Artificial Neural Network L* from different magnetospheric field models
Yu, Y.; Koller, J.; Zaharia, S. G.; Jordanova, V. K.
2011-12-01
The third adiabatic invariant L* plays an important role in modeling and understanding the radiation belt dynamics. The popular way to numerically obtain the L* value follows the recipe described by Roederer [1970], which is, however, slow and computational expensive. This work focuses on a new technique, which can compute the L* value in microseconds without losing much accuracy: artificial neural networks. Since L* is related to the magnetic flux enclosed by a particle drift shell, global magnetic field information needed to trace the drift shell is required. A series of currently popular empirical magnetic field models are applied to create the L* data pool using 1 million data samples which are randomly selected within a solar cycle and within the global magnetosphere. The networks, trained from the above L* data pool, can thereby be used for fairly efficient L* calculation given input parameters valid within the trained temporal and spatial range. Besides the empirical magnetospheric models, a physics-based self-consistent inner magnetosphere model (RAM-SCB) developed at LANL is also utilized to calculate L* values and then to train the L* neural network. This model better predicts the magnetospheric configuration and therefore can significantly improve the L*. The above neural network L* technique will enable, for the first time, comprehensive solar-cycle long studies of radiation belt processes. However, neural networks trained from different magnetic field models can result in different L* values, which could cause mis-interpretation of radiation belt dynamics, such as where the source of the radiation belt charged particle is and which mechanism is dominant in accelerating the particles. Such a fact calls for attention to cautiously choose a magnetospheric field model for the L* calculation.
A dynamic neural field model of temporal order judgments.
Hecht, Lauren N; Spencer, John P; Vecera, Shaun P
2015-12-01
Temporal ordering of events is biased, or influenced, by perceptual organization-figure-ground organization-and by spatial attention. For example, within a region assigned figural status or at an attended location, onset events are processed earlier (Lester, Hecht, & Vecera, 2009; Shore, Spence, & Klein, 2001), and offset events are processed for longer durations (Hecht & Vecera, 2011; Rolke, Ulrich, & Bausenhart, 2006). Here, we present an extension of a dynamic field model of change detection (Johnson, Spencer, Luck, & Schöner, 2009; Johnson, Spencer, & Schöner, 2009) that accounts for both the onset and offset performance for figural and attended regions. The model posits that neural populations processing the figure are more active, resulting in a peak of activation that quickly builds toward a detection threshold when the onset of a target is presented. This same enhanced activation for some neural populations is maintained when a present target is removed, creating delays in the perception of the target's offset. We discuss the broader implications of this model, including insights regarding how neural activation can be generated in response to the disappearance of information. (c) 2015 APA, all rights reserved).
Neural field model of memory-guided search.
Kilpatrick, Zachary P; Poll, Daniel B
2017-12-01
Many organisms can remember locations they have previously visited during a search. Visual search experiments have shown exploration is guided away from these locations, reducing redundancies in the search path before finding a hidden target. We develop and analyze a two-layer neural field model that encodes positional information during a search task. A position-encoding layer sustains a bump attractor corresponding to the searching agent's current location, and search is modeled by velocity input that propagates the bump. A memory layer sustains persistent activity bounded by a wave front, whose edges expand in response to excitatory input from the position layer. Search can then be biased in response to remembered locations, influencing velocity inputs to the position layer. Asymptotic techniques are used to reduce the dynamics of our model to a low-dimensional system of equations that track the bump position and front boundary. Performance is compared for different target-finding tasks.
Neural field model of memory-guided search
Kilpatrick, Zachary P.; Poll, Daniel B.
2017-12-01
Many organisms can remember locations they have previously visited during a search. Visual search experiments have shown exploration is guided away from these locations, reducing redundancies in the search path before finding a hidden target. We develop and analyze a two-layer neural field model that encodes positional information during a search task. A position-encoding layer sustains a bump attractor corresponding to the searching agent's current location, and search is modeled by velocity input that propagates the bump. A memory layer sustains persistent activity bounded by a wave front, whose edges expand in response to excitatory input from the position layer. Search can then be biased in response to remembered locations, influencing velocity inputs to the position layer. Asymptotic techniques are used to reduce the dynamics of our model to a low-dimensional system of equations that track the bump position and front boundary. Performance is compared for different target-finding tasks.
Simulation of sensory integration dysfunction in autism with dynamic neural fields model
Chonnaparamutt, W.; Barakova, E.I.; Rutkowski, L.; Taseusiewicz, R.
2008-01-01
This paper applies dynamic neural fields model [1,23,7] to multimodal interaction of sensory cues obtained from a mobile robot, and shows the impact of different temporal aspects of the integration to the precision of movements. We speculate that temporally uncoordinated sensory integration might be
Kozma, Robert
2016-01-01
This intriguing book was born out of the many discussions the authors had in the past 10 years about the role of scale-free structure and dynamics in producing intelligent behavior in brains. The microscopic dynamics of neural networks is well described by the prevailing paradigm based in a narrow interpretation of the neuron doctrine. This book broadens the doctrine by incorporating the dynamics of neural fields, as first revealed by modeling with differential equations (K-sets). The book broadens that approach by application of random graph theory (neuropercolation). The book concludes with diverse commentaries that exemplify the wide range of mathematical/conceptual approaches to neural fields. This book is intended for researchers, postdocs, and graduate students, who see the limitations of network theory and seek a beachhead from which to embark on mesoscopic and macroscopic neurodynamics.
Statistical mechanics of a multiconnected Hopfield neural-network model in a transverse field
International Nuclear Information System (INIS)
Ma, Y.; Gong, C.
1995-01-01
The Hopfield neural-network model with p-spin interactions in the presence of a transverse field is introduced and solved exactly in the limit p→∞. In the phase diagrams drawn as a function of the temperature, the important results such as reentrance are found, and the effects of the quantum fluctuations on the phase transitions, the retrieval phase, and the storage ratio α are examined
The effects of noise on binocular rivalry waves: a stochastic neural field model
International Nuclear Information System (INIS)
Webber, Matthew A; Bressloff, Paul C
2013-01-01
We analyze the effects of extrinsic noise on traveling waves of visual perception in a competitive neural field model of binocular rivalry. The model consists of two one-dimensional excitatory neural fields, whose activity variables represent the responses to left-eye and right-eye stimuli, respectively. The two networks mutually inhibit each other, and slow adaptation is incorporated into the model by taking the network connections to exhibit synaptic depression. We first show how, in the absence of any noise, the system supports a propagating composite wave consisting of an invading activity front in one network co-moving with a retreating front in the other network. Using a separation of time scales and perturbation methods previously developed for stochastic reaction–diffusion equations, we then show how extrinsic noise in the activity variables leads to a diffusive-like displacement (wandering) of the composite wave from its uniformly translating position at long time scales, and fluctuations in the wave profile around its instantaneous position at short time scales. We use our analysis to calculate the first-passage-time distribution for a stochastic rivalry wave to travel a fixed distance, which we find to be given by an inverse Gaussian. Finally, we investigate the effects of noise in the depression variables, which under an adiabatic approximation lead to quenched disorder in the neural fields during propagation of a wave. (paper)
The effects of noise on binocular rivalry waves: a stochastic neural field model
Webber, Matthew A
2013-03-12
We analyze the effects of extrinsic noise on traveling waves of visual perception in a competitive neural field model of binocular rivalry. The model consists of two one-dimensional excitatory neural fields, whose activity variables represent the responses to left-eye and right-eye stimuli, respectively. The two networks mutually inhibit each other, and slow adaptation is incorporated into the model by taking the network connections to exhibit synaptic depression. We first show how, in the absence of any noise, the system supports a propagating composite wave consisting of an invading activity front in one network co-moving with a retreating front in the other network. Using a separation of time scales and perturbation methods previously developed for stochastic reaction-diffusion equations, we then show how extrinsic noise in the activity variables leads to a diffusive-like displacement (wandering) of the composite wave from its uniformly translating position at long time scales, and fluctuations in the wave profile around its instantaneous position at short time scales. We use our analysis to calculate the first-passage-time distribution for a stochastic rivalry wave to travel a fixed distance, which we find to be given by an inverse Gaussian. Finally, we investigate the effects of noise in the depression variables, which under an adiabatic approximation lead to quenched disorder in the neural fields during propagation of a wave. © 2013 IOP Publishing Ltd and SISSA Medialab srl.
Sensorimotor learning biases choice behavior: a learning neural field model for decision making.
Directory of Open Access Journals (Sweden)
Christian Klaes
Full Text Available According to a prominent view of sensorimotor processing in primates, selection and specification of possible actions are not sequential operations. Rather, a decision for an action emerges from competition between different movement plans, which are specified and selected in parallel. For action choices which are based on ambiguous sensory input, the frontoparietal sensorimotor areas are considered part of the common underlying neural substrate for selection and specification of action. These areas have been shown capable of encoding alternative spatial motor goals in parallel during movement planning, and show signatures of competitive value-based selection among these goals. Since the same network is also involved in learning sensorimotor associations, competitive action selection (decision making should not only be driven by the sensory evidence and expected reward in favor of either action, but also by the subject's learning history of different sensorimotor associations. Previous computational models of competitive neural decision making used predefined associations between sensory input and corresponding motor output. Such hard-wiring does not allow modeling of how decisions are influenced by sensorimotor learning or by changing reward contingencies. We present a dynamic neural field model which learns arbitrary sensorimotor associations with a reward-driven Hebbian learning algorithm. We show that the model accurately simulates the dynamics of action selection with different reward contingencies, as observed in monkey cortical recordings, and that it correctly predicted the pattern of choice errors in a control experiment. With our adaptive model we demonstrate how network plasticity, which is required for association learning and adaptation to new reward contingencies, can influence choice behavior. The field model provides an integrated and dynamic account for the operations of sensorimotor integration, working memory and action
Liu, Dan; Liu, Xuejun; Wu, Yiguang
2018-04-24
This paper presents an effective approach for depth reconstruction from a single image through the incorporation of semantic information and local details from the image. A unified framework for depth acquisition is constructed by joining a deep Convolutional Neural Network (CNN) and a continuous pairwise Conditional Random Field (CRF) model. Semantic information and relative depth trends of local regions inside the image are integrated into the framework. A deep CNN network is firstly used to automatically learn a hierarchical feature representation of the image. To get more local details in the image, the relative depth trends of local regions are incorporated into the network. Combined with semantic information of the image, a continuous pairwise CRF is then established and is used as the loss function of the unified model. Experiments on real scenes demonstrate that the proposed approach is effective and that the approach obtains satisfactory results.
Directory of Open Access Journals (Sweden)
Dan Liu
2018-04-01
Full Text Available This paper presents an effective approach for depth reconstruction from a single image through the incorporation of semantic information and local details from the image. A unified framework for depth acquisition is constructed by joining a deep Convolutional Neural Network (CNN and a continuous pairwise Conditional Random Field (CRF model. Semantic information and relative depth trends of local regions inside the image are integrated into the framework. A deep CNN network is firstly used to automatically learn a hierarchical feature representation of the image. To get more local details in the image, the relative depth trends of local regions are incorporated into the network. Combined with semantic information of the image, a continuous pairwise CRF is then established and is used as the loss function of the unified model. Experiments on real scenes demonstrate that the proposed approach is effective and that the approach obtains satisfactory results.
Neural fields theory and applications
Graben, Peter; Potthast, Roland; Wright, James
2014-01-01
With this book, the editors present the first comprehensive collection in neural field studies, authored by leading scientists in the field - among them are two of the founding-fathers of neural field theory. Up to now, research results in the field have been disseminated across a number of distinct journals from mathematics, computational neuroscience, biophysics, cognitive science and others. Starting with a tutorial for novices in neural field studies, the book comprises chapters on emergent patterns, their phase transitions and evolution, on stochastic approaches, cortical development, cognition, robotics and computation, large-scale numerical simulations, the coupling of neural fields to the electroencephalogram and phase transitions in anesthesia. The intended readership are students and scientists in applied mathematics, theoretical physics, theoretical biology, and computational neuroscience. Neural field theory and its applications have a long-standing tradition in the mathematical and computational ...
Synchrony-induced modes of oscillation of a neural field model
Esnaola-Acebes, Jose M.; Roxin, Alex; Avitabile, Daniele; Montbrió, Ernest
2017-11-01
We investigate the modes of oscillation of heterogeneous ring networks of quadratic integrate-and-fire (QIF) neurons with nonlocal, space-dependent coupling. Perturbations of the equilibrium state with a particular wave number produce transient standing waves with a specific temporal frequency, analogously to those in a tense string. In the neuronal network, the equilibrium corresponds to a spatially homogeneous, asynchronous state. Perturbations of this state excite the network's oscillatory modes, which reflect the interplay of episodes of synchronous spiking with the excitatory-inhibitory spatial interactions. In the thermodynamic limit, an exact low-dimensional neural field model describing the macroscopic dynamics of the network is derived. This allows us to obtain formulas for the Turing eigenvalues of the spatially homogeneous state and hence to obtain its stability boundary. We find that the frequency of each Turing mode depends on the corresponding Fourier coefficient of the synaptic pattern of connectivity. The decay rate instead is identical for all oscillation modes as a consequence of the heterogeneity-induced desynchronization of the neurons. Finally, we numerically compute the spectrum of spatially inhomogeneous solutions branching from the Turing bifurcation, showing that similar oscillatory modes operate in neural bump states and are maintained away from onset.
Non-linear regression techniques are used widely to fit weed field emergence patterns to soil microclimatic indices using S-type functions. Artificial neural networks present interesting and alternative features for such modeling purposes. In this work, a univariate hydrothermal-time based Weibull m...
International Nuclear Information System (INIS)
De Geeter, N; Crevecoeur, G; Dupré, L; Leemans, A
2015-01-01
In transcranial magnetic stimulation (TMS), an applied alternating magnetic field induces an electric field in the brain that can interact with the neural system. It is generally assumed that this induced electric field is the crucial effect exciting a certain region of the brain. More specifically, it is the component of this field parallel to the neuron’s local orientation, the so-called effective electric field, that can initiate neuronal stimulation. Deeper insights on the stimulation mechanisms can be acquired through extensive TMS modelling. Most models study simple representations of neurons with assumed geometries, whereas we embed realistic neural trajectories computed using tractography based on diffusion tensor images. This way of modelling ensures a more accurate spatial distribution of the effective electric field that is in addition patient and case specific. The case study of this paper focuses on the single pulse stimulation of the left primary motor cortex with a standard figure-of-eight coil. Including realistic neural geometry in the model demonstrates the strong and localized variations of the effective electric field between the tracts themselves and along them due to the interplay of factors such as the tract’s position and orientation in relation to the TMS coil, the neural trajectory and its course along the white and grey matter interface. Furthermore, the influence of changes in the coil orientation is studied. Investigating the impact of tissue anisotropy confirms that its contribution is not negligible. Moreover, assuming isotropic tissues lead to errors of the same size as rotating or tilting the coil with 10 degrees. In contrast, the model proves to be less sensitive towards the not well-known tissue conductivity values. (paper)
Buss, Aaron T; Wifall, Tim; Hazeltine, Eliot; Spencer, John P
2014-02-01
People are typically slower when executing two tasks than when only performing a single task. These dual-task costs are initially robust but are reduced with practice. Dux et al. (2009) explored the neural basis of dual-task costs and learning using fMRI. Inferior frontal junction (IFJ) showed a larger hemodynamic response on dual-task trials compared with single-task trial early in learning. As dual-task costs were eliminated, dual-task hemodynamics in IFJ reduced to single-task levels. Dux and colleagues concluded that the reduction of dual-task costs is accomplished through increased efficiency of information processing in IFJ. We present a dynamic field theory of response selection that addresses two questions regarding these results. First, what mechanism leads to the reduction of dual-task costs and associated changes in hemodynamics? We show that a simple Hebbian learning mechanism is able to capture the quantitative details of learning at both the behavioral and neural levels. Second, is efficiency isolated to cognitive control areas such as IFJ, or is it also evident in sensory motor areas? To investigate this, we restrict Hebbian learning to different parts of the neural model. None of the restricted learning models showed the same reductions in dual-task costs as the unrestricted learning model, suggesting that efficiency is distributed across cognitive control and sensory motor processing systems.
Directory of Open Access Journals (Sweden)
Julien Modolo
2010-06-01
Full Text Available We propose a new method for selective modulation of cortical rhythms based on neural field theory, in which the activity of a cortical area is extensively monitored using a two-dimensional microelectrode array. The example of Parkinson's disease illustrates the proposed method, in which a neural field model is assumed to accurately describe experimentally recorded activity. In addition, we propose a new closed-loop stimulation signal that is both space- and time- dependent. This method is especially designed to specifically modulate a targeted brain rhythm, without interfering with other rhythms. A new class of neuroprosthetic devices is also proposed, in which the multielectrode array is seen as an artificial neural network interacting with biological tissue. Such a bio-inspired approach may provide a solution to optimize interactions between the stimulation device and the cortex aiming to attenuate or augment specific cortical rhythms. The next step will be to validate this new approach experimentally in patients with Parkinson's disease.
De Geeter, N.; Crevecoeur, G.; Leemans, A.; Dupré, L.
2015-01-01
In transcranial magnetic stimulation (TMS), an applied alternating magnetic field induces an electric field in the brain that can interact with the neural system. It is generally assumed that this induced electric field is the crucial effect exciting a certain region of the brain. More specifically,
Artificial neural network modelling
Samarasinghe, Sandhya
2016-01-01
This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .
van Heijst, JJ; Touwen, BCL; Vos, JE
This paper reports on a neural network model for early sensori-motor development and on the possible implications of this research for our understanding and, eventually, treatment of motor disorders like cerebral palsy. We recapitulate the results we published in detail in a series of papers [1-4].
Front Propagation in Stochastic Neural Fields
Bressloff, Paul C.; Webber, Matthew A.
2012-01-01
We analyze the effects of extrinsic multiplicative noise on front propagation in a scalar neural field with excitatory connections. Using a separation of time scales, we represent the fluctuating front in terms of a diffusive-like displacement
Field-theoretic approach to fluctuation effects in neural networks
International Nuclear Information System (INIS)
Buice, Michael A.; Cowan, Jack D.
2007-01-01
A well-defined stochastic theory for neural activity, which permits the calculation of arbitrary statistical moments and equations governing them, is a potentially valuable tool for theoretical neuroscience. We produce such a theory by analyzing the dynamics of neural activity using field theoretic methods for nonequilibrium statistical processes. Assuming that neural network activity is Markovian, we construct the effective spike model, which describes both neural fluctuations and response. This analysis leads to a systematic expansion of corrections to mean field theory, which for the effective spike model is a simple version of the Wilson-Cowan equation. We argue that neural activity governed by this model exhibits a dynamical phase transition which is in the universality class of directed percolation. More general models (which may incorporate refractoriness) can exhibit other universality classes, such as dynamic isotropic percolation. Because of the extremely high connectivity in typical networks, it is expected that higher-order terms in the systematic expansion are small for experimentally accessible measurements, and thus, consistent with measurements in neocortical slice preparations, we expect mean field exponents for the transition. We provide a quantitative criterion for the relative magnitude of each term in the systematic expansion, analogous to the Ginsburg criterion. Experimental identification of dynamic universality classes in vivo is an outstanding and important question for neuroscience
Modelling collective cell migration of neural crest.
Szabó, András; Mayor, Roberto
2016-10-01
Collective cell migration has emerged in the recent decade as an important phenomenon in cell and developmental biology and can be defined as the coordinated and cooperative movement of groups of cells. Most studies concentrate on tightly connected epithelial tissues, even though collective migration does not require a constant physical contact. Movement of mesenchymal cells is more independent, making their emergent collective behaviour less intuitive and therefore lending importance to computational modelling. Here we focus on such modelling efforts that aim to understand the collective migration of neural crest cells, a mesenchymal embryonic population that migrates large distances as a group during early vertebrate development. By comparing different models of neural crest migration, we emphasize the similarity and complementary nature of these approaches and suggest a future direction for the field. The principles derived from neural crest modelling could aid understanding the collective migration of other mesenchymal cell types. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Neural Information Field Approach to Computational Cognition
2016-11-18
effects of distraction during list memory . These distractions include short and long delays before recall, and continuous distraction (forced rehearsal... memory encoding and replay in hippocampus. Computational Neuroscience Society (CNS), p. 166, 2014. D. A. Pinotsis, Neural Field Coding of Short Term ...performance of children learning to count in a SPA model; proposed a new SPA model of cognitive load using the N-back task; developed a new model of the
Spike Neural Models Part II: Abstract Neural Models
Directory of Open Access Journals (Sweden)
Johnson, Melissa G.
2018-02-01
Full Text Available Neurons are complex cells that require a lot of time and resources to model completely. In spiking neural networks (SNN though, not all that complexity is required. Therefore simple, abstract models are often used. These models save time, use less computer resources, and are easier to understand. This tutorial presents two such models: Izhikevich's model, which is biologically realistic in the resulting spike trains but not in the parameters, and the Leaky Integrate and Fire (LIF model which is not biologically realistic but does quickly and easily integrate input to produce spikes. Izhikevich's model is based on Hodgkin-Huxley's model but simplified such that it uses only two differentiation equations and four parameters to produce various realistic spike patterns. LIF is based on a standard electrical circuit and contains one equation. Either of these two models, or any of the many other models in literature can be used in a SNN. Choosing a neural model is an important task that depends on the goal of the research and the resources available. Once a model is chosen, network decisions such as connectivity, delay, and sparseness, need to be made. Understanding neural models and how they are incorporated into the network is the first step in creating a SNN.
Galeazzi, Juan M; Navajas, Joaquín; Mender, Bedeho M W; Quian Quiroga, Rodrigo; Minini, Loredana; Stringer, Simon M
2016-01-01
Neurons have been found in the primate brain that respond to objects in specific locations in hand-centered coordinates. A key theoretical challenge is to explain how such hand-centered neuronal responses may develop through visual experience. In this paper we show how hand-centered visual receptive fields can develop using an artificial neural network model, VisNet, of the primate visual system when driven by gaze changes recorded from human test subjects as they completed a jigsaw. A camera mounted on the head captured images of the hand and jigsaw, while eye movements were recorded using an eye-tracking device. This combination of data allowed us to reconstruct the retinal images seen as humans undertook the jigsaw task. These retinal images were then fed into the neural network model during self-organization of its synaptic connectivity using a biologically plausible trace learning rule. A trace learning mechanism encourages neurons in the model to learn to respond to input images that tend to occur in close temporal proximity. In the data recorded from human subjects, we found that the participant's gaze often shifted through a sequence of locations around a fixed spatial configuration of the hand and one of the jigsaw pieces. In this case, trace learning should bind these retinal images together onto the same subset of output neurons. The simulation results consequently confirmed that some cells learned to respond selectively to the hand and a jigsaw piece in a fixed spatial configuration across different retinal views.
Sequential neural models with stochastic layers
DEFF Research Database (Denmark)
Fraccaro, Marco; Sønderby, Søren Kaae; Paquet, Ulrich
2016-01-01
How can we efficiently propagate uncertainty in a latent state representation with recurrent neural networks? This paper introduces stochastic recurrent neural networks which glue a deterministic recurrent neural network and a state space model together to form a stochastic and sequential neural...... generative model. The clear separation of deterministic and stochastic layers allows a structured variational inference network to track the factorization of the model's posterior distribution. By retaining both the nonlinear recursive structure of a recurrent neural network and averaging over...
Can Neural Activity Propagate by Endogenous Electrical Field?
Qiu, Chen; Shivacharan, Rajat S.; Zhang, Mingming
2015-01-01
It is widely accepted that synaptic transmissions and gap junctions are the major governing mechanisms for signal traveling in the neural system. Yet, a group of neural waves, either physiological or pathological, share the same speed of ∼0.1 m/s without synaptic transmission or gap junctions, and this speed is not consistent with axonal conduction or ionic diffusion. The only explanation left is an electrical field effect. We tested the hypothesis that endogenous electric fields are sufficient to explain the propagation with in silico and in vitro experiments. Simulation results show that field effects alone can indeed mediate propagation across layers of neurons with speeds of 0.12 ± 0.09 m/s with pathological kinetics, and 0.11 ± 0.03 m/s with physiologic kinetics, both generating weak field amplitudes of ∼2–6 mV/mm. Further, the model predicted that propagation speed values are inversely proportional to the cell-to-cell distances, but do not significantly change with extracellular resistivity, membrane capacitance, or membrane resistance. In vitro recordings in mice hippocampi produced similar speeds (0.10 ± 0.03 m/s) and field amplitudes (2.5–5 mV/mm), and by applying a blocking field, the propagation speed was greatly reduced. Finally, osmolarity experiments confirmed the model's prediction that cell-to-cell distance inversely affects propagation speed. Together, these results show that despite their weak amplitude, electric fields can be solely responsible for spike propagation at ∼0.1 m/s. This phenomenon could be important to explain the slow propagation of epileptic activity and other normal propagations at similar speeds. SIGNIFICANCE STATEMENT Neural activity (waves or spikes) can propagate using well documented mechanisms such as synaptic transmission, gap junctions, or diffusion. However, the purpose of this paper is to provide an explanation for experimental data showing that neural signals can propagate by means other than synaptic
Front Propagation in Stochastic Neural Fields
Bressloff, Paul C.
2012-01-01
We analyze the effects of extrinsic multiplicative noise on front propagation in a scalar neural field with excitatory connections. Using a separation of time scales, we represent the fluctuating front in terms of a diffusive-like displacement (wandering) of the front from its uniformly translating position at long time scales, and fluctuations in the front profile around its instantaneous position at short time scales. One major result of our analysis is a comparison between freely propagating fronts and fronts locked to an externally moving stimulus. We show that the latter are much more robust to noise, since the stochastic wandering of the mean front profile is described by an Ornstein-Uhlenbeck process rather than a Wiener process, so that the variance in front position saturates in the long time limit rather than increasing linearly with time. Finally, we consider a stochastic neural field that supports a pulled front in the deterministic limit, and show that the wandering of such a front is now subdiffusive. © 2012 Society for Industrial and Applied Mathematics.
Predicting local field potentials with recurrent neural networks.
Kim, Louis; Harer, Jacob; Rangamani, Akshay; Moran, James; Parks, Philip D; Widge, Alik; Eskandar, Emad; Dougherty, Darin; Chin, Sang Peter
2016-08-01
We present a Recurrent Neural Network using LSTM (Long Short Term Memory) that is capable of modeling and predicting Local Field Potentials. We train and test the network on real data recorded from epilepsy patients. We construct networks that predict multi-channel LFPs for 1, 10, and 100 milliseconds forward in time. Our results show that prediction using LSTM outperforms regression when predicting 10 and 100 millisecond forward in time.
Neural network modeling of emotion
Levine, Daniel S.
2007-03-01
This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.
Jin, Xiaowei; Cheng, Peng; Chen, Wen-Li; Li, Hui
2018-04-01
A data-driven model is proposed for the prediction of the velocity field around a cylinder by fusion convolutional neural networks (CNNs) using measurements of the pressure field on the cylinder. The model is based on the close relationship between the Reynolds stresses in the wake, the wake formation length, and the base pressure. Numerical simulations of flow around a cylinder at various Reynolds numbers are carried out to establish a dataset capturing the effect of the Reynolds number on various flow properties. The time series of pressure fluctuations on the cylinder is converted into a grid-like spatial-temporal topology to be handled as the input of a CNN. A CNN architecture composed of a fusion of paths with and without a pooling layer is designed. This architecture can capture both accurate spatial-temporal information and the features that are invariant of small translations in the temporal dimension of pressure fluctuations on the cylinder. The CNN is trained using the computational fluid dynamics (CFD) dataset to establish the mapping relationship between the pressure fluctuations on the cylinder and the velocity field around the cylinder. Adam (adaptive moment estimation), an efficient method for processing large-scale and high-dimensional machine learning problems, is employed to implement the optimization algorithm. The trained model is then tested over various Reynolds numbers. The predictions of this model are found to agree well with the CFD results, and the data-driven model successfully learns the underlying flow regimes, i.e., the relationship between wake structure and pressure experienced on the surface of a cylinder is well established.
Neural network modeling for near wall turbulent flow
International Nuclear Information System (INIS)
Milano, Michele; Koumoutsakos, Petros
2002-01-01
A neural network methodology is developed in order to reconstruct the near wall field in a turbulent flow by exploiting flow fields provided by direct numerical simulations. The results obtained from the neural network methodology are compared with the results obtained from prediction and reconstruction using proper orthogonal decomposition (POD). Using the property that the POD is equivalent to a specific linear neural network, a nonlinear neural network extension is presented. It is shown that for a relatively small additional computational cost nonlinear neural networks provide us with improved reconstruction and prediction capabilities for the near wall velocity fields. Based on these results advantages and drawbacks of both approaches are discussed with an outlook toward the development of near wall models for turbulence modeling and control
Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields.
Wang, Sheng; Peng, Jian; Ma, Jianzhu; Xu, Jinbo
2016-01-11
Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility.
Directory of Open Access Journals (Sweden)
Jianzhu Ma
2015-01-01
Full Text Available Motivation. The solvent accessibility of protein residues is one of the driving forces of protein folding, while the contact number of protein residues limits the possibilities of protein conformations. The de novo prediction of these properties from protein sequence is important for the study of protein structure and function. Although these two properties are certainly related with each other, it is challenging to exploit this dependency for the prediction. Method. We present a method AcconPred for predicting solvent accessibility and contact number simultaneously, which is based on a shared weight multitask learning framework under the CNF (conditional neural fields model. The multitask learning framework on a collection of related tasks provides more accurate prediction than the framework trained only on a single task. The CNF method not only models the complex relationship between the input features and the predicted labels, but also exploits the interdependency among adjacent labels. Results. Trained on 5729 monomeric soluble globular protein datasets, AcconPred could reach 0.68 three-state accuracy for solvent accessibility and 0.75 correlation for contact number. Tested on the 105 CASP11 domain datasets for solvent accessibility, AcconPred could reach 0.64 accuracy, which outperforms existing methods.
Ma, Jianzhu; Wang, Sheng
2015-01-01
The solvent accessibility of protein residues is one of the driving forces of protein folding, while the contact number of protein residues limits the possibilities of protein conformations. The de novo prediction of these properties from protein sequence is important for the study of protein structure and function. Although these two properties are certainly related with each other, it is challenging to exploit this dependency for the prediction. We present a method AcconPred for predicting solvent accessibility and contact number simultaneously, which is based on a shared weight multitask learning framework under the CNF (conditional neural fields) model. The multitask learning framework on a collection of related tasks provides more accurate prediction than the framework trained only on a single task. The CNF method not only models the complex relationship between the input features and the predicted labels, but also exploits the interdependency among adjacent labels. Trained on 5729 monomeric soluble globular protein datasets, AcconPred could reach 0.68 three-state accuracy for solvent accessibility and 0.75 correlation for contact number. Tested on the 105 CASP11 domain datasets for solvent accessibility, AcconPred could reach 0.64 accuracy, which outperforms existing methods.
Research on wind field algorithm of wind lidar based on BP neural network and grey prediction
Chen, Yong; Chen, Chun-Li; Luo, Xiong; Zhang, Yan; Yang, Ze-hou; Zhou, Jie; Shi, Xiao-ding; Wang, Lei
2018-01-01
This paper uses the BP neural network and grey algorithm to forecast and study radar wind field. In order to reduce the residual error in the wind field prediction which uses BP neural network and grey algorithm, calculating the minimum value of residual error function, adopting the residuals of the gray algorithm trained by BP neural network, using the trained network model to forecast the residual sequence, using the predicted residual error sequence to modify the forecast sequence of the grey algorithm. The test data show that using the grey algorithm modified by BP neural network can effectively reduce the residual value and improve the prediction precision.
DEFF Research Database (Denmark)
Ahmadi, Seyed Hamid; Sepaskhah, Ali Reza; Andersen, Mathias Neumann
2014-01-01
) of the eight input variables: soil layer intervals (D), percentages of sand (Sa), silt (Si), and clay (Cl), bulk density of soil layers (Bd), weighted soil moisture deficit during the irrigation strategies period (SMD), geometric mean particle size diameter (dg), and geometric standard deviation (σg......). The results of the study showed that all the nine ANN models predicted the target RLD values satisfactorily with a correlation coefficient R2>0.98. The simplest and most complex ANN architectures were 3:2:1 and 5:5:1 consisting of D, SMD, dg, and D, Bd, SMD, σg, dg as the input variables, respectively. Low...
Mode Choice Modeling Using Artificial Neural Networks
Edara, Praveen Kumar
2003-01-01
Artificial intelligence techniques have produced excellent results in many diverse fields of engineering. Techniques such as neural networks and fuzzy systems have found their way into transportation engineering. In recent years, neural networks are being used instead of regression techniques for travel demand forecasting purposes. The basic reason lies in the fact that neural networks are able to capture complex relationships and learn from examples and also able to adapt when new data becom...
Statistical mechanics of attractor neural network models with synaptic depression
International Nuclear Information System (INIS)
Igarashi, Yasuhiko; Oizumi, Masafumi; Otsubo, Yosuke; Nagata, Kenji; Okada, Masato
2009-01-01
Synaptic depression is known to control gain for presynaptic inputs. Since cortical neurons receive thousands of presynaptic inputs, and their outputs are fed into thousands of other neurons, the synaptic depression should influence macroscopic properties of neural networks. We employ simple neural network models to explore the macroscopic effects of synaptic depression. Systems with the synaptic depression cannot be analyzed due to asymmetry of connections with the conventional equilibrium statistical-mechanical approach. Thus, we first propose a microscopic dynamical mean field theory. Next, we derive macroscopic steady state equations and discuss the stabilities of steady states for various types of neural network models.
Computational modeling of neural plasticity for self-organization of neural networks.
Chrol-Cannon, Joseph; Jin, Yaochu
2014-11-01
Self-organization in biological nervous systems during the lifetime is known to largely occur through a process of plasticity that is dependent upon the spike-timing activity in connected neurons. In the field of computational neuroscience, much effort has been dedicated to building up computational models of neural plasticity to replicate experimental data. Most recently, increasing attention has been paid to understanding the role of neural plasticity in functional and structural neural self-organization, as well as its influence on the learning performance of neural networks for accomplishing machine learning tasks such as classification and regression. Although many ideas and hypothesis have been suggested, the relationship between the structure, dynamics and learning performance of neural networks remains elusive. The purpose of this article is to review the most important computational models for neural plasticity and discuss various ideas about neural plasticity's role. Finally, we suggest a few promising research directions, in particular those along the line that combines findings in computational neuroscience and systems biology, and their synergetic roles in understanding learning, memory and cognition, thereby bridging the gap between computational neuroscience, systems biology and computational intelligence. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Stochastic Neural Field Theory and the System-Size Expansion
Bressloff, Paul C.
2010-01-01
We analyze a master equation formulation of stochastic neurodynamics for a network of synaptically coupled homogeneous neuronal populations each consisting of N identical neurons. The state of the network is specified by the fraction of active or spiking neurons in each population, and transition rates are chosen so that in the thermodynamic or deterministic limit (N → ∞) we recover standard activity-based or voltage-based rate models. We derive the lowest order corrections to these rate equations for large but finite N using two different approximation schemes, one based on the Van Kampen system-size expansion and the other based on path integral methods. Both methods yield the same series expansion of the moment equations, which at O(1/N) can be truncated to form a closed system of equations for the first-and second-order moments. Taking a continuum limit of the moment equations while keeping the system size N fixed generates a system of integrodifferential equations for the mean and covariance of the corresponding stochastic neural field model. We also show how the path integral approach can be used to study large deviation or rare event statistics underlying escape from the basin of attraction of a stable fixed point of the mean-field dynamics; such an analysis is not possible using the system-size expansion since the latter cannot accurately determine exponentially small transitions. © by SIAM.
Fuzzy Entropy： Axiomatic Definition and Neural Networks Model
Institute of Scientific and Technical Information of China (English)
QINGMing; CAOYue; HUANGTian-min
2004-01-01
The measure of uncertainty is adopted as a measure of information. The measures of fuzziness are known as fuzzy information measures. The measure of a quantity of fuzzy information gained from a fuzzy set or fuzzy system is known as fuzzy entropy. Fuzzy entropy has been focused and studied by many researchers in various fields. In this paper, firstly, the axiomatic definition of fuzzy entropy is discussed. Then, neural networks model of fuzzy entropy is proposed, based on the computing capability of neural networks. In the end, two examples are discussed to show the efficiency of the model.
Application of CMAC Neural Network to Solar Energy Heliostat Field Fault Diagnosis
Directory of Open Access Journals (Sweden)
Neng-Sheng Pai
2013-01-01
Full Text Available Solar energy heliostat fields comprise numerous sun tracking platforms. As a result, fault detection is a highly challenging problem. Accordingly, the present study proposes a cerebellar model arithmetic computer (CMAC neutral network for automatically diagnosing faults within the heliostat field in accordance with the rotational speed, vibration, and temperature characteristics of the individual heliostat transmission systems. As compared with radial basis function (RBF neural network and back propagation (BP neural network in the heliostat field fault diagnosis, the experimental results show that the proposed neural network has a low training time, good robustness, and a reliable diagnostic performance. As a result, it provides an ideal solution for fault diagnosis in modern, large-scale heliostat fields.
PREDIKSI FOREX MENGGUNAKAN MODEL NEURAL NETWORK
Directory of Open Access Journals (Sweden)
R. Hadapiningradja Kusumodestoni
2015-11-01
Full Text Available ABSTRAK Prediksi adalah salah satu teknik yang paling penting dalam menjalankan bisnis forex. Keputusan dalam memprediksi adalah sangatlah penting, karena dengan prediksi dapat membantu mengetahui nilai forex di waktu tertentu kedepan sehingga dapat mengurangi resiko kerugian. Tujuan dari penelitian ini dimaksudkan memprediksi bisnis fores menggunakan model neural network dengan data time series per 1 menit untuk mengetahui nilai akurasi prediksi sehingga dapat mengurangi resiko dalam menjalankan bisnis forex. Metode penelitian pada penelitian ini meliputi metode pengumpulan data kemudian dilanjutkan ke metode training, learning, testing menggunakan neural network. Setelah di evaluasi hasil penelitian ini menunjukan bahwa penerapan algoritma Neural Network mampu untuk memprediksi forex dengan tingkat akurasi prediksi 0.431 +/- 0.096 sehingga dengan prediksi ini dapat membantu mengurangi resiko dalam menjalankan bisnis forex. Kata kunci: prediksi, forex, neural network.
Quantum perceptron over a field and neural network architecture selection in a quantum computer.
da Silva, Adenilton José; Ludermir, Teresa Bernarda; de Oliveira, Wilson Rosa
2016-04-01
In this work, we propose a quantum neural network named quantum perceptron over a field (QPF). Quantum computers are not yet a reality and the models and algorithms proposed in this work cannot be simulated in actual (or classical) computers. QPF is a direct generalization of a classical perceptron and solves some drawbacks found in previous models of quantum perceptrons. We also present a learning algorithm named Superposition based Architecture Learning algorithm (SAL) that optimizes the neural network weights and architectures. SAL searches for the best architecture in a finite set of neural network architectures with linear time over the number of patterns in the training set. SAL is the first learning algorithm to determine neural network architectures in polynomial time. This speedup is obtained by the use of quantum parallelism and a non-linear quantum operator. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dynamic Neural State Identification in Deep Brain Local Field Potentials of Neuropathic Pain.
Luo, Huichun; Huang, Yongzhi; Du, Xueying; Zhang, Yunpeng; Green, Alexander L; Aziz, Tipu Z; Wang, Shouyan
2018-01-01
In neuropathic pain, the neurophysiological and neuropathological function of the ventro-posterolateral nucleus of the thalamus (VPL) and the periventricular gray/periaqueductal gray area (PVAG) involves multiple frequency oscillations. Moreover, oscillations related to pain perception and modulation change dynamically over time. Fluctuations in these neural oscillations reflect the dynamic neural states of the nucleus. In this study, an approach to classifying the synchronization level was developed to dynamically identify the neural states. An oscillation extraction model based on windowed wavelet packet transform was designed to characterize the activity level of oscillations. The wavelet packet coefficients sparsely represented the activity level of theta and alpha oscillations in local field potentials (LFPs). Then, a state discrimination model was designed to calculate an adaptive threshold to determine the activity level of oscillations. Finally, the neural state was represented by the activity levels of both theta and alpha oscillations. The relationship between neural states and pain relief was further evaluated. The performance of the state identification approach achieved sensitivity and specificity beyond 80% in simulation signals. Neural states of the PVAG and VPL were dynamically identified from LFPs of neuropathic pain patients. The occurrence of neural states based on theta and alpha oscillations were correlated to the degree of pain relief by deep brain stimulation. In the PVAG LFPs, the occurrence of the state with high activity levels of theta oscillations independent of alpha and the state with low-level alpha and high-level theta oscillations were significantly correlated with pain relief by deep brain stimulation. This study provides a reliable approach to identifying the dynamic neural states in LFPs with a low signal-to-noise ratio by using sparse representation based on wavelet packet transform. Furthermore, it may advance closed-loop deep
Neural network tagging in a toy model
International Nuclear Information System (INIS)
Milek, Marko; Patel, Popat
1999-01-01
The purpose of this study is a comparison of Artificial Neural Network approach to HEP analysis against the traditional methods. A toy model used in this analysis consists of two types of particles defined by four generic properties. A number of 'events' was created according to the model using standard Monte Carlo techniques. Several fully connected, feed forward multi layered Artificial Neural Networks were trained to tag the model events. The performance of each network was compared to the standard analysis mechanisms and significant improvement was observed
Dynamic Neural Fields as a Step Towards Cognitive Neuromorphic Architectures
Directory of Open Access Journals (Sweden)
Yulia eSandamirskaya
2014-01-01
Full Text Available Dynamic Field Theory (DFT is an established framework for modelling embodied cognition. In DFT, elementary cognitive functions such as memory formation, formation of grounded representations, attentional processes, decision making, adaptation, and learning emerge from neuronal dynamics. The basic computational element of this framework is a Dynamic Neural Field (DNF. Under constraints on the time-scale of the dynamics, the DNF is computationally equivalent to a soft winner-take-all (WTA network, which is considered one of the basic computational units in neuronal processing. Recently, it has been shown how a WTA network may be implemented in neuromorphic hardware, such as analogue Very Large Scale Integration (VLSI device. This paper leverages the relationship between DFT and soft WTA networks to systematically revise and integrate established DFT mechanisms that have previously been spread among different architectures. In addition, I also identify some novel computational and architectural mechanisms of DFT which may be implemented in neuromorphic VLSI devices using WTA networks as an intermediate computational layer. These specific mechanisms include the stabilization of working memory, the coupling of sensory systems to motor dynamics, intentionality, and autonomous learning. I further demonstrate how all these elements may be integrated into a unified architecture to generate behavior and autonomous learning.
Neural Networks for Modeling and Control of Particle Accelerators
Edelen, A. L.; Biedron, S. G.; Chase, B. E.; Edstrom, D.; Milton, S. V.; Stabile, P.
2016-04-01
Particle accelerators are host to myriad nonlinear and complex physical phenomena. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems, as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. The purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.
Neural network models of categorical perception.
Damper, R I; Harnad, S R
2000-05-01
Studies of the categorical perception (CP) of sensory continua have a long and rich history in psychophysics. In 1977, Macmillan, Kaplan, and Creelman introduced the use of signal detection theory to CP studies. Anderson and colleagues simultaneously proposed the first neural model for CP, yet this line of research has been less well explored. In this paper, we assess the ability of neural-network models of CP to predict the psychophysical performance of real observers with speech sounds and artificial/novel stimuli. We show that a variety of neural mechanisms are capable of generating the characteristics of CP. Hence, CP may not be a special model of perception but an emergent property of any sufficiently powerful general learning system.
A quantum-implementable neural network model
Chen, Jialin; Wang, Lingli; Charbon, Edoardo
2017-10-01
A quantum-implementable neural network, namely quantum probability neural network (QPNN) model, is proposed in this paper. QPNN can use quantum parallelism to trace all possible network states to improve the result. Due to its unique quantum nature, this model is robust to several quantum noises under certain conditions, which can be efficiently implemented by the qubus quantum computer. Another advantage is that QPNN can be used as memory to retrieve the most relevant data and even to generate new data. The MATLAB experimental results of Iris data classification and MNIST handwriting recognition show that much less neuron resources are required in QPNN to obtain a good result than the classical feedforward neural network. The proposed QPNN model indicates that quantum effects are useful for real-life classification tasks.
Weather forecasting based on hybrid neural model
Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.
2017-11-01
Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.
Protein 8-class secondary structure prediction using conditional neural fields.
Wang, Zhiyong; Zhao, Feng; Peng, Jian; Xu, Jinbo
2011-10-01
Compared with the protein 3-class secondary structure (SS) prediction, the 8-class prediction gains less attention and is also much more challenging, especially for proteins with few sequence homologs. This paper presents a new probabilistic method for 8-class SS prediction using conditional neural fields (CNFs), a recently invented probabilistic graphical model. This CNF method not only models the complex relationship between sequence features and SS, but also exploits the interdependency among SS types of adjacent residues. In addition to sequence profiles, our method also makes use of non-evolutionary information for SS prediction. Tested on the CB513 and RS126 data sets, our method achieves Q8 accuracy of 64.9 and 64.7%, respectively, which are much better than the SSpro8 web server (51.0 and 48.0%, respectively). Our method can also be used to predict other structure properties (e.g. solvent accessibility) of a protein or the SS of RNA. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Associative memory model with spontaneous neural activity
Kurikawa, Tomoki; Kaneko, Kunihiko
2012-05-01
We propose a novel associative memory model wherein the neural activity without an input (i.e., spontaneous activity) is modified by an input to generate a target response that is memorized for recall upon the same input. Suitable design of synaptic connections enables the model to memorize input/output (I/O) mappings equaling 70% of the total number of neurons, where the evoked activity distinguishes a target pattern from others. Spontaneous neural activity without an input shows chaotic dynamics but keeps some similarity with evoked activities, as reported in recent experimental studies.
Artificial neural network cardiopulmonary modeling and diagnosis
Kangas, Lars J.; Keller, Paul E.
1997-01-01
The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis.
Neural modeling of prefrontal executive function
Energy Technology Data Exchange (ETDEWEB)
Levine, D.S. [Univ. of Texas, Arlington, TX (United States)
1996-12-31
Brain executive function is based in a distributed system whereby prefrontal cortex is interconnected with other cortical. and subcortical loci. Executive function is divided roughly into three interacting parts: affective guidance of responses; linkage among working memory representations; and forming complex behavioral schemata. Neural network models of each of these parts are reviewed and fit into a preliminary theoretical framework.
Workshop on Thermal Field Theory to Neural Networks
Veneziano, Gabriele; Aurenche, Patrick
1996-01-01
Tanguy Altherr was a Fellow in the Theory Division at CERN, on leave from LAPP (CNRS) Annecy. At the time of his accidental death in July 1994, he was only 31.A meeting was organized at CERN, covering the various aspects of his scientific interests: thermal field theory and its applications to hot or dense media, neural networks and its applications to high energy data analysis. Speakers were among his closest collaborators and friends.
Gamma Oscillations and Neural Field DCMs Can Reveal Cortical Excitability and Microstructure
Directory of Open Access Journals (Sweden)
Dimitris Pinotsis
2014-05-01
Full Text Available This paper shows how gamma oscillations can be combined with neural population models and dynamic causal modeling (DCM to distinguish among alternative hypotheses regarding cortical excitability and microstructure. This approach exploits inter-subject variability and trial-specific effects associated with modulations in the peak frequency of gamma oscillations. Neural field models are used to evaluate model evidence and obtain parameter estimates using invasive and non-invasive gamma recordings. Our overview comprises two parts: in the first part, we use neural fields to simulate neural activity and distinguish the effects of post synaptic filtering on predicted responses in terms of synaptic rate constants that correspond to different timescales and distinct neurotransmitters. We focus on model predictions of conductance and convolution based field models and show that these can yield spectral responses that are sensitive to biophysical properties of local cortical circuits like synaptic kinetics and filtering; we also consider two different mechanisms for this filtering: a nonlinear mechanism involving specific conductances and a linear convolution of afferent firing rates producing post synaptic potentials. In the second part of this paper, we use neural fields quantitatively—to fit empirical data recorded during visual stimulation. We present two studies of spectral responses obtained from the visual cortex during visual perception experiments: in the first study, MEG data were acquired during a task designed to show how activity in the gamma band is related to visual perception, while in the second study, we exploited high density electrocorticographic (ECoG data to study the effect of varying stimulus contrast on cortical excitability and gamma peak frequency.
UAV Trajectory Modeling Using Neural Networks
Xue, Min
2017-01-01
Massive small unmanned aerial vehicles are envisioned to operate in the near future. While there are lots of research problems need to be addressed before dense operations can happen, trajectory modeling remains as one of the keys to understand and develop policies, regulations, and requirements for safe and efficient unmanned aerial vehicle operations. The fidelity requirement of a small unmanned vehicle trajectory model is high because these vehicles are sensitive to winds due to their small size and low operational altitude. Both vehicle control systems and dynamic models are needed for trajectory modeling, which makes the modeling a great challenge, especially considering the fact that manufactures are not willing to share their control systems. This work proposed to use a neural network approach for modelling small unmanned vehicle's trajectory without knowing its control system and bypassing exhaustive efforts for aerodynamic parameter identification. As a proof of concept, instead of collecting data from flight tests, this work used the trajectory data generated by a mathematical vehicle model for training and testing the neural network. The results showed great promise because the trained neural network can predict 4D trajectories accurately, and prediction errors were less than 2:0 meters in both temporal and spatial dimensions.
Electric field effects in hyperexcitable neural tissue: A review
International Nuclear Information System (INIS)
Durand, D.M.
2003-01-01
Uniform electric fields applied to neural tissue can modulate neuronal excitability with a threshold value of about 1mV mm -1 in normal physiological conditions. However, electric fields could have a lower threshold in conditions where field sensitivity is enhanced, such as those simulating epilepsy. Uniform electrical fields were applied to hippocampal brain slices exposed to picrotoxin, high potassium or low calcium solutions. The results in the low calcium medium show that neuronal activity can be completely blocked in 10% of the 30 slices tested with a field amplitude of 1mV mm -1 . These results suggest that the threshold for this effect is clearly smaller than 1mV mm -1 . The hypothesis that the extracellular resistance could affect the sensitivity to the electrical fields was tested by measuring the effect of the osmolarity of the extracellular solution on the efficacy of the field. A 10% decrease on osmolarity resulted in a 56% decrease ( n =4) in the minimum field required for full suppression. A 14% in osmolarity produced an 81% increase in the minimum field required for full suppression. These results show that the extracellular volume can modulate the efficacy of the field and could lower the threshold field amplitudes to values lower than ∼1mmV mm -. (author)
Embedding recurrent neural networks into predator-prey models.
Moreau, Yves; Louiès, Stephane; Vandewalle, Joos; Brenig, Leon
1999-03-01
We study changes of coordinates that allow the embedding of ordinary differential equations describing continuous-time recurrent neural networks into differential equations describing predator-prey models-also called Lotka-Volterra systems. We transform the equations for the neural network first into quasi-monomial form (Brenig, L. (1988). Complete factorization and analytic solutions of generalized Lotka-Volterra equations. Physics Letters A, 133(7-8), 378-382), where we express the vector field of the dynamical system as a linear combination of products of powers of the variables. In practice, this transformation is possible only if the activation function is the hyperbolic tangent or the logistic sigmoid. From this quasi-monomial form, we can directly transform the system further into Lotka-Volterra equations. The resulting Lotka-Volterra system is of higher dimension than the original system, but the behavior of its first variables is equivalent to the behavior of the original neural network. We expect that this transformation will permit the application of existing techniques for the analysis of Lotka-Volterra systems to recurrent neural networks. Furthermore, our results show that Lotka-Volterra systems are universal approximators of dynamical systems, just as are continuous-time neural networks.
Functional model of biological neural networks.
Lo, James Ting-Ho
2010-12-01
A functional model of biological neural networks, called temporal hierarchical probabilistic associative memory (THPAM), is proposed in this paper. THPAM comprises functional models of dendritic trees for encoding inputs to neurons, a first type of neuron for generating spike trains, a second type of neuron for generating graded signals to modulate neurons of the first type, supervised and unsupervised Hebbian learning mechanisms for easy learning and retrieving, an arrangement of dendritic trees for maximizing generalization, hardwiring for rotation-translation-scaling invariance, and feedback connections with different delay durations for neurons to make full use of present and past informations generated by neurons in the same and higher layers. These functional models and their processing operations have many functions of biological neural networks that have not been achieved by other models in the open literature and provide logically coherent answers to many long-standing neuroscientific questions. However, biological justifications of these functional models and their processing operations are required for THPAM to qualify as a macroscopic model (or low-order approximate) of biological neural networks.
Temporal-pattern learning in neural models
Genís, Carme Torras
1985-01-01
While the ability of animals to learn rhythms is an unquestionable fact, the underlying neurophysiological mechanisms are still no more than conjectures. This monograph explores the requirements of such mechanisms, reviews those previously proposed and postulates a new one based on a direct electric coding of stimulation frequencies. Experi mental support for the option taken is provided both at the single neuron and neural network levels. More specifically, the material presented divides naturally into four parts: a description of the experimental and theoretical framework where this work becomes meaningful (Chapter 2), a detailed specifica tion of the pacemaker neuron model proposed together with its valida tion through simulation (Chapter 3), an analytic study of the behavior of this model when submitted to rhythmic stimulation (Chapter 4) and a description of the neural network model proposed for learning, together with an analysis of the simulation results obtained when varying seve ral factors r...
Neural attractor network for application in visual field data classification
International Nuclear Information System (INIS)
Fink, Wolfgang
2004-01-01
The purpose was to introduce a novel method for computer-based classification of visual field data derived from perimetric examination, that may act as a ' counsellor', providing an independent 'second opinion' to the diagnosing physician. The classification system consists of a Hopfield-type neural attractor network that obtains its input data from perimetric examination results. An iterative relaxation process determines the states of the neurons dynamically. Therefore, even 'noisy' perimetric output, e.g., early stages of a disease, may eventually be classified correctly according to the predefined idealized visual field defect (scotoma) patterns, stored as attractors of the network, that are found with diseases of the eye, optic nerve and the central nervous system. Preliminary tests of the classification system on real visual field data derived from perimetric examinations have shown a classification success of over 80%. Some of the main advantages of the Hopfield-attractor-network-based approach over feed-forward type neural networks are: (1) network architecture is defined by the classification problem; (2) no training is required to determine the neural coupling strengths; (3) assignment of an auto-diagnosis confidence level is possible by means of an overlap parameter and the Hamming distance. In conclusion, the novel method for computer-based classification of visual field data, presented here, furnishes a valuable first overview and an independent 'second opinion' in judging perimetric examination results, pointing towards a final diagnosis by a physician. It should not be considered a substitute for the diagnosing physician. Thanks to the worldwide accessibility of the Internet, the classification system offers a promising perspective towards modern computer-assisted diagnosis in both medicine and tele-medicine, for example and in particular, with respect to non-ophthalmic clinics or in communities where perimetric expertise is not readily available
Artificial Neural Network Model for Predicting Compressive
Directory of Open Access Journals (Sweden)
Salim T. Yousif
2013-05-01
Full Text Available Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature. The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor affecting the output of the model. The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.
DEFF Research Database (Denmark)
Roudi, Yasser; Tyrcha, Joanna; Hertz, John
2009-01-01
(dansk abstrakt findes ikke) We study pairwise Ising models for describing the statistics of multi-neuron spike trains, using data from a simulated cortical network. We explore efficient ways of finding the optimal couplings in these models and examine their statistical properties. To do this, we...... extract the optimal couplings for subsets of size up to $200$ neurons, essentially exactly, using Boltzmann learning. We then study the quality of several approximate methods for finding the couplings by comparing their results with those found from Boltzmann learning. Two of these methods -- inversion...... of the Thouless-Anderson-Palmer equations and an approximation proposed by Sessak and Monasson -- are remarkably accurate. Using these approximations for larger subsets of neurons, we find that extracting couplings using data from a subset smaller than the full network tends systematically to overestimate...
UAV Trajectory Modeling Using Neural Networks
Xue, Min
2017-01-01
Large amount of small Unmanned Aerial Vehicles (sUAVs) are projected to operate in the near future. Potential sUAV applications include, but not limited to, search and rescue, inspection and surveillance, aerial photography and video, precision agriculture, and parcel delivery. sUAVs are expected to operate in the uncontrolled Class G airspace, which is at or below 500 feet above ground level (AGL), where many static and dynamic constraints exist, such as ground properties and terrains, restricted areas, various winds, manned helicopters, and conflict avoidance among sUAVs. How to enable safe, efficient, and massive sUAV operations at the low altitude airspace remains a great challenge. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative works on establishing infrastructure and developing policies, requirement, and rules to enable safe and efficient sUAVs' operations. To achieve this goal, it is important to gain insights of future UTM traffic operations through simulations, where the accurate trajectory model plays an extremely important role. On the other hand, like what happens in current aviation development, trajectory modeling should also serve as the foundation for any advanced concepts and tools in UTM. Accurate models of sUAV dynamics and control systems are very important considering the requirement of the meter level precision in UTM operations. The vehicle dynamics are relatively easy to derive and model, however, vehicle control systems remain unknown as they are usually kept by manufactures as a part of intellectual properties. That brings challenges to trajectory modeling for sUAVs. How to model the vehicle's trajectories with unknown control system? This work proposes to use a neural network to model a vehicle's trajectory. The neural network is first trained to learn the vehicle's responses at numerous conditions. Once being fully trained, given current vehicle states, winds, and desired future trajectory, the neural
Model for neural signaling leap statistics
International Nuclear Information System (INIS)
Chevrollier, Martine; Oria, Marcos
2011-01-01
We present a simple model for neural signaling leaps in the brain considering only the thermodynamic (Nernst) potential in neuron cells and brain temperature. We numerically simulated connections between arbitrarily localized neurons and analyzed the frequency distribution of the distances reached. We observed qualitative change between Normal statistics (with T 37.5 0 C, awaken regime) and Levy statistics (T = 35.5 0 C, sleeping period), characterized by rare events of long range connections.
Model for neural signaling leap statistics
Chevrollier, Martine; Oriá, Marcos
2011-03-01
We present a simple model for neural signaling leaps in the brain considering only the thermodynamic (Nernst) potential in neuron cells and brain temperature. We numerically simulated connections between arbitrarily localized neurons and analyzed the frequency distribution of the distances reached. We observed qualitative change between Normal statistics (with T = 37.5°C, awaken regime) and Lévy statistics (T = 35.5°C, sleeping period), characterized by rare events of long range connections.
Model for neural signaling leap statistics
Energy Technology Data Exchange (ETDEWEB)
Chevrollier, Martine; Oria, Marcos, E-mail: oria@otica.ufpb.br [Laboratorio de Fisica Atomica e Lasers Departamento de Fisica, Universidade Federal da ParaIba Caixa Postal 5086 58051-900 Joao Pessoa, Paraiba (Brazil)
2011-03-01
We present a simple model for neural signaling leaps in the brain considering only the thermodynamic (Nernst) potential in neuron cells and brain temperature. We numerically simulated connections between arbitrarily localized neurons and analyzed the frequency distribution of the distances reached. We observed qualitative change between Normal statistics (with T 37.5{sup 0}C, awaken regime) and Levy statistics (T = 35.5{sup 0}C, sleeping period), characterized by rare events of long range connections.
Artificial Neural Network Modeling of an Inverse Fluidized Bed ...
African Journals Online (AJOL)
A Radial Basis Function neural network has been successfully employed for the modeling of the inverse fluidized bed reactor. In the proposed model, the trained neural network represents the kinetics of biological decomposition of pollutants in the reactor. The neural network has been trained with experimental data ...
International Nuclear Information System (INIS)
Iloghalu, E.M.
2002-01-01
Artificial neural network is a virtual intelligence tool, which mimics the human brain to do analysis and come out with results. Its application in petroleum engineering is very recent and is gradually evolving and is set to dominate or take over other analytical tools used in the Exploration and Production industry.There are two types of neural network namely, unsupervised and supervised neural networks. A proper combination of these two types of neural networks produces high-resolution results.In this work, interpreted core data was depth matched to well logs and 5 genetic units were calibrated to define the combined log responses for each genetic unit. These combined log responses were then used to train the supervised neural networks to recognise and interpret these units elsewhere in the field. Thereafter, the unsupervised neural network was run to generate classes within the cored interval. The results were then compared with the supervised network output and were then extrapolated vertically and laterally to other parts of the field.This technique having been used successfully to perform automatic interpretation of genetic units and lithofacies associations in reservoir scale is also very useful and applicable in exploration. Specific reservoirs or stratigraphic units can be automatically interpreted across a wide area using well data controlled by one or a combination of lithostratigraphy, allostratigraphy, sequence stratigraphy and biostratigraphy.Using this technique, well data cost and time are saved tremendously. It is the key to achieving computerised Basin-Scale Reservoir characterisation for the Niger Delta
Unloading arm movement modeling using neural networks for a rotary hearth furnace
Directory of Open Access Journals (Sweden)
Iulia Inoan
2011-12-01
Full Text Available Neural networks are being applied in many fields of engineering having nowadays a wide range of application. Neural networks are very useful for modeling dynamic processes for which the mathematical modeling is hard to obtain, or for processes that can’t be modeled using mathematical equations. This paper describes the modeling process for the unloading arm movement from a rotary hearth furnace using neural networks with back propagation algorithm. In this case the designed network was trained using the simulation results from a previous calculated mathematical model.
Semi-empirical neural network models of controlled dynamical systems
Directory of Open Access Journals (Sweden)
Mihail V. Egorchev
2017-12-01
Full Text Available A simulation approach is discussed for maneuverable aircraft motion as nonlinear controlled dynamical system under multiple and diverse uncertainties including knowledge imperfection concerning simulated plant and its environment exposure. The suggested approach is based on a merging of theoretical knowledge for the plant with training tools of artificial neural network field. The efficiency of this approach is demonstrated using the example of motion modeling and the identification of the aerodynamic characteristics of a maneuverable aircraft. A semi-empirical recurrent neural network based model learning algorithm is proposed for multi-step ahead prediction problem. This algorithm sequentially states and solves numerical optimization subproblems of increasing complexity, using each solution as initial guess for subsequent subproblem. We also consider a procedure for representative training set acquisition that utilizes multisine control signals.
ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation.
Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan
2017-07-20
Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue in the field of surgical simulation. In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue deformation by combining neural dynamics of cellular neural network with ChainMail mechanism. The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into the neural dynamics of cellular neural network. Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues' nonlinear deformation and typical mechanical behaviors. The proposed method not only improves ChainMail's linear deformation with the nonlinear characteristics of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft tissue deformation.
Optimal path-finding through mental exploration based on neural energy field gradients.
Wang, Yihong; Wang, Rubin; Zhu, Yating
2017-02-01
Rodent animal can accomplish self-locating and path-finding task by forming a cognitive map in the hippocampus representing the environment. In the classical model of the cognitive map, the system (artificial animal) needs large amounts of physical exploration to study spatial environment to solve path-finding problems, which costs too much time and energy. Although Hopfield's mental exploration model makes up for the deficiency mentioned above, the path is still not efficient enough. Moreover, his model mainly focused on the artificial neural network, and clear physiological meanings has not been addressed. In this work, based on the concept of mental exploration, neural energy coding theory has been applied to the novel calculation model to solve the path-finding problem. Energy field is constructed on the basis of the firing power of place cell clusters, and the energy field gradient can be used in mental exploration to solve path-finding problems. The study shows that the new mental exploration model can efficiently find the optimal path, and present the learning process with biophysical meaning as well. We also analyzed the parameters of the model which affect the path efficiency. This new idea verifies the importance of place cell and synapse in spatial memory and proves that energy coding is effective to study cognitive activities. This may provide the theoretical basis for the neural dynamics mechanism of spatial memory.
Neural networks in economic modelling : An empirical study
Verkooijen, W.J.H.
1996-01-01
This dissertation addresses the statistical aspects of neural networks and their usability for solving problems in economics and finance. Neural networks are discussed in a framework of modelling which is generally accepted in econometrics. Within this framework a neural network is regarded as a
The gamma model : a new neural network for temporal processing
Vries, de B.
1992-01-01
In this paper we develop the gamma neural model, a new neural net architecture for processing of temporal patterns. Time varying patterns are normally segmented into a sequence of static patterns that are successively presented to a neural net. In the approach presented here segmentation is avoided.
Reconstruction of coupling architecture of neural field networks from vector time series
Sysoev, Ilya V.; Ponomarenko, Vladimir I.; Pikovsky, Arkady
2018-04-01
We propose a method of reconstruction of the network coupling matrix for a basic voltage-model of the neural field dynamics. Assuming that the multivariate time series of observations from all nodes are available, we describe a technique to find coupling constants which is unbiased in the limit of long observations. Furthermore, the method is generalized for reconstruction of networks with time-delayed coupling, including the reconstruction of unknown time delays. The approach is compared with other recently proposed techniques.
Flood routing modelling with Artificial Neural Networks
Directory of Open Access Journals (Sweden)
R. Peters
2006-01-01
Full Text Available For the modelling of the flood routing in the lower reaches of the Freiberger Mulde river and its tributaries the one-dimensional hydrodynamic modelling system HEC-RAS has been applied. Furthermore, this model was used to generate a database to train multilayer feedforward networks. To guarantee numerical stability for the hydrodynamic modelling of some 60 km of streamcourse an adequate resolution in space requires very small calculation time steps, which are some two orders of magnitude smaller than the input data resolution. This leads to quite high computation requirements seriously restricting the application – especially when dealing with real time operations such as online flood forecasting. In order to solve this problem we tested the application of Artificial Neural Networks (ANN. First studies show the ability of adequately trained multilayer feedforward networks (MLFN to reproduce the model performance.
Learning quadratic receptive fields from neural responses to natural stimuli.
Rajan, Kanaka; Marre, Olivier; Tkačik, Gašper
2013-07-01
Models of neural responses to stimuli with complex spatiotemporal correlation structure often assume that neurons are selective for only a small number of linear projections of a potentially high-dimensional input. In this review, we explore recent modeling approaches where the neural response depends on the quadratic form of the input rather than on its linear projection, that is, the neuron is sensitive to the local covariance structure of the signal preceding the spike. To infer this quadratic dependence in the presence of arbitrary (e.g., naturalistic) stimulus distribution, we review several inference methods, focusing in particular on two information theory-based approaches (maximization of stimulus energy and of noise entropy) and two likelihood-based approaches (Bayesian spike-triggered covariance and extensions of generalized linear models). We analyze the formal relationship between the likelihood-based and information-based approaches to demonstrate how they lead to consistent inference. We demonstrate the practical feasibility of these procedures by using model neurons responding to a flickering variance stimulus.
Modeling Broadband Microwave Structures by Artificial Neural Networks
Directory of Open Access Journals (Sweden)
V. Otevrel
2004-06-01
Full Text Available The paper describes the exploitation of feed-forward neural networksand recurrent neural networks for replacing full-wave numerical modelsof microwave structures in complex microwave design tools. Building aneural model, attention is turned to the modeling accuracy and to theefficiency of building a model. Dealing with the accuracy, we describea method of increasing it by successive completing a training set.Neural models are mutually compared in order to highlight theiradvantages and disadvantages. As a reference model for comparisons,approximations based on standard cubic splines are used. Neural modelsare used to replace both the time-domain numeric models and thefrequency-domain ones.
Parametric models to relate spike train and LFP dynamics with neural information processing.
Banerjee, Arpan; Dean, Heather L; Pesaran, Bijan
2012-01-01
Spike trains and local field potentials (LFPs) resulting from extracellular current flows provide a substrate for neural information processing. Understanding the neural code from simultaneous spike-field recordings and subsequent decoding of information processing events will have widespread applications. One way to demonstrate an understanding of the neural code, with particular advantages for the development of applications, is to formulate a parametric statistical model of neural activity and its covariates. Here, we propose a set of parametric spike-field models (unified models) that can be used with existing decoding algorithms to reveal the timing of task or stimulus specific processing. Our proposed unified modeling framework captures the effects of two important features of information processing: time-varying stimulus-driven inputs and ongoing background activity that occurs even in the absence of environmental inputs. We have applied this framework for decoding neural latencies in simulated and experimentally recorded spike-field sessions obtained from the lateral intraparietal area (LIP) of awake, behaving monkeys performing cued look-and-reach movements to spatial targets. Using both simulated and experimental data, we find that estimates of trial-by-trial parameters are not significantly affected by the presence of ongoing background activity. However, including background activity in the unified model improves goodness of fit for predicting individual spiking events. Uncovering the relationship between the model parameters and the timing of movements offers new ways to test hypotheses about the relationship between neural activity and behavior. We obtained significant spike-field onset time correlations from single trials using a previously published data set where significantly strong correlation was only obtained through trial averaging. We also found that unified models extracted a stronger relationship between neural response latency and trial
Computational modeling of neural activities for statistical inference
Kolossa, Antonio
2016-01-01
This authored monograph supplies empirical evidence for the Bayesian brain hypothesis by modeling event-related potentials (ERP) of the human electroencephalogram (EEG) during successive trials in cognitive tasks. The employed observer models are useful to compute probability distributions over observable events and hidden states, depending on which are present in the respective tasks. Bayesian model selection is then used to choose the model which best explains the ERP amplitude fluctuations. Thus, this book constitutes a decisive step towards a better understanding of the neural coding and computing of probabilities following Bayesian rules. The target audience primarily comprises research experts in the field of computational neurosciences, but the book may also be beneficial for graduate students who want to specialize in this field. .
Risk prediction model: Statistical and artificial neural network approach
Paiman, Nuur Azreen; Hariri, Azian; Masood, Ibrahim
2017-04-01
Prediction models are increasingly gaining popularity and had been used in numerous areas of studies to complement and fulfilled clinical reasoning and decision making nowadays. The adoption of such models assist physician's decision making, individual's behavior, and consequently improve individual outcomes and the cost-effectiveness of care. The objective of this paper is to reviewed articles related to risk prediction model in order to understand the suitable approach, development and the validation process of risk prediction model. A qualitative review of the aims, methods and significant main outcomes of the nineteen published articles that developed risk prediction models from numerous fields were done. This paper also reviewed on how researchers develop and validate the risk prediction models based on statistical and artificial neural network approach. From the review done, some methodological recommendation in developing and validating the prediction model were highlighted. According to studies that had been done, artificial neural network approached in developing the prediction model were more accurate compared to statistical approach. However currently, only limited published literature discussed on which approach is more accurate for risk prediction model development.
Modeling and control of magnetorheological fluid dampers using neural networks
Wang, D. H.; Liao, W. H.
2005-02-01
Due to the inherent nonlinear nature of magnetorheological (MR) fluid dampers, one of the challenging aspects for utilizing these devices to achieve high system performance is the development of accurate models and control algorithms that can take advantage of their unique characteristics. In this paper, the direct identification and inverse dynamic modeling for MR fluid dampers using feedforward and recurrent neural networks are studied. The trained direct identification neural network model can be used to predict the damping force of the MR fluid damper on line, on the basis of the dynamic responses across the MR fluid damper and the command voltage, and the inverse dynamic neural network model can be used to generate the command voltage according to the desired damping force through supervised learning. The architectures and the learning methods of the dynamic neural network models and inverse neural network models for MR fluid dampers are presented, and some simulation results are discussed. Finally, the trained neural network models are applied to predict and control the damping force of the MR fluid damper. Moreover, validation methods for the neural network models developed are proposed and used to evaluate their performance. Validation results with different data sets indicate that the proposed direct identification dynamic model using the recurrent neural network can be used to predict the damping force accurately and the inverse identification dynamic model using the recurrent neural network can act as a damper controller to generate the command voltage when the MR fluid damper is used in a semi-active mode.
Alizadeh, Bahram; Najjari, Saeid; Kadkhodaie-Ilkhchi, Ali
2012-08-01
Intelligent and statistical techniques were used to extract the hidden organic facies from well log responses in the Giant South Pars Gas Field, Persian Gulf, Iran. Kazhdomi Formation of Mid-Cretaceous and Kangan-Dalan Formations of Permo-Triassic Data were used for this purpose. Initially GR, SGR, CGR, THOR, POTA, NPHI and DT logs were applied to model the relationship between wireline logs and Total Organic Carbon (TOC) content using Artificial Neural Networks (ANN). The correlation coefficient (R2) between the measured and ANN predicted TOC equals to 89%. The performance of the model is measured by the Mean Squared Error function, which does not exceed 0.0073. Using Cluster Analysis technique and creating a binary hierarchical cluster tree the constructed TOC column of each formation was clustered into 5 organic facies according to their geochemical similarity. Later a second model with the accuracy of 84% was created by ANN to determine the specified clusters (facies) directly from well logs for quick cluster recognition in other wells of the studied field. Each created facies was correlated to its appropriate burial history curve. Hence each and every facies of a formation could be scrutinized separately and directly from its well logs, demonstrating the time and depth of oil or gas generation. Therefore potential production zone of Kazhdomi probable source rock and Kangan- Dalan reservoir formation could be identified while well logging operations (especially in LWD cases) were in progress. This could reduce uncertainty and save plenty of time and cost for oil industries and aid in the successful implementation of exploration and exploitation plans.
Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
International Nuclear Information System (INIS)
Ling, Julia; Kurzawski, Andrew; Templeton, Jeremy
2016-01-01
There exists significant demand for improved Reynolds-averaged Navier–Stokes (RANS) turbulence models that are informed by and can represent a richer set of turbulence physics. This paper presents a method of using deep neural networks to learn a model for the Reynolds stress anisotropy tensor from high-fidelity simulation data. A novel neural network architecture is proposed which uses a multiplicative layer with an invariant tensor basis to embed Galilean invariance into the predicted anisotropy tensor. It is demonstrated that this neural network architecture provides improved prediction accuracy compared with a generic neural network architecture that does not embed this invariance property. Furthermore, the Reynolds stress anisotropy predictions of this invariant neural network are propagated through to the velocity field for two test cases. For both test cases, significant improvement versus baseline RANS linear eddy viscosity and nonlinear eddy viscosity models is demonstrated.
Modeling of quasistatic magnetic hysteresis with feed-forward neural networks
International Nuclear Information System (INIS)
Makaveev, Dimitre; Dupre, Luc; De Wulf, Marc; Melkebeek, Jan
2001-01-01
A modeling technique for rate-independent (quasistatic) scalar magnetic hysteresis is presented, using neural networks. Based on the theory of dynamic systems and the wiping-out and congruency properties of the classical scalar Preisach hysteresis model, the choice of a feed-forward neural network model is motivated. The neural network input parameters at each time step are the corresponding magnetic field strength and memory state, thereby assuring accurate prediction of the change of magnetic induction. For rate-independent hysteresis, the current memory state can be determined by the last extreme magnetic field strength and induction values, kept in memory. The choice of a network training set is motivated and the performance of the network is illustrated for a test set not used during training. Very accurate prediction of both major and minor hysteresis loops is observed, proving that the neural network technique is suitable for hysteresis modeling. [copyright] 2001 American Institute of Physics
Stimulus Sensitivity of a Spiking Neural Network Model
Chevallier, Julien
2018-02-01
Some recent papers relate the criticality of complex systems to their maximal capacity of information processing. In the present paper, we consider high dimensional point processes, known as age-dependent Hawkes processes, which have been used to model spiking neural networks. Using mean-field approximation, the response of the network to a stimulus is computed and we provide a notion of stimulus sensitivity. It appears that the maximal sensitivity is achieved in the sub-critical regime, yet almost critical for a range of biologically relevant parameters.
Hofmann, Volker; Chacron, Maurice J
2017-09-01
Understanding how neural populations encode sensory information thereby leading to perception and behavior (i.e., the neural code) remains an important problem in neuroscience. When investigating the neural code, one must take into account the fact that neural activities are not independent but are actually correlated with one another. Such correlations are seen ubiquitously and have a strong impact on neural coding. Here we investigated how differences in the antagonistic center-surround receptive field (RF) organization across three parallel sensory maps influence correlations between the activities of electrosensory pyramidal neurons. Using a model based on known anatomical differences in receptive field center size and overlap, we initially predicted large differences in correlated activity across the maps. However, in vivo electrophysiological recordings showed that, contrary to modeling predictions, electrosensory pyramidal neurons across all three segments displayed nearly identical correlations. To explain this surprising result, we incorporated the effects of RF surround in our model. By systematically varying both the RF surround gain and size relative to that of the RF center, we found that multiple RF structures gave rise to similar levels of correlation. In particular, incorporating known physiological differences in RF structure between the three maps in our model gave rise to similar levels of correlation. Our results show that RF center overlap alone does not determine correlations which has important implications for understanding how RF structure influences correlated neural activity.
Novel mathematical neural models for visual attention
DEFF Research Database (Denmark)
Li, Kang
for the visual attention theories and spiking neuron models for single spike trains. Statistical inference and model selection are performed and various numerical methods are explored. The designed methods also give a framework for neural coding under visual attention theories. We conduct both analysis on real......Visual attention has been extensively studied in psychology, but some fundamental questions remain controversial. We focus on two questions in this study. First, we investigate how a neuron in visual cortex responds to multiple stimuli inside the receptive eld, described by either a response...... system, supported by simulation study. Finally, we present the decoding of multiple temporal stimuli under these visual attention theories, also in a realistic biophysical situation with simulations....
Analysis of Neural-BOLD Coupling through Four Models of the Neural Metabolic Demand
Directory of Open Access Journals (Sweden)
Christopher W Tyler
2015-12-01
Full Text Available The coupling of the neuronal energetics to the blood-oxygen-level-dependent (BOLD response is still incompletely understood. To address this issue, we compared the fits of four plausible models of neurometabolic coupling dynamics to available data for simultaneous recordings of the local field potential (LFP and the local BOLD response recorded from monkey primary visual cortex over a wide range of stimulus durations. The four models of the metabolic demand driving the BOLD response were: direct coupling with the overall LFP; rectified coupling to the LFP; coupling with a slow adaptive component of the implied neural population response; and coupling with the non-adaptive intracellular input signal defined by the stimulus time course. Taking all stimulus durations into account, the results imply that the BOLD response is most closely coupled with metabolic demand derived from the intracellular input waveform, without significant influence from the adaptive transients and nonlinearities exhibited by the LFP waveform.
Population coding and decoding in a neural field: a computational study.
Wu, Si; Amari, Shun-Ichi; Nakahara, Hiroyuki
2002-05-01
This study uses a neural field model to investigate computational aspects of population coding and decoding when the stimulus is a single variable. A general prototype model for the encoding process is proposed, in which neural responses are correlated, with strength specified by a gaussian function of their difference in preferred stimuli. Based on the model, we study the effect of correlation on the Fisher information, compare the performances of three decoding methods that differ in the amount of encoding information being used, and investigate the implementation of the three methods by using a recurrent network. This study not only rediscovers main results in existing literatures in a unified way, but also reveals important new features, especially when the neural correlation is strong. As the neural correlation of firing becomes larger, the Fisher information decreases drastically. We confirm that as the width of correlation increases, the Fisher information saturates and no longer increases in proportion to the number of neurons. However, we prove that as the width increases further--wider than (sqrt)2 times the effective width of the turning function--the Fisher information increases again, and it increases without limit in proportion to the number of neurons. Furthermore, we clarify the asymptotic efficiency of the maximum likelihood inference (MLI) type of decoding methods for correlated neural signals. It shows that when the correlation covers a nonlocal range of population (excepting the uniform correlation and when the noise is extremely small), the MLI type of method, whose decoding error satisfies the Cauchy-type distribution, is not asymptotically efficient. This implies that the variance is no longer adequate to measure decoding accuracy.
Neural Network Based Models for Fusion Applications
Meneghini, Orso; Tema Biwole, Arsene; Luda, Teobaldo; Zywicki, Bailey; Rea, Cristina; Smith, Sterling; Snyder, Phil; Belli, Emily; Staebler, Gary; Canty, Jeff
2017-10-01
Whole device modeling, engineering design, experimental planning and control applications demand models that are simultaneously physically accurate and fast. This poster reports on the ongoing effort towards the development and validation of a series of models that leverage neural-Ânetwork (NN) multidimensional regression techniques to accelerate some of the most mission critical first principle models for the fusion community, such as: the EPED workflow for prediction of the H-Mode and Super H-Mode pedestal structure the TGLF and NEO models for the prediction of the turbulent and neoclassical particle, energy and momentum fluxes; and the NEO model for the drift-kinetic solution of the bootstrap current. We also applied NNs on DIII-D experimental data for disruption prediction and quantifying the effect of RMPs on the pedestal and ELMs. All of these projects were supported by the infrastructure provided by the OMFIT integrated modeling framework. Work supported by US DOE under DE-SC0012656, DE-FG02-95ER54309, DE-FC02-04ER54698.
The dynamic brain: from spiking neurons to neural masses and cortical fields.
Directory of Open Access Journals (Sweden)
Gustavo Deco
2008-08-01
Full Text Available The cortex is a complex system, characterized by its dynamics and architecture, which underlie many functions such as action, perception, learning, language, and cognition. Its structural architecture has been studied for more than a hundred years; however, its dynamics have been addressed much less thoroughly. In this paper, we review and integrate, in a unifying framework, a variety of computational approaches that have been used to characterize the dynamics of the cortex, as evidenced at different levels of measurement. Computational models at different space-time scales help us understand the fundamental mechanisms that underpin neural processes and relate these processes to neuroscience data. Modeling at the single neuron level is necessary because this is the level at which information is exchanged between the computing elements of the brain; the neurons. Mesoscopic models tell us how neural elements interact to yield emergent behavior at the level of microcolumns and cortical columns. Macroscopic models can inform us about whole brain dynamics and interactions between large-scale neural systems such as cortical regions, the thalamus, and brain stem. Each level of description relates uniquely to neuroscience data, from single-unit recordings, through local field potentials to functional magnetic resonance imaging (fMRI, electroencephalogram (EEG, and magnetoencephalogram (MEG. Models of the cortex can establish which types of large-scale neuronal networks can perform computations and characterize their emergent properties. Mean-field and related formulations of dynamics also play an essential and complementary role as forward models that can be inverted given empirical data. This makes dynamic models critical in integrating theory and experiments. We argue that elaborating principled and informed models is a prerequisite for grounding empirical neuroscience in a cogent theoretical framework, commensurate with the achievements in the
Two stage neural network modelling for robust model predictive control.
Patan, Krzysztof
2018-01-01
The paper proposes a novel robust model predictive control scheme realized by means of artificial neural networks. The neural networks are used twofold: to design the so-called fundamental model of a plant and to catch uncertainty associated with the plant model. In order to simplify the optimization process carried out within the framework of predictive control an instantaneous linearization is applied which renders it possible to define the optimization problem in the form of constrained quadratic programming. Stability of the proposed control system is also investigated by showing that a cost function is monotonically decreasing with respect to time. Derived robust model predictive control is tested and validated on the example of a pneumatic servomechanism working at different operating regimes. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Bio-Inspired Neural Model for Learning Dynamic Models
Duong, Tuan; Duong, Vu; Suri, Ronald
2009-01-01
A neural-network mathematical model that, relative to prior such models, places greater emphasis on some of the temporal aspects of real neural physical processes, has been proposed as a basis for massively parallel, distributed algorithms that learn dynamic models of possibly complex external processes by means of learning rules that are local in space and time. The algorithms could be made to perform such functions as recognition and prediction of words in speech and of objects depicted in video images. The approach embodied in this model is said to be "hardware-friendly" in the following sense: The algorithms would be amenable to execution by special-purpose computers implemented as very-large-scale integrated (VLSI) circuits that would operate at relatively high speeds and low power demands.
Computationally efficient model predictive control algorithms a neural network approach
Ławryńczuk, Maciej
2014-01-01
This book thoroughly discusses computationally efficient (suboptimal) Model Predictive Control (MPC) techniques based on neural models. The subjects treated include: · A few types of suboptimal MPC algorithms in which a linear approximation of the model or of the predicted trajectory is successively calculated on-line and used for prediction. · Implementation details of the MPC algorithms for feedforward perceptron neural models, neural Hammerstein models, neural Wiener models and state-space neural models. · The MPC algorithms based on neural multi-models (inspired by the idea of predictive control). · The MPC algorithms with neural approximation with no on-line linearization. · The MPC algorithms with guaranteed stability and robustness. · Cooperation between the MPC algorithms and set-point optimization. Thanks to linearization (or neural approximation), the presented suboptimal algorithms do not require d...
Hybrid neural network bushing model for vehicle dynamics simulation
International Nuclear Information System (INIS)
Sohn, Jeong Hyun; Lee, Seung Kyu; Yoo, Wan Suk
2008-01-01
Although the linear model was widely used for the bushing model in vehicle suspension systems, it could not express the nonlinear characteristics of bushing in terms of the amplitude and the frequency. An artificial neural network model was suggested to consider the hysteretic responses of bushings. This model, however, often diverges due to the uncertainties of the neural network under the unexpected excitation inputs. In this paper, a hybrid neural network bushing model combining linear and neural network is suggested. A linear model was employed to represent linear stiffness and damping effects, and the artificial neural network algorithm was adopted to take into account the hysteretic responses. A rubber test was performed to capture bushing characteristics, where sine excitation with different frequencies and amplitudes is applied. Random test results were used to update the weighting factors of the neural network model. It is proven that the proposed model has more robust characteristics than a simple neural network model under step excitation input. A full car simulation was carried out to verify the proposed bushing models. It was shown that the hybrid model results are almost identical to the linear model under several maneuvers
Runoff Modelling in Urban Storm Drainage by Neural Networks
DEFF Research Database (Denmark)
Rasmussen, Michael R.; Brorsen, Michael; Schaarup-Jensen, Kjeld
1995-01-01
A neural network is used to simulate folw and water levels in a sewer system. The calibration of th neural network is based on a few measured events and the network is validated against measureed events as well as flow simulated with the MOUSE model (Lindberg and Joergensen, 1986). The neural...... network is used to compute flow or water level at selected points in the sewer system, and to forecast the flow from a small residential area. The main advantages of the neural network are the build-in self calibration procedure and high speed performance, but the neural network cannot be used to extract...... knowledge of the runoff process. The neural network was found to simulate 150 times faster than e.g. the MOUSE model....
Bayesian Recurrent Neural Network for Language Modeling.
Chien, Jen-Tzung; Ku, Yuan-Chu
2016-02-01
A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.
Travelling waves in models of neural tissue: from localised structures to periodic waves
Meijer, Hil Gaétan Ellart; Coombes, Stephen
2014-01-01
We consider travelling waves (fronts, pulses and periodics) in spatially extended one dimensional neural field models. We demonstrate for an excitatory field with linear adaptation that, in addition to an expected stable pulse solution, a stable anti-pulse can exist. Varying the adaptation strength
Ocean wave prediction using numerical and neural network models
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Prabaharan, N.
This paper presents an overview of the development of the numerical wave prediction models and recently used neural networks for ocean wave hindcasting and forecasting. The numerical wave models express the physical concepts of the phenomena...
International Nuclear Information System (INIS)
Becchi, C.; Rouet, A.; Stora, R.
1975-10-01
Stora's analysis is continued in discussing the nonabelian (Yang-Mills) gauge field models (G.F.M.). The gauge independence of the physical scattering operator is discussed in some details and the connection between its unitary and the Slavnov symmetry outlined. Only the models involving semisimple gauge groups are considered. This greatly simplifies the analysis of the possible quantum corrections to the Quantum Action Principle which is reduced to the study of the cohomology group of the Lie algebra characterizing the gauge theory. The discussion is at the classical level for the algebraic properties of the SU(2) Higgs-Kibble-Englert-Brout-Faddeev-Popov lagrangian and its invariance under Slavnov identity transformations is exhibited. The renormalization of the Slavnov identity in the G.M.F. involving semisimple gauge groups is studied. The unitary and gauge independence of the physical S operator in the SU(2) H.K. model is dealt with [fr
A neural network model of causative actions
Directory of Open Access Journals (Sweden)
Jeremy eLee-Hand
2015-06-01
Full Text Available A common idea in models of action representation is that actions are represented in terms of their perceptual effects (see e.g. Prinz, 1997; Hommel et al., 2001; Sahin et al., 2007; Umilta et al., 2008; Hommel et al., 2013. In this paper we extend existing models of effect-based action representations to account for a novel distinction. Some actions bring about effects that are independent events in their own right: for instance, if John 'smashes' a cup, he brings about the event of 'the cup smashing'. Other actions do not bring about such effects. For instance, if John 'grabs' a cup, this action does not cause the cup to 'do' anything: a grab action has well-defined perceptual effects, but these are not registered by the perceptual system that detects independent events involving external objects in the world. In our model, effect-based actions are implemented in several distinct neural circuits, which are organised into a hierarchy based on the complexity of their associated perceptual effects. The circuit at the top of this hierarchy is responsible for actions that bring about independently perceivable events. This circuit receives input from the perceptual module that recognises arbitrary events taking place in the world, and learns movements that reliably cause such events. We assess our model against existing experimental observations about effect-based motor representations, and make some novel experimental predictions. We also consider the possibility that the 'causative actions' circuit in our model can be identified with a motor pathway reported in other work, specialising in 'functional' actions on manipulable tools (Bub et al., 2008; Binkofski and Buxbaum, 2013.
A neural network model of causative actions.
Lee-Hand, Jeremy; Knott, Alistair
2015-01-01
A common idea in models of action representation is that actions are represented in terms of their perceptual effects (see e.g., Prinz, 1997; Hommel et al., 2001; Sahin et al., 2007; Umiltà et al., 2008; Hommel, 2013). In this paper we extend existing models of effect-based action representations to account for a novel distinction. Some actions bring about effects that are independent events in their own right: for instance, if John smashes a cup, he brings about the event of the cup smashing. Other actions do not bring about such effects. For instance, if John grabs a cup, this action does not cause the cup to "do" anything: a grab action has well-defined perceptual effects, but these are not registered by the perceptual system that detects independent events involving external objects in the world. In our model, effect-based actions are implemented in several distinct neural circuits, which are organized into a hierarchy based on the complexity of their associated perceptual effects. The circuit at the top of this hierarchy is responsible for actions that bring about independently perceivable events. This circuit receives input from the perceptual module that recognizes arbitrary events taking place in the world, and learns movements that reliably cause such events. We assess our model against existing experimental observations about effect-based motor representations, and make some novel experimental predictions. We also consider the possibility that the "causative actions" circuit in our model can be identified with a motor pathway reported in other work, specializing in "functional" actions on manipulable tools (Bub et al., 2008; Binkofski and Buxbaum, 2013).
Modelling the permeability of polymers: a neural network approach
Wessling, Matthias; Mulder, M.H.V.; Bos, A.; Bos, A.; van der Linden, M.K.T.; Bos, M.; van der Linden, W.E.
1994-01-01
In this short communication, the prediction of the permeability of carbon dioxide through different polymers using a neural network is studied. A neural network is a numeric-mathematical construction that can model complex non-linear relationships. Here it is used to correlate the IR spectrum of a
Neural network modeling of associative memory: Beyond the Hopfield model
Dasgupta, Chandan
1992-07-01
A number of neural network models, in which fixed-point and limit-cycle attractors of the underlying dynamics are used to store and associatively recall information, are described. In the first class of models, a hierarchical structure is used to store an exponentially large number of strongly correlated memories. The second class of models uses limit cycles to store and retrieve individual memories. A neurobiologically plausible network that generates low-amplitude periodic variations of activity, similar to the oscillations observed in electroencephalographic recordings, is also described. Results obtained from analytic and numerical studies of the properties of these networks are discussed.
Proposal of a model of mammalian neural induction
Levine, Ariel J.; Brivanlou, Ali H.
2009-01-01
How does the vertebrate embryo make a nervous system? This complex question has been at the center of developmental biology for many years. The earliest step in this process – the induction of neural tissue – is intimately linked to patterning of the entire early embryo, and the molecular and embryological basis these processes are beginning to emerge. Here, we analyze classic and cutting-edge findings on neural induction in the mouse. We find that data from genetics, tissue explants, tissue grafting, and molecular marker expression support a coherent framework for mammalian neural induction. In this model, the gastrula organizer of the mouse embryo inhibits BMP signaling to allow neural tissue to form as a default fate – in the absence of instructive signals. The first neural tissue induced is anterior and subsequent neural tissue is posteriorized to form the midbrain, hindbrain, and spinal cord. The anterior visceral endoderm protects the pre-specified anterior neural fate from similar posteriorization, allowing formation of forebrain. This model is very similar to the default model of neural induction in the frog, thus bridging the evolutionary gap between amphibians and mammals. PMID:17585896
Spike neural models (part I: The Hodgkin-Huxley model
Directory of Open Access Journals (Sweden)
Johnson, Melissa G.
2017-05-01
Full Text Available Artificial neural networks, or ANNs, have grown a lot since their inception back in the 1940s. But no matter the changes, one of the most important components of neural networks is still the node, which represents the neuron. Within spiking neural networks, the node is especially important because it contains the functions and properties of neurons that are necessary for their network. One important aspect of neurons is the ionic flow which produces action potentials, or spikes. Forces of diffusion and electrostatic pressure work together with the physical properties of the cell to move ions around changing the cell membrane potential which ultimately produces the action potential. This tutorial reviews the Hodkgin-Huxley model and shows how it simulates the ionic flow of the giant squid axon via four differential equations. The model is implemented in Matlab using Euler's Method to approximate the differential equations. By using Euler's method, an extra parameter is created, the time step. This new parameter needs to be carefully considered or the results of the node may be impaired.
Nonlinear adaptive inverse control via the unified model neural network
Jeng, Jin-Tsong; Lee, Tsu-Tian
1999-03-01
In this paper, we propose a new nonlinear adaptive inverse control via a unified model neural network. In order to overcome nonsystematic design and long training time in nonlinear adaptive inverse control, we propose the approximate transformable technique to obtain a Chebyshev Polynomials Based Unified Model (CPBUM) neural network for the feedforward/recurrent neural networks. It turns out that the proposed method can use less training time to get an inverse model. Finally, we apply this proposed method to control magnetic bearing system. The experimental results show that the proposed nonlinear adaptive inverse control architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.
The influence of electric fields on hippocampal neural progenitor cells.
Ariza, Carlos Atico; Fleury, Asha T; Tormos, Christian J; Petruk, Vadim; Chawla, Sagar; Oh, Jisun; Sakaguchi, Donald S; Mallapragada, Surya K
2010-12-01
The differentiation and proliferation of neural stem/progenitor cells (NPCs) depend on various in vivo environmental factors or cues, which may include an endogenous electrical field (EF), as observed during nervous system development and repair. In this study, we investigate the morphologic, phenotypic, and mitotic alterations of adult hippocampal NPCs that occur when exposed to two EFs of estimated endogenous strengths. NPCs treated with a 437 mV/mm direct current (DC) EF aligned perpendicularly to the EF vector and had a greater tendency to differentiate into neurons, but not into oligodendrocytes or astrocytes, compared to controls. Furthermore, NPC process growth was promoted perpendicularly and inhibited anodally in the 437 mV/mm DC EF. Yet fewer cells were observed in the DC EF, which in part was due to a decrease in cell viability. The other EF applied was a 46 mV/mm alternating current (AC) EF. However, the 46 mV/mm AC EF showed no major differences in alignment or differentiation, compared to control conditions. For both EF treatments, the percent of mitotic cells during the last 14 h of the experiment were statistically similar to controls. Reported here, to our knowledge, is the first evidence of adult NPC differentiation affected in an EF in vitro. Further investigation and application of EFs on stem cells is warranted to elucidate the utility of EFs to control phenotypic behavior. With progress, the use of EFs may be engineered to control differentiation and target the growth of transplanted cells in a stem cell-based therapy to treat nervous system disorders.
Neural Network Models for Time Series Forecasts
Tim Hill; Marcus O'Connor; William Remus
1996-01-01
Neural networks have been advocated as an alternative to traditional statistical forecasting methods. In the present experiment, time series forecasts produced by neural networks are compared with forecasts from six statistical time series methods generated in a major forecasting competition (Makridakis et al. [Makridakis, S., A. Anderson, R. Carbone, R. Fildes, M. Hibon, R. Lewandowski, J. Newton, E. Parzen, R. Winkler. 1982. The accuracy of extrapolation (time series) methods: Results of a ...
Pusuluri, Sai Teja
Energy landscapes are often used as metaphors for phenomena in biology, social sciences and finance. Different methods have been implemented in the past for the construction of energy landscapes. Neural network models based on spin glass physics provide an excellent mathematical framework for the construction of energy landscapes. This framework uses a minimal number of parameters and constructs the landscape using data from the actual phenomena. In the past neural network models were used to mimic the storage and retrieval process of memories (patterns) in the brain. With advances in the field now, these models are being used in machine learning, deep learning and modeling of complex phenomena. Most of the past literature focuses on increasing the storage capacity and stability of stored patterns in the network but does not study these models from a modeling perspective or an energy landscape perspective. This dissertation focuses on neural network models both from a modeling perspective and from an energy landscape perspective. I firstly show how the cellular interconversion phenomenon can be modeled as a transition between attractor states on an epigenetic landscape constructed using neural network models. The model allows the identification of a reaction coordinate of cellular interconversion by analyzing experimental and simulation time course data. Monte Carlo simulations of the model show that the initial phase of cellular interconversion is a Poisson process and the later phase of cellular interconversion is a deterministic process. Secondly, I explore the static features of landscapes generated using neural network models, such as sizes of basins of attraction and densities of metastable states. The simulation results show that the static landscape features are strongly dependent on the correlation strength and correlation structure between patterns. Using different hierarchical structures of the correlation between patterns affects the landscape features
Complex Environmental Data Modelling Using Adaptive General Regression Neural Networks
Kanevski, Mikhail
2015-04-01
The research deals with an adaptation and application of Adaptive General Regression Neural Networks (GRNN) to high dimensional environmental data. GRNN [1,2,3] are efficient modelling tools both for spatial and temporal data and are based on nonparametric kernel methods closely related to classical Nadaraya-Watson estimator. Adaptive GRNN, using anisotropic kernels, can be also applied for features selection tasks when working with high dimensional data [1,3]. In the present research Adaptive GRNN are used to study geospatial data predictability and relevant feature selection using both simulated and real data case studies. The original raw data were either three dimensional monthly precipitation data or monthly wind speeds embedded into 13 dimensional space constructed by geographical coordinates and geo-features calculated from digital elevation model. GRNN were applied in two different ways: 1) adaptive GRNN with the resulting list of features ordered according to their relevancy; and 2) adaptive GRNN applied to evaluate all possible models N [in case of wind fields N=(2^13 -1)=8191] and rank them according to the cross-validation error. In both cases training were carried out applying leave-one-out procedure. An important result of the study is that the set of the most relevant features depends on the month (strong seasonal effect) and year. The predictabilities of precipitation and wind field patterns, estimated using the cross-validation and testing errors of raw and shuffled data, were studied in detail. The results of both approaches were qualitatively and quantitatively compared. In conclusion, Adaptive GRNN with their ability to select features and efficient modelling of complex high dimensional data can be widely used in automatic/on-line mapping and as an integrated part of environmental decision support systems. 1. Kanevski M., Pozdnoukhov A., Timonin V. Machine Learning for Spatial Environmental Data. Theory, applications and software. EPFL Press
Numeral eddy current sensor modelling based on genetic neural network
International Nuclear Information System (INIS)
Yu Along
2008-01-01
This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line modelling and high precision. The maximum nonlinearity error can be reduced to 0.037% by using GNN. However, the maximum nonlinearity error is 0.075% using the least square method
Particle swarm optimization of a neural network model in a ...
Indian Academy of Sciences (India)
. Since tool life is critically affected by the tool wear, accurate prediction of this wear ... In their work, they established an improvement in the quality ... objective optimization of hard turning using neural network modelling and swarm intelligence ...
neural network based model o work based model of an industrial oil
African Journals Online (AJOL)
eobe
technique. g, Neural Network Model, Regression, Mean Square Error, PID controller. ... during the training processes. An additio ... used to carry out simulation studies of the mode .... A two-layer feed-forward neural network with Matlab.
Combining BMI stimulation and mathematical modeling for acute stroke recovery and neural repair
Directory of Open Access Journals (Sweden)
Sara L Gonzalez Andino
2011-07-01
Full Text Available Rehabilitation is a neural plasticity-exploiting approach that forces undamaged neural circuits to undertake the functionality of other circuits damaged by stroke. It aims to partial restoration of the neural functions by circuit remodeling rather than by the regeneration of damaged circuits. The core hypothesis of the present paper is that - in stroke - Brain Machine Interfaces can be designed to target neural repair instead of rehabilitation. To support this hypothesis we first review existing evidence on the role of endogenous or externally applied electric fields on all processes involved in CNS repair. We then describe our own results to illustrate the neuroprotective and neuroregenerative effects of BMI- electrical stimulation on sensory deprivation-related degenerative processes of the CNS. Finally, we discuss three of the crucial issues involved in the design of neural repair-oriented BMIs: when to stimulate, where to stimulate and - the particularly important but unsolved issue of - how to stimulate. We argue that optimal parameters for the electrical stimulation can be determined from studying and modeling the dynamics of the electric fields that naturally emerge at the central and peripheral nervous system during spontaneous healing in both, experimental animals and human patients. We conclude that a closed-loop BMI that defines the optimal stimulation parameters from a priori developed experimental models of the dynamics of spontaneous repair and the on-line monitoring of neural activity might place BMIs as an alternative or complement to stem-cell transplantation or pharmacological approaches, intensively pursued nowadays.
Numerical Analysis of Modeling Based on Improved Elman Neural Network
Directory of Open Access Journals (Sweden)
Shao Jie
2014-01-01
Full Text Available A modeling based on the improved Elman neural network (IENN is proposed to analyze the nonlinear circuits with the memory effect. The hidden layer neurons are activated by a group of Chebyshev orthogonal basis functions instead of sigmoid functions in this model. The error curves of the sum of squared error (SSE varying with the number of hidden neurons and the iteration step are studied to determine the number of the hidden layer neurons. Simulation results of the half-bridge class-D power amplifier (CDPA with two-tone signal and broadband signals as input have shown that the proposed behavioral modeling can reconstruct the system of CDPAs accurately and depict the memory effect of CDPAs well. Compared with Volterra-Laguerre (VL model, Chebyshev neural network (CNN model, and basic Elman neural network (BENN model, the proposed model has better performance.
Feed forward neural networks modeling for K-P interactions
International Nuclear Information System (INIS)
El-Bakry, M.Y.
2003-01-01
Artificial intelligence techniques involving neural networks became vital modeling tools where model dynamics are difficult to track with conventional techniques. The paper make use of the feed forward neural networks (FFNN) to model the charged multiplicity distribution of K-P interactions at high energies. The FFNN was trained using experimental data for the multiplicity distributions at different lab momenta. Results of the FFNN model were compared to that generated using the parton two fireball model and the experimental data. The proposed FFNN model results showed good fitting to the experimental data. The neural network model performance was also tested at non-trained space and was found to be in good agreement with the experimental data
Neural Ranking Models with Weak Supervision
Dehghani, M.; Zamani, H.; Severyn, A.; Kamps, J.; Croft, W.B.
2017-01-01
Despite the impressive improvements achieved by unsupervised deep neural networks in computer vision and NLP tasks, such improvements have not yet been observed in ranking for information retrieval. The reason may be the complexity of the ranking problem, as it is not obvious how to learn from
Bias-dependent hybrid PKI empirical-neural model of microwave FETs
Marinković, Zlatica; Pronić-Rančić, Olivera; Marković, Vera
2011-10-01
Empirical models of microwave transistors based on an equivalent circuit are valid for only one bias point. Bias-dependent analysis requires repeated extractions of the model parameters for each bias point. In order to make model bias-dependent, a new hybrid empirical-neural model of microwave field-effect transistors is proposed in this article. The model is a combination of an equivalent circuit model including noise developed for one bias point and two prior knowledge input artificial neural networks (PKI ANNs) aimed at introducing bias dependency of scattering (S) and noise parameters, respectively. The prior knowledge of the proposed ANNs involves the values of the S- and noise parameters obtained by the empirical model. The proposed hybrid model is valid in the whole range of bias conditions. Moreover, the proposed model provides better accuracy than the empirical model, which is illustrated by an appropriate modelling example of a pseudomorphic high-electron mobility transistor device.
AUC-Maximized Deep Convolutional Neural Fields for Protein Sequence Labeling.
Wang, Sheng; Sun, Siqi; Xu, Jinbo
2016-09-01
Deep Convolutional Neural Networks (DCNN) has shown excellent performance in a variety of machine learning tasks. This paper presents Deep Convolutional Neural Fields (DeepCNF), an integration of DCNN with Conditional Random Field (CRF), for sequence labeling with an imbalanced label distribution. The widely-used training methods, such as maximum-likelihood and maximum labelwise accuracy, do not work well on imbalanced data. To handle this, we present a new training algorithm called maximum-AUC for DeepCNF. That is, we train DeepCNF by directly maximizing the empirical Area Under the ROC Curve (AUC), which is an unbiased measurement for imbalanced data. To fulfill this, we formulate AUC in a pairwise ranking framework, approximate it by a polynomial function and then apply a gradient-based procedure to optimize it. Our experimental results confirm that maximum-AUC greatly outperforms the other two training methods on 8-state secondary structure prediction and disorder prediction since their label distributions are highly imbalanced and also has similar performance as the other two training methods on solvent accessibility prediction, which has three equally-distributed labels. Furthermore, our experimental results show that our AUC-trained DeepCNF models greatly outperform existing popular predictors of these three tasks. The data and software related to this paper are available at https://github.com/realbigws/DeepCNF_AUC.
Neural Network Based Model of an Industrial Oil-Fired Boiler System ...
African Journals Online (AJOL)
A two-layer feed-forward neural network with Hyperbolic tangent sigmoid ... The neural network model when subjected to test, using the validation input data; ... Proportional Integral Derivative (PID) Controller is used to control the neural ...
Discriminative training of self-structuring hidden control neural models
DEFF Research Database (Denmark)
Sørensen, Helge Bjarup Dissing; Hartmann, Uwe; Hunnerup, Preben
1995-01-01
This paper presents a new training algorithm for self-structuring hidden control neural (SHC) models. The SHC models were trained non-discriminatively for speech recognition applications. Better recognition performance can generally be achieved, if discriminative training is applied instead. Thus...... we developed a discriminative training algorithm for SHC models, where each SHC model for a specific speech pattern is trained with utterances of the pattern to be recognized and with other utterances. The discriminative training of SHC neural models has been tested on the TIDIGITS database...
The effect of nonstationarity on models inferred from neural data
International Nuclear Information System (INIS)
Tyrcha, Joanna; Roudi, Yasser; Marsili, Matteo; Hertz, John
2013-01-01
Neurons subject to a common nonstationary input may exhibit a correlated firing behavior. Correlations in the statistics of neural spike trains also arise as the effect of interaction between neurons. Here we show that these two situations can be distinguished with machine learning techniques, provided that the data are rich enough. In order to do this, we study the problem of inferring a kinetic Ising model, stationary or nonstationary, from the available data. We apply the inference procedure to two data sets: one from salamander retinal ganglion cells and the other from a realistic computational cortical network model. We show that many aspects of the concerted activity of the salamander retinal neurons can be traced simply to the external input. A model of non-interacting neurons subject to a nonstationary external field outperforms a model with stationary input with couplings between neurons, even accounting for the differences in the number of model parameters. When couplings are added to the nonstationary model, for the retinal data, little is gained: the inferred couplings are generally not significant. Likewise, the distribution of the sizes of sets of neurons that spike simultaneously and the frequency of spike patterns as a function of their rank (Zipf plots) are well explained by an independent-neuron model with time-dependent external input, and adding connections to such a model does not offer significant improvement. For the cortical model data, robust couplings, well correlated with the real connections, can be inferred using the nonstationary model. Adding connections to this model slightly improves the agreement with the data for the probability of synchronous spikes but hardly affects the Zipf plot. (paper)
The effect of nonstationarity on models inferred from neural data
Energy Technology Data Exchange (ETDEWEB)
Tyrcha, Joanna [Department of Mathematical Statistics, Stockholm University, SE-10691 Stockholm (Sweden); Roudi, Yasser [Kavli Institute for Systems Neuroscience, NTNU, NO-7010 Trondheim (Norway); Marsili, Matteo [The Abdus Salam ICTP, Strada Costiera 11, I-34151, Trieste (Italy); Hertz, John [Nordita, Royal Institute of Technology and Stockholm University, SE-106 91 Stockholm (Sweden)
2013-03-01
Neurons subject to a common nonstationary input may exhibit a correlated firing behavior. Correlations in the statistics of neural spike trains also arise as the effect of interaction between neurons. Here we show that these two situations can be distinguished with machine learning techniques, provided that the data are rich enough. In order to do this, we study the problem of inferring a kinetic Ising model, stationary or nonstationary, from the available data. We apply the inference procedure to two data sets: one from salamander retinal ganglion cells and the other from a realistic computational cortical network model. We show that many aspects of the concerted activity of the salamander retinal neurons can be traced simply to the external input. A model of non-interacting neurons subject to a nonstationary external field outperforms a model with stationary input with couplings between neurons, even accounting for the differences in the number of model parameters. When couplings are added to the nonstationary model, for the retinal data, little is gained: the inferred couplings are generally not significant. Likewise, the distribution of the sizes of sets of neurons that spike simultaneously and the frequency of spike patterns as a function of their rank (Zipf plots) are well explained by an independent-neuron model with time-dependent external input, and adding connections to such a model does not offer significant improvement. For the cortical model data, robust couplings, well correlated with the real connections, can be inferred using the nonstationary model. Adding connections to this model slightly improves the agreement with the data for the probability of synchronous spikes but hardly affects the Zipf plot. (paper)
Teaching methodology for modeling reference evapotranspiration with artificial neural networks
Martí, Pau; Pulido Calvo, Inmaculada; Gutiérrez Estrada, Juan Carlos
2015-01-01
[EN] Artificial neural networks are a robust alternative to conventional models for estimating different targets in irrigation engineering, among others, reference evapotranspiration, a key variable for estimating crop water requirements. This paper presents a didactic methodology for introducing students in the application of artificial neural networks for reference evapotranspiration estimation using MatLab c . Apart from learning a specific application of this software wi...
Comparing Neural Networks and ARMA Models in Artificial Stock Market
Czech Academy of Sciences Publication Activity Database
Krtek, Jiří; Vošvrda, Miloslav
2011-01-01
Roč. 18, č. 28 (2011), s. 53-65 ISSN 1212-074X R&D Projects: GA ČR GD402/09/H045 Institutional research plan: CEZ:AV0Z10750506 Keywords : neural networks * vector ARMA * artificial market Subject RIV: AH - Economics http://library.utia.cas.cz/separaty/2011/E/krtek-comparing neural networks and arma models in artificial stock market.pdf
A Quantum Implementation Model for Artificial Neural Networks
Daskin, Ammar
2016-01-01
The learning process for multi layered neural networks with many nodes makes heavy demands on computational resources. In some neural network models, the learning formulas, such as the Widrow-Hoff formula, do not change the eigenvectors of the weight matrix while flatting the eigenvalues. In infinity, this iterative formulas result in terms formed by the principal components of the weight matrix: i.e., the eigenvectors corresponding to the non-zero eigenvalues. In quantum computing, the phase...
A Quantum Implementation Model for Artificial Neural Networks
Ammar Daskin
2018-01-01
The learning process for multilayered neural networks with many nodes makes heavy demands on computational resources. In some neural network models, the learning formulas, such as the Widrow–Hoff formula, do not change the eigenvectors of the weight matrix while flatting the eigenvalues. In infinity, these iterative formulas result in terms formed by the principal components of the weight matrix, namely, the eigenvectors corresponding to the non-zero eigenvalues. In quantum computing, the pha...
Xu, Tao; Xiao, Na; Zhai, Xiaolong; Chan, Pak Kwan; Tin, Chung
2018-02-01
Objective. Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). Approach. The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. Main results. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. Significance. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.
Xu, Tao; Xiao, Na; Zhai, Xiaolong; Kwan Chan, Pak; Tin, Chung
2018-02-01
Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.
Stimulus-dependent maximum entropy models of neural population codes.
Directory of Open Access Journals (Sweden)
Einat Granot-Atedgi
Full Text Available Neural populations encode information about their stimulus in a collective fashion, by joint activity patterns of spiking and silence. A full account of this mapping from stimulus to neural activity is given by the conditional probability distribution over neural codewords given the sensory input. For large populations, direct sampling of these distributions is impossible, and so we must rely on constructing appropriate models. We show here that in a population of 100 retinal ganglion cells in the salamander retina responding to temporal white-noise stimuli, dependencies between cells play an important encoding role. We introduce the stimulus-dependent maximum entropy (SDME model-a minimal extension of the canonical linear-nonlinear model of a single neuron, to a pairwise-coupled neural population. We find that the SDME model gives a more accurate account of single cell responses and in particular significantly outperforms uncoupled models in reproducing the distributions of population codewords emitted in response to a stimulus. We show how the SDME model, in conjunction with static maximum entropy models of population vocabulary, can be used to estimate information-theoretic quantities like average surprise and information transmission in a neural population.
Nonlinear signal processing using neural networks: Prediction and system modelling
Energy Technology Data Exchange (ETDEWEB)
Lapedes, A.; Farber, R.
1987-06-01
The backpropagation learning algorithm for neural networks is developed into a formalism for nonlinear signal processing. We illustrate the method by selecting two common topics in signal processing, prediction and system modelling, and show that nonlinear applications can be handled extremely well by using neural networks. The formalism is a natural, nonlinear extension of the linear Least Mean Squares algorithm commonly used in adaptive signal processing. Simulations are presented that document the additional performance achieved by using nonlinear neural networks. First, we demonstrate that the formalism may be used to predict points in a highly chaotic time series with orders of magnitude increase in accuracy over conventional methods including the Linear Predictive Method and the Gabor-Volterra-Weiner Polynomial Method. Deterministic chaos is thought to be involved in many physical situations including the onset of turbulence in fluids, chemical reactions and plasma physics. Secondly, we demonstrate the use of the formalism in nonlinear system modelling by providing a graphic example in which it is clear that the neural network has accurately modelled the nonlinear transfer function. It is interesting to note that the formalism provides explicit, analytic, global, approximations to the nonlinear maps underlying the various time series. Furthermore, the neural net seems to be extremely parsimonious in its requirements for data points from the time series. We show that the neural net is able to perform well because it globally approximates the relevant maps by performing a kind of generalized mode decomposition of the maps. 24 refs., 13 figs.
Cognon Neural Model Software Verification and Hardware Implementation Design
Haro Negre, Pau
Little is known yet about how the brain can recognize arbitrary sensory patterns within milliseconds using neural spikes to communicate information between neurons. In a typical brain there are several layers of neurons, with each neuron axon connecting to ˜104 synapses of neurons in an adjacent layer. The information necessary for cognition is contained in theses synapses, which strengthen during the learning phase in response to newly presented spike patterns. Continuing on the model proposed in "Models for Neural Spike Computation and Cognition" by David H. Staelin and Carl H. Staelin, this study seeks to understand cognition from an information theoretic perspective and develop potential models for artificial implementation of cognition based on neuronal models. To do so we focus on the mathematical properties and limitations of spike-based cognition consistent with existing neurological observations. We validate the cognon model through software simulation and develop concepts for an optical hardware implementation of a network of artificial neural cognons.
Modeling polyvinyl chloride Plasma Modification by Neural Networks
Wang, Changquan
2018-03-01
Neural networks model were constructed to analyze the connection between dielectric barrier discharge parameters and surface properties of material. The experiment data were generated from polyvinyl chloride plasma modification by using uniform design. Discharge voltage, discharge gas gap and treatment time were as neural network input layer parameters. The measured values of contact angle were as the output layer parameters. A nonlinear mathematical model of the surface modification for polyvinyl chloride was developed based upon the neural networks. The optimum model parameters were obtained by the simulation evaluation and error analysis. The results of the optimal model show that the predicted value is very close to the actual test value. The prediction model obtained here are useful for discharge plasma surface modification analysis.
Efficient Neural Network Modeling for Flight and Space Dynamics Simulation
Directory of Open Access Journals (Sweden)
Ayman Hamdy Kassem
2011-01-01
Full Text Available This paper represents an efficient technique for neural network modeling of flight and space dynamics simulation. The technique will free the neural network designer from guessing the size and structure for the required neural network model and will help to minimize the number of neurons. For linear flight/space dynamics systems, the technique can find the network weights and biases directly by solving a system of linear equations without the need for training. Nonlinear flight dynamic systems can be easily modeled by training its linearized models keeping the same network structure. The training is fast, as it uses the linear system knowledge to speed up the training process. The technique is tested on different flight/space dynamic models and showed promising results.
Wang, Yunlong; Liu, Fei; Zhang, Kunbo; Hou, Guangqi; Sun, Zhenan; Tan, Tieniu
2018-09-01
The low spatial resolution of light-field image poses significant difficulties in exploiting its advantage. To mitigate the dependency of accurate depth or disparity information as priors for light-field image super-resolution, we propose an implicitly multi-scale fusion scheme to accumulate contextual information from multiple scales for super-resolution reconstruction. The implicitly multi-scale fusion scheme is then incorporated into bidirectional recurrent convolutional neural network, which aims to iteratively model spatial relations between horizontally or vertically adjacent sub-aperture images of light-field data. Within the network, the recurrent convolutions are modified to be more effective and flexible in modeling the spatial correlations between neighboring views. A horizontal sub-network and a vertical sub-network of the same network structure are ensembled for final outputs via stacked generalization. Experimental results on synthetic and real-world data sets demonstrate that the proposed method outperforms other state-of-the-art methods by a large margin in peak signal-to-noise ratio and gray-scale structural similarity indexes, which also achieves superior quality for human visual systems. Furthermore, the proposed method can enhance the performance of light field applications such as depth estimation.
Training Spiking Neural Models Using Artificial Bee Colony
Vazquez, Roberto A.; Garro, Beatriz A.
2015-01-01
Spiking neurons are models designed to simulate, in a realistic manner, the behavior of biological neurons. Recently, it has been proven that this type of neurons can be applied to solve pattern recognition problems with great efficiency. However, the lack of learning strategies for training these models do not allow to use them in several pattern recognition problems. On the other hand, several bioinspired algorithms have been proposed in the last years for solving a broad range of optimization problems, including those related to the field of artificial neural networks (ANNs). Artificial bee colony (ABC) is a novel algorithm based on the behavior of bees in the task of exploring their environment to find a food source. In this paper, we describe how the ABC algorithm can be used as a learning strategy to train a spiking neuron aiming to solve pattern recognition problems. Finally, the proposed approach is tested on several pattern recognition problems. It is important to remark that to realize the powerfulness of this type of model only one neuron will be used. In addition, we analyze how the performance of these models is improved using this kind of learning strategy. PMID:25709644
Stability of a neural predictive controller scheme on a neural model
DEFF Research Database (Denmark)
Luther, Jim Benjamin; Sørensen, Paul Haase
2009-01-01
In previous works presenting various forms of neural-network-based predictive controllers, the main emphasis has been on the implementation aspects, i.e. the development of a robust optimization algorithm for the controller, which will be able to perform in real time. However, the stability issue....... The resulting controller is tested on a nonlinear pneumatic servo system.......In previous works presenting various forms of neural-network-based predictive controllers, the main emphasis has been on the implementation aspects, i.e. the development of a robust optimization algorithm for the controller, which will be able to perform in real time. However, the stability issue...... has not been addressed specifically for these controllers. On the other hand a number of results concerning the stability of receding horizon controllers on a nonlinear system exist. In this paper we present a proof of stability for a predictive controller controlling a neural network model...
International Nuclear Information System (INIS)
Leite Lopes, J.
1998-04-01
In this work, we discuss the physical ideas which represents the basis for the unified gauge field model. Despite of the difficulties that we presently have for embodying in a natural manner muons and hadrons in that model, we have the feeling that we are on the way which seems to lead to the construction of a theory in which the Maxwell electromagnetic field and the Fermi weak interaction field are manifestations of a unique subjacent physical entity - the unified gauge fields. (author)
A neural network model for credit risk evaluation.
Khashman, Adnan
2009-08-01
Credit scoring is one of the key analytical techniques in credit risk evaluation which has been an active research area in financial risk management. This paper presents a credit risk evaluation system that uses a neural network model based on the back propagation learning algorithm. We train and implement the neural network to decide whether to approve or reject a credit application, using seven learning schemes and real world credit applications from the Australian credit approval datasets. A comparison of the system performance under the different learning schemes is provided, furthermore, we compare the performance of two neural networks; with one and two hidden layers following the ideal learning scheme. Experimental results suggest that neural networks can be effectively used in automatic processing of credit applications.
Data on copula modeling of mixed discrete and continuous neural time series.
Hu, Meng; Li, Mingyao; Li, Wu; Liang, Hualou
2016-06-01
Copula is an important tool for modeling neural dependence. Recent work on copula has been expanded to jointly model mixed time series in neuroscience ("Hu et al., 2016, Joint Analysis of Spikes and Local Field Potentials using Copula" [1]). Here we present further data for joint analysis of spike and local field potential (LFP) with copula modeling. In particular, the details of different model orders and the influence of possible spike contamination in LFP data from the same and different electrode recordings are presented. To further facilitate the use of our copula model for the analysis of mixed data, we provide the Matlab codes, together with example data.
Pattern recognition neural-net by spatial mapping of biology visual field
Lin, Xin; Mori, Masahiko
2000-05-01
The method of spatial mapping in biology vision field is applied to artificial neural networks for pattern recognition. By the coordinate transform that is called the complex-logarithm mapping and Fourier transform, the input images are transformed into scale- rotation- and shift- invariant patterns, and then fed into a multilayer neural network for learning and recognition. The results of computer simulation and an optical experimental system are described.
Ensemble of Neural Network Conditional Random Fields for Self-Paced Brain Computer Interfaces
Directory of Open Access Journals (Sweden)
Hossein Bashashati
2017-07-01
Full Text Available Classification of EEG signals in self-paced Brain Computer Interfaces (BCI is an extremely challenging task. The main diﬃculty stems from the fact that start time of a control task is not defined. Therefore it is imperative to exploit the characteristics of the EEG data to the extent possible. In sensory motor self-paced BCIs, while performing the mental task, the user’s brain goes through several well-defined internal state changes. Applying appropriate classifiers that can capture these state changes and exploit the temporal correlation in EEG data can enhance the performance of the BCI. In this paper, we propose an ensemble learning approach for self-paced BCIs. We use Bayesian optimization to train several different classifiers on different parts of the BCI hyper- parameter space. We call each of these classifiers Neural Network Conditional Random Field (NNCRF. NNCRF is a combination of a neural network and conditional random field (CRF. As in the standard CRF, NNCRF is able to model the correlation between adjacent EEG samples. However, NNCRF can also model the nonlinear dependencies between the input and the output, which makes it more powerful than the standard CRF. We compare the performance of our algorithm to those of three popular sequence labeling algorithms (Hidden Markov Models, Hidden Markov Support Vector Machines and CRF, and to two classical classifiers (Logistic Regression and Support Vector Machines. The classifiers are compared for the two cases: when the ensemble learning approach is not used and when it is. The data used in our studies are those from the BCI competition IV and the SM2 dataset. We show that our algorithm is considerably superior to the other approaches in terms of the Area Under the Curve (AUC of the BCI system.
SCYNet. Testing supersymmetric models at the LHC with neural networks
Energy Technology Data Exchange (ETDEWEB)
Bechtle, Philip; Belkner, Sebastian; Hamer, Matthias [Universitaet Bonn, Bonn (Germany); Dercks, Daniel [Universitaet Hamburg, Hamburg (Germany); Keller, Tim; Kraemer, Michael; Sarrazin, Bjoern; Schuette-Engel, Jan; Tattersall, Jamie [RWTH Aachen University, Institute for Theoretical Particle Physics and Cosmology, Aachen (Germany)
2017-10-15
SCYNet (SUSY Calculating Yield Net) is a tool for testing supersymmetric models against LHC data. It uses neural network regression for a fast evaluation of the profile likelihood ratio. Two neural network approaches have been developed: one network has been trained using the parameters of the 11-dimensional phenomenological Minimal Supersymmetric Standard Model (pMSSM-11) as an input and evaluates the corresponding profile likelihood ratio within milliseconds. It can thus be used in global pMSSM-11 fits without time penalty. In the second approach, the neural network has been trained using model-independent signature-related objects, such as energies and particle multiplicities, which were estimated from the parameters of a given new physics model. (orig.)
Modelling of word usage frequency dynamics using artificial neural network
International Nuclear Information System (INIS)
Maslennikova, Yu S; Bochkarev, V V; Voloskov, D S
2014-01-01
In this paper the method for modelling of word usage frequency time series is proposed. An artificial feedforward neural network was used to predict word usage frequencies. The neural network was trained using the maximum likelihood criterion. The Google Books Ngram corpus was used for the analysis. This database provides a large amount of data on frequency of specific word forms for 7 languages. Statistical modelling of word usage frequency time series allows finding optimal fitting and filtering algorithm for subsequent lexicographic analysis and verification of frequency trend models
Simple Electromagnetic Modeling of Small Airplanes: Neural Network Approach
Directory of Open Access Journals (Sweden)
P. Tobola
2009-04-01
Full Text Available The paper deals with the development of simple electromagnetic models of small airplanes, which can contain composite materials in their construction. Electromagnetic waves can penetrate through the surface of the aircraft due to the specific electromagnetic properties of the composite materials, which can increase the intensity of fields inside the airplane and can negatively influence the functionality of the sensitive avionics. The airplane is simulated by two parallel dielectric layers (the left-hand side wall and the right-hand side wall of the airplane. The layers are put into a rectangular metallic waveguide terminated by the absorber in order to simulate the illumination of the airplane by the external wave (both of the harmonic nature and pulse one. Thanks to the simplicity of the model, the parametric analysis can be performed, and the results can be used in order to train an artificial neural network. The trained networks excel in further reduction of CPU-time demands of an airplane modeling.
Two-Dimensional Bumps in Piecewise Smooth Neural Fields with Synaptic Depression
Bressloff, Paul C.
2011-01-01
We analyze radially symmetric bumps in a two-dimensional piecewise-smooth neural field model with synaptic depression. The continuum dynamics is described in terms of a nonlocal integrodifferential equation, in which the integral kernel represents the spatial distribution of synaptic weights between populations of neurons whose mean firing rate is taken to be a Heaviside function of local activity. Synaptic depression dynamically reduces the strength of synaptic weights in response to increases in activity. We show that in the case of a Mexican hat weight distribution, sufficiently strong synaptic depression can destabilize a stationary bump solution that would be stable in the absence of depression. Numerically it is found that the resulting instability leads to the formation of a traveling spot. The local stability of a bump is determined by solutions to a system of pseudolinear equations that take into account the sign of perturbations around the circular bump boundary. © 2011 Society for Industrial and Applied Mathematics.
MODELLING OF CONCENTRATION LIMITS BASED ON NEURAL NETWORKS.
Directory of Open Access Journals (Sweden)
A. L. Osipov
2017-02-01
Full Text Available We study the forecasting model with the concentration limits is-the use of neural network technology. The software for the implementation of these models. It is shown that the efficiency of the system in the experimental material.
A Quantum Implementation Model for Artificial Neural Networks
Directory of Open Access Journals (Sweden)
Ammar Daskin
2018-02-01
Full Text Available The learning process for multilayered neural networks with many nodes makes heavy demands on computational resources. In some neural network models, the learning formulas, such as the Widrow–Hoff formula, do not change the eigenvectors of the weight matrix while flatting the eigenvalues. In infinity, these iterative formulas result in terms formed by the principal components of the weight matrix, namely, the eigenvectors corresponding to the non-zero eigenvalues. In quantum computing, the phase estimation algorithm is known to provide speedups over the conventional algorithms for the eigenvalue-related problems. Combining the quantum amplitude amplification with the phase estimation algorithm, a quantum implementation model for artificial neural networks using the Widrow–Hoff learning rule is presented. The complexity of the model is found to be linear in the size of the weight matrix. This provides a quadratic improvement over the classical algorithms. Quanta 2018; 7: 7–18.
Use of artificial neural networks for transport energy demand modeling
International Nuclear Information System (INIS)
Murat, Yetis Sazi; Ceylan, Halim
2006-01-01
The paper illustrates an artificial neural network (ANN) approach based on supervised neural networks for the transport energy demand forecasting using socio-economic and transport related indicators. The ANN transport energy demand model is developed. The actual forecast is obtained using a feed forward neural network, trained with back propagation algorithm. In order to investigate the influence of socio-economic indicators on the transport energy demand, the ANN is analyzed based on gross national product (GNP), population and the total annual average veh-km along with historical energy data available from 1970 to 2001. Comparing model predictions with energy data in testing period performs the model validation. The projections are made with two scenarios. It is obtained that the ANN reflects the fluctuation in historical data for both dependent and independent variables. The results obtained bear out the suitability of the adopted methodology for the transport energy-forecasting problem
Neural network-based model reference adaptive control system.
Patino, H D; Liu, D
2000-01-01
In this paper, an approach to model reference adaptive control based on neural networks is proposed and analyzed for a class of first-order continuous-time nonlinear dynamical systems. The controller structure can employ either a radial basis function network or a feedforward neural network to compensate adaptively the nonlinearities in the plant. A stable controller-parameter adjustment mechanism, which is determined using the Lyapunov theory, is constructed using a sigma-modification-type updating law. The evaluation of control error in terms of the neural network learning error is performed. That is, the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the neural network. In the design and analysis of neural network-based control systems, it is important to take into account the neural network learning error and its influence on the control error of the plant. Simulation results showing the feasibility and performance of the proposed approach are given.
Directory of Open Access Journals (Sweden)
Mahdi Rastegarnia
2016-09-01
Full Text Available Electrofacies are used to determine reservoir rock properties, especially permeability, to simulate fluid flow in porous media. These are determined based on classification of similar logs among different groups of logging data. Data classification is accomplished by different statistical analysis such as principal component analysis, cluster analysis and differential analysis. The aim of this study is to predict 3D FZI (flow zone index and Electrofacies (EFACT volumes from a large volume of 3D seismic data. This study is divided into two parts. In the first part of the study, in order to make the EFACT model, nuclear magnetic resonance (NMR log parameters were employed for developing an Electrofacies diagram based on pore size distribution and porosity variations. Then, a graph-based clustering method, known as multi resolution graph-based clustering (MRGC, was employed to classify and obtain the optimum number of Electrofacies. Seismic attribute analysis was then applied to model each relaxation group in order to build the initial 3D model which was used to reach the final model by applying Probabilistic Neural Network (PNN. In the second part of the study, the FZI 3D model was created by multi attributes technique. Then, this model was improved by three different artificial intelligence systems including PNN, multilayer feed-forward network (MLFN and radial basis function network (RBFN. Finally, models of FZI and EFACT were compared. Results obtained from this study revealed that the two models are in good agreement and PNN method is successful in modeling FZI and EFACT from 3D seismic data for which no Stoneley data or NMR log data are available. Moreover, they may be used to detect hydrocarbon-bearing zones and locate the exact place for producing wells for the future development plans. In addition, the result provides a geologically realistic spatial FZI and reservoir facies distribution which helps to understand the subsurface reservoirs
Energy Technology Data Exchange (ETDEWEB)
Schuelke, J.S.; Quirein, J.A.; Sarg, J.F.
1998-12-31
This case study shows the benefit of using multiple seismic trace attributes and the pattern recognition capabilities of neural networks to predict reservoir architecture and porosity distribution in the Pegasus Field, West Texas. The study used the power of neural networks to integrate geologic, borehole and seismic data. Illustrated are the improvements between the new neural network approach and the more traditional method of seismic trace inversion for porosity estimation. Comprehensive statistical methods and interpretational/subjective measures are used in the prediction of porosity from seismic attributes. A 3-D volume of seismic derived porosity estimates for the Devonian reservoir provide a very detailed estimate of porosity, both spatially and vertically, for the field. The additional reservoir porosity detail provided, between the well control, allows for optimal placement of horizontal wells and improved field development. 6 refs., 2 figs.
Directory of Open Access Journals (Sweden)
Somaye Yeylaghi
2017-06-01
Full Text Available In this paper, a novel hybrid method based on interval-valued fuzzy neural network for approximate of interval-valued fuzzy regression models, is presented. The work of this paper is an expansion of the research of real fuzzy regression models. In this paper interval-valued fuzzy neural network (IVFNN can be trained with crisp and interval-valued fuzzy data. Here a neural network is considered as a part of a large field called neural computing or soft computing. Moreover, in order to find the approximate parameters, a simple algorithm from the cost function of the fuzzy neural network is proposed. Finally, we illustrate our approach by some numerical examples and compare this method with existing methods.
Modeling of steam generator in nuclear power plant using neural network ensemble
International Nuclear Information System (INIS)
Lee, S. K.; Lee, E. C.; Jang, J. W.
2003-01-01
Neural network is now being used in modeling the steam generator is known to be difficult due to the reverse dynamics. However, Neural network is prone to the problem of overfitting. This paper investigates the use of neural network combining methods to model steam generator water level and compares with single neural network. The results show that neural network ensemble is effective tool which can offer improved generalization, lower dependence of the training set and reduced training time
Advanced models of neural networks nonlinear dynamics and stochasticity in biological neurons
Rigatos, Gerasimos G
2015-01-01
This book provides a complete study on neural structures exhibiting nonlinear and stochastic dynamics, elaborating on neural dynamics by introducing advanced models of neural networks. It overviews the main findings in the modelling of neural dynamics in terms of electrical circuits and examines their stability properties with the use of dynamical systems theory. It is suitable for researchers and postgraduate students engaged with neural networks and dynamical systems theory.
Directory of Open Access Journals (Sweden)
Christian Nowke
2018-06-01
Full Text Available Simulation models in many scientific fields can have non-unique solutions or unique solutions which can be difficult to find. Moreover, in evolving systems, unique final state solutions can be reached by multiple different trajectories. Neuroscience is no exception. Often, neural network models are subject to parameter fitting to obtain desirable output comparable to experimental data. Parameter fitting without sufficient constraints and a systematic exploration of the possible solution space can lead to conclusions valid only around local minima or around non-minima. To address this issue, we have developed an interactive tool for visualizing and steering parameters in neural network simulation models. In this work, we focus particularly on connectivity generation, since finding suitable connectivity configurations for neural network models constitutes a complex parameter search scenario. The development of the tool has been guided by several use cases—the tool allows researchers to steer the parameters of the connectivity generation during the simulation, thus quickly growing networks composed of multiple populations with a targeted mean activity. The flexibility of the software allows scientists to explore other connectivity and neuron variables apart from the ones presented as use cases. With this tool, we enable an interactive exploration of parameter spaces and a better understanding of neural network models and grapple with the crucial problem of non-unique network solutions and trajectories. In addition, we observe a reduction in turn around times for the assessment of these models, due to interactive visualization while the simulation is computed.
Field Model: An Object-Oriented Data Model for Fields
Moran, Patrick J.
2001-01-01
We present an extensible, object-oriented data model designed for field data entitled Field Model (FM). FM objects can represent a wide variety of fields, including fields of arbitrary dimension and node type. FM can also handle time-series data. FM achieves generality through carefully selected topological primitives and through an implementation that leverages the potential of templated C++. FM supports fields where the nodes values are paired with any cell type. Thus FM can represent data where the field nodes are paired with the vertices ("vertex-centered" data), fields where the nodes are paired with the D-dimensional cells in R(sup D) (often called "cell-centered" data), as well as fields where nodes are paired with edges or other cell types. FM is designed to effectively handle very large data sets; in particular FM employs a demand-driven evaluation strategy that works especially well with large field data. Finally, the interfaces developed for FM have the potential to effectively abstract field data based on adaptive meshes. We present initial results with a triangular adaptive grid in R(sup 2) and discuss how the same design abstractions would work equally well with other adaptive-grid variations, including meshes in R(sup 3).
Modeling of methane emissions using artificial neural network approach
Directory of Open Access Journals (Sweden)
Stamenković Lidija J.
2015-01-01
Full Text Available The aim of this study was to develop a model for forecasting CH4 emissions at the national level, using Artificial Neural Networks (ANN with broadly available sustainability, economical and industrial indicators as their inputs. ANN modeling was performed using two different types of architecture; a Backpropagation Neural Network (BPNN and a General Regression Neural Network (GRNN. A conventional multiple linear regression (MLR model was also developed in order to compare model performance and assess which model provides the best results. ANN and MLR models were developed and tested using the same annual data for 20 European countries. The ANN model demonstrated very good performance, significantly better than the MLR model. It was shown that a forecast of CH4 emissions at the national level using the ANN model can be made successfully and accurately for a future period of up to two years, thereby opening the possibility to apply such a modeling technique which can be used to support the implementation of sustainable development strategies and environmental management policies. [Projekat Ministarstva nauke Republike Srbije, br. 172007
Alternating current electric field effects on neural stem cell viability and differentiation.
Matos, Marvi A; Cicerone, Marcus T
2010-01-01
Methods utilizing stem cells hold tremendous promise for tissue engineering applications; however, many issues must be worked out before these therapies can be routinely applied. Utilization of external cues for preimplantation expansion and differentiation offers a potentially viable approach to the use of stem cells in tissue engineering. The studies reported here focus on the response of murine neural stem cells encapsulated in alginate hydrogel beads to alternating current electric fields. Cell viability and differentiation was studied as a function of electric field magnitude and frequency. We applied fields of frequency (0.1-10) Hz, and found a marked peak in neural stem cell viability under oscillatory electric fields with a frequency of 1 Hz. We also found an enhanced propensity for astrocyte differentiation over neuronal differentiation in the 1 Hz cultures, as compared to the other field frequencies we studied. Published 2010 American Institute of Chemical Engineers
Direct imaging of neural currents using ultra-low field magnetic resonance techniques
Volegov, Petr L [Los Alamos, NM; Matlashov, Andrei N [Los Alamos, NM; Mosher, John C [Los Alamos, NM; Espy, Michelle A [Los Alamos, NM; Kraus, Jr., Robert H.
2009-08-11
Using resonant interactions to directly and tomographically image neural activity in the human brain using magnetic resonance imaging (MRI) techniques at ultra-low field (ULF), the present inventors have established an approach that is sensitive to magnetic field distributions local to the spin population in cortex at the Larmor frequency of the measurement field. Because the Larmor frequency can be readily manipulated (through varying B.sub.m), one can also envision using ULF-DNI to image the frequency distribution of the local fields in cortex. Such information, taken together with simultaneous acquisition of MEG and ULF-NMR signals, enables non-invasive exploration of the correlation between local fields induced by neural activity in cortex and more `distant` measures of brain activity such as MEG and EEG.
Escherichia coli growth modeling using neural network | Shamsudin ...
African Journals Online (AJOL)
technique that has the ability to predict with efficient and good performance. Using NARX, a highly accurate model was developed to predict the growth of Escherichia coli (E. coli) based on pH water parameter. The multiparameter portable sensor and spectrophotometer data were used to build and train the neural network.
A model of interval timing by neural integration.
Simen, Patrick; Balci, Fuat; de Souza, Laura; Cohen, Jonathan D; Holmes, Philip
2011-06-22
We show that simple assumptions about neural processing lead to a model of interval timing as a temporal integration process, in which a noisy firing-rate representation of time rises linearly on average toward a response threshold over the course of an interval. Our assumptions include: that neural spike trains are approximately independent Poisson processes, that correlations among them can be largely cancelled by balancing excitation and inhibition, that neural populations can act as integrators, and that the objective of timed behavior is maximal accuracy and minimal variance. The model accounts for a variety of physiological and behavioral findings in rodents, monkeys, and humans, including ramping firing rates between the onset of reward-predicting cues and the receipt of delayed rewards, and universally scale-invariant response time distributions in interval timing tasks. It furthermore makes specific, well-supported predictions about the skewness of these distributions, a feature of timing data that is usually ignored. The model also incorporates a rapid (potentially one-shot) duration-learning procedure. Human behavioral data support the learning rule's predictions regarding learning speed in sequences of timed responses. These results suggest that simple, integration-based models should play as prominent a role in interval timing theory as they do in theories of perceptual decision making, and that a common neural mechanism may underlie both types of behavior.
Introducing Artificial Neural Networks through a Spreadsheet Model
Rienzo, Thomas F.; Athappilly, Kuriakose K.
2012-01-01
Business students taking data mining classes are often introduced to artificial neural networks (ANN) through point and click navigation exercises in application software. Even if correct outcomes are obtained, students frequently do not obtain a thorough understanding of ANN processes. This spreadsheet model was created to illuminate the roles of…
A Constructive Neural-Network Approach to Modeling Psychological Development
Shultz, Thomas R.
2012-01-01
This article reviews a particular computational modeling approach to the study of psychological development--that of constructive neural networks. This approach is applied to a variety of developmental domains and issues, including Piagetian tasks, shift learning, language acquisition, number comparison, habituation of visual attention, concept…
Bilingual Lexical Interactions in an Unsupervised Neural Network Model
Zhao, Xiaowei; Li, Ping
2010-01-01
In this paper we present an unsupervised neural network model of bilingual lexical development and interaction. We focus on how the representational structures of the bilingual lexicons can emerge, develop, and interact with each other as a function of the learning history. The results show that: (1) distinct representations for the two lexicons…
Using artificial neural network approach for modelling rainfall–runoff ...
Indian Academy of Sciences (India)
Department of Civil Engineering, National Pingtung University of Science and Technology, Neipu Hsiang,. Pingtung ... study, a model for estimating runoff by using rainfall data from a river basin is developed and a neural ... For example, 2009 typhoon Morakot in Pingtung ... Tokar and Markus (2000) applied ANN to predict.
DAILY RAINFALL-RUNOFF MODELLING BY NEURAL NETWORKS ...
African Journals Online (AJOL)
K. Benzineb, M. Remaoun
2016-09-01
Sep 1, 2016 ... The hydrologic behaviour modelling of w. Journal of ... i Ouahrane's basin from rainfall-runoff relation which is non-linea networks ... will allow checking efficiency of formal neural networks for flows simulation in semi-arid zone.
THE USE OF NEURAL NETWORK TECHNOLOGY TO MODEL SWIMMING PERFORMANCE
Directory of Open Access Journals (Sweden)
António José Silva
2007-03-01
Full Text Available The aims of the present study were: to identify the factors which are able to explain the performance in the 200 meters individual medley and 400 meters front crawl events in young swimmers, to model the performance in those events using non-linear mathematic methods through artificial neural networks (multi-layer perceptrons and to assess the neural network models precision to predict the performance. A sample of 138 young swimmers (65 males and 73 females of national level was submitted to a test battery comprising four different domains: kinanthropometric evaluation, dry land functional evaluation (strength and flexibility, swimming functional evaluation (hydrodynamics, hydrostatic and bioenergetics characteristics and swimming technique evaluation. To establish a profile of the young swimmer non-linear combinations between preponderant variables for each gender and swim performance in the 200 meters medley and 400 meters font crawl events were developed. For this purpose a feed forward neural network was used (Multilayer Perceptron with three neurons in a single hidden layer. The prognosis precision of the model (error lower than 0.8% between true and estimated performances is supported by recent evidence. Therefore, we consider that the neural network tool can be a good approach in the resolution of complex problems such as performance modeling and the talent identification in swimming and, possibly, in a wide variety of sports
Neural network modeling of a dolphin's sonar discrimination capabilities
DEFF Research Database (Denmark)
Andersen, Lars Nonboe; René Rasmussen, A; Au, WWL
1994-01-01
The capability of an echo-locating dolphin to discriminate differences in the wall thickness of cylinders was previously modeled by a counterpropagation neural network using only spectral information of the echoes [W. W. L. Au, J. Acoust. Soc. Am. 95, 2728–2735 (1994)]. In this study, both time a...
Pragmatic Bootstrapping: A Neural Network Model of Vocabulary Acquisition
Caza, Gregory A.; Knott, Alistair
2012-01-01
The social-pragmatic theory of language acquisition proposes that children only become efficient at learning the meanings of words once they acquire the ability to understand the intentions of other agents, in particular the intention to communicate (Akhtar & Tomasello, 2000). In this paper we present a neural network model of word learning which…
Geometry of neural networks and models with singularities
International Nuclear Information System (INIS)
Fukumizu, Kenji
2001-01-01
This paper discusses maximum likelihood estimation with unidentifiability of parameters. Unidentifiability is formulated as a conic singularity of the model. It is known that the likelihood ratio may have unusually large order in unidentifiable cases. A sufficient condition for such large order is given and applied to neural networks
Determination of the Corona model parameters with artificial neural networks
International Nuclear Information System (INIS)
Ahmet, Nayir; Bekir, Karlik; Arif, Hashimov
2005-01-01
Full text : The aim of this study is to calculate new model parameters taking into account the corona of electrical transmission line wires. For this purpose, a neural network modeling proposed for the corona frequent characteristics modeling. Then this model was compared with the other model developed at the Polytechnic Institute of Saint Petersburg. The results of development of the specified corona model for calculation of its influence on the wave processes in multi-wires line and determination of its parameters are submitted. Results of obtained calculation equations are brought for electrical transmission line with allowance for superficial effect in the ground and wires with reference to developed corona model
Statistical modelling of neural networks in γ-spectrometry applications
International Nuclear Information System (INIS)
Vigneron, V.; Martinez, J.M.; Morel, J.; Lepy, M.C.
1995-01-01
Layered Neural Networks, which are a class of models based on neural computation, are applied to the measurement of uranium enrichment, i.e. the isotope ratio 235 U/( 235 U + 236 U + 238 U). The usual method consider a limited number of Γ-ray and X-ray peaks, and require previously calibrated instrumentation for each sample. But, in practice, the source-detector ensemble geometry conditions are critically different, thus a means of improving the above convention methods is to reduce the region of interest: this is possible by focusing on the K α X region where the three elementary components are present. Real data are used to study the performance of neural networks. Training is done with a Maximum Likelihood method to measure uranium 235 U and 238 U quantities in infinitely thick samples. (authors). 18 refs., 6 figs., 3 tabs
Neural network versus classical time series forecasting models
Nor, Maria Elena; Safuan, Hamizah Mohd; Shab, Noorzehan Fazahiyah Md; Asrul, Mohd; Abdullah, Affendi; Mohamad, Nurul Asmaa Izzati; Lee, Muhammad Hisyam
2017-05-01
Artificial neural network (ANN) has advantage in time series forecasting as it has potential to solve complex forecasting problems. This is because ANN is data driven approach which able to be trained to map past values of a time series. In this study the forecast performance between neural network and classical time series forecasting method namely seasonal autoregressive integrated moving average models was being compared by utilizing gold price data. Moreover, the effect of different data preprocessing on the forecast performance of neural network being examined. The forecast accuracy was evaluated using mean absolute deviation, root mean square error and mean absolute percentage error. It was found that ANN produced the most accurate forecast when Box-Cox transformation was used as data preprocessing.
HIV lipodystrophy case definition using artificial neural network modelling
DEFF Research Database (Denmark)
Ioannidis, John P A; Trikalinos, Thomas A; Law, Matthew
2003-01-01
OBJECTIVE: A case definition of HIV lipodystrophy has recently been developed from a combination of clinical, metabolic and imaging/body composition variables using logistic regression methods. We aimed to evaluate whether artificial neural networks could improve the diagnostic accuracy. METHODS......: The database of the case-control Lipodystrophy Case Definition Study was split into 504 subjects (265 with and 239 without lipodystrophy) used for training and 284 independent subjects (152 with and 132 without lipodystrophy) used for validation. Back-propagation neural networks with one or two middle layers...... were trained and validated. Results were compared against logistic regression models using the same information. RESULTS: Neural networks using clinical variables only (41 items) achieved consistently superior performance than logistic regression in terms of specificity, overall accuracy and area under...
Neural Circuit to Integrate Opposing Motions in the Visual Field.
Mauss, Alex S; Pankova, Katarina; Arenz, Alexander; Nern, Aljoscha; Rubin, Gerald M; Borst, Alexander
2015-07-16
When navigating in their environment, animals use visual motion cues as feedback signals that are elicited by their own motion. Such signals are provided by wide-field neurons sampling motion directions at multiple image points as the animal maneuvers. Each one of these neurons responds selectively to a specific optic flow-field representing the spatial distribution of motion vectors on the retina. Here, we describe the discovery of a group of local, inhibitory interneurons in the fruit fly Drosophila key for filtering these cues. Using anatomy, molecular characterization, activity manipulation, and physiological recordings, we demonstrate that these interneurons convey direction-selective inhibition to wide-field neurons with opposite preferred direction and provide evidence for how their connectivity enables the computation required for integrating opposing motions. Our results indicate that, rather than sharpening directional selectivity per se, these circuit elements reduce noise by eliminating non-specific responses to complex visual information. Copyright © 2015 Elsevier Inc. All rights reserved.
A continuous-time neural model for sequential action.
Kachergis, George; Wyatte, Dean; O'Reilly, Randall C; de Kleijn, Roy; Hommel, Bernhard
2014-11-05
Action selection, planning and execution are continuous processes that evolve over time, responding to perceptual feedback as well as evolving top-down constraints. Existing models of routine sequential action (e.g. coffee- or pancake-making) generally fall into one of two classes: hierarchical models that include hand-built task representations, or heterarchical models that must learn to represent hierarchy via temporal context, but thus far lack goal-orientedness. We present a biologically motivated model of the latter class that, because it is situated in the Leabra neural architecture, affords an opportunity to include both unsupervised and goal-directed learning mechanisms. Moreover, we embed this neurocomputational model in the theoretical framework of the theory of event coding (TEC), which posits that actions and perceptions share a common representation with bidirectional associations between the two. Thus, in this view, not only does perception select actions (along with task context), but actions are also used to generate perceptions (i.e. intended effects). We propose a neural model that implements TEC to carry out sequential action control in hierarchically structured tasks such as coffee-making. Unlike traditional feedforward discrete-time neural network models, which use static percepts to generate static outputs, our biological model accepts continuous-time inputs and likewise generates non-stationary outputs, making short-timescale dynamic predictions. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Ponten, S.C.; Daffertshofer, A.; Hillebrand, A.; Stam, C.J.
2010-01-01
We investigated the relationship between structural network properties and both synchronization strength and functional characteristics in a combined neural mass and graph theoretical model of the electroencephalogram (EEG). Thirty-two neural mass models (NMMs), each representing the lump activity
A neural model of decision making
Larsen, Torben
2008-01-01
Background: A descriptive neuroeconomic model is aimed for relativity of the concept of economic man to empirical science.Method: A 4-level client-server-integrator model integrating the brain models of McLean and Luria is the general framework for the model of empirical findings.Results: Decision making relies on integration across brain levels of emotional intelligence (LU) and logico-matematico intelligence (RIA), respectively. The integrated decision making formula approaching zero by bot...
Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Thibodeaux, David N.; Zhao, Hanzhi T.; Yu, Hang
2016-01-01
Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574312
Ma, Ying; Shaik, Mohammed A; Kim, Sharon H; Kozberg, Mariel G; Thibodeaux, David N; Zhao, Hanzhi T; Yu, Hang; Hillman, Elizabeth M C
2016-10-05
Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Authors.
SWANN: The Snow Water Artificial Neural Network Modelling System
Broxton, P. D.; van Leeuwen, W.; Biederman, J. A.
2017-12-01
Snowmelt from mountain forests is important for water supply and ecosystem health. Along Arizona's Mogollon Rim, snowmelt contributes to rivers and streams that provide a significant water supply for hydro-electric power generation, agriculture, and human consumption in central Arizona. In this project, we are building a snow monitoring system for the Salt River Project (SRP), which supplies water and power to millions of customers in the Phoenix metropolitan area. We are using process-based hydrological models and artificial neural networks (ANNs) to generate information about both snow water equivalent (SWE) and snow cover. The snow-cover data is generated with ANNs that are applied to Landsat and MODIS satellite reflectance data. The SWE data is generated using a combination of gridded SWE estimates generated by process-based snow models and ANNs that account for variations in topography, forest cover, and solar radiation. The models are trained and evaluated with snow data from SNOTEL stations as well as from aerial LiDAR and field data that we collected this past winter in northern Arizona, as well as with similar data from other sites in the Southwest US. These snow data are produced in near-real time, and we have built a prototype decision support tool to deliver them to SRP. This tool is designed to provide daily-to annual operational monitoring of spatial and temporal changes in SWE and snow cover conditions over the entire Salt River Watershed (covering 17,000 km2), and features advanced web mapping capabilities and watershed analytics displayed as graphical data.
Hou, Saing Paul; Haddad, Wassim M; Meskin, Nader; Bailey, James M
2015-12-01
With the advances in biochemistry, molecular biology, and neurochemistry there has been impressive progress in understanding the molecular properties of anesthetic agents. However, there has been little focus on how the molecular properties of anesthetic agents lead to the observed macroscopic property that defines the anesthetic state, that is, lack of responsiveness to noxious stimuli. In this paper, we use dynamical system theory to develop a mechanistic mean field model for neural activity to study the abrupt transition from consciousness to unconsciousness as the concentration of the anesthetic agent increases. The proposed synaptic drive firing-rate model predicts the conscious-unconscious transition as the applied anesthetic concentration increases, where excitatory neural activity is characterized by a Poincaré-Andronov-Hopf bifurcation with the awake state transitioning to a stable limit cycle and then subsequently to an asymptotically stable unconscious equilibrium state. Furthermore, we address the more general question of synchronization and partial state equipartitioning of neural activity without mean field assumptions. This is done by focusing on a postulated subset of inhibitory neurons that are not themselves connected to other inhibitory neurons. Finally, several numerical experiments are presented to illustrate the different aspects of the proposed theory.
Directory of Open Access Journals (Sweden)
Stefan Fürtinger
2014-11-01
Full Text Available Assessing brain activity during complex voluntary motor behaviors that require the recruitment of multiple neural sites is a field of active research. Our current knowledge is primarily based on human brain imaging studies that have clear limitations in terms of temporal and spatial resolution. We developed a physiologically informed non-linear multi-compartment stochastic neural model to simulate functional brain activity coupled with neurotransmitter release during complex voluntary behavior, such as speech production. Due to its state-dependent modulation of neural firing, dopaminergic neurotransmission plays a key role in the organization of functional brain circuits controlling speech and language and thus has been incorporated in our neural population model. A rigorous mathematical proof establishing existence and uniqueness of solutions to the proposed model as well as a computationally efficient strategy to numerically approximate these solutions are presented. Simulated brain activity during the resting state and sentence production was analyzed using functional network connectivity, and graph theoretical techniques were employed to highlight differences between the two conditions. We demonstrate that our model successfully reproduces characteristic changes seen in empirical data between the resting state and speech production, and dopaminergic neurotransmission evokes pronounced changes in modeled functional connectivity by acting on the underlying biological stochastic neural model. Specifically, model and data networks in both speech and rest conditions share task-specific network features: both the simulated and empirical functional connectivity networks show an increase in nodal influence and segregation in speech over the resting state. These commonalities confirm that dopamine is a key neuromodulator of the functional connectome of speech control. Based on reproducible characteristic aspects of empirical data, we suggest a number
A neural approach for the numerical modeling of two-dimensional magnetic hysteresis
International Nuclear Information System (INIS)
Cardelli, E.; Faba, A.; Laudani, A.; Riganti Fulginei, F.; Salvini, A.
2015-01-01
This paper deals with a neural network approach to model magnetic hysteresis at macro-magnetic scale. Such approach to the problem seems promising in order to couple the numerical treatment of magnetic hysteresis to FEM numerical solvers of the Maxwell's equations in time domain, as in case of the non-linear dynamic analysis of electrical machines, and other similar devices, making possible a full computer simulation in a reasonable time. The neural system proposed consists of four inputs representing the magnetic field and the magnetic inductions components at each time step and it is trained by 2-d measurements performed on the magnetic material to be modeled. The magnetic induction B is assumed as entry point and the output of the neural system returns the predicted value of the field H at the same time step. A suitable partitioning of the neural system, described in the paper, makes the computing process rather fast. Validations with experimental tests and simulations for non-symmetric and minor loops are presented
An integrative neural model of social perception, action observation, and theory of mind
Yang, Daniel Y.-J.; Rosenblau, Gabriela; Keifer, Cara; Pelphrey, Kevin A.
2016-01-01
In the field of social neuroscience, major branches of research have been instrumental in describing independent components of typical and aberrant social information processing, but the field as a whole lacks a comprehensive model that integrates different branches. We review existing research related to the neural basis of three key neural systems underlying social information processing: social perception, action observation, and theory of mind. We propose an integrative model that unites these three processes and highlights the posterior superior temporal sulcus (pSTS), which plays a central role in all three systems. Furthermore, we integrate these neural systems with the dual system account of implicit and explicit social information processing. Large-scale meta-analyses based on Neurosynth confirmed that the pSTS is at the intersection of the three neural systems. Resting-state functional connectivity analysis with 1000 subjects confirmed that the pSTS is connected to all other regions in these systems. The findings presented in this review are specifically relevant for psychiatric research especially disorders characterized by social deficits such as autism spectrum disorder. PMID:25660957
An integrative neural model of social perception, action observation, and theory of mind.
Yang, Daniel Y-J; Rosenblau, Gabriela; Keifer, Cara; Pelphrey, Kevin A
2015-04-01
In the field of social neuroscience, major branches of research have been instrumental in describing independent components of typical and aberrant social information processing, but the field as a whole lacks a comprehensive model that integrates different branches. We review existing research related to the neural basis of three key neural systems underlying social information processing: social perception, action observation, and theory of mind. We propose an integrative model that unites these three processes and highlights the posterior superior temporal sulcus (pSTS), which plays a central role in all three systems. Furthermore, we integrate these neural systems with the dual system account of implicit and explicit social information processing. Large-scale meta-analyses based on Neurosynth confirmed that the pSTS is at the intersection of the three neural systems. Resting-state functional connectivity analysis with 1000 subjects confirmed that the pSTS is connected to all other regions in these systems. The findings presented in this review are specifically relevant for psychiatric research especially disorders characterized by social deficits such as autism spectrum disorder. Copyright © 2015 Elsevier Ltd. All rights reserved.
A model of stimulus-specific neural assemblies in the insect antennal lobe.
Directory of Open Access Journals (Sweden)
Dominique Martinez
2008-08-01
Full Text Available It has been proposed that synchronized neural assemblies in the antennal lobe of insects encode the identity of olfactory stimuli. In response to an odor, some projection neurons exhibit synchronous firing, phase-locked to the oscillations of the field potential, whereas others do not. Experimental data indicate that neural synchronization and field oscillations are induced by fast GABA(A-type inhibition, but it remains unclear how desynchronization occurs. We hypothesize that slow inhibition plays a key role in desynchronizing projection neurons. Because synaptic noise is believed to be the dominant factor that limits neuronal reliability, we consider a computational model of the antennal lobe in which a population of oscillatory neurons interact through unreliable GABA(A and GABA(B inhibitory synapses. From theoretical analysis and extensive computer simulations, we show that transmission failures at slow GABA(B synapses make the neural response unpredictable. Depending on the balance between GABA(A and GABA(B inputs, particular neurons may either synchronize or desynchronize. These findings suggest a wiring scheme that triggers stimulus-specific synchronized assemblies. Inhibitory connections are set by Hebbian learning and selectively activated by stimulus patterns to form a spiking associative memory whose storage capacity is comparable to that of classical binary-coded models. We conclude that fast inhibition acts in concert with slow inhibition to reformat the glomerular input into odor-specific synchronized neural assemblies.
Modeling of surface dust concentrations using neural networks and kriging
Buevich, Alexander G.; Medvedev, Alexander N.; Sergeev, Alexander P.; Tarasov, Dmitry A.; Shichkin, Andrey V.; Sergeeva, Marina V.; Atanasova, T. B.
2016-12-01
Creating models which are able to accurately predict the distribution of pollutants based on a limited set of input data is an important task in environmental studies. In the paper two neural approaches: (multilayer perceptron (MLP)) and generalized regression neural network (GRNN)), and two geostatistical approaches: (kriging and cokriging), are using for modeling and forecasting of dust concentrations in snow cover. The area of study is under the influence of dust emissions from a copper quarry and a several industrial companies. The comparison of two mentioned approaches is conducted. Three indices are used as the indicators of the models accuracy: the mean absolute error (MAE), root mean square error (RMSE) and relative root mean square error (RRMSE). Models based on artificial neural networks (ANN) have shown better accuracy. When considering all indices, the most precision model was the GRNN, which uses as input parameters for modeling the coordinates of sampling points and the distance to the probable emissions source. The results of work confirm that trained ANN may be more suitable tool for modeling of dust concentrations in snow cover.
Recursive Bayesian recurrent neural networks for time-series modeling.
Mirikitani, Derrick T; Nikolaev, Nikolay
2010-02-01
This paper develops a probabilistic approach to recursive second-order training of recurrent neural networks (RNNs) for improved time-series modeling. A general recursive Bayesian Levenberg-Marquardt algorithm is derived to sequentially update the weights and the covariance (Hessian) matrix. The main strengths of the approach are a principled handling of the regularization hyperparameters that leads to better generalization, and stable numerical performance. The framework involves the adaptation of a noise hyperparameter and local weight prior hyperparameters, which represent the noise in the data and the uncertainties in the model parameters. Experimental investigations using artificial and real-world data sets show that RNNs equipped with the proposed approach outperform standard real-time recurrent learning and extended Kalman training algorithms for recurrent networks, as well as other contemporary nonlinear neural models, on time-series modeling.
Artificial Neural Network Based Model of Photovoltaic Cell
Directory of Open Access Journals (Sweden)
Messaouda Azzouzi
2017-03-01
Full Text Available This work concerns the modeling of a photovoltaic system and the prediction of the sensitivity of electrical parameters (current, power of the six types of photovoltaic cells based on voltage applied between terminals using one of the best known artificial intelligence technique which is the Artificial Neural Networks. The results of the modeling and prediction have been well shown as a function of number of iterations and using different learning algorithms to obtain the best results.
Neural network modeling of a dolphin's sonar discrimination capabilities
Andersen, Lars Nonboe; René Rasmussen, A; Au, WWL; Nachtigall, PE; Roitblat, H.
1994-01-01
The capability of an echo-locating dolphin to discriminate differences in the wall thickness of cylinders was previously modeled by a counterpropagation neural network using only spectral information of the echoes [W. W. L. Au, J. Acoust. Soc. Am. 95, 2728–2735 (1994)]. In this study, both time and frequency information were used to model the dolphin discrimination capabilities. Echoes from the same cylinders were digitized using a broadband simulated dolphin sonar signal with the transducer ...
A Biophysical Neural Model To Describe Spatial Visual Attention
International Nuclear Information System (INIS)
Hugues, Etienne; Jose, Jorge V.
2008-01-01
Visual scenes have enormous spatial and temporal information that are transduced into neural spike trains. Psychophysical experiments indicate that only a small portion of a spatial image is consciously accessible. Electrophysiological experiments in behaving monkeys have revealed a number of modulations of the neural activity in special visual area known as V4, when the animal is paying attention directly towards a particular stimulus location. The nature of the attentional input to V4, however, remains unknown as well as to the mechanisms responsible for these modulations. We use a biophysical neural network model of V4 to address these issues. We first constrain our model to reproduce the experimental results obtained for different external stimulus configurations and without paying attention. To reproduce the known neuronal response variability, we found that the neurons should receive about equal, or balanced, levels of excitatory and inhibitory inputs and whose levels are high as they are in in vivo conditions. Next we consider attentional inputs that can induce and reproduce the observed spiking modulations. We also elucidate the role played by the neural network to generate these modulations
Qi, L.; Carr, T.R.
2006-01-01
In the Hugoton Embayment of southwestern Kansas, St. Louis Limestone reservoirs have relatively low recovery efficiencies, attributed to the heterogeneous nature of the oolitic deposits. This study establishes quantitative relationships between digital well logs and core description data, and applies these relationships in a probabilistic sense to predict lithofacies in 90 uncored wells across the Big Bow and Sand Arroyo Creek fields. In 10 wells, a single hidden-layer neural network based on digital well logs and core described lithofacies of the limestone depositional texture was used to train and establish a non-linear relationship between lithofacies assignments from detailed core descriptions and selected log curves. Neural network models were optimized by selecting six predictor variables and automated cross-validation with neural network parameters and then used to predict lithofacies on the whole data set of the 2023 half-foot intervals from the 10 cored wells with the selected network size of 35 and a damping parameter of 0.01. Predicted lithofacies results compared to actual lithofacies displays absolute accuracies of 70.37-90.82%. Incorporating adjoining lithofacies, within-one lithofacies improves accuracy slightly (93.72%). Digital logs from uncored wells were batch processed to predict lithofacies and probabilities related to each lithofacies at half-foot resolution corresponding to log units. The results were used to construct interpolated cross-sections and useful depositional patterns of St. Louis lithofacies were illustrated, e.g., the concentration of oolitic deposits (including lithofacies 5 and 6) along local highs and the relative dominance of quartz-rich carbonate grainstone (lithofacies 1) in the zones A and B of the St. Louis Limestone. Neural network techniques are applicable to other complex reservoirs, in which facies geometry and distribution are the key factors controlling heterogeneity and distribution of rock properties. Future work
A stochastic-field description of finite-size spiking neural networks.
Dumont, Grégory; Payeur, Alexandre; Longtin, André
2017-08-01
Neural network dynamics are governed by the interaction of spiking neurons. Stochastic aspects of single-neuron dynamics propagate up to the network level and shape the dynamical and informational properties of the population. Mean-field models of population activity disregard the finite-size stochastic fluctuations of network dynamics and thus offer a deterministic description of the system. Here, we derive a stochastic partial differential equation (SPDE) describing the temporal evolution of the finite-size refractory density, which represents the proportion of neurons in a given refractory state at any given time. The population activity-the density of active neurons per unit time-is easily extracted from this refractory density. The SPDE includes finite-size effects through a two-dimensional Gaussian white noise that acts both in time and along the refractory dimension. For an infinite number of neurons the standard mean-field theory is recovered. A discretization of the SPDE along its characteristic curves allows direct simulations of the activity of large but finite spiking networks; this constitutes the main advantage of our approach. Linearizing the SPDE with respect to the deterministic asynchronous state allows the theoretical investigation of finite-size activity fluctuations. In particular, analytical expressions for the power spectrum and autocorrelation of activity fluctuations are obtained. Moreover, our approach can be adapted to incorporate multiple interacting populations and quasi-renewal single-neuron dynamics.
Conformal FDTD modeling wake fields
Energy Technology Data Exchange (ETDEWEB)
Jurgens, T.; Harfoush, F.
1991-05-01
Many computer codes have been written to model wake fields. Here we describe the use of the Conformal Finite Difference Time Domain (CFDTD) method to model the wake fields generated by a rigid beam traveling through various accelerating structures. The non- cylindrical symmetry of some of the problems considered here requires the use of a three dimensional code. In traditional FDTD codes, curved surfaces are approximated by rectangular steps. The errors introduced in wake field calculations by such an approximation can be reduced by increasing the mesh size, therefore increasing the cost of computing. Another approach, validated here, deforms Ampere and Faraday contours near a media interface so as to conform to the interface. These improvements of the FDTD method result in better accuracy of the fields at asymptotically no computational cost. This method is also capable of modeling thin wires as found in beam profile monitors, and slots and cracks as found in resistive wall motions. 4 refs., 5 figs.
Adaptive control using neural networks and approximate models.
Narendra, K S; Mukhopadhyay, S
1997-01-01
The NARMA model is an exact representation of the input-output behavior of finite-dimensional nonlinear discrete-time dynamical systems in a neighborhood of the equilibrium state. However, it is not convenient for purposes of adaptive control using neural networks due to its nonlinear dependence on the control input. Hence, quite often, approximate methods are used for realizing the neural controllers to overcome computational complexity. In this paper, we introduce two classes of models which are approximations to the NARMA model, and which are linear in the control input. The latter fact substantially simplifies both the theoretical analysis as well as the practical implementation of the controller. Extensive simulation studies have shown that the neural controllers designed using the proposed approximate models perform very well, and in many cases even better than an approximate controller designed using the exact NARMA model. In view of their mathematical tractability as well as their success in simulation studies, a case is made in this paper that such approximate input-output models warrant a detailed study in their own right.
Hand Posture Prediction Using Neural Networks within a Biomechanical Model
Directory of Open Access Journals (Sweden)
Marta C. Mora
2012-10-01
Full Text Available This paper proposes the use of artificial neural networks (ANNs in the framework of a biomechanical hand model for grasping. ANNs enhance the model capabilities as they substitute estimated data for the experimental inputs required by the grasping algorithm used. These inputs are the tentative grasping posture and the most open posture during grasping. As a consequence, more realistic grasping postures are predicted by the grasping algorithm, along with the contact information required by the dynamic biomechanical model (contact points and normals. Several neural network architectures are tested and compared in terms of prediction errors, leading to encouraging results. The performance of the overall proposal is also shown through simulation, where a grasping experiment is replicated and compared to the real grasping data collected by a data glove device.
Hierarchical modeling of molecular energies using a deep neural network
Lubbers, Nicholas; Smith, Justin S.; Barros, Kipton
2018-06-01
We introduce the Hierarchically Interacting Particle Neural Network (HIP-NN) to model molecular properties from datasets of quantum calculations. Inspired by a many-body expansion, HIP-NN decomposes properties, such as energy, as a sum over hierarchical terms. These terms are generated from a neural network—a composition of many nonlinear transformations—acting on a representation of the molecule. HIP-NN achieves the state-of-the-art performance on a dataset of 131k ground state organic molecules and predicts energies with 0.26 kcal/mol mean absolute error. With minimal tuning, our model is also competitive on a dataset of molecular dynamics trajectories. In addition to enabling accurate energy predictions, the hierarchical structure of HIP-NN helps to identify regions of model uncertainty.
Neural Machine Translation with Recurrent Attention Modeling
Yang, Zichao; Hu, Zhiting; Deng, Yuntian; Dyer, Chris; Smola, Alex
2016-01-01
Knowing which words have been attended to in previous time steps while generating a translation is a rich source of information for predicting what words will be attended to in the future. We improve upon the attention model of Bahdanau et al. (2014) by explicitly modeling the relationship between previous and subsequent attention levels for each word using one recurrent network per input word. This architecture easily captures informative features, such as fertility and regularities in relat...
Functional Modeling of Neural-Glia Interaction
DEFF Research Database (Denmark)
Postnov, D.E.; Brazhe, N.A.; Sosnovtseva, Olga
2012-01-01
Functional modeling is an approach that focuses on the representation of the qualitative dynamics of the individual components (e.g. cells) of a system and on the structure of the interaction network.......Functional modeling is an approach that focuses on the representation of the qualitative dynamics of the individual components (e.g. cells) of a system and on the structure of the interaction network....
Spatial and Angular Resolution Enhancement of Light Fields Using Convolutional Neural Networks
Gul, M. Shahzeb Khan; Gunturk, Bahadir K.
2018-05-01
Light field imaging extends the traditional photography by capturing both spatial and angular distribution of light, which enables new capabilities, including post-capture refocusing, post-capture aperture control, and depth estimation from a single shot. Micro-lens array (MLA) based light field cameras offer a cost-effective approach to capture light field. A major drawback of MLA based light field cameras is low spatial resolution, which is due to the fact that a single image sensor is shared to capture both spatial and angular information. In this paper, we present a learning based light field enhancement approach. Both spatial and angular resolution of captured light field is enhanced using convolutional neural networks. The proposed method is tested with real light field data captured with a Lytro light field camera, clearly demonstrating spatial and angular resolution improvement.
Data acquisition in modeling using neural networks and decision trees
Directory of Open Access Journals (Sweden)
R. Sika
2011-04-01
Full Text Available The paper presents a comparison of selected models from area of artificial neural networks and decision trees in relation with actualconditions of foundry processes. The work contains short descriptions of used algorithms, their destination and method of data preparation,which is a domain of work of Data Mining systems. First part concerns data acquisition realized in selected iron foundry, indicating problems to solve in aspect of casting process modeling. Second part is a comparison of selected algorithms: a decision tree and artificial neural network, that is CART (Classification And Regression Trees and BP (Backpropagation in MLP (Multilayer Perceptron networks algorithms.Aim of the paper is to show an aspect of selecting data for modeling, cleaning it and reducing, for example due to too strong correlationbetween some of recorded process parameters. Also, it has been shown what results can be obtained using two different approaches:first when modeling using available commercial software, for example Statistica, second when modeling step by step using Excel spreadsheetbasing on the same algorithm, like BP-MLP. Discrepancy of results obtained from these two approaches originates from a priorimade assumptions. Mentioned earlier Statistica universal software package, when used without awareness of relations of technologicalparameters, i.e. without user having experience in foundry and without scheduling ranks of particular parameters basing on acquisition, can not give credible basis to predict the quality of the castings. Also, a decisive influence of data acquisition method has been clearly indicated, the acquisition should be conducted according to repetitive measurement and control procedures. This paper is based on about 250 records of actual data, for one assortment for 6 month period, where only 12 data sets were complete (including two that were used for validation of neural network and useful for creating a model. It is definitely too
Stochastic-field cavitation model
International Nuclear Information System (INIS)
Dumond, J.; Magagnato, F.; Class, A.
2013-01-01
Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian “particles” or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations
Stochastic-field cavitation model
Dumond, J.; Magagnato, F.; Class, A.
2013-07-01
Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian "particles" or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.
DEFF Research Database (Denmark)
Kock, Anders Bredahl; Teräsvirta, Timo
2016-01-01
When forecasting with neural network models one faces several problems, all of which influence the accuracy of the forecasts. First, neural networks are often hard to estimate due to their highly nonlinear structure. To alleviate the problem, White (2006) presented a solution (QuickNet) that conv...
Directory of Open Access Journals (Sweden)
Mohammad S. Islam
2017-01-01
Full Text Available Decoding neural activities related to voluntary and involuntary movements is fundamental to understanding human brain motor circuits and neuromotor disorders and can lead to the development of neuromotor prosthetic devices for neurorehabilitation. This study explores using recorded deep brain local field potentials (LFPs for robust movement decoding of Parkinson’s disease (PD and Dystonia patients. The LFP data from voluntary movement activities such as left and right hand index finger clicking were recorded from patients who underwent surgeries for implantation of deep brain stimulation electrodes. Movement-related LFP signal features were extracted by computing instantaneous power related to motor response in different neural frequency bands. An innovative neural network ensemble classifier has been proposed and developed for accurate prediction of finger movement and its forthcoming laterality. The ensemble classifier contains three base neural network classifiers, namely, feedforward, radial basis, and probabilistic neural networks. The majority voting rule is used to fuse the decisions of the three base classifiers to generate the final decision of the ensemble classifier. The overall decoding performance reaches a level of agreement (kappa value at about 0.729±0.16 for decoding movement from the resting state and about 0.671±0.14 for decoding left and right visually cued movements.
Empirical modeling of nuclear power plants using neural networks
International Nuclear Information System (INIS)
Parlos, A.G.; Atiya, A.; Chong, K.T.
1991-01-01
A summary of a procedure for nonlinear identification of process dynamics encountered in nuclear power plant components is presented in this paper using artificial neural systems. A hybrid feedforward/feedback neural network, namely, a recurrent multilayer perceptron, is used as the nonlinear structure for system identification. In the overall identification process, the feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of time-dependent system nonlinearities. The standard backpropagation learning algorithm is modified and is used to train the proposed hybrid network in a supervised manner. The performance of recurrent multilayer perceptron networks in identifying process dynamics is investigated via the case study of a U-tube steam generator. The nonlinear response of a representative steam generator is predicted using a neural network and is compared to the response obtained from a sophisticated physical model during both high- and low-power operation. The transient responses compare well, though further research is warranted for training and testing of recurrent neural networks during more severe operational transients and accident scenarios
A neural model of decision making
DEFF Research Database (Denmark)
Larsen, Torben
2008-01-01
of Daniel Defoe. However, in the last decade neuroimaging technologies have become that sensitive that the activity of small groups of nerve cells may be detected i.e. by functional magnetic resonance tomography (fMRI). fMRI tracks blood flow in the brain using changes in magnetic properties due...... and inhibitory processes and EEG is still useful for research as a broader and direct measure of brain activity. On this background a new interdisciplinary field linking behavioural economics and neuroscience into a neuroeconomic discipline emerges. Recent reviews of neuroeconomics represent a platform...... as subjective/ behavioural rather than neurophysiological with ‘blackboxes' which is difficult to falsify for further development. In client-server programs the client requests services from the server, which responds to the request. As the brain contains more specialized servers an integrator is required...
Artificial neural network for modeling the extraction of aromatic hydrocarbons from lube oil cuts
Energy Technology Data Exchange (ETDEWEB)
Mehrkesh, A.H.; Hajimirzaee, S. [Islamic Azad University, Majlesi Branch, Isfahan (Iran, Islamic Republic of); Hatamipour, M.S.; Tavakoli, T. [Department of Chemical Engineering, University of Isfahan, Isfahan (Iran, Islamic Republic of)
2011-03-15
An artificial neural network (ANN) approach was used to obtain a simulation model to predict the rotating disc contactor (RDC) performance during the extraction of aromatic hydrocarbons from lube oil cuts, to produce a lubricating base oil using furfural as solvent. The field data used for training the ANN model was obtained from a lubricating oil production company. The input parameters of the ANN model were the volumetric flow rates of feed and solvent, the temperatures of feed and solvent, and the disc rotation rate. The output parameters were the volumetric flow rate of the raffinate phase and the extraction yield. In this study, a feed-forward multi-layer perceptron neural network was successfully used to demonstrate the complex relationship between the mentioned input and output parameters. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
A Pruning Neural Network Model in Credit Classification Analysis
Directory of Open Access Journals (Sweden)
Yajiao Tang
2018-01-01
Full Text Available Nowadays, credit classification models are widely applied because they can help financial decision-makers to handle credit classification issues. Among them, artificial neural networks (ANNs have been widely accepted as the convincing methods in the credit industry. In this paper, we propose a pruning neural network (PNN and apply it to solve credit classification problem by adopting the well-known Australian and Japanese credit datasets. The model is inspired by synaptic nonlinearity of a dendritic tree in a biological neural model. And it is trained by an error back-propagation algorithm. The model is capable of realizing a neuronal pruning function by removing the superfluous synapses and useless dendrites and forms a tidy dendritic morphology at the end of learning. Furthermore, we utilize logic circuits (LCs to simulate the dendritic structures successfully which makes PNN be implemented on the hardware effectively. The statistical results of our experiments have verified that PNN obtains superior performance in comparison with other classical algorithms in terms of accuracy and computational efficiency.
Empirical Modeling of the Plasmasphere Dynamics Using Neural Networks
Zhelavskaya, I. S.; Shprits, Y.; Spasojevic, M.
2017-12-01
We present a new empirical model for reconstructing the global dynamics of the cold plasma density distribution based only on solar wind data and geomagnetic indices. Utilizing the density database obtained using the NURD (Neural-network-based Upper hybrid Resonance Determination) algorithm for the period of October 1, 2012 - July 1, 2016, in conjunction with solar wind data and geomagnetic indices, we develop a neural network model that is capable of globally reconstructing the dynamics of the cold plasma density distribution for 2 ≤ L ≤ 6 and all local times. We validate and test the model by measuring its performance on independent datasets withheld from the training set and by comparing the model predicted global evolution with global images of He+ distribution in the Earth's plasmasphere from the IMAGE Extreme UltraViolet (EUV) instrument. We identify the parameters that best quantify the plasmasphere dynamics by training and comparing multiple neural networks with different combinations of input parameters (geomagnetic indices, solar wind data, and different durations of their time history). We demonstrate results of both local and global plasma density reconstruction. This study illustrates how global dynamics can be reconstructed from local in-situ observations by using machine learning techniques.
Role of SDF1/CXCR4 Interaction in Experimental Hemiplegic Models with Neural Cell Transplantation
Directory of Open Access Journals (Sweden)
Noboru Suzuki
2012-02-01
Full Text Available Much attention has been focused on neural cell transplantation because of its promising clinical applications. We have reported that embryonic stem (ES cell derived neural stem/progenitor cell transplantation significantly improved motor functions in a hemiplegic mouse model. It is important to understand the molecular mechanisms governing neural regeneration of the damaged motor cortex after the transplantation. Recent investigations disclosed that chemokines participated in the regulation of migration and maturation of neural cell grafts. In this review, we summarize the involvement of inflammatory chemokines including stromal cell derived factor 1 (SDF1 in neural regeneration after ES cell derived neural stem/progenitor cell transplantation in mouse stroke models.
Modeling of light absorption in tissue during infrared neural stimulation
Thompson, Alexander C.; Wade, Scott A.; Brown, William G. A.; Stoddart, Paul R.
2012-07-01
A Monte Carlo model has been developed to simulate light transport and absorption in neural tissue during infrared neural stimulation (INS). A range of fiber core sizes and numerical apertures are compared illustrating the advantages of using simulations when designing a light delivery system. A range of wavelengths, commonly used for INS, are also compared for stimulation of nerves in the cochlea, in terms of both the energy absorbed and the change in temperature due to a laser pulse. Modeling suggests that a fiber with core diameter of 200 μm and NA=0.22 is optimal for optical stimulation in the geometry used and that temperature rises in the spiral ganglion neurons are as low as 0.1°C. The results show a need for more careful experimentation to allow different proposed mechanisms of INS to be distinguished.
Modeling of an industrial drying process by artificial neural networks
Directory of Open Access Journals (Sweden)
E. Assidjo
2008-09-01
Full Text Available A suitable method is needed to solve the nonquality problem in the grated coconut industry due to the poor control of product humidity during the process. In this study the possibility of using an artificial neural network (ANN, precisely a Multilayer Perceptron, for modeling the drying step of the production of grated coconut process is highlighted. Drying must confer to the product a final moisture of 3%. Unfortunately, under industrial conditions, this moisture varies from 1.9 to 4.8 %. In order to control this parameter and consequently reduce the proportion of the product that does not meet the humidity specification, a 9-4-1 neural network architecture was established using data gathered from an industrial plant. This Multilayer Perceptron can satisfactorily model the process with less bias, ranging from -0.35 to 0.34%, and can reduce the rate of rejected products from 92% to 3% during the first cycle of drying.
Directory of Open Access Journals (Sweden)
Dr. Kamal Mohammed Alhendawi
2018-02-01
Full Text Available The information systems (IS assessment studies have still used the commonly traditional tools such as questionnaires in evaluating the dependent variables and specially effectiveness of systems. Artificial neural networks have been recently accepted as an effective alternative tool for modeling the complicated systems and widely used for forecasting. A very few is known about the employment of Artificial Neural Network (ANN in the prediction IS effectiveness. For this reason, this study is considered as one of the fewest studies to investigate the efficiency and capability of using ANN for forecasting the user perceptions towards IS effectiveness where MATLAB is utilized for building and training the neural network model. A dataset of 175 subjects collected from international organization are utilized for ANN learning where each subject consists of 6 features (5 quality factors as inputs and one Boolean output. A percentage of 75% o subjects are used in the training phase. The results indicate an evidence on the ANN models has a reasonable accuracy in forecasting the IS effectiveness. For prediction, ANN with PURELIN (ANNP and ANN with TANSIG (ANNTS transfer functions are used. It is found that both two models have a reasonable prediction, however, the accuracy of ANNTS model is better than ANNP model (88.6% and 70.4% respectively. As the study proposes a new model for predicting IS dependent variables, it could save the considerably high cost that might be spent in sample data collection in the quantitative studies in the fields science, management, education, arts and others.
Mathematical phenomenology of neural stimulation by periodic fields.
Balduzzo, M; Milone, F Ferro; Minelli, T A; Pittaro-Cadore, I; Turicchia, L
2003-04-01
Neuron synchronization has been hypothesized as the basic mechanism leading neurological phenomena like low electroencephalographic rhythm dimension or high coherence. Cognitive processes, such as associative memory, can also be explained in terms of neuron synchronization. Inspired by the analysis of an experiment on cortex periodic photostimulation, in resonance conditions, a simple network of integrate and fire (i and f) neurons, has been used to simulate cognitive perturbations by oscillatory and pulsate stimulation of the central nervous system (CNS). In view of realistic simulations of transcranial magnetic stimulation (TMS) phenomena, a discrete extension of the FitzHug-Nagumo nervous fiber model, endowed with regenerative nodes, has been developed too.
Accurate lithography simulation model based on convolutional neural networks
Watanabe, Yuki; Kimura, Taiki; Matsunawa, Tetsuaki; Nojima, Shigeki
2017-07-01
Lithography simulation is an essential technique for today's semiconductor manufacturing process. In order to calculate an entire chip in realistic time, compact resist model is commonly used. The model is established for faster calculation. To have accurate compact resist model, it is necessary to fix a complicated non-linear model function. However, it is difficult to decide an appropriate function manually because there are many options. This paper proposes a new compact resist model using CNN (Convolutional Neural Networks) which is one of deep learning techniques. CNN model makes it possible to determine an appropriate model function and achieve accurate simulation. Experimental results show CNN model can reduce CD prediction errors by 70% compared with the conventional model.
Renormalization of gauge fields models
International Nuclear Information System (INIS)
Becchi, C.; Rouet, A.; Stora, R.
1974-01-01
A new approach to gauge field models is described. It is based on the Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) renormalization scheme making extensive use of the quantum action principle, and the Slavnov invariance. The quantum action principle being first summarized in the framework of the BPHZ is then applied to a global symmetry problem. The symmetry property of the gauge field Lagrangians in the tree approximation is exhibited, and the preservation of this property at the quantum level is discussed. The main results relative to the Abelian and SU(2) Higgs-Kibble models are briefly reviewed [fr
Neural Network Models for Free Radical Polymerization of Methyl Methacrylate
International Nuclear Information System (INIS)
Curteanu, S.; Leon, F.; Galea, D.
2003-01-01
In this paper, a neural network modeling of the batch bulk methyl methacrylate polymerization is performed. To obtain conversion, number and weight average molecular weights, three neural networks were built. Each was a multilayer perception with one or two hidden layers. The choice of network topology, i.e. the number of hidden layers and the number of neurons in these layers, was based on achieving a compromise between precision and complexity. Thus, it was intended to have an error as small as possible at the end of back-propagation training phases, while using a network with reduced complexity. The performances of the networks were evaluated by comparing network predictions with training data, validation data (which were not uses for training), and with the results of a mechanistic model. The accurate predictions of neural networks for monomer conversion, number average molecular weight and weight average molecular weight proves that this modeling methodology gives a good representation and generalization of the batch bulk methyl methacrylate polymerization. (author)
International Nuclear Information System (INIS)
Golparvar Roozbahani, R.; Ghassemian, M. H.; Sharafat, A. R.
2001-01-01
This paper presents the application of competitive Hop field neural network for medical images segmentation. Our proposed approach consists of Two steps: 1) translating segmentation of the given medical image into an optimization problem, and 2) solving this problem by a version of Hop field network known as competitive Hop field neural network. Segmentation is considered as a clustering problem and its validity criterion is based on both intra set distance and inter set distance. The algorithm proposed in this paper is based on gray level features only. This leads to near optimal solutions if both intra set distance and inter set distance are considered at the same time. If only one of these distances is considered, the result of segmentation process by competitive Hop field neural network will be far from optimal solution and incorrect even for very simple cases. Furthermore, sometimes the algorithm receives at unacceptable states. Both these problems may be solved by contributing both in tera distance and inter distances in the segmentation (optimization) process. The performance of the proposed algorithm is tested on both phantom and real medical images. The promising results and the robustness of algorithm to system noises show near optimal solutions
Artificial neural network modelling in heavy ion collisions
International Nuclear Information System (INIS)
El-dahshan, E.; Radi, A.; El-Bakry, M.Y.; El Mashad, M.
2008-01-01
The neural network (NN) model and parton two fireball model (PTFM) have been used to study the pseudo-rapidity distribution of the shower particles for C 12, O 16, Si 28 and S 32 on nuclear emulsion. The trained NN shows a better fitting with experimental data than the PTFM calculations. The NN is then used to predict the distributions that are not present in the training set and matched them effectively. The NN simulation results prove a strong presence modeling in heavy ion collisions
Trend time-series modeling and forecasting with neural networks.
Qi, Min; Zhang, G Peter
2008-05-01
Despite its great importance, there has been no general consensus on how to model the trends in time-series data. Compared to traditional approaches, neural networks (NNs) have shown some promise in time-series forecasting. This paper investigates how to best model trend time series using NNs. Four different strategies (raw data, raw data with time index, detrending, and differencing) are used to model various trend patterns (linear, nonlinear, deterministic, stochastic, and breaking trend). We find that with NNs differencing often gives meritorious results regardless of the underlying data generating processes (DGPs). This finding is also confirmed by the real gross national product (GNP) series.
Neural Networks in Modelling Maintenance Unit Load Status
Directory of Open Access Journals (Sweden)
Anđelko Vojvoda
2002-03-01
Full Text Available This paper deals with a way of applying a neural networkfor describing se1vice station load in a maintenance unit. Dataacquired by measuring the workload of single stations in amaintenance unit were used in the process of training the neuralnetwork in order to create a model of the obse1ved system.The model developed in this way enables us to make more accuratepredictions over critical overload. Modelling was realisedby developing and using m-functions of the Matlab software.
Data Driven Broiler Weight Forecasting using Dynamic Neural Network Models
DEFF Research Database (Denmark)
Johansen, Simon Vestergaard; Bendtsen, Jan Dimon; Riisgaard-Jensen, Martin
2017-01-01
In this article, the dynamic influence of environmental broiler house conditions and broiler growth is investigated. Dynamic neural network forecasting models have been trained on farm-scale broiler batch production data from 12 batches from the same house. The model forecasts future broiler weight...... and uses environmental conditions such as heating, ventilation, and temperature along with broiler behavior such as feed and water consumption. Training data and forecasting data is analyzed to explain when the model might fail at generalizing. We present ensemble broiler weight forecasts to day 7, 14, 21...
Benusková, L; Estok, S
1998-11-01
We propose an attractor neural network (ANN) model that performs rotation-invariant pattern recognition in such a way that it can account for a neural mechanism being involved in the image transformation accompanying the experience of mental rotation. We compared the performance of our ANN model with the results of the chronometric psychophysical experiments of Cooper and Shepard (Cooper L A and Shepard R N 1973 Visual Information Processing (New York: Academic) pp 204-7) on discrimination of alphanumeric characters presented in various angular departures from their canonical upright position. Comparing the times required for pattern retrieval in its canonical upright position with the reaction times of human subjects, we found agreement in that (i) retrieval times for clockwise and anticlockwise departures of the same angular magnitude (up to 180 degrees) were not different, (ii) retrieval times increased with departure from upright and (iii) increased more sharply as departure from upright approached 180 degrees. The rotation-invariant retrieval of the activity pattern has been accomplished by means of the modified algorithm of Dotsenko (Dotsenko V S 1988 J. Phys. A: Math. Gen. 21 L783-7) proposed for translation-, rotation- and size-invariant pattern recognition, which uses relaxation of neuronal firing thresholds to guide the evolution of the ANN in state space towards the desired memory attractor. The dynamics of neuronal relaxation has been modified for storage and retrieval of low-activity patterns and the original gradient optimization of threshold dynamics has been replaced with optimization by simulated annealing.
Validating neural-network refinements of nuclear mass models
Utama, R.; Piekarewicz, J.
2018-01-01
Background: Nuclear astrophysics centers on the role of nuclear physics in the cosmos. In particular, nuclear masses at the limits of stability are critical in the development of stellar structure and the origin of the elements. Purpose: We aim to test and validate the predictions of recently refined nuclear mass models against the newly published AME2016 compilation. Methods: The basic paradigm underlining the recently refined nuclear mass models is based on existing state-of-the-art models that are subsequently refined through the training of an artificial neural network. Bayesian inference is used to determine the parameters of the neural network so that statistical uncertainties are provided for all model predictions. Results: We observe a significant improvement in the Bayesian neural network (BNN) predictions relative to the corresponding "bare" models when compared to the nearly 50 new masses reported in the AME2016 compilation. Further, AME2016 estimates for the handful of impactful isotopes in the determination of r -process abundances are found to be in fairly good agreement with our theoretical predictions. Indeed, the BNN-improved Duflo-Zuker model predicts a root-mean-square deviation relative to experiment of σrms≃400 keV. Conclusions: Given the excellent performance of the BNN refinement in confronting the recently published AME2016 compilation, we are confident of its critical role in our quest for mass models of the highest quality. Moreover, as uncertainty quantification is at the core of the BNN approach, the improved mass models are in a unique position to identify those nuclei that will have the strongest impact in resolving some of the outstanding questions in nuclear astrophysics.
A Multiobjective Sparse Feature Learning Model for Deep Neural Networks.
Gong, Maoguo; Liu, Jia; Li, Hao; Cai, Qing; Su, Linzhi
2015-12-01
Hierarchical deep neural networks are currently popular learning models for imitating the hierarchical architecture of human brain. Single-layer feature extractors are the bricks to build deep networks. Sparse feature learning models are popular models that can learn useful representations. But most of those models need a user-defined constant to control the sparsity of representations. In this paper, we propose a multiobjective sparse feature learning model based on the autoencoder. The parameters of the model are learnt by optimizing two objectives, reconstruction error and the sparsity of hidden units simultaneously to find a reasonable compromise between them automatically. We design a multiobjective induced learning procedure for this model based on a multiobjective evolutionary algorithm. In the experiments, we demonstrate that the learning procedure is effective, and the proposed multiobjective model can learn useful sparse features.
Extended Neural Metastability in an Embodied Model of Sensorimotor Coupling
Directory of Open Access Journals (Sweden)
Miguel Aguilera
2016-09-01
Full Text Available The hypothesis that brain organization is based on mechanisms of metastable synchronization in neural assemblies has been popularized during the last decades of neuroscientific research. Nevertheless, the role of body and environment for understanding the functioning of metastable assemblies is frequently dismissed. The main goal of this paper is to investigate the contribution of sensorimotor coupling to neural and behavioural metastability using a minimal computational model of plastic neural ensembles embedded in a robotic agent in a behavioural preference task. Our hypothesis is that, under some conditions, the metastability of the system is not restricted to the brain but extends to the system composed by the interaction of brain, body and environment. We test this idea, comparing an agent in continuous interaction with its environment in a task demanding behavioural flexibility with an equivalent model from the point of view of 'internalist neuroscience'. A statistical characterization of our model and tools from information theory allows us to show how (1 the bidirectional coupling between agent and environment brings the system closer to a regime of criticality and triggers the emergence of additional metastable states which are not found in the brain in isolation but extended to the whole system of sensorimotor interaction, (2 the synaptic plasticity of the agent is fundamental to sustain open structures in the neural controller of the agent flexibly engaging and disengaging different behavioural patterns that sustain sensorimotor metastable states, and (3 these extended metastable states emerge when the agent generates an asymmetrical circular loop of causal interaction with its environment, in which the agent responds to variability of the environment at fast timescales while acting over the environment at slow timescales, suggesting the constitution of the agent as an autonomous entity actively modulating its sensorimotor coupling
Extended Neural Metastability in an Embodied Model of Sensorimotor Coupling.
Aguilera, Miguel; Bedia, Manuel G; Barandiaran, Xabier E
2016-01-01
The hypothesis that brain organization is based on mechanisms of metastable synchronization in neural assemblies has been popularized during the last decades of neuroscientific research. Nevertheless, the role of body and environment for understanding the functioning of metastable assemblies is frequently dismissed. The main goal of this paper is to investigate the contribution of sensorimotor coupling to neural and behavioral metastability using a minimal computational model of plastic neural ensembles embedded in a robotic agent in a behavioral preference task. Our hypothesis is that, under some conditions, the metastability of the system is not restricted to the brain but extends to the system composed by the interaction of brain, body and environment. We test this idea, comparing an agent in continuous interaction with its environment in a task demanding behavioral flexibility with an equivalent model from the point of view of "internalist neuroscience." A statistical characterization of our model and tools from information theory allow us to show how (1) the bidirectional coupling between agent and environment brings the system closer to a regime of criticality and triggers the emergence of additional metastable states which are not found in the brain in isolation but extended to the whole system of sensorimotor interaction, (2) the synaptic plasticity of the agent is fundamental to sustain open structures in the neural controller of the agent flexibly engaging and disengaging different behavioral patterns that sustain sensorimotor metastable states, and (3) these extended metastable states emerge when the agent generates an asymmetrical circular loop of causal interaction with its environment, in which the agent responds to variability of the environment at fast timescales while acting over the environment at slow timescales, suggesting the constitution of the agent as an autonomous entity actively modulating its sensorimotor coupling with the world. We
Modeling of the height control system using artificial neural networks
Directory of Open Access Journals (Sweden)
A. R Tahavvor
2016-09-01
Full Text Available Introduction Automation of agricultural and machinery construction has generally been enhanced by intelligent control systems due to utility and efficiency rising, ease of use, profitability and upgrading according to market demand. A broad variety of industrial merchandise are now supplied with computerized control systems of earth moving processes to be performed by construction and agriculture field vehicle such as grader, backhoe, tractor and scraper machines. A height control machine which is used in measuring base thickness is consisted of two mechanical and electronic parts. The mechanical part is consisted of conveyor belt, main body, electrical engine and invertors while the electronic part is consisted of ultrasonic, wave transmitter and receiver sensor, electronic board, control set, and microcontroller. The main job of these controlling devices consists of the topographic surveying, cutting and filling of elevated and spotted low area, and these actions fundamentally dependent onthe machine's ability in elevation and thickness measurement and control. In this study, machine was first tested and then some experiments were conducted for data collection. Study of system modeling in artificial neural networks (ANN was done for measuring, controlling the height for bases by input variable input vectors such as sampling time, probe speed, conveyer speed, sound wave speed and speed sensor are finally the maximum and minimum probe output vector on various conditions. The result reveals the capability of this procedure for experimental recognition of sensors' behavior and improvement of field machine control systems. Inspection, calibration and response, diagnosis of the elevation control system in combination with machine function can also be evaluated by some extra development of this system. Materials and Methods Designing and manufacture of the planned apparatus classified in three dissimilar, mechanical and electronic module, courses of
Battery Performance Modelling ad Simulation: a Neural Network Based Approach
Ottavianelli, Giuseppe; Donati, Alessandro
2002-01-01
This project has developed on the background of ongoing researches within the Control Technology Unit (TOS-OSC) of the Special Projects Division at the European Space Operations Centre (ESOC) of the European Space Agency. The purpose of this research is to develop and validate an Artificial Neural Network tool (ANN) able to model, simulate and predict the Cluster II battery system's performance degradation. (Cluster II mission is made of four spacecraft flying in tetrahedral formation and aimed to observe and study the interaction between sun and earth by passing in and out of our planet's magnetic field). This prototype tool, named BAPER and developed with a commercial neural network toolbox, could be used to support short and medium term mission planning in order to improve and maximise the batteries lifetime, determining which are the future best charge/discharge cycles for the batteries given their present states, in view of a Cluster II mission extension. This study focuses on the five Silver-Cadmium batteries onboard of Tango, the fourth Cluster II satellite, but time restrains have allowed so far to perform an assessment only on the first battery. In their most basic form, ANNs are hyper-dimensional curve fits for non-linear data. With their remarkable ability to derive meaning from complicated or imprecise history data, ANN can be used to extract patterns and detect trends that are too complex to be noticed by either humans or other computer techniques. ANNs learn by example, and this is why they can be described as an inductive, or data-based models for the simulation of input/target mappings. A trained ANN can be thought of as an "expert" in the category of information it has been given to analyse, and this expert can then be used, as in this project, to provide projections given new situations of interest and answer "what if" questions. The most appropriate algorithm, in terms of training speed and memory storage requirements, is clearly the Levenberg
A model unified field equation
International Nuclear Information System (INIS)
Perring, J.K.; Skyrme, T.H.R.
1994-01-01
The classical solutions of a unified field theory in a two-dimensional space-time are considered. This system, a model of a interacting mesons and baryons, illustrates how the particle can be built from a wave-packet of mesons and how reciprocally the meson appears as a tightly bound combination of particle and antiparticle. (author). 6 refs
Computational Models and Emergent Properties of Respiratory Neural Networks
Lindsey, Bruce G.; Rybak, Ilya A.; Smith, Jeffrey C.
2012-01-01
Computational models of the neural control system for breathing in mammals provide a theoretical and computational framework bringing together experimental data obtained from different animal preparations under various experimental conditions. Many of these models were developed in parallel and iteratively with experimental studies and provided predictions guiding new experiments. This data-driven modeling approach has advanced our understanding of respiratory network architecture and neural mechanisms underlying generation of the respiratory rhythm and pattern, including their functional reorganization under different physiological conditions. Models reviewed here vary in neurobiological details and computational complexity and span multiple spatiotemporal scales of respiratory control mechanisms. Recent models describe interacting populations of respiratory neurons spatially distributed within the Bötzinger and pre-Bötzinger complexes and rostral ventrolateral medulla that contain core circuits of the respiratory central pattern generator (CPG). Network interactions within these circuits along with intrinsic rhythmogenic properties of neurons form a hierarchy of multiple rhythm generation mechanisms. The functional expression of these mechanisms is controlled by input drives from other brainstem components, including the retrotrapezoid nucleus and pons, which regulate the dynamic behavior of the core circuitry. The emerging view is that the brainstem respiratory network has rhythmogenic capabilities at multiple levels of circuit organization. This allows flexible, state-dependent expression of different neural pattern-generation mechanisms under various physiological conditions, enabling a wide repertoire of respiratory behaviors. Some models consider control of the respiratory CPG by pulmonary feedback and network reconfiguration during defensive behaviors such as cough. Future directions in modeling of the respiratory CPG are considered. PMID:23687564
Neural network connectivity and response latency modelled by stochastic processes
DEFF Research Database (Denmark)
Tamborrino, Massimiliano
is connected to thousands of other neurons. The rst question is: how to model neural networks through stochastic processes? A multivariate Ornstein-Uhlenbeck process, obtained as a diffusion approximation of a jump process, is the proposed answer. Obviously, dependencies between neurons imply dependencies......Stochastic processes and their rst passage times have been widely used to describe the membrane potential dynamics of single neurons and to reproduce neuronal spikes, respectively.However, cerebral cortex in human brains is estimated to contain 10-20 billions of neurons and each of them...... between their spike times. Therefore, the second question is: how to detect neural network connectivity from simultaneously recorded spike trains? Answering this question corresponds to investigate the joint distribution of sequences of rst passage times. A non-parametric method based on copulas...
Adaptive model predictive process control using neural networks
Buescher, K.L.; Baum, C.C.; Jones, R.D.
1997-08-19
A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.
Evolutionary neural network modeling for software cumulative failure time prediction
International Nuclear Information System (INIS)
Tian Liang; Noore, Afzel
2005-01-01
An evolutionary neural network modeling approach for software cumulative failure time prediction based on multiple-delayed-input single-output architecture is proposed. Genetic algorithm is used to globally optimize the number of the delayed input neurons and the number of neurons in the hidden layer of the neural network architecture. Modification of Levenberg-Marquardt algorithm with Bayesian regularization is used to improve the ability to predict software cumulative failure time. The performance of our proposed approach has been compared using real-time control and flight dynamic application data sets. Numerical results show that both the goodness-of-fit and the next-step-predictability of our proposed approach have greater accuracy in predicting software cumulative failure time compared to existing approaches
Super capacitor modeling with artificial neural network (ANN)
Energy Technology Data Exchange (ETDEWEB)
Marie-Francoise, J.N.; Gualous, H.; Berthon, A. [Universite de Franche-Comte, Lab. en Electronique, Electrotechnique et Systemes (L2ES), UTBM, INRETS (LRE T31) 90 - Belfort (France)
2004-07-01
This paper presents super-capacitors modeling using Artificial Neural Network (ANN). The principle consists on a black box nonlinear multiple inputs single output (MISO) model. The system inputs are temperature and current, the output is the super-capacitor voltage. The learning and the validation of the ANN model from experimental charge and discharge of super-capacitor establish the relationship between inputs and output. The learning and the validation of the ANN model use experimental results of 2700 F, 3700 F and a super-capacitor pack. Once the network is trained, the ANN model can predict the super-capacitor behaviour with temperature variations. The update parameters of the ANN model are performed thanks to Levenberg-Marquardt method in order to minimize the error between the output of the system and the predicted output. The obtained results with the ANN model of super-capacitor and experimental ones are in good agreement. (authors)
Czech Academy of Sciences Publication Activity Database
Valach, F.; Bochníček, Josef; Hejda, Pavel; Revallo, M.
2014-01-01
Roč. 53, č. 4 (2014), s. 589-598 ISSN 0273-1177 R&D Projects: GA AV ČR(CZ) IAA300120608; GA MŠk OC09070 Institutional support: RVO:67985530 Keywords : geomagnetic activity * interplanetary magnetic field * artificial neural network * ejection of coronal mass * X-ray flares Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.358, year: 2014
Reactor pressure vessel embrittlement: Insights from neural network modelling
Mathew, J.; Parfitt, D.; Wilford, K.; Riddle, N.; Alamaniotis, M.; Chroneos, A.; Fitzpatrick, M. E.
2018-04-01
Irradiation embrittlement of steel pressure vessels is an important consideration for the operation of current and future light water nuclear reactors. In this study we employ an ensemble of artificial neural networks in order to provide predictions of the embrittlement using two literature datasets, one based on US surveillance data and the second from the IVAR experiment. We use these networks to examine trends with input variables and to assess various literature models including compositional effects and the role of flux and temperature. Overall, the networks agree with the existing literature models and we comment on their more general use in predicting irradiation embrittlement.
Optimizing Markovian modeling of chaotic systems with recurrent neural networks
International Nuclear Information System (INIS)
Cechin, Adelmo L.; Pechmann, Denise R.; Oliveira, Luiz P.L. de
2008-01-01
In this paper, we propose a methodology for optimizing the modeling of an one-dimensional chaotic time series with a Markov Chain. The model is extracted from a recurrent neural network trained for the attractor reconstructed from the data set. Each state of the obtained Markov Chain is a region of the reconstructed state space where the dynamics is approximated by a specific piecewise linear map, obtained from the network. The Markov Chain represents the dynamics of the time series in its statistical essence. An application to a time series resulted from Lorenz system is included
Field testing of bioenergetic models
International Nuclear Information System (INIS)
Nagy, K.A.
1985-01-01
Doubly labeled water provides a direct measure of the rate of carbon dioxide production by free-living animals. With appropriate conversion factors, based on chemical composition of the diet and assimilation efficiency, field metabolic rate (FMR), in units of energy expenditure, and field feeding rate can be estimated. Validation studies indicate that doubly labeled water measurements of energy metabolism are accurate to within 7% in reptiles, birds, and mammals. This paper discusses the use of doubly labeled water to generate empirical models for FMR and food requirements for a variety of animals
Time Series Neural Network Model for Part-of-Speech Tagging Indonesian Language
Tanadi, Theo
2018-03-01
Part-of-speech tagging (POS tagging) is an important part in natural language processing. Many methods have been used to do this task, including neural network. This paper models a neural network that attempts to do POS tagging. A time series neural network is modelled to solve the problems that a basic neural network faces when attempting to do POS tagging. In order to enable the neural network to have text data input, the text data will get clustered first using Brown Clustering, resulting a binary dictionary that the neural network can use. To further the accuracy of the neural network, other features such as the POS tag, suffix, and affix of previous words would also be fed to the neural network.
Calculations of dose distributions using a neural network model
International Nuclear Information System (INIS)
Mathieu, R; Martin, E; Gschwind, R; Makovicka, L; Contassot-Vivier, S; Bahi, J
2005-01-01
The main goal of external beam radiotherapy is the treatment of tumours, while sparing, as much as possible, surrounding healthy tissues. In order to master and optimize the dose distribution within the patient, dosimetric planning has to be carried out. Thus, for determining the most accurate dose distribution during treatment planning, a compromise must be found between the precision and the speed of calculation. Current techniques, using analytic methods, models and databases, are rapid but lack precision. Enhanced precision can be achieved by using calculation codes based, for example, on Monte Carlo methods. However, in spite of all efforts to optimize speed (methods and computer improvements), Monte Carlo based methods remain painfully slow. A newer way to handle all of these problems is to use a new approach in dosimetric calculation by employing neural networks. Neural networks (Wu and Zhu 2000 Phys. Med. Biol. 45 913-22) provide the advantages of those various approaches while avoiding their main inconveniences, i.e., time-consumption calculations. This permits us to obtain quick and accurate results during clinical treatment planning. Currently, results obtained for a single depth-dose calculation using a Monte Carlo based code (such as BEAM (Rogers et al 2003 NRCC Report PIRS-0509(A) rev G)) require hours of computing. By contrast, the practical use of neural networks (Mathieu et al 2003 Proceedings Journees Scientifiques Francophones, SFRP) provides almost instant results and quite low errors (less than 2%) for a two-dimensional dosimetric map
A neural network model of lateralization during letter identification.
Shevtsova, N; Reggia, J A
1999-03-01
The causes of cerebral lateralization of cognitive and other functions are currently not well understood. To investigate one aspect of function lateralization, a bihemispheric neural network model for a simple visual identification task was developed that has two parallel interacting paths of information processing. The model is based on commonly accepted concepts concerning neural connectivity, activity dynamics, and synaptic plasticity. A combination of both unsupervised (Hebbian) and supervised (Widrow-Hoff) learning rules is used to train the model to identify a small set of letters presented as input stimuli in the left visual hemifield, in the central position, and in the right visual hemifield. Each visual hemifield projects onto the contralateral hemisphere, and the two hemispheres interact via a simulated corpus callosum. The contribution of each individual hemisphere to the process of input stimuli identification was studied for a variety of underlying asymmetries. The results indicate that multiple asymmetries may cause lateralization. Lateralization occurred toward the side having larger size, higher excitability, or higher learning rate parameters. It appeared more intensively with strong inhibitory callosal connections, supporting the hypothesis that the corpus callosum plays a functionally inhibitory role. The model demonstrates clearly the dependence of lateralization on different hemisphere parameters and suggests that computational models can be useful in better understanding the mechanisms underlying emergence of lateralization.
A neural network model of ventriloquism effect and aftereffect.
Magosso, Elisa; Cuppini, Cristiano; Ursino, Mauro
2012-01-01
Presenting simultaneous but spatially discrepant visual and auditory stimuli induces a perceptual translocation of the sound towards the visual input, the ventriloquism effect. General explanation is that vision tends to dominate over audition because of its higher spatial reliability. The underlying neural mechanisms remain unclear. We address this question via a biologically inspired neural network. The model contains two layers of unimodal visual and auditory neurons, with visual neurons having higher spatial resolution than auditory ones. Neurons within each layer communicate via lateral intra-layer synapses; neurons across layers are connected via inter-layer connections. The network accounts for the ventriloquism effect, ascribing it to a positive feedback between the visual and auditory neurons, triggered by residual auditory activity at the position of the visual stimulus. Main results are: i) the less localized stimulus is strongly biased toward the most localized stimulus and not vice versa; ii) amount of the ventriloquism effect changes with visual-auditory spatial disparity; iii) ventriloquism is a robust behavior of the network with respect to parameter value changes. Moreover, the model implements Hebbian rules for potentiation and depression of lateral synapses, to explain ventriloquism aftereffect (that is, the enduring sound shift after exposure to spatially disparate audio-visual stimuli). By adaptively changing the weights of lateral synapses during cross-modal stimulation, the model produces post-adaptive shifts of auditory localization that agree with in-vivo observations. The model demonstrates that two unimodal layers reciprocally interconnected may explain ventriloquism effect and aftereffect, even without the presence of any convergent multimodal area. The proposed study may provide advancement in understanding neural architecture and mechanisms at the basis of visual-auditory integration in the spatial realm.
A neural network model of ventriloquism effect and aftereffect.
Directory of Open Access Journals (Sweden)
Elisa Magosso
Full Text Available Presenting simultaneous but spatially discrepant visual and auditory stimuli induces a perceptual translocation of the sound towards the visual input, the ventriloquism effect. General explanation is that vision tends to dominate over audition because of its higher spatial reliability. The underlying neural mechanisms remain unclear. We address this question via a biologically inspired neural network. The model contains two layers of unimodal visual and auditory neurons, with visual neurons having higher spatial resolution than auditory ones. Neurons within each layer communicate via lateral intra-layer synapses; neurons across layers are connected via inter-layer connections. The network accounts for the ventriloquism effect, ascribing it to a positive feedback between the visual and auditory neurons, triggered by residual auditory activity at the position of the visual stimulus. Main results are: i the less localized stimulus is strongly biased toward the most localized stimulus and not vice versa; ii amount of the ventriloquism effect changes with visual-auditory spatial disparity; iii ventriloquism is a robust behavior of the network with respect to parameter value changes. Moreover, the model implements Hebbian rules for potentiation and depression of lateral synapses, to explain ventriloquism aftereffect (that is, the enduring sound shift after exposure to spatially disparate audio-visual stimuli. By adaptively changing the weights of lateral synapses during cross-modal stimulation, the model produces post-adaptive shifts of auditory localization that agree with in-vivo observations. The model demonstrates that two unimodal layers reciprocally interconnected may explain ventriloquism effect and aftereffect, even without the presence of any convergent multimodal area. The proposed study may provide advancement in understanding neural architecture and mechanisms at the basis of visual-auditory integration in the spatial realm.
Continuous Online Sequence Learning with an Unsupervised Neural Network Model.
Cui, Yuwei; Ahmad, Subutar; Hawkins, Jeff
2016-09-14
The ability to recognize and predict temporal sequences of sensory inputs is vital for survival in natural environments. Based on many known properties of cortical neurons, hierarchical temporal memory (HTM) sequence memory recently has been proposed as a theoretical framework for sequence learning in the cortex. In this letter, we analyze properties of HTM sequence memory and apply it to sequence learning and prediction problems with streaming data. We show the model is able to continuously learn a large number of variableorder temporal sequences using an unsupervised Hebbian-like learning rule. The sparse temporal codes formed by the model can robustly handle branching temporal sequences by maintaining multiple predictions until there is sufficient disambiguating evidence. We compare the HTM sequence memory with other sequence learning algorithms, including statistical methods: autoregressive integrated moving average; feedforward neural networks-time delay neural network and online sequential extreme learning machine; and recurrent neural networks-long short-term memory and echo-state networks on sequence prediction problems with both artificial and real-world data. The HTM model achieves comparable accuracy to other state-of-the-art algorithms. The model also exhibits properties that are critical for sequence learning, including continuous online learning, the ability to handle multiple predictions and branching sequences with high-order statistics, robustness to sensor noise and fault tolerance, and good performance without task-specific hyperparameter tuning. Therefore, the HTM sequence memory not only advances our understanding of how the brain may solve the sequence learning problem but is also applicable to real-world sequence learning problems from continuous data streams.
Sakas, D E; Panourias, I G; Simpson, B A
2007-01-01
Operative Neuromodulation is the field of altering electrically or chemically the signal transmission in the nervous system by implanted devices in order to excite, inhibit or tune the activities of neurons or neural networks and produce therapeutic effects. The present article reviews relevant literature on procedures or devices applied either in contact with the cerebral cortex or cranial nerves or in deep sites inside the brain in order to treat various refractory neurological conditions such as: a) chronic pain (facial, somatic, deafferentation, phantom limb), b) movement disorders (Parkinson's disease, dystonia, Tourette syndrome), c) epilepsy, d) psychiatric disease, e) hearing deficits, and f) visual loss. These data indicate that in operative neuromodulation, a new field emerges that is based on neural networks research and on advances in digitised stereometric brain imaging which allow precise localisation of cerebral neural networks and their relay stations; this field can be described as Neural networks surgery because it aims to act extrinsically or intrinsically on neural networks and to alter therapeutically the neural signal transmission with the use of implantable electrical or electronic devices. The authors also review neurotechnology literature relevant to neuroengineering, nanotechnologies, brain computer interfaces, hybrid cultured probes, neuromimetics, neuroinformatics, neurocomputation, and computational neuromodulation; the latter field is dedicated to the study of the biophysical and mathematical characteristics of electrochemical neuromodulation. The article also brings forward particularly interesting lines of research such as the carbon nanofibers electrode arrays for simultaneous electrochemical recording and stimulation, closed-loop systems for responsive neuromodulation, and the intracortical electrodes for restoring hearing or vision. The present review of cerebral neuromodulatory procedures highlights the transition from the
Correlation Models for Temperature Fields
North, Gerald R.
2011-05-16
This paper presents derivations of some analytical forms for spatial correlations of evolving random fields governed by a white-noise-driven damped diffusion equation that is the analog of autoregressive order 1 in time and autoregressive order 2 in space. The study considers the two-dimensional plane and the surface of a sphere, both of which have been studied before, but here time is introduced to the problem. Such models have a finite characteristic length (roughly the separation at which the autocorrelation falls to 1/e) and a relaxation time scale. In particular, the characteristic length of a particular temporal Fourier component of the field increases to a finite value as the frequency of the particular component decreases. Some near-analytical formulas are provided for the results. A potential application is to the correlation structure of surface temperature fields and to the estimation of large area averages, depending on how the original datastream is filtered into a distribution of Fourier frequencies (e.g., moving average, low pass, or narrow band). The form of the governing equation is just that of the simple energy balance climate models, which have a long history in climate studies. The physical motivation provided by the derivation from a climate model provides some heuristic appeal to the approach and suggests extensions of the work to nonuniform cases.
Correlation Models for Temperature Fields
North, Gerald R.; Wang, Jue; Genton, Marc G.
2011-01-01
This paper presents derivations of some analytical forms for spatial correlations of evolving random fields governed by a white-noise-driven damped diffusion equation that is the analog of autoregressive order 1 in time and autoregressive order 2 in space. The study considers the two-dimensional plane and the surface of a sphere, both of which have been studied before, but here time is introduced to the problem. Such models have a finite characteristic length (roughly the separation at which the autocorrelation falls to 1/e) and a relaxation time scale. In particular, the characteristic length of a particular temporal Fourier component of the field increases to a finite value as the frequency of the particular component decreases. Some near-analytical formulas are provided for the results. A potential application is to the correlation structure of surface temperature fields and to the estimation of large area averages, depending on how the original datastream is filtered into a distribution of Fourier frequencies (e.g., moving average, low pass, or narrow band). The form of the governing equation is just that of the simple energy balance climate models, which have a long history in climate studies. The physical motivation provided by the derivation from a climate model provides some heuristic appeal to the approach and suggests extensions of the work to nonuniform cases.
Models of neural dynamics in brain information processing - the developments of 'the decade'
International Nuclear Information System (INIS)
Borisyuk, G N; Borisyuk, R M; Kazanovich, Yakov B; Ivanitskii, Genrikh R
2002-01-01
Neural network models are discussed that have been developed during the last decade with the purpose of reproducing spatio-temporal patterns of neural activity in different brain structures. The main goal of the modeling was to test hypotheses of synchronization, temporal and phase relations in brain information processing. The models being considered are those of temporal structure of spike sequences, of neural activity dynamics, and oscillatory models of attention and feature integration. (reviews of topical problems)
Directory of Open Access Journals (Sweden)
Xiu Jin
2018-03-01
Full Text Available Classification of healthy and diseased wheat heads in a rapid and non-destructive manner for the early diagnosis of Fusarium head blight disease research is difficult. Our work applies a deep neural network classification algorithm to the pixels of hyperspectral image to accurately discern the disease area. The spectra of hyperspectral image pixels in a manually selected region of interest are preprocessed via mean removal to eliminate interference, due to the time interval and the environment. The generalization of the classification model is considered, and two improvements are made to the model framework. First, the pixel spectra data are reshaped into a two-dimensional data structure for the input layer of a Convolutional Neural Network (CNN. After training two types of CNNs, the assessment shows that a two-dimensional CNN model is more efficient than a one-dimensional CNN. Second, a hybrid neural network with a convolutional layer and bidirectional recurrent layer is reconstructed to improve the generalization of the model. When considering the characteristics of the dataset and models, the confusion matrices that are based on the testing dataset indicate that the classification model is effective for background and disease classification of hyperspectral image pixels. The results of the model show that the two-dimensional convolutional bidirectional gated recurrent unit neural network (2D-CNN-BidGRU has an F1 score and accuracy of 0.75 and 0.743, respectively, for the total testing dataset. A comparison of all the models shows that the hybrid neural network of 2D-CNN-BidGRU is the best at preventing over-fitting and optimize the generalization. Our results illustrate that the hybrid structure deep neural network is an excellent classification algorithm for healthy and Fusarium head blight diseased classification in the field of hyperspectral imagery.
Modeling and Speed Control of Induction Motor Drives Using Neural Networks
Directory of Open Access Journals (Sweden)
V. Jamuna
2010-08-01
Full Text Available Speed control of induction motor drives using neural networks is presented. The mathematical model of single phase induction motor is developed. A new simulink model for a neural network-controlled bidirectional chopper fed single phase induction motor is proposed. Under normal operation, the true drive parameters are real-time identified and they are converted into the controller parameters through multilayer forward computation by neural networks. Comparative study has been made between the conventional and neural network controllers. It is observed that the neural network controlled drive system has better dynamic performance, reduced overshoot and faster transient response than the conventional controlled system.
International Nuclear Information System (INIS)
Aldana, Maximino; Larralde, Hernan
2004-01-01
We investigate the nature of the phase transition from an ordered to a disordered state that occurs in a family of neural network models with noise. These models are closely related to the majority voter model, where a ferromagneticlike interaction between the elements prevails. Each member of the family is distinguished by the network topology, which is determined by the probability distribution of the number of incoming links. We show that for homogeneous random topologies, the phase transition belongs to the standard mean-field universality class, characterized by the order parameter exponent β=1/2. However, for scale-free networks we obtain phase transition exponents ranging from 1/2 to infinity. Furthermore, we show the existence of a phase transition even for values of the scale-free exponent in the interval (1.5,2], where the average network connectivity diverges
Neural network modeling of chaotic dynamics in nuclear reactor flows
International Nuclear Information System (INIS)
Welstead, S.T.
1992-01-01
Neural networks have many scientific applications in areas such as pattern classification and time series prediction. The universal approximation property of these networks, however, can also be exploited to provide researchers with tool for modeling observed nonlinear phenomena. It has been shown that multilayer feed forward networks can capture important global nonlinear properties, such as chaotic dynamics, merely by training the network on a finite set of observed data. The network itself then provides a model of the process that generated the data. Characterizations such as the existence and general shape of a strange attractor and the sign of the largest Lyapunov exponent can then be extracted from the neural network model. In this paper, the author applies this idea to data generated from a nonlinear process that is representative of convective flows that can arise in nuclear reactor applications. Such flows play a role in forced convection heat removal from pressurized water reactors and boiling water reactors, and decay heat removal from liquid-metal-cooled reactors, either by natural convection or by thermosyphons
Modelling electric trains energy consumption using Neural Networks
Energy Technology Data Exchange (ETDEWEB)
Martinez Fernandez, P.; Garcia Roman, C.; Insa Franco, R.
2016-07-01
Nowadays there is an evident concern regarding the efficiency and sustainability of the transport sector due to both the threat of climate change and the current financial crisis. This concern explains the growth of railways over the last years as they present an inherent efficiency compared to other transport means. However, in order to further expand their role, it is necessary to optimise their energy consumption so as to increase their competitiveness. Improving railways energy efficiency requires both reliable data and modelling tools that will allow the study of different variables and alternatives. With this need in mind, this paper presents the development of consumption models based on neural networks that calculate the energy consumption of electric trains. These networks have been trained based on an extensive set of consumption data measured in line 1 of the Valencia Metro Network. Once trained, the neural networks provide a reliable estimation of the vehicles consumption along a specific route when fed with input data such as train speed, acceleration or track longitudinal slope. These networks represent a useful modelling tool that may allow a deeper study of railway lines in terms of energy expenditure with the objective of reducing the costs and environmental impact associated to railways. (Author)
Artificial Neural Network versus Linear Models Forecasting Doha Stock Market
Yousif, Adil; Elfaki, Faiz
2017-12-01
The purpose of this study is to determine the instability of Doha stock market and develop forecasting models. Linear time series models are used and compared with a nonlinear Artificial Neural Network (ANN) namely Multilayer Perceptron (MLP) Technique. It aims to establish the best useful model based on daily and monthly data which are collected from Qatar exchange for the period starting from January 2007 to January 2015. Proposed models are for the general index of Qatar stock exchange and also for the usages in other several sectors. With the help of these models, Doha stock market index and other various sectors were predicted. The study was conducted by using various time series techniques to study and analyze data trend in producing appropriate results. After applying several models, such as: Quadratic trend model, double exponential smoothing model, and ARIMA, it was concluded that ARIMA (2,2) was the most suitable linear model for the daily general index. However, ANN model was found to be more accurate than time series models.
Local TEC Modelling and Forecasting using Neural Networks
Tebabal, A.; Radicella, S. M.; Nigussie, M.; Damtie, B.; Nava, B.; Yizengaw, E.
2017-12-01
Abstract Modelling the Earth's ionospheric characteristics is the focal task for the ionospheric community to mitigate its effect on the radio communication, satellite navigation and technologies. However, several aspects of modelling are still challenging, for example, the storm time characteristics. This paper presents modelling efforts of TEC taking into account solar and geomagnetic activity, time of the day and day of the year using neural networks (NNs) modelling technique. The NNs have been designed with GPS-TEC measured data from low and mid-latitude GPS stations. The training was conducted using the data obtained for the period from 2011 to 2014. The model prediction accuracy was evaluated using data of year 2015. The model results show that diurnal and seasonal trend of the GPS-TEC is well reproduced by the model for the two stations. The seasonal characteristics of GPS-TEC is compared with NN and NeQuick 2 models prediction when the latter one is driven by the monthly average value of solar flux. It is found that NN model performs better than the corresponding NeQuick 2 model for low latitude region. For the mid-latitude both NN and NeQuick 2 models reproduce the average characteristics of TEC variability quite successfully. An attempt of one day ahead forecast of TEC at the two locations has been made by introducing as driver previous day solar flux and geomagnetic index values. The results show that a reasonable day ahead forecast of local TEC can be achieved.
Spencer, Kevin C; Sy, Jay C; Falcón-Banchs, Roberto; Cima, Michael J
2017-02-28
Glial scar formation remains a significant barrier to the long term success of neural probes. Micromotion coupled with mechanical mismatch between the probe and tissue is believed to be a key driver of the inflammatory response. In vitro glial scar models present an intermediate step prior to conventional in vivo histology experiments as they enable cell-device interactions to be tested on a shorter timescale, with the ability to conduct broader biochemical assays. No established in vitro models have incorporated methods to assess device performance with respect to mechanical factors. In this study, we describe an in vitro glial scar model that combines high-precision linear actuators to simulate axial micromotion around neural implants with a 3D primary neural cell culture in a collagen gel. Strain field measurements were conducted to visualize the local displacement within the gel in response to micromotion. Primary brain cell cultures were found to be mechanically responsive to micromotion after one week in culture. Astrocytes, as determined by immunohistochemical staining, were found to have significantly increased in cell areas and perimeters in response to micromotion compared to static control wells. These results demonstrate the importance of micromotion when considering the chronic response to neural implants. Going forward, this model provides advantages over existing in vitro models as it will enable critical mechanical design factors of neural implants to be evaluated prior to in vivo testing.
International Nuclear Information System (INIS)
Saini, K. K.; Saini, Sanju
2008-01-01
Neural networks are a relatively new artificial intelligence technique that emulates the behavior of biological neural systems in digital software or hardware. These networks can 'learn', automatically, complex relationships among data. This feature makes the technique very useful in modeling processes for which mathematical modeling is difficult or impossible. The work described here outlines some examples of the application of neural networks with artificial intelligence technique in the modeling of industrial processes.
An effective convolutional neural network model for Chinese sentiment analysis
Zhang, Yu; Chen, Mengdong; Liu, Lianzhong; Wang, Yadong
2017-06-01
Nowadays microblog is getting more and more popular. People are increasingly accustomed to expressing their opinions on Twitter, Facebook and Sina Weibo. Sentiment analysis of microblog has received significant attention, both in academia and in industry. So far, Chinese microblog exploration still needs lots of further work. In recent years CNN has also been used to deal with NLP tasks, and already achieved good results. However, these methods ignore the effective use of a large number of existing sentimental resources. For this purpose, we propose a Lexicon-based Sentiment Convolutional Neural Networks (LSCNN) model focus on Weibo's sentiment analysis, which combines two CNNs, trained individually base on sentiment features and word embedding, at the fully connected hidden layer. The experimental results show that our model outperforms the CNN model only with word embedding features on microblog sentiment analysis task.
Hierarchical Neural Regression Models for Customer Churn Prediction
Directory of Open Access Journals (Sweden)
Golshan Mohammadi
2013-01-01
Full Text Available As customers are the main assets of each industry, customer churn prediction is becoming a major task for companies to remain in competition with competitors. In the literature, the better applicability and efficiency of hierarchical data mining techniques has been reported. This paper considers three hierarchical models by combining four different data mining techniques for churn prediction, which are backpropagation artificial neural networks (ANN, self-organizing maps (SOM, alpha-cut fuzzy c-means (α-FCM, and Cox proportional hazards regression model. The hierarchical models are ANN + ANN + Cox, SOM + ANN + Cox, and α-FCM + ANN + Cox. In particular, the first component of the models aims to cluster data in two churner and nonchurner groups and also filter out unrepresentative data or outliers. Then, the clustered data as the outputs are used to assign customers to churner and nonchurner groups by the second technique. Finally, the correctly classified data are used to create Cox proportional hazards model. To evaluate the performance of the hierarchical models, an Iranian mobile dataset is considered. The experimental results show that the hierarchical models outperform the single Cox regression baseline model in terms of prediction accuracy, Types I and II errors, RMSE, and MAD metrics. In addition, the α-FCM + ANN + Cox model significantly performs better than the two other hierarchical models.
Directory of Open Access Journals (Sweden)
Robart Babona-Pilipos
Full Text Available BACKGROUND: The existence of neural stem and progenitor cells (together termed neural precursor cells in the adult mammalian brain has sparked great interest in utilizing these cells for regenerative medicine strategies. Endogenous neural precursors within the adult forebrain subependyma can be activated following injury, resulting in their proliferation and migration toward lesion sites where they differentiate into neural cells. The administration of growth factors and immunomodulatory agents following injury augments this activation and has been shown to result in behavioural functional recovery following stroke. METHODS AND FINDINGS: With the goal of enhancing neural precursor migration to facilitate the repair process we report that externally applied direct current electric fields induce rapid and directed cathodal migration of pure populations of undifferentiated adult subependyma-derived neural precursors. Using time-lapse imaging microscopy in vitro we performed an extensive single-cell kinematic analysis demonstrating that this galvanotactic phenomenon is a feature of undifferentiated precursors, and not differentiated phenotypes. Moreover, we have shown that the migratory response of the neural precursors is a direct effect of the electric field and not due to chemotactic gradients. We also identified that epidermal growth factor receptor (EGFR signaling plays a role in the galvanotactic response as blocking EGFR significantly attenuates the migratory behaviour. CONCLUSIONS: These findings suggest direct current electric fields may be implemented in endogenous repair paradigms to promote migration and tissue repair following neurotrauma.
Models of neural networks IV early vision and attention
Cowan, Jack; Domany, Eytan
2002-01-01
Close this book for a moment and look around you. You scan the scene by directing your attention, and gaze, at certain specific objects. Despite the background, you discern them. The process is partially intentional and partially preattentive. How all this can be done is described in the fourth volume of Models of Neural Networks devoted to Early Vision and Atten tion that you are holding in your hands. Early vision comprises the first stages of visual information processing. It is as such a scientific challenge whose clarification calls for a penetrating review. Here you see the result. The Heraeus Foundation (Hanau) is to be thanked for its support during the initial phase of this project. John Hertz, who has extensive experience in both computational and ex perimental neuroscience, provides in "Neurons, Networks, and Cognition" to neural modeling. John Van Opstal explains in a theoretical introduction "The Gaze Control System" how the eye's gaze control is performed and presents a novel theoretical des...
SOME QUESTIONS OF THE GRID AND NEURAL NETWORK MODELING OF AIRPORT AVIATION SECURITY CONTROL TASKS
Directory of Open Access Journals (Sweden)
N. Elisov Lev
2017-01-01
Full Text Available The authors’ original problem-solution-approach concerning aviation security management in civil aviation apply- ing parallel calculation processes method and the usage of neural computers is considered in this work. The statement of secure environment modeling problems for grid models and with the use of neural networks is presented. The research sub- ject area of this article is airport activity in the field of civil aviation, considered in the context of aviation security, defined as the state of aviation security against unlawful interference with the aviation field. The key issue in this subject area is aviation safety provision at an acceptable level. In this case, airport security level management becomes one of the main objectives of aviation security. Aviation security management is organizational-regulation in modern systems that can no longer correspond to changing requirements, increasingly getting complex and determined by external and internal envi- ronment factors, associated with a set of potential threats to airport activity. Optimal control requires the most accurate identification of management parameters and their quantitative assessment. The authors examine the possibility of applica- tion of mathematical methods for the modeling of security management processes and procedures in their latest works. Par- allel computing methods and network neurocomputing for modeling of airport security control processes are examined in this work. It is shown that the methods’ practical application of the methods is possible along with the decision support system, where the decision maker plays the leading role.
A neural model of motion processing and visual navigation by cortical area MST.
Grossberg, S; Mingolla, E; Pack, C
1999-12-01
Cells in the dorsal medial superior temporal cortex (MSTd) process optic flow generated by self-motion during visually guided navigation. A neural model shows how interactions between well-known neural mechanisms (log polar cortical magnification, Gaussian motion-sensitive receptive fields, spatial pooling of motion-sensitive signals and subtractive extraretinal eye movement signals) lead to emergent properties that quantitatively simulate neurophysiological data about MSTd cell properties and psychophysical data about human navigation. Model cells match MSTd neuron responses to optic flow stimuli placed in different parts of the visual field, including position invariance, tuning curves, preferred spiral directions, direction reversals, average response curves and preferred locations for stimulus motion centers. The model shows how the preferred motion direction of the most active MSTd cells can explain human judgments of self-motion direction (heading), without using complex heading templates. The model explains when extraretinal eye movement signals are needed for accurate heading perception, and when retinal input is sufficient, and how heading judgments depend on scene layouts and rotation rates.
Davidson, Clare M; de Paor, Annraoi M; Cagnan, Hayriye; Lowery, Madeleine M
2016-01-01
Parkinson's disease is a progressive, neurodegenerative disorder, characterized by hallmark motor symptoms. It is associated with pathological, oscillatory neural activity in the basal ganglia. Deep brain stimulation (DBS) is often successfully used to treat medically refractive Parkinson's disease. However, the selection of stimulation parameters is based on qualitative assessment of the patient, which can result in a lengthy tuning period and a suboptimal choice of parameters. This study explores fourth-order, control theory-based models of oscillatory activity in the basal ganglia. Describing function analysis is applied to examine possible mechanisms for the generation of oscillations in interacting nuclei and to investigate the suppression of oscillations with high-frequency stimulation. The theoretical results for the suppression of the oscillatory activity obtained using both the fourth-order model, and a previously described second-order model, are optimized to fit clinically recorded local field potential data obtained from Parkinsonian patients with implanted DBS. Close agreement between the power of oscillations recorded for a range of stimulation amplitudes is observed ( R(2)=0.69-0.99 ). The results suggest that the behavior of the system and the suppression of pathological neural oscillations with DBS is well described by the macroscopic models presented. The results also demonstrate that in this instance, a second-order model is sufficient to model the clinical data, without the need for added complexity. Describing the system behavior with computationally efficient models could aid in the identification of optimal stimulation parameters for patients in a clinical environment.
Acquiring neural signals for developing a perception and cognition model
Li, Wei; Li, Yunyi; Chen, Genshe; Shen, Dan; Blasch, Erik; Pham, Khanh; Lynch, Robert
2012-06-01
The understanding of how humans process information, determine salience, and combine seemingly unrelated information is essential to automated processing of large amounts of information that is partially relevant, or of unknown relevance. Recent neurological science research in human perception, and in information science regarding contextbased modeling, provides us with a theoretical basis for using a bottom-up approach for automating the management of large amounts of information in ways directly useful for human operators. However, integration of human intelligence into a game theoretic framework for dynamic and adaptive decision support needs a perception and cognition model. For the purpose of cognitive modeling, we present a brain-computer-interface (BCI) based humanoid robot system to acquire brainwaves during human mental activities of imagining a humanoid robot-walking behavior. We use the neural signals to investigate relationships between complex humanoid robot behaviors and human mental activities for developing the perception and cognition model. The BCI system consists of a data acquisition unit with an electroencephalograph (EEG), a humanoid robot, and a charge couple CCD camera. An EEG electrode cup acquires brainwaves from the skin surface on scalp. The humanoid robot has 20 degrees of freedom (DOFs); 12 DOFs located on hips, knees, and ankles for humanoid robot walking, 6 DOFs on shoulders and arms for arms motion, and 2 DOFs for head yaw and pitch motion. The CCD camera takes video clips of the human subject's hand postures to identify mental activities that are correlated to the robot-walking behaviors. We use the neural signals to investigate relationships between complex humanoid robot behaviors and human mental activities for developing the perception and cognition model.
Tutubalina, Elena; Nikolenko, Sergey
2017-01-01
Adverse drug reactions (ADRs) are an essential part of the analysis of drug use, measuring drug use benefits, and making policy decisions. Traditional channels for identifying ADRs are reliable but very slow and only produce a small amount of data. Text reviews, either on specialized web sites or in general-purpose social networks, may lead to a data source of unprecedented size, but identifying ADRs in free-form text is a challenging natural language processing problem. In this work, we propose a novel model for this problem, uniting recurrent neural architectures and conditional random fields. We evaluate our model with a comprehensive experimental study, showing improvements over state-of-the-art methods of ADR extraction.
Directory of Open Access Journals (Sweden)
Elena Tutubalina
2017-01-01
Full Text Available Adverse drug reactions (ADRs are an essential part of the analysis of drug use, measuring drug use benefits, and making policy decisions. Traditional channels for identifying ADRs are reliable but very slow and only produce a small amount of data. Text reviews, either on specialized web sites or in general-purpose social networks, may lead to a data source of unprecedented size, but identifying ADRs in free-form text is a challenging natural language processing problem. In this work, we propose a novel model for this problem, uniting recurrent neural architectures and conditional random fields. We evaluate our model with a comprehensive experimental study, showing improvements over state-of-the-art methods of ADR extraction.
Perone, Sammy; Spencer, John P
2013-01-01
Looking is a fundamental exploratory behavior by which infants acquire knowledge about the world. In theories of infant habituation, however, looking as an exploratory behavior has been deemphasized relative to the reliable nature with which looking indexes active cognitive processing. We present a new theory that connects looking to the dynamics of memory formation and formally implement this theory in a Dynamic Neural Field model that learns autonomously as it actively looks and looks away from a stimulus. We situate this model in a habituation task and illustrate the mechanisms by which looking, encoding, working memory formation, and long-term memory formation give rise to habituation across multiple stimulus and task contexts. We also illustrate how the act of looking and the temporal dynamics of learning affect each other. Finally, we test a new hypothesis about the sources of developmental differences in looking. Copyright © 2012 Cognitive Science Society, Inc.
Data requirements for integrated near field models
International Nuclear Information System (INIS)
Wilems, R.E.; Pearson, F.J. Jr.; Faust, C.R.; Brecher, A.
1981-01-01
The coupled nature of the various processes in the near field require that integrated models be employed to assess long term performance of the waste package and repository. The nature of the integrated near field models being compiled under the SCEPTER program are discussed. The interfaces between these near field models and far field models are described. Finally, near field data requirements are outlined in sufficient detail to indicate overall programmatic guidance for data gathering activities
Short-Term Load Forecasting Model Based on Quantum Elman Neural Networks
Directory of Open Access Journals (Sweden)
Zhisheng Zhang
2016-01-01
Full Text Available Short-term load forecasting model based on quantum Elman neural networks was constructed in this paper. The quantum computation and Elman feedback mechanism were integrated into quantum Elman neural networks. Quantum computation can effectively improve the approximation capability and the information processing ability of the neural networks. Quantum Elman neural networks have not only the feedforward connection but also the feedback connection. The feedback connection between the hidden nodes and the context nodes belongs to the state feedback in the internal system, which has formed specific dynamic memory performance. Phase space reconstruction theory is the theoretical basis of constructing the forecasting model. The training samples are formed by means of K-nearest neighbor approach. Through the example simulation, the testing results show that the model based on quantum Elman neural networks is better than the model based on the quantum feedforward neural network, the model based on the conventional Elman neural network, and the model based on the conventional feedforward neural network. So the proposed model can effectively improve the prediction accuracy. The research in the paper makes a theoretical foundation for the practical engineering application of the short-term load forecasting model based on quantum Elman neural networks.
Spiking patterns of a hippocampus model in electric fields
International Nuclear Information System (INIS)
Men Cong; Wang Jiang; Qin Ying-Mei; Wei Xi-Le; Deng Bin; Che Yan-Qiu
2011-01-01
We develop a model of CA3 neurons embedded in a resistive array to mimic the effects of electric fields from a new perspective. Effects of DC and sinusoidal electric fields on firing patterns in CA3 neurons are investigated in this study. The firing patterns can be switched from no firing pattern to burst or from burst to fast periodic firing pattern with the increase of DC electric field intensity. It is also found that the firing activities are sensitive to the frequency and amplitude of the sinusoidal electric field. Different phase-locking states and chaotic firing regions are observed in the parameter space of frequency and amplitude. These findings are qualitatively in accordance with the results of relevant experimental and numerical studies. It is implied that the external or endogenous electric field can modulate the neural code in the brain. Furthermore, it is helpful to develop control strategies based on electric fields to control neural diseases such as epilepsy. (interdisciplinary physics and related areas of science and technology)
Daily rainfall-runoff modelling by neural networks in semi-arid zone ...
African Journals Online (AJOL)
This research work will allow checking efficiency of formal neural networks for flows' modelling of wadi Ouahrane's basin from rainfall-runoff relation which is non-linear. Two models of neural networks were optimized through supervised learning and compared in order to achieve this goal, the first model with input rain, and ...
An artificial neural network model for periodic trajectory generation
Shankar, S.; Gander, R. E.; Wood, H. C.
A neural network model based on biological systems was developed for potential robotic application. The model consists of three interconnected layers of artificial neurons or units: an input layer subdivided into state and plan units, an output layer, and a hidden layer between the two outer layers which serves to implement nonlinear mappings between the input and output activation vectors. Weighted connections are created between the three layers, and learning is effected by modifying these weights. Feedback connections between the output and the input state serve to make the network operate as a finite state machine. The activation vector of the plan units of the input layer emulates the supraspinal commands in biological central pattern generators in that different plan activation vectors correspond to different sequences or trajectories being recalled, even with different frequencies. Three trajectories were chosen for implementation, and learning was accomplished in 10,000 trials. The fault tolerant behavior, adaptiveness, and phase maintenance of the implemented network are discussed.
A Neural Network Model for Prediction of Sound Quality
DEFF Research Database (Denmark)
Nielsen,, Lars Bramsløw
An artificial neural network structure has been specified, implemented and optimized for the purpose of predicting the perceived sound quality for normal-hearing and hearing-impaired subjects. The network was implemented by means of commercially available software and optimized to predict results...... obtained in subjective sound quality rating experiments based on input data from an auditory model. Various types of input data and data representations from the auditory model were used as input data for the chosen network structure, which was a three-layer perceptron. This network was trained by means...... the physical signal parameters and the subjectively perceived sound quality. No simple objective-subjective relationship was evident from this analysis....
A case study to estimate costs using Neural Networks and regression based models
Directory of Open Access Journals (Sweden)
Nadia Bhuiyan
2012-07-01
Full Text Available Bombardier Aerospace’s high performance aircrafts and services set the utmost standard for the Aerospace industry. A case study in collaboration with Bombardier Aerospace is conducted in order to estimate the target cost of a landing gear. More precisely, the study uses both parametric model and neural network models to estimate the cost of main landing gears, a major aircraft commodity. A comparative analysis between the parametric based model and those upon neural networks model will be considered in order to determine the most accurate method to predict the cost of a main landing gear. Several trials are presented for the design and use of the neural network model. The analysis for the case under study shows the flexibility in the design of the neural network model. Furthermore, the performance of the neural network model is deemed superior to the parametric models for this case study.
Faugeras, Olivier; Touboul, Jonathan; Cessac, Bruno
2009-01-01
We deal with the problem of bridging the gap between two scales in neuronal modeling. At the first (microscopic) scale, neurons are considered individually and their behavior described by stochastic differential equations that govern the time variations of their membrane potentials. They are coupled by synaptic connections acting on their resulting activity, a nonlinear function of their membrane potential. At the second (mesoscopic) scale, interacting populations of neurons are described individually by similar equations. The equations describing the dynamical and the stationary mean-field behaviors are considered as functional equations on a set of stochastic processes. Using this new point of view allows us to prove that these equations are well-posed on any finite time interval and to provide a constructive method for effectively computing their unique solution. This method is proved to converge to the unique solution and we characterize its complexity and convergence rate. We also provide partial results for the stationary problem on infinite time intervals. These results shed some new light on such neural mass models as the one of Jansen and Rit (1995): their dynamics appears as a coarse approximation of the much richer dynamics that emerges from our analysis. Our numerical experiments confirm that the framework we propose and the numerical methods we derive from it provide a new and powerful tool for the exploration of neural behaviors at different scales.
Neural network modeling of nonlinear systems based on Volterra series extension of a linear model
Soloway, Donald I.; Bialasiewicz, Jan T.
1992-01-01
A Volterra series approach was applied to the identification of nonlinear systems which are described by a neural network model. A procedure is outlined by which a mathematical model can be developed from experimental data obtained from the network structure. Applications of the results to the control of robotic systems are discussed.
DEFF Research Database (Denmark)
Kock, Anders Bredahl; Teräsvirta, Timo
such as the neural network model is not appropriate if the data is generated by a linear mechanism. Hence, it might be appropriate to test the null of linearity prior to building a nonlinear model. We investigate whether this kind of pretesting improves the forecast accuracy compared to the case where...
Neural network models for biological waste-gas treatment systems.
Rene, Eldon R; Estefanía López, M; Veiga, María C; Kennes, Christian
2011-12-15
This paper outlines the procedure for developing artificial neural network (ANN) based models for three bioreactor configurations used for waste-gas treatment. The three bioreactor configurations chosen for this modelling work were: biofilter (BF), continuous stirred tank bioreactor (CSTB) and monolith bioreactor (MB). Using styrene as the model pollutant, this paper also serves as a general database of information pertaining to the bioreactor operation and important factors affecting gas-phase styrene removal in these biological systems. Biological waste-gas treatment systems are considered to be both advantageous and economically effective in treating a stream of polluted air containing low to moderate concentrations of the target contaminant, over a rather wide range of gas-flow rates. The bioreactors were inoculated with the fungus Sporothrix variecibatus, and their performances were evaluated at different empty bed residence times (EBRT), and at different inlet styrene concentrations (C(i)). The experimental data from these bioreactors were modelled to predict the bioreactors performance in terms of their removal efficiency (RE, %), by adequate training and testing of a three-layered back propagation neural network (input layer-hidden layer-output layer). Two models (BIOF1 and BIOF2) were developed for the BF with different combinations of easily measurable BF parameters as the inputs, that is concentration (gm(-3)), unit flow (h(-1)) and pressure drop (cm of H(2)O). The model developed for the CSTB used two inputs (concentration and unit flow), while the model for the MB had three inputs (concentration, G/L (gas/liquid) ratio, and pressure drop). Sensitivity analysis in the form of absolute average sensitivity (AAS) was performed for all the developed ANN models to ascertain the importance of the different input parameters, and to assess their direct effect on the bioreactors performance. The performance of the models was estimated by the regression
Some rigorous results on the Hopfield neural network model
International Nuclear Information System (INIS)
Koch, H.; Piasko, J.
1989-01-01
The authors analyze the thermal equilibrium distribution of 2 p mean field variables for the Hopfield model with p stored patterns, in the case where 2 p is small compared to the number of spins. In particular, they give a full description of the free energy density in the thermodynamic limit, and of the so-called symmetric solutions for the mean field equations
Faye, Grégory; Rankin, James; Chossat, Pascal
2013-05-01
The existence of spatially localized solutions in neural networks is an important topic in neuroscience as these solutions are considered to characterize working (short-term) memory. We work with an unbounded neural network represented by the neural field equation with smooth firing rate function and a wizard hat spatial connectivity. Noting that stationary solutions of our neural field equation are equivalent to homoclinic orbits in a related fourth order ordinary differential equation, we apply normal form theory for a reversible Hopf bifurcation to prove the existence of localized solutions; further, we present results concerning their stability. Numerical continuation is used to compute branches of localized solution that exhibit snaking-type behaviour. We describe in terms of three parameters the exact regions for which localized solutions persist.
Hoellinger, Thomas; Petieau, Mathieu; Duvinage, Matthieu; Castermans, Thierry; Seetharaman, Karthik; Cebolla, Ana-Maria; Bengoetxea, Ana; Ivanenko, Yuri; Dan, Bernard; Cheron, Guy
2013-01-01
The existence of dedicated neuronal modules such as those organized in the cerebral cortex, thalamus, basal ganglia, cerebellum, or spinal cord raises the question of how these functional modules are coordinated for appropriate motor behavior. Study of human locomotion offers an interesting field for addressing this central question. The coordination of the elevation of the 3 leg segments under a planar covariation rule (Borghese et al., 1996) was recently modeled (Barliya et al., 2009) by phase-adjusted simple oscillators shedding new light on the understanding of the central pattern generator (CPG) processing relevant oscillation signals. We describe the use of a dynamic recurrent neural network (DRNN) mimicking the natural oscillatory behavior of human locomotion for reproducing the planar covariation rule in both legs at different walking speeds. Neural network learning was based on sinusoid signals integrating frequency and amplitude features of the first three harmonics of the sagittal elevation angles of the thigh, shank, and foot of each lower limb. We verified the biological plausibility of the neural networks. Best results were obtained with oscillations extracted from the first three harmonics in comparison to oscillations outside the harmonic frequency peaks. Physiological replication steadily increased with the number of neuronal units from 1 to 80, where similarity index reached 0.99. Analysis of synaptic weighting showed that the proportion of inhibitory connections consistently increased with the number of neuronal units in the DRNN. This emerging property in the artificial neural networks resonates with recent advances in neurophysiology of inhibitory neurons that are involved in central nervous system oscillatory activities. The main message of this study is that this type of DRNN may offer a useful model of physiological central pattern generator for gaining insights in basic research and developing clinical applications.
The Energy Coding of a Structural Neural Network Based on the Hodgkin-Huxley Model.
Zhu, Zhenyu; Wang, Rubin; Zhu, Fengyun
2018-01-01
Based on the Hodgkin-Huxley model, the present study established a fully connected structural neural network to simulate the neural activity and energy consumption of the network by neural energy coding theory. The numerical simulation result showed that the periodicity of the network energy distribution was positively correlated to the number of neurons and coupling strength, but negatively correlated to signal transmitting delay. Moreover, a relationship was established between the energy distribution feature and the synchronous oscillation of the neural network, which showed that when the proportion of negative energy in power consumption curve was high, the synchronous oscillation of the neural network was apparent. In addition, comparison with the simulation result of structural neural network based on the Wang-Zhang biophysical model of neurons showed that both models were essentially consistent.
Memory and learning in a class of neural network models
International Nuclear Information System (INIS)
Wallace, D.J.
1986-01-01
The author discusses memory and learning properties of the neural network model now identified with Hopfield's work. The model, how it attempts to abstract some key features of the nervous system, and the sense in which learning and memory are identified in the model are described. A brief report is presented on the important role of phase transitions in the model and their implications for memory capacity. The results of numerical simulations obtained using the ICL Distributed Array Processors at Edinburgh are presented. A summary is presented on how the fraction of images which are perfectly stored, depends on the number of nodes and the number of nominal images which one attempts to store using the prescription in Hopfield's paper. Results are presented on the second phase transition in the model, which corresponds to almost total loss of storage capacity as the number of nominal images is increased. Results are given on the performance of a new iterative algorithm for exact storage of up to N images in an N node model
Ground Motion Prediction Model Using Artificial Neural Network
Dhanya, J.; Raghukanth, S. T. G.
2018-03-01
This article focuses on developing a ground motion prediction equation based on artificial neural network (ANN) technique for shallow crustal earthquakes. A hybrid technique combining genetic algorithm and Levenberg-Marquardt technique is used for training the model. The present model is developed to predict peak ground velocity, and 5% damped spectral acceleration. The input parameters for the prediction are moment magnitude ( M w), closest distance to rupture plane ( R rup), shear wave velocity in the region ( V s30) and focal mechanism ( F). A total of 13,552 ground motion records from 288 earthquakes provided by the updated NGA-West2 database released by Pacific Engineering Research Center are utilized to develop the model. The ANN architecture considered for the model consists of 192 unknowns including weights and biases of all the interconnected nodes. The performance of the model is observed to be within the prescribed error limits. In addition, the results from the study are found to be comparable with the existing relations in the global database. The developed model is further demonstrated by estimating site-specific response spectra for Shimla city located in Himalayan region.
Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control
Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.
1997-01-01
One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.
Modeling and Control of CSTR using Model based Neural Network Predictive Control
Shrivastava, Piyush
2012-01-01
This paper presents a predictive control strategy based on neural network model of the plant is applied to Continuous Stirred Tank Reactor (CSTR). This system is a highly nonlinear process; therefore, a nonlinear predictive method, e.g., neural network predictive control, can be a better match to govern the system dynamics. In the paper, the NN model and the way in which it can be used to predict the behavior of the CSTR process over a certain prediction horizon are described, and some commen...
Model-Based Fault Diagnosis in Electric Drive Inverters Using Artificial Neural Network
National Research Council Canada - National Science Library
Masrur, Abul; Chen, ZhiHang; Zhang, Baifang; Jia, Hongbin; Murphey, Yi-Lu
2006-01-01
.... A normal model and various faulted models of the inverter-motor combination were developed, and voltages and current signals were generated from those models to train an artificial neural network for fault diagnosis...
Modeling Distillation Column Using ARX Model Structure and Artificial Neural Networks
Directory of Open Access Journals (Sweden)
Reza Pirmoradi
2012-04-01
Full Text Available Distillation is a complex and highly nonlinear industrial process. In general it is not always possible to obtain accurate first principles models for high-purity distillation columns. On the other hand the development of first principles models is usually time consuming and expensive. To overcome these problems, empirical models such as neural networks can be used. One major drawback of empirical models is that the prediction is valid only inside the data domain that is sufficiently covered by measurement data. Modeling distillation columns by means of neural networks is reported in literature by using recursive networks. The recursive networks are proper for modeling purpose, but such models have the problems of high complexity and high computational cost. The objective of this paper is to propose a simple and reliable model for distillation column. The proposed model uses feed forward neural networks which results in a simple model with less parameters and faster training time. Simulation results demonstrate that predictions of the proposed model in all regions are close to outputs of the dynamic model and the error in negligible. This implies that the model is reliable in all regions.
DEFF Research Database (Denmark)
Riis, Louise Claudius; Kjær, Inger; Mølsted, Kirsten
2014-01-01
OBJECTIVE: To analyze dental deviations in three cleft groups and relate findings to embryological neural crest fields (frontonasal, maxillary, and palatal). The overall purpose was to evaluate how fields are involved in different cleft types. DESIGN: Retrospective audit of clinical photographs...
Stanke, J.; Trauth, D.; Feuerhack, A.; Klocke, F.
2017-09-01
Die roll is a morphological feature of fine blanked sheared edges. The die roll reduces the functional part of the sheared edge. To compensate for the die roll thicker sheet metal strips and secondary machining must be used. However, in order to avoid this, the influence of various fine blanking process parameters on the die roll has been experimentally and numerically studied, but there is still a lack of knowledge on the effects of some factors and especially factor interactions on the die roll. Recent changes in the field of artificial intelligence motivate the hybrid use of the finite element method and artificial neural networks to account for these non-considered parameters. Therefore, a set of simulations using a validated finite element model of fine blanking is firstly used to train an artificial neural network. Then the artificial neural network is trained with thousands of experimental trials. Thus, the objective of this contribution is to develop an artificial neural network that reliably predicts the die roll. Therefore, in this contribution, the setup of a fully parameterized 2D FE model is presented that will be used for batch training of an artificial neural network. The FE model enables an automatic variation of the edge radii of blank punch and die plate, the counter and blank holder force, the sheet metal thickness and part diameter, V-ring height and position, cutting velocity as well as material parameters covered by the Hensel-Spittel model for 16MnCr5 (1.7131, AISI/SAE 5115). The FE model is validated using experimental trails. The results of this contribution is a FE model suitable to perform 9.623 simulations and to pass the simulated die roll width and height automatically to an artificial neural network.
Connectivity effects in the dynamic model of neural networks
International Nuclear Information System (INIS)
Choi, J; Choi, M Y; Yoon, B-G
2009-01-01
We study, via extensive Monte Carlo calculations, the effects of connectivity in the dynamic model of neural networks, to observe that the Mattis-state order parameter increases with the number of coupled neurons. Such effects appear more pronounced when the average number of connections is increased by introducing shortcuts in the network. In particular, the power spectra of the order parameter at stationarity are found to exhibit power-law behavior, depending on how the average number of connections is increased. The cluster size distribution of the 'memory-unmatched' sites also follows a power law and possesses strong correlations with the power spectra. It is further observed that the distribution of waiting times for neuron firing fits roughly to a power law, again depending on how neuronal connections are increased
Optimization of recurrent neural networks for time series modeling
DEFF Research Database (Denmark)
Pedersen, Morten With
1997-01-01
The present thesis is about optimization of recurrent neural networks applied to time series modeling. In particular is considered fully recurrent networks working from only a single external input, one layer of nonlinear hidden units and a li near output unit applied to prediction of discrete time...... series. The overall objective s are to improve training by application of second-order methods and to improve generalization ability by architecture optimization accomplished by pruning. The major topics covered in the thesis are: 1. The problem of training recurrent networks is analyzed from a numerical...... of solution obtained as well as computation time required. 3. A theoretical definition of the generalization error for recurrent networks is provided. This definition justifies a commonly adopted approach for estimating generalization ability. 4. The viability of pruning recurrent networks by the Optimal...
Early Model of Traffic Sign Reminder Based on Neural Network
Directory of Open Access Journals (Sweden)
Budi Rahmani
2012-12-01
Full Text Available Recognizing the traffic signs installed on the streets is one of the requirements of driving on the road. Laxity in driving may result in traffic accident. This paper describes a real-time reminder model, by utilizing a camera that can be installed in a car to capture image of traffic signs, and is processed and later to inform the driver. The extracting feature harnessing the morphological elements (strel is used in this paper. Artificial Neural Networks is used to train the system and to produce a final decision. The result shows that the accuracy in detecting and recognizing the ten types of traffic signs in real-time is 80%.
Photovoltaic Pixels for Neural Stimulation: Circuit Models and Performance.
Boinagrov, David; Lei, Xin; Goetz, Georges; Kamins, Theodore I; Mathieson, Keith; Galambos, Ludwig; Harris, James S; Palanker, Daniel
2016-02-01
Photovoltaic conversion of pulsed light into pulsed electric current enables optically-activated neural stimulation with miniature wireless implants. In photovoltaic retinal prostheses, patterns of near-infrared light projected from video goggles onto subretinal arrays of photovoltaic pixels are converted into patterns of current to stimulate the inner retinal neurons. We describe a model of these devices and evaluate the performance of photovoltaic circuits, including the electrode-electrolyte interface. Characteristics of the electrodes measured in saline with various voltages, pulse durations, and polarities were modeled as voltage-dependent capacitances and Faradaic resistances. The resulting mathematical model of the circuit yielded dynamics of the electric current generated by the photovoltaic pixels illuminated by pulsed light. Voltages measured in saline with a pipette electrode above the pixel closely matched results of the model. Using the circuit model, our pixel design was optimized for maximum charge injection under various lighting conditions and for different stimulation thresholds. To speed discharge of the electrodes between the pulses of light, a shunt resistor was introduced and optimized for high frequency stimulation.
Neural Network Modeling to Predict Shelf Life of Greenhouse Lettuce
Directory of Open Access Journals (Sweden)
Wei-Chin Lin
2009-04-01
Full Text Available Greenhouse-grown butter lettuce (Lactuca sativa L. can potentially be stored for 21 days at constant 0°C. When storage temperature was increased to 5°C or 10°C, shelf life was shortened to 14 or 10 days, respectively, in our previous observations. Also, commercial shelf life of 7 to 10 days is common, due to postharvest temperature fluctuations. The objective of this study was to establish neural network (NN models to predict the remaining shelf life (RSL under fluctuating postharvest temperatures. A box of 12 - 24 lettuce heads constituted a sample unit. The end of the shelf life of each head was determined when it showed initial signs of decay or yellowing. Air temperatures inside a shipping box were recorded. Daily average temperatures in storage and averaged shelf life of each box were used as inputs, and the RSL was modeled as an output. An R2 of 0.57 could be observed when a simple NN structure was employed. Since the "future" (or remaining storage temperatures were unavailable at the time of making a prediction, a second NN model was introduced to accommodate a range of future temperatures and associated shelf lives. Using such 2-stage NN models, an R2 of 0.61 could be achieved for predicting RSL. This study indicated that NN modeling has potential for cold chain quality control and shelf life prediction.
Recurrent Neural Network Model for Constructive Peptide Design.
Müller, Alex T; Hiss, Jan A; Schneider, Gisbert
2018-02-26
We present a generative long short-term memory (LSTM) recurrent neural network (RNN) for combinatorial de novo peptide design. RNN models capture patterns in sequential data and generate new data instances from the learned context. Amino acid sequences represent a suitable input for these machine-learning models. Generative models trained on peptide sequences could therefore facilitate the design of bespoke peptide libraries. We trained RNNs with LSTM units on pattern recognition of helical antimicrobial peptides and used the resulting model for de novo sequence generation. Of these sequences, 82% were predicted to be active antimicrobial peptides compared to 65% of randomly sampled sequences with the same amino acid distribution as the training set. The generated sequences also lie closer to the training data than manually designed amphipathic helices. The results of this study showcase the ability of LSTM RNNs to construct new amino acid sequences within the applicability domain of the model and motivate their prospective application to peptide and protein design without the need for the exhaustive enumeration of sequence libraries.
Modelling a variable valve timing spark ignition engine using different neural networks
Energy Technology Data Exchange (ETDEWEB)
Beham, M. [BMW AG, Munich (Germany); Yu, D.L. [John Moores University, Liverpool (United Kingdom). Control Systems Research Group
2004-10-01
In this paper different neural networks (NN) are compared for modelling a variable valve timing spark-ignition (VVT SI) engine. The overall system is divided for each output into five neural multi-input single output (MISO) subsystems. Three kinds of NN, multilayer Perceptron (MLP), pseudo-linear radial basis function (PLRBF), and local linear model tree (LOLIMOT) networks, are used to model each subsystem. Real data were collected when the engine was under different operating conditions and these data are used in training and validation of the developed neural models. The obtained models are finally tested in a real-time online model configuration on the test bench. The neural models run independently of the engine in parallel mode. The model outputs are compared with process output and compared among different models. These models performed well and can be used in the model-based engine control and optimization, and for hardware in the loop systems. (author)
An Adaptive Neural Mechanism with a Lizard Ear Model for Binaural Acoustic Tracking
DEFF Research Database (Denmark)
Shaikh, Danish; Manoonpong, Poramate
2016-01-01
expensive algorithms. We present a novel bioinspired solution to acoustic tracking that uses only two microphones. The system is based on a neural mechanism coupled with a model of the peripheral auditory system of lizards. The peripheral auditory model provides sound direction information which the neural...
Directory of Open Access Journals (Sweden)
Ana-Isabel de Castro
2012-01-01
Full Text Available In the context of detection of weeds in crops for site-specific weed control, on-ground spectral reflectance measurements are the first step to determine the potential of remote spectral data to classify weeds and crops. Field studies were conducted for four years at different locations in Spain. We aimed to distinguish cruciferous weeds in wheat and broad bean crops, using hyperspectral and multispectral readings in the visible and near-infrared spectrum. To identify differences in reflectance between cruciferous weeds, we applied three classification methods: stepwise discriminant (STEPDISC analysis and two neural networks, specifically, multilayer perceptron (MLP and radial basis function (RBF. Hyperspectral and multispectral signatures of cruciferous weeds, and wheat and broad bean crops can be classified using STEPDISC analysis, and MLP and RBF neural networks with different success, being the MLP model the most accurate with 100%, or higher than 98.1%, of classification performance for all the years. Classification accuracy from hyperspectral signatures was similar to that from multispectral and spectral indices, suggesting that little advantage would be obtained by using more expensive airborne hyperspectral imagery. Therefore, for next investigations, we recommend using multispectral remote imagery to explore whether they can potentially discriminate these weeds and crops.
Neural Networks for Modeling and Control of Particle Accelerators
Edelen, A.L.; Chase, B.E.; Edstrom, D.; Milton, S.V.; Stabile, P.
2016-01-01
We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.
The Swarm Initial Field Model for the 2014 Geomagnetic Field
Olsen, Nils; Hulot, Gauthier; Lesur, Vincent; Finlay, Christopher C.; Beggan, Ciaran; Chulliat, Arnaud; Sabaka, Terence J.; Floberghagen, Rune; Friis-Christensen, Eigil; Haagmans, Roger
2015-01-01
Data from the first year of ESA's Swarm constellation mission are used to derive the Swarm Initial Field Model (SIFM), a new model of the Earth's magnetic field and its time variation. In addition to the conventional magnetic field observations provided by each of the three Swarm satellites, explicit advantage is taken of the constellation aspect by including east-west magnetic intensity gradient information from the lower satellite pair. Along-track differences in magnetic intensity provide further information concerning the north-south gradient. The SIFM static field shows excellent agreement (up to at least degree 60) with recent field models derived from CHAMP data, providing an initial validation of the quality of the Swarm magnetic measurements. Use of gradient data improves the determination of both the static field and its secular variation, with the mean misfit for east-west intensity differences between the lower satellite pair being only 0.12 nT.
Metadynamics for training neural network model chemistries: A competitive assessment
Herr, John E.; Yao, Kun; McIntyre, Ryker; Toth, David W.; Parkhill, John
2018-06-01
Neural network model chemistries (NNMCs) promise to facilitate the accurate exploration of chemical space and simulation of large reactive systems. One important path to improving these models is to add layers of physical detail, especially long-range forces. At short range, however, these models are data driven and data limited. Little is systematically known about how data should be sampled, and "test data" chosen randomly from some sampling techniques can provide poor information about generality. If the sampling method is narrow, "test error" can appear encouragingly tiny while the model fails catastrophically elsewhere. In this manuscript, we competitively evaluate two common sampling methods: molecular dynamics (MD), normal-mode sampling, and one uncommon alternative, Metadynamics (MetaMD), for preparing training geometries. We show that MD is an inefficient sampling method in the sense that additional samples do not improve generality. We also show that MetaMD is easily implemented in any NNMC software package with cost that scales linearly with the number of atoms in a sample molecule. MetaMD is a black-box way to ensure samples always reach out to new regions of chemical space, while remaining relevant to chemistry near kbT. It is a cheap tool to address the issue of generalization.
Learning Data Set Influence on Identification Accuracy of Gas Turbine Neural Network Model
Kuznetsov, A. V.; Makaryants, G. M.
2018-01-01
There are many gas turbine engine identification researches via dynamic neural network models. It should minimize errors between model and real object during identification process. Questions about training data set processing of neural networks are usually missed. This article presents a study about influence of data set type on gas turbine neural network model accuracy. The identification object is thermodynamic model of micro gas turbine engine. The thermodynamic model input signal is the fuel consumption and output signal is the engine rotor rotation frequency. Four types input signals was used for creating training and testing data sets of dynamic neural network models - step, fast, slow and mixed. Four dynamic neural networks were created based on these types of training data sets. Each neural network was tested via four types test data sets. In the result 16 transition processes from four neural networks and four test data sets from analogous solving results of thermodynamic model were compared. The errors comparison was made between all neural network errors in each test data set. In the comparison result it was shown error value ranges of each test data set. It is shown that error values ranges is small therefore the influence of data set types on identification accuracy is low.
Rich spectrum of neural field dynamics in the presence of short-term synaptic depression
Wang, He; Lam, Kin; Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si
2015-09-01
In continuous attractor neural networks (CANNs), spatially continuous information such as orientation, head direction, and spatial location is represented by Gaussian-like tuning curves that can be displaced continuously in the space of the preferred stimuli of the neurons. We investigate how short-term synaptic depression (STD) can reshape the intrinsic dynamics of the CANN model and its responses to a single static input. In particular, CANNs with STD can support various complex firing patterns and chaotic behaviors. These chaotic behaviors have the potential to encode various stimuli in the neuronal system.
Application of Artificial Neural Networks in the Heart Electrical Axis Position Conclusion Modeling
Bakanovskaya, L. N.
2016-08-01
The article touches upon building of a heart electrical axis position conclusion model using an artificial neural network. The input signals of the neural network are the values of deflections Q, R and S; and the output signal is the value of the heart electrical axis position. Training of the network is carried out by the error propagation method. The test results allow concluding that the created neural network makes a conclusion with a high degree of accuracy.
Study of the Gray Scale, Polychromatic, Distortion Invariant Neural Networks Using the Ipa Model.
Uang, Chii-Maw
Research in the optical neural network field is primarily motivated by the fact that humans recognize objects better than the conventional digital computers and the massively parallel inherent nature of optics. This research represents a continuous effort during the past several years in the exploitation of using neurocomputing for pattern recognition. Based on the interpattern association (IPA) model and Hamming net model, many new systems and applications are introduced. A gray level discrete associative memory that is based on object decomposition/composition is proposed for recognizing gray-level patterns. This technique extends the processing ability from the binary mode to gray-level mode, and thus the information capacity is increased. Two polychromatic optical neural networks using color liquid crystal television (LCTV) panels for color pattern recognition are introduced. By introducing a color encoding technique in conjunction with the interpattern associative algorithm, a color associative memory was realized. Based on the color decomposition and composition technique, a color exemplar-based Hamming net was built for color image classification. A shift-invariant neural network is presented through use of the translation invariant property of the modulus of the Fourier transformation and the hetero-associative interpattern association (IPA) memory. To extract the main features, a quadrantal sampling method is used to sampled data and then replace the training patterns. Using the concept of hetero-associative memory to recall the distorted object. A shift and rotation invariant neural network using an interpattern hetero-association (IHA) model is presented. To preserve the shift and rotation invariant properties, a set of binarized-encoded circular harmonic expansion (CHE) functions at the Fourier domain is used as the training set. We use the shift and symmetric properties of the modulus of the Fourier spectrum to avoid the problem of centering the CHE
FRAMEWORK OF TAILORMADE DRIVING SUPPORT SYSTEMS AND NEURAL NETWORK DRIVER MODEL
Directory of Open Access Journals (Sweden)
Toshiya HIROSE, M.S.
2004-01-01
Nowadays, tailormade medical treatment is receiving much attention in the field of medical care. It is also desirable for driving support systems to reflect the driving characteristics of individuals as much as possible, begin monitoring the driver when a driver starts driving and calculates the driver model, and supports them with a model that makes the driver feel quite normal. That is the construction of Tailormade Driving Support Systems (TDSS. This research proposes a concept and a framework of TDSS, and presents a driver model that uses a neural network to build the system. As for the feasibility of this system, the research selects braking as a typical constituent element, and illustrates and reviews the results of experiments and simulations.
Li, Qiongge; Chan, Maria F
2017-01-01
Over half of cancer patients receive radiotherapy (RT) as partial or full cancer treatment. Daily quality assurance (QA) of RT in cancer treatment closely monitors the performance of the medical linear accelerator (Linac) and is critical for continuous improvement of patient safety and quality of care. Cumulative longitudinal QA measurements are valuable for understanding the behavior of the Linac and allow physicists to identify trends in the output and take preventive actions. In this study, artificial neural networks (ANNs) and autoregressive moving average (ARMA) time-series prediction modeling techniques were both applied to 5-year daily Linac QA data. Verification tests and other evaluations were then performed for all models. Preliminary results showed that ANN time-series predictive modeling has more advantages over ARMA techniques for accurate and effective applicability in the dosimetry and QA field. © 2016 New York Academy of Sciences.
DEFF Research Database (Denmark)
Dasgupta, Sakyasingha; Goldschmidt, Dennis; Wörgötter, Florentin
2015-01-01
here, an artificial bio-inspired walking system which effectively combines biomechanics (in terms of the body and leg structures) with the underlying neural mechanisms. The neural mechanisms consist of (1) central pattern generator based control for generating basic rhythmic patterns and coordinated......Walking animals, like stick insects, cockroaches or ants, demonstrate a fascinating range of locomotive abilities and complex behaviors. The locomotive behaviors can consist of a variety of walking patterns along with adaptation that allow the animals to deal with changes in environmental...... conditions, like uneven terrains, gaps, obstacles etc. Biological study has revealed that such complex behaviors are a result of a combination of biomechanics and neural mechanism thus representing the true nature of embodied interactions. While the biomechanics helps maintain flexibility and sustain...
Li, Xiumin; Wang, Wei; Xue, Fangzheng; Song, Yongduan
2018-02-01
Recently there has been continuously increasing interest in building up computational models of spiking neural networks (SNN), such as the Liquid State Machine (LSM). The biologically inspired self-organized neural networks with neural plasticity can enhance the capability of computational performance, with the characteristic features of dynamical memory and recurrent connection cycles which distinguish them from the more widely used feedforward neural networks. Despite a variety of computational models for brain-like learning and information processing have been proposed, the modeling of self-organized neural networks with multi-neural plasticity is still an important open challenge. The main difficulties lie in the interplay among different forms of neural plasticity rules and understanding how structures and dynamics of neural networks shape the computational performance. In this paper, we propose a novel approach to develop the models of LSM with a biologically inspired self-organizing network based on two neural plasticity learning rules. The connectivity among excitatory neurons is adapted by spike-timing-dependent plasticity (STDP) learning; meanwhile, the degrees of neuronal excitability are regulated to maintain a moderate average activity level by another learning rule: intrinsic plasticity (IP). Our study shows that LSM with STDP+IP performs better than LSM with a random SNN or SNN obtained by STDP alone. The noticeable improvement with the proposed method is due to the better reflected competition among different neurons in the developed SNN model, as well as the more effectively encoded and processed relevant dynamic information with its learning and self-organizing mechanism. This result gives insights to the optimization of computational models of spiking neural networks with neural plasticity.
Artificial neural network model of pork meat cubes osmotic dehydratation
Directory of Open Access Journals (Sweden)
Pezo Lato L.
2013-01-01
Full Text Available Mass transfer of pork meat cubes (M. triceps brachii, shaped as 1x1x1 cm, during osmotic dehydration (OD and under atmospheric pressure was investigated in this paper. The effects of different parameters, such as concentration of sugar beet molasses (60-80%, w/w, temperature (20-50ºC, and immersion time (1-5 h in terms of water loss (WL, solid gain (SG, final dry matter content (DM, and water activity (aw, were investigated using experimental results. Five artificial neural network (ANN models were developed for the prediction of WL, SG, DM, and aw in OD of pork meat cubes. These models were able to predict process outputs with coefficient of determination, r2, of 0.990 for SG, 0.985 for WL, 0.986 for aw, and 0.992 for DM compared to experimental measurements. The wide range of processing variables considered for the formulation of these models, and their easy implementation in a spreadsheet calculus make it very useful and practical for process design and control.
A neural model of figure-ground organization.
Craft, Edward; Schütze, Hartmut; Niebur, Ernst; von der Heydt, Rüdiger
2007-06-01
Psychophysical studies suggest that figure-ground organization is a largely autonomous process that guides--and thus precedes--allocation of attention and object recognition. The discovery of border-ownership representation in single neurons of early visual cortex has confirmed this view. Recent theoretical studies have demonstrated that border-ownership assignment can be modeled as a process of self-organization by lateral interactions within V2 cortex. However, the mechanism proposed relies on propagation of signals through horizontal fibers, which would result in increasing delays of the border-ownership signal with increasing size of the visual stimulus, in contradiction with experimental findings. It also remains unclear how the resulting border-ownership representation would interact with attention mechanisms to guide further processing. Here we present a model of border-ownership coding based on dedicated neural circuits for contour grouping that produce border-ownership assignment and also provide handles for mechanisms of selective attention. The results are consistent with neurophysiological and psychophysical findings. The model makes predictions about the hypothetical grouping circuits and the role of feedback between cortical areas.
Directory of Open Access Journals (Sweden)
Melike Bildirici
2014-01-01
Full Text Available The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100. Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray’s MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray’s MS-GARCH model. Therefore, the models are promising for various economic applications.
assessment of neural networks performance in modeling rainfall ...
African Journals Online (AJOL)
Sholagberu
neural network architecture for precipitation prediction of Myanmar, World Academy of. Science, Engineering and Technology, 48, pp. 130 – 134. Kumarasiri, A.D. and Sonnadara, D.U.J. (2006). Rainfall forecasting: an artificial neural network approach, Proceedings of the Technical Sessions,. 22, pp. 1-13 Institute of Physics ...
Commentary. Integrative Modeling and the Role of Neural Constraints
Czech Academy of Sciences Publication Activity Database
Bantegnie, Brice
2017-01-01
Roč. 8, SEP 5 (2017), s. 1-2, č. článku 1531. ISSN 1664-1078 Institutional support: RVO:67985955 Keywords : mechanistic explanation * functional analysis * mechanistic integration * reverse inference * neural plasticity * neural networks Subject RIV: AA - Philosophy ; Religion Impact factor: 2.323, year: 2016
Mean-field models and exotic nuclei
Energy Technology Data Exchange (ETDEWEB)
Bender, M; Buervenich, T; Maruhn, J A; Greiner, W [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); Rutz, K [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Reinhard, P G [Inst. fuer Theoretische Physik, Univ. Erlangen (Germany)
1998-06-01
We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)
Mean-field models and exotic nuclei
International Nuclear Information System (INIS)
Bender, M.; Buervenich, T.; Maruhn, J.A.; Greiner, W.; Rutz, K.; Reinhard, P.G.
1998-01-01
We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)
SpikingLab: modelling agents controlled by Spiking Neural Networks in Netlogo.
Jimenez-Romero, Cristian; Johnson, Jeffrey
2017-01-01
The scientific interest attracted by Spiking Neural Networks (SNN) has lead to the development of tools for the simulation and study of neuronal dynamics ranging from phenomenological models to the more sophisticated and biologically accurate Hodgkin-and-Huxley-based and multi-compartmental models. However, despite the multiple features offered by neural modelling tools, their integration with environments for the simulation of robots and agents can be challenging and time consuming. The implementation of artificial neural circuits to control robots generally involves the following tasks: (1) understanding the simulation tools, (2) creating the neural circuit in the neural simulator, (3) linking the simulated neural circuit with the environment of the agent and (4) programming the appropriate interface in the robot or agent to use the neural controller. The accomplishment of the above-mentioned tasks can be challenging, especially for undergraduate students or novice researchers. This paper presents an alternative tool which facilitates the simulation of simple SNN circuits using the multi-agent simulation and the programming environment Netlogo (educational software that simplifies the study and experimentation of complex systems). The engine proposed and implemented in Netlogo for the simulation of a functional model of SNN is a simplification of integrate and fire (I&F) models. The characteristics of the engine (including neuronal dynamics, STDP learning and synaptic delay) are demonstrated through the implementation of an agent representing an artificial insect controlled by a simple neural circuit. The setup of the experiment and its outcomes are described in this work.
A novel neural-wavelet approach for process diagnostics and complex system modeling
Gao, Rong
Neural networks have been effective in several engineering applications because of their learning abilities and robustness. However certain shortcomings, such as slow convergence and local minima, are always associated with neural networks, especially neural networks applied to highly nonlinear and non-stationary problems. These problems can be effectively alleviated by integrating a new powerful tool, wavelets, into conventional neural networks. The multi-resolution analysis and feature localization capabilities of the wavelet transform offer neural networks new possibilities for learning. A neural wavelet network approach developed in this thesis enjoys fast convergence rate with little possibility to be caught at a local minimum. It combines the localization properties of wavelets with the learning abilities of neural networks. Two different testbeds are used for testing the efficiency of the new approach. The first is magnetic flowmeter-based process diagnostics: here we extend previous work, which has demonstrated that wavelet groups contain process information, to more general process diagnostics. A loop at Applied Intelligent Systems Lab (AISL) is used for collecting and analyzing data through the neural-wavelet approach. The research is important for thermal-hydraulic processes in nuclear and other engineering fields. The neural-wavelet approach developed is also tested with data from the electric power grid. More specifically, the neural-wavelet approach is used for performing short-term and mid-term prediction of power load demand. In addition, the feasibility of determining the type of load using the proposed neural wavelet approach is also examined. The notion of cross scale product has been developed as an expedient yet reliable discriminator of loads. Theoretical issues involved in the integration of wavelets and neural networks are discussed and future work outlined.
Nondestructive pavement evaluation using ILLI-PAVE based artificial neural network models.
2008-09-01
The overall objective in this research project is to develop advanced pavement structural analysis models for more accurate solutions with fast computation schemes. Soft computing and modeling approaches, specifically the Artificial Neural Network (A...
Towards building a neural network model for predicting pile static load test curves
Directory of Open Access Journals (Sweden)
Alzo’ubi A. K.
2018-01-01
Full Text Available In the United Arab Emirates, Continuous Flight Auger piles are the most widely used type of deep foundation. To test the pile behaviour, the Static Load Test is routinely conducted in the field by increasing the dead load while monitoring the displacement. Although the test is reliable, it is expensive to conduct. This test is usually conducted in the UAE to verify the pile capacity and displacement as the load increase and decreases in two cycles. In this paper we will utilize the Artificial Neural Network approach to build a model that can predict a complete Static Load Pile test. We will show that by integrating the pile configuration, soil properties, and ground water table in one artificial neural network model, the Static Load Test can be predicted with confidence. We believe that based on this approach, the model is able to predict the entire pile load test from start to end. The suggested approach is an excellent tool to reduce the cost associated with such expensive tests or to predict pile’s performance ahead of the actual test.
Neural Modeling of Fuzzy Controllers for Maximum Power Point Tracking in Photovoltaic Energy Systems
Lopez-Guede, Jose Manuel; Ramos-Hernanz, Josean; Altın, Necmi; Ozdemir, Saban; Kurt, Erol; Azkune, Gorka
2018-06-01
One field in which electronic materials have an important role is energy generation, especially within the scope of photovoltaic energy. This paper deals with one of the most relevant enabling technologies within that scope, i.e, the algorithms for maximum power point tracking implemented in the direct current to direct current converters and its modeling through artificial neural networks (ANNs). More specifically, as a proof of concept, we have addressed the problem of modeling a fuzzy logic controller that has shown its performance in previous works, and more specifically the dimensionless duty cycle signal that controls a quadratic boost converter. We achieved a very accurate model since the obtained medium squared error is 3.47 × 10-6, the maximum error is 16.32 × 10-3 and the regression coefficient R is 0.99992, all for the test dataset. This neural implementation has obvious advantages such as a higher fault tolerance and a simpler implementation, dispensing with all the complex elements needed to run a fuzzy controller (fuzzifier, defuzzifier, inference engine and knowledge base) because, ultimately, ANNs are sums and products.
A Bioinspired Neural Model Based Extended Kalman Filter for Robot SLAM
Directory of Open Access Journals (Sweden)
Jianjun Ni
2014-01-01
Full Text Available Robot simultaneous localization and mapping (SLAM problem is a very important and challenging issue in the robotic field. The main tasks of SLAM include how to reduce the localization error and the estimated error of the landmarks and improve the robustness and accuracy of the algorithms. The extended Kalman filter (EKF based method is one of the most popular methods for SLAM. However, the accuracy of the EKF based SLAM algorithm will be reduced when the noise model is inaccurate. To solve this problem, a novel bioinspired neural model based SLAM approach is proposed in this paper. In the proposed approach, an adaptive EKF based SLAM structure is proposed, and a bioinspired neural model is used to adjust the weights of system noise and observation noise adaptively, which can guarantee the stability of the filter and the accuracy of the SLAM algorithm. The proposed approach can deal with the SLAM problem in various situations, for example, the noise is in abnormal conditions. Finally, some simulation experiments are carried out to validate and demonstrate the efficiency of the proposed approach.
Mitochondrial metabolism in early neural fate and its relevance for neuronal disease modeling.
Lorenz, Carmen; Prigione, Alessandro
2017-12-01
Modulation of energy metabolism is emerging as a key aspect associated with cell fate transition. The establishment of a correct metabolic program is particularly relevant for neural cells given their high bioenergetic requirements. Accordingly, diseases of the nervous system commonly involve mitochondrial impairment. Recent studies in animals and in neural derivatives of human pluripotent stem cells (PSCs) highlighted the importance of mitochondrial metabolism for neural fate decisions in health and disease. The mitochondria-based metabolic program of early neurogenesis suggests that PSC-derived neural stem cells (NSCs) may be used for modeling neurological disorders. Understanding how metabolic programming is orchestrated during neural commitment may provide important information for the development of therapies against conditions affecting neural functions, including aging and mitochondrial disorders. Copyright © 2017. Published by Elsevier Ltd.
DeepCNF-D: Predicting Protein Order/Disorder Regions by Weighted Deep Convolutional Neural Fields
Directory of Open Access Journals (Sweden)
Sheng Wang
2015-07-01
Full Text Available Intrinsically disordered proteins or protein regions are involved in key biological processes including regulation of transcription, signal transduction, and alternative splicing. Accurately predicting order/disorder regions ab initio from the protein sequence is a prerequisite step for further analysis of functions and mechanisms for these disordered regions. This work presents a learning method, weighted DeepCNF (Deep Convolutional Neural Fields, to improve the accuracy of order/disorder prediction by exploiting the long-range sequential information and the interdependency between adjacent order/disorder labels and by assigning different weights for each label during training and prediction to solve the label imbalance issue. Evaluated by the CASP9 and CASP10 targets, our method obtains 0.855 and 0.898 AUC values, which are higher than the state-of-the-art single ab initio predictors.
Neural field theory of perceptual echo and implications for estimating brain connectivity
Robinson, P. A.; Pagès, J. C.; Gabay, N. C.; Babaie, T.; Mukta, K. N.
2018-04-01
Neural field theory is used to predict and analyze the phenomenon of perceptual echo in which random input stimuli at one location are correlated with electroencephalographic responses at other locations. It is shown that this echo correlation (EC) yields an estimate of the transfer function from the stimulated point to other locations. Modal analysis then explains the observed spatiotemporal structure of visually driven EC and the dominance of the alpha frequency; two eigenmodes of similar amplitude dominate the response, leading to temporal beating and a line of low correlation that runs from the crown of the head toward the ears. These effects result from mode splitting and symmetry breaking caused by interhemispheric coupling and cortical folding. It is shown how eigenmodes obtained from functional magnetic resonance imaging experiments can be combined with temporal dynamics from EC or other evoked responses to estimate the spatiotemporal transfer function between any two points and hence their effective connectivity.
Dependence of synchronization transitions on mean field approach in two-way coupled neural system
Shi, J. C.; Luo, M.; Huang, C. S.
2018-03-01
This work investigates the synchronization transitions in two-way coupled neural system by mean field approach. Results show that, there exists a critical noise intensity for the synchronization transitions, i.e., above (or below) the critical noise intensity, the synchronization transitions are decreased (or hardly change) with increasing the noise intensity. Meanwhile, the heterogeneity effect plays a negative role for the synchronization transitions, and above critical coupling strength, the heterogeneity effect on synchronization transitions can be negligible. Furthermore, when an external signal is introduced into the coupled system, the novel frequency-induced and amplitude-induced synchronization transitions are found, and there exist an optimal frequency and an optimal amplitude of external signal which makes the system to display the best synchronization transitions. In particular, it is observed that the synchronization transitions can not be further affected above critical frequency of external signal.
The Swarm Initial Field Model for the 2014 geomagnetic field
DEFF Research Database (Denmark)
Olsen, Nils; Hulot, Gauthier; Lesur, Vincent
2015-01-01
agreement (up to at least degree 60) with recent field models derived from CHAMP data, providing an initial validation of the quality of the Swarm magnetic measurements. Use of gradient data improves the determination of both the static field and its secular variation, with the mean misfit for East...
The CHAOS-4 geomagnetic field model
DEFF Research Database (Denmark)
Olsen, Nils; Lühr, H.; Finlay, Chris
2014-01-01
We present CHAOS-4, a new version in the CHAOS model series, which aims to describe the Earth's magnetic field with high spatial and temporal resolution. Terms up to spherical degree of at least n = 85 for the lithospheric field, and up to n = 16 for the time-varying core field are robustly...... to the core field, but the high-degree lithospheric field is regularized for n > 85. CHAOS-4 model is derived by merging two submodels: its low-degree part has been derived using similar model parametrization and data sets as used for previous CHAOS models (but of course including more recent data), while its...
Bacterial DNA Sequence Compression Models Using Artificial Neural Networks
Directory of Open Access Journals (Sweden)
Armando J. Pinho
2013-08-01
Full Text Available It is widely accepted that the advances in DNA sequencing techniques have contributed to an unprecedented growth of genomic data. This fact has increased the interest in DNA compression, not only from the information theory and biology points of view, but also from a practical perspective, since such sequences require storage resources. Several compression methods exist, and particularly, those using finite-context models (FCMs have received increasing attention, as they have been proven to effectively compress DNA sequences with low bits-per-base, as well as low encoding/decoding time-per-base. However, the amount of run-time memory required to store high-order finite-context models may become impractical, since a context-order as low as 16 requires a maximum of 17.2 x 109 memory entries. This paper presents a method to reduce such a memory requirement by using a novel application of artificial neural networks (ANN to build such probabilistic models in a compact way and shows how to use them to estimate the probabilities. Such a system was implemented, and its performance compared against state-of-the art compressors, such as XM-DNA (expert model and FCM-Mx (mixture of finite-context models , as well as with general-purpose compressors. Using a combination of order-10 FCM and ANN, similar encoding results to those of FCM, up to order-16, are obtained using only 17 megabytes of memory, whereas the latter, even employing hash-tables, uses several hundreds of megabytes.
Stability of a neural network model with small-world connections
International Nuclear Information System (INIS)
Li Chunguang; Chen Guanrong
2003-01-01
Small-world networks are highly clustered networks with small distances among the nodes. There are many biological neural networks that present this kind of connection. There are no special weightings in the connections of most existing small-world network models. However, this kind of simply connected model cannot characterize biological neural networks, in which there are different weights in synaptic connections. In this paper, we present a neural network model with weighted small-world connections and further investigate the stability of this model
Validation of protein models by a neural network approach
Directory of Open Access Journals (Sweden)
Fantucci Piercarlo
2008-01-01
Full Text Available Abstract Background The development and improvement of reliable computational methods designed to evaluate the quality of protein models is relevant in the context of protein structure refinement, which has been recently identified as one of the bottlenecks limiting the quality and usefulness of protein structure prediction. Results In this contribution, we present a computational method (Artificial Intelligence Decoys Evaluator: AIDE which is able to consistently discriminate between correct and incorrect protein models. In particular, the method is based on neural networks that use as input 15 structural parameters, which include energy, solvent accessible surface, hydrophobic contacts and secondary structure content. The results obtained with AIDE on a set of decoy structures were evaluated using statistical indicators such as Pearson correlation coefficients, Znat, fraction enrichment, as well as ROC plots. It turned out that AIDE performances are comparable and often complementary to available state-of-the-art learning-based methods. Conclusion In light of the results obtained with AIDE, as well as its comparison with available learning-based methods, it can be concluded that AIDE can be successfully used to evaluate the quality of protein structures. The use of AIDE in combination with other evaluation tools is expected to further enhance protein refinement efforts.
Neural Networks Modelling of Municipal Real Estate Market Rent Rates
Directory of Open Access Journals (Sweden)
Muczyński Andrzej
2016-12-01
Full Text Available This paper presents the results of research on the application of neural networks modelling of municipal real estate market rent rates. The test procedure was based on selected networks trained on the local real estate market data and transformation of the detected dependencies – through established models – to estimate the potential market rent rates of municipal premises. On this basis, the assessment of the adequacy of the actual market rent rates of municipal properties was made. Empirical research was conducted on the local real estate market of the city of Olsztyn in Poland. In order to describe the phenomenon of market rent rates formation an unidirectional three-layer network and a network of radial base was selected. Analyses showed a relatively low degree of convergence of the actual municipal rent rents with potential market rent rates. This degree was strongly varied depending on the type of business ran on the property and its’ social and economic impact. The applied research methodology and the obtained results can be used in order to rationalize municipal property management, including the activation of rental policy.
Modelling and Prediction of Photovoltaic Power Output Using Artificial Neural Networks
Directory of Open Access Journals (Sweden)
Aminmohammad Saberian
2014-01-01
Full Text Available This paper presents a solar power modelling method using artificial neural networks (ANNs. Two neural network structures, namely, general regression neural network (GRNN feedforward back propagation (FFBP, have been used to model a photovoltaic panel output power and approximate the generated power. Both neural networks have four inputs and one output. The inputs are maximum temperature, minimum temperature, mean temperature, and irradiance; the output is the power. The data used in this paper started from January 1, 2006, until December 31, 2010. The five years of data were split into two parts: 2006–2008 and 2009-2010; the first part was used for training and the second part was used for testing the neural networks. A mathematical equation is used to estimate the generated power. At the end, both of these networks have shown good modelling performance; however, FFBP has shown a better performance comparing with GRNN.
Brown, Ramsay A; Swanson, Larry W
2013-09-01
Systematic description and the unambiguous communication of findings and models remain among the unresolved fundamental challenges in systems neuroscience. No common descriptive frameworks exist to describe systematically the connective architecture of the nervous system, even at the grossest level of observation. Furthermore, the accelerating volume of novel data generated on neural connectivity outpaces the rate at which this data is curated into neuroinformatics databases to synthesize digitally systems-level insights from disjointed reports and observations. To help address these challenges, we propose the Neural Systems Language (NSyL). NSyL is a modeling language to be used by investigators to encode and communicate systematically reports of neural connectivity from neuroanatomy and brain imaging. NSyL engenders systematic description and communication of connectivity irrespective of the animal taxon described, experimental or observational technique implemented, or nomenclature referenced. As a language, NSyL is internally consistent, concise, and comprehensible to both humans and computers. NSyL is a promising development for systematizing the representation of neural architecture, effectively managing the increasing volume of data on neural connectivity and streamlining systems neuroscience research. Here we present similar precedent systems, how NSyL extends existing frameworks, and the reasoning behind NSyL's development. We explore NSyL's potential for balancing robustness and consistency in representation by encoding previously reported assertions of connectivity from the literature as examples. Finally, we propose and discuss the implications of a framework for how NSyL will be digitally implemented in the future to streamline curation of experimental results and bridge the gaps among anatomists, imagers, and neuroinformatics databases. Copyright © 2013 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
Jing-Peng Fu
2016-08-01
Full Text Available Abstract Living organisms are exposed to the geomagnetic field (GMF throughout their lifespan. Elimination of the GMF, resulting in a hypogeomagnetic field (HMF, leads to central nervous system dysfunction and abnormal development in animals. However, the cellular mechanisms underlying these effects have not been identified so far. Here, we show that exposure to an HMF (<200 nT, produced by a magnetic field shielding chamber, promotes the proliferation of neural progenitor/stem cells (NPCs/NSCs from C57BL/6 mice. Following seven-day HMF-exposure, the primary neurospheres (NSs were significantly larger in size, and twice more NPCs/NSCs were harvested from neonatal NSs, when compared to the GMF controls. The self-renewal capacity and multipotency of the NSs were maintained, as HMF-exposed NSs were positive for NSC markers (Nestin and Sox2, and could differentiate into neurons and astrocyte/glial cells and be passaged continuously. In addition, adult mice exposed to the HMF for one month were observed to have a greater number of proliferative cells in the subventricular zone. These findings indicate that continuous HMF-exposure increases the proliferation of NPCs/NSCs, in vitro and in vivo. HMF-disturbed NPCs/NSCs production probably affects brain development and function, which provides a novel clue for elucidating the cellular mechanisms of the bio-HMF response.
Modeling of Karachaganak field development
Sadvakasov, A. A.; Shamsutdinova, G. F.; Almukhametova, E. M.; Gabdrakhmanov, N. Kh
2018-05-01
Management of a geological deposit includes the study and analysis of oil recovery, identification of factors influencing production performance and oil-bearing rock flooding, reserve recovery and other indicators characterizing field development in general. Regulation of oil deposits exploitation is a mere control over the fluid flow within a reservoir, which is ensured through the designed system of development via continuous improvement of production and injection wells placement, optimum performance modes, service conditions of downhole and surface oil-field equipment taking into account various changes and physical-geological properties of a field when using modern equipment to obtain the best performance indicators.
Neural modelling of ranking data with an application to stated preference data
Directory of Open Access Journals (Sweden)
Catherine Krier
2013-05-01
Full Text Available Although neural networks are commonly encountered to solve classification problems, ranking data present specificities which require adapting the model. Based on a latent utility function defined on the characteristics of the objects to be ranked, the approach suggested in this paper leads to a perceptron-based algorithm for a highly non linear model. Data on stated preferences obtained through a survey by face-to-face interviews, in the field of freight transport, are used to illustrate the method. Numerical difficulties are pinpointed and a Pocket type algorithm is shown to provide an efficient heuristic to minimize the discrete error criterion. A substantial merit of this approach is to provide a workable estimation of contextually interpretable parameters along with a statistical evaluation of the goodness of fit.
Transport energy demand modeling of South Korea using artificial neural network
International Nuclear Information System (INIS)
Geem, Zong Woo
2011-01-01
Artificial neural network models were developed to forecast South Korea's transport energy demand. Various independent variables, such as GDP, population, oil price, number of vehicle registrations, and passenger transport amount, were considered and several good models (Model 1 with GDP, population, and passenger transport amount; Model 2 with GDP, number of vehicle registrations, and passenger transport amount; and Model 3 with oil price, number of vehicle registrations, and passenger transport amount) were selected by comparing with multiple linear regression models. Although certain regression models obtained better R-squared values than neural network models, this does not guarantee the fact that the former is better than the latter because root mean squared errors of the former were much inferior to those of the latter. Also, certain regression model had structural weakness based on P-value. Instead, neural network models produced more robust results. Forecasted results using the neural network models show that South Korea will consume around 37 MTOE of transport energy in 2025. - Highlights: → Transport energy demand of South Korea was forecasted using artificial neural network. → Various variables (GDP, population, oil price, number of registrations, etc.) were considered. → Results of artificial neural network were compared with those of multiple linear regression.
DEFF Research Database (Denmark)
Manoonpong, Poramate; Parlitz, Ulrich; Wörgötter, Florentin
2013-01-01
such natural properties with artificial legged locomotion systems by using different approaches including machine learning algorithms, classical engineering control techniques, and biologically-inspired control mechanisms. However, their levels of performance are still far from the natural ones. By contrast...... on sensory feedback and adaptive neural forward models with efference copies. This neural closed-loop controller enables a walking machine to perform a multitude of different walking patterns including insect-like leg movements and gaits as well as energy-efficient locomotion. In addition, the forward models...... allow the machine to autonomously adapt its locomotion to deal with a change of terrain, losing of ground contact during stance phase, stepping on or hitting an obstacle during swing phase, leg damage, and even to promote cockroach-like climbing behavior. Thus, the results presented here show...
Relationship among visual field, blood flow, and neural structure measurements in glaucoma.
Hwang, John C; Konduru, Ranjith; Zhang, Xinbo; Tan, Ou; Francis, Brian A; Varma, Rohit; Sehi, Mitra; Greenfield, David S; Sadda, Srinivas R; Huang, David
2012-05-17
To determine the relationship among visual field, neural structural, and blood flow measurements in glaucoma. Case-control study. Forty-seven eyes of 42 patients with perimetric glaucoma were age-matched with 27 normal eyes of 27 patients. All patients underwent Doppler Fourier-domain optical coherence tomography to measure retinal blood flow and standard glaucoma evaluation with visual field testing and quantitative structural imaging. Linear regression analysis was performed to analyze the relationship among visual field, blood flow, and structure, after all variables were converted to logarithmic decibel scale. Retinal blood flow was reduced in glaucoma eyes compared to normal eyes (P flow and structural loss of rim area and retinal nerve fiber layer (RNFL). There was no correlation or paradoxical correlation between blood flow and structure. Multivariate regression analysis revealed that reduced blood flow and structural loss are independent predictors of visual field loss. Each dB decrease in blood flow was associated with at least 1.62 dB loss in mean deviation (P ≤ 0.001), whereas each dB decrease in rim area and RNFL was associated with 1.15 dB and 2.56 dB loss in mean deviation, respectively (P ≤ 0.03). There is a close link between reduced retinal blood flow and visual field loss in glaucoma that is largely independent of structural loss. Further studies are needed to elucidate the causes of the vascular dysfunction and potential avenues for therapeutic intervention. Blood flow measurement may be useful as an independent assessment of glaucoma severity.
Protection of visual functions by human neural progenitors in a rat model of retinal disease.
Directory of Open Access Journals (Sweden)
David M Gamm
2007-03-01
Full Text Available A promising clinical application for stem and progenitor cell transplantation is in rescue therapy for degenerative diseases. This strategy seeks to preserve rather than restore host tissue function by taking advantage of unique properties often displayed by these versatile cells. In studies using different neurodegenerative disease models, transplanted human neural progenitor cells (hNPC protected dying host neurons within both the brain and spinal cord. Based on these reports, we explored the potential of hNPC transplantation to rescue visual function in an animal model of retinal degeneration, the Royal College of Surgeons rat.Animals received unilateral subretinal injections of hNPC or medium alone at an age preceding major photoreceptor loss. Principal outcomes were quantified using electroretinography, visual acuity measurements and luminance threshold recordings from the superior colliculus. At 90-100 days postnatal, a time point when untreated rats exhibit little or no retinal or visual function, hNPC-treated eyes retained substantial retinal electrical activity and visual field with near-normal visual acuity. Functional efficacy was further enhanced when hNPC were genetically engineered to secrete glial cell line-derived neurotrophic factor. Histological examination at 150 days postnatal showed hNPC had formed a nearly continuous pigmented layer between the neural retina and retinal pigment epithelium, as well as distributed within the inner retina. A concomitant preservation of host cone photoreceptors was also observed.Wild type and genetically modified human neural progenitor cells survive for prolonged periods, migrate extensively, secrete growth factors and rescue visual functions following subretinal transplantation in the Royal College of Surgeons rat. These results underscore the potential therapeutic utility of hNPC in the treatment of retinal degenerative diseases and suggest potential mechanisms underlying their effect in
Okamoto, Hidehiko; Stracke, Henning; Lagemann, Lothar; Pantev, Christo
2010-01-01
The capability of involuntarily tracking certain sound signals during the simultaneous presence of noise is essential in human daily life. Previous studies have demonstrated that top-down auditory focused attention can enhance excitatory and inhibitory neural activity, resulting in sharpening of frequency tuning of auditory neurons. In the present study, we investigated bottom-up driven involuntary neural processing of sound signals in noisy environments by means of magnetoencephalography. We contrasted two sound signal sequencing conditions: "constant sequencing" versus "random sequencing." Based on a pool of 16 different frequencies, either identical (constant sequencing) or pseudorandomly chosen (random sequencing) test frequencies were presented blockwise together with band-eliminated noises to nonattending subjects. The results demonstrated that the auditory evoked fields elicited in the constant sequencing condition were significantly enhanced compared with the random sequencing condition. However, the enhancement was not significantly different between different band-eliminated noise conditions. Thus the present study confirms that by constant sound signal sequencing under nonattentive listening the neural activity in human auditory cortex can be enhanced, but not sharpened. Our results indicate that bottom-up driven involuntary neural processing may mainly amplify excitatory neural networks, but may not effectively enhance inhibitory neural circuits.
Comparing Models GRM, Refraction Tomography and Neural Network to Analyze Shallow Landslide
Directory of Open Access Journals (Sweden)
Armstrong F. Sompotan
2011-11-01
Full Text Available Detailed investigations of landslides are essential to understand fundamental landslide mechanisms. Seismic refraction method has been proven as a useful geophysical tool for investigating shallow landslides. The objective of this study is to introduce a new workflow using neural network in analyzing seismic refraction data and to compare the result with some methods; that are general reciprocal method (GRM and refraction tomography. The GRM is effective when the velocity structure is relatively simple and refractors are gently dipping. Refraction tomography is capable of modeling the complex velocity structures of landslides. Neural network is found to be more potential in application especially in time consuming and complicated numerical methods. Neural network seem to have the ability to establish a relationship between an input and output space for mapping seismic velocity. Therefore, we made a preliminary attempt to evaluate the applicability of neural network to determine velocity and elevation of subsurface synthetic models corresponding to arrival times. The training and testing process of the neural network is successfully accomplished using the synthetic data. Furthermore, we evaluated the neural network using observed data. The result of the evaluation indicates that the neural network can compute velocity and elevation corresponding to arrival times. The similarity of those models shows the success of neural network as a new alternative in seismic refraction data interpretation.
Directory of Open Access Journals (Sweden)
Poramate eManoonpong
2013-02-01
Full Text Available Living creatures, like walking animals, have found fascinating solutions for the problem of locomotion control. Their movements show the impression of elegance including versatile, energy-efficient, and adaptable locomotion. During the last few decades, roboticists have tried to imitate such natural properties with artificial legged locomotion systems by using different approaches including machine learning algorithms, classical engineering control techniques, and biologically-inspired control mechanisms. However, their levels of performance are still far from the natural ones. By contrast, animal locomotion mechanisms seem to largely depend not only on central mechanisms (central pattern generators, CPGs and sensory feedback (afferent-based control but also on internal forward models (efference copies. They are used to a different degree in different animals. Generally, CPGs organize basic rhythmic motions which are shaped by sensory feedback while internal models are used for sensory prediction and state estimations. According to this concept, we present here adaptive neural locomotion control consisting of a CPG mechanism with neuromodulation and local leg control mechanisms based on sensory feedback and adaptive neural forward models with efference copies. This neural closed-loop controller enables a walking machine to perform a multitude of different walking patterns including insect-like leg movements and gaits as well as energy-efficient locomotion. In addition, the forward models allow the machine to autonomously adapt its locomotion to deal with a change of terrain, losing of ground contact during stance phase, stepping on or hitting an obstacle during swing phase, leg damage, and even to promote cockroach-like climbing behavior. Thus, the results presented here show that the employed embodied neural closed-loop system can be a powerful way for developing robust and adaptable machines.
A neural model of rule generation in inductive reasoning.
Rasmussen, Daniel; Eliasmith, Chris
2011-01-01
Inductive reasoning is a fundamental and complex aspect of human intelligence. In particular, how do subjects, given a set of particular examples, generate general descriptions of the rules governing that set? We present a biologically plausible method for accomplishing this task and implement it in a spiking neuron model. We demonstrate the success of this model by applying it to the problem domain of Raven's Progressive Matrices, a widely used tool in the field of intelligence testing. The model is able to generate the rules necessary to correctly solve Raven's items, as well as recreate many of the experimental effects observed in human subjects. Copyright © 2011 Cognitive Science Society, Inc.
A new neural network model for solving random interval linear programming problems.
Arjmandzadeh, Ziba; Safi, Mohammadreza; Nazemi, Alireza
2017-05-01
This paper presents a neural network model for solving random interval linear programming problems. The original problem involving random interval variable coefficients is first transformed into an equivalent convex second order cone programming problem. A neural network model is then constructed for solving the obtained convex second order cone problem. Employing Lyapunov function approach, it is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact satisfactory solution of the original problem. Several illustrative examples are solved in support of this technique. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yang, Shiju; Li, Chuandong; Huang, Tingwen
2016-03-01
The problem of exponential stabilization and synchronization for fuzzy model of memristive neural networks (MNNs) is investigated by using periodically intermittent control in this paper. Based on the knowledge of memristor and recurrent neural network, the model of MNNs is formulated. Some novel and useful stabilization criteria and synchronization conditions are then derived by using the Lyapunov functional and differential inequality techniques. It is worth noting that the methods used in this paper are also applied to fuzzy model for complex networks and general neural networks. Numerical simulations are also provided to verify the effectiveness of theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lukasiewicz-Topos Models of Neural Networks, Cell Genome and Interactome Nonlinear Dynamic Models
Baianu, I C
2004-01-01
A categorical and Lukasiewicz-Topos framework for Lukasiewicz Algebraic Logic models of nonlinear dynamics in complex functional systems such as neural networks, genomes and cell interactomes is proposed. Lukasiewicz Algebraic Logic models of genetic networks and signaling pathways in cells are formulated in terms of nonlinear dynamic systems with n-state components that allow for the generalization of previous logical models of both genetic activities and neural networks. An algebraic formulation of variable 'next-state functions' is extended to a Lukasiewicz Topos with an n-valued Lukasiewicz Algebraic Logic subobject classifier description that represents non-random and nonlinear network activities as well as their transformations in developmental processes and carcinogenesis.
Ehret, Phillip J; Monroe, Brian M; Read, Stephen J
2015-05-01
We present a neural network implementation of central components of the iterative reprocessing (IR) model. The IR model argues that the evaluation of social stimuli (attitudes, stereotypes) is the result of the IR of stimuli in a hierarchy of neural systems: The evaluation of social stimuli develops and changes over processing. The network has a multilevel, bidirectional feedback evaluation system that integrates initial perceptual processing and later developing semantic processing. The network processes stimuli (e.g., an individual's appearance) over repeated iterations, with increasingly higher levels of semantic processing over time. As a result, the network's evaluations of stimuli evolve. We discuss the implications of the network for a number of different issues involved in attitudes and social evaluation. The success of the network supports the IR model framework and provides new insights into attitude theory. © 2014 by the Society for Personality and Social Psychology, Inc.
A neural model of mechanisms of empathy deficits in narcissism
Jankowiak-Siuda, Kamila; Zajkowski, Wojciech
2013-01-01
From a multidimensional perspective, empathy is a process that includes affective sharing and imagining and understanding the emotions of others. The primary brain structures involved in mediating the components of empathy are the anterior insula (AI), the anterior cingulate cortex (ACC), and specific regions of the medial prefrontal cortex (MPFC). The AI and ACC are the main nodes in the salience network (SN), which selects and coordinates the information flow from the intero- and exteroreceptors. AI might play a role as a crucial hub – a dynamic switch between 2 separate networks of cognitive processing: the central executive network (CEN), which is concerned with effective task execution, and the default mode network (DMN), which is involved with self-reflective processes. Given various classifications, a deficit in empathy may be considered a central dysfunctional trait in narcissism. A recent fMRI study suggests that deficit in empathy is due to a dysfunction in the right AI. Based on the acquired data, we propose a theoretical model of imbalanced SN functioning in narcissism in which the dysfunctional AI hub is responsible for constant DMN activation, which, in turn, centers one’s attention on the self. This might hinder the ability to affectively share and understand the emotions of others. This review paper on neural mechanisms of empathy deficits in narcissism aims to inspire and direct future research in this area. PMID:24189465
ALADDIN: a neural model for event classification in dynamic processes
International Nuclear Information System (INIS)
Roverso, Davide
1998-02-01
ALADDIN is a prototype system which combines fuzzy clustering techniques and artificial neural network (ANN) models in a novel approach to the problem of classifying events in dynamic processes. The main motivation for the development of such a system derived originally from the problem of finding new principled methods to perform alarm structuring/suppression in a nuclear power plant (NPP) alarm system. One such method consists in basing the alarm structuring/suppression on a fast recognition of the event generating the alarms, so that a subset of alarms sufficient to efficiently handle the current fault can be selected to be presented to the operator, minimizing in this way the operator's workload in a potentially stressful situation. The scope of application of a system like ALADDIN goes however beyond alarm handling, to include diagnostic tasks in general. The eventual application of the system to domains other than NPPs was also taken into special consideration during the design phase. In this document we report on the first phase of the ALADDIN project which consisted mainly in a comparative study of a series of ANN-based approaches to event classification, and on the proposal of a first system prototype which is to undergo further tests and, eventually, be integrated in existing alarm, diagnosis, and accident management systems such as CASH, IDS, and CAMS. (author)
Neural network models: from biology to many - body phenomenology
International Nuclear Information System (INIS)
Clark, J.W.
1993-01-01
The current surge of research on practical side of neural networks and their utility in memory storage/recall, pattern recognition and classification is given in this article. The initial attraction of neural networks as dynamical and statistical system has been investigated. From the view of many-body theorist, the neurons may be thought of as particles, and the weighted connection between the units, as the interaction between these particles. Finally, the author has seen the impressive capabilities of artificial neural networks in pattern recognition and classification may be exploited to solve data management problems in experimental physics and the discovery of radically new theoretically description of physical problems and neural networks can be used in physics. (A.B.)
Generalized Net Model of the Cognitive and Neural Algorithm for Adaptive Resonance Theory 1
Directory of Open Access Journals (Sweden)
Todor Petkov
2013-12-01
Full Text Available The artificial neural networks are inspired by biological properties of human and animal brains. One of the neural networks type is called ART [4]. The abbreviation of ART stands for Adaptive Resonance Theory that has been invented by Stephen Grossberg in 1976 [5]. ART represents a family of Neural Networks. It is a cognitive and neural theory that describes how the brain autonomously learns to categorize, recognize and predict objects and events in the changing world. In this paper we introduce a GN model that represent ART1 Neural Network learning algorithm [1]. The purpose of this model is to explain when the input vector will be clustered or rejected among all nodes by the network. It can also be used for explanation and optimization of ART1 learning algorithm.
Modelling of solar energy potential in Nigeria using an artificial neural network model
International Nuclear Information System (INIS)
Fadare, D.A.
2009-01-01
In this study, an artificial neural network (ANN) based model for prediction of solar energy potential in Nigeria (lat. 4-14 o N, log. 2-15 o E) was developed. Standard multilayered, feed-forward, back-propagation neural networks with different architecture were designed using neural toolbox for MATLAB. Geographical and meteorological data of 195 cities in Nigeria for period of 10 years (1983-1993) from the NASA geo-satellite database were used for the training and testing the network. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine duration, mean temperature, and relative humidity) were used as inputs to the network, while the solar radiation intensity was used as the output of the network. The results show that the correlation coefficients between the ANN predictions and actual mean monthly global solar radiation intensities for training and testing datasets were higher than 90%, thus suggesting a high reliability of the model for evaluation of solar radiation in locations where solar radiation data are not available. The predicted solar radiation values from the model were given in form of monthly maps. The monthly mean solar radiation potential in northern and southern regions ranged from 7.01-5.62 to 5.43-3.54 kW h/m 2 day, respectively. A graphical user interface (GUI) was developed for the application of the model. The model can be used easily for estimation of solar radiation for preliminary design of solar applications.
An interpretable LSTM neural network for autoregressive exogenous model
Guo, Tian; Lin, Tao; Lu, Yao
2018-01-01
In this paper, we propose an interpretable LSTM recurrent neural network, i.e., multi-variable LSTM for time series with exogenous variables. Currently, widely used attention mechanism in recurrent neural networks mostly focuses on the temporal aspect of data and falls short of characterizing variable importance. To this end, our multi-variable LSTM equipped with tensorized hidden states is developed to learn variable specific representations, which give rise to both temporal and variable lev...
Testolin, Alberto; De Filippo De Grazia, Michele; Zorzi, Marco
2017-01-01
The recent "deep learning revolution" in artificial neural networks had strong impact and widespread deployment for engineering applications, but the use of deep learning for neurocomputational modeling has been so far limited. In this article we argue that unsupervised deep learning represents an important step forward for improving neurocomputational models of perception and cognition, because it emphasizes the role of generative learning as opposed to discriminative (supervised) learning. As a case study, we present a series of simulations investigating the emergence of neural coding of visual space for sensorimotor transformations. We compare different network architectures commonly used as building blocks for unsupervised deep learning by systematically testing the type of receptive fields and gain modulation developed by the hidden neurons. In particular, we compare Restricted Boltzmann Machines (RBMs), which are stochastic, generative networks with bidirectional connections trained using contrastive divergence, with autoencoders, which are deterministic networks trained using error backpropagation. For both learning architectures we also explore the role of sparse coding, which has been identified as a fundamental principle of neural computation. The unsupervised models are then compared with supervised, feed-forward networks that learn an explicit mapping between different spatial reference frames. Our simulations show that both architectural and learning constraints strongly influenced the emergent coding of visual space in terms of distribution of tuning functions at the level of single neurons. Unsupervised models, and particularly RBMs, were found to more closely adhere to neurophysiological data from single-cell recordings in the primate parietal cortex. These results provide new insights into how basic properties of artificial neural networks might be relevant for modeling neural information processing in biological systems.
Three-dimensional hydrogel cell culture systems for modeling neural tissue
Frampton, John
Two-dimensional (2-D) neural cell culture systems have served as physiological models for understanding the cellular and molecular events that underlie responses to physical and chemical stimuli, control sensory and motor function, and lead to the development of neurological diseases. However, the development of three-dimensional (3-D) cell culture systems will be essential for the advancement of experimental research in a variety of fields including tissue engineering, chemical transport and delivery, cell growth, and cell-cell communication. In 3-D cell culture, cells are provided with an environment similar to tissue, in which they are surrounded on all sides by other cells, structural molecules and adhesion ligands. Cells grown in 3-D culture systems display morphologies and functions more similar to those observed in vivo, and can be cultured in such a way as to recapitulate the structural organization and biological properties of tissue. This thesis describes a hydrogel-based culture system, capable of supporting the growth and function of several neural cell types in 3-D. Alginate hydrogels were characterized in terms of their biomechanical and biochemical properties and were functionalized by covalent attachment of whole proteins and peptide epitopes. Methods were developed for rapid cross-linking of alginate hydrogels, thus permitting the incorporation of cells into 3-D scaffolds without adversely affecting cell viability or function. A variety of neural cell types were tested including astrocytes, microglia, and neurons. Cells remained viable and functional for longer than two weeks in culture and displayed process outgrowth in 3-D. Cell constructs were created that varied in cell density, type and organization, providing experimental flexibility for studying cell interactions and behavior. In one set of experiments, 3-D glial-endothelial cell co-cultures were used to model blood-brain barrier (BBB) structure and function. This co-culture system was
Neural model of gene regulatory network: a survey on supportive meta-heuristics.
Biswas, Surama; Acharyya, Sriyankar
2016-06-01
Gene regulatory network (GRN) is produced as a result of regulatory interactions between different genes through their coded proteins in cellular context. Having immense importance in disease detection and drug finding, GRN has been modelled through various mathematical and computational schemes and reported in survey articles. Neural and neuro-fuzzy models have been the focus of attraction in bioinformatics. Predominant use of meta-heuristic algorithms in training neural models has proved its excellence. Considering these facts, this paper is organized to survey neural modelling schemes of GRN and the efficacy of meta-heuristic algorithms towards parameter learning (i.e. weighting connections) within the model. This survey paper renders two different structure-related approaches to infer GRN which are global structure approach and substructure approach. It also describes two neural modelling schemes, such as artificial neural network/recurrent neural network based modelling and neuro-fuzzy modelling. The meta-heuristic algorithms applied so far to learn the structure and parameters of neutrally modelled GRN have been reviewed here.
International Nuclear Information System (INIS)
Mikulandrić, Robert; Lončar, Dražen; Böhning, Dorith; Böhme, Rene; Beckmann, Michael
2014-01-01
Highlights: • 2 Different equilibrium models are developed and their performance is analysed. • Neural network prediction models for 2 different fixed bed gasifier types are developed. • The influence of different input parameters on neural network model performance is analysed. • Methodology for neural network model development for different gasifier types is described. • Neural network models are verified for various operating conditions based on measured data. - Abstract: The number of the small and middle-scale biomass gasification combined heat and power plants as well as syngas production plants has been significantly increased in the last decade mostly due to extensive incentives. However, existing issues regarding syngas quality, process efficiency, emissions and environmental standards are preventing biomass gasification technology to become more economically viable. To encounter these issues, special attention is given to the development of mathematical models which can be used for a process analysis or plant control purposes. The presented paper analyses possibilities of neural networks to predict process parameters with high speed and accuracy. After a related literature review and measurement data analysis, different modelling approaches for the process parameter prediction that can be used for an on-line process control were developed and their performance were analysed. Neural network models showed good capability to predict biomass gasification process parameters with reasonable accuracy and speed. Measurement data for the model development, verification and performance analysis were derived from biomass gasification plant operated by Technical University Dresden
Maximum solid concentrations of coal water slurries predicted by neural network models
Energy Technology Data Exchange (ETDEWEB)
Cheng, Jun; Li, Yanchang; Zhou, Junhu; Liu, Jianzhong; Cen, Kefa
2010-12-15
The nonlinear back-propagation (BP) neural network models were developed to predict the maximum solid concentration of coal water slurry (CWS) which is a substitute for oil fuel, based on physicochemical properties of 37 typical Chinese coals. The Levenberg-Marquardt algorithm was used to train five BP neural network models with different input factors. The data pretreatment method, learning rate and hidden neuron number were optimized by training models. It is found that the Hardgrove grindability index (HGI), moisture and coalification degree of parent coal are 3 indispensable factors for the prediction of CWS maximum solid concentration. Each BP neural network model gives a more accurate prediction result than the traditional polynomial regression equation. The BP neural network model with 3 input factors of HGI, moisture and oxygen/carbon ratio gives the smallest mean absolute error of 0.40%, which is much lower than that of 1.15% given by the traditional polynomial regression equation. (author)
Adaptive control using a hybrid-neural model: application to a polymerisation reactor
Directory of Open Access Journals (Sweden)
Cubillos F.
2001-01-01
Full Text Available This work presents the use of a hybrid-neural model for predictive control of a plug flow polymerisation reactor. The hybrid-neural model (HNM is based on fundamental conservation laws associated with a neural network (NN used to model the uncertain parameters. By simulations, the performance of this approach was studied for a peroxide-initiated styrene tubular reactor. The HNM was synthesised for a CSTR reactor with a radial basis function neural net (RBFN used to estimate the reaction rates recursively. The adaptive HNM was incorporated in two model predictive control strategies, a direct synthesis scheme and an optimum steady state scheme. Tests for servo and regulator control showed excellent behaviour following different setpoint variations, and rejecting perturbations. The good generalisation and training capacities of hybrid models, associated with the simplicity and robustness characteristics of the MPC formulations, make an attractive combination for the control of a polymerisation reactor.
QSAR modelling using combined simple competitive learning networks and RBF neural networks.
Sheikhpour, R; Sarram, M A; Rezaeian, M; Sheikhpour, E
2018-04-01
The aim of this study was to propose a QSAR modelling approach based on the combination of simple competitive learning (SCL) networks with radial basis function (RBF) neural networks for predicting the biological activity of chemical compounds. The proposed QSAR method consisted of two phases. In the first phase, an SCL network was applied to determine the centres of an RBF neural network. In the second phase, the RBF neural network was used to predict the biological activity of various phenols and Rho kinase (ROCK) inhibitors. The predictive ability of the proposed QSAR models was evaluated and compared with other QSAR models using external validation. The results of this study showed that the proposed QSAR modelling approach leads to better performances than other models in predicting the biological activity of chemical compounds. This indicated the efficiency of simple competitive learning networks in determining the centres of RBF neural networks.
An ovine model of cerebral catheter venography for implantation of an endovascular neural interface.
Oxley, Thomas James; Opie, Nicholas Lachlan; Rind, Gil Simon; Liyanage, Kishan; John, Sam Emmanuel; Ronayne, Stephen; McDonald, Alan James; Dornom, Anthony; Lovell, Timothy John Haynes; Mitchell, Peter John; Bennett, Iwan; Bauquier, Sebastien; Warne, Leon Norris; Steward, Chris; Grayden, David Bruce; Desmond, Patricia; Davis, Stephen M; O'Brien, Terence John; May, Clive N
2018-04-01
bifurcation of the cruciate sulcal veins with the SSS was a reliable predictor of the commencement of the motor area. CONCLUSIONS The ovine model for cerebral catheter venography has generalizability to the human cerebral venous system in relation to motor cortex location. This novel model may facilitate the development of the novel field of endovascular neural interfaces that may include preclinical investigations for cortical recording applications such as paralysis and epilepsy, as well as other potential applications in neuromodulation.
RESICALC: Magnetic field modeling program
International Nuclear Information System (INIS)
Silva, J.M.
1992-12-01
RESICALC, Version 1.0, is a Microsoft Windows application that describes the magnetic field environment produced by user-defined arrays of transmission lines, distribution lines, and custom conductors. These arrays simulate specific situations that may be encountered in real-world community settings. RESICALC allows the user to define an area or ''world'' that contains the transmission and/or distribution lines, user-defined conductors, and locations of residences. The world contains a ''reference grid'' within which RESICALC analyzes the magnetic field environment due to all conductors within the world. Unique physical parameters (e.g., conductor height and spacing) and operating characteristics can be assigned to all electrical conductors. RESICALC's output is available for the x, y, z axis separately, the resultant (the three axes added in quadrature), and the major axis, each in three possible formats: a three-dimensional map of the magnetic field, two dimensional-contours, and as a table with statistical values. All formats may be printed, accompanied by a three-dimensional view of the world the user has drawn. The view of the world and the corresponding three-dimensional field map may be adjusted to the elevation and rotation angle of the user's preference
Liu, Ziyi; Gao, Junfeng; Yang, Guoguo; Zhang, Huan; He, Yong
2016-01-01
We present a pipeline for the visual localization and classification of agricultural pest insects by computing a saliency map and applying deep convolutional neural network (DCNN) learning. First, we used a global contrast region-based approach to compute a saliency map for localizing pest insect objects. Bounding squares containing targets were then extracted, resized to a fixed size, and used to construct a large standard database called Pest ID. This database was then utilized for self-learning of local image features which were, in turn, used for classification by DCNN. DCNN learning optimized the critical parameters, including size, number and convolutional stride of local receptive fields, dropout ratio and the final loss function. To demonstrate the practical utility of using DCNN, we explored different architectures by shrinking depth and width, and found effective sizes that can act as alternatives for practical applications. On the test set of paddy field images, our architectures achieved a mean Accuracy Precision (mAP) of 0.951, a significant improvement over previous methods. PMID:26864172
Dynamic modeling of physical phenomena for PRAs using neural networks
International Nuclear Information System (INIS)
Benjamin, A.S.; Brown, N.N.; Paez, T.L.
1998-04-01
In most probabilistic risk assessments, there is a set of accident scenarios that involves the physical responses of a system to environmental challenges. Examples include the effects of earthquakes and fires on the operability of a nuclear reactor safety system, the effects of fires and impacts on the safety integrity of a nuclear weapon, and the effects of human intrusions on the transport of radionuclides from an underground waste facility. The physical responses of the system to these challenges can be quite complex, and their evaluation may require the use of detailed computer codes that are very time consuming to execute. Yet, to perform meaningful probabilistic analyses, it is necessary to evaluate the responses for a large number of variations in the input parameters that describe the initial state of the system, the environments to which it is exposed, and the effects of human interaction. Because the uncertainties of the system response may be very large, it may also be necessary to perform these evaluations for various values of modeling parameters that have high uncertainties, such as material stiffnesses, surface emissivities, and ground permeabilities. The authors have been exploring the use of artificial neural networks (ANNs) as a means for estimating the physical responses of complex systems to phenomenological events such as those cited above. These networks are designed as mathematical constructs with adjustable parameters that can be trained so that the results obtained from the networks will simulate the results obtained from the detailed computer codes. The intent is for the networks to provide an adequate simulation of the detailed codes over a significant range of variables while requiring only a small fraction of the computer processing time required by the detailed codes. This enables the authors to integrate the physical response analyses into the probabilistic models in order to estimate the probabilities of various responses
Vakanski, A; Ferguson, J M; Lee, S
2016-12-01
The objective of the proposed research is to develop a methodology for modeling and evaluation of human motions, which will potentially benefit patients undertaking a physical rehabilitation therapy (e.g., following a stroke or due to other medical conditions). The ultimate aim is to allow patients to perform home-based rehabilitation exercises using a sensory system for capturing the motions, where an algorithm will retrieve the trajectories of a patient's exercises, will perform data analysis by comparing the performed motions to a reference model of prescribed motions, and will send the analysis results to the patient's physician with recommendations for improvement. The modeling approach employs an artificial neural network, consisting of layers of recurrent neuron units and layers of neuron units for estimating a mixture density function over the spatio-temporal dependencies within the human motion sequences. Input data are sequences of motions related to a prescribed exercise by a physiotherapist to a patient, and recorded with a motion capture system. An autoencoder subnet is employed for reducing the dimensionality of captured sequences of human motions, complemented with a mixture density subnet for probabilistic modeling of the motion data using a mixture of Gaussian distributions. The proposed neural network architecture produced a model for sets of human motions represented with a mixture of Gaussian density functions. The mean log-likelihood of observed sequences was employed as a performance metric in evaluating the consistency of a subject's performance relative to the reference dataset of motions. A publically available dataset of human motions captured with Microsoft Kinect was used for validation of the proposed method. The article presents a novel approach for modeling and evaluation of human motions with a potential application in home-based physical therapy and rehabilitation. The described approach employs the recent progress in the field of
Phase-field model of eutectic growth
International Nuclear Information System (INIS)
Karma, A.
1994-01-01
A phase-field model which describes the solidification of a binary eutectic alloy with a simple symmetric phase diagram is introduced and the sharp-interface limit of this model is explored both analytically and numerically
Goldwyn, Joshua H; Bierer, Steven M; Bierer, Julie Arenberg
2010-09-01
The partial tripolar electrode configuration is a relatively novel stimulation strategy that can generate more spatially focused electric fields than the commonly used monopolar configuration. Focused stimulation strategies should improve spectral resolution in cochlear implant users, but may also be more sensitive to local irregularities in the electrode-neuron interface. In this study, we develop a practical computer model of cochlear implant stimulation that can simulate neural activation in a simplified cochlear geometry and we relate the resulting patterns of neural activity to basic psychophysical measures. We examine how two types of local irregularities in the electrode-neuron interface, variations in spiral ganglion nerve density and electrode position within the scala tympani, affect the simulated neural activation patterns and how these patterns change with electrode configuration. The model shows that higher partial tripolar fractions activate more spatially restricted populations of neurons at all current levels and require higher current levels to excite a given number of neurons. We find that threshold levels are more sensitive at high partial tripolar fractions to both types of irregularities, but these effects are not independent. In particular, at close electrode-neuron distances, activation is typically more spatially localized which leads to a greater influence of neural dead regions. Copyright (c) 2010 Elsevier B.V. All rights reserved.
The CHAOS-4 Geomagnetic Field Model
DEFF Research Database (Denmark)
Olsen, Nils; Finlay, Chris; Lühr, H.
We present CHAOS-4, a new version in the CHAOS model series, which aims at describing the Earth's magnetic field with high spatial resolution (terms up to spherical degree n=90 for the crustal field, and up to n=16 for the time-varying core field are robustly determined) and high temporal...... between the coordinate systems of the vector magnetometer and of the star sensor providing attitude information). The final CHAOS-4 model is derived by merging two sub-models: its low-degree part has been obtained using similar model parameterization and data sets as used for previous CHAOS models (but...
Simple Electromagnetic Modeling of Small Airplanes: Neural Network Approach
Koudelka, V.; Raida, Zbyněk; Tobola, P.
2009-01-01
The paper deals with the development of simple electromagnetic models of small airplanes, which can contain composite materials in their construction. Electromagnetic waves can penetrate through the surface of the aircraft due to the specific electromagnetic properties of the composite materials, which can increase the intensity of fields inside the airplane and can negatively influence the functionality of the sensitive avionics. The airplane is simulated by two parallel dielectric layers (t...
Uncertainty Quantification in Geomagnetic Field Modeling
Chulliat, A.; Nair, M. C.; Alken, P.; Meyer, B.; Saltus, R.; Woods, A.
2017-12-01
Geomagnetic field models are mathematical descriptions of the various sources of the Earth's magnetic field, and are generally obtained by solving an inverse problem. They are widely used in research to separate and characterize field sources, but also in many practical applications such as aircraft and ship navigation, smartphone orientation, satellite attitude control, and directional drilling. In recent years, more sophisticated models have been developed, thanks to the continuous availability of high quality satellite data and to progress in modeling techniques. Uncertainty quantification has become an integral part of model development, both to assess the progress made and to address specific users' needs. Here we report on recent advances made by our group in quantifying the uncertainty of geomagnetic field models. We first focus on NOAA's World Magnetic Model (WMM) and the International Geomagnetic Reference Field (IGRF), two reference models of the main (core) magnetic field produced every five years. We describe the methods used in quantifying the model commission error as well as the omission error attributed to various un-modeled sources such as magnetized rocks in the crust and electric current systems in the atmosphere and near-Earth environment. A simple error model was derived from this analysis, to facilitate usage in practical applications. We next report on improvements brought by combining a main field model with a high resolution crustal field model and a time-varying, real-time external field model, like in NOAA's High Definition Geomagnetic Model (HDGM). The obtained uncertainties are used by the directional drilling industry to mitigate health, safety and environment risks.
Electrocardiogram (ECG Signal Modeling and Noise Reduction Using Hopfield Neural Networks
Directory of Open Access Journals (Sweden)
F. Bagheri
2013-02-01
Full Text Available The Electrocardiogram (ECG signal is one of the diagnosing approaches to detect heart disease. In this study the Hopfield Neural Network (HNN is applied and proposed for ECG signal modeling and noise reduction. The Hopfield Neural Network (HNN is a recurrent neural network that stores the information in a dynamic stable pattern. This algorithm retrieves a pattern stored in memory in response to the presentation of an incomplete or noisy version of that pattern. Computer simulation results show that this method can successfully model the ECG signal and remove high-frequency noise.
Computational neural network regression model for Host based Intrusion Detection System
Directory of Open Access Journals (Sweden)
Sunil Kumar Gautam
2016-09-01
Full Text Available The current scenario of information gathering and storing in secure system is a challenging task due to increasing cyber-attacks. There exists computational neural network techniques designed for intrusion detection system, which provide security to single machine and entire network's machine. In this paper, we have used two types of computational neural network models, namely, Generalized Regression Neural Network (GRNN model and Multilayer Perceptron Neural Network (MPNN model for Host based Intrusion Detection System using log files that are generated by a single personal computer. The simulation results show correctly classified percentage of normal and abnormal (intrusion class using confusion matrix. On the basis of results and discussion, we found that the Host based Intrusion Systems Model (HISM significantly improved the detection accuracy while retaining minimum false alarm rate.
Effects of Some Neurobiological Factors in a Self-organized Critical Model Based on Neural Networks
International Nuclear Information System (INIS)
Zhou Liming; Zhang Yingyue; Chen Tianlun
2005-01-01
Based on an integrate-and-fire mechanism, we investigate the effect of changing the efficacy of the synapse, the transmitting time-delayed, and the relative refractoryperiod on the self-organized criticality in our neural network model.
A Deep Learning based Approach to Reduced Order Modeling of Fluids using LSTM Neural Networks
Mohan, Arvind; Gaitonde, Datta
2017-11-01
Reduced Order Modeling (ROM) can be used as surrogates to prohibitively expensive simulations to model flow behavior for long time periods. ROM is predicated on extracting dominant spatio-temporal features of the flow from CFD or experimental datasets. We explore ROM development with a deep learning approach, which comprises of learning functional relationships between different variables in large datasets for predictive modeling. Although deep learning and related artificial intelligence based predictive modeling techniques have shown varied success in other fields, such approaches are in their initial stages of application to fluid dynamics. Here, we explore the application of the Long Short Term Memory (LSTM) neural network to sequential data, specifically to predict the time coefficients of Proper Orthogonal Decomposition (POD) modes of the flow for future timesteps, by training it on data at previous timesteps. The approach is demonstrated by constructing ROMs of several canonical flows. Additionally, we show that statistical estimates of stationarity in the training data can indicate a priori how amenable a given flow-field is to this approach. Finally, the potential and limitations of deep learning based ROM approaches will be elucidated and further developments discussed.
A Novel CPU/GPU Simulation Environment for Large-Scale Biologically-Realistic Neural Modeling
Directory of Open Access Journals (Sweden)
Roger V Hoang
2013-10-01
Full Text Available Computational Neuroscience is an emerging field that provides unique opportunities to studycomplex brain structures through realistic neural simulations. However, as biological details are added tomodels, the execution time for the simulation becomes longer. Graphics Processing Units (GPUs are now being utilized to accelerate simulations due to their ability to perform computations in parallel. As such, they haveshown significant improvement in execution time compared to Central Processing Units (CPUs. Most neural simulators utilize either multiple CPUs or a single GPU for better performance, but still show limitations in execution time when biological details are not sacrificed. Therefore, we present a novel CPU/GPU simulation environment for large-scale biological networks,the NeoCortical Simulator version 6 (NCS6. NCS6 is a free, open-source, parallelizable, and scalable simula-tor, designed to run on clusters of multiple machines, potentially with high performance computing devicesin each of them. It has built-in leaky-integrate-and-fire (LIF and Izhikevich (IZH neuron models, but usersalso have the capability to design their own plug-in interface for different neuron types as desired. NCS6is currently able to simulate one million cells and 100 million synapses in quasi real time by distributing dataacross these heterogeneous clusters of CPUs and GPUs.
Zhang, Wei; Jiang, Ling; Han, Lei
2018-04-01
Convective storm nowcasting refers to the prediction of the convective weather initiation, development, and decay in a very short term (typically 0 2 h) .Despite marked progress over the past years, severe convective storm nowcasting still remains a challenge. With the boom of machine learning, it has been well applied in various fields, especially convolutional neural network (CNN). In this paper, we build a servere convective weather nowcasting system based on CNN and hidden Markov model (HMM) using reanalysis meteorological data. The goal of convective storm nowcasting is to predict if there is a convective storm in 30min. In this paper, we compress the VDRAS reanalysis data to low-dimensional data by CNN as the observation vector of HMM, then obtain the development trend of strong convective weather in the form of time series. It shows that, our method can extract robust features without any artificial selection of features, and can capture the development trend of strong convective storm.
Geostatistical methods applied to field model residuals
DEFF Research Database (Denmark)
Maule, Fox; Mosegaard, K.; Olsen, Nils
consists of measurement errors and unmodelled signal), and is typically assumed to be uncorrelated and Gaussian distributed. We have applied geostatistical methods to analyse the residuals of the Oersted(09d/04) field model [http://www.dsri.dk/Oersted/Field_models/IGRF_2005_candidates/], which is based...
Alien wavelength modeling tool and field trial
DEFF Research Database (Denmark)
Sambo, N.; Sgambelluri, A.; Secondini, M.
2015-01-01
A modeling tool is presented for pre-FEC BER estimation of PM-QPSK alien wavelength signals. A field trial is demonstrated and used as validation of the tool's correctness. A very close correspondence between the performance of the field trial and the one predicted by the modeling tool has been...
Phase Field Modeling Using PetIGA
Vignal, Philippe; Collier, Nathan; Calo, Victor M.
2013-01-01
, and having a highly efficient and parallel framework to solve them is necessary. In this work, a brief review on phase field models is given, followed by a short analysis of the Phase Field Crystal Model solved with Isogeometric Analysis us- ing PetIGA. We
A deep convolutional neural network model to classify heartbeats.
Acharya, U Rajendra; Oh, Shu Lih; Hagiwara, Yuki; Tan, Jen Hong; Adam, Muhammad; Gertych, Arkadiusz; Tan, Ru San
2017-10-01
The electrocardiogram (ECG) is a standard test used to monitor the activity of the heart. Many cardiac abnormalities will be manifested in the ECG including arrhythmia which is a general term that refers to an abnormal heart rhythm. The basis of arrhythmia diagnosis is the identification of normal versus abnormal individual heart beats, and their correct classification into different diagnoses, based on ECG morphology. Heartbeats can be sub-divided into five categories namely non-ectopic, supraventricular ectopic, ventricular ectopic, fusion, and unknown beats. It is challenging and time-consuming to distinguish these heartbeats on ECG as these signals are typically corrupted by noise. We developed a 9-layer deep convolutional neural network (CNN) to automatically identify 5 different categories of heartbeats in ECG signals. Our experiment was conducted in original and noise attenuated sets of ECG signals derived from a publicly available database. This set was artificially augmented to even out the number of instances the 5 classes of heartbeats and filtered to remove high-frequency noise. The CNN was trained using the augmented data and achieved an accuracy of 94.03% and 93.47% in the diagnostic classification of heartbeats in original and noise free ECGs, respectively. When the CNN was trained with highly imbalanced data (original dataset), the accuracy of the CNN reduced to 89.07%% and 89.3% in noisy and noise-free ECGs. When properly trained, the proposed CNN model can serve as a tool for screening of ECG to quickly identify different types and frequency of arrhythmic heartbeats. Copyright © 2017 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Gaudier, F.
1999-01-01
The determination of the family of optimum core loading patterns for Pressurized Water Reactors (PWRs) involves the assessment of the core attributes, such as the power peaking factor for thousands of candidate loading patterns. Despite the rapid advances in computer architecture, the direct calculation of these attributes by a neutronic code needs a lot of of time and memory. With the goal of reducing the calculation time and optimizing the loading pattern, we propose in this thesis a method based on ideas of neural and statistical learning to provide a feed forward neural network capable of calculating the power peaking corresponding to an eighth core PWR. We use statistical methods to deduct judicious inputs (reduction of the input space dimension) and neural methods to train the model (learning capabilities). Indeed, on one hand, a principal component analysis allows us to characterize more efficiently the fuel assemblies (neural model inputs) and the other hand, the introduction of the a priori knowledge allows us to reducing the number of freedom parameters in the neural network. The model was built using a multi layered perceptron trained with the standard back propagation algorithm. We introduced our neural network in the automatic optimization code FORMOSA, and on EDF real problems we showed an important saving in time. Finally, we propose an hybrid method which combining the best characteristics of the linear local approximator GPT (Generalized Perturbation Theory) and the artificial neural network. (author)
Building analytical three-field cosmological models
Energy Technology Data Exchange (ETDEWEB)
Santos, J.R.L. [Universidade de Federal de Campina Grande, Unidade Academica de Fisica, Campina Grande, PB (Brazil); Moraes, P.H.R.S. [ITA-Instituto Tecnologico de Aeronautica, Sao Jose dos Campos, SP (Brazil); Ferreira, D.A. [Universidade de Federal de Campina Grande, Unidade Academica de Fisica, Campina Grande, PB (Brazil); Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Neta, D.C.V. [Universidade de Federal de Campina Grande, Unidade Academica de Fisica, Campina Grande, PB (Brazil); Universidade Estadual da Paraiba, Departamento de Fisica, Campina Grande, PB (Brazil)
2018-02-15
A difficult task to deal with is the analytical treatment of models composed of three real scalar fields, as their equations of motion are in general coupled and hard to integrate. In order to overcome this problem we introduce a methodology to construct three-field models based on the so-called ''extension method''. The fundamental idea of the procedure is to combine three one-field systems in a non-trivial way, to construct an effective three scalar field model. An interesting scenario where the method can be implemented is with inflationary models, where the Einstein-Hilbert Lagrangian is coupled with the scalar field Lagrangian. We exemplify how a new model constructed from our method can lead to non-trivial behaviors for cosmological parameters. (orig.)
DEFF Research Database (Denmark)
Chon, K H; Hoyer, D; Armoundas, A A
1999-01-01
In this study, we introduce a new approach for estimating linear and nonlinear stochastic autoregressive moving average (ARMA) model parameters, given a corrupt signal, using artificial recurrent neural networks. This new approach is a two-step approach in which the parameters of the deterministic...... part of the stochastic ARMA model are first estimated via a three-layer artificial neural network (deterministic estimation step) and then reestimated using the prediction error as one of the inputs to the artificial neural networks in an iterative algorithm (stochastic estimation step). The prediction...... error is obtained by subtracting the corrupt signal of the estimated ARMA model obtained via the deterministic estimation step from the system output response. We present computer simulation examples to show the efficacy of the proposed stochastic recurrent neural network approach in obtaining accurate...
Energy efficiency optimisation for distillation column using artificial neural network models
International Nuclear Information System (INIS)
Osuolale, Funmilayo N.; Zhang, Jie
2016-01-01
This paper presents a neural network based strategy for the modelling and optimisation of energy efficiency in distillation columns incorporating the second law of thermodynamics. Real-time optimisation of distillation columns based on mechanistic models is often infeasible due to the effort in model development and the large computation effort associated with mechanistic model computation. This issue can be addressed by using neural network models which can be quickly developed from process operation data. The computation time in neural network model evaluation is very short making them ideal for real-time optimisation. Bootstrap aggregated neural networks are used in this study for enhanced model accuracy and reliability. Aspen HYSYS is used for the simulation of the distillation systems. Neural network models for exergy efficiency and product compositions are developed from simulated process operation data and are used to maximise exergy efficiency while satisfying products qualities constraints. Applications to binary systems of methanol-water and benzene-toluene separations culminate in a reduction of utility consumption of 8.2% and 28.2% respectively. Application to multi-component separation columns also demonstrate the effectiveness of the proposed method with a 32.4% improvement in the exergy efficiency. - Highlights: • Neural networks can accurately model exergy efficiency in distillation columns. • Bootstrap aggregated neural network offers improved model prediction accuracy. • Improved exergy efficiency is obtained through model based optimisation. • Reductions of utility consumption by 8.2% and 28.2% were achieved for binary systems. • The exergy efficiency for multi-component distillation is increased by 32.4%.
Mean field models for spin glasses
Talagrand, Michel
2011-01-01
This is a new, completely revised, updated and enlarged edition of the author's Ergebnisse vol. 46: "Spin Glasses: A Challenge for Mathematicians". This new edition will appear in two volumes, the present first volume presents the basic results and methods, the second volume is expected to appear in 2011. In the eighties, a group of theoretical physicists introduced several models for certain disordered systems, called "spin glasses". These models are simple and rather canonical random structures, of considerable interest for several branches of science (statistical physics, neural networks and computer science). The physicists studied them by non-rigorous methods and predicted spectacular behaviors. This book introduces in a rigorous manner this exciting new area to the mathematically minded reader. It requires no knowledge whatsoever of any physics. The first volume of this new and completely rewritten edition presents six fundamental models and the basic techniques to study them.
A combinatorial wind field model
DEFF Research Database (Denmark)
Soleimanzadeh, Maryam; Wisniewski, Rafal; Sloth, Christoffer
2010-01-01
This report is the deliverable 2.4 in the project Distributed Control of Large-Scale Oshore Wind Farms with the acronym Aeolus. The objective of this deliverable is to provide an understanding of the wind eld model and dynamic variations superimposed on the mean eld. In this report a dynamical...
A neural model of border-ownership from kinetic occlusion.
Layton, Oliver W; Yazdanbakhsh, Arash
2015-01-01
Camouflaged animals that have very similar textures to their surroundings are difficult to detect when stationary. However, when an animal moves, humans readily see a figure at a different depth than the background. How do humans perceive a figure breaking camouflage, even though the texture of the figure and its background may be statistically identical in luminance? We present a model that demonstrates how the primate visual system performs figure-ground segregation in extreme cases of breaking camouflage based on motion alone. Border-ownership signals develop as an emergent property in model V2 units whose receptive fields are nearby kinetically defined borders that separate the figure and background. Model simulations support border-ownership as a general mechanism by which the visual system performs figure-ground segregation, despite whether figure-ground boundaries are defined by luminance or motion contrast. The gradient of motion- and luminance-related border-ownership signals explains the perceived depth ordering of the foreground and background surfaces. Our model predicts that V2 neurons, which are sensitive to kinetic edges, are selective to border-ownership (magnocellular B cells). A distinct population of model V2 neurons is selective to border-ownership in figures defined by luminance contrast (parvocellular B cells). B cells in model V2 receive feedback from neurons in V4 and MT with larger receptive fields to bias border-ownership signals toward the figure. We predict that neurons in V4 and MT sensitive to kinetically defined figures play a crucial role in determining whether the foreground surface accretes, deletes, or produces a shearing motion with respect to the background. Copyright © 2014 Elsevier Ltd. All rights reserved.
Modeling the behavioral substrates of associate learning and memory - Adaptive neural models
Lee, Chuen-Chien
1991-01-01
Three adaptive single-neuron models based on neural analogies of behavior modification episodes are proposed, which attempt to bridge the gap between psychology and neurophysiology. The proposed models capture the predictive nature of Pavlovian conditioning, which is essential to the theory of adaptive/learning systems. The models learn to anticipate the occurrence of a conditioned response before the presence of a reinforcing stimulus when training is complete. Furthermore, each model can find the most nonredundant and earliest predictor of reinforcement. The behavior of the models accounts for several aspects of basic animal learning phenomena in Pavlovian conditioning beyond previous related models. Computer simulations show how well the models fit empirical data from various animal learning paradigms.
MODELLING SYNERGISTIC EYE MOVEMENTS IN THE VISUAL FIELD
Directory of Open Access Journals (Sweden)
BARITZ Mihaela
2015-06-01
Full Text Available Some theoretical and practical considerations about eye movements in visual field are presented in the first part of this paper. These movements are developed into human body to be synergistic and are allowed to obtain the visual perception in 3D space. The theoretical background of the eye movements’ analysis is founded on the establishment of movement equations of the eyeball, as they consider it a solid body with a fixed point. The exterior actions, the order and execution of the movements are ensured by the neural and muscular external system and thus the position, stability and movements of the eye can be quantified through the method of reverse kinematic. The purpose of these researches is the development of a simulation model of human binocular visual system, an acquisition methodology and an experimental setup for data processing and recording regarding the eye movements, presented in the second part of the paper. The modeling system of ocular movements aims to establish the binocular synergy and limits of visual field changes in condition of ocular motor dysfunctions. By biomechanical movements of eyeball is established a modeling strategy for different sort of processes parameters like convergence, fixation and eye lens accommodation to obtain responses from binocular balance. The results of modelling processes and the positions of eye ball and axis in visual field are presented in the final part of the paper.
Glover, Paul M; Watkins, Roger H; O'Neill, George C; Ackerley, Rochelle; Sanchez-Panchuelo, Rosa; McGlone, Francis; Brookes, Matthew J; Wessberg, Johan; Francis, Susan T
2017-10-01
Intra-neural microstimulation (INMS) is a technique that allows the precise delivery of low-current electrical pulses into human peripheral nerves. Single unit INMS can be used to stimulate individual afferent nerve fibres during microneurography. Combining this with neuroimaging allows the unique monitoring of central nervous system activation in response to unitary, controlled tactile input, with functional magnetic resonance imaging (fMRI) providing exquisite spatial localisation of brain activity and magnetoencephalography (MEG) high temporal resolution. INMS systems suitable for use within electrophysiology laboratories have been available for many years. We describe an INMS system specifically designed to provide compatibility with both ultra-high field (7T) fMRI and MEG. Numerous technical and safety issues are addressed. The system is fully analogue, allowing for arbitrary frequency and amplitude INMS stimulation. Unitary recordings obtained within both the MRI and MEG screened-room environments are comparable with those obtained in 'clean' electrophysiology recording environments. Single unit INMS (current met. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Stability of bumps in piecewise smooth neural fields with nonlinear adaptation
Kilpatrick, Zachary P.
2010-06-01
We study the linear stability of stationary bumps in piecewise smooth neural fields with local negative feedback in the form of synaptic depression or spike frequency adaptation. The continuum dynamics is described in terms of a nonlocal integrodifferential equation, in which the integral kernel represents the spatial distribution of synaptic weights between populations of neurons whose mean firing rate is taken to be a Heaviside function of local activity. Discontinuities in the adaptation variable associated with a bump solution means that bump stability cannot be analyzed by constructing the Evans function for a network with a sigmoidal gain function and then taking the high-gain limit. In the case of synaptic depression, we show that linear stability can be formulated in terms of solutions to a system of pseudo-linear equations. We thus establish that sufficiently strong synaptic depression can destabilize a bump that is stable in the absence of depression. These instabilities are dominated by shift perturbations that evolve into traveling pulses. In the case of spike frequency adaptation, we show that for a wide class of perturbations the activity and adaptation variables decouple in the linear regime, thus allowing us to explicitly determine stability in terms of the spectrum of a smooth linear operator. We find that bumps are always unstable with respect to this class of perturbations, and destabilization of a bump can result in either a traveling pulse or a spatially localized breather. © 2010 Elsevier B.V. All rights reserved.
A neural network model of the relativistic electron flux at geosynchronous orbit
International Nuclear Information System (INIS)
Koons, H.C.; Gorney, D.J.
1991-01-01
A neural network has been developed to model the temporal variations of relativistic (>3 MeV) electrons at geosynchronous orbit based on model inputs consisting of 10 consecutive days of the daily sum of the planetary magnetic index ΣKp. The neural network consists of three layers of neurons, containing 10 neurons in the input layer, 6 neurons in a hidden layer, and 1 output neuron. The output is a prediction of the daily-averaged electron flux for the tenth day. The neural network was trained using 62 days of data from July 1, 1984, through August 31, 1984, from the SEE spectrometer on the geosynchronous spacecraft 1982-019. The performance of the model was measured by comparing model outputs with measured fluxes over a 6-year period from April 19, 1982, to June 4, 1988. For the entire data set the rms logarithmic error of the neural network is 0.76, and the average logarithmic error is 0.58. The neural network is essentially zero biased, and for accumulation intervals of 3 days or longer the average logarithmic error is less than 0.1. The neural network provides results that are significantly more accurate than those from linear prediction filters. The model has been used to simulate conditions which are rarely observed in nature, such as long periods of quiet (ΣKp = 0) and ideal impulses. It has also been used to make reasonably accurate day-ahead forecasts of the relativistic electron flux at geosynchronous orbit
Field theory and the Standard Model
Energy Technology Data Exchange (ETDEWEB)
Dudas, E [Orsay, LPT (France)
2014-07-01
This brief introduction to Quantum Field Theory and the Standard Model contains the basic building blocks of perturbation theory in quantum field theory, an elementary introduction to gauge theories and the basic classical and quantum features of the electroweak sector of the Standard Model. Some details are given for the theoretical bias concerning the Higgs mass limits, as well as on obscure features of the Standard Model which motivate new physics constructions.
An evaluation of Tsyganenko magnetic field model
International Nuclear Information System (INIS)
Fairfield, D.H.
1991-01-01
A long-standing goal of magnetospheric physics has been to produce a model of the Earth's magnetic field that can accurately predict the field vector at all locations within the magnetosphere for all dipole tilt angles and for various solar wind or magnetic activity conditions. A number of models make such predictions, but some only for limited spatial regions, some only for zero tilt angle, and some only for arbitrary conditions. No models depend explicitly on solar wind conditions. A data set of more than 22,000 vector averages of the magnetosphere magnetic field over 0.5 R E regions is used to evaluate Tsyganenko's 1982 and 1987 magnetospheric magnetic field models. The magnetic field predicted by the model in various regions is compared to observations to find systematic discrepancies which future models might address. While agreement is generally good, discrepancies are noted which include: (1) a lack of adequate field line stretching in the tail and ring current regions; (2) an inability to predict weak enough fields in the polar cusps; and (3) a deficiency of Kp as a predictor of the field configuration
Modeling of an industrial process of pleuromutilin fermentation using feed-forward neural networks
Directory of Open Access Journals (Sweden)
L. Khaouane
2013-03-01
Full Text Available This work investigates the use of artificial neural networks in modeling an industrial fermentation process of Pleuromutilin produced by Pleurotus mutilus in a fed-batch mode. Three feed-forward neural network models characterized by a similar structure (five neurons in the input layer, one hidden layer and one neuron in the output layer are constructed and optimized with the aim to predict the evolution of three main bioprocess variables: biomass, substrate and product. Results show a good fit between the predicted and experimental values for each model (the root mean squared errors were 0.4624% - 0.1234 g/L and 0.0016 mg/g respectively. Furthermore, the comparison between the optimized models and the unstructured kinetic models in terms of simulation results shows that neural network models gave more significant results. These results encourage further studies to integrate the mathematical formulae extracted from these models into an industrial control loop of the process.
Modeling and prediction of Turkey's electricity consumption using Artificial Neural Networks
International Nuclear Information System (INIS)
Kavaklioglu, Kadir; Ozturk, Harun Kemal; Canyurt, Olcay Ersel; Ceylan, Halim
2009-01-01
Artificial Neural Networks are proposed to model and predict electricity consumption of Turkey. Multi layer perceptron with backpropagation training algorithm is used as the neural network topology. Tangent-sigmoid and pure-linear transfer functions are selected in the hidden and output layer processing elements, respectively. These input-output network models are a result of relationships that exist among electricity consumption and several other socioeconomic variables. Electricity consumption is modeled as a function of economic indicators such as population, gross national product, imports and exports. It is also modeled using export-import ratio and time input only. Performance comparison among different models is made based on absolute and percentage mean square error. Electricity consumption of Turkey is predicted until 2027 using data from 1975 to 2006 along with other economic indicators. The results show that electricity consumption can be modeled using Artificial Neural Networks, and the models can be used to predict future electricity consumption. (author)
Robust recurrent neural network modeling for software fault detection and correction prediction
International Nuclear Information System (INIS)
Hu, Q.P.; Xie, M.; Ng, S.H.; Levitin, G.
2007-01-01
Software fault detection and correction processes are related although different, and they should be studied together. A practical approach is to apply software reliability growth models to model fault detection, and fault correction process is assumed to be a delayed process. On the other hand, the artificial neural networks model, as a data-driven approach, tries to model these two processes together with no assumptions. Specifically, feedforward backpropagation networks have shown their advantages over analytical models in fault number predictions. In this paper, the following approach is explored. First, recurrent neural networks are applied to model these two processes together. Within this framework, a systematic networks configuration approach is developed with genetic algorithm according to the prediction performance. In order to provide robust predictions, an extra factor characterizing the dispersion of prediction repetitions is incorporated into the performance function. Comparisons with feedforward neural networks and analytical models are developed with respect to a real data set
A hyperstable neural network for the modelling and control of ...
Indian Academy of Sciences (India)
Computer control; neural networks; nonlinear systems; adaptive ... considered in their design and so they are not applicable for many actual real-world .... particularly in the presence of unmodelled dynamics such as time delays. .... showing the algorithm operating successfully on such a (non-favoured) system, is a respec-.
Bayesian model ensembling using meta-trained recurrent neural networks
Ambrogioni, L.; Berezutskaya, Y.; Gü ç lü , U.; Borne, E.W.P. van den; Gü ç lü tü rk, Y.; Gerven, M.A.J. van; Maris, E.G.G.
2017-01-01
In this paper we demonstrate that a recurrent neural network meta-trained on an ensemble of arbitrary classification tasks can be used as an approximation of the Bayes optimal classifier. This result is obtained by relying on the framework of e-free approximate Bayesian inference, where the Bayesian
A neural network model for non invasive subsurface stratigraphic identification
International Nuclear Information System (INIS)
Sullivan, John M. Jr.; Ludwig, Reinhold; Lai Qiang
2000-01-01
Ground-Penetrating Radar (GRP) is a powerful tool to examine the stratigraphy below ground surface for remote sensing. Increasingly GPR has also found applications in microwave NDE as an interrogation tool to assess dielectric layers. Unfortunately, GPR data is characterized by a high degree of uncertainty and natural physical ambiguity. Robust decomposition routines are sparse for this application. We have developed a hierarchical set of neural network modules which split the task of layer profiling into consecutive stages. Successful GPR profiling of the subsurface stratigraphy is of key importance for many remote sensing applications including microwave NDE. Neural network modules were designed to accomplish the two main processing goals of recognizing the 'subsurface pattern' followed by the identification of the depths of the subsurface layers like permafrost, groundwater table, and bedrock. We used an adaptive transform technique to transform raw GPR data into a small feature vector containing the most representative and discriminative features of the signal. This information formed the input for the neural network processing units. This strategy reduced the number of required training samples for the neural network by orders of magnitude. The entire processing system was trained using the adaptive transformed feature vector inputs and tested with real measured GPR data. The successful results of this system establishes the feasibility the feasibility of delineating subsurface layering nondestructively
Animal models for studying neural crest development: is the mouse different?
Barriga, Elias H; Trainor, Paul A; Bronner, Marianne; Mayor, Roberto
2015-05-01
The neural crest is a uniquely vertebrate cell type and has been well studied in a number of model systems. Zebrafish, Xenopus and chick embryos largely show consistent requirements for specific genes in early steps of neural crest development. By contrast, knockouts of homologous genes in the mouse often do not exhibit comparable early neural crest phenotypes. In this Spotlight article, we discuss these species-specific differences, suggest possible explanations for the divergent phenotypes in mouse and urge the community to consider these issues and the need for further research in complementary systems. © 2015. Published by The Company of Biologists Ltd.
Directory of Open Access Journals (Sweden)
Dawei Han
2012-02-01
Full Text Available The application of ANNs (Artifi cial Neural Networks has been studied by many researchers in modelling rainfall runoff processes. However, the work so far has been focused on the rainfall data from traditional raingauges. Weather radar is a modern technology which could provide high resolution rainfall in time and space. In this study, a comparison in rainfall runoff modelling between the raingauge and weather radar has been carried out. The data were collected from Brue catchment in Southwest of England, with 49 raingauges covering 136 km2 and two C-band weather radars. This raingauge network is extremely dense (for research purposes and does not represent the usual raingauge density in operational flood forecasting systems. The ANN models were set up with both lumped and spatial rainfall input. The results showed that raingauge data outperformed radar data in all the events tested, regardless of the lumped and spatial input. La aplicación de Redes Neuronales Artificiales (RNA en el modelado de lluvia-flujo ha sido estudiada ampliamente. Sin embargo, hasta ahora se han utilizado datos provenientes de pluviómetros tradicionales. Los radares meteorológicos son una tecnología moderna que puede proveer datos de lluvia de alta resolución en tiempo y espacio. Este es un trabajo de comparación en el modelado lluvia-flujo entre pluviómetros y radares meteorológicos. Los datos provienen de la cuenca del río Brue en el suroeste de Inglaterra, con 49 pluviómetros cubriendo 136 km2 y dos radares meteorológicos en la banda C. Esta red de pluviómetros es extremadamente densa (para investigación y no representa la densidad usual en sistemas de predicción de inundaciones. Los modelos de RNA fueron implementados con datos de entrada de lluvia tanto espaciados como no distribuidos. Los resultados muestran que los datos de los pluviómetros fueron mejores que los datos de los radares en todos los eventos probados.
Phase Field Modeling Using PetIGA
Vignal, Philippe
2013-06-01
Phase field modeling has become a widely used framework in the computational material science community. Its ability to model different problems by defining appropriate phase field parameters and relating it to a free energy functional makes it highly versatile. Thermodynamically consistent partial differential equations can then be generated by assuming dissipative dynamics, and setting up the problem as one of minimizing this free energy. The equations are nonetheless challenging to solve, and having a highly efficient and parallel framework to solve them is necessary. In this work, a brief review on phase field models is given, followed by a short analysis of the Phase Field Crystal Model solved with Isogeometric Analysis us- ing PetIGA. We end with an introduction to a new modeling concept, where free energy functions are built with a periodic equilibrium structure in mind.
Ceylan, Halil; Gopalakrishnan, Kasthurirangan; Birkan Bayrak, Mustafa; Guclu, Alper
2013-09-01
The need to rapidly and cost-effectively evaluate the present condition of pavement infrastructure is a critical issue concerning the deterioration of ageing transportation infrastructure all around the world. Nondestructive testing (NDT) and evaluation methods are well-suited for characterising materials and determining structural integrity of pavement systems. The falling weight deflectometer (FWD) is a NDT equipment used to assess the structural condition of highway and airfield pavement systems and to determine the moduli of pavement layers. This involves static or dynamic inverse analysis (referred to as backcalculation) of FWD deflection profiles in the pavement surface under a simulated truck load. The main objective of this study was to employ biologically inspired computational systems to develop robust pavement layer moduli backcalculation algorithms that can tolerate noise or inaccuracies in the FWD deflection data collected in the field. Artificial neural systems, also known as artificial neural networks (ANNs), are valuable computational intelligence tools that are increasingly being used to solve resource-intensive complex engineering problems. Unlike the linear elastic layered theory commonly used in pavement layer backcalculation, non-linear unbound aggregate base and subgrade soil response models were used in an axisymmetric finite element structural analysis programme to generate synthetic database for training and testing the ANN models. In order to develop more robust networks that can tolerate the noisy or inaccurate pavement deflection patterns in the NDT data, several network architectures were trained with varying levels of noise in them. The trained ANN models were capable of rapidly predicting the pavement layer moduli and critical pavement responses (tensile strains at the bottom of the asphalt concrete layer, compressive strains on top of the subgrade layer and the deviator stresses on top of the subgrade layer), and also pavement
Stenemo, Fredrik; Lindahl, Anna M. L.; Gärdenäs, Annemieke; Jarvis, Nicholas
2007-08-01
Several simple index methods that use easily accessible data have been developed and included in decision-support systems to estimate pesticide leaching across larger areas. However, these methods often lack important process descriptions (e.g. macropore flow), which brings into question their reliability. Descriptions of macropore flow have been included in simulation models, but these are too complex and demanding for spatial applications. To resolve this dilemma, a neural network simulation meta-model of the dual-permeability macropore flow model MACRO was created for pesticide groundwater exposure assessment. The model was parameterized using pedotransfer functions that require as input the clay and sand content of the topsoil and subsoil, and the topsoil organic carbon content. The meta-model also requires the topsoil pesticide half-life and the soil organic carbon sorption coefficient as input. A fully connected feed-forward multilayer perceptron classification network with two hidden layers, linked to fully connected feed-forward multilayer perceptron neural networks with one hidden layer, trained on sub-sets of the target variable, was shown to be a suitable meta-model for the intended purpose. A Fourier amplitude sensitivity test showed that the model output (the 80th percentile average yearly pesticide concentration at 1 m depth for a 20 year simulation period) was sensitive to all input parameters. The two input parameters related to pesticide characteristics (i.e. soil organic carbon sorption coefficient and topsoil pesticide half-life) were the most influential, but texture in the topsoil was also quite important since it was assumed to control the mass exchange coefficient that regulates the strength of macropore flow. This is in contrast to models based on the advection-dispersion equation where soil texture is relatively unimportant. The use of the meta-model is exemplified with a case-study where the spatial variability of pesticide leaching is
Re-evaluation of the AASHTO-flexible pavement design equation with neural network modeling.
Tiğdemir, Mesut
2014-01-01
Here we establish that equivalent single-axle loads values can be estimated using artificial neural networks without the complex design equality of American Association of State Highway and Transportation Officials (AASHTO). More importantly, we find that the neural network model gives the coefficients to be able to obtain the actual load values using the AASHTO design values. Thus, those design traffic values that might result in deterioration can be better calculated using the neural networks model than with the AASHTO design equation. The artificial neural network method is used for this purpose. The existing AASHTO flexible pavement design equation does not currently predict the pavement performance of the strategic highway research program (Long Term Pavement Performance studies) test sections very accurately, and typically over-estimates the number of equivalent single axle loads needed to cause a measured loss of the present serviceability index. Here we aimed to demonstrate that the proposed neural network model can more accurately represent the loads values data, compared against the performance of the AASHTO formula. It is concluded that the neural network may be an appropriate tool for the development of databased-nonparametric models of pavement performance.
Linear and nonlinear ARMA model parameter estimation using an artificial neural network
Chon, K. H.; Cohen, R. J.
1997-01-01
This paper addresses parametric system identification of linear and nonlinear dynamic systems by analysis of the input and output signals. Specifically, we investigate the relationship between estimation of the system using a feedforward neural network model and estimation of the system by use of linear and nonlinear autoregressive moving-average (ARMA) models. By utilizing a neural network model incorporating a polynomial activation function, we show the equivalence of the artificial neural network to the linear and nonlinear ARMA models. We compare the parameterization of the estimated system using the neural network and ARMA approaches by utilizing data generated by means of computer simulations. Specifically, we show that the parameters of a simulated ARMA system can be obtained from the neural network analysis of the simulated data or by conventional least squares ARMA analysis. The feasibility of applying neural networks with polynomial activation functions to the analysis of experimental data is explored by application to measurements of heart rate (HR) and instantaneous lung volume (ILV) fluctuations.
Reduced-Order Modeling for Flutter/LCO Using Recurrent Artificial Neural Network
Yao, Weigang; Liou, Meng-Sing
2012-01-01
The present study demonstrates the efficacy of a recurrent artificial neural network to provide a high fidelity time-dependent nonlinear reduced-order model (ROM) for flutter/limit-cycle oscillation (LCO) modeling. An artificial neural network is a relatively straightforward nonlinear method for modeling an input-output relationship from a set of known data, for which we use the radial basis function (RBF) with its parameters determined through a training process. The resulting RBF neural network, however, is only static and is not yet adequate for an application to problems of dynamic nature. The recurrent neural network method [1] is applied to construct a reduced order model resulting from a series of high-fidelity time-dependent data of aero-elastic simulations. Once the RBF neural network ROM is constructed properly, an accurate approximate solution can be obtained at a fraction of the cost of a full-order computation. The method derived during the study has been validated for predicting nonlinear aerodynamic forces in transonic flow and is capable of accurate flutter/LCO simulations. The obtained results indicate that the present recurrent RBF neural network is accurate and efficient for nonlinear aero-elastic system analysis
International Nuclear Information System (INIS)
Lin, Jing-Fung; Sheu, Jer-Jia
2016-01-01
Citric acid coated (citrate-stabilized) magnetite (Fe 3 O 4 ) magnetic nanoparticles have been conducted and applied in the biomedical fields. Using Taguchi-based measured retardances as the training data, an artificial neural network (ANN) model was developed for the prediction of retardance in citric acid (CA) coated ferrofluid (FF). According to the ANN simulation results in the training stage, the correlation coefficient between predicted retardances and measured retardances was found to be as high as 0.9999998. Based on the well-trained ANN model, the predicted retardance at excellent program from Taguchi method showed less error of 2.17% compared with a multiple regression (MR) analysis of statistical significance. Meanwhile, the parameter analysis at excellent program by the ANN model had the guiding significance to find out a possible program for the maximum retardance. It was concluded that the proposed ANN model had high ability for the prediction of retardance in CA coated FF. - Highlights: • The feedforward ANN is applied for modeling of retardance in CA coated FFs. • ANN can predict the retardance at excellent program with acceptable error to MR. • The proposed ANN has high ability for the prediction of retardance.
Kolokythas, Kostantinos; Vasileios, Salamalikis; Athanassios, Argiriou; Kazantzidis, Andreas
2015-04-01
The wind is a result of complex interactions of numerous mechanisms taking place in small or large scales, so, the better knowledge of its behavior is essential in a variety of applications, especially in the field of power production coming from wind turbines. In the literature there is a considerable number of models, either physical or statistical ones, dealing with the problem of simulation and prediction of wind speed. Among others, Artificial Neural Networks (ANNs) are widely used for the purpose of wind forecasting and, in the great majority of cases, outperform other conventional statistical models. In this study, a number of ANNs with different architectures, which have been created and applied in a dataset of wind time series, are compared to Auto Regressive Integrated Moving Average (ARIMA) statistical models. The data consist of mean hourly wind speeds coming from a wind farm on a hilly Greek region and cover a period of one year (2013). The main goal is to evaluate the models ability to simulate successfully the wind speed at a significant point (target). Goodness-of-fit statistics are performed for the comparison of the different methods. In general, the ANN showed the best performance in the estimation of wind speed prevailing over the ARIMA models.
Astrophysical constraints on scalar field models
International Nuclear Information System (INIS)
Bertolami, O.; Paramos, J.
2005-01-01
We use stellar structure dynamics arguments to extract bounds on the relevant parameters of two scalar field models: the putative scalar field mediator of a fifth force with a Yukawa potential and the new variable mass particle models. We also analyze the impact of a constant solar inbound acceleration, such as the one reported by the Pioneer anomaly, on stellar astrophysics. We consider the polytropic gas model to estimate the effect of these models on the hydrostatic equilibrium equation and fundamental quantities such as the central temperature. The current bound on the solar luminosity is used to constrain the relevant parameters of each model
Morphogens, modeling and patterning the neural tube: an interview with James Briscoe.
Briscoe, James
2015-01-20
James Briscoe has a BSc in Microbiology and Virology (from the University of Warwick, UK) and a PhD in Molecular and Cellular Biology (from the Imperial Cancer Research Fund, London, now Cancer Research UK). He started working on the development of the neural tube in the lab of Tom Jessel as a postdoctoral fellow, establishing that there was graded sonic hedgehog signaling in the ventral neural tube. He is currently a group leader and Head of Division in Developmental Biology at the MRC National Institute for Medical Research (which will become part of the Francis Crick Institute in April 2015). He is working to understand the molecular and cellular mechanisms of graded signaling in the vertebrate neural tube.We interviewed him about the development of ideas on morphogenetic gradients and his own work on modeling the development of the neural tube for our series on modeling in biology.
Magnetic field decay in model SSC dipoles
International Nuclear Information System (INIS)
Gilbert, W.S.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Green, M.A.; Green, M.I.; Scanlan, R.M.
1988-08-01
We have observed that some of our model SSC dipoles have long time constant decays of the magnetic field harmonics with amplitudes large enough to result in significant beam loss, if they are not corrected. The magnets were run at constant current at the SSC injection field level of 0.3 tesla for one to three hours and changes in the magnetic field were observed. One explanation for the observed field decay is time dependent superconductor magnetization. Another explanation involves flux creep or flux flow. Data are presented on how the decay changes with previous flux history. Similar magnets with different Nb-Ti filament spacings and matrix materials have different long time field decay. A theoretical model using proximity coupling and flux creep for the observed field decay is discussed. 10 refs., 5 figs., 2 tabs
Reconstructing bidimensional scalar field theory models
International Nuclear Information System (INIS)
Flores, Gabriel H.; Svaiter, N.F.
2001-07-01
In this paper we review how to reconstruct scalar field theories in two dimensional spacetime starting from solvable Scrodinger equations. Theree different Schrodinger potentials are analyzed. We obtained two new models starting from the Morse and Scarf II hyperbolic potencials, the U (θ) θ 2 In 2 (θ 2 ) model and U (θ) = θ 2 cos 2 (In(θ 2 )) model respectively. (author)
Neural dynamics of motion perception: direction fields, apertures, and resonant grouping.
Grossberg, S; Mingolla, E
1993-03-01
A neural network model of global motion segmentation by visual cortex is described. Called the motion boundary contour system (BCS), the model clarifies how ambiguous local movements on a complex moving shape are actively reorganized into a coherent global motion signal. Unlike many previous researchers, we analyze how a coherent motion signal is imparted to all regions of a moving figure, not only to regions at which unambiguous motion signals exist. The model hereby suggests a solution to the global aperture problem. The motion BCS describes how preprocessing of motion signals by a motion oriented contrast (MOC) filter is joined to long-range cooperative grouping mechanisms in a motion cooperative-competitive (MOCC) loop to control phenomena such as motion capture. The motion BCS is computed in parallel with the static BCS of Grossberg and Mingolla (1985a, 1985b, 1987). Homologous properties of the motion BCS and the static BCS, specialized to process motion directions and static orientations, respectively, support a unified explanation of many data about static form perception and motion form perception that have heretofore been unexplained or treated separately. Predictions about microscopic computational differences of the parallel cortical streams V1-->MT and V1-->V2-->MT are made--notably, the magnocellular thick stripe and parvocellular interstripe streams. It is shown how the motion BCS can compute motion directions that may be synthesized from multiple orientations with opposite directions of contrast. Interactions of model simple cells, complex cells, hyper-complex cells, and bipole cells are described, with special emphasis given to new functional roles in direction disambiguation for endstopping at multiple processing stages and to the dynamic interplay of spatially short-range and long-range interactions.
Golay, Jean; Kanevski, Mikhaïl
2013-04-01
The present research deals with the exploration and modeling of a complex dataset of 200 measurement points of sediment pollution by heavy metals in Lake Geneva. The fundamental idea was to use multivariate Artificial Neural Networks (ANN) along with geostatistical models and tools in order to improve the accuracy and the interpretability of data modeling. The results obtained with ANN were compared to those of traditional geostatistical algorithms like ordinary (co)kriging and (co)kriging with an external drift. Exploratory data analysis highlighted a great variety of relationships (i.e. linear, non-linear, independence) between the 11 variables of the dataset (i.e. Cadmium, Mercury, Zinc, Copper, Titanium, Chromium, Vanadium and Nickel as well as the spatial coordinates of the measurement points and their depth). Then, exploratory spatial data analysis (i.e. anisotropic variography, local spatial correlations and moving window statistics) was carried out. It was shown that the different phenomena to be modeled were characterized by high spatial anisotropies, complex spatial correlation structures and heteroscedasticity. A feature selection procedure based on General Regression Neural Networks (GRNN) was also applied to create subsets of variables enabling to improve the predictions during the modeling phase. The basic modeling was conducted using a Multilayer Perceptron (MLP) which is a workhorse of ANN. MLP models are robust and highly flexible tools which can incorporate in a nonlinear manner different kind of high-dimensional information. In the present research, the input layer was made of either two (spatial coordinates) or three neurons (when depth as auxiliary information could possibly capture an underlying trend) and the output layer was composed of one (univariate MLP) to eight neurons corresponding to the heavy metals of the dataset (multivariate MLP). MLP models with three input neurons can be referred to as Artificial Neural Networks with EXternal
Modelling electricity forward markets by ambit fields
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole; Fred Espen Benth, Fred Espen; Veraart, Almut
This paper proposes a new modelling framework for electricity forward markets, which is based on ambit fields. The new model can capture many of the stylised facts observed in energy markets. One of the main differences to the traditional models lies in the fact that we do not model the dynamics......, but the forward price directly, where we focus on models which are stationary in time. We give a detailed account on the probabilistic properties of the new model and we discuss martingale conditions and change of measure within the new model class. Also, we derive a model for the spot price which is obtained...
International Nuclear Information System (INIS)
Rajpal, P.S.; Shishodia, K.S.; Sekhon, G.S.
2006-01-01
The paper explores the application of artificial neural networks to model the behaviour of a complex, repairable system. A composite measure of reliability, availability and maintainability parameters has been proposed for measuring the system performance. The artificial neural network has been trained using past data of a helicopter transportation facility. It is used to simulate behaviour of the facility under various constraints. The insights obtained from results of simulation are useful in formulating strategies for optimal operation of the system
ReSeg: A Recurrent Neural Network-Based Model for Semantic Segmentation
Visin, Francesco; Ciccone, Marco; Romero, Adriana; Kastner, Kyle; Cho, Kyunghyun; Bengio, Yoshua; Matteucci, Matteo; Courville, Aaron
2015-01-01
We propose a structured prediction architecture, which exploits the local generic features extracted by Convolutional Neural Networks and the capacity of Recurrent Neural Networks (RNN) to retrieve distant dependencies. The proposed architecture, called ReSeg, is based on the recently introduced ReNet model for image classification. We modify and extend it to perform the more challenging task of semantic segmentation. Each ReNet layer is composed of four RNN that sweep the image horizontally ...
Models of neural dynamics in brain information processing - the developments of 'the decade'
Energy Technology Data Exchange (ETDEWEB)
Borisyuk, G N; Borisyuk, R M; Kazanovich, Yakov B [Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow region (Russian Federation); Ivanitskii, Genrikh R [Institute for Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region (Russian Federation)
2002-10-31
Neural network models are discussed that have been developed during the last decade with the purpose of reproducing spatio-temporal patterns of neural activity in different brain structures. The main goal of the modeling was to test hypotheses of synchronization, temporal and phase relations in brain information processing. The models being considered are those of temporal structure of spike sequences, of neural activity dynamics, and oscillatory models of attention and feature integration. (reviews of topical problems)
Concurrent heterogeneous neural model simulation on real-time neuromimetic hardware.
Rast, Alexander; Galluppi, Francesco; Davies, Sergio; Plana, Luis; Patterson, Cameron; Sharp, Thomas; Lester, David; Furber, Steve
2011-11-01
Dedicated hardware is becoming increasingly essential to simulate emerging very-large-scale neural models. Equally, however, it needs to be able to support multiple models of the neural dynamics, possibly operating simultaneously within the same system. This may be necessary either to simulate large models with heterogeneous neural types, or to simplify simulation and analysis of detailed, complex models in a large simulation by isolating the new model to a small subpopulation of a larger overall network. The SpiNNaker neuromimetic chip is a dedicated neural processor able to support such heterogeneous simulations. Implementing these models on-chip uses an integrated library-based tool chain incorporating the emerging PyNN interface that allows a modeller to input a high-level description and use an automated process to generate an on-chip simulation. Simulations using both LIF and Izhikevich models demonstrate the ability of the SpiNNaker system to generate and simulate heterogeneous networks on-chip, while illustrating, through the network-scale effects of wavefront synchronisation and burst gating, methods that can provide effective behavioural abstractions for large-scale hardware modelling. SpiNNaker's asynchronous virtual architecture permits greater scope for model exploration, with scalable levels of functional and temporal abstraction, than conventional (or neuromorphic) computing platforms. The complete system illustrates a potential path to understanding the neural model of computation, by building (and breaking) neural models at various scales, connecting the blocks, then comparing them against the biology: computational cognitive neuroscience. Copyright © 2011 Elsevier Ltd. All rights reserved.
Image-Optimized Coronal Magnetic Field Models
Jones, Shaela I.; Uritsky, Vadim; Davila, Joseph M.
2017-01-01
We have reported previously on a new method we are developing for using image-based information to improve global coronal magnetic field models. In that work we presented early tests of the method which proved its capability to improve global models based on flawed synoptic magnetograms, given excellent constraints on the field in the model volume. In this follow-up paper we present the results of similar tests given field constraints of a nature that could realistically be obtained from quality white-light coronagraph images of the lower corona. We pay particular attention to difficulties associated with the line-of-sight projection of features outside of the assumed coronagraph image plane, and the effect on the outcome of the optimization of errors in localization of constraints. We find that substantial improvement in the model field can be achieved with this type of constraints, even when magnetic features in the images are located outside of the image plane.
Image-optimized Coronal Magnetic Field Models
Energy Technology Data Exchange (ETDEWEB)
Jones, Shaela I.; Uritsky, Vadim; Davila, Joseph M., E-mail: shaela.i.jones-mecholsky@nasa.gov, E-mail: shaela.i.jonesmecholsky@nasa.gov [NASA Goddard Space Flight Center, Code 670, Greenbelt, MD 20771 (United States)
2017-08-01
We have reported previously on a new method we are developing for using image-based information to improve global coronal magnetic field models. In that work, we presented early tests of the method, which proved its capability to improve global models based on flawed synoptic magnetograms, given excellent constraints on the field in the model volume. In this follow-up paper, we present the results of similar tests given field constraints of a nature that could realistically be obtained from quality white-light coronagraph images of the lower corona. We pay particular attention to difficulties associated with the line-of-sight projection of features outside of the assumed coronagraph image plane and the effect on the outcome of the optimization of errors in the localization of constraints. We find that substantial improvement in the model field can be achieved with these types of constraints, even when magnetic features in the images are located outside of the image plane.
Gas ultracentrifuge separative parameters modeling using hybrid neural networks
International Nuclear Information System (INIS)
Crus, Maria Ursulina de Lima
2005-01-01
A hybrid neural network is developed for the calculation of the separative performance of an ultracentrifuge. A feed forward neural network is trained to estimate the internal flow parameters of a gas ultracentrifuge, and then these parameters are applied in the diffusion equation. For this study, a 573 experimental data set is used to establish the relation between the separative performance and the controlled variables. The process control variables considered are: the feed flow rate F, the cut θ and the product pressure Pp. The mechanical arrangements consider the radial waste scoop dimension, the rotating baffle size D s and the axial feed location Z E . The methodology was validated through the comparison of the calculated separative performance with experimental values. This methodology may be applied to other processes, just by adapting the phenomenological procedures. (author)
New Models for Forecasting Enrollments: Fuzzy Time Series and Neural Network Approaches.
Song, Qiang; Chissom, Brad S.
Since university enrollment forecasting is very important, many different methods and models have been proposed by researchers. Two new methods for enrollment forecasting are introduced: (1) the fuzzy time series model; and (2) the artificial neural networks model. Fuzzy time series has been proposed to deal with forecasting problems within a…
Artificial neural network models for biomass gasification in fluidized bed gasifiers
DEFF Research Database (Denmark)
Puig Arnavat, Maria; Hernández, J. Alfredo; Bruno, Joan Carles
2013-01-01
Artificial neural networks (ANNs) have been applied for modeling biomass gasification process in fluidized bed reactors. Two architectures of ANNs models are presented; one for circulating fluidized bed gasifiers (CFB) and the other for bubbling fluidized bed gasifiers (BFB). Both models determine...
A Neural Network Model of the Structure and Dynamics of Human Personality
Read, Stephen J.; Monroe, Brian M.; Brownstein, Aaron L.; Yang, Yu; Chopra, Gurveen; Miller, Lynn C.
2010-01-01
We present a neural network model that aims to bridge the historical gap between dynamic and structural approaches to personality. The model integrates work on the structure of the trait lexicon, the neurobiology of personality, temperament, goal-based models of personality, and an evolutionary analysis of motives. It is organized in terms of two…
Batch Policy Gradient Methods for Improving Neural Conversation Models
Kandasamy, Kirthevasan; Bachrach, Yoram; Tomioka, Ryota; Tarlow, Daniel; Carter, David
2017-01-01
We study reinforcement learning of chatbots with recurrent neural network architectures when the rewards are noisy and expensive to obtain. For instance, a chatbot used in automated customer service support can be scored by quality assurance agents, but this process can be expensive, time consuming and noisy. Previous reinforcement learning work for natural language processing uses on-policy updates and/or is designed for on-line learning settings. We demonstrate empirically that such strateg...
Yuniarto, Budi; Kurniawan, Robert
2017-03-01
PLS Path Modeling (PLS-PM) is different from covariance based SEM, where PLS-PM use an approach based on variance or component, therefore, PLS-PM is also known as a component based SEM. Multiblock Partial Least Squares (MBPLS) is a method in PLS regression which can be used in PLS Path Modeling which known as Multiblock PLS Path Modeling (MBPLS-PM). This method uses an iterative procedure in its algorithm. This research aims to modify MBPLS-PM with Back Propagation Neural Network approach. The result is MBPLS-PM algorithm can be modified using the Back Propagation Neural Network approach to replace the iterative process in backward and forward step to get the matrix t and the matrix u in the algorithm. By modifying the MBPLS-PM algorithm using Back Propagation Neural Network approach, the model parameters obtained are relatively not significantly different compared to model parameters obtained by original MBPLS-PM algorithm.
Directory of Open Access Journals (Sweden)
Lijun Zhang
2018-02-01
Full Text Available Aiming at the pitting fault of deep groove ball bearing during service, this paper uses the vibration signal of five different states of deep groove ball bearing and extracts the relevant features, then uses a neural network to model the degradation for identifying and classifying the fault type. By comparing the effects of training samples with different capacities through performance indexes such as the accuracy and convergence speed, it is proven that an increase in the sample size can improve the performance of the model. Based on the polynomial fitting principle and Pearson correlation coefficient, fusion features based on the skewness index are proposed, and the performance improvement of the model after incorporating the fusion features is also validated. A comparison of the performance of the support vector machine (SVM model and the neural network model on this dataset is given. The research shows that neural networks have more potential for complex and high-volume datasets.
Huang, Darong; Bai, Xing-Rong
Based on wavelet transform and neural network theory, a traffic-flow prediction model, which was used in optimal control of Intelligent Traffic system, is constructed. First of all, we have extracted the scale coefficient and wavelet coefficient from the online measured raw data of traffic flow via wavelet transform; Secondly, an Artificial Neural Network model of Traffic-flow Prediction was constructed and trained using the coefficient sequences as inputs and raw data as outputs; Simultaneous, we have designed the running principium of the optimal control system of traffic-flow Forecasting model, the network topological structure and the data transmitted model; Finally, a simulated example has shown that the technique is effectively and exactly. The theoretical results indicated that the wavelet neural network prediction model and algorithms have a broad prospect for practical application.
Directory of Open Access Journals (Sweden)
Cheng Xu
2015-01-01
Full Text Available Free flow speed is a fundamental measure of traffic performance and has been found to affect the severity of crash risk. However, the previous studies lack analysis and modelling of impact factors on bicycles’ free flow speed. The main focus of this study is to develop multilayer back propagation artificial neural network (BPANN models for the prediction of free flow speed and crash risk on the separated bicycle path. Four different models with considering different combinations of input variables (e.g., path width, traffic condition, bicycle type, and cyclists’ characteristics were developed. 459 field data samples were collected from eleven bicycle paths in Hangzhou, China, and 70% of total samples were used for training, 15% for validation, and 15% for testing. The results show that considering the input variables of bicycle types and characteristics of cyclists will effectively improve the accuracy of the prediction models. Meanwhile, the parameters of bicycle types have more significant effect on predicting free flow speed of bicycle compared to those of cyclists’ characteristics. The findings could contribute for evaluation, planning, and management of bicycle safety.
DEFF Research Database (Denmark)
Olsen, Nils; Holme, R.; Hulot, G.
2000-01-01
Magnetic measurements taken by the Orsted satellite during geomagnetic quiet conditions around January 1, 2000 have been used to derive a spherical harmonic model of the Earth's magnetic field for epoch 2000.0. The maximum degree and order of the model is 19 for internal, and 2 for external, source...... fields; however, coefficients above degree 14 may not be robust. Such a detailed model exists for only one previous epoch, 1980. Achieved rms misfit is ... to the Orsted mission, this model supercedes IGRF 2000....
Data-Driven Neural Network Model for Robust Reconstruction of Automobile Casting
Lin, Jinhua; Wang, Yanjie; Li, Xin; Wang, Lu
2017-09-01
In computer vision system, it is a challenging task to robustly reconstruct complex 3D geometries of automobile castings. However, 3D scanning data is usually interfered by noises, the scanning resolution is low, these effects normally lead to incomplete matching and drift phenomenon. In order to solve these problems, a data-driven local geometric learning model is proposed to achieve robust reconstruction of automobile casting. In order to relieve the interference of sensor noise and to be compatible with incomplete scanning data, a 3D convolution neural network is established to match the local geometric features of automobile casting. The proposed neural network combines the geometric feature representation with the correlation metric function to robustly match the local correspondence. We use the truncated distance field(TDF) around the key point to represent the 3D surface of casting geometry, so that the model can be directly embedded into the 3D space to learn the geometric feature representation; Finally, the training labels is automatically generated for depth learning based on the existing RGB-D reconstruction algorithm, which accesses to the same global key matching descriptor. The experimental results show that the matching accuracy of our network is 92.2% for automobile castings, the closed loop rate is about 74.0% when the matching tolerance threshold τ is 0.2. The matching descriptors performed well and retained 81.6% matching accuracy at 95% closed loop. For the sparse geometric castings with initial matching failure, the 3D matching object can be reconstructed robustly by training the key descriptors. Our method performs 3D reconstruction robustly for complex automobile castings.
Directory of Open Access Journals (Sweden)
Jing Lu
2014-11-01
Full Text Available We propose a weather prediction model in this article based on neural network and fuzzy inference system (NFIS-WPM, and then apply it to predict daily fuzzy precipitation given meteorological premises for testing. The model consists of two parts: the first part is the “fuzzy rule-based neural network”, which simulates sequential relations among fuzzy sets using artificial neural network; and the second part is the “neural fuzzy inference system”, which is based on the first part, but could learn new fuzzy rules from the previous ones according to the algorithm we proposed. NFIS-WPM (High Pro and NFIS-WPM (Ave are improved versions of this model. It is well known that the need for accurate weather prediction is apparent when considering the benefits. However, the excessive pursuit of accuracy in weather prediction makes some of the “accurate” prediction results meaningless and the numerical prediction model is often complex and time-consuming. By adapting this novel model to a precipitation prediction problem, we make the predicted outcomes of precipitation more accurate and the prediction methods simpler than by using the complex numerical forecasting model that would occupy large computation resources, be time-consuming and which has a low predictive accuracy rate. Accordingly, we achieve more accurate predictive precipitation results than by using traditional artificial neural networks that have low predictive accuracy.
Khoshgoftaar, T M; Allen, E B; Hudepohl, J P; Aud, S J
1997-01-01
Society relies on telecommunications to such an extent that telecommunications software must have high reliability. Enhanced measurement for early risk assessment of latent defects (EMERALD) is a joint project of Nortel and Bell Canada for improving the reliability of telecommunications software products. This paper reports a case study of neural-network modeling techniques developed for the EMERALD system. The resulting neural network is currently in the prototype testing phase at Nortel. Neural-network models can be used to identify fault-prone modules for extra attention early in development, and thus reduce the risk of operational problems with those modules. We modeled a subset of modules representing over seven million lines of code from a very large telecommunications software system. The set consisted of those modules reused with changes from the previous release. The dependent variable was membership in the class of fault-prone modules. The independent variables were principal components of nine measures of software design attributes. We compared the neural-network model with a nonparametric discriminant model and found the neural-network model had better predictive accuracy.
Flow field mapping in data rack model
Directory of Open Access Journals (Sweden)
Matěcha J.
2013-04-01
Full Text Available The main objective of this study was to map the flow field inside the data rack model, fitted with three 1U server models. The server model is based on the common four-processor 1U server. The main dimensions of the data rack model geometry are taken fully from the real geometry. Only the model was simplified with respect to the greatest possibility in the experimental measurements. The flow field mapping was carried out both experimentally and numerically. PIV (Particle Image Velocimetry method was used for the experimental flow field mapping, when the flow field has been mapped for defined regions within the 2D/3D data rack model. Ansys CFX and OpenFOAM software were used for the numerical solution. Boundary conditions for numerical model were based on data obtained from experimental measurement of velocity profile at the output of the server mockup. This velocity profile was used as the input boundary condition in the calculation. In order to achieve greater consistency of the numerical model with experimental data, the numerical model was modified with regard to the results of experimental measurements. Results from the experimental and numerical measurements were compared and the areas of disparateness were identified. In further steps the obtained proven numerical model will be utilized for the real geometry of data racks and data.
De-identification of clinical notes via recurrent neural network and conditional random field.
Liu, Zengjian; Tang, Buzhou; Wang, Xiaolong; Chen, Qingcai
2017-11-01
De-identification, identifying information from data, such as protected health information (PHI) present in clinical data, is a critical step to enable data to be shared or published. The 2016 Centers of Excellence in Genomic Science (CEGS) Neuropsychiatric Genome-scale and RDOC Individualized Domains (N-GRID) clinical natural language processing (NLP) challenge contains a de-identification track in de-identifying electronic medical records (EMRs) (i.e., track 1). The challenge organizers provide 1000 annotated mental health records for this track, 600 out of which are used as a training set and 400 as a test set. We develop a hybrid system for the de-identification task on the training set. Firstly, four individual subsystems, that is, a subsystem based on bidirectional LSTM (long-short term memory, a variant of recurrent neural network), a subsystem-based on bidirectional LSTM with features, a subsystem based on conditional random field (CRF) and a rule-based subsystem, are used to identify PHI instances. Then, an ensemble learning-based classifiers is deployed to combine all PHI instances predicted by above three machine learning-based subsystems. Finally, the results of the ensemble learning-based classifier and the rule-based subsystem are merged together. Experiments conducted on the official test set show that our system achieves the highest micro F1-scores of 93.07%, 91.43% and 95.23% under the "token", "strict" and "binary token" criteria respectively, ranking first in the 2016 CEGS N-GRID NLP challenge. In addition, on the dataset of 2014 i2b2 NLP challenge, our system achieves the highest micro F1-scores of 96.98%, 95.11% and 98.28% under the "token", "strict" and "binary token" criteria respectively, outperforming other state-of-the-art systems. All these experiments prove the effectiveness of our proposed method. Copyright © 2017. Published by Elsevier Inc.
Lohani, A. K.; Kumar, Rakesh; Singh, R. D.
2012-06-01
SummaryTime series modeling is necessary for the planning and management of reservoirs. More recently, the soft computing techniques have been used in hydrological modeling and forecasting. In this study, the potential of artificial neural networks and neuro-fuzzy system in monthly reservoir inflow forecasting are examined by developing and comparing monthly reservoir inflow prediction models, based on autoregressive (AR), artificial neural networks (ANNs) and adaptive neural-based fuzzy inference system (ANFIS). To take care the effect of monthly periodicity in the flow data, cyclic terms are also included in the ANN and ANFIS models. Working with time series flow data of the Sutlej River at Bhakra Dam, India, several ANN and adaptive neuro-fuzzy models are trained with different input vectors. To evaluate the performance of the selected ANN and adaptive neural fuzzy inference system (ANFIS) models, comparison is made with the autoregressive (AR) models. The ANFIS model trained with the input data vector including previous inflows and cyclic terms of monthly periodicity has shown a significant improvement in the forecast accuracy in comparison with the ANFIS models trained with the input vectors considering only previous inflows. In all cases ANFIS gives more accurate forecast than the AR and ANN models. The proposed ANFIS model coupled with the cyclic terms is shown to provide better representation of the monthly inflow forecasting for planning and operation of reservoir.
DynaSim: A MATLAB Toolbox for Neural Modeling and Simulation.
Sherfey, Jason S; Soplata, Austin E; Ardid, Salva; Roberts, Erik A; Stanley, David A; Pittman-Polletta, Benjamin R; Kopell, Nancy J
2018-01-01
DynaSim is an open-source MATLAB/GNU Octave toolbox for rapid prototyping of neural models and batch simulation management. It is designed to speed up and simplify the process of generating, sharing, and exploring network models of neurons with one or more compartments. Models can be specified by equations directly (similar to XPP or the Brian simulator) or by lists of predefined or custom model components. The higher-level specification supports arbitrarily complex population models and networks of interconnected populations. DynaSim also includes a large set of features that simplify exploring model dynamics over parameter spaces, running simulations in parallel using both multicore processors and high-performance computer clusters, and analyzing and plotting large numbers of simulated data sets in parallel. It also includes a graphical user interface (DynaSim GUI) that supports full functionality without requiring user programming. The software has been implemented in MATLAB to enable advanced neural modeling using MATLAB, given its popularity and a growing interest in modeling neural systems. The design of DynaSim incorporates a novel schema for model specification to facilitate future interoperability with other specifications (e.g., NeuroML, SBML), simulators (e.g., NEURON, Brian, NEST), and web-based applications (e.g., Geppetto) outside MATLAB. DynaSim is freely available at http://dynasimtoolbox.org. This tool promises to reduce barriers for investigating dynamics in large neural models, facilitate collaborative modeling, and complement other tools being developed in the neuroinformatics community.
A Hamiltonian five-field gyrofluid model
Energy Technology Data Exchange (ETDEWEB)
Keramidas Charidakos, I.; Waelbroeck, F. L.; Morrison, P. J. [Institute for Fusion Studies and Department of Physics, The University of Texas at Austin, Austin, TX 78712 (United States)
2015-11-15
A Lie-Poisson bracket is presented for a five-field gyrofluid model, thereby showing the model to be Hamiltonian. The model includes the effects of magnetic field curvature and describes the evolution of the electron and ion gyro-center densities, the parallel component of the ion and electron velocities, and the ion temperature. The quasineutrality property and Ampère's law determine, respectively, the electrostatic potential and magnetic flux. The Casimir invariants are presented, and shown to be associated with five Lagrangian invariants advected by distinct velocity fields. A linear, local study of the model is conducted both with and without Landau and diamagnetic resonant damping terms. Stability criteria and dispersion relations for the electrostatic and the electromagnetic cases are derived and compared with their analogs for fluid and kinetic models.
[GSH fermentation process modeling using entropy-criterion based RBF neural network model].
Tan, Zuoping; Wang, Shitong; Deng, Zhaohong; Du, Guocheng
2008-05-01
The prediction accuracy and generalization of GSH fermentation process modeling are often deteriorated by noise existing in the corresponding experimental data. In order to avoid this problem, we present a novel RBF neural network modeling approach based on entropy criterion. It considers the whole distribution structure of the training data set in the parameter learning process compared with the traditional MSE-criterion based parameter learning, and thus effectively avoids the weak generalization and over-learning. Then the proposed approach is applied to the GSH fermentation process modeling. Our results demonstrate that this proposed method has better prediction accuracy, generalization and robustness such that it offers a potential application merit for the GSH fermentation process modeling.
Mathematical Properties Relevant to Geomagnetic Field Modeling
DEFF Research Database (Denmark)
Sabaka, Terence J.; Hulot, Gauthier; Olsen, Nils
2010-01-01
be directly measured. In this chapter, the mathematical foundation of global (as opposed to regional) geomagnetic field modeling is reviewed, and the spatial modeling of the field in spherical coordinates is focussed. Time can be dealt with as an independent variable and is not explicitly considered......Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations.The set of numerical coefficients defining this linear combination is then what one refers.......The relevant elementary mathematical functions are introduced, their properties are reviewed, and how they can be used to describe the magnetic field in a source-free (such as the Earth’s neutral atmosphere) or source-dense (such as the ionosphere) environment is explained. Completeness and uniqueness...
Mathematical Properties Relevant to Geomagnetic Field Modeling
DEFF Research Database (Denmark)
Sabaka, Terence J.; Hulot, Gauthier; Olsen, Nils
2014-01-01
be directly measured. In this chapter, the mathematical foundation of global (as opposed to regional) geomagnetic field modeling is reviewed, and the spatial modeling of the field in spherical coordinates is focused. Time can be dealt with as an independent variable and is not explicitly considered......Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations. The set of numerical coefficients defining this linear combination is then what one refers....... The relevant elementary mathematical functions are introduced, their properties are reviewed, and how they can be used to describe the magnetic field in a source-free (such as the Earth’s neutral atmosphere) or source-dense (such as the ionosphere) environment is explained. Completeness and uniqueness...
Modeling aeolian dune and dune field evolution
Diniega, Serina
Aeolian sand dune morphologies and sizes are strongly connected to the environmental context and physical processes active since dune formation. As such, the patterns and measurable features found within dunes and dune fields can be interpreted as records of environmental conditions. Using mathematical models of dune and dune field evolution, it should be possible to quantitatively predict dune field dynamics from current conditions or to determine past field conditions based on present-day observations. In this dissertation, we focus on the construction and quantitative analysis of a continuum dune evolution model. We then apply this model towards interpretation of the formative history of terrestrial and martian dunes and dune fields. Our first aim is to identify the controls for the characteristic lengthscales seen in patterned dune fields. Variations in sand flux, binary dune interactions, and topography are evaluated with respect to evolution of individual dunes. Through the use of both quantitative and qualitative multiscale models, these results are then extended to determine the role such processes may play in (de)stabilization of the dune field. We find that sand flux variations and topography generally destabilize dune fields, while dune collisions can yield more similarly-sized dunes. We construct and apply a phenomenological macroscale dune evolution model to then quantitatively demonstrate how dune collisions cause a dune field to evolve into a set of uniformly-sized dunes. Our second goal is to investigate the influence of reversing winds and polar processes in relation to dune slope and morphology. Using numerical experiments, we investigate possible causes of distinctive morphologies seen in Antarctic and martian polar dunes. Finally, we discuss possible model extensions and needed observations that will enable the inclusion of more realistic physical environments in the dune and dune field evolution models. By elucidating the qualitative and
A new method to estimate parameters of linear compartmental models using artificial neural networks
International Nuclear Information System (INIS)
Gambhir, Sanjiv S.; Keppenne, Christian L.; Phelps, Michael E.; Banerjee, Pranab K.
1998-01-01
At present, the preferred tool for parameter estimation in compartmental analysis is an iterative procedure; weighted nonlinear regression. For a large number of applications, observed data can be fitted to sums of exponentials whose parameters are directly related to the rate constants/coefficients of the compartmental models. Since weighted nonlinear regression often has to be repeated for many different data sets, the process of fitting data from compartmental systems can be very time consuming. Furthermore the minimization routine often converges to a local (as opposed to global) minimum. In this paper, we examine the possibility of using artificial neural networks instead of weighted nonlinear regression in order to estimate model parameters. We train simple feed-forward neural networks to produce as outputs the parameter values of a given model when kinetic data are fed to the networks' input layer. The artificial neural networks produce unbiased estimates and are orders of magnitude faster than regression algorithms. At noise levels typical of many real applications, the neural networks are found to produce lower variance estimates than weighted nonlinear regression in the estimation of parameters from mono- and biexponential models. These results are primarily due to the inability of weighted nonlinear regression to converge. These results establish that artificial neural networks are powerful tools for estimating parameters for simple compartmental models. (author)
On DSS Implementation in the Dynamic Model of the Digital Oil field
Korovin, Iakov S.; Khisamutdinov, Maksim V.; Kalyaev, Anatoly I.
2018-02-01
Decision support systems (DSS), especially based on the artificial intelligence (AI) techniques are been widely applied in different domains nowadays. In the paper we depict an approach of implementing DSS in to Digital Oil Field (DOF) dynamic model structure in order to reduce the human factor influence, considering the automation of all production processes to be the DOF model clue element. As the basic tool of data handling we propose the hybrid application on artificial neural networks and evolutional algorithms.
Ho Pham Huy Anh; Nguyen Thanh Nam
2012-01-01
In this paper, a novel forward adaptive neural MIMO NARX model is used for modelling and identifying the forward kinematics of an industrial 3‐DOF robot arm system. The nonlinear features of the forward kinematics of the industrial robot arm drive are thoroughly modelled based on the forward adaptive neural NARX model‐based identification process using experimental input‐output training data. This paper proposes a novel use of a back propagation (BP) algorithm to generate the forward neural M...
International Nuclear Information System (INIS)
Benmouiza, Khalil; Cheknane, Ali
2013-01-01
Highlights: • An unsupervised clustering algorithm with a neural network model was explored. • The forecasting results of solar radiation time series and the comparison of their performance was simulated. • A new method was proposed combining k-means algorithm and NAR network to provide better prediction results. - Abstract: In this paper, we review our work for forecasting hourly global horizontal solar radiation based on the combination of unsupervised k-means clustering algorithm and artificial neural networks (ANN). k-Means algorithm focused on extracting useful information from the data with the aim of modeling the time series behavior and find patterns of the input space by clustering the data. On the other hand, nonlinear autoregressive (NAR) neural networks are powerful computational models for modeling and forecasting nonlinear time series. Taking the advantage of both methods, a new method was proposed combining k-means algorithm and NAR network to provide better forecasting results
Standard representation and unified stability analysis for dynamic artificial neural network models.
Kim, Kwang-Ki K; Patrón, Ernesto Ríos; Braatz, Richard D
2018-02-01
An overview is provided of dynamic artificial neural network models (DANNs) for nonlinear dynamical system identification and control problems, and convex stability conditions are proposed that are less conservative than past results. The three most popular classes of dynamic artificial neural network models are described, with their mathematical representations and architectures followed by transformations based on their block diagrams that are convenient for stability and performance analyses. Classes of nonlinear dynamical systems that are universally approximated by such models are characterized, which include rigorous upper bounds on the approximation errors. A unified framework and linear matrix inequality-based stability conditions are described for different classes of dynamic artificial neural network models that take additional information into account such as local slope restrictions and whether the nonlinearities within the DANNs are odd. A theoretical example shows reduced conservatism obtained by the conditions. Copyright © 2017. Published by Elsevier Ltd.
Integrated field modelling[Oil and gas fields
Energy Technology Data Exchange (ETDEWEB)
Nazarian, Bamshad
2002-07-01
This research project studies the feasibility of developing and applying an integrated field simulator to simulate the production performance of an entire oil or gas field. It integrates the performance of the reservoir, the wells, the chokes, the gathering system, the surface processing facilities and whenever applicable, gas and water injection systems. The approach adopted for developing the integrated simulator is to couple existing commercial reservoir and process simulators using available linking technologies. The simulators are dynamically linked and customised into a single hybrid application that benefits from the concept of open software architecture. The integrated field simulator is linked to an optimisation routine developed based on the genetic algorithm search strategies. This enables optimisation of the system at field level, from the reservoir to the process. Modelling the wells and the gathering network is achieved by customising the process simulator. This study demonstrated that the integrated simulation improves current capabilities to simulate the performance of the entire field and optimise its design. This is achieved by evaluating design options including spread and layout of the wells and gathering system, processing alternatives, reservoir development schemes and production strategies. Effectiveness of the integrated simulator is demonstrated and tested through several field-level case studies that discuss and investigate technical problems relevant to offshore field development. The case studies cover topics such as process optimisation, optimum tie-in of satellite wells into existing process facilities, optimal well location and field layout assessment of a high pressure high temperature deepwater oil field. Case study results confirm the viability of the total field simulator by demonstrating that the field performance simulation and optimal design were obtained in an automated process with treasonable computation time. No significant
Neural Network-Based Model for Landslide Susceptibility and Soil Longitudinal Profile Analyses
DEFF Research Database (Denmark)
Farrokhzad, F.; Barari, Amin; Choobbasti, A. J.
2011-01-01
The purpose of this study was to create an empirical model for assessing the landslide risk potential at Savadkouh Azad University, which is located in the rural surroundings of Savadkouh, about 5 km from the city of Pol-Sefid in northern Iran. The soil longitudinal profile of the city of Babol......, located 25 km from the Caspian Sea, also was predicted with an artificial neural network (ANN). A multilayer perceptron neural network model was applied to the landslide area and was used to analyze specific elements in the study area that contributed to previous landsliding events. The ANN models were...... studies in landslide susceptibility zonation....
Zelić, B; Bolf, N; Vasić-Racki, D
2006-06-01
Three different models: the unstructured mechanistic black-box model, the input-output neural network-based model and the externally recurrent neural network model were used to describe the pyruvate production process from glucose and acetate using the genetically modified Escherichia coli YYC202 ldhA::Kan strain. The experimental data were used from the recently described batch and fed-batch experiments [ Zelić B, Study of the process development for Escherichia coli-based pyruvate production. PhD Thesis, University of Zagreb, Faculty of Chemical Engineering and Technology, Zagreb, Croatia, July 2003. (In English); Zelić et al. Bioproc Biosyst Eng 26:249-258 (2004); Zelić et al. Eng Life Sci 3:299-305 (2003); Zelić et al Biotechnol Bioeng 85:638-646 (2004)]. The neural networks were built out of the experimental data obtained in the fed-batch pyruvate production experiments with the constant glucose feed rate. The model validation was performed using the experimental results obtained from the batch and fed-batch pyruvate production experiments with the constant acetate feed rate. Dynamics of the substrate and product concentration changes was estimated using two neural network-based models for biomass and pyruvate. It was shown that neural networks could be used for the modeling of complex microbial fermentation processes, even in conditions in which mechanistic unstructured models cannot be applied.
McClelland, James L
2013-01-01
This article seeks to establish a rapprochement between explicitly Bayesian models of contextual effects in perception and neural network models of such effects, particularly the connectionist interactive activation (IA) model of perception. The article is in part an historical review and in part a tutorial, reviewing the probabilistic Bayesian approach to understanding perception and how it may be shaped by context, and also reviewing ideas about how such probabilistic computations may be carried out in neural networks, focusing on the role of context in interactive neural networks, in which both bottom-up and top-down signals affect the interpretation of sensory inputs. It is pointed out that connectionist units that use the logistic or softmax activation functions can exactly compute Bayesian posterior probabilities when the bias terms and connection weights affecting such units are set to the logarithms of appropriate probabilistic quantities. Bayesian concepts such the prior, likelihood, (joint and marginal) posterior, probability matching and maximizing, and calculating vs. sampling from the posterior are all reviewed and linked to neural network computations. Probabilistic and neural network models are explicitly linked to the concept of a probabilistic generative model that describes the relationship between the underlying target of perception (e.g., the word intended by a speaker or other source of sensory stimuli) and the sensory input that reaches the perceiver for use in inferring the underlying target. It is shown how a new version of the IA model called the multinomial interactive activation (MIA) model can sample correctly from the joint posterior of a proposed generative model for perception of letters in words, indicating that interactive processing is fully consistent with principled probabilistic computation. Ways in which these computations might be realized in real neural systems are also considered.
Directory of Open Access Journals (Sweden)
Scott B Hu
Full Text Available Clinical deterioration (ICU transfer and cardiac arrest occurs during approximately 5-10% of hospital admissions. Existing prediction models have a high false positive rate, leading to multiple false alarms and alarm fatigue. We used routine vital signs and laboratory values obtained from the electronic medical record (EMR along with a machine learning algorithm called a neural network to develop a prediction model that would increase the predictive accuracy and decrease false alarm rates.Retrospective cohort study.The hematologic malignancy unit in an academic medical center in the United States.Adult patients admitted to the hematologic malignancy unit from 2009 to 2010.None.Vital signs and laboratory values were obtained from the electronic medical record system and then used as predictors (features. A neural network was used to build a model to predict clinical deterioration events (ICU transfer and cardiac arrest. The performance of the neural network model was compared to the VitalPac Early Warning Score (ViEWS. Five hundred sixty five consecutive total admissions were available with 43 admissions resulting in clinical deterioration. Using simulation, the neural network outperformed the ViEWS model with a positive predictive value of 82% compared to 24%, respectively.We developed and tested a neural network-based prediction model for clinical deterioration in patients hospitalized in the hematologic malignancy unit. Our neural network model outperformed an existing model, substantially increasing the positive predictive value, allowing the clinician to be confident in the alarm raised. This system can be readily implemented in a real-time fashion in existing EMR systems.
Artificial neural networks in NDT
International Nuclear Information System (INIS)
Abdul Aziz Mohamed
2001-01-01
Artificial neural networks, simply known as neural networks, have attracted considerable interest in recent years largely because of a growing recognition of the potential of these computational paradigms as powerful alternative models to conventional pattern recognition or function approximation techniques. The neural networks approach is having a profound effect on almost all fields, and has been utilised in fields Where experimental inter-disciplinary work is being carried out. Being a multidisciplinary subject with a broad knowledge base, Nondestructive Testing (NDT) or Nondestructive Evaluation (NDE) is no exception. This paper explains typical applications of neural networks in NDT/NDE. Three promising types of neural networks are highlighted, namely, back-propagation, binary Hopfield and Kohonen's self-organising maps. (Author)
A Novel Model for Stock Price Prediction Using Hybrid Neural Network
Senapati, Manas Ranjan; Das, Sumanjit; Mishra, Sarojananda
2018-06-01
The foremost challenge for investors is to select stock price by analyzing financial data which is a menial task as of distort associated and massive pattern. Thereby, selecting stock poses one of the greatest difficulties for investors. Nowadays, prediction of financial market like stock market, exchange rate and share value are very challenging field of research. The prediction and scrutinization of stock price is also a potential area of research due to its vital significance in decision making by financial investors. This paper presents an intelligent and an optimal model for prophecy of stock market price using hybridization of Adaline Neural Network (ANN) and modified Particle Swarm Optimization (PSO). The connoted model hybrid of Adaline and PSO uses fluctuations of stock market as a factor and employs PSO to optimize and update weights of Adaline representation to depict open price of Bombay stock exchange. The prediction performance of the proposed model is compared with different representations like interval measurements, CMS-PSO and Bayesian-ANN. The result indicates that proposed scheme has an edge over all the juxtaposed schemes in terms of mean absolute percentage error.
Degradation Prediction Model Based on a Neural Network with Dynamic Windows
Zhang, Xinghui; Xiao, Lei; Kang, Jianshe
2015-01-01
Tracking degradation of mechanical components is very critical for effective maintenance decision making. Remaining useful life (RUL) estimation is a widely used form of degradation prediction. RUL prediction methods when enough run-to-failure condition monitoring data can be used have been fully researched, but for some high reliability components, it is very difficult to collect run-to-failure condition monitoring data, i.e., from normal to failure. Only a certain number of condition indicators in certain period can be used to estimate RUL. In addition, some existing prediction methods have problems which block RUL estimation due to poor extrapolability. The predicted value converges to a certain constant or fluctuates in certain range. Moreover, the fluctuant condition features also have bad effects on prediction. In order to solve these dilemmas, this paper proposes a RUL prediction model based on neural network with dynamic windows. This model mainly consists of three steps: window size determination by increasing rate, change point detection and rolling prediction. The proposed method has two dominant strengths. One is that the proposed approach does not need to assume the degradation trajectory is subject to a certain distribution. The other is it can adapt to variation of degradation indicators which greatly benefits RUL prediction. Finally, the performance of the proposed RUL prediction model is validated by real field data and simulation data. PMID:25806873
A computational neural model of goal-directed utterance selection.
Klein, Michael; Kamp, Hans; Palm, Guenther; Doya, Kenji
2010-06-01
It is generally agreed that much of human communication is motivated by extra-linguistic goals: we often make utterances in order to get others to do something, or to make them support our cause, or adopt our point of view, etc. However, thus far a computational foundation for this view on language use has been lacking. In this paper we propose such a foundation using Markov Decision Processes. We borrow computational components from the field of action selection and motor control, where a neurobiological basis of these components has been established. In particular, we make use of internal models (i.e., next-state transition functions defined on current state action pairs). The internal model is coupled with reinforcement learning of a value function that is used to assess the desirability of any state that utterances (as well as certain non-verbal actions) can bring about. This cognitive architecture is tested in a number of multi-agent game simulations. In these computational experiments an agent learns to predict the context-dependent effects of utterances by interacting with other agents that are already competent speakers. We show that the cognitive architecture can account for acquiring the capability of deciding when to speak in order to achieve a certain goal (instead of performing a non-verbal action or simply doing nothing), whom to address and what to say. Copyright 2010 Elsevier Ltd. All rights reserved.
Artificial neural network model of pork meat cubes osmotic dehydration
Pezo, Lato L.; Ćurčić, Biljana Lj.; Filipović, Vladimir S.; Nićetin, Milica R.; Koprivica, Gordana B.; Mišljenović, Nevena M.; Lević, Ljubinko B.
2013-01-01
Mass transfer of pork meat cubes (M. triceps brachii), shaped as 1x1x1 cm, during osmotic dehydration (OD) and under atmospheric pressure was investigated in this paper. The effects of different parameters, such as concentration of sugar beet molasses (60-80%, w/w), temperature (20-50ºC), and immersion time (1-5 h) in terms of water loss (WL), solid gain (SG), final dry matter content (DM), and water activity (aw), were investigated using experimental results. Five artificial neural net...
Neural network models: from biology to many - body phenomenology
International Nuclear Information System (INIS)
Clark, J.W.
1993-01-01
Theoretical work in neural networks has a strange feel for most physicists. In some cases the aspect of design becomes paramount. More comfortable ground at least for many body theorists may be found in realistic biological simulation, although the complexity of most problems is so awesome that incisive results will be hard won. It has also shown the impressive capabilities of artificial networks in pattern recognition and classification may be exploited to solve management problems in experimental physics and for discovery of radically new theoretical description of physical systems. This advance represents an important step towards the ultimate goal of neuro biological paradigm. (A.B.)
Using Dual Process Models to Examine Impulsivity Throughout Neural Maturation.
Leshem, Rotem
2016-01-01
The multivariate construct of impulsivity is examined through neural systems and connections that comprise the executive functioning system. It is proposed that cognitive and behavioral components of impulsivity can be divided into two distinct groups, mediated by (1) the cognitive control system: deficits in top-down cognitive control processes referred to as action/cognitive impulsivity and (2) the socioemotional system: related to bottom-up affective/motivational processes referred to as affective impulsivity. Examination of impulsivity from a developmental viewpoint can guide future research, potentially enabling the selection of more effective interventions for impulsive individuals, based on the cognitive components requiring improvement.
Estimating tree bole volume using artificial neural network models for four species in Turkey.
Ozçelik, Ramazan; Diamantopoulou, Maria J; Brooks, John R; Wiant, Harry V
2010-01-01
Tree bole volumes of 89 Scots pine (Pinus sylvestris L.), 96 Brutian pine (Pinus brutia Ten.), 107 Cilicica fir (Abies cilicica Carr.) and 67 Cedar of Lebanon (Cedrus libani A. Rich.) trees were estimated using Artificial Neural Network (ANN) models. Neural networks offer a number of advantages including the ability to implicitly detect complex nonlinear relationships between input and output variables, which is very helpful in tree volume modeling. Two different neural network architectures were used and produced the Back propagation (BPANN) and the Cascade Correlation (CCANN) Artificial Neural Network models. In addition, tree bole volume estimates were compared to other established tree bole volume estimation techniques including the centroid method, taper equations, and existing standard volume tables. An overview of the features of ANNs and traditional methods is presented and the advantages and limitations of each one of them are discussed. For validation purposes, actual volumes were determined by aggregating the volumes of measured short sections (average 1 meter) of the tree bole using Smalian's formula. The results reported in this research suggest that the selected cascade correlation artificial neural network (CCANN) models are reliable for estimating the tree bole volume of the four examined tree species since they gave unbiased results and were superior to almost all methods in terms of error (%) expressed as the mean of the percentage errors. 2009 Elsevier Ltd. All rights reserved.
Plumer, Edward S.
1991-01-01
A technique is developed for vehicle navigation and control in the presence of obstacles. A potential function was devised that peaks at the surface of obstacles and has its minimum at the proper vehicle destination. This function is computed using a systolic array and is guaranteed not to have local minima. A feedfoward neural network is then used to control the steering of the vehicle using local potential field information. In this case, the vehicle is a trailer truck backing up. Previous work has demonstrated the capability of a neural network to control steering of such a trailer truck backing to a loading platform, but without obstacles. Now, the neural network was able to learn to navigate a trailer truck around obstacles while backing toward its destination. The network is trained in an obstacle free space to follow the negative gradient of the field, after which the network is able to control and navigate the truck to its target destination in a space of obstacles which may be stationary or movable.
Efficient spiking neural network model of pattern motion selectivity in visual cortex.
Beyeler, Michael; Richert, Micah; Dutt, Nikil D; Krichmar, Jeffrey L
2014-07-01
Simulating large-scale models of biological motion perception is challenging, due to the required memory to store the network structure and the computational power needed to quickly solve the neuronal dynamics. A low-cost yet high-performance approach to simulating large-scale neural network models in real-time is to leverage the parallel processing capability of graphics processing units (GPUs). Based on this approach, we present a two-stage model of visual area MT that we believe to be the first large-scale spiking network to demonstrate pattern direction selectivity. In this model, component-direction-selective (CDS) cells in MT linearly combine inputs from V1 cells that have spatiotemporal receptive fields according to the motion energy model of Simoncelli and Heeger. Pattern-direction-selective (PDS) cells in MT are constructed by pooling over MT CDS cells with a wide range of preferred directions. Responses of our model neurons are comparable to electrophysiological results for grating and plaid stimuli as well as speed tuning. The behavioral response of the network in a motion discrimination task is in agreement with psychophysical data. Moreover, our implementation outperforms a previous implementation of the motion energy model by orders of magnitude in terms of computational speed and memory usage. The full network, which comprises 153,216 neurons and approximately 40 million synapses, processes 20 frames per second of a 40 × 40 input video in real-time using a single off-the-shelf GPU. To promote the use of this algorithm among neuroscientists and computer vision researchers, the source code for the simulator, the network, and analysis scripts are publicly available.
A Neural Network Model of the Visual Short-Term Memory
DEFF Research Database (Denmark)
Petersen, Anders; Kyllingsbæk, Søren; Hansen, Lars Kai
2009-01-01
In this paper a neural network model of Visual Short-Term Memory (VSTM) is presented. The model links closely with Bundesen’s (1990) well-established mathematical theory of visual attention. We evaluate the model’s ability to fit experimental data from a classical whole and partial report study...
Schilders, W.H.A.; Meijer, P.B.L.; Ciggaar, E.
2008-01-01
In this paper we discuss the use of the state-space modelling MOESP algorithm to generate precise information about the number of neurons and hidden layers in dynamic neural networks developed for the behavioural modelling of electronic circuits. The Bartels–Stewart algorithm is used to transform
Folk music style modelling by recurrent neural networks with long short term memory units
Sturm, Bob; Santos, João Felipe; Korshunova, Iryna
2015-01-01
We demonstrate two generative models created by training a recurrent neural network (RNN) with three hidden layers of long short-term memory (LSTM) units. This extends past work in numerous directions, including training deeper models with nearly 24,000 high-level transcriptions of folk tunes. We discuss our on-going work.
Encoding of phonology in a recurrent neural model of grounded speech
Alishahi, Afra; Barking, Marie; Chrupala, Grzegorz; Levy, Roger; Specia, Lucia
2017-01-01
We study the representation and encoding of phonemes in a recurrent neural network model of grounded speech. We use a model which processes images and their spoken descriptions, and projects the visual and auditory representations into the same semantic space. We perform a number of analyses on how
Paudel, S.; Elmtiri, M.; Kling, W.L.; Corre, le O.; Lacarriere, B.
2014-01-01
This paper presents the building heating demand prediction model with occupancy profile and operational heating power level characteristics in short time horizon (a couple of days) using artificial neural network. In addition, novel pseudo dynamic transitional model is introduced, which consider
Development of surrogate models using artificial neural network for building shell energy labelling
Melo, A.P.; Costola, D.; Lamberts, R.; Hensen, J.L.M.
2014-01-01
Surrogate models are an important part of building energy labelling programs, but these models still present low accuracy, particularly in cooling-dominated climates. The objective of this study was to evaluate the feasibility of using an artificial neural network (ANN) to improve the accuracy of
DEFF Research Database (Denmark)
Chon, K H; Holstein-Rathlou, N H; Marsh, D J
1998-01-01
kernel estimation method based on Laguerre expansions. The results for the two types of artificial neural networks and the Volterra models are comparable in terms of normalized mean square error (NMSE) of the respective output prediction for independent testing data. However, the Volterra models obtained...
A Neural Model of Visually Guided Steering, Obstacle Avoidance, and Route Selection
Elder, David M.; Grossberg, Stephen; Mingolla, Ennio
2009-01-01
A neural model is developed to explain how humans can approach a goal object on foot while steering around obstacles to avoid collisions in a cluttered environment. The model uses optic flow from a 3-dimensional virtual reality environment to determine the position of objects on the basis of motion discontinuities and computes heading direction,…
A Composite Model of Wound Segmentation Based on Traditional Methods and Deep Neural Networks
Directory of Open Access Journals (Sweden)
Fangzhao Li
2018-01-01
Full Text Available Wound segmentation plays an important supporting role in the wound observation and wound healing. Current methods of image segmentation include those based on traditional process of image and those based on deep neural networks. The traditional methods use the artificial image features to complete the task without large amounts of labeled data. Meanwhile, the methods based on deep neural networks can extract the image features effectively without the artificial design, but lots of training data are required. Combined with the advantages of them, this paper presents a composite model of wound segmentation. The model uses the skin with wound detection algorithm we designed in the paper to highlight image features. Then, the preprocessed images are segmented by deep neural networks. And semantic corrections are applied to the segmentation results at last. The model shows a good performance in our experiment.
Xi, Jun; Xue, Yujing; Xu, Yinxiang; Shen, Yuhong
2013-11-01
In this study, the ultrahigh pressure extraction of green tea polyphenols was modeled and optimized by a three-layer artificial neural network. A feed-forward neural network trained with an error back-propagation algorithm was used to evaluate the effects of pressure, liquid/solid ratio and ethanol concentration on the total phenolic content of green tea extracts. The neural network coupled with genetic algorithms was also used to optimize the conditions needed to obtain the highest yield of tea polyphenols. The obtained optimal architecture of artificial neural network model involved a feed-forward neural network with three input neurons, one hidden layer with eight neurons and one output layer including single neuron. The trained network gave the minimum value in the MSE of 0.03 and the maximum value in the R(2) of 0.9571, which implied a good agreement between the predicted value and the actual value, and confirmed a good generalization of the network. Based on the combination of neural network and genetic algorithms, the optimum extraction conditions for the highest yield of green tea polyphenols were determined as follows: 498.8 MPa for pressure, 20.8 mL/g for liquid/solid ratio and 53.6% for ethanol concentration. The total phenolic content of the actual measurement under the optimum predicated extraction conditions was 582.4 ± 0.63 mg/g DW, which was well matched with the predicted value (597.2mg/g DW). This suggests that the artificial neural network model described in this work is an efficient quantitative tool to predict the extraction efficiency of green tea polyphenols. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Model improves oil field operating cost estimates
International Nuclear Information System (INIS)
Glaeser, J.L.
1996-01-01
A detailed operating cost model that forecasts operating cost profiles toward the end of a field's life should be constructed for testing depletion strategies and plans for major oil fields. Developing a good understanding of future operating cost trends is important. Incorrectly forecasting the trend can result in bad decision making regarding investments and reservoir operating strategies. Recent projects show that significant operating expense reductions can be made in the latter stages o field depletion without significantly reducing the expected ultimate recoverable reserves. Predicting future operating cost trends is especially important for operators who are currently producing a field and must forecast the economic limit of the property. For reasons presented in this article, it is usually not correct to either assume that operating expense stays fixed in dollar terms throughout the lifetime of a field, nor is it correct to assume that operating costs stay fixed on a dollar per barrel basis
Reversed-Field Pinch plasma model
International Nuclear Information System (INIS)
Miley, G.H.; Nebel, R.A.; Moses, R.W.
1979-01-01
The stability of a Reversed-Field Pinch (RFP) is strongly dependent on the plasma profile and the confining sheared magnetic field. Magnetic diffusion and thermal transport produce changing conditions of stability. Despite the limited understanding of RFP transport, modelling is important to predict general trends and to study possible field programming options. To study the ZT-40 experiment and to predict the performance of future RFP reactors, a one-dimensional transport code has been developed. This code includes a linear, ideal MHD stability check based on an energy principle. The transport section integrates plasma profiles forward in time while the stability section periodically checks the stability of the evolving plasma profile
A Low-Cost Maximum Power Point Tracking System Based on Neural Network Inverse Model Controller
Directory of Open Access Journals (Sweden)
Carlos Robles Algarín
2018-01-01
Full Text Available This work presents the design, modeling, and implementation of a neural network inverse model controller for tracking the maximum power point of a photovoltaic (PV module. A nonlinear autoregressive network with exogenous inputs (NARX was implemented in a serial-parallel architecture. The PV module mathematical modeling was developed, a buck converter was designed to operate in the continuous conduction mode with a switching frequency of 20 KHz, and the dynamic neural controller was designed using the Neural Network Toolbox from Matlab/Simulink (MathWorks, Natick, MA, USA, and it was implemented on an open-hardware Arduino Mega board. To obtain the reference signals for the NARX and determine the 65 W PV module behavior, a system made of a 0.8 W PV cell, a temperature sensor, a voltage sensor and a static neural network, was used. To evaluate performance a comparison with the P&O traditional algorithm was done in terms of response time and oscillations around the operating point. Simulation results demonstrated the superiority of neural controller over the P&O. Implementation results showed that approximately the same power is obtained with both controllers, but the P&O controller presents oscillations between 7 W and 10 W, in contrast to the inverse controller, which had oscillations between 1 W and 2 W.
Directory of Open Access Journals (Sweden)
Murat Cuhadar
2014-03-01
Full Text Available Abstract Cruise ports emerged as an important sector for the economy of Turkey bordered on three sides by water. Forecasting cruise tourism demand ensures better planning, efficient preparation at the destination and it is the basis for elaboration of future plans. In the recent years, new techniques such as; artificial neural networks were employed for developing of the predictive models to estimate tourism demand. In this study, it is aimed to determine the forecasting method that provides the best performance when compared the forecast accuracy of Multi-layer Perceptron (MLP, Radial Basis Function (RBF and Generalized Regression neural network (GRNN to estimate the monthly inbound cruise tourism demand to İzmir via the method giving best results. We used the total number of foreign cruise tourist arrivals as a measure of inbound cruise tourism demand and monthly cruise tourist arrivals to İzmir Cruise Port in the period of January 2005 ‐December 2013 were utilized to appropriate model. Experimental results showed that radial basis function (RBF neural network outperforms multi-layer perceptron (MLP and the generalised regression neural networks (GRNN in terms of forecasting accuracy. By the means of the obtained RBF neural network model, it has been forecasted the monthly inbound cruise tourism demand to İzmir for the year 2014.
Tissue heterogeneity as a mechanism for localized neural stimulation by applied electric fields
International Nuclear Information System (INIS)
Miranda, P C; Correia, L; Salvador, R; Basser, P J
2007-01-01
We investigate the heterogeneity of electrical conductivity as a new mechanism to stimulate excitable tissues via applied electric fields. In particular, we show that stimulation of axons crossing internal boundaries can occur at boundaries where the electric conductivity of the volume conductor changes abruptly. The effectiveness of this and other stimulation mechanisms was compared by means of models and computer simulations in the context of transcranial magnetic stimulation. While, for a given stimulation intensity, the largest membrane depolarization occurred where an axon terminates or bends sharply in a high electric field region, a slightly smaller membrane depolarization, still sufficient to generate action potentials, also occurred at an internal boundary where the conductivity jumped from 0.143 S m -1 to 0.333 S m -1 , simulating a white-matter-grey-matter interface. Tissue heterogeneity can also give rise to local electric field gradients that are considerably stronger and more focal than those impressed by the stimulation coil and that can affect the membrane potential, albeit to a lesser extent than the two mechanisms mentioned above. Tissue heterogeneity may play an important role in electric and magnetic 'far-field' stimulation
Tissue heterogeneity as a mechanism for localized neural stimulation by applied electric fields
Energy Technology Data Exchange (ETDEWEB)
Miranda, P C [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal); Correia, L [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal); Salvador, R [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal); Basser, P J [Section on Tissue Biophysics and Biomimetics, NICHD, National Institutes of Health, Bethesda, MD 20892-1428 (United States)
2007-09-21
We investigate the heterogeneity of electrical conductivity as a new mechanism to stimulate excitable tissues via applied electric fields. In particular, we show that stimulation of axons crossing internal boundaries can occur at boundaries where the electric conductivity of the volume conductor changes abruptly. The effectiveness of this and other stimulation mechanisms was compared by means of models and computer simulations in the context of transcranial magnetic stimulation. While, for a given stimulation intensity, the largest membrane depolarization occurred where an axon terminates or bends sharply in a high electric field region, a slightly smaller membrane depolarization, still sufficient to generate action potentials, also occurred at an internal boundary where the conductivity jumped from 0.143 S m{sup -1} to 0.333 S m{sup -1}, simulating a white-matter-grey-matter interface. Tissue heterogeneity can also give rise to local electric field gradients that are considerably stronger and more focal than those impressed by the stimulation coil and that can affect the membrane potential, albeit to a lesser extent than the two mechanisms mentioned above. Tissue heterogeneity may play an important role in electric and magnetic 'far-field' stimulation.
Modeling emotional dynamics : currency versus field.
Energy Technology Data Exchange (ETDEWEB)
Sallach, D .L.; Decision and Information Sciences; Univ. of Chicago
2008-08-01
Randall Collins has introduced a simplified model of emotional dynamics in which emotional energy, heightened and focused by interaction rituals, serves as a common denominator for social exchange: a generic form of currency, except that it is active in a far broader range of social transactions. While the scope of this theory is attractive, the specifics of the model remain unconvincing. After a critical assessment of the currency theory of emotion, a field model of emotion is introduced that adds expressiveness by locating emotional valence within its cognitive context, thereby creating an integrated orientation field. The result is a model which claims less in the way of motivational specificity, but is more satisfactory in modeling the dynamic interaction between cognitive and emotional orientations at both individual and social levels.
Regression and artificial neural network modeling for the prediction of gray leaf spot of maize.
Paul, P A; Munkvold, G P
2005-04-01
ABSTRACT Regression and artificial neural network (ANN) modeling approaches were combined to develop models to predict the severity of gray leaf spot of maize, caused by Cercospora zeae-maydis. In all, 329 cases consisting of environmental, cultural, and location-specific variables were collected for field plots in Iowa between 1998 and 2002. Disease severity on the ear leaf at the dough to dent plant growth stage was used as the response variable. Correlation and regression analyses were performed to select potentially useful predictor variables. Predictors from the best 9 of 80 regression models were used to develop ANN models. A random sample of 60% of the cases was used to train the networks, and 20% each for testing and validation. Model performance was evaluated based on coefficient of determination (R(2)) and mean square error (MSE) for the validation data set. The best models had R(2) ranging from 0.70 to 0.75 and MSE ranging from 174.7 to 202.8. The most useful predictor variables were hours of daily temperatures between 22 and 30 degrees C (85.50 to 230.50 h) and hours of nightly relative humidity >/=90% (122 to 330 h) for the period between growth stages V4 and V12, mean nightly temperature (65.26 to 76.56 degrees C) for the period between growth stages V12 and R2, longitude (90.08 to 95.14 degrees W), maize residue on the soil surface (0 to 100%), planting date (in day of the year; 112 to 182), and gray leaf spot resistance rating (2 to 7; based on a 1-to-9 scale, where 1 = most susceptible to 9 = most resistant).
Mean-field models and superheavy elements
International Nuclear Information System (INIS)
Reinhard, P.G.; Bender, M.; Maruhn, J.A.; Frankfurt Univ.
2001-03-01
We discuss the performance of two widely used nuclear mean-field models, the relativistic mean-field theory (RMF) and the non-relativistic Skyrme-Hartree-Fock approach (SHF), with particular emphasis on the description of superheavy elements (SHE). We provide a short introduction to the SHF and RMF, the relations between these two approaches and the relations to other nuclear structure models, briefly review the basic properties with respect to normal nuclear observables, and finally present and discuss recent results on the binding properties of SHE computed with a broad selection of SHF and RMF parametrisations. (orig.)