (local ambiguity; contextual cue). Following each sentence pair, participants judged the acceptability of the second sentence in the context of the first and performed a probe word recognition task. Results showed a biphasic N400-P600 pattern at the first noun phrase in the OS conditions irrespectively of which cues (syntactic or semantic) were available to the parser for disambiguation. N400 latency varied as a function of temporal cue availability and P600 amplitude increased for unambiguous object-initial conditions even though these were rated acceptable in the judgment task. These findings support an interpretation of ERP components in terms of general cognitive mechanisms such as predictive processes (N400) and decision certainty (P600 as an instance of the P300) rather than a domain-specific view of a semantic N400 and a syntactic P600. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  3. Music and Language Syntax Interact in Broca’s Area: An fMRI Study

    Science.gov (United States)

    Kunert, Richard; Willems, Roel M.; Casasanto, Daniel; Patel, Aniruddh D.; Hagoort, Peter

    2015-01-01

    Instrumental music and language are both syntactic systems, employing complex, hierarchically-structured sequences built using implicit structural norms. This organization allows listeners to understand the role of individual words or tones in the context of an unfolding sentence or melody. Previous studies suggest that the brain mechanisms of syntactic processing may be partly shared between music and language. However, functional neuroimaging evidence for anatomical overlap of brain activity involved in linguistic and musical syntactic processing has been lacking. In the present study we used functional magnetic resonance imaging (fMRI) in conjunction with an interference paradigm based on sung sentences. We show that the processing demands of musical syntax (harmony) and language syntax interact in Broca’s area in the left inferior frontal gyrus (without leading to music and language main effects). A language main effect in Broca’s area only emerged in the complex music harmony condition, suggesting that (with our stimuli and tasks) a language effect only becomes visible under conditions of increased demands on shared neural resources. In contrast to previous studies, our design allows us to rule out that the observed neural interaction is due to: (1) general attention mechanisms, as a psychoacoustic auditory anomaly behaved unlike the harmonic manipulation, (2) error processing, as the language and the music stimuli contained no structural errors. The current results thus suggest that two different cognitive domains—music and language—might draw on the same high level syntactic integration resources in Broca’s area. PMID:26536026

  4. Organizers.

    Science.gov (United States)

    Callison, Daniel

    2000-01-01

    Focuses on "organizers," tools or techniques that provide identification and classification along with possible relationships or connections among ideas, concepts, and issues. Discusses David Ausubel's research and ideas concerning advance organizers; the implications of Ausubel's theory to curriculum and teaching; "webbing," a…

  5. Biologically Inspired Modular Neural Networks

    OpenAIRE

    Azam, Farooq

    2000-01-01

    This dissertation explores the modular learning in artificial neural networks that mainly driven by the inspiration from the neurobiological basis of the human learning. The presented modularization approaches to the neural network design and learning are inspired by the engineering, complexity, psychological and neurobiological aspects. The main theme of this dissertation is to explore the organization and functioning of the brain to discover new structural and learning ...

  6. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks.

    Science.gov (United States)

    Men, Kuo; Dai, Jianrong; Li, Yexiong

    2017-12-01

    Delineation of the clinical target volume (CTV) and organs at risk (OARs) is very important for radiotherapy but is time-consuming and prone to inter-observer variation. Here, we proposed a novel deep dilated convolutional neural network (DDCNN)-based method for fast and consistent auto-segmentation of these structures. Our DDCNN method was an end-to-end architecture enabling fast training and testing. Specifically, it employed a novel multiple-scale convolutional architecture to extract multiple-scale context features in the early layers, which contain the original information on fine texture and boundaries and which are very useful for accurate auto-segmentation. In addition, it enlarged the receptive fields of dilated convolutions at the end of networks to capture complementary context features. Then, it replaced the fully connected layers with fully convolutional layers to achieve pixel-wise segmentation. We used data from 278 patients with rectal cancer for evaluation. The CTV and OARs were delineated and validated by senior radiation oncologists in the planning computed tomography (CT) images. A total of 218 patients chosen randomly were used for training, and the remaining 60 for validation. The Dice similarity coefficient (DSC) was used to measure segmentation accuracy. Performance was evaluated on segmentation of the CTV and OARs. In addition, the performance of DDCNN was compared with that of U-Net. The proposed DDCNN method outperformed the U-Net for all segmentations, and the average DSC value of DDCNN was 3.8% higher than that of U-Net. Mean DSC values of DDCNN were 87.7% for the CTV, 93.4% for the bladder, 92.1% for the left femoral head, 92.3% for the right femoral head, 65.3% for the intestine, and 61.8% for the colon. The test time was 45 s per patient for segmentation of all the CTV, bladder, left and right femoral heads, colon, and intestine. We also assessed our approaches and results with those in the literature: our system showed superior

  7. Mapping of rock types using a joint approach by combining the multivariate statistics, self-organizing map and Bayesian neural networks: an example from IODP 323 site

    Science.gov (United States)

    Karmakar, Mampi; Maiti, Saumen; Singh, Amrita; Ojha, Maheswar; Maity, Bhabani Sankar

    2017-07-01

    Modeling and classification of the subsurface lithology is very important to understand the evolution of the earth system. However, precise classification and mapping of lithology using a single framework are difficult due to the complexity and the nonlinearity of the problem driven by limited core sample information. Here, we implement a joint approach by combining the unsupervised and the supervised methods in a single framework for better classification and mapping of rock types. In the unsupervised method, we use the principal component analysis (PCA), K-means cluster analysis (K-means), dendrogram analysis, Fuzzy C-means (FCM) cluster analysis and self-organizing map (SOM). In the supervised method, we use the Bayesian neural networks (BNN) optimized by the Hybrid Monte Carlo (HMC) (BNN-HMC) and the scaled conjugate gradient (SCG) (BNN-SCG) techniques. We use P-wave velocity, density, neutron porosity, resistivity and gamma ray logs of the well U1343E of the Integrated Ocean Drilling Program (IODP) Expedition 323 in the Bering Sea slope region. While the SOM algorithm allows us to visualize the clustering results in spatial domain, the combined classification schemes (supervised and unsupervised) uncover the different patterns of lithology such of as clayey-silt, diatom-silt and silty-clay from an un-cored section of the drilled hole. In addition, the BNN approach is capable of estimating uncertainty in the predictive modeling of three types of rocks over the entire lithology section at site U1343. Alternate succession of clayey-silt, diatom-silt and silty-clay may be representative of crustal inhomogeneity in general and thus could be a basis for detail study related to the productivity of methane gas in the oceans worldwide. Moreover, at the 530 m depth down below seafloor (DSF), the transition from Pliocene to Pleistocene could be linked to lithological alternation between the clayey-silt and the diatom-silt. The present results could provide the basis for

  8. Organizations

    DEFF Research Database (Denmark)

    Hatch, Mary Jo

    Most of us recognize that organizations are everywhere. You meet them on every street corner in the form of families and shops, study in them, work for them, buy from them, pay taxes to them. But have you given much thought to where they came from, what they are today, and what they might become...... and considers many more. Mary Jo Hatch introduces the concept of organizations by presenting definitions and ideas drawn from the a variety of subject areas including the physical sciences, economics, sociology, psychology, anthropology, literature, and the visual and performing arts. Drawing on examples from...... prehistory and everyday life, from the animal kingdom as well as from business, government, and other formal organizations, Hatch provides a lively and thought provoking introduction to the process of organization....

  9. Host language, integration language

    Directory of Open Access Journals (Sweden)

    Maria José dos Reis Grosso

    2011-12-01

    Full Text Available With the development of language research within the Council of Europe and in a context of a stronger multilingual and multicultural Europe, we are witnessing the emergence of terms that are imposed by the frequency of their usage or that (recreate and set re-interpreted concepts according to new social and educational situations. Such is the case of the host language, a concept which is object of analysis in this paper. The relevance of the issue is preceded by other issues related to concepts like native language, second language and foreign language, already comprised in Applied Linguistics and the Teaching of Modern Languages. Nowadays, the indispensability of studying these concepts is fundamental to the pedagogic practice as well as to the language syllabus and its planning. This idea is totally supported by the proposal of the "Common European Framework of Reference for Languages: Learning, Teaching Assessment (CEFR", which provides the appropriate guidelines at the discourse level.

  10. Dynamic Encoding of Acoustic Features in Neural Responses to Continuous Speech.

    Science.gov (United States)

    Khalighinejad, Bahar; Cruzatto da Silva, Guilherme; Mesgarani, Nima

    2017-02-22

    Humans are unique in their ability to communicate using spoken language. However, it remains unclear how the speech signal is transformed and represented in the brain at different stages of the auditory pathway. In this study, we characterized electroencephalography responses to continuous speech by obtaining the time-locked responses to phoneme instances (phoneme-related potential). We showed that responses to different phoneme categories are organized by phonetic features. We found that each instance of a phoneme in continuous speech produces multiple distinguishable neural responses occurring as early as 50 ms and as late as 400 ms after the phoneme onset. Comparing the patterns of phoneme similarity in the neural responses and the acoustic signals confirms a repetitive appearance of acoustic distinctions of phonemes in the neural data. Analysis of the phonetic and speaker information in neural activations revealed that different time intervals jointly encode the acoustic similarity of both phonetic and speaker categories. These findings provide evidence for a dynamic neural transformation of low-level speech features as they propagate along the auditory pathway, and form an empirical framework to study the representational changes in learning, attention, and speech disorders.SIGNIFICANCE STATEMENT We characterized the properties of evoked neural responses to phoneme instances in continuous speech. We show that each instance of a phoneme in continuous speech produces several observable neural responses at different times occurring as early as 50 ms and as late as 400 ms after the phoneme onset. Each temporal event explicitly encodes the acoustic similarity of phonemes, and linguistic and nonlinguistic information are best represented at different time intervals. Finally, we show a joint encoding of phonetic and speaker information, where the neural representation of speakers is dependent on phoneme category. These findings provide compelling new evidence for

  11. A modular approach to language production: models and facts.

    Science.gov (United States)

    Valle-Lisboa, Juan C; Pomi, Andrés; Cabana, Álvaro; Elvevåg, Brita; Mizraji, Eduardo

    2014-06-01

    Numerous cortical disorders affect language. We explore the connection between the observed language behavior and the underlying substrates by adopting a neurocomputational approach. To represent the observed trajectories of the discourse in patients with disorganized speech and in healthy participants, we design a graphical representation for the discourse as a trajectory that allows us to visualize and measure the degree of order in the discourse as a function of the disorder of the trajectories. Our work assumes that many of the properties of language production and comprehension can be understood in terms of the dynamics of modular networks of neural associative memories. Based upon this assumption, we connect three theoretical and empirical domains: (1) neural models of language processing and production, (2) statistical methods used in the construction of functional brain images, and (3) corpus linguistic tools, such as Latent Semantic Analysis (henceforth LSA), that are used to discover the topic organization of language. We show how the neurocomputational models intertwine with LSA and the mathematical basis of functional neuroimaging. Within this framework we describe the properties of a context-dependent neural model, based on matrix associative memories, that performs goal-oriented linguistic behavior. We link these matrix associative memory models with the mathematics that underlie functional neuroimaging techniques and present the "functional brain images" emerging from the model. This provides us with a completely "transparent box" with which to analyze the implication of some statistical images. Finally, we use these models to explore the possibility that functional synaptic disconnection can lead to an increase in connectivity between the representations of concepts that could explain some of the alterations in discourse displayed by patients with schizophrenia. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Linguistic Syncretism as the Development of Common Linguistic Ideas of Evolution and Systematic and Structural Language Organization

    Directory of Open Access Journals (Sweden)

    Viktoria A. Beresneva

    2017-03-01

    Full Text Available The article presents categorical description of the phenomenon of language syncretism, called by the author as linguistic syncretism on the material of time forms in the German language for the first time in linguistics. Application of the famous epistemological admission to the interpretation of linguistic facts allowed to implement the linguistic syncretism in the general theory of the unity of the world and describe it as a phenomenon if integrative linguathinking human activity. The term «linguistic syncretism», based on the close connection between being and knowledge, is interpreted by the author in two ways: as a syncretism of language forms and a linguistic interpretation of the phenomenon of syncretism. Interpretation of linguistic syncretism as a dual linguistic category led ultimately to the characterization of linguistic syncretism as the embodiment and reflection of the world unity. It is given the methodology and the main results of the categorical analysis of the problem of linguistic syncretism. Due to the categorical scientific and linguistic research syncretism involving data philosophy and psychology about the patterns of being and thinking was able to recreate a complete picture of the ontological and logical syncretism as well as the mechanism of linguistic syncretism, reveal the inner logic of formation and development of the phenomenon of syncretism. The study contributes to the development of the theory of syncretism, as well as specified in the title of the article as general linguistic ideas in the direction of the in-depth study and understanding of the relationship and interaction of elements of the system and the results of their interaction.

  13. Dynamic Object Identification with SOM-based neural networks

    Directory of Open Access Journals (Sweden)

    Aleksey Averkin

    2014-03-01

    Full Text Available In this article a number of neural networks based on self-organizing maps, that can be successfully used for dynamic object identification, is described. Unique SOM-based modular neural networks with vector quantized associative memory and recurrent self-organizing maps as modules are presented. The structured algorithms of learning and operation of such SOM-based neural networks are described in details, also some experimental results and comparison with some other neural networks are given.

  14. Language control mechanisms differ for native languages: Neuromagnetic evidence from trilingual language switching.

    Science.gov (United States)

    Hut, Suzanne C A; Helenius, Päivi; Leminen, Alina; Mäkelä, Jyrki P; Lehtonen, Minna

    2017-12-01

    How does the brain process and control languages that are learned at a different age, when proficiency in all these languages is high? Early acquired strong languages are likely to have higher baseline activation levels than later learned less-dominant languages. However, it is still largely unknown how the activation levels of these different languages are controlled, and how interference from an irrelevant language is prevented. In this magnetoencephalography (MEG) study on language switching during auditory perception, early Finnish-Swedish bilinguals (N = 18) who mastered English with high proficiency after childhood were presented with spoken words in each of the three languages, while performing a simple semantic categorisation task. Switches from the later learned English to either of the native languages resulted in increased neural activation in the superior temporal gyrus (STG) 400-600ms after word onset (N400m response), whereas such increase was not detected for switches from native languages to English or between the native languages. In an earlier time window of 350-450ms, English non-switch trials showed higher activation levels in the inferior frontal gyrus (IFG), pointing to ongoing inhibition of the native languages during the use of English. Taken together, these asymmetric switch costs suggest that native languages are suppressed during the use of a non-native language, despite the receptive nature of the language task. This effect seems to be driven mostly by age of acquisition or language exposure, rather than proficiency. Our results indicate that mechanisms of control between two native languages differ from those of a later learned language, as upbringing in an early bilingual environment has likely promoted automatiation of language control specifically for the native languages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. An fMRI study of implicit language learning in developmental language impairment

    Directory of Open Access Journals (Sweden)

    Elena Plante

    2017-01-01

    Full Text Available Individuals with developmental language impairment can show deficits into adulthood. This suggests that neural networks related to their language do not normalize with time. We examined the ability of 16 adults with and without impaired language to learn individual words in an unfamiliar language. Adults with impaired language were able to segment individual words from running speech, but needed more time to do so than their normal-language peers. ICA analysis of fMRI data indicated that adults with language impairment activate a neural network that is comparable to that of adults with normal language. However, a regional analysis indicated relative hyperactivation of a collection of regions associated with language processing. These results are discussed with reference to the Statistical Learning Framework and the sub-skills thought to relate to word segmentation.

  16. An fMRI study of implicit language learning in developmental language impairment.

    Science.gov (United States)

    Plante, Elena; Patterson, Dianne; Sandoval, Michelle; Vance, Christopher J; Asbjørnsen, Arve E

    2017-01-01

    Individuals with developmental language impairment can show deficits into adulthood. This suggests that neural networks related to their language do not normalize with time. We examined the ability of 16 adults with and without impaired language to learn individual words in an unfamiliar language. Adults with impaired language were able to segment individual words from running speech, but needed more time to do so than their normal-language peers. ICA analysis of fMRI data indicated that adults with language impairment activate a neural network that is comparable to that of adults with normal language. However, a regional analysis indicated relative hyperactivation of a collection of regions associated with language processing. These results are discussed with reference to the Statistical Learning Framework and the sub-skills thought to relate to word segmentation.

  17. Left hemisphere regions are critical for language in the face of early left focal brain injury.

    Science.gov (United States)

    Raja Beharelle, Anjali; Dick, Anthony Steven; Josse, Goulven; Solodkin, Ana; Huttenlocher, Peter R; Levine, Susan C; Small, Steven L

    2010-06-01

    A predominant theory regarding early stroke and its effect on language development, is that early left hemisphere lesions trigger compensatory processes that allow the right hemisphere to assume dominant language functions, and this is thought to underlie the near normal language development observed after early stroke. To test this theory, we used functional magnetic resonance imaging to examine brain activity during category fluency in participants who had sustained pre- or perinatal left hemisphere stroke (n = 25) and in neurologically normal siblings (n = 27). In typically developing children, performance of a category fluency task elicits strong involvement of left frontal and lateral temporal regions and a lesser involvement of right hemisphere structures. In our cohort of atypically developing participants with early stroke, expressive and receptive language skills correlated with activity in the same left inferior frontal regions that support language processing in neurologically normal children. This was true independent of either the amount of brain injury or the extent that the injury was located in classical cortical language processing areas. Participants with bilateral activation in left and right superior temporal-inferior parietal regions had better language function than those with either predominantly left- or right-sided unilateral activation. The advantage conferred by left inferior frontal and bilateral temporal involvement demonstrated in our study supports a strong predisposition for typical neural language organization, despite an intervening injury, and argues against models suggesting that the right hemisphere fully accommodates language function following early injury.

  18. Principles of neural information processing

    CERN Document Server

    Seelen, Werner v

    2016-01-01

    In this fundamental book the authors devise a framework that describes the working of the brain as a whole. It presents a comprehensive introduction to the principles of Neural Information Processing as well as recent and authoritative research. The books´ guiding principles are the main purpose of neural activity, namely, to organize behavior to ensure survival, as well as the understanding of the evolutionary genesis of the brain. Among the developed principles and strategies belong self-organization of neural systems, flexibility, the active interpretation of the world by means of construction and prediction as well as their embedding into the world, all of which form the framework of the presented description. Since, in brains, their partial self-organization, the lifelong adaptation and their use of various methods of processing incoming information are all interconnected, the authors have chosen not only neurobiology and evolution theory as a basis for the elaboration of such a framework, but also syst...

  19. Neural correlates of metaphor processing: the roles of figurativeness, familiarity and difficulty.

    Science.gov (United States)

    Schmidt, Gwenda L; Seger, Carol A

    2009-12-01

    There is currently much interest in investigating the neural substrates of metaphor processing. In particular, it has been suggested that the right hemisphere plays a special role in the comprehension of figurative (non-literal) language, and in particular metaphors. However, some studies find no evidence of right hemisphere involvement in metaphor comprehension (e.g. [Lee, S. S., & Dapretto, M. (2006). Metaphorical vs. literal word meanings: fMRI evidence against a selective role of the right hemisphere. NeuroImage, 29, 536-544; Rapp, A. M., Leube, D. T., Erb, M., Grodd, W., & Kircher, T. T. J. (2004). Neural correlates of metaphor processing. Cognitive Brain Research, 20, 395-402]). We suggest that lateralization differences between literal and metaphorical language may be due to factors such as differences in familiarity ([Schmidt, G. L., DeBuse, C. J., & Seger, C. A. (2007). Right hemisphere metaphor processing? Characterizing the lateralization of semantic processes. Brain and Language, 100, 127-141]), or difficulty ([Bookheimer, S. (2002). Functional MRI of language: New approaches to understanding the cortical organization of semantic processing. Annual Review of Neuroscience, 25, 151-188; Rapp, A. M., Leube, D. T., Erb, M., Grodd, W., & Kircher, T. T. J. (2004). Neural correlates of metaphor processing. Cognitive Brain Research, 20, 395-402]) in addition to figurativeness. The purpose of this study was to separate the effects of figurativeness, familiarity, and difficulty on the recruitment of neural systems involved in language, in particular right hemisphere mechanisms. This was achieved by comparing neural activation using functional magnetic resonance imaging (fMRI) between four conditions: literal sentences, familiar and easy to understand metaphors, unfamiliar and easy to understand metaphors, and unfamiliar and difficult to understand metaphors. Metaphors recruited the right insula, left temporal pole and right inferior frontal gyrus in comparison

  20. The neural organization of discourse: an H2 15O-PET study of narrative production in English and American sign language

    National Research Council Canada - National Science Library

    Braun, A R; Guillemin, A; Hosey, L; Varga, M

    2001-01-01

    In order to identify brain regions that play an essential role in the production of discourse, H2 15O-PET scans were acquired during spontaneous generation of autobiographical narratives in English...

  1. International Conference on Artificial Neural Networks (ICANN)

    CERN Document Server

    Mladenov, Valeri; Kasabov, Nikola; Artificial Neural Networks : Methods and Applications in Bio-/Neuroinformatics

    2015-01-01

    The book reports on the latest theories on artificial neural networks, with a special emphasis on bio-neuroinformatics methods. It includes twenty-three papers selected from among the best contributions on bio-neuroinformatics-related issues, which were presented at the International Conference on Artificial Neural Networks, held in Sofia, Bulgaria, on September 10-13, 2013 (ICANN 2013). The book covers a broad range of topics concerning the theory and applications of artificial neural networks, including recurrent neural networks, super-Turing computation and reservoir computing, double-layer vector perceptrons, nonnegative matrix factorization, bio-inspired models of cell communities, Gestalt laws, embodied theory of language understanding, saccadic gaze shifts and memory formation, and new training algorithms for Deep Boltzmann Machines, as well as dynamic neural networks and kernel machines. It also reports on new approaches to reinforcement learning, optimal control of discrete time-delay systems, new al...

  2. Support vector machine based training of multilayer feedforward neural networks as optimized by particle swarm algorithm: application in QSAR studies of bioactivity of organic compounds.

    Science.gov (United States)

    Lin, Wei-Qi; Jiang, Jian-Hui; Zhou, Yan-Ping; Wu, Hai-Long; Shen, Guo-Li; Yu, Ru-Qin

    2007-01-30

    Multilayer feedforward neural networks (MLFNNs) are important modeling techniques widely used in QSAR studies for their ability to represent nonlinear relationships between descriptors and activity. However, the problems of overfitting and premature convergence to local optima still pose great challenges in the practice of MLFNNs. To circumvent these problems, a support vector machine (SVM) based training algorithm for MLFNNs has been developed with the incorporation of particle swarm optimization (PSO). The introduction of the SVM based training mechanism imparts the developed algorithm with inherent capacity for combating the overfitting problem. Moreover, with the implementation of PSO for searching the optimal network weights, the SVM based learning algorithm shows relatively high efficiency in converging to the optima. The proposed algorithm has been evaluated using the Hansch data set. Application to QSAR studies of the activity of COX-2 inhibitors is also demonstrated. The results reveal that this technique provides superior performance to backpropagation (BP) and PSO training neural networks.

  3. The functional neuroanatomy of language

    Science.gov (United States)

    Hickok, Gregory

    2009-09-01

    There has been substantial progress over the last several years in understanding aspects of the functional neuroanatomy of language. Some of these advances are summarized in this review. It will be argued that recognizing speech sounds is carried out in the superior temporal lobe bilaterally, that the superior temporal sulcus bilaterally is involved in phonological-level aspects of this process, that the frontal/motor system is not central to speech recognition although it may modulate auditory perception of speech, that conceptual access mechanisms are likely located in the lateral posterior temporal lobe (middle and inferior temporal gyri), that speech production involves sensory-related systems in the posterior superior temporal lobe in the left hemisphere, that the interface between perceptual and motor systems is supported by a sensory-motor circuit for vocal tract actions (not dedicated to speech) that is very similar to sensory-motor circuits found in primate parietal lobe, and that verbal short-term memory can be understood as an emergent property of this sensory-motor circuit. These observations are considered within the context of a dual stream model of speech processing in which one pathway supports speech comprehension and the other supports sensory-motor integration. Additional topics of discussion include the functional organization of the planum temporale for spatial hearing and speech-related sensory-motor processes, the anatomical and functional basis of a form of acquired language disorder, conduction aphasia, the neural basis of vocabulary development, and sentence-level/grammatical processing.

  4. Neural Networks

    Directory of Open Access Journals (Sweden)

    Schwindling Jerome

    2010-04-01

    Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  5. The Advantages of Human Milk Recognize the Spatiotemporal Locations of Toxins and Intelligently Bypass Them by Forming a Hummingbird-Like Hovering Neural Network Circuitry Based on an Organic Biomimetic Choline Acetyltransferase Memristor/Memcapacitor Prosthesis

    Directory of Open Access Journals (Sweden)

    E. T. CHEN

    2016-08-01

    Full Text Available We have demonstrated a unique approach to study human milk’s advantage in promoting and protecting infant early brain cognitive development by recognizing toxins and intelligently bypassing the toxin by forming high frequency oscillation (HFO in the brain circuitry when compared with organic cow milk samples based on an organic memristor/memcapacitor biomimetic Choline Acetyltransferase (CHAT neural network circuitry prosthesis along with a 3D Energy-sensory dynamic mapping method under antibody- free, radiolabeling-free, and reagent-less conditions. We also demonstrated cow milk is unfit for infant cognitive development, and it is actually harmful in terms of mutating infant brain synapse circuitry conformation, current flow direction, and energy output that lead to multiple Pathological High Frequency Oscillation (pHFO formations, and further, it led to sudden infant death syndrome (SIDS based on our prediction.

  6. Musical expertise modulates early processing of syntactic violations in language

    Directory of Open Access Journals (Sweden)

    Ahren B. Fitzroy

    2013-01-01

    Full Text Available Syntactic violations in speech and music have been shown to elicit an anterior negativity (AN as early as 100 ms after violation onset and a posterior positivity that peaks at roughly 600 ms (P600/LPC. The language AN is typically reported as left-lateralized (LAN, whereas the music AN is typically reported as right-lateralized (RAN. However, several lines of evidence suggest syntactic processing of language and music rely on overlapping neural systems. The current study tested the hypothesis that syntactic processing of speech and music share neural resources by examining whether musical proficiency modulates ERP indices of linguistic syntactic processing. ERPs were measured in response to syntactic violations in sentences and chord progressions in musicians and nonmusicians. Violations in speech were insertion errors in normal and semantically impoverished English sentences. Violations in music were out-of-key chord substitutions from distantly and closely related keys. Phrase-structure violations elicited an AN and P600 in both groups. Harmonic violations elicited an LPC in both groups, blatant harmonic violations also elicited a RAN in musicians only. Cross-domain effects of musical proficiency were similar to previously reported within-domain effects of linguistic proficiency on the distribution of the language AN; syntactic violations in normal English sentences elicited a left-lateralized AN in musicians and a bilateral AN in nonmusicians. The late positivities elicited by violations differed in latency and distribution between domains. These results suggest that initial processing of syntactic violations in language and music relies on shared neural resources in the general population, and that musical expertise results in more specialized cortical organization of syntactic processing in both domains.

  7. A Survey of Neural Network Techniques for Feature Extraction from Text

    OpenAIRE

    John, Vineet

    2017-01-01

    This paper aims to catalyze the discussions about text feature extraction techniques using neural network architectures. The research questions discussed in the paper focus on the state-of-the-art neural network techniques that have proven to be useful tools for language processing, language generation, text classification and other computational linguistics tasks.

  8. The language of communication

    African Journals Online (AJOL)

    The language of communication. Speaking to a person in their own language provides an opportu nity to place that person at their ease, an essential requirement in medicine, and makes retrieving information from that person easier. An article in this edition discusses the conversion of an English uterovaginal pelvic organ ...

  9. Neural oscillations and information flow associated with synaptic plasticity.

    Science.gov (United States)

    Zhang, Tao

    2011-10-25

    As a rhythmic neural activity, neural oscillation exists all over the nervous system, in structures as diverse as the cerebral cortex, hippocampus, subcortical nuclei and sense organs. This review firstly presents some evidence that synchronous neural oscillations in theta and gamma bands reveal much about the origin and nature of cognitive processes such as learning and memory. And then it introduces the novel analyzing algorithms of neural oscillations, which is a directionality index of neural information flow (NIF) as a measure of synaptic plasticity. An example of application used such an analyzing algorithms of neural oscillations has been provided.

  10. Neural Tube Defects

    Science.gov (United States)

    ... vitamin, before and during pregnancy prevents most neural tube defects. Neural tube defects are usually diagnosed before the infant is ... or imaging tests. There is no cure for neural tube defects. The nerve damage and loss of function ...

  11. Onset age of L2 acquisition influences language network in early and late Cantonese-Mandarin bilinguals.

    Science.gov (United States)

    Liu, Xiaojin; Tu, Liu; Wang, Junjing; Jiang, Bo; Gao, Wei; Pan, Ximin; Li, Meng; Zhong, Miao; Zhu, Zhenzhen; Niu, Meiqi; Li, Yanyan; Zhao, Ling; Chen, Xiaoxi; Liu, Chang; Lu, Zhi; Huang, Ruiwang

    2017-11-01

    Early second language (L2) experience influences the neural organization of L2 in neuro-plastic terms. Previous studies tried to reveal these plastic effects of age of second language acquisition (AoA-L2) and proficiency-level in L2 (PL-L2) on the neural basis of language processing in bilinguals. Although different activation patterns have been observed during language processing in early and late bilinguals by task-fMRI, few studies reported the effect of AoA-L2 and high PL-L2 on language network at resting state. In this study, we acquired resting-state fMRI (R-fMRI) data from 10 Cantonese (L1)-Mandarin (L2) early bilinguals (acquired L2: 3years old) and 11 late bilinguals (acquired L2: 6years old), and analyzed their topological properties of language networks after controlling the language daily exposure and usage as well as PL in L1 and L2. We found that early bilinguals had significantly a higher clustering coefficient, global and local efficiency, but significantly lower characteristic path length compared to late bilinguals. Modular analysis indicated that compared to late bilinguals, early bilinguals showed significantly stronger intra-modular functional connectivity in the semantic and phonetic modules, stronger inter-modular functional connectivity between the semantic and phonetic modules as well as between the phonetic and syntactic modules. Differences in global and local parameters may reflect different patterns of neuro-plasticity respectively for early and late bilinguals. These results suggested that different L2 experience influences topological properties of language network, even if late bilinguals achieve high PL-L2. Our findings may provide a new perspective of neural mechanisms related to early and late bilinguals. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Alexia and the Neural Basis of Reading.

    Science.gov (United States)

    Benson, D. Frank

    1984-01-01

    The historical background of alexia (loss or impairment of the ability to comprehend written or printed language based on damage to the brain) is reviewed, classification and symptomatology considered, theories on the involvement of right hemisphere reading are noted, and the neural basis of reading is postulated. (CL)

  13. Medical Text Classification using Convolutional Neural Networks

    OpenAIRE

    Hughes, Mark; Li, Irene; Kotoulas, Spyros; Suzumura, Toyotaro

    2017-01-01

    We present an approach to automatically classify clinical text at a sentence level. We are using deep convolutional neural networks to represent complex features. We train the network on a dataset providing a broad categorization of health information. Through a detailed evaluation, we demonstrate that our method outperforms several approaches widely used in natural language processing tasks by about 15%.

  14. Medical Text Classification Using Convolutional Neural Networks.

    Science.gov (United States)

    Hughes, Mark; Li, Irene; Kotoulas, Spyros; Suzumura, Toyotaro

    2017-01-01

    We present an approach to automatically classify clinical text at a sentence level. We are using deep convolutional neural networks to represent complex features. We train the network on a dataset providing a broad categorization of health information. Through a detailed evaluation, we demonstrate that our method outperforms several approaches widely used in natural language processing tasks by about 15%.

  15. Neural networks, penalty logic and optimality theory

    NARCIS (Netherlands)

    Blutner, R.; Benz, A.; Blutner, R.

    2009-01-01

    Ever since the discovery of neural networks, there has been a controversy between two modes of information processing. On the one hand, symbolic systems have proven indispensable for our understanding of higher intelligence, especially when cognitive domains like language and reasoning are examined.

  16. Understanding perception through neural "codes".

    Science.gov (United States)

    Freeman, Walter J

    2011-07-01

    A major challenge for cognitive scientists is to deduce and explain the neural mechanisms of the rapid transposition between stimulus energy and recalled memory-between the specific (sensation) and the generic (perception)-in both material and mental aspects. Researchers are attempting three explanations in terms of neural codes. The microscopic code: cellular neurobiologists correlate stimulus properties with the rates and frequencies of trains of action potentials induced by stimuli and carried by topologically organized axons. The mesoscopic code: cognitive scientists formulate symbolic codes in trains of action potentials from feature-detector neurons of phonemes, lines, odorants, vibrations, faces, etc., that object-detector neurons bind into representations of stimuli. The macroscopic code: neurodynamicists extract neural correlates of stimuli and associated behaviors in spatial patterns of oscillatory fields of dendritic activity, which self-organize and evolve on trajectories through high-dimensional brain state space. This multivariate code is expressed in landscapes of chaotic attractors. Unlike other scientific codes, such as DNA and the periodic table, these neural codes have no alphabet or syntax. They are epistemological metaphors that experimentalists need to measure neural activity and engineers need to model brain functions. My aim is to describe the main properties of the macroscopic code and the grand challenge it poses: how do very large patterns of textured synchronized oscillations form in cortex so quickly? © 2010 IEEE

  17. Visual cortex entrains to sign language.

    Science.gov (United States)

    Brookshire, Geoffrey; Lu, Jenny; Nusbaum, Howard C; Goldin-Meadow, Susan; Casasanto, Daniel

    2017-06-13

    Despite immense variability across languages, people can learn to understand any human language, spoken or signed. What neural mechanisms allow people to comprehend language across sensory modalities? When people listen to speech, electrophysiological oscillations in auditory cortex entrain to slow ([Formula: see text]8 Hz) fluctuations in the acoustic envelope. Entrainment to the speech envelope may reflect mechanisms specialized for auditory perception. Alternatively, flexible entrainment may be a general-purpose cortical mechanism that optimizes sensitivity to rhythmic information regardless of modality. Here, we test these proposals by examining cortical coherence to visual information in sign language. First, we develop a metric to quantify visual change over time. We find quasiperiodic fluctuations in sign language, characterized by lower frequencies than fluctuations in speech. Next, we test for entrainment of neural oscillations to visual change in sign language, using electroencephalography (EEG) in fluent speakers of American Sign Language (ASL) as they watch videos in ASL. We find significant cortical entrainment to visual oscillations in sign language sign is strongest over occipital and parietal cortex, in contrast to speech, where coherence is strongest over the auditory cortex. Nonsigners also show coherence to sign language, but entrainment at frontal sites is reduced relative to fluent signers. These results demonstrate that flexible cortical entrainment to language does not depend on neural processes that are specific to auditory speech perception. Low-frequency oscillatory entrainment may reflect a general cortical mechanism that maximizes sensitivity to informational peaks in time-varying signals.

  18. Language and Computers

    CERN Document Server

    Dickinson, Markus; Meurers, Detmar

    2012-01-01

    Language and Computers introduces students to the fundamentals of how computers are used to represent, process, and organize textual and spoken information. Concepts are grounded in real-world examples familiar to students’ experiences of using language and computers in everyday life. A real-world introduction to the fundamentals of how computers process language, written specifically for the undergraduate audience, introducing key concepts from computational linguistics. Offers a comprehensive explanation of the problems computers face in handling natural language Covers a broad spectru

  19. Proceedings of the Organization of 1990 Meeting of International Neural Network Society Jointed with IEEE Held in Washington, DC on January 15 - 19, 1990. Volume 1. Theory Track Neural and cognitive Sciences Track

    Science.gov (United States)

    1990-11-30

    1-621 M.H. Hassoun, J. Song . S-M Shen, and A.R. Spitzer Wayne State University Numerical Analysis and...Kohonen Helsinki University of Technology xxii Table of Contents, Volume II A Technique for the Classification and Analysis of Insect Courtship Song ...Analysis of Aquired Aphasia : The Lexical System. Ann. Rev. Neurosci. pp. 395-421 [2] Kohonen T. (1982a) Self-organized Formation of Topologically

  20. Cerebellar language mapping and cerebral language dominance in pediatric epilepsy surgery patients

    Directory of Open Access Journals (Sweden)

    Jennifer N. Gelinas, MD, PhD

    2014-01-01

    Conclusions: Cerebellar language activation occurs in homologous regions of Crus I/II contralateral to cerebral language activation in patients with both right and left cerebral language dominance. Cerebellar language laterality could contribute to comprehensive pre-operative evaluation of language lateralization in pediatric epilepsy surgery patients. Our data suggest that patients with atypical cerebellar language activation are at risk for having atypical cerebral language organization.

  1. The Biological Nature of Human Language

    Directory of Open Access Journals (Sweden)

    Anna Maria Di Sciullo

    2010-03-01

    Full Text Available Biolinguistics aims to shed light on the specifically biological nature of human language, focusing on five foundational questions: (1 What are the properties of the language phenotype? (2 How does language ability grow and mature in individuals? (3 How is language put to use? (4 How is language implemented in the brain? (5 What evolutionary processes led to the emergence of language? These foundational questions are used here to frame a discussion of important issues in the study of language, exploring whether our linguistic capacity is the result of direct selective pressure or due to developmental or biophysical constraints, and assessing whether the neural/computational components entering into language are unique to human language or shared with other cognitive systems, leading to a discussion of advances in theoretical linguistics, psycholinguistics, comparative animal behavior and psychology, genetics/genomics, disciplines that can now place these longstanding questions in a new light, while raising challenges for future research.

  2. Plain language and organisational challenges

    DEFF Research Database (Denmark)

    Pedersen, Karsten

    2014-01-01

    Changing the language in an organization is a major organizational change. In this article, I discuss some of the organizational challenges for one specific language change implementation, taking the stance that language change must be treated as any other organizational change for it to have an ...

  3. Towards a new neurobiology of language.

    Science.gov (United States)

    Poeppel, David; Emmorey, Karen; Hickok, Gregory; Pylkkänen, Liina

    2012-10-10

    Theoretical advances in language research and the availability of increasingly high-resolution experimental techniques in the cognitive neurosciences are profoundly changing how we investigate and conceive of the neural basis of speech and language processing. Recent work closely aligns language research with issues at the core of systems neuroscience, ranging from neurophysiological and neuroanatomic characterizations to questions about neural coding. Here we highlight, across different aspects of language processing (perception, production, sign language, meaning construction), new insights and approaches to the neurobiology of language, aiming to describe promising new areas of investigation in which the neurosciences intersect with linguistic research more closely than before. This paper summarizes in brief some of the issues that constitute the background for talks presented in a symposium at the Annual Meeting of the Society for Neuroscience. It is not a comprehensive review of any of the issues that are discussed in the symposium.

  4. Towards a new neurobiology of language

    Science.gov (United States)

    Poeppel, David; Emmorey, Karen; Hickok, Gregory; Pylkkänen, Liina

    2012-01-01

    Theoretical advances in language research and the availability of increasingly high-resolution experimental techniques in the cognitive neurosciences are profoundly changing how we investigate and conceive of the neural basis of speech and language processing. Recent work closely aligns language research with issues at the core of systems neuroscience, ranging from neurophysiological and neuroanatomic characterizations to questions about neural coding. Here we highlight, across different aspects of language processing (perception, production, sign language, meaning construction), new insights and approaches to the neurobiology of language, aiming to describe promising new areas of investigation in which the neurosciences intersect with linguistic research more closely than before. This paper summarizes in brief some of the issues that constitute the background for talks presented in a symposium at the annual meeting of the Society for Neuroscience. It is not a comprehensive review of any of the issues that are discussed in the symposium. PMID:23055482

  5. VIRTUAL LEARNING ENVIRONMENT MOODLE AS A MEANS TO ORGANIZE BLENDED LEARNING IN TEACHING PRACTICAL PHONETICS OF GERMAN LANGUAGE

    Directory of Open Access Journals (Sweden)

    Olena S. Beskorsa

    2017-12-01

    Full Text Available In the article the problem of organizing blended learning of the course “Practical phonetics of German language” by means of virtual learning environment Moodle is revealed. The author summarizes the best practices of native and foreign researchers on the issues of blended learning implementation and technology of designing distance courses in the virtual learning environment Moodle. It is noted that the specificity of exercises in the course of practical phonetics is in the fact that they should contain tasks for recording their own voice to assess the level of formation of listening and pronunciation, rhythmic and intonation skills. The author describes his own experience in implementing the distance course in teaching the phonetics to students of the specialty “Primary Education”. The course offered by the author covers eight themes; each theme assumes the fulfillment of tasks in three blocks – theoretical, practical, and communicative. The article presents data of experimental verification of the implemented course that confirm its effectiveness.

  6. Social in, social out: How the brain responds to social language with more social language.

    Science.gov (United States)

    O'Donnell, Matthew Brook; Falk, Emily B; Lieberman, Matthew D

    Social connection is a fundamental human need. As such, people's brains are sensitized to social cues, such as those carried by language, and to promoting social communication. The neural mechanisms of certain key building blocks in this process, such as receptivity to and reproduction of social language, however, are not known. We combined quantitative linguistic analysis and neuroimaging to connect neural activity in brain regions used to simulate the mental states of others with exposure to, and re-transmission of, social language. Our results link findings on successful idea transmission from communication science, sociolinguistics and cognitive neuroscience to prospectively predict the degree of social language that participants utilize when re-transmitting ideas as a function of 1) initial language inputs and 2) neural activity during idea exposure.

  7. [Neural repair].

    Science.gov (United States)

    Kitada, Masaaki; Dezawa, Mari

    2008-05-01

    Recent progress of stem cell biology gives us the hope for neural repair. We have established methods to specifically induce functional Schwann cells and neurons from bone marrow stromal cells (MSCs). The effectiveness of these induced cells was evaluated by grafting them either into peripheral nerve injury, spinal cord injury, or Parkinson' s disease animal models. MSCs-derived Schwann cells supported axonal regeneration and re-constructed myelin to facilitate the functional recovery in peripheral and spinal cord injury. MSCs-derived dopaminergic neurons integrated into host striatum and contributed to behavioral repair. In this review, we introduce the differentiation potential of MSCs and finally discuss about their benefits and drawbacks of these induction systems for cell-based therapy in neuro-traumatic and neuro-degenerative diseases.

  8. Myelin plasticity, neural activity, and traumatic neural injury.

    Science.gov (United States)

    Kondiles, Bethany R; Horner, Philip J

    2018-02-01

    The possibility that adult organisms exhibit myelin plasticity has recently become a topic of great interest. Many researchers are exploring the role of myelin growth and adaptation in daily functions such as memory and motor learning. Here we consider evidence for three different potential categories of myelin plasticity: the myelination of previously bare axons, remodeling of existing sheaths, and the removal of a sheath with replacement by a new internode. We also review evidence that points to the importance of neural activity as a mechanism by which oligodendrocyte precursor cells (OPCs) are cued to differentiate into myelinating oligodendrocytes, which may potentially be an important component of myelin plasticity. Finally, we discuss demyelination in the context of traumatic neural injury and present an argument for altering neural activity as a potential therapeutic target for remyelination following injury. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 108-122, 2018. © 2017 Wiley Periodicals, Inc.

  9. Brain readiness and the nature of language

    OpenAIRE

    Denis eBouchard

    2015-01-01

    To identify the neural components that make a brain ready for language, it is important to have well defined linguistic phenotypes, to know precisely what language is. There are two central features to language: the capacity to form signs (words), and the capacity to combine them into complex structures. We must determine how the human brain enables these capacities. A sign is a link between a perceptual form and a conceptual meaning. Acoustic elements and content elements, are already brain-...

  10. Neurodynamics With Spatial Self-Organization

    Science.gov (United States)

    Zak, Michail A.

    1993-01-01

    Report presents theoretical study of dynamics of neural network organizing own response in both phase space and in position space. Postulates several mathematical models of dynamics including spatial derivatives representing local interconnections among neurons. Shows how neural responses propagate via these interconnections and how spatial pattern of neural responses formed in homogeneous biological neural network.

  11. Análise crítica dos sistemas neurais envolvidos nas respostas de medo inato Critical analysis of the neural systems organizing innate fear responses

    Directory of Open Access Journals (Sweden)

    Newton Sabino Canteras

    2003-12-01

    Full Text Available O nosso entendimento das bases neurofisiológicas da reação emocional do medo baseia-se em grande parte nos estudos que envolvem respostas condicionadas a estímulos fisicamente aversivos, como, por exemplo, o choque elétrico nas patas. Enquanto este paradigma parece ser útil para avaliarmos os sistemas neurais envolvidos na resposta do, assim chamado, medo condicionado (que tipicamente tem se limitado à observação da resposta de congelamento, este paradigma parece ter sérias limitações para investigarmos as bases neurais das respostas de medo em circunstancias naturais. Trabalhos recentes utilizando técnicas de lesões neurais bem como de mapeamento funcional em animais expostos a predadores naturais, ou somente ao odor destes predadores, revelam uma série de estruturas neurais como responsáveis pelas respostas de medo inato, bastante distintas daquelas previamente implicadas nas respostas de condicionamento aversivo. Como revisto no presente trabalho, entre estas estruturas temos distritos diferenciados da zona medial do hipotálamo; setores específicos da amídala e do sistema septo-hipocampal, envolvidos, respectivamente no processamento de pistas relacionadas à presença do predador e na análise contextual do ambiente; e setores da matéria cinzenta periaquedutal, já classicamente envolvidos na expressão de respostas de defesa. Estas informações podem ser potencialmente importantes para a análise e terapêutica de psicopatologias relacionadas aos distúrbios da reação emocional de medo.Unconditioned emotional responses elicited by exposure to a predator have served as the prototypical exemplar for analyses of the behavioral biology of fear-related emotionality. However, the primary research model for the study of fear has involved shock-based cue and context conditioning. While these shock-based models have provided a good understanding of neural systems regulating specific conditioned fear-related behaviors

  12. Evolution of Tonal Organization in Music Optimizes Neural Mechanisms in Symbolic Encoding of Perceptual Reality. Part-2: Ancient to Seventeenth Century

    OpenAIRE

    Nikolsky, Aleksey

    2016-01-01

    This paper reveals the way in which musical pitch works as a peculiar form of cognition that reflects upon the organization of the surrounding world as perceived by majority of music users within a socio-cultural formation. Part-1 of this paper described the origin of tonal organization from verbal speech, its progress from indefinite to definite pitch, and the emergence of two main harmonic orders: heptatonic and pentatonic, each characterized by its own method of handling tension at both do...

  13. EDITORIAL: Why we need a new journal in neural engineering

    Science.gov (United States)

    Durand, Dominique M.

    2004-03-01

    The field of neural engineering crystallizes for many engineers and scientists an area of research at the interface between neuroscience and engineering. For the last 15 years or so, the discipline of neural engineering (neuroengineering) has slowly appeared at conferences as a theme or track. The first conference devoted entirely to this area was the 1st International IEEE EMBS Conference on Neural Engineering which took place in Capri, Italy in 2003. Understanding how the brain works is considered the ultimate frontier and challenge in science. The complexity of the brain is so great that understanding even the most basic functions will require that we fully exploit all the tools currently at our disposal in science and engineering and simultaneously develop new methods of analysis. While neuroscientists and engineers from varied fields such as brain anatomy, neural development and electrophysiology have made great strides in the analysis of this complex organ, there remains a great deal yet to be uncovered. The potential for applications and remedies deriving from scientific discoveries and breakthroughs is extremely high. As a result of the growing availability of micromachining technology, research into neurotechnology has grown relatively rapidly in recent years and appears to be approaching a critical mass. For example, by understanding how neuronal circuits process and store information, we could design computers with capabilities beyond current limits. By understanding how neurons develop and grow, we could develop new technologies for spinal cord repair or central nervous system repair following neurological disorders. Moreover, discoveries related to higher-level cognitive function and consciousness could have a profound influence on how humans make sense of their surroundings and interact with each other. The ability to successfully interface the brain with external electronics would have enormous implications for our society and facilitate a

  14. Neural recording and modulation technologies

    Science.gov (United States)

    Chen, Ritchie; Canales, Andres; Anikeeva, Polina

    2017-01-01

    In the mammalian nervous system, billions of neurons connected by quadrillions of synapses exchange electrical, chemical and mechanical signals. Disruptions to this network manifest as neurological or psychiatric conditions. Despite decades of neuroscience research, our ability to treat or even to understand these conditions is limited by the capability of tools to probe the signalling complexity of the nervous system. Although orders of magnitude smaller and computationally faster than neurons, conventional substrate-bound electronics do not recapitulate the chemical and mechanical properties of neural tissue. This mismatch results in a foreign-body response and the encapsulation of devices by glial scars, suggesting that the design of an interface between the nervous system and a synthetic sensor requires additional materials innovation. Advances in genetic tools for manipulating neural activity have fuelled the demand for devices that are capable of simultaneously recording and controlling individual neurons at unprecedented scales. Recently, flexible organic electronics and bio- and nanomaterials have been developed for multifunctional and minimally invasive probes for long-term interaction with the nervous system. In this Review, we discuss the design lessons from the quarter-century-old field of neural engineering, highlight recent materials-driven progress in neural probes and look at emergent directions inspired by the principles of neural transduction.

  15. Broca's area and the language instinct.

    Science.gov (United States)

    Musso, Mariacristina; Moro, Andrea; Glauche, Volkmar; Rijntjes, Michel; Reichenbach, Jürgen; Büchel, Christian; Weiller, Cornelius

    2003-07-01

    Language acquisition in humans relies on abilities like abstraction and use of syntactic rules, which are absent in other animals. The neural correlate of acquiring new linguistic competence was investigated with two functional magnetic resonance imaging (fMRI) studies. German native speakers learned a sample of 'real' grammatical rules of different languages (Italian or Japanese), which, although parametrically different, follow the universal principles of grammar (UG). Activity during this task was compared with that during a task that involved learning 'unreal' rules of language. 'Unreal' rules were obtained manipulating the original two languages; they used the same lexicon as Italian or Japanese, but were linguistically illegal, as they violated the principles of UG. Increase of activation over time in Broca's area was specific for 'real' language acquisition only, independent of the kind of language. Thus, in Broca's area, biological constraints and language experience interact to enable linguistic competence for a new language.

  16. COMMON LANGUAGE VERSUS SPECIALIZED LANGUAGE

    OpenAIRE

    Mariana Coancă

    2011-01-01

    This paper deals with the presentation of the common language and the specialized one. We also highlighted the relations and the differences between them. The specialized language is a vector of specialized knowledge, but sometimes it contains units from the common language. The common language is unmarked and it is based on the daily non-specialized exchange. The specialized languages are different from the common languages, regarding their usage and the information they convey. The communic...

  17. Second language processing : when are first and second languages processed similarly?

    NARCIS (Netherlands)

    Sabourin, Laura; Stowe, Laurie A.

    In this article we investigate the effects of first language (L1) on second language (L2) neural processing for two grammatical constructions (verbal domain dependency and grammatical gender), focusing on the event-related potential P600 effect, which has been found in both L1 and L2 processing.

  18. Neural scaling laws for an uncertain world

    CERN Document Server

    Howard, Marc W

    2016-01-01

    The Weber-Fechner law describes the form of psychological space in many behavioral experiments involving perception of one-dimensional physical quantities. If the physical quantity is expressed using multiple neural receptors, then placing receptive fields evenly along a logarithmic scale naturally leads to the psychological Weber-Fechner law. In the visual system, the spacing and width of extrafoveal receptive fields are consistent with logarithmic scaling. Other sets of neural "receptors" appear to show the same qualitative properties, suggesting that this form of neural scaling reflects a solution to a very general problem. This paper argues that these neural scaling laws enable the brain to represent information about the world efficiently without making any assumptions about the statistics of the world. This analysis suggests that the organization of neural scales to represent one-dimensional quantities, including more abstract quantities such as numerosity, time, and allocentric space, should have a uni...

  19. 22nd Italian Workshop on Neural Nets

    CERN Document Server

    Bassis, Simone; Esposito, Anna; Morabito, Francesco

    2013-01-01

    This volume collects a selection of contributions which has been presented at the 22nd Italian Workshop on Neural Networks, the yearly meeting of the Italian Society for Neural Networks (SIREN). The conference was held in Italy, Vietri sul Mare (Salerno), during May 17-19, 2012. The annual meeting of SIREN is sponsored by International Neural Network Society (INNS), European Neural Network Society (ENNS) and IEEE Computational Intelligence Society (CIS). The book – as well as the workshop-  is organized in three main components, two special sessions and a group of regular sessions featuring different aspects and point of views of artificial neural networks and natural intelligence, also including applications of present compelling interest.

  20. Evolution of Tonal Organization in Music Optimizes Neural Mechanisms in Symbolic Encoding of Perceptual Reality. Part-2: Ancient to Seventeenth Century.

    Science.gov (United States)

    Nikolsky, Aleksey

    2016-01-01

    This paper reveals the way in which musical pitch works as a peculiar form of cognition that reflects upon the organization of the surrounding world as perceived by majority of music users within a socio-cultural formation. Part-1 of this paper described the origin of tonal organization from verbal speech, its progress from indefinite to definite pitch, and the emergence of two main harmonic orders: heptatonic and pentatonic, each characterized by its own method of handling tension at both domains, of tonal and social organization. Part-2, here, completes the line of historic development from Antiquity to seventeenth century. Vast archeological data is used to identify the perception of music structures that tells apart the temple/palace music of urban civilizations and the folk music of village cultures. The "mega-pitch-set" (MPS) organization is found to constitute the principal contribution of a math-based music theory to a new diatonic order. All ramifications for psychology of music are discussed in detail. "Non-octave hypermode" is identified as a peculiar homogenous type of MPS, typical for plainchant. The origin of chromaticism is thoroughly examined as an earmark of "art-music" that opposes earlier forms of folk music. The role of aesthetic emotions in formation of chromatic alteration is defined. The development of chromatic system is traced throughout history, highlighting its modern implementation in "hemiolic modes." The connection between tonal organization in music and spatial organization in pictorial art is established in the Baroque culture, and then tracked back to prehistoric times. Both are shown to present a form of abstraction of environmental topographic schemes, and music is proposed as the primary medium for its cultivation through the concept of pitch. The comparison of stages of tonal organization and typologies of musical texture is used to define the overall course of tonal evolution. Tonal organization of pitch reflects the culture of

  1. Exploring the Neural Substrates of Phonological Recovery for Symposium: Neural Correlates of Recovery and Rehabilitation

    Directory of Open Access Journals (Sweden)

    Pelagie M Beeson

    2015-10-01

    All participants improved written language abilities in response to treatment, but one subgroup was limited in their ability to regain phonological skills. Both anterior and posterior components of the perisylvian phonological network were damaged in that group. These findings are consistent with fMRI activation when healthy adults write nonwords, and provide insight regarding neural support necessary for phonological rehabilitation.

  2. Modeling the Relationship between Lexico-Grammatical and Discourse Organization Skills in Middle Grade Writers: Insights into Later Productive Language Skills That Support Academic Writing

    Science.gov (United States)

    Galloway, Emily Phillips; Uccelli, Paola

    2015-01-01

    Learning to write in middle school requires the expansion of sentence-level and discourse-level language skills. In this study, we investigated later language development in the writing of a cross-sectional sample of 235 upper elementary and middle school students (grades 4-8) by examining the use of (1) lexico-grammatical forms that support…

  3. Language Awareness

    NARCIS (Netherlands)

    White, Lana; Maylath, J. Bruce; Adams, Anthony; Couzijn, Michel

    2000-01-01

    Language Awareness: A History and Implementations offers teachers of mother tongue and foreign languages a view of the beginnings and the ramifications of the language-teaching movement called Language Awareness. The philosophy held in common among the teachers in this international movement is

  4. Base Language

    Science.gov (United States)

    Chandrasekhar, A.

    1978-01-01

    A brief discussion of the role of contrastive linguistics and transformational generative grammar in studying transfer and interference in language learning. The base language is not necessarily the mother tongue. It is the language known by the learner which most closely resembles the new language being learned. (AMH)

  5. Hebrew Brain vs. English Brain: Language Modulates the Way It Is Processed

    Science.gov (United States)

    Bick, Atira S.; Goelman, Gadi; Frost, Ram

    2011-01-01

    Is language processing universal? How do the specific properties of each language influence the way it is processed? In this study, we compare the neural correlates of morphological processing in Hebrew--a Semitic language with a rich and systematic morphology, to those revealed in English--an Indo-European language with a linear morphology. Using…

  6. Professional Language in Language Education

    Science.gov (United States)

    Zascerinska, Jelena

    2010-01-01

    Introduction. The use of 3-5 languages where professional language is one of them is of the greatest importance in order to form varied cooperative networks for the creation of new knowledge. The Aim of the Study. To identify and analyze professional language on the pedagogical discourse in language education. Materials and Methods. The search for…

  7. Modular representation of layered neural networks.

    Science.gov (United States)

    Watanabe, Chihiro; Hiramatsu, Kaoru; Kashino, Kunio

    2018-01-01

    Layered neural networks have greatly improved the performance of various applications including image processing, speech recognition, natural language processing, and bioinformatics. However, it is still difficult to discover or interpret knowledge from the inference provided by a layered neural network, since its internal representation has many nonlinear and complex parameters embedded in hierarchical layers. Therefore, it becomes important to establish a new methodology by which layered neural networks can be understood. In this paper, we propose a new method for extracting a global and simplified structure from a layered neural network. Based on network analysis, the proposed method detects communities or clusters of units with similar connection patterns. We show its effectiveness by applying it to three use cases. (1) Network decomposition: it can decompose a trained neural network into multiple small independent networks thus dividing the problem and reducing the computation time. (2) Training assessment: the appropriateness of a trained result with a given hyperparameter or randomly chosen initial parameters can be evaluated by using a modularity index. And (3) data analysis: in practical data it reveals the community structure in the input, hidden, and output layers, which serves as a clue for discovering knowledge from a trained neural network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Plain Language and Organizational Challenges

    Directory of Open Access Journals (Sweden)

    Karsten Pedersen

    2014-06-01

    Full Text Available Changing the language in an organization is a major organizational change. In this article, I discuss some of the organizational challenges for one specific language change implementation, taking the stance that language change must be treated as any other organizational change for it to have an effect. I work with the case of the Danish tax authorities’ language project aimed at producing more readable letters. The empirical data that I work with are two qualitative informant interviews. One recorded at the language project’s headquarters where they lay out the general lines for the project, and the other at the payment center where they use the revised letters.

  9. Neural Darwinism and consciousness.

    Science.gov (United States)

    Seth, Anil K; Baars, Bernard J

    2005-03-01

    Neural Darwinism (ND) is a large scale selectionist theory of brain development and function that has been hypothesized to relate to consciousness. According to ND, consciousness is entailed by reentrant interactions among neuronal populations in the thalamocortical system (the 'dynamic core'). These interactions, which permit high-order discriminations among possible core states, confer selective advantages on organisms possessing them by linking current perceptual events to a past history of value-dependent learning. Here, we assess the consistency of ND with 16 widely recognized properties of consciousness, both physiological (for example, consciousness is associated with widespread, relatively fast, low amplitude interactions in the thalamocortical system), and phenomenal (for example, consciousness involves the existence of a private flow of events available only to the experiencing subject). While no theory accounts fully for all of these properties at present, we find that ND and its recent extensions fare well.

  10. Artificial neural network modeling and cluster analysis for organic facies and burial history estimation using well log data: A case study of the South Pars Gas Field, Persian Gulf, Iran

    Science.gov (United States)

    Alizadeh, Bahram; Najjari, Saeid; Kadkhodaie-Ilkhchi, Ali

    2012-08-01

    Intelligent and statistical techniques were used to extract the hidden organic facies from well log responses in the Giant South Pars Gas Field, Persian Gulf, Iran. Kazhdomi Formation of Mid-Cretaceous and Kangan-Dalan Formations of Permo-Triassic Data were used for this purpose. Initially GR, SGR, CGR, THOR, POTA, NPHI and DT logs were applied to model the relationship between wireline logs and Total Organic Carbon (TOC) content using Artificial Neural Networks (ANN). The correlation coefficient (R2) between the measured and ANN predicted TOC equals to 89%. The performance of the model is measured by the Mean Squared Error function, which does not exceed 0.0073. Using Cluster Analysis technique and creating a binary hierarchical cluster tree the constructed TOC column of each formation was clustered into 5 organic facies according to their geochemical similarity. Later a second model with the accuracy of 84% was created by ANN to determine the specified clusters (facies) directly from well logs for quick cluster recognition in other wells of the studied field. Each created facies was correlated to its appropriate burial history curve. Hence each and every facies of a formation could be scrutinized separately and directly from its well logs, demonstrating the time and depth of oil or gas generation. Therefore potential production zone of Kazhdomi probable source rock and Kangan- Dalan reservoir formation could be identified while well logging operations (especially in LWD cases) were in progress. This could reduce uncertainty and save plenty of time and cost for oil industries and aid in the successful implementation of exploration and exploitation plans.

  11. Introduction to neural networks

    CERN Document Server

    James, Frederick E

    1994-02-02

    1. Introduction and overview of Artificial Neural Networks. 2,3. The Feed-forward Network as an inverse Problem, and results on the computational complexity of network training. 4.Physics applications of neural networks.

  12. Morphological neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-31

    The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.

  13. Folate receptor 1 is necessary for neural plate cell apical constriction during Xenopus neural tube formation.

    Science.gov (United States)

    Balashova, Olga A; Visina, Olesya; Borodinsky, Laura N

    2017-04-15

    Folate supplementation prevents up to 70% of neural tube defects (NTDs), which result from a failure of neural tube closure during embryogenesis. The elucidation of the mechanisms underlying folate action has been challenging. This study introduces Xenopus laevis as a model to determine the cellular and molecular mechanisms involved in folate action during neural tube formation. We show that knockdown of folate receptor 1 (Folr1; also known as FRα) impairs neural tube formation and leads to NTDs. Folr1 knockdown in neural plate cells only is necessary and sufficient to induce NTDs. Folr1-deficient neural plate cells fail to constrict, resulting in widening of the neural plate midline and defective neural tube closure. Pharmacological inhibition of folate action by methotrexate during neurulation induces NTDs by inhibiting folate interaction with its uptake systems. Our findings support a model in which the folate receptor interacts with cell adhesion molecules, thus regulating the apical cell membrane remodeling and cytoskeletal dynamics necessary for neural plate folding. Further studies in this organism could unveil novel cellular and molecular events mediated by folate and lead to new ways of preventing NTDs. © 2017. Published by The Company of Biologists Ltd.

  14. Modelling language

    CERN Document Server

    Cardey, Sylviane

    2013-01-01

    In response to the need for reliable results from natural language processing, this book presents an original way of decomposing a language(s) in a microscopic manner by means of intra/inter‑language norms and divergences, going progressively from languages as systems to the linguistic, mathematical and computational models, which being based on a constructive approach are inherently traceable. Languages are described with their elements aggregating or repelling each other to form viable interrelated micro‑systems. The abstract model, which contrary to the current state of the art works in int

  15. ERP correlates of German Sign Language processing in deaf native signers.

    Science.gov (United States)

    Hänel-Faulhaber, Barbara; Skotara, Nils; Kügow, Monique; Salden, Uta; Bottari, Davide; Röder, Brigitte

    2014-05-10

    The present study investigated the neural correlates of sign language processing of Deaf people who had learned German Sign Language (Deutsche Gebärdensprache, DGS) from their Deaf parents as their first language. Correct and incorrect signed sentences were presented sign by sign on a computer screen. At the end of each sentence the participants had to judge whether or not the sentence was an appropriate DGS sentence. Two types of violations were introduced: (1) semantically incorrect sentences containing a selectional restriction violation (implausible object); (2) morphosyntactically incorrect sentences containing a verb that was incorrectly inflected (i.e., incorrect direction of movement). Event-related brain potentials (ERPs) were recorded from 74 scalp electrodes. Semantic violations (implausible signs) elicited an N400 effect followed by a positivity. Sentences with a morphosyntactic violation (verb agreement violation) elicited a negativity followed by a broad centro-parietal positivity. ERP correlates of semantic and morphosyntactic aspects of DGS clearly differed from each other and showed a number of similarities with those observed in other signed and oral languages. These data suggest a similar functional organization of signed and oral languages despite the visual-spacial modality of sign language.

  16. Neural implementation of musical expertise and cognitive transfers: Could they be promising in the framework of normal cognitive aging?

    Directory of Open Access Journals (Sweden)

    Baptiste eFAUVEL

    2013-10-01

    Full Text Available Brain plasticity allows the central nervous system of a given organism to cope with environmental demands. Therefore, the quality of mental processes relies partly on the interaction between the brain’s physiological maturation and individual daily experiences.In this review, we focus on the neural implementation of musical expertise at both an anatomical and a functional level. We then discuss how this neural implementation can explain transfers from musical learning to a broad range of nonmusical cognitive functions, including language, especially during child development. Finally, given that brain plasticity is still present in aging, we gather arguments to propose that musical practice could be a good environmental enrichment to promote cerebral and cognitive reserves, thereby reducing the deleterious effect of aging on cognitive functions.

  17. Native-language N400 and P600 predict dissociable language-learning abilities in adults.

    Science.gov (United States)

    Qi, Zhenghan; Beach, Sara D; Finn, Amy S; Minas, Jennifer; Goetz, Calvin; Chan, Brian; Gabrieli, John D E

    2017-04-01

    Language learning aptitude during adulthood varies markedly across individuals. An individual's native-language ability has been associated with success in learning a new language as an adult. However, little is known about how native-language processing affects learning success and what neural markers of native-language processing, if any, are related to success in learning. We therefore related variation in electrophysiology during native-language processing to success in learning a novel artificial language. Event-related potentials (ERPs) were recorded while native English speakers judged the acceptability of English sentences prior to learning an artificial language. There was a trend towards a double dissociation between native-language ERPs and their relationships to novel syntax and vocabulary learning. Individuals who exhibited a greater N400 effect when processing English semantics showed better future learning of the artificial language overall. The N400 effect was related to syntax learning via its specific relationship to vocabulary learning. In contrast, the P600 effect size when processing English syntax predicted future syntax learning but not vocabulary learning. These findings show that distinct neural signatures of native-language processing relate to dissociable abilities for learning novel semantic and syntactic information. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Using Self-Organizing Neural Network Map Combined with Ward's Clustering Algorithm for Visualization of Students' Cognitive Structural Models about Aliveness Concept.

    Science.gov (United States)

    Yorek, Nurettin; Ugulu, Ilker; Aydin, Halil

    2016-01-01

    We propose an approach to clustering and visualization of students' cognitive structural models. We use the self-organizing map (SOM) combined with Ward's clustering to conduct cluster analysis. In the study carried out on 100 subjects, a conceptual understanding test consisting of open-ended questions was used as a data collection tool. The results of analyses indicated that students constructed the aliveness concept by associating it predominantly with human. Motion appeared as the most frequently associated term with the aliveness concept. The results suggest that the aliveness concept has been constructed using anthropocentric and animistic cognitive structures. In the next step, we used the data obtained from the conceptual understanding test for training the SOM. Consequently, we propose a visualization method about cognitive structure of the aliveness concept.

  19. Self-organizing feature map (neural networks) as a tool to select the best indicator of road traffic pollution (soil, leaves or bark of Robinia pseudoacacia L.).

    Science.gov (United States)

    Samecka-Cymerman, A; Stankiewicz, A; Kolon, K; Kempers, A J

    2009-07-01

    Concentrations of the elements Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were measured in the leaves and bark of Robinia pseudoacacia and the soil in which it grew, in the town of Oleśnica (SW Poland) and at a control site. We selected this town because emission from motor vehicles is practically the only source of air pollution, and it seemed interesting to evaluate its influence on soil and plants. The self-organizing feature map (SOFM) yielded distinct groups of soils and R. pseudoacacia leaves and bark, depending on traffic intensity. Only the map classifying bark samples identified an additional group of highly polluted sites along the main highway from Wrocław to Warszawa. The bark of R. pseudoacacia seems to be a better bioindicator of long-term cumulative traffic pollution in the investigated area, while leaves are good indicators of short-term seasonal accumulation trends.

  20. Measuring language lateralisation with different language tasks: a systematic review.

    Science.gov (United States)

    Bradshaw, Abigail R; Thompson, Paul A; Wilson, Alexander C; Bishop, Dorothy V M; Woodhead, Zoe V J

    2017-01-01

    Language lateralisation refers to the phenomenon in which one hemisphere (typically the left) shows greater involvement in language functions than the other. Measurement of laterality is of interest both to researchers investigating the neural organisation of the language system and to clinicians needing to establish an individual's hemispheric dominance for language prior to surgery, as in patients with intractable epilepsy. Recently, there has been increasing awareness of the possibility that different language processes may develop hemispheric lateralisation independently, and to varying degrees. However, it is not always clear whether differences in laterality across language tasks with fMRI are reflective of meaningful variation in hemispheric lateralisation, or simply of trivial methodological differences between paradigms. This systematic review aims to assess different language tasks in terms of the strength, reliability and robustness of the laterality measurements they yield with fMRI, to look at variability that is both dependent and independent of aspects of study design, such as the baseline task, region of interest, and modality of the stimuli. Recommendations are made that can be used to guide task design; however, this review predominantly highlights that the current high level of methodological variability in language paradigms prevents conclusions as to how different language functions may lateralise independently. We conclude with suggestions for future research using tasks that engage distinct aspects of language functioning, whilst being closely matched on non-linguistic aspects of task design (e.g., stimuli, task timings etc); such research could produce more reliable and conclusive insights into language lateralisation. This systematic review was registered as a protocol on Open Science Framework: https://osf.io/5vmpt/.

  1. Mother tongue lost while second language intact: insights into aphasia.

    Science.gov (United States)

    Garcia, Ana M; Egido, Jose A; Barquero, Maria Sagrario

    2010-01-01

    Cortical representations of the native language and a second language may have different anatomical distribution. The relationships between the phonologic and orthographic forms of words continue to be debated. We present a bilingual patient whose competence in his mother tongue was disrupted following brain ischaemia. Semantic units were accessible only as isolated letters in written as well as oral language presentation. His second language appeared completely unaffected. Whole word system disturbance of both orthography and phonology pathways of the native language could explain this presentation. It is a great opportunity to learn about the language neural network when a bilingual subject presents with brain ischaemia.

  2. Activation Patterns throughout the Word Processing Network of L1-dominant Bilinguals Reflect Language Similarity and Language Decisions.

    Science.gov (United States)

    Oganian, Yulia; Conrad, Markus; Aryani, Arash; Spalek, Katharina; Heekeren, Hauke R

    2015-11-01

    A crucial aspect of bilingual communication is the ability to identify the language of an input. Yet, the neural and cognitive basis of this ability is largely unknown. Moreover, it cannot be easily incorporated into neuronal models of bilingualism, which posit that bilinguals rely on the same neural substrates for both languages and concurrently activate them even in monolingual settings. Here we hypothesized that bilinguals can employ language-specific sublexical (bigram frequency) and lexical (orthographic neighborhood size) statistics for language recognition. Moreover, we investigated the neural networks representing language-specific statistics and hypothesized that language identity is encoded in distributed activation patterns within these networks. To this end, German-English bilinguals made speeded language decisions on visually presented pseudowords during fMRI. Language attribution followed lexical neighborhood sizes both in first (L1) and second (L2) language. RTs revealed an overall tuning to L1 bigram statistics. Neuroimaging results demonstrated tuning to L1 statistics at sublexical (occipital lobe) and phonological (temporoparietal lobe) levels, whereas neural activation in the angular gyri reflected sensitivity to lexical similarity to both languages. Analysis of distributed activation patterns reflected language attribution as early as in the ventral stream of visual processing. We conclude that in language-ambiguous contexts visual word processing is dominated by L1 statistical structure at sublexical orthographic and phonological levels, whereas lexical search is determined by the structure of both languages. Moreover, our results demonstrate that language identity modulates distributed activation patterns throughout the reading network, providing a key to language identity representations within this shared network.

  3. Prespeech motor learning in a neural network using reinforcement☆

    Science.gov (United States)

    Warlaumont, Anne S.; Westermann, Gert; Buder, Eugene H.; Oller, D. Kimbrough

    2012-01-01

    Vocal motor development in infancy provides a crucial foundation for language development. Some significant early accomplishments include learning to control the process of phonation (the production of sound at the larynx) and learning to produce the sounds of one’s language. Previous work has shown that social reinforcement shapes the kinds of vocalizations infants produce. We present a neural network model that provides an account of how vocal learning may be guided by reinforcement. The model consists of a self-organizing map that outputs to muscles of a realistic vocalization synthesizer. Vocalizations are spontaneously produced by the network. If a vocalization meets certain acoustic criteria, it is reinforced, and the weights are updated to make similar muscle activations increasingly likely to recur. We ran simulations of the model under various reinforcement criteria and tested the types of vocalizations it produced after learning in the differ-ent conditions. When reinforcement was contingent on the production of phonated (i.e. voiced) sounds, the network’s post learning productions were almost always phonated, whereas when reinforcement was not contingent on phonation, the network’s post-learning productions were almost always not phonated. When reinforcement was contingent on both phonation and proximity to English vowels as opposed to Korean vowels, the model’s post-learning productions were more likely to resemble the English vowels and vice versa. PMID:23275137

  4. Prespeech motor learning in a neural network using reinforcement.

    Science.gov (United States)

    Warlaumont, Anne S; Westermann, Gert; Buder, Eugene H; Oller, D Kimbrough

    2013-02-01

    Vocal motor development in infancy provides a crucial foundation for language development. Some significant early accomplishments include learning to control the process of phonation (the production of sound at the larynx) and learning to produce the sounds of one's language. Previous work has shown that social reinforcement shapes the kinds of vocalizations infants produce. We present a neural network model that provides an account of how vocal learning may be guided by reinforcement. The model consists of a self-organizing map that outputs to muscles of a realistic vocalization synthesizer. Vocalizations are spontaneously produced by the network. If a vocalization meets certain acoustic criteria, it is reinforced, and the weights are updated to make similar muscle activations increasingly likely to recur. We ran simulations of the model under various reinforcement criteria and tested the types of vocalizations it produced after learning in the different conditions. When reinforcement was contingent on the production of phonated (i.e. voiced) sounds, the network's post-learning productions were almost always phonated, whereas when reinforcement was not contingent on phonation, the network's post-learning productions were almost always not phonated. When reinforcement was contingent on both phonation and proximity to English vowels as opposed to Korean vowels, the model's post-learning productions were more likely to resemble the English vowels and vice versa. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. A neural population model incorporating dopaminergic neurotransmission during complex voluntary behaviors.

    Directory of Open Access Journals (Sweden)

    Stefan Fürtinger

    2014-11-01

    Full Text Available Assessing brain activity during complex voluntary motor behaviors that require the recruitment of multiple neural sites is a field of active research. Our current knowledge is primarily based on human brain imaging studies that have clear limitations in terms of temporal and spatial resolution. We developed a physiologically informed non-linear multi-compartment stochastic neural model to simulate functional brain activity coupled with neurotransmitter release during complex voluntary behavior, such as speech production. Due to its state-dependent modulation of neural firing, dopaminergic neurotransmission plays a key role in the organization of functional brain circuits controlling speech and language and thus has been incorporated in our neural population model. A rigorous mathematical proof establishing existence and uniqueness of solutions to the proposed model as well as a computationally efficient strategy to numerically approximate these solutions are presented. Simulated brain activity during the resting state and sentence production was analyzed using functional network connectivity, and graph theoretical techniques were employed to highlight differences between the two conditions. We demonstrate that our model successfully reproduces characteristic changes seen in empirical data between the resting state and speech production, and dopaminergic neurotransmission evokes pronounced changes in modeled functional connectivity by acting on the underlying biological stochastic neural model. Specifically, model and data networks in both speech and rest conditions share task-specific network features: both the simulated and empirical functional connectivity networks show an increase in nodal influence and segregation in speech over the resting state. These commonalities confirm that dopamine is a key neuromodulator of the functional connectome of speech control. Based on reproducible characteristic aspects of empirical data, we suggest a number

  6. Programming languages for synthetic biology.

    Science.gov (United States)

    Umesh, P; Naveen, F; Rao, Chanchala Uma Maheswara; Nair, Achuthsankar S

    2010-12-01

    In the backdrop of accelerated efforts for creating synthetic organisms, the nature and scope of an ideal programming language for scripting synthetic organism in-silico has been receiving increasing attention. A few programming languages for synthetic biology capable of defining, constructing, networking, editing and delivering genome scale models of cellular processes have been recently attempted. All these represent important points in a spectrum of possibilities. This paper introduces Kera, a state of the art programming language for synthetic biology which is arguably ahead of similar languages or tools such as GEC, Antimony and GenoCAD. Kera is a full-fledged object oriented programming language which is tempered by biopart rule library named Samhita which captures the knowledge regarding the interaction of genome components and catalytic molecules. Prominent feature of the language are demonstrated through a toy example and the road map for the future development of Kera is also presented.

  7. THE U.S. FOREIGN LANGUAGE DEFICIT, LANGUAGE ENTERPRISE, AND LANGUAGES FOR SPECIFIC PURPOSES

    Directory of Open Access Journals (Sweden)

    Kathleen Stein-Smith

    2015-03-01

    Full Text Available At present, there is a gap between the need for foreign language skills and their availability in the U.S. marketplace, resulting in a monolingual American in a multilingual global workplace. The Language Enterprise, a partnership of government, academia, and the private sector, can collaborate to effectively address the U.S. foreign language deficit and to close the gap between the availability of foreign languages skills and the need for them in the U.S. workplace. High profile partnerships, such as the “Many Languages One World” (MLOW Essay Contest and Global Youth Forum, and advocacy initiatives such as the American Association of Teachers of French (AATF Commission on Advocacy, the National Organization of Business Language Educators (NOBLE, the Joint National Committee for Languages and the National Committee on Languages and International Studies (JNCL-NCLIS will be described. This article will also examine career opportunities as language specialists and other careers enhanced by foreign language skills, as well as the importance of creating a sustainable framework for motivation in order to empower U.S. students studying foreign languages to achieve the level of foreign language proficiency needed in the workplace. In order to bring about the needed paradigm shift, a sustainable framework for successful foreign language learning would also require pre-professional and career-oriented programs in foreign languages included under the umbrella of Languages for Specific Purposes (LSP and Business Language Studies (BLS. The recommendations of the Modern Language Association report, “Foreign Languages and Higher Education: New Structures for a Changed World,” with its proposed transformation of the traditional 2-tier system into an “integrative approach with multiple pathways to the major, clearly demonstrate the importance of programs in Languages for Specific Purposes (LSP and Business Language Studies (BLS. Conclusions and future

  8. Language as gesture.

    Science.gov (United States)

    Corballis, Michael C

    2009-10-01

    Language can be understood as an embodied system, expressible as gestures. Perception of these gestures depends on the "mirror system," first discovered in monkeys, in which the same neural elements respond both when the animal makes a movement and when it perceives the same movement made by others. This system allows gestures to be understood in terms of how they are produced, as in the so-called motor theory of speech perception. I argue that human speech evolved from manual gestures, with vocal gestures being gradually incorporated into the mirror system in the course of hominin evolution. Speech may have become the dominant mode only with the emergence of Homo sapiens some 170,100 years ago, although language as a relatively complex syntactic system probably emerged over the past 2 million years, initially as a predominantly manual system. Despite the present-day dominance of speech, manual gestures accompany speech, and visuomanual forms of language persist in signed languages of the deaf, in handwriting, and even in such forms as texting.

  9. Endangered Languages.

    Science.gov (United States)

    Hale, Ken; And Others

    1992-01-01

    Endangered languages, or languages on the verge of becoming extinct, are discussed in relation to the larger process of loss of cultural and intellectual diversity. This article summarizes essays presented at the 1991 Linguistic Society of America symposium, "Endangered Languages and Their Preservation." (11 references) (LB)

  10. Language Two.

    Science.gov (United States)

    Dulay, Heidi; And Others

    In this course text on second language acquisition, the latest research of Halle and Chomsky, Lenneberg, Hatch, Larsen-Freeman, Dulay and Burt, and Krashen is presented. The text covers such topics as the effects of environment, age, and personality on second language acquisition; the role of the first language; and error analysis. Enough has been…

  11. APPLICATION OF A FULL-COHERENT ARTIFICIAL NEURAL NETWORK FOR FORECASTING OF THE MODES OF STORAGE OF DOMESTIC LOW-OLIVE RAW MATERIALS IN CONTROLLED ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    N. S. Rodionova

    2015-01-01

    Full Text Available Summary. Researches on increase in an expiration date of the wheat germs (WG with use of compositions of organic acids are conducted. With a research objective of influence of concentration of mixes of organic acids on change of indicators of quality at storage of the SALARY in various modes investigated quality indicators in the range of concentration of 1-7% to the mass of a product. As control the raw SALARIES served. Skilled products stored in refrigerator conditions (temperature 4-6 ºС, relative humidity of air of 75-80% and a warehouse (temperature 20-22 ºС, relative humidity of air of 70-80%. The software product on the basis of the program of training and the analysis of training of an artificial full-coherent neural network (INS in the Python 2.7 language with program libraries of mathematical processing of scientific data of "scipy" is developed. As input parameters of a neural network were considered: humidity of wheaten germs (х1, %, relative humidity of air (х2, %, ambient temperature (х3, ºС and concentration of mix of organic acids (х4, %. By means of the software, some neural networks were designed and trained. For modeling the network with two layers was used. Applying the developed and trained neural network it is possible constructed dependence у(х1, х2, х3, х4. For visualization in three-dimensional space limited amount of arguments of function by two. Results of work of neural networks y (x1, x4 with the recorded entrance parameters (x2 = 60, %, x3=20, ºC and a neural network y (x2, x3 with the recorded input parameters are presented (x1 = 15%, x4 = 5%. The received mathematical model which on the set set of certain parameters of storage, allows to receive concrete value of output parameter and to plan the storage modes in controlled environments.

  12. Typha latifolia (broadleaf cattail) as bioindicator of different types of pollution in aquatic ecosystems-application of self-organizing feature map (neural network).

    Science.gov (United States)

    Klink, Agnieszka; Polechońska, Ludmiła; Cegłowska, Aurelia; Stankiewicz, Andrzej

    2016-07-01

    The contents of Cd, Cu, Fe, Mn, Ni, Pb, and Zn in leaves of Typha latifolia (broadleaf cattail), water and bottom sediment from 72 study sites designated in different regions of Poland were determined using atomic absorption spectrometry. The aim of the study was to evaluate potential use of T. latifolia in biomonitoring of trace metal pollution. The self-organizing feature map (SOFM) identifying groups of sampling sites with similar concentrations of metals in cattail leaves was able to classify study sites according to similar use and potential sources of pollution. Maps prepared for water and bottom sediment showed corresponding groups of sampling sites which suggested similarity of samples features. High concentrations of Fe, Cd, Cu, and Ni were characteristic for industrial areas. Elevated Pb concentrations were noted in regions with intensive vehicle traffic, while high Mn and Zn contents were reported in leaves from the agricultural area. Manganese content in leaves of T. latifolia was high irrespectively of the concentrations in bottom sediments and water so cattail can be considered the leaf accumulator of Mn. Once trained, SOFMs can be applied in ecological investigations and could form a future basis for recognizing the type of pollution in aquatic environments by analyzing the concentrations of elements in T. latifolia.

  13. Self-organizing feature map (neural networks) as a tool to select the best indicator of road traffic pollution (soil, leaves or bark of Robinia pseudoacacia L.)

    Energy Technology Data Exchange (ETDEWEB)

    Samecka-Cymerman, A., E-mail: sameckaa@biol.uni.wroc.p [Department of Ecology, Biogeochemistry and Environmental Protection, Wroclaw University, ul. Kanonia 6/8, 50-328 Wroclaw (Poland); Stankiewicz, A.; Kolon, K. [Department of Ecology, Biogeochemistry and Environmental Protection, Wroclaw University, ul. Kanonia 6/8, 50-328 Wroclaw (Poland); Kempers, A.J. [Department of Environmental Sciences, Radboud University of Nijmegen, Toernooiveld, 6525 ED Nijmegen (Netherlands)

    2009-07-15

    Concentrations of the elements Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were measured in the leaves and bark of Robinia pseudoacacia and the soil in which it grew, in the town of Olesnica (SW Poland) and at a control site. We selected this town because emission from motor vehicles is practically the only source of air pollution, and it seemed interesting to evaluate its influence on soil and plants. The self-organizing feature map (SOFM) yielded distinct groups of soils and R. pseudoacacia leaves and bark, depending on traffic intensity. Only the map classifying bark samples identified an additional group of highly polluted sites along the main highway from Wroclaw to Warszawa. The bark of R. pseudoacacia seems to be a better bioindicator of long-term cumulative traffic pollution in the investigated area, while leaves are good indicators of short-term seasonal accumulation trends. - Once trained, SOFM could be used in the future to recognize types of pollution.

  14. Graph theoretical analysis of functional network for comprehension of sign language.

    Science.gov (United States)

    Liu, Lanfang; Yan, Xin; Liu, Jin; Xia, Mingrui; Lu, Chunming; Emmorey, Karen; Chu, Mingyuan; Ding, Guosheng

    2017-09-15

    Signed languages are natural human languages using the visual-motor modality. Previous neuroimaging studies based on univariate activation analysis show that a widely overlapped cortical network is recruited regardless whether the sign language is comprehended (for signers) or not (for non-signers). Here we move beyond previous studies by examining whether the functional connectivity profiles and the underlying organizational structure of the overlapped neural network may differ between signers and non-signers when watching sign language. Using graph theoretical analysis (GTA) and fMRI, we compared the large-scale functional network organization in hearing signers with non-signers during the observation of sentences in Chinese Sign Language. We found that signed sentences elicited highly similar cortical activations in the two groups of participants, with slightly larger responses within the left frontal and left temporal gyrus in signers than in non-signers. Crucially, further GTA revealed substantial group differences in the topologies of this activation network. Globally, the network engaged by signers showed higher local efficiency (t (24) =2.379, p=0.026), small-worldness (t (24) =2.604, p=0.016) and modularity (t (24) =3.513, p=0.002), and exhibited different modular structures, compared to the network engaged by non-signers. Locally, the left ventral pars opercularis served as a network hub in the signer group but not in the non-signer group. These findings suggest that, despite overlap in cortical activation, the neural substrates underlying sign language comprehension are distinguishable at the network level from those for the processing of gestural action. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Parallel deterioration to language processing in a bilingual speaker.

    Science.gov (United States)

    Druks, Judit; Weekes, Brendan Stuart

    2013-01-01

    The convergence hypothesis [Green, D. W. (2003). The neural basis of the lexicon and the grammar in L2 acquisition: The convergence hypothesis. In R. van Hout, A. Hulk, F. Kuiken, & R. Towell (Eds.), The interface between syntax and the lexicon in second language acquisition (pp. 197-218). Amsterdam: John Benjamins] assumes that the neural substrates of language representations are shared between the languages of a bilingual speaker. One prediction of this hypothesis is that neurodegenerative disease should produce parallel deterioration to lexical and grammatical processing in bilingual aphasia. We tested this prediction with a late bilingual Hungarian (first language, L1)-English (second language, L2) speaker J.B. who had nonfluent progressive aphasia (NFPA). J.B. had acquired L2 in adolescence but was premorbidly proficient and used English as his dominant language throughout adult life. Our investigations showed comparable deterioration to lexical and grammatical knowledge in both languages during a one-year period. Parallel deterioration to language processing in a bilingual speaker with NFPA challenges the assumption that L1 and L2 rely on different brain mechanisms as assumed in some theories of bilingual language processing [Ullman, M. T. (2001). The neural basis of lexicon and grammar in first and second language: The declarative/procedural model. Bilingualism: Language and Cognition, 4(1), 105-122].

  16. Neural networks and applications tutorial

    Science.gov (United States)

    Guyon, I.

    1991-09-01

    The importance of neural networks has grown dramatically during this decade. While only a few years ago they were primarily of academic interest, now dozens of companies and many universities are investigating the potential use of these systems and products are beginning to appear. The idea of building a machine whose architecture is inspired by that of the brain has roots which go far back in history. Nowadays, technological advances of computers and the availability of custom integrated circuits, permit simulations of hundreds or even thousands of neurons. In conjunction, the growing interest in learning machines, non-linear dynamics and parallel computation spurred renewed attention in artificial neural networks. Many tentative applications have been proposed, including decision systems (associative memories, classifiers, data compressors and optimizers), or parametric models for signal processing purposes (system identification, automatic control, noise canceling, etc.). While they do not always outperform standard methods, neural network approaches are already used in some real world applications for pattern recognition and signal processing tasks. The tutorial is divided into six lectures, that where presented at the Third Graduate Summer Course on Computational Physics (September 3-7, 1990) on Parallel Architectures and Applications, organized by the European Physical Society: (1) Introduction: machine learning and biological computation. (2) Adaptive artificial neurons (perceptron, ADALINE, sigmoid units, etc.): learning rules and implementations. (3) Neural network systems: architectures, learning algorithms. (4) Applications: pattern recognition, signal processing, etc. (5) Elements of learning theory: how to build networks which generalize. (6) A case study: a neural network for on-line recognition of handwritten alphanumeric characters.

  17. Biomarker case-detection and prediction with potential for functional psychosis screening: development and validation of a model related to biochemistry, sensory neural timing and end organ performance.

    Directory of Open Access Journals (Sweden)

    Stephanie eFryar-Williams

    2016-04-01

    Full Text Available The Mental Health Biomarker Project aimed to discover case-predictive biomarkers for functional psychosis. In a retrospective, cross-sectional study, candidate marker results from 67, highly-characterized symptomatic participants were compared with results from 67 gender and age matched controls. Urine samples were analysed for catecholamines, their metabolites and hydroxylpyrolline-2-one, an oxidative stress marker. Blood samples were analyzed for vitamin and trace element cofactors of enzymes in the catecholamine synthesis and metabolism pathways. Cognitive, auditory and visual processing measures were assessed using a simple 45 minute, office-based procedure. Receiver Operating Curve (ROC and Odds Ratio analysis discovered biomarkers for deficits in folate, vitamin D and B6 and elevations in free copper to zinc ratio, catecholamines and the oxidative stress marker. Deficits were discovered in peripheral visual and auditory end-organ function, intra-cerebral auditory and visual processing speed and dichotic-listening performance. 15 ROC biomarker variables were divided into 5 functional domains. Through a repeated ROC process, individual ROC variables, followed by domains and finally the overall 15 set model, were dichotomously scored and tallied for abnormal results upon which it was found that ≥ 3 out of 5 abnormal domains achieved an AUC of 0.952 with a sensitivity of 84 per cent and a specificity of 90 percent. Six additional middle ear biomarkers in a 21 biomarker set increased sensitivity to 94% percent. Fivefold cross-validation yielded a mean sensitivity of 85% for the 15 biomarker set. Non-parametric regression analysis confirmed that ≥ 3 out of 5 abnormally scored domains predicted > 50% risk of case-ness whilst 4 abnormally-scored domains predicted 88% risk of case-ness and 100% diagnostic certainty was reached when all 5 domains were abnormally scored. These findings require validation in prospective cohorts and other mental

  18. Language Acquisition and Language Revitalization

    Science.gov (United States)

    O'Grady, William; Hattori, Ryoko

    2016-01-01

    Intergenerational transmission, the ultimate goal of language revitalization efforts, can only be achieved by (re)establishing the conditions under which an imperiled language can be acquired by the community's children. This paper presents a tutorial survey of several key points relating to language acquisition and maintenance in children,…

  19. Twitter and the Welsh Language

    Science.gov (United States)

    Jones, Rhys James; Cunliffe, Daniel; Honeycutt, Zoe R.

    2013-01-01

    The emergence of new domains, such as the Internet, can prove challenging for minority languages. Welsh is a minority, regional language and is considered "vulnerable" by the United Nations Educational, Scientific and Cultural Organization (UNESCO). The Welsh-speaking community appears to have responded positively to the Internet and the…

  20. Evolvable Neural Software System

    Science.gov (United States)

    Curtis, Steven A.

    2009-01-01

    The Evolvable Neural Software System (ENSS) is composed of sets of Neural Basis Functions (NBFs), which can be totally autonomously created and removed according to the changing needs and requirements of the software system. The resulting structure is both hierarchical and self-similar in that a given set of NBFs may have a ruler NBF, which in turn communicates with other sets of NBFs. These sets of NBFs may function as nodes to a ruler node, which are also NBF constructs. In this manner, the synthetic neural system can exhibit the complexity, three-dimensional connectivity, and adaptability of biological neural systems. An added advantage of ENSS over a natural neural system is its ability to modify its core genetic code in response to environmental changes as reflected in needs and requirements. The neural system is fully adaptive and evolvable and is trainable before release. It continues to rewire itself while on the job. The NBF is a unique, bilevel intelligence neural system composed of a higher-level heuristic neural system (HNS) and a lower-level, autonomic neural system (ANS). Taken together, the HNS and the ANS give each NBF the complete capabilities of a biological neural system to match sensory inputs to actions. Another feature of the NBF is the Evolvable Neural Interface (ENI), which links the HNS and ANS. The ENI solves the interface problem between these two systems by actively adapting and evolving from a primitive initial state (a Neural Thread) to a complicated, operational ENI and successfully adapting to a training sequence of sensory input. This simulates the adaptation of a biological neural system in a developmental phase. Within the greater multi-NBF and multi-node ENSS, self-similar ENI s provide the basis for inter-NBF and inter-node connectivity.

  1. Design of FPGA Based Neural Network Controller for Earth Station Power System

    OpenAIRE

    Hassen T. Dorrah; Ninet M. A. El-Rahman; Faten H. Fahmy; Hanaa T. El-Madany

    2012-01-01

    Automation of generating hardware description language code from neural networks models can highly decrease time of implementation those networks into a digital devices, thus significant money savings. To implement the neural network into hardware designer, it is required to translate generated model into device structure. VHDL language is used to describe those networks into hardware. VHDL code has been proposed to implement ANNs as well as to present simulation results with floating point a...

  2. A universal multilingual weightless neural network tagger via quantitative linguistics.

    Science.gov (United States)

    Carneiro, Hugo C C; Pedreira, Carlos E; França, Felipe M G; Lima, Priscila M V

    2017-07-01

    In the last decade, given the availability of corpora in several distinct languages, research on multilingual part-of-speech tagging started to grow. Amongst the novelties there is mWANN-Tagger (multilingual weightless artificial neural network tagger), a weightless neural part-of-speech tagger capable of being used for mostly-suffix-oriented languages. The tagger was subjected to corpora in eight languages of quite distinct natures and had a remarkable accuracy with very low sample deviation in every one of them, indicating the robustness of weightless neural systems for part-of-speech tagging tasks. However, mWANN-Tagger needed to be tuned for every new corpus, since each one required a different parameter configuration. For mWANN-Tagger to be truly multilingual, it should be usable for any new language with no need of parameter tuning. This article proposes a study that aims to find a relation between the lexical diversity of a language and the parameter configuration that would produce the best performing mWANN-Tagger instance. Preliminary analyses suggested that a single parameter configuration may be applied to the eight aforementioned languages. The mWANN-Tagger instance produced by this configuration was as accurate as the language-dependent ones obtained through tuning. Afterwards, the weightless neural tagger was further subjected to new corpora in languages that range from very isolating to polysynthetic ones. The best performing instances of mWANN-Tagger are again the ones produced by the universal parameter configuration. Hence, mWANN-Tagger can be applied to new corpora with no need of parameter tuning, making it a universal multilingual part-of-speech tagger. Further experiments with Universal Dependencies treebanks reveal that mWANN-Tagger may be extended and that it has potential to outperform most state-of-the-art part-of-speech taggers if better word representations are provided. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Brain mechanisms in early language acquisition.

    Science.gov (United States)

    Kuhl, Patricia K

    2010-09-09

    The last decade has produced an explosion in neuroscience research examining young children's early processing of language. Noninvasive, safe functional brain measurements have now been proven feasible for use with children starting at birth. The phonetic level of language is especially accessible to experimental studies that document the innate state and the effect of learning on the brain. The neural signatures of learning at the phonetic level can be documented at a remarkably early point in development. Continuity in linguistic development from infants' earliest brain responses to phonetic stimuli is reflected in their language and prereading abilities in the second, third, and fifth year of life, a finding with theoretical and clinical impact. There is evidence that early mastery of the phonetic units of language requires learning in a social context. Neuroscience on early language learning is beginning to reveal the multiple brain systems that underlie the human language faculty. 2010 Elsevier Inc. All rights reserved.

  4. Brain Mechanisms in Early Language Acquisition

    Science.gov (United States)

    Kuhl, Patricia K.

    2010-01-01

    Summary The last decade has produced an explosion in neuroscience research examining young children’s early processing of language. Noninvasive, safe functional brain measurements have now been proven feasible for use with children starting at birth. The phonetic level of language is especially accessible to experimental studies that document the innate state and the effect of learning on the brain. The neural signatures of learning at the phonetic level can be documented at a remarkably early point in development. Continuity in linguistic development from infants’ earliest brain responses to phonetic stimuli is reflected in their language and pre-reading abilities in the second, third and fifth year of life, a finding with theoretical and clinical impact. There is evidence that early mastery of the phonetic units of language requires learning in a social context. Neuroscience on early language learning is beginning to reveal the multiple brain systems that underlie the human language faculty. PMID:20826304

  5. Application of a Shallow Neural Network to Short-Term Stock Trading

    OpenAIRE

    Madahar, Abhinav; Ma, Yuze; Patel, Kunal

    2017-01-01

    Machine learning is increasingly prevalent in stock market trading. Though neural networks have seen success in computer vision and natural language processing, they have not been as useful in stock market trading. To demonstrate the applicability of a neural network in stock trading, we made a single-layer neural network that recommends buying or selling shares of a stock by comparing the highest high of 10 consecutive days with that of the next 10 days, a process repeated for the stock's ye...

  6. Linking Behavioral and Neurophysiological Indicators of Perceptual Tuning to Language

    Directory of Open Access Journals (Sweden)

    Eswen eFava

    2011-08-01

    Full Text Available Little is known about the neural mechanisms that underlie tuning to the native language(s in early infancy. Here we review language tuning through the lens of language experience and introduce a new manner in which to conceptualize the phenomenon of language tuning: the relative speed of tuning hypothesis. This hypothesis has as its goal a characterization of the unique time course of the tuning process, given the different components (e.g., phonology, prosody, syntax, semantics of one or more languages as they become available to infants. In this review, we first examine the established behavioral findings and integrate more recent neurophysiological data on neonatal development, which together demonstrate evidence of early language tuning given differential language exposure in utero. Next, we examine traditional accounts of sensitive and critical periods to determine how these constructs complement current data on the neural mechanisms underlying language tuning. We then synthesize the extant infant behavioral and imaging literatures on monolingual, bilingual, and sensory deprived tuning experience, thereby scrutinizing the effect of these three different language profiles on the specific timing, progression, and outcomes of language tuning. Finally, we discuss future directions researchers might pursue on this aspect of development, advocating our relative speed of tuning hypothesis as a useful framework for conceptualizing the complex process by which language experience shapes language sensitivity.

  7. Neural Control of Rising and Falling Tones in Mandarin Speakers Who Stutter

    Science.gov (United States)

    Howell, Peter; Jiang, Jing; Peng, Danling; Lu, Chunming

    2012-01-01

    Neural control of rising and falling tones in Mandarin people who stutter (PWS) was examined by comparing with that which occurs in fluent speakers [Howell, Jiang, Peng, and Lu (2012). Neural control of fundamental frequency rise and fall in Mandarin tones. "Brain and Language, 121"(1), 35-46]. Nine PWS and nine controls were scanned. Functional…

  8. Consciousness and neural plasticity

    DEFF Research Database (Denmark)

    In contemporary consciousness studies the phenomenon of neural plasticity has received little attention despite the fact that neural plasticity is of still increased interest in neuroscience. We will, however, argue that neural plasticity could be of great importance to consciousness studies....... If consciousness is related to neural processes it seems, at least prima facie, that the ability of the neural structures to change should be reflected in a theory of this relationship "Neural plasticity" refers to the fact that the brain can change due to its own activity. The brain is not static but rather...... a dynamic entity, which physical structure changes according to its use and environment. This change may take the form of growth of new neurons, the creation of new networks and structures, and change within network structures, that is, changes in synaptic strengths. Plasticity raises questions about...

  9. Design, implementation and evaluation of an improved language ...

    African Journals Online (AJOL)

    Language modeling for conversational speech using neural network model is a challenging task due to unconstrained speaking style, frequent grammatical errors, hesitations, start-overs and other variability associated with audio signal transcriptions. All these made speech language modeling inadequate because ...

  10. Early Language Learning and Literacy: Neuroscience Implications for Education

    Science.gov (United States)

    Kuhl, Patricia K.

    2011-01-01

    The last decade has produced an explosion in neuroscience research examining young children's early processing of language that has implications for education. Noninvasive, safe functional brain measurements have now been proven feasible for use with children starting at birth. In the arena of language, the neural signatures of learning can be…

  11. Fuzzy and neural control

    Science.gov (United States)

    Berenji, Hamid R.

    1992-01-01

    Fuzzy logic and neural networks provide new methods for designing control systems. Fuzzy logic controllers do not require a complete analytical model of a dynamic system and can provide knowledge-based heuristic controllers for ill-defined and complex systems. Neural networks can be used for learning control. In this chapter, we discuss hybrid methods using fuzzy logic and neural networks which can start with an approximate control knowledge base and refine it through reinforcement learning.

  12. Specific Language Impairment

    Science.gov (United States)

    ... Home » Health Info » Voice, Speech, and Language Specific Language Impairment On this page: What is specific language ... percent of children in kindergarten. What is specific language impairment? Specific language impairment (SLI) is a language ...

  13. Complementary Languages

    DEFF Research Database (Denmark)

    Preisler, Bent

    2009-01-01

    The Danish language debate is dominated by two key concepts: ‘domain loss' and its opposite, ‘parallel languages' (parallelsproglighed). The under­stood reference is to the relationship between Danish and English - i.e. the spread of English at the expense of Danish vs. the coexistence of Danish...... society is everywhere unproblematic. A case in point is Higher Education. I will also argue that the recently proposed solution to ‘domain loss' - Danish and English used ‘in parallel', ‘parallel languages' - because it is unrealistic as well as undesirable as a consistent principle - should be replaced...... by an alternative concept that more adequately describes the realities of what adherents of ‘parallel languages' can hope for. The new concept I have dubbed ‘complementary languages' (komplementær­sproglighed). I will explain this concept in the following and contrast it both with ‘parallel languages...

  14. Specialized languages

    DEFF Research Database (Denmark)

    Mousten, Birthe; Laursen, Anne Lise

    2016-01-01

    Across different fields of research, one feature is often overlooked: the use of language for specialized purposes (LSP) as a cross-discipline. Mastering cross-disciplinarity is the precondition for communicating detailed results within any field. Researchers in specialized languages work cross......-disciplinarily, because they work with both derivative and contributory approaches. Derivative, because specialized language retrieves its philosophy of science as well as methods from both the natural sciences, social sciences and humanistic sciences. Contributory because language results support the communication...... science fields communicate their findings. With this article, we want to create awareness of the work in this special area of language studies and of the inherent cross-disciplinarity that makes LSP special compared to common-core language. An acknowledgement of the importance of this field both in terms...

  15. Power converters and AC electrical drives with linear neural networks

    CERN Document Server

    Cirrincione, Maurizio

    2012-01-01

    The first book of its kind, Power Converters and AC Electrical Drives with Linear Neural Networks systematically explores the application of neural networks in the field of power electronics, with particular emphasis on the sensorless control of AC drives. It presents the classical theory based on space-vectors in identification, discusses control of electrical drives and power converters, and examines improvements that can be attained when using linear neural networks. The book integrates power electronics and electrical drives with artificial neural networks (ANN). Organized into four parts,

  16. Comparing the artificial neural network with parcial least squares for prediction of soil organic carbon and pH at different moisture content levels using visible and near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Yücel Tekin

    2014-12-01

    Full Text Available Visible and near infrared (vis-NIR spectroscopy is widely used to detect soil properties. The objective of this study is to evaluate the combined effect of moisture content (MC and the modeling algorithm on prediction of soil organic carbon (SOC and pH. Partial least squares (PLS and the Artificial neural network (ANN for modeling of SOC and pH at different MC levels were compared in terms of efficiency in prediction of regression. A total of 270 soil samples were used. Before spectral measurement, dry soil samples were weighed to determine the amount of water to be added by weight to achieve the specified gravimetric MC levels of 5, 10, 15, 20, and 25 %. A fiber-optic vis-NIR spectrophotometer (350-2500 nm was used to measure spectra of soil samples in the diffuse reflectance mode. Spectra preprocessing and PLS regression were carried using Unscrambler® software. Statistica® software was used for ANN modeling. The best prediction result for SOC was obtained using the ANN (RMSEP = 0.82 % and RPD = 4.23 for soil samples with 25 % MC. The best prediction results for pH were obtained with PLS for dry soil samples (RMSEP = 0.65 % and RPD = 1.68 and soil samples with 10 % MC (RMSEP = 0.61 % and RPD = 1.71. Whereas the ANN showed better performance for SOC prediction at all MC levels, PLS showed better predictive accuracy of pH at all MC levels except for 25 % MC. Therefore, based on the data set used in the current study, the ANN is recommended for the analyses of SOC at all MC levels, whereas PLS is recommended for the analysis of pH at MC levels below 20 %.

  17. Vulnerability of the ventral language network in children with focal epilepsy

    Science.gov (United States)

    Baldeweg, Torsten; Sepeta, Leigh; Zimmaro, Lauren; Berl, Madison M.; Gaillard, William D.

    2014-01-01

    Children with focal epilepsy are at increased risk of language impairment, yet the neural substrate of this dysfunction is not yet known. Using functional magnetic resonance imaging we investigated the impact of focal epilepsy on the developing language system using measures of network topology (spatial organization of activation) and synchrony (functional connectivity). We studied healthy children (n = 48, 4–12 years, 24 females) and children with focal epilepsy (n = 21, 5–12 years, nine females) with left hemisphere language dominance. Participants performed an age-adjusted auditory description decision task during functional magnetic resonance imaging, to identify perisylvian language regions. Mean signal change was extracted from eight left perisylvian regions of interest and compared between groups. Paired region of interest functional connectivity analysis was performed on time course data from the same regions, to investigate left network synchrony. Two principal component analyses were performed to extract (i) patterns of activation (using mean signal change data); and (ii) patterns of synchronized regions (using functional connectivity data). For both principal component analyses two components (networks) were extracted, which mapped onto the functional anatomy of dorsal and ventral language systems. Associations among network variables, age, epilepsy-related factors and verbal ability were assessed. Activated networks were affected by age and epilepsy [F(2,60) = 3.74, P = 0.03]: post hoc analyses showed, for healthy children, activation in both ventral and dorsal networks decreased with age (P = 0.02). Regardless of age and task performance, children with epilepsy showed reduced activation of the ventral network (P language outcome ( = 0.47, P = 0.002). This suggests childhood onset epilepsy preferentially alters maturation of the ventral language system, and this is related to poorer language ability. PMID:24941948

  18. Language differences in the brain network for reading in naturalistic story reading and lexical decision.

    Science.gov (United States)

    Wang, Xiaojuan; Yang, Jianfeng; Yang, Jie; Mencl, W Einar; Shu, Hua; Zevin, Jason David

    2015-01-01

    Differences in how writing systems represent language raise important questions about whether there could be a universal functional architecture for reading across languages. In order to study potential language differences in the neural networks that support reading skill, we collected fMRI data from readers of alphabetic (English) and morpho-syllabic (Chinese) writing systems during two reading tasks. In one, participants read short stories under conditions that approximate natural reading, and in the other, participants decided whether individual stimuli were real words or not. Prior work comparing these two writing systems has overwhelmingly used meta-linguistic tasks, generally supporting the conclusion that the reading system is organized differently for skilled readers of Chinese and English. We observed that language differences in the reading network were greatly dependent on task. In lexical decision, a pattern consistent with prior research was observed in which the Middle Frontal Gyrus (MFG) and right Fusiform Gyrus (rFFG) were more active for Chinese than for English, whereas the posterior temporal sulcus was more active for English than for Chinese. We found a very different pattern of language effects in a naturalistic reading paradigm, during which significant differences were only observed in visual regions not typically considered specific to the reading network, and the middle temporal gyrus, which is thought to be important for direct mapping of orthography to semantics. Indeed, in areas that are often discussed as supporting distinct cognitive or linguistic functions between the two languages, we observed interaction. Specifically, language differences were most pronounced in MFG and rFFG during the lexical decision task, whereas no language differences were observed in these areas during silent reading of text for comprehension.

  19. What Is Neural Plasticity?

    Science.gov (United States)

    von Bernhardi, Rommy; Bernhardi, Laura Eugenín-von; Eugenín, Jaime

    2017-01-01

    "Neural plasticity" refers to the capacity of the nervous system to modify itself, functionally and structurally, in response to experience and injury. As the various chapters in this volume show, plasticity is a key component of neural development and normal functioning of the nervous system, as well as a response to the changing environment, aging, or pathological insult. This chapter discusses how plasticity is necessary not only for neural networks to acquire new functional properties, but also for them to remain robust and stable. The article also reviews the seminal proposals developed over the years that have driven experiments and strongly influenced concepts of neural plasticity.

  20. Neural Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — As part of the Electrical and Computer Engineering Department and The Institute for System Research, the Neural Systems Laboratory studies the functionality of the...