Adhikari, Shyam Prasad; Yang, Changju; Slot, Krzysztof; Kim, Hyongsuk
2018-01-10
This paper presents a vision sensor-based solution to the challenging problem of detecting and following trails in highly unstructured natural environments like forests, rural areas and mountains, using a combination of a deep neural network and dynamic programming. The deep neural network (DNN) concept has recently emerged as a very effective tool for processing vision sensor signals. A patch-based DNN is trained with supervised data to classify fixed-size image patches into "trail" and "non-trail" categories, and reshaped to a fully convolutional architecture to produce trail segmentation map for arbitrary-sized input images. As trail and non-trail patches do not exhibit clearly defined shapes or forms, the patch-based classifier is prone to misclassification, and produces sub-optimal trail segmentation maps. Dynamic programming is introduced to find an optimal trail on the sub-optimal DNN output map. Experimental results showing accurate trail detection for real-world trail datasets captured with a head mounted vision system are presented.
Liu, Derong; Huang, Yuzhu; Wang, Ding; Wei, Qinglai
2013-09-01
In this paper, an observer-based optimal control scheme is developed for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. First, a neural-network (NN) observer is designed to estimate system states. Then, based on the observed states, a neuro-controller is constructed via ADP method to obtain the optimal control. In this design, two NN structures are used: a three-layer NN is used to construct the observer which can be applied to systems with higher degrees of nonlinearity and without a priori knowledge of system dynamics, and a critic NN is employed to approximate the value function. The optimal control law is computed using the critic NN and the observer NN. Uniform ultimate boundedness of the closed-loop system is guaranteed. The actor, critic, and observer structures are all implemented in real-time, continuously and simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.
Directory of Open Access Journals (Sweden)
Lihe Xi
2017-11-01
Full Text Available The extended range electric vehicle (EREV can store much clean energy from the electric grid when it arrives at the charging station with lower battery energy. Consuming minimum gasoline during the trip is a common goal for most energy management controllers. To achieve these objectives, an intelligent energy management controller for EREV based on dynamic programming and neural networks (IEMC_NN is proposed. The power demand split ratio between the extender and battery are optimized by DP, and the control objectives are presented as a cost function. The online controller is trained by neural networks. Three trained controllers, constructing the controller library in IEMC_NN, are obtained from training three typical lengths of the driving cycle. To determine an appropriate NN controller for different driving distance purposes, the selection module in IEMC_NN is developed based on the remaining battery energy and the driving distance to the charging station. Three simulation conditions are adopted to validate the performance of IEMC_NN. They are target driving distance information, known and unknown, changing the destination during the trip. Simulation results using these simulation conditions show that the IEMC_NN had better fuel economy than the charging deplete/charging sustain (CD/CS algorithm. More significantly, with known driving distance information, the battery SOC controlled by IEMC_NN can just reach the lower bound as the EREV arrives at the charging station, which was also feasible when the driver changed the destination during the trip.
A dynamic programming approach to missing data estimation using neural networks
CSIR Research Space (South Africa)
Nelwamondo, FV
2013-01-01
Full Text Available method where dynamic programming is not used. This paper also suggests a different way of formulating a missing data problem such that the dynamic programming is applicable to estimate the missing data....
Dynamics of neural cryptography.
Ruttor, Andreas; Kinzel, Wolfgang; Kanter, Ido
2007-05-01
Synchronization of neural networks has been used for public channel protocols in cryptography. In the case of tree parity machines the dynamics of both bidirectional synchronization and unidirectional learning is driven by attractive and repulsive stochastic forces. Thus it can be described well by a random walk model for the overlap between participating neural networks. For that purpose transition probabilities and scaling laws for the step sizes are derived analytically. Both these calculations as well as numerical simulations show that bidirectional interaction leads to full synchronization on average. In contrast, successful learning is only possible by means of fluctuations. Consequently, synchronization is much faster than learning, which is essential for the security of the neural key-exchange protocol. However, this qualitative difference between bidirectional and unidirectional interaction vanishes if tree parity machines with more than three hidden units are used, so that those neural networks are not suitable for neural cryptography. In addition, the effective number of keys which can be generated by the neural key-exchange protocol is calculated using the entropy of the weight distribution. As this quantity increases exponentially with the system size, brute-force attacks on neural cryptography can easily be made unfeasible.
Dynamics of neural cryptography
International Nuclear Information System (INIS)
Ruttor, Andreas; Kinzel, Wolfgang; Kanter, Ido
2007-01-01
Synchronization of neural networks has been used for public channel protocols in cryptography. In the case of tree parity machines the dynamics of both bidirectional synchronization and unidirectional learning is driven by attractive and repulsive stochastic forces. Thus it can be described well by a random walk model for the overlap between participating neural networks. For that purpose transition probabilities and scaling laws for the step sizes are derived analytically. Both these calculations as well as numerical simulations show that bidirectional interaction leads to full synchronization on average. In contrast, successful learning is only possible by means of fluctuations. Consequently, synchronization is much faster than learning, which is essential for the security of the neural key-exchange protocol. However, this qualitative difference between bidirectional and unidirectional interaction vanishes if tree parity machines with more than three hidden units are used, so that those neural networks are not suitable for neural cryptography. In addition, the effective number of keys which can be generated by the neural key-exchange protocol is calculated using the entropy of the weight distribution. As this quantity increases exponentially with the system size, brute-force attacks on neural cryptography can easily be made unfeasible
Dynamics of neural cryptography
Ruttor, Andreas; Kinzel, Wolfgang; Kanter, Ido
2007-05-01
Synchronization of neural networks has been used for public channel protocols in cryptography. In the case of tree parity machines the dynamics of both bidirectional synchronization and unidirectional learning is driven by attractive and repulsive stochastic forces. Thus it can be described well by a random walk model for the overlap between participating neural networks. For that purpose transition probabilities and scaling laws for the step sizes are derived analytically. Both these calculations as well as numerical simulations show that bidirectional interaction leads to full synchronization on average. In contrast, successful learning is only possible by means of fluctuations. Consequently, synchronization is much faster than learning, which is essential for the security of the neural key-exchange protocol. However, this qualitative difference between bidirectional and unidirectional interaction vanishes if tree parity machines with more than three hidden units are used, so that those neural networks are not suitable for neural cryptography. In addition, the effective number of keys which can be generated by the neural key-exchange protocol is calculated using the entropy of the weight distribution. As this quantity increases exponentially with the system size, brute-force attacks on neural cryptography can easily be made unfeasible.
Neural dynamics in reconfigurable silicon.
Basu, A; Ramakrishnan, S; Petre, C; Koziol, S; Brink, S; Hasler, P E
2010-10-01
A neuromorphic analog chip is presented that is capable of implementing massively parallel neural computations while retaining the programmability of digital systems. We show measurements from neurons with Hopf bifurcations and integrate and fire neurons, excitatory and inhibitory synapses, passive dendrite cables, coupled spiking neurons, and central pattern generators implemented on the chip. This chip provides a platform for not only simulating detailed neuron dynamics but also uses the same to interface with actual cells in applications such as a dynamic clamp. There are 28 computational analog blocks (CAB), each consisting of ion channels with tunable parameters, synapses, winner-take-all elements, current sources, transconductance amplifiers, and capacitors. There are four other CABs which have programmable bias generators. The programmability is achieved using floating gate transistors with on-chip programming control. The switch matrix for interconnecting the components in CABs also consists of floating-gate transistors. Emphasis is placed on replicating the detailed dynamics of computational neural models. Massive computational area efficiency is obtained by using the reconfigurable interconnect as synaptic weights, resulting in more than 50 000 possible 9-b accurate synapses in 9 mm(2).
Dynamic training algorithm for dynamic neural networks
International Nuclear Information System (INIS)
Tan, Y.; Van Cauwenberghe, A.; Liu, Z.
1996-01-01
The widely used backpropagation algorithm for training neural networks based on the gradient descent has a significant drawback of slow convergence. A Gauss-Newton method based recursive least squares (RLS) type algorithm with dynamic error backpropagation is presented to speed-up the learning procedure of neural networks with local recurrent terms. Finally, simulation examples concerning the applications of the RLS type algorithm to identification of nonlinear processes using a local recurrent neural network are also included in this paper
Creative-Dynamics Approach To Neural Intelligence
Zak, Michail A.
1992-01-01
Paper discusses approach to mathematical modeling of artificial neural networks exhibiting complicated behaviors reminiscent of creativity and intelligence of biological neural networks. Neural network treated as non-Lipschitzian dynamical system - as described in "Non-Lipschitzian Dynamics For Modeling Neural Networks" (NPO-17814). System serves as tool for modeling of temporal-pattern memories and recognition of complicated spatial patterns.
Program Helps Simulate Neural Networks
Villarreal, James; Mcintire, Gary
1993-01-01
Neural Network Environment on Transputer System (NNETS) computer program provides users high degree of flexibility in creating and manipulating wide variety of neural-network topologies at processing speeds not found in conventional computing environments. Supports back-propagation and back-propagation-related algorithms. Back-propagation algorithm used is implementation of Rumelhart's generalized delta rule. NNETS developed on INMOS Transputer(R). Predefines back-propagation network, Jordan network, and reinforcement network to assist users in learning and defining own networks. Also enables users to configure other neural-network paradigms from NNETS basic architecture. Small portion of software written in OCCAM(R) language.
Dynamic decomposition of spatiotemporal neural signals.
Directory of Open Access Journals (Sweden)
Luca Ambrogioni
2017-05-01
Full Text Available Neural signals are characterized by rich temporal and spatiotemporal dynamics that reflect the organization of cortical networks. Theoretical research has shown how neural networks can operate at different dynamic ranges that correspond to specific types of information processing. Here we present a data analysis framework that uses a linearized model of these dynamic states in order to decompose the measured neural signal into a series of components that capture both rhythmic and non-rhythmic neural activity. The method is based on stochastic differential equations and Gaussian process regression. Through computer simulations and analysis of magnetoencephalographic data, we demonstrate the efficacy of the method in identifying meaningful modulations of oscillatory signals corrupted by structured temporal and spatiotemporal noise. These results suggest that the method is particularly suitable for the analysis and interpretation of complex temporal and spatiotemporal neural signals.
Local Dynamics in Trained Recurrent Neural Networks.
Rivkind, Alexander; Barak, Omri
2017-06-23
Learning a task induces connectivity changes in neural circuits, thereby changing their dynamics. To elucidate task-related neural dynamics, we study trained recurrent neural networks. We develop a mean field theory for reservoir computing networks trained to have multiple fixed point attractors. Our main result is that the dynamics of the network's output in the vicinity of attractors is governed by a low-order linear ordinary differential equation. The stability of the resulting equation can be assessed, predicting training success or failure. As a consequence, networks of rectified linear units and of sigmoidal nonlinearities are shown to have diametrically different properties when it comes to learning attractors. Furthermore, a characteristic time constant, which remains finite at the edge of chaos, offers an explanation of the network's output robustness in the presence of variability of the internal neural dynamics. Finally, the proposed theory predicts state-dependent frequency selectivity in the network response.
Local Dynamics in Trained Recurrent Neural Networks
Rivkind, Alexander; Barak, Omri
2017-06-01
Learning a task induces connectivity changes in neural circuits, thereby changing their dynamics. To elucidate task-related neural dynamics, we study trained recurrent neural networks. We develop a mean field theory for reservoir computing networks trained to have multiple fixed point attractors. Our main result is that the dynamics of the network's output in the vicinity of attractors is governed by a low-order linear ordinary differential equation. The stability of the resulting equation can be assessed, predicting training success or failure. As a consequence, networks of rectified linear units and of sigmoidal nonlinearities are shown to have diametrically different properties when it comes to learning attractors. Furthermore, a characteristic time constant, which remains finite at the edge of chaos, offers an explanation of the network's output robustness in the presence of variability of the internal neural dynamics. Finally, the proposed theory predicts state-dependent frequency selectivity in the network response.
Convergent dynamics for multistable delayed neural networks
International Nuclear Information System (INIS)
Shih, Chih-Wen; Tseng, Jui-Pin
2008-01-01
This investigation aims at developing a methodology to establish convergence of dynamics for delayed neural network systems with multiple stable equilibria. The present approach is general and can be applied to several network models. We take the Hopfield-type neural networks with both instantaneous and delayed feedbacks to illustrate the idea. We shall construct the complete dynamical scenario which comprises exactly 2 n stable equilibria and exactly (3 n − 2 n ) unstable equilibria for the n-neuron network. In addition, it is shown that every solution of the system converges to one of the equilibria as time tends to infinity. The approach is based on employing the geometrical structure of the network system. Positively invariant sets and componentwise dynamical properties are derived under the geometrical configuration. An iteration scheme is subsequently designed to confirm the convergence of dynamics for the system. Two examples with numerical simulations are arranged to illustrate the present theory
Introduction to dynamic programming
Cooper, Leon; Rodin, E Y
1981-01-01
Introduction to Dynamic Programming provides information pertinent to the fundamental aspects of dynamic programming. This book considers problems that can be quantitatively formulated and deals with mathematical models of situations or phenomena that exists in the real world.Organized into 10 chapters, this book begins with an overview of the fundamental components of any mathematical optimization model. This text then presents the details of the application of dynamic programming to variational problems. Other chapters consider the application of dynamic programming to inventory theory, Mark
Dynamical systems, attractors, and neural circuits.
Miller, Paul
2016-01-01
Biology is the study of dynamical systems. Yet most of us working in biology have limited pedagogical training in the theory of dynamical systems, an unfortunate historical fact that can be remedied for future generations of life scientists. In my particular field of systems neuroscience, neural circuits are rife with nonlinearities at all levels of description, rendering simple methodologies and our own intuition unreliable. Therefore, our ideas are likely to be wrong unless informed by good models. These models should be based on the mathematical theories of dynamical systems since functioning neurons are dynamic-they change their membrane potential and firing rates with time. Thus, selecting the appropriate type of dynamical system upon which to base a model is an important first step in the modeling process. This step all too easily goes awry, in part because there are many frameworks to choose from, in part because the sparsely sampled data can be consistent with a variety of dynamical processes, and in part because each modeler has a preferred modeling approach that is difficult to move away from. This brief review summarizes some of the main dynamical paradigms that can arise in neural circuits, with comments on what they can achieve computationally and what signatures might reveal their presence within empirical data. I provide examples of different dynamical systems using simple circuits of two or three cells, emphasizing that any one connectivity pattern is compatible with multiple, diverse functions.
Nonlinear programming with feedforward neural networks.
Energy Technology Data Exchange (ETDEWEB)
Reifman, J.
1999-06-02
We provide a practical and effective method for solving constrained optimization problems by successively training a multilayer feedforward neural network in a coupled neural-network/objective-function representation. Nonlinear programming problems are easily mapped into this representation which has a simpler and more transparent method of solution than optimization performed with Hopfield-like networks and poses very mild requirements on the functions appearing in the problem. Simulation results are illustrated and compared with an off-the-shelf optimization tool.
Takiyama, Ken
2017-12-01
How neural adaptation affects neural information processing (i.e. the dynamics and equilibrium state of neural activities) is a central question in computational neuroscience. In my previous works, I analytically clarified the dynamics and equilibrium state of neural activities in a ring-type neural network model that is widely used to model the visual cortex, motor cortex, and several other brain regions. The neural dynamics and the equilibrium state in the neural network model corresponded to a Bayesian computation and statistically optimal multiple information integration, respectively, under a biologically inspired condition. These results were revealed in an analytically tractable manner; however, adaptation effects were not considered. Here, I analytically reveal how the dynamics and equilibrium state of neural activities in a ring neural network are influenced by spike-frequency adaptation (SFA). SFA is an adaptation that causes gradual inhibition of neural activity when a sustained stimulus is applied, and the strength of this inhibition depends on neural activities. I reveal that SFA plays three roles: (1) SFA amplifies the influence of external input in neural dynamics; (2) SFA allows the history of the external input to affect neural dynamics; and (3) the equilibrium state corresponds to the statistically optimal multiple information integration independent of the existence of SFA. In addition, the equilibrium state in a ring neural network model corresponds to the statistically optimal integration of multiple information sources under biologically inspired conditions, independent of the existence of SFA.
Dynamic Information Encoding With Dynamic Synapses in Neural Adaptation
Li, Luozheng; Mi, Yuanyuan; Zhang, Wenhao; Wang, Da-Hui; Wu, Si
2018-01-01
Adaptation refers to the general phenomenon that the neural system dynamically adjusts its response property according to the statistics of external inputs. In response to an invariant stimulation, neuronal firing rates first increase dramatically and then decrease gradually to a low level close to the background activity. This prompts a question: during the adaptation, how does the neural system encode the repeated stimulation with attenuated firing rates? It has been suggested that the neural system may employ a dynamical encoding strategy during the adaptation, the information of stimulus is mainly encoded by the strong independent spiking of neurons at the early stage of the adaptation; while the weak but synchronized activity of neurons encodes the stimulus information at the later stage of the adaptation. The previous study demonstrated that short-term facilitation (STF) of electrical synapses, which increases the synchronization between neurons, can provide a mechanism to realize dynamical encoding. In the present study, we further explore whether short-term plasticity (STP) of chemical synapses, an interaction form more common than electrical synapse in the cortex, can support dynamical encoding. We build a large-size network with chemical synapses between neurons. Notably, facilitation of chemical synapses only enhances pair-wise correlations between neurons mildly, but its effect on increasing synchronization of the network can be significant, and hence it can serve as a mechanism to convey the stimulus information. To read-out the stimulus information, we consider that a downstream neuron receives balanced excitatory and inhibitory inputs from the network, so that the downstream neuron only responds to synchronized firings of the network. Therefore, the response of the downstream neuron indicates the presence of the repeated stimulation. Overall, our study demonstrates that STP of chemical synapse can serve as a mechanism to realize dynamical neural
Dual Dynamic Programming - DDP
International Nuclear Information System (INIS)
Velasquez Bermudez, Jesus M
1998-01-01
Objections are presented to the mathematical formulation of the denominated Dual Dynamic programming-PDD that is the theoretical base of several computational model available for the optimal formulation of interconnected hydrothermal systems
A class of convergent neural network dynamics
Fiedler, Bernold; Gedeon, Tomáš
1998-01-01
We consider a class of systems of differential equations in Rn which exhibits convergent dynamics. We find a Lyapunov function and show that every bounded trajectory converges to the set of equilibria. Our result generalizes the results of Cohen and Grossberg (1983) for convergent neural networks. It replaces the symmetry assumption on the matrix of weights by the assumption on the structure of the connections in the neural network. We prove the convergence result also for a large class of Lotka-Volterra systems. These are naturally defined on the closed positive orthant. We show that there are no heteroclinic cycles on the boundary of the positive orthant for the systems in this class.
Collaborative Recurrent Neural Networks forDynamic Recommender Systems
2016-11-22
JMLR: Workshop and Conference Proceedings 63:366–381, 2016 ACML 2016 Collaborative Recurrent Neural Networks for Dynamic Recommender Systems Young...an unprece- dented scale. Although such activity logs are abundantly available, most approaches to recommender systems are based on the rating...Recurrent Neural Network, Recommender System , Neural Language Model, Collaborative Filtering 1. Introduction As ever larger parts of the population
Neural-Network Object-Recognition Program
Spirkovska, L.; Reid, M. B.
1993-01-01
HONTIOR computer program implements third-order neural network exhibiting invariance under translation, change of scale, and in-plane rotation. Invariance incorporated directly into architecture of network. Only one view of each object needed to train network for two-dimensional-translation-invariant recognition of object. Also used for three-dimensional-transformation-invariant recognition by training network on only set of out-of-plane rotated views. Written in C language.
DCS-Neural-Network Program for Aircraft Control and Testing
Jorgensen, Charles C.
2006-01-01
A computer program implements a dynamic-cell-structure (DCS) artificial neural network that can perform such tasks as learning selected aerodynamic characteristics of an airplane from wind-tunnel test data and computing real-time stability and control derivatives of the airplane for use in feedback linearized control. A DCS neural network is one of several types of neural networks that can incorporate additional nodes in order to rapidly learn increasingly complex relationships between inputs and outputs. In the DCS neural network implemented by the present program, the insertion of nodes is based on accumulated error. A competitive Hebbian learning rule (a supervised-learning rule in which connection weights are adjusted to minimize differences between actual and desired outputs for training examples) is used. A Kohonen-style learning rule (derived from a relatively simple training algorithm, implements a Delaunay triangulation layout of neurons) is used to adjust node positions during training. Neighborhood topology determines which nodes are used to estimate new values. The network learns, starting with two nodes, and adds new nodes sequentially in locations chosen to maximize reductions in global error. At any given time during learning, the error becomes homogeneously distributed over all nodes.
Bender, Christian; Gärtner, Christian; Schweizer, Nikolaus
2017-01-01
We present a novel method for deriving tight Monte Carlo confidence intervals for solutions of stochastic dynamic programming equations. Taking some approximate solution to the equation as an input, we construct pathwise recursions with a known bias. Suitably coupling the recursions for lower and
Dynamics of neural networks with continuous attractors
Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si
2008-10-01
We investigate the dynamics of continuous attractor neural networks (CANNs). Due to the translational invariance of their neuronal interactions, CANNs can hold a continuous family of stationary states. We systematically explore how their neutral stability facilitates the tracking performance of a CANN, which is believed to have wide applications in brain functions. We develop a perturbative approach that utilizes the dominant movement of the network stationary states in the state space. We quantify the distortions of the bump shape during tracking, and study their effects on the tracking performance. Results are obtained on the maximum speed for a moving stimulus to be trackable, and the reaction time to catch up an abrupt change in stimulus.
Coordination: Neural, Behavioral and Social Dynamics
Fuchs, Armin
2008-01-01
One of the most striking features of Coordination Dynamics is its interdisciplinary character. The problems we are trying to solve in this field range from behavioral phenomena of interlimb coordination and coordination between stimuli and movements (perception-action tasks) through neural activation patterns that can be observed during these tasks to clinical applications and social behavior. It is not surprising that close collaboration among scientists from different fields as psychology, kinesiology, neurology and even physics are imperative to deal with the enormous difficulties we are facing when we try to understand a system as complex as the human brain. The chapters in this volume are not simply write-ups of the lectures given by the experts at the meeting but are written in a way that they give sufficient introductory information to be comprehensible and useful for all interested scientists and students.
Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.
Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu
2017-10-01
This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.
Neural dynamics during repetitive visual stimulation
Tsoneva, Tsvetomira; Garcia-Molina, Gary; Desain, Peter
2015-12-01
Objective. Steady-state visual evoked potentials (SSVEPs), the brain responses to repetitive visual stimulation (RVS), are widely utilized in neuroscience. Their high signal-to-noise ratio and ability to entrain oscillatory brain activity are beneficial for their applications in brain-computer interfaces, investigation of neural processes underlying brain rhythmic activity (steady-state topography) and probing the causal role of brain rhythms in cognition and emotion. This paper aims at analyzing the space and time EEG dynamics in response to RVS at the frequency of stimulation and ongoing rhythms in the delta, theta, alpha, beta, and gamma bands. Approach.We used electroencephalography (EEG) to study the oscillatory brain dynamics during RVS at 10 frequencies in the gamma band (40-60 Hz). We collected an extensive EEG data set from 32 participants and analyzed the RVS evoked and induced responses in the time-frequency domain. Main results. Stable SSVEP over parieto-occipital sites was observed at each of the fundamental frequencies and their harmonics and sub-harmonics. Both the strength and the spatial propagation of the SSVEP response seem sensitive to stimulus frequency. The SSVEP was more localized around the parieto-occipital sites for higher frequencies (>54 Hz) and spread to fronto-central locations for lower frequencies. We observed a strong negative correlation between stimulation frequency and relative power change at that frequency, the first harmonic and the sub-harmonic components over occipital sites. Interestingly, over parietal sites for sub-harmonics a positive correlation of relative power change and stimulation frequency was found. A number of distinct patterns in delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz) and beta (15-30 Hz) bands were also observed. The transient response, from 0 to about 300 ms after stimulation onset, was accompanied by increase in delta and theta power over fronto-central and occipital sites, which returned to baseline
Shaping the learning curve: epigenetic dynamics in neural plasticity
Directory of Open Access Journals (Sweden)
Zohar Ziv Bronfman
2014-07-01
Full Text Available A key characteristic of learning and neural plasticity is state-dependent acquisition dynamics reflected by the non-linear learning curve that links increase in learning with practice. Here we propose that the manner by which epigenetic states of individual cells change during learning contributes to the shape of the neural and behavioral learning curve. We base our suggestion on recent studies showing that epigenetic mechanisms such as DNA methylation, histone acetylation and RNA-mediated gene regulation are intimately involved in the establishment and maintenance of long-term neural plasticity, reflecting specific learning-histories and influencing future learning. Our model, which is the first to suggest a dynamic molecular account of the shape of the learning curve, leads to several testable predictions regarding the link between epigenetic dynamics at the promoter, gene-network and neural-network levels. This perspective opens up new avenues for therapeutic interventions in neurological pathologies.
Advanced models of neural networks nonlinear dynamics and stochasticity in biological neurons
Rigatos, Gerasimos G
2015-01-01
This book provides a complete study on neural structures exhibiting nonlinear and stochastic dynamics, elaborating on neural dynamics by introducing advanced models of neural networks. It overviews the main findings in the modelling of neural dynamics in terms of electrical circuits and examines their stability properties with the use of dynamical systems theory. It is suitable for researchers and postgraduate students engaged with neural networks and dynamical systems theory.
Controlling the dynamics of multi-state neural networks
International Nuclear Information System (INIS)
Jin, Tao; Zhao, Hong
2008-01-01
In this paper, we first analyze the distribution of local fields (DLF) which is induced by the memory patterns in the Q-Ising model. It is found that the structure of the DLF is closely correlated with the network dynamics and the system performance. However, the design rule adopted in the Q-Ising model, like the other rules adopted for multi-state neural networks with associative memories, cannot be applied to directly control the DLF for a given set of memory patterns, and thus cannot be applied to further study the relationships between the structure of the DLF and the dynamics of the network. We then extend a design rule, which was presented recently for designing binary-state neural networks, to make it suitable for designing general multi-state neural networks. This rule is able to control the structure of the DLF as expected. We show that controlling the DLF not only can affect the dynamic behaviors of the multi-state neural networks for a given set of memory patterns, but also can improve the storage capacity. With the change of the DLF, the network shows very rich dynamic behaviors, such as the 'chaos phase', the 'memory phase', and the 'mixture phase'. These dynamic behaviors are also observed in the binary-state neural networks; therefore, our results imply that they may be the universal behaviors of feedback neural networks
Efficient Neural Network Modeling for Flight and Space Dynamics Simulation
Directory of Open Access Journals (Sweden)
Ayman Hamdy Kassem
2011-01-01
Full Text Available This paper represents an efficient technique for neural network modeling of flight and space dynamics simulation. The technique will free the neural network designer from guessing the size and structure for the required neural network model and will help to minimize the number of neurons. For linear flight/space dynamics systems, the technique can find the network weights and biases directly by solving a system of linear equations without the need for training. Nonlinear flight dynamic systems can be easily modeled by training its linearized models keeping the same network structure. The training is fast, as it uses the linear system knowledge to speed up the training process. The technique is tested on different flight/space dynamic models and showed promising results.
The Complexity of Dynamics in Small Neural Circuits.
Directory of Open Access Journals (Sweden)
Diego Fasoli
2016-08-01
Full Text Available Mean-field approximations are a powerful tool for studying large neural networks. However, they do not describe well the behavior of networks composed of a small number of neurons. In this case, major differences between the mean-field approximation and the real behavior of the network can arise. Yet, many interesting problems in neuroscience involve the study of mesoscopic networks composed of a few tens of neurons. Nonetheless, mathematical methods that correctly describe networks of small size are still rare, and this prevents us to make progress in understanding neural dynamics at these intermediate scales. Here we develop a novel systematic analysis of the dynamics of arbitrarily small networks composed of homogeneous populations of excitatory and inhibitory firing-rate neurons. We study the local bifurcations of their neural activity with an approach that is largely analytically tractable, and we numerically determine the global bifurcations. We find that for strong inhibition these networks give rise to very complex dynamics, caused by the formation of multiple branching solutions of the neural dynamics equations that emerge through spontaneous symmetry-breaking. This qualitative change of the neural dynamics is a finite-size effect of the network, that reveals qualitative and previously unexplored differences between mesoscopic cortical circuits and their mean-field approximation. The most important consequence of spontaneous symmetry-breaking is the ability of mesoscopic networks to regulate their degree of functional heterogeneity, which is thought to help reducing the detrimental effect of noise correlations on cortical information processing.
Neural Computations in a Dynamical System with Multiple Time Scales.
Mi, Yuanyuan; Lin, Xiaohan; Wu, Si
2016-01-01
Neural systems display rich short-term dynamics at various levels, e.g., spike-frequency adaptation (SFA) at the single-neuron level, and short-term facilitation (STF) and depression (STD) at the synapse level. These dynamical features typically cover a broad range of time scales and exhibit large diversity in different brain regions. It remains unclear what is the computational benefit for the brain to have such variability in short-term dynamics. In this study, we propose that the brain can exploit such dynamical features to implement multiple seemingly contradictory computations in a single neural circuit. To demonstrate this idea, we use continuous attractor neural network (CANN) as a working model and include STF, SFA and STD with increasing time constants in its dynamics. Three computational tasks are considered, which are persistent activity, adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, and hence cannot be implemented by a single dynamical feature or any combination with similar time constants. However, with properly coordinated STF, SFA and STD, we show that the network is able to implement the three computational tasks concurrently. We hope this study will shed light on the understanding of how the brain orchestrates its rich dynamics at various levels to realize diverse cognitive functions.
Discriminating lysosomal membrane protein types using dynamic neural network.
Tripathi, Vijay; Gupta, Dwijendra Kumar
2014-01-01
This work presents a dynamic artificial neural network methodology, which classifies the proteins into their classes from their sequences alone: the lysosomal membrane protein classes and the various other membranes protein classes. In this paper, neural networks-based lysosomal-associated membrane protein type prediction system is proposed. Different protein sequence representations are fused to extract the features of a protein sequence, which includes seven feature sets; amino acid (AA) composition, sequence length, hydrophobic group, electronic group, sum of hydrophobicity, R-group, and dipeptide composition. To reduce the dimensionality of the large feature vector, we applied the principal component analysis. The probabilistic neural network, generalized regression neural network, and Elman regression neural network (RNN) are used as classifiers and compared with layer recurrent network (LRN), a dynamic network. The dynamic networks have memory, i.e. its output depends not only on the input but the previous outputs also. Thus, the accuracy of LRN classifier among all other artificial neural networks comes out to be the highest. The overall accuracy of jackknife cross-validation is 93.2% for the data-set. These predicted results suggest that the method can be effectively applied to discriminate lysosomal associated membrane proteins from other membrane proteins (Type-I, Outer membrane proteins, GPI-Anchored) and Globular proteins, and it also indicates that the protein sequence representation can better reflect the core feature of membrane proteins than the classical AA composition.
Stochastic integer programming by dynamic programming
Lageweg, B.J.; Lenstra, J.K.; Rinnooy Kan, A.H.G.; Stougie, L.; Ermoliev, Yu.; Wets, R.J.B.
1988-01-01
Stochastic integer programming is a suitable tool for modeling hierarchical decision situations with combinatorial features. In continuation of our work on the design and analysis of heuristics for such problems, we now try to find optimal solutions. Dynamic programming techniques can be used to
Dynamics in a delayed-neural network
International Nuclear Information System (INIS)
Yuan Yuan
2007-01-01
In this paper, we consider a neural network of four identical neurons with time-delayed connections. Some parameter regions are given for global, local stability and synchronization using the theory of functional differential equations. The root distributions in the corresponding characteristic transcendental equation are analyzed, Pitchfork bifurcation, Hopf and equivariant Hopf bifurcations are investigated by revealing the center manifolds and normal forms. Numerical simulations are shown the agreements with the theoretical results
Introduction to stochastic dynamic programming
Ross, Sheldon M; Lukacs, E
1983-01-01
Introduction to Stochastic Dynamic Programming presents the basic theory and examines the scope of applications of stochastic dynamic programming. The book begins with a chapter on various finite-stage models, illustrating the wide range of applications of stochastic dynamic programming. Subsequent chapters study infinite-stage models: discounting future returns, minimizing nonnegative costs, maximizing nonnegative returns, and maximizing the long-run average return. Each of these chapters first considers whether an optimal policy need exist-providing counterexamples where appropriate-and the
Dynamic Programming Foundations and Principles
Sniedovich, Moshe
2010-01-01
Focusing on the modeling and solution of deterministic multistage decision problems, this book looks at dynamic programming as a problem-solving optimization method. With over 400 useful references, this edition discusses the dynamic programming analysis of a problem, illustrates the rationale behind this analysis, and clarifies the theoretical grounds that justify the rationale. It also explains the meaning and role of the concept of state in dynamic programming, examines the purpose and function of the principle of optimality, and outlines solution strategies for problems defiant of conventi
Neural Computations in a Dynamical System with Multiple Time Scales
Directory of Open Access Journals (Sweden)
Yuanyuan Mi
2016-09-01
Full Text Available Neural systems display rich short-term dynamics at various levels, e.g., spike-frequencyadaptation (SFA at single neurons, and short-term facilitation (STF and depression (STDat neuronal synapses. These dynamical features typically covers a broad range of time scalesand exhibit large diversity in different brain regions. It remains unclear what the computationalbenefit for the brain to have such variability in short-term dynamics is. In this study, we proposethat the brain can exploit such dynamical features to implement multiple seemingly contradictorycomputations in a single neural circuit. To demonstrate this idea, we use continuous attractorneural network (CANN as a working model and include STF, SFA and STD with increasing timeconstants in their dynamics. Three computational tasks are considered, which are persistent activity,adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, andhence cannot be implemented by a single dynamical feature or any combination with similar timeconstants. However, with properly coordinated STF, SFA and STD, we show that the network isable to implement the three computational tasks concurrently. We hope this study will shed lighton the understanding of how the brain orchestrates its rich dynamics at various levels to realizediverse cognitive functions.
Synthesis of recurrent neural networks for dynamical system simulation.
Trischler, Adam P; D'Eleuterio, Gabriele M T
2016-08-01
We review several of the most widely used techniques for training recurrent neural networks to approximate dynamical systems, then describe a novel algorithm for this task. The algorithm is based on an earlier theoretical result that guarantees the quality of the network approximation. We show that a feedforward neural network can be trained on the vector-field representation of a given dynamical system using backpropagation, then recast it as a recurrent network that replicates the original system's dynamics. After detailing this algorithm and its relation to earlier approaches, we present numerical examples that demonstrate its capabilities. One of the distinguishing features of our approach is that both the original dynamical systems and the recurrent networks that simulate them operate in continuous time. Copyright © 2016 Elsevier Ltd. All rights reserved.
Neutral Theory and Scale-Free Neural Dynamics
Martinello, Matteo; Hidalgo, Jorge; Maritan, Amos; di Santo, Serena; Plenz, Dietmar; Muñoz, Miguel A.
2017-10-01
Neural tissues have been consistently observed to be spontaneously active and to generate highly variable (scale-free distributed) outbursts of activity in vivo and in vitro. Understanding whether these heterogeneous patterns of activity stem from the underlying neural dynamics operating at the edge of a phase transition is a fascinating possibility, as criticality has been argued to entail many possible important functional advantages in biological computing systems. Here, we employ a well-accepted model for neural dynamics to elucidate an alternative scenario in which diverse neuronal avalanches, obeying scaling, can coexist simultaneously, even if the network operates in a regime far from the edge of any phase transition. We show that perturbations to the system state unfold dynamically according to a "neutral drift" (i.e., guided only by stochasticity) with respect to the background of endogenous spontaneous activity, and that such a neutral dynamics—akin to neutral theories of population genetics and of biogeography—implies marginal propagation of perturbations and scale-free distributed causal avalanches. We argue that causal information, not easily accessible to experiments, is essential to elucidate the nature and statistics of neural avalanches, and that neutral dynamics is likely to play an important role in the cortex functioning. We discuss the implications of these findings to design new empirical approaches to shed further light on how the brain processes and stores information.
Dynamic Adaptive Neural Network Arrays: A Neuromorphic Architecture
Energy Technology Data Exchange (ETDEWEB)
Disney, Adam [University of Tennessee (UT); Reynolds, John [University of Tennessee (UT)
2015-01-01
Dynamic Adaptive Neural Network Array (DANNA) is a neuromorphic hardware implementation. It differs from most other neuromorphic projects in that it allows for programmability of structure, and it is trained or designed using evolutionary optimization. This paper describes the DANNA structure, how DANNA is trained using evolutionary optimization, and an application of DANNA to a very simple classification task.
Dynamic programming models and applications
Denardo, Eric V
2003-01-01
Introduction to sequential decision processes covers use of dynamic programming in studying models of resource allocation, methods for approximating solutions of control problems in continuous time, production control, more. 1982 edition.
Dynamics of a neural system with a multiscale architecture
Breakspear, Michael; Stam, Cornelis J
2005-01-01
The architecture of the brain is characterized by a modular organization repeated across a hierarchy of spatial scales—neurons, minicolumns, cortical columns, functional brain regions, and so on. It is important to consider that the processes governing neural dynamics at any given scale are not only determined by the behaviour of other neural structures at that scale, but also by the emergent behaviour of smaller scales, and the constraining influence of activity at larger scales. In this paper, we introduce a theoretical framework for neural systems in which the dynamics are nested within a multiscale architecture. In essence, the dynamics at each scale are determined by a coupled ensemble of nonlinear oscillators, which embody the principle scale-specific neurobiological processes. The dynamics at larger scales are ‘slaved’ to the emergent behaviour of smaller scales through a coupling function that depends on a multiscale wavelet decomposition. The approach is first explicated mathematically. Numerical examples are then given to illustrate phenomena such as between-scale bifurcations, and how synchronization in small-scale structures influences the dynamics in larger structures in an intuitive manner that cannot be captured by existing modelling approaches. A framework for relating the dynamical behaviour of the system to measured observables is presented and further extensions to capture wave phenomena and mode coupling are suggested. PMID:16087448
Dynamic artificial neural networks with affective systems.
Directory of Open Access Journals (Sweden)
Catherine D Schuman
Full Text Available Artificial neural networks (ANNs are processors that are trained to perform particular tasks. We couple a computational ANN with a simulated affective system in order to explore the interaction between the two. In particular, we design a simple affective system that adjusts the threshold values in the neurons of our ANN. The aim of this paper is to demonstrate that this simple affective system can control the firing rate of the ensemble of neurons in the ANN, as well as to explore the coupling between the affective system and the processes of long term potentiation (LTP and long term depression (LTD, and the effect of the parameters of the affective system on its performance. We apply our networks with affective systems to a simple pole balancing example and briefly discuss the effect of affective systems on network performance.
Dynamic Pricing in Electronic Commerce Using Neural Network
Ghose, Tapu Kumar; Tran, Thomas T.
In this paper, we propose an approach where feed-forward neural network is used for dynamically calculating a competitive price of a product in order to maximize sellers’ revenue. In the approach we considered that along with product price other attributes such as product quality, delivery time, after sales service and seller’s reputation contribute in consumers purchase decision. We showed that once the sellers, by using their limited prior knowledge, set an initial price of a product our model adjusts the price automatically with the help of neural network so that sellers’ revenue is maximized.
Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns.
Directory of Open Access Journals (Sweden)
Andrea Maesani
2015-11-01
Full Text Available The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs-locomotor bouts-matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior.
Nonlinear dynamical system approaches towards neural prosthesis
International Nuclear Information System (INIS)
Torikai, Hiroyuki; Hashimoto, Sho
2011-01-01
An asynchronous discrete-state spiking neurons is a wired system of shift registers that can mimic nonlinear dynamics of an ODE-based neuron model. The control parameter of the neuron is the wiring pattern among the registers and thus they are suitable for on-chip learning. In this paper an asynchronous discrete-state spiking neuron is introduced and its typical nonlinear phenomena are demonstrated. Also, a learning algorithm for a set of neurons is presented and it is demonstrated that the algorithm enables the set of neurons to reconstruct nonlinear dynamics of another set of neurons with unknown parameter values. The learning function is validated by FPGA experiments.
Liu, Qingshan; Guo, Zhishan; Wang, Jun
2012-02-01
In this paper, a one-layer recurrent neural network is proposed for solving pseudoconvex optimization problems subject to linear equality and bound constraints. Compared with the existing neural networks for optimization (e.g., the projection neural networks), the proposed neural network is capable of solving more general pseudoconvex optimization problems with equality and bound constraints. Moreover, it is capable of solving constrained fractional programming problems as a special case. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed as long as the designed parameters in the model are larger than the derived lower bounds. Numerical examples with simulation results illustrate the effectiveness and characteristics of the proposed neural network. In addition, an application for dynamic portfolio optimization is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
1978-10-01
8 Track Bushing Research, . . . . . . . . . . . * . . . 8 Advanced frack Concept Development ..... . . . . . 9 TECHNICAL DISCUSSION...machine design effort was conducted. The design which was developed has separate servocontrolled hydraulic actuators to apply radial...back bending-but, in the order and magnitude of the way the torsional stress is incurred in service. This suggests a programable, hydraulically actuated
Framing effects: behavioral dynamics and neural basis.
Zheng, Hongming; Wang, X T; Zhu, Liqi
2010-09-01
This study examined the neural basis of framing effects using life-death decision problems framed either positively in terms of lives saved or negatively in terms of lives lost in large group and small group contexts. Using functional MRI we found differential brain activations to the verbal and social cues embedded in the choice problems. In large group contexts, framing effects were significant where participants were more risk seeking under the negative (loss) framing than under the positive (gain) framing. This behavioral difference in risk preference was mainly regulated by the activation in the right inferior frontal gyrus, including the homologue of the Broca's area. In contrast, framing effects diminished in small group contexts while the insula and parietal lobe in the right hemisphere were distinctively activated, suggesting an important role of emotion in switching choice preference from an indecisive mode to a more consistent risk-taking inclination, governed by a kith-and-kin decision rationality. Copyright 2010 Elsevier Ltd. All rights reserved.
Dynamic neural architecture for social knowledge retrieval.
Wang, Yin; Collins, Jessica A; Koski, Jessica; Nugiel, Tehila; Metoki, Athanasia; Olson, Ingrid R
2017-04-18
Social behavior is often shaped by the rich storehouse of biographical information that we hold for other people. In our daily life, we rapidly and flexibly retrieve a host of biographical details about individuals in our social network, which often guide our decisions as we navigate complex social interactions. Even abstract traits associated with an individual, such as their political affiliation, can cue a rich cascade of person-specific knowledge. Here, we asked whether the anterior temporal lobe (ATL) serves as a hub for a distributed neural circuit that represents person knowledge. Fifty participants across two studies learned biographical information about fictitious people in a 2-d training paradigm. On day 3, they retrieved this biographical information while undergoing an fMRI scan. A series of multivariate and connectivity analyses suggest that the ATL stores abstract person identity representations. Moreover, this region coordinates interactions with a distributed network to support the flexible retrieval of person attributes. Together, our results suggest that the ATL is a central hub for representing and retrieving person knowledge.
Secure Dynamic Program Repartitioning
DEFF Research Database (Denmark)
Hansen, Rene Rydhoff; Probst, Christian
2005-01-01
Secure program partitioning has been introduced as a language-based technique to allow the distribution of data and computation across mutualy untrusted hosts, while at the same time guaranteeing the protection of confidential data. Programs that have been annotated with security types......, but the partitioning compiler becomes a part of the network and can recompile applications, thus alowing hosts to enter or leave the framework. We contend that this setting is superior to static partitioning, since it allows redistribution of data and computations. This is especialy beneficial if the new host alows...... data and computations to better fulfil the trust requirements of the users. Erasure Policies ensure that the original host of the redistributed data or computation does not store the data any longer....
Empirical Modeling of the Plasmasphere Dynamics Using Neural Networks
Zhelavskaya, I. S.; Shprits, Y.; Spasojevic, M.
2017-12-01
We present a new empirical model for reconstructing the global dynamics of the cold plasma density distribution based only on solar wind data and geomagnetic indices. Utilizing the density database obtained using the NURD (Neural-network-based Upper hybrid Resonance Determination) algorithm for the period of October 1, 2012 - July 1, 2016, in conjunction with solar wind data and geomagnetic indices, we develop a neural network model that is capable of globally reconstructing the dynamics of the cold plasma density distribution for 2 ≤ L ≤ 6 and all local times. We validate and test the model by measuring its performance on independent datasets withheld from the training set and by comparing the model predicted global evolution with global images of He+ distribution in the Earth's plasmasphere from the IMAGE Extreme UltraViolet (EUV) instrument. We identify the parameters that best quantify the plasmasphere dynamics by training and comparing multiple neural networks with different combinations of input parameters (geomagnetic indices, solar wind data, and different durations of their time history). We demonstrate results of both local and global plasma density reconstruction. This study illustrates how global dynamics can be reconstructed from local in-situ observations by using machine learning techniques.
Chiel, Hillel J.; Thomas, Peter J.
2011-12-01
, the sun, earth and moon) proved to be far more difficult. In the late nineteenth century, Poincaré made significant progress on this problem, introducing a geometric method of reasoning about solutions to differential equations (Diacu and Holmes 1996). This work had a powerful impact on mathematicians and physicists, and also began to influence biology. In his 1925 book, based on his work starting in 1907, and that of others, Lotka used nonlinear differential equations and concepts from dynamical systems theory to analyze a wide variety of biological problems, including oscillations in the numbers of predators and prey (Lotka 1925). Although little was known in detail about the function of the nervous system, Lotka concluded his book with speculations about consciousness and the implications this might have for creating a mathematical formulation of biological systems. Much experimental work in the 1930s and 1940s focused on the biophysical mechanisms of excitability in neural tissue, and Rashevsky and others continued to apply tools and concepts from nonlinear dynamical systems theory as a means of providing a more general framework for understanding these results (Rashevsky 1960, Landahl and Podolsky 1949). The publication of Hodgkin and Huxley's classic quantitative model of the action potential in 1952 created a new impetus for these studies (Hodgkin and Huxley 1952). In 1955, FitzHugh published an important paper that summarized much of the earlier literature, and used concepts from phase plane analysis such as asymptotic stability, saddle points, separatrices and the role of noise to provide a deeper theoretical and conceptual understanding of threshold phenomena (Fitzhugh 1955, Izhikevich and FitzHugh 2006). The Fitzhugh-Nagumo equations constituted an important two-dimensional simplification of the four-dimensional Hodgkin and Huxley equations, and gave rise to an extensive literature of analysis. Many of the papers in this special issue build on tools
Linear programming based on neural networks for radiotherapy treatment planning
International Nuclear Information System (INIS)
Xingen Wu; Limin Luo
2000-01-01
In this paper, we propose a neural network model for linear programming that is designed to optimize radiotherapy treatment planning (RTP). This kind of neural network can be easily implemented by using a kind of 'neural' electronic system in order to obtain an optimization solution in real time. We first give an introduction to the RTP problem and construct a non-constraint objective function for the neural network model. We adopt a gradient algorithm to minimize the objective function and design the structure of the neural network for RTP. Compared to traditional linear programming methods, this neural network model can reduce the time needed for convergence, the size of problems (i.e., the number of variables to be searched) and the number of extra slack and surplus variables needed. We obtained a set of optimized beam weights that result in a better dose distribution as compared to that obtained using the simplex algorithm under the same initial condition. The example presented in this paper shows that this model is feasible in three-dimensional RTP. (author)
Neural network for solving convex quadratic bilevel programming problems.
He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie
2014-03-01
In this paper, using the idea of successive approximation, we propose a neural network to solve convex quadratic bilevel programming problems (CQBPPs), which is modeled by a nonautonomous differential inclusion. Different from the existing neural network for CQBPP, the model has the least number of state variables and simple structure. Based on the theory of nonsmooth analysis, differential inclusions and Lyapunov-like method, the limit equilibrium points sequence of the proposed neural networks can approximately converge to an optimal solution of CQBPP under certain conditions. Finally, simulation results on two numerical examples and the portfolio selection problem show the effectiveness and performance of the proposed neural network. Copyright © 2013 Elsevier Ltd. All rights reserved.
Spatiotemporal Dynamics and Reliable Computations in Recurrent Spiking Neural Networks
Pyle, Ryan; Rosenbaum, Robert
2017-01-01
Randomly connected networks of excitatory and inhibitory spiking neurons provide a parsimonious model of neural variability, but are notoriously unreliable for performing computations. We show that this difficulty is overcome by incorporating the well-documented dependence of connection probability on distance. Spatially extended spiking networks exhibit symmetry-breaking bifurcations and generate spatiotemporal patterns that can be trained to perform dynamical computations under a reservoir computing framework.
Spatiotemporal Dynamics and Reliable Computations in Recurrent Spiking Neural Networks.
Pyle, Ryan; Rosenbaum, Robert
2017-01-06
Randomly connected networks of excitatory and inhibitory spiking neurons provide a parsimonious model of neural variability, but are notoriously unreliable for performing computations. We show that this difficulty is overcome by incorporating the well-documented dependence of connection probability on distance. Spatially extended spiking networks exhibit symmetry-breaking bifurcations and generate spatiotemporal patterns that can be trained to perform dynamical computations under a reservoir computing framework.
Data Driven Broiler Weight Forecasting using Dynamic Neural Network Models
DEFF Research Database (Denmark)
Johansen, Simon Vestergaard; Bendtsen, Jan Dimon; Riisgaard-Jensen, Martin
2017-01-01
In this article, the dynamic influence of environmental broiler house conditions and broiler growth is investigated. Dynamic neural network forecasting models have been trained on farm-scale broiler batch production data from 12 batches from the same house. The model forecasts future broiler weight...... and uses environmental conditions such as heating, ventilation, and temperature along with broiler behavior such as feed and water consumption. Training data and forecasting data is analyzed to explain when the model might fail at generalizing. We present ensemble broiler weight forecasts to day 7, 14, 21...
Predicting physical time series using dynamic ridge polynomial neural networks.
Directory of Open Access Journals (Sweden)
Dhiya Al-Jumeily
Full Text Available Forecasting naturally occurring phenomena is a common problem in many domains of science, and this has been addressed and investigated by many scientists. The importance of time series prediction stems from the fact that it has wide range of applications, including control systems, engineering processes, environmental systems and economics. From the knowledge of some aspects of the previous behaviour of the system, the aim of the prediction process is to determine or predict its future behaviour. In this paper, we consider a novel application of a higher order polynomial neural network architecture called Dynamic Ridge Polynomial Neural Network that combines the properties of higher order and recurrent neural networks for the prediction of physical time series. In this study, four types of signals have been used, which are; The Lorenz attractor, mean value of the AE index, sunspot number, and heat wave temperature. The simulation results showed good improvements in terms of the signal to noise ratio in comparison to a number of higher order and feedforward neural networks in comparison to the benchmarked techniques.
Nonlinear identification of process dynamics using neural networks
International Nuclear Information System (INIS)
Parlos, A.G.; Atiya, A.F.; Chong, K.T.
1992-01-01
In this paper the nonlinear identification of process dynamics encountered in nuclear power plant components is addressed, in an input-output sense, using artificial neural systems. A hybrid feedforward/feedback neural network, namely, a recurrent multilayer perceptron, is used as the model structure to be identified. The feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of temporal variations in the system nonlinearities. The standard backpropagation learning algorithm is modified, and it is used for the supervised training of the proposed hybrid network. The performance of recurrent multilayer perceptron networks in identifying process dynamics is investigated via the case study of a U-tube steam generator. The response of representative steam generator is predicted using a neural network, and it is compared to the response obtained from a sophisticated computer model based on first principles. The transient responses compare well, although further research is warranted to determine the predictive capabilities of these networks during more severe operational transients and accident scenarios
Dynamic simulation of a steam generator by neural networks
International Nuclear Information System (INIS)
Masini, R.; Padovani, E.; Ricotti, M.E.; Zio, E.
1999-01-01
Numerical simulation by computers of the dynamic evolution of complex systems and components is a fundamental phase of any modern engineering design activity. This is of particular importance for risk-based design projects which require that the system behavior be analyzed under several and often extreme conditions. The traditional methods of simulation typically entail long, iterative, processes which lead to large simulation times, often exceeding the transients real time. Artificial neural networks (ANNs) may be exploited in this context, their advantages residing mainly in the speed of computation, in the capability of generalizing from few examples, in the robustness to noisy and partially incomplete data and in the capability of performing empirical input-output mapping without complete knowledge of the underlying physics. In this paper we present a novel approach to dynamic simulation by ANNs based on a superposition scheme in which a set of networks are individually trained, each one to respond to a different input forcing function. The dynamic simulation of a steam generator is considered as an example to show the potentialities of this tool and to point out the difficulties and crucial issues which typically arise when attempting to establish an efficient neural network simulator. The structure of the networks system is such to feedback, at each time step, a portion of the past evolution of the transient and this allows a good reproduction of also non-linear dynamic behaviors. A nice characteristic of the approach is that the modularization of the training reduces substantially its burden and gives this neural simulation tool a nice feature of transportability. (orig.)
Semi-empirical neural network models of controlled dynamical systems
Directory of Open Access Journals (Sweden)
Mihail V. Egorchev
2017-12-01
Full Text Available A simulation approach is discussed for maneuverable aircraft motion as nonlinear controlled dynamical system under multiple and diverse uncertainties including knowledge imperfection concerning simulated plant and its environment exposure. The suggested approach is based on a merging of theoretical knowledge for the plant with training tools of artificial neural network field. The efficiency of this approach is demonstrated using the example of motion modeling and the identification of the aerodynamic characteristics of a maneuverable aircraft. A semi-empirical recurrent neural network based model learning algorithm is proposed for multi-step ahead prediction problem. This algorithm sequentially states and solves numerical optimization subproblems of increasing complexity, using each solution as initial guess for subsequent subproblem. We also consider a procedure for representative training set acquisition that utilizes multisine control signals.
Bio-Inspired Neural Model for Learning Dynamic Models
Duong, Tuan; Duong, Vu; Suri, Ronald
2009-01-01
A neural-network mathematical model that, relative to prior such models, places greater emphasis on some of the temporal aspects of real neural physical processes, has been proposed as a basis for massively parallel, distributed algorithms that learn dynamic models of possibly complex external processes by means of learning rules that are local in space and time. The algorithms could be made to perform such functions as recognition and prediction of words in speech and of objects depicted in video images. The approach embodied in this model is said to be "hardware-friendly" in the following sense: The algorithms would be amenable to execution by special-purpose computers implemented as very-large-scale integrated (VLSI) circuits that would operate at relatively high speeds and low power demands.
A Recurrent Neural Network for Nonlinear Fractional Programming
Directory of Open Access Journals (Sweden)
Quan-Ju Zhang
2012-01-01
Full Text Available This paper presents a novel recurrent time continuous neural network model which performs nonlinear fractional optimization subject to interval constraints on each of the optimization variables. The network is proved to be complete in the sense that the set of optima of the objective function to be minimized with interval constraints coincides with the set of equilibria of the neural network. It is also shown that the network is primal and globally convergent in the sense that its trajectory cannot escape from the feasible region and will converge to an exact optimal solution for any initial point being chosen in the feasible interval region. Simulation results are given to demonstrate further the global convergence and good performance of the proposing neural network for nonlinear fractional programming problems with interval constraints.
Michaels, Jonathan A; Dann, Benjamin; Scherberger, Hansjörg
2016-11-01
Recent models of movement generation in motor cortex have sought to explain neural activity not as a function of movement parameters, known as representational models, but as a dynamical system acting at the level of the population. Despite evidence supporting this framework, the evaluation of representational models and their integration with dynamical systems is incomplete in the literature. Using a representational velocity-tuning based simulation of center-out reaching, we show that incorporating variable latency offsets between neural activity and kinematics is sufficient to generate rotational dynamics at the level of neural populations, a phenomenon observed in motor cortex. However, we developed a covariance-matched permutation test (CMPT) that reassigns neural data between task conditions independently for each neuron while maintaining overall neuron-to-neuron relationships, revealing that rotations based on the representational model did not uniquely depend on the underlying condition structure. In contrast, rotations based on either a dynamical model or motor cortex data depend on this relationship, providing evidence that the dynamical model more readily explains motor cortex activity. Importantly, implementing a recurrent neural network we demonstrate that both representational tuning properties and rotational dynamics emerge, providing evidence that a dynamical system can reproduce previous findings of representational tuning. Finally, using motor cortex data in combination with the CMPT, we show that results based on small numbers of neurons or conditions should be interpreted cautiously, potentially informing future experimental design. Together, our findings reinforce the view that representational models lack the explanatory power to describe complex aspects of single neuron and population level activity.
Forecasting financial asset processes: stochastic dynamics via learning neural networks.
Giebel, S; Rainer, M
2010-01-01
Models for financial asset dynamics usually take into account their inherent unpredictable nature by including a suitable stochastic component into their process. Unknown (forward) values of financial assets (at a given time in the future) are usually estimated as expectations of the stochastic asset under a suitable risk-neutral measure. This estimation requires the stochastic model to be calibrated to some history of sufficient length in the past. Apart from inherent limitations, due to the stochastic nature of the process, the predictive power is also limited by the simplifying assumptions of the common calibration methods, such as maximum likelihood estimation and regression methods, performed often without weights on the historic time series, or with static weights only. Here we propose a novel method of "intelligent" calibration, using learning neural networks in order to dynamically adapt the parameters of the stochastic model. Hence we have a stochastic process with time dependent parameters, the dynamics of the parameters being themselves learned continuously by a neural network. The back propagation in training the previous weights is limited to a certain memory length (in the examples we consider 10 previous business days), which is similar to the maximal time lag of autoregressive processes. We demonstrate the learning efficiency of the new algorithm by tracking the next-day forecasts for the EURTRY and EUR-HUF exchange rates each.
Two-photon imaging and analysis of neural network dynamics
International Nuclear Information System (INIS)
Luetcke, Henry; Helmchen, Fritjof
2011-01-01
The glow of a starry night sky, the smell of a freshly brewed cup of coffee or the sound of ocean waves breaking on the beach are representations of the physical world that have been created by the dynamic interactions of thousands of neurons in our brains. How the brain mediates perceptions, creates thoughts, stores memories and initiates actions remains one of the most profound puzzles in biology, if not all of science. A key to a mechanistic understanding of how the nervous system works is the ability to measure and analyze the dynamics of neuronal networks in the living organism in the context of sensory stimulation and behavior. Dynamic brain properties have been fairly well characterized on the microscopic level of individual neurons and on the macroscopic level of whole brain areas largely with the help of various electrophysiological techniques. However, our understanding of the mesoscopic level comprising local populations of hundreds to thousands of neurons (so-called 'microcircuits') remains comparably poor. Predominantly, this has been due to the technical difficulties involved in recording from large networks of neurons with single-cell spatial resolution and near-millisecond temporal resolution in the brain of living animals. In recent years, two-photon microscopy has emerged as a technique which meets many of these requirements and thus has become the method of choice for the interrogation of local neural circuits. Here, we review the state-of-research in the field of two-photon imaging of neuronal populations, covering the topics of microscope technology, suitable fluorescent indicator dyes, staining techniques, and in particular analysis techniques for extracting relevant information from the fluorescence data. We expect that functional analysis of neural networks using two-photon imaging will help to decipher fundamental operational principles of neural microcircuits.
Two-photon imaging and analysis of neural network dynamics
Lütcke, Henry; Helmchen, Fritjof
2011-08-01
The glow of a starry night sky, the smell of a freshly brewed cup of coffee or the sound of ocean waves breaking on the beach are representations of the physical world that have been created by the dynamic interactions of thousands of neurons in our brains. How the brain mediates perceptions, creates thoughts, stores memories and initiates actions remains one of the most profound puzzles in biology, if not all of science. A key to a mechanistic understanding of how the nervous system works is the ability to measure and analyze the dynamics of neuronal networks in the living organism in the context of sensory stimulation and behavior. Dynamic brain properties have been fairly well characterized on the microscopic level of individual neurons and on the macroscopic level of whole brain areas largely with the help of various electrophysiological techniques. However, our understanding of the mesoscopic level comprising local populations of hundreds to thousands of neurons (so-called 'microcircuits') remains comparably poor. Predominantly, this has been due to the technical difficulties involved in recording from large networks of neurons with single-cell spatial resolution and near-millisecond temporal resolution in the brain of living animals. In recent years, two-photon microscopy has emerged as a technique which meets many of these requirements and thus has become the method of choice for the interrogation of local neural circuits. Here, we review the state-of-research in the field of two-photon imaging of neuronal populations, covering the topics of microscope technology, suitable fluorescent indicator dyes, staining techniques, and in particular analysis techniques for extracting relevant information from the fluorescence data. We expect that functional analysis of neural networks using two-photon imaging will help to decipher fundamental operational principles of neural microcircuits.
Two-photon imaging and analysis of neural network dynamics
Energy Technology Data Exchange (ETDEWEB)
Luetcke, Henry; Helmchen, Fritjof [Brain Research Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich (Switzerland)
2011-08-15
The glow of a starry night sky, the smell of a freshly brewed cup of coffee or the sound of ocean waves breaking on the beach are representations of the physical world that have been created by the dynamic interactions of thousands of neurons in our brains. How the brain mediates perceptions, creates thoughts, stores memories and initiates actions remains one of the most profound puzzles in biology, if not all of science. A key to a mechanistic understanding of how the nervous system works is the ability to measure and analyze the dynamics of neuronal networks in the living organism in the context of sensory stimulation and behavior. Dynamic brain properties have been fairly well characterized on the microscopic level of individual neurons and on the macroscopic level of whole brain areas largely with the help of various electrophysiological techniques. However, our understanding of the mesoscopic level comprising local populations of hundreds to thousands of neurons (so-called 'microcircuits') remains comparably poor. Predominantly, this has been due to the technical difficulties involved in recording from large networks of neurons with single-cell spatial resolution and near-millisecond temporal resolution in the brain of living animals. In recent years, two-photon microscopy has emerged as a technique which meets many of these requirements and thus has become the method of choice for the interrogation of local neural circuits. Here, we review the state-of-research in the field of two-photon imaging of neuronal populations, covering the topics of microscope technology, suitable fluorescent indicator dyes, staining techniques, and in particular analysis techniques for extracting relevant information from the fluorescence data. We expect that functional analysis of neural networks using two-photon imaging will help to decipher fundamental operational principles of neural microcircuits.
Development of an accident diagnosis system using a dynamic neural network for nuclear power plants
International Nuclear Information System (INIS)
Lee, Seung Jun; Kim, Jong Hyun; Seong, Poong Hyun
2004-01-01
In this work, an accident diagnosis system using the dynamic neural network is developed. In order to help the plant operators to quickly identify the problem, perform diagnosis and initiate recovery actions ensuring the safety of the plant, many operator support system and accident diagnosis systems have been developed. Neural networks have been recognized as a good method to implement an accident diagnosis system. However, conventional accident diagnosis systems that used neural networks did not consider a time factor sufficiently. If the neural network could be trained according to time, it is possible to perform more efficient and detailed accidents analysis. Therefore, this work suggests a dynamic neural network which has different features from existing dynamic neural networks. And a simple accident diagnosis system is implemented in order to validate the dynamic neural network. After training of the prototype, several accident diagnoses were performed. The results show that the prototype can detect the accidents correctly with good performances
A dynamic neural field model of temporal order judgments.
Hecht, Lauren N; Spencer, John P; Vecera, Shaun P
2015-12-01
Temporal ordering of events is biased, or influenced, by perceptual organization-figure-ground organization-and by spatial attention. For example, within a region assigned figural status or at an attended location, onset events are processed earlier (Lester, Hecht, & Vecera, 2009; Shore, Spence, & Klein, 2001), and offset events are processed for longer durations (Hecht & Vecera, 2011; Rolke, Ulrich, & Bausenhart, 2006). Here, we present an extension of a dynamic field model of change detection (Johnson, Spencer, Luck, & Schöner, 2009; Johnson, Spencer, & Schöner, 2009) that accounts for both the onset and offset performance for figural and attended regions. The model posits that neural populations processing the figure are more active, resulting in a peak of activation that quickly builds toward a detection threshold when the onset of a target is presented. This same enhanced activation for some neural populations is maintained when a present target is removed, creating delays in the perception of the target's offset. We discuss the broader implications of this model, including insights regarding how neural activation can be generated in response to the disappearance of information. (c) 2015 APA, all rights reserved).
Dynamic Neural Fields as a Step Towards Cognitive Neuromorphic Architectures
Directory of Open Access Journals (Sweden)
Yulia eSandamirskaya
2014-01-01
Full Text Available Dynamic Field Theory (DFT is an established framework for modelling embodied cognition. In DFT, elementary cognitive functions such as memory formation, formation of grounded representations, attentional processes, decision making, adaptation, and learning emerge from neuronal dynamics. The basic computational element of this framework is a Dynamic Neural Field (DNF. Under constraints on the time-scale of the dynamics, the DNF is computationally equivalent to a soft winner-take-all (WTA network, which is considered one of the basic computational units in neuronal processing. Recently, it has been shown how a WTA network may be implemented in neuromorphic hardware, such as analogue Very Large Scale Integration (VLSI device. This paper leverages the relationship between DFT and soft WTA networks to systematically revise and integrate established DFT mechanisms that have previously been spread among different architectures. In addition, I also identify some novel computational and architectural mechanisms of DFT which may be implemented in neuromorphic VLSI devices using WTA networks as an intermediate computational layer. These specific mechanisms include the stabilization of working memory, the coupling of sensory systems to motor dynamics, intentionality, and autonomous learning. I further demonstrate how all these elements may be integrated into a unified architecture to generate behavior and autonomous learning.
Neural Dynamics and Information Representation in Microcircuits of Motor Cortex
Directory of Open Access Journals (Sweden)
Yasuhiro eTsubo
2013-05-01
Full Text Available The brain has to analyze and respond to external events that can change rapidly from time to time, suggesting that information processing by the brain may be essentially dynamic rather than static. The dynamical features of neural computation are of significant importance in motor cortex that governs the process of movement generation and learning. In this paper, we discuss these features based primarily on our recent findings on neural dynamics and information coding in the microcircuit of rat motor cortex. In fact, cortical neurons show a variety of dynamical behavior from rhythmic activity in various frequency bands to highly irregular spike firing. Of particular interest are the similarity and dissimilarity of the neuronal response properties in different layers of motor cortex. By conducting electrophysiological recordings in slice preparation, we report the phase response curves of neurons in different cortical layers to demonstrate their layer-dependent synchronization properties. We then study how motor cortex recruits task-related neurons in different layers for voluntary arm movements by simultaneous juxtacellular and multiunit recordings from behaving rats. The results suggest an interesting difference in the spectrum of functional activity between the superficial and deep layers. Furthermore, the task-related activities recorded from various layers exhibited power law distributions of inter-spike intervals (ISIs, in contrast to a general belief that ISIs obey Poisson or Gamma distributions in cortical neurons. We present a theoretical argument that this power law of in vivo neurons may represent the maximization of the entropy of firing rate with limited energy consumption of spike generation. Though further studies are required to fully clarify the functional implications of this coding principle, it may shed new light on information representations by neurons and circuits in motor cortex.
Sensitivity analysis of linear programming problem through a recurrent neural network
Das, Raja
2017-11-01
In this paper we study the recurrent neural network for solving linear programming problems. To achieve optimality in accuracy and also in computational effort, an algorithm is presented. We investigate the sensitivity analysis of linear programming problem through the neural network. A detailed example is also presented to demonstrate the performance of the recurrent neural network.
Fluid dynamics computer programs for NERVA turbopump
Brunner, J. J.
1972-01-01
During the design of the NERVA turbopump, numerous computer programs were developed for the analyses of fluid dynamic problems within the machine. Program descriptions, example cases, users instructions, and listings for the majority of these programs are presented.
Multiplex visibility graphs to investigate recurrent neural network dynamics
Bianchi, Filippo Maria; Livi, Lorenzo; Alippi, Cesare; Jenssen, Robert
2017-03-01
A recurrent neural network (RNN) is a universal approximator of dynamical systems, whose performance often depends on sensitive hyperparameters. Tuning them properly may be difficult and, typically, based on a trial-and-error approach. In this work, we adopt a graph-based framework to interpret and characterize internal dynamics of a class of RNNs called echo state networks (ESNs). We design principled unsupervised methods to derive hyperparameters configurations yielding maximal ESN performance, expressed in terms of prediction error and memory capacity. In particular, we propose to model time series generated by each neuron activations with a horizontal visibility graph, whose topological properties have been shown to be related to the underlying system dynamics. Successively, horizontal visibility graphs associated with all neurons become layers of a larger structure called a multiplex. We show that topological properties of such a multiplex reflect important features of ESN dynamics that can be used to guide the tuning of its hyperparamers. Results obtained on several benchmarks and a real-world dataset of telephone call data records show the effectiveness of the proposed methods.
Cell dynamic morphology classification using deep convolutional neural networks.
Li, Heng; Pang, Fengqian; Shi, Yonggang; Liu, Zhiwen
2018-05-15
Cell morphology is often used as a proxy measurement of cell status to understand cell physiology. Hence, interpretation of cell dynamic morphology is a meaningful task in biomedical research. Inspired by the recent success of deep learning, we here explore the application of convolutional neural networks (CNNs) to cell dynamic morphology classification. An innovative strategy for the implementation of CNNs is introduced in this study. Mouse lymphocytes were collected to observe the dynamic morphology, and two datasets were thus set up to investigate the performances of CNNs. Considering the installation of deep learning, the classification problem was simplified from video data to image data, and was then solved by CNNs in a self-taught manner with the generated image data. CNNs were separately performed in three installation scenarios and compared with existing methods. Experimental results demonstrated the potential of CNNs in cell dynamic morphology classification, and validated the effectiveness of the proposed strategy. CNNs were successfully applied to the classification problem, and outperformed the existing methods in the classification accuracy. For the installation of CNNs, transfer learning was proved to be a promising scheme. © 2018 International Society for Advancement of Cytometry. © 2018 International Society for Advancement of Cytometry.
A novel recurrent neural network with finite-time convergence for linear programming.
Liu, Qingshan; Cao, Jinde; Chen, Guanrong
2010-11-01
In this letter, a novel recurrent neural network based on the gradient method is proposed for solving linear programming problems. Finite-time convergence of the proposed neural network is proved by using the Lyapunov method. Compared with the existing neural networks for linear programming, the proposed neural network is globally convergent to exact optimal solutions in finite time, which is remarkable and rare in the literature of neural networks for optimization. Some numerical examples are given to show the effectiveness and excellent performance of the new recurrent neural network.
Programmed Cell Death and Caspase Functions During Neural Development.
Yamaguchi, Yoshifumi; Miura, Masayuki
2015-01-01
Programmed cell death (PCD) is a fundamental component of nervous system development. PCD serves as the mechanism for quantitative matching of the number of projecting neurons and their target cells through direct competition for neurotrophic factors in the vertebrate peripheral nervous system. In addition, PCD plays roles in regulating neural cell numbers, canceling developmental errors or noise, and tissue remodeling processes. These findings are mainly derived from genetic studies that prevent cells from dying by apoptosis, which is a major form of PCD and is executed by activation of evolutionarily conserved cysteine protease caspases. Recent studies suggest that caspase activation can be coordinated in time and space at multiple levels, which might underlie nonapoptotic roles of caspases in neural development in addition to apoptotic roles. © 2015 Elsevier Inc. All rights reserved.
Dynamic cultural influences on neural representations of the self.
Chiao, Joan Y; Harada, Tokiko; Komeda, Hidetsugu; Li, Zhang; Mano, Yoko; Saito, Daisuke; Parrish, Todd B; Sadato, Norihiro; Iidaka, Tetsuya
2010-01-01
People living in multicultural environments often encounter situations which require them to acquire different cultural schemas and to switch between these cultural schemas depending on their immediate sociocultural context. Prior behavioral studies show that priming cultural schemas reliably impacts mental processes and behavior underlying self-concept. However, less well understood is whether or not cultural priming affects neurobiological mechanisms underlying the self. Here we examined whether priming cultural values of individualism and collectivism in bicultural individuals affects neural activity in cortical midline structures underlying self-relevant processes using functional magnetic resonance imaging. Biculturals primed with individualistic values showed increased activation within medial prefrontal cortex (MPFC) and posterior cingulate cortex (PCC) during general relative to contextual self-judgments, whereas biculturals primed with collectivistic values showed increased response within MPFC and PCC during contextual relative to general self-judgments. Moreover, degree of cultural priming was positively correlated with degree of MPFC and PCC activity during culturally congruent self-judgments. These findings illustrate the dynamic influence of culture on neural representations underlying the self and, more broadly, suggest a neurobiological basis by which people acculturate to novel environments.
Resolution enhancement in neural networks with dynamical synapses
Directory of Open Access Journals (Sweden)
C. C. Alan Fung
2013-06-01
Full Text Available Conventionally, information is represented by spike rates in the neural system. Here, we consider the ability of temporally modulated activities in neuronal networks to carry information extra to spike rates. These temporal modulations, commonly known as population spikes, are due to the presence of synaptic depression in a neuronal network model. We discuss its relevance to an experiment on transparent motions in macaque monkeys by Treue et al. in 2000. They found that if the moving directions of objects are too close, the firing rate profile will be very similar to that with one direction. As the difference in the moving directions of objects is large enough, the neuronal system would respond in such a way that the network enhances the resolution in the moving directions of the objects. In this paper, we propose that this behavior can be reproduced by neural networks with dynamical synapses when there are multiple external inputs. We will demonstrate how resolution enhancement can be achieved, and discuss the conditions under which temporally modulated activities are able to enhance information processing performances in general.
Neural network modeling of chaotic dynamics in nuclear reactor flows
International Nuclear Information System (INIS)
Welstead, S.T.
1992-01-01
Neural networks have many scientific applications in areas such as pattern classification and time series prediction. The universal approximation property of these networks, however, can also be exploited to provide researchers with tool for modeling observed nonlinear phenomena. It has been shown that multilayer feed forward networks can capture important global nonlinear properties, such as chaotic dynamics, merely by training the network on a finite set of observed data. The network itself then provides a model of the process that generated the data. Characterizations such as the existence and general shape of a strange attractor and the sign of the largest Lyapunov exponent can then be extracted from the neural network model. In this paper, the author applies this idea to data generated from a nonlinear process that is representative of convective flows that can arise in nuclear reactor applications. Such flows play a role in forced convection heat removal from pressurized water reactors and boiling water reactors, and decay heat removal from liquid-metal-cooled reactors, either by natural convection or by thermosyphons
Spatiotemporal neural network dynamics for the processing of dynamic facial expressions
Sato, Wataru; Kochiyama, Takanori; Uono, Shota
2015-01-01
The dynamic facial expressions of emotion automatically elicit multifaceted psychological activities; however, the temporal profiles and dynamic interaction patterns of brain activities remain unknown. We investigated these issues using magnetoencephalography. Participants passively observed dynamic facial expressions of fear and happiness, or dynamic mosaics. Source-reconstruction analyses utilizing functional magnetic-resonance imaging data revealed higher activation in broad regions of the bilateral occipital and temporal cortices in response to dynamic facial expressions than in response to dynamic mosaics at 150–200 ms and some later time points. The right inferior frontal gyrus exhibited higher activity for dynamic faces versus mosaics at 300–350 ms. Dynamic causal-modeling analyses revealed that dynamic faces activated the dual visual routes and visual–motor route. Superior influences of feedforward and feedback connections were identified before and after 200 ms, respectively. These results indicate that hierarchical, bidirectional neural network dynamics within a few hundred milliseconds implement the processing of dynamic facial expressions. PMID:26206708
Spatiotemporal neural network dynamics for the processing of dynamic facial expressions.
Sato, Wataru; Kochiyama, Takanori; Uono, Shota
2015-07-24
The dynamic facial expressions of emotion automatically elicit multifaceted psychological activities; however, the temporal profiles and dynamic interaction patterns of brain activities remain unknown. We investigated these issues using magnetoencephalography. Participants passively observed dynamic facial expressions of fear and happiness, or dynamic mosaics. Source-reconstruction analyses utilizing functional magnetic-resonance imaging data revealed higher activation in broad regions of the bilateral occipital and temporal cortices in response to dynamic facial expressions than in response to dynamic mosaics at 150-200 ms and some later time points. The right inferior frontal gyrus exhibited higher activity for dynamic faces versus mosaics at 300-350 ms. Dynamic causal-modeling analyses revealed that dynamic faces activated the dual visual routes and visual-motor route. Superior influences of feedforward and feedback connections were identified before and after 200 ms, respectively. These results indicate that hierarchical, bidirectional neural network dynamics within a few hundred milliseconds implement the processing of dynamic facial expressions.
Connectivity effects in the dynamic model of neural networks
International Nuclear Information System (INIS)
Choi, J; Choi, M Y; Yoon, B-G
2009-01-01
We study, via extensive Monte Carlo calculations, the effects of connectivity in the dynamic model of neural networks, to observe that the Mattis-state order parameter increases with the number of coupled neurons. Such effects appear more pronounced when the average number of connections is increased by introducing shortcuts in the network. In particular, the power spectra of the order parameter at stationarity are found to exhibit power-law behavior, depending on how the average number of connections is increased. The cluster size distribution of the 'memory-unmatched' sites also follows a power law and possesses strong correlations with the power spectra. It is further observed that the distribution of waiting times for neuron firing fits roughly to a power law, again depending on how neuronal connections are increased
Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks
Jorgensen, Charles C.
1997-01-01
A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.
Neural network based adaptive control for nonlinear dynamic regimes
Shin, Yoonghyun
Adaptive control designs using neural networks (NNs) based on dynamic inversion are investigated for aerospace vehicles which are operated at highly nonlinear dynamic regimes. NNs play a key role as the principal element of adaptation to approximately cancel the effect of inversion error, which subsequently improves robustness to parametric uncertainty and unmodeled dynamics in nonlinear regimes. An adaptive control scheme previously named 'composite model reference adaptive control' is further developed so that it can be applied to multi-input multi-output output feedback dynamic inversion. It can have adaptive elements in both the dynamic compensator (linear controller) part and/or in the conventional adaptive controller part, also utilizing state estimation information for NN adaptation. This methodology has more flexibility and thus hopefully greater potential than conventional adaptive designs for adaptive flight control in highly nonlinear flight regimes. The stability of the control system is proved through Lyapunov theorems, and validated with simulations. The control designs in this thesis also include the use of 'pseudo-control hedging' techniques which are introduced to prevent the NNs from attempting to adapt to various actuation nonlinearities such as actuator position and rate saturations. Control allocation is introduced for the case of redundant control effectors including thrust vectoring nozzles. A thorough comparison study of conventional and NN-based adaptive designs for a system under a limit cycle, wing-rock, is included in this research, and the NN-based adaptive control designs demonstrate their performances for two highly maneuverable aerial vehicles, NASA F-15 ACTIVE and FQM-117B unmanned aerial vehicle (UAV), operated under various nonlinearities and uncertainties.
Neural dynamics of the cognitive map in the hippocampus.
Wagatsuma, Hiroaki; Yamaguchi, Yoko
2007-06-01
The rodent hippocampus has been thought to represent the spatial environment as a cognitive map. In the classical theory, the cognitive map has been explained as a consequence of the fact that different spatial regions are assigned to different cell populations in the framework of rate coding. Recently, the relation between place cell firing and local field oscillation theta in terms of theta phase precession was experimentally discovered and suggested as a temporal coding mechanism leading to memory formation of behavioral sequences accompanied with asymmetric Hebbian plasticity. The cognitive map theory is apparently outside of the sequence memory view. Therefore, theoretical analysis is necessary to consider the biological neural dynamics for the sequence encoding of the memory of behavioral sequences, providing the cognitive map formation. In this article, we summarize the theoretical neural dynamics of the real-time sequence encoding by theta phase precession, called theta phase coding, and review a series of theoretical models with the theta phase coding that we previously reported. With respect to memory encoding functions, instantaneous memory formation of one-time experience was first demonstrated, and then the ability of integration of memories of behavioral sequences into a network of the cognitive map was shown. In terms of memory retrieval functions, theta phase coding enables the hippocampus to represent the spatial location in the current behavioral context even with ambiguous sensory input when multiple sequences were coded. Finally, for utilization, retrieved temporal sequences in the hippocampus can be available for action selection, through the process of reverting theta rhythm-dependent activities to information in the behavioral time scale. This theoretical approach allows us to investigate how the behavioral sequences are encoded, updated, retrieved and used in the hippocampus, as the real-time interaction with the external environment. It may
ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation.
Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan
2017-07-20
Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue in the field of surgical simulation. In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue deformation by combining neural dynamics of cellular neural network with ChainMail mechanism. The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into the neural dynamics of cellular neural network. Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues' nonlinear deformation and typical mechanical behaviors. The proposed method not only improves ChainMail's linear deformation with the nonlinear characteristics of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft tissue deformation.
A recurrent neural network for solving bilevel linear programming problem.
He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie; Huang, Junjian
2014-04-01
In this brief, based on the method of penalty functions, a recurrent neural network (NN) modeled by means of a differential inclusion is proposed for solving the bilevel linear programming problem (BLPP). Compared with the existing NNs for BLPP, the model has the least number of state variables and simple structure. Using nonsmooth analysis, the theory of differential inclusions, and Lyapunov-like method, the equilibrium point sequence of the proposed NNs can approximately converge to an optimal solution of BLPP under certain conditions. Finally, the numerical simulations of a supply chain distribution model have shown excellent performance of the proposed recurrent NNs.
Approximate Dynamic Programming in Tracking Control of a Robotic Manipulator
Directory of Open Access Journals (Sweden)
Marcin Szuster
2016-02-01
Full Text Available This article focuses on the implementation of an approximate dynamic programming algorithm in the discrete tracking control system of the three-degrees of freedom Scorbot-ER 4pc robotic manipulator. The controlled system is included in an articulated robots group which uses rotary joints to access their work space. The main part of the control system is a dual heuristic dynamic programming algorithm that consists of two structures designed in the form of neural networks: an actor and a critic. The actor generates the suboptimal control law while the critic approximates the difference of the value function from Bellman's equation with respect to the state. The residual elements of the control system are the PD controller, the supervisory term and an additional control signal. The structure of the supervisory term derives from the stability analysis performed using the Lyapunov stability theorem. The control system works online, the neural networks' weights-adaptation procedure is performed in every iteration step, and the neural networks' preliminary learning process is not required. The performance of the control system was verified by a series of computer simulations and experiments performed using the Scorbot-ER 4pc robotic manipulator.
Models of neural dynamics in brain information processing - the developments of 'the decade'
International Nuclear Information System (INIS)
Borisyuk, G N; Borisyuk, R M; Kazanovich, Yakov B; Ivanitskii, Genrikh R
2002-01-01
Neural network models are discussed that have been developed during the last decade with the purpose of reproducing spatio-temporal patterns of neural activity in different brain structures. The main goal of the modeling was to test hypotheses of synchronization, temporal and phase relations in brain information processing. The models being considered are those of temporal structure of spike sequences, of neural activity dynamics, and oscillatory models of attention and feature integration. (reviews of topical problems)
Neutrophil programming dynamics and its disease relevance.
Ran, Taojing; Geng, Shuo; Li, Liwu
2017-11-01
Neutrophils are traditionally considered as first responders to infection and provide antimicrobial host defense. However, recent advances indicate that neutrophils are also critically involved in the modulation of host immune environments by dynamically adopting distinct functional states. Functionally diverse neutrophil subsets are increasingly recognized as critical components mediating host pathophysiology. Despite its emerging significance, molecular mechanisms as well as functional relevance of dynamically programmed neutrophils remain to be better defined. The increasing complexity of neutrophil functions may require integrative studies that address programming dynamics of neutrophils and their pathophysiological relevance. This review aims to provide an update on the emerging topics of neutrophil programming dynamics as well as their functional relevance in diseases.
Sidelnikov, O. S.; Redyuk, A. A.; Sygletos, S.
2017-12-01
We consider neural network-based schemes of digital signal processing. It is shown that the use of a dynamic neural network-based scheme of signal processing ensures an increase in the optical signal transmission quality in comparison with that provided by other methods for nonlinear distortion compensation.
Adaptive Dynamic Programming for Control Algorithms and Stability
Zhang, Huaguang; Luo, Yanhong; Wang, Ding
2013-01-01
There are many methods of stable controller design for nonlinear systems. In seeking to go beyond the minimum requirement of stability, Adaptive Dynamic Programming for Control approaches the challenging topic of optimal control for nonlinear systems using the tools of adaptive dynamic programming (ADP). The range of systems treated is extensive; affine, switched, singularly perturbed and time-delay nonlinear systems are discussed as are the uses of neural networks and techniques of value and policy iteration. The text features three main aspects of ADP in which the methods proposed for stabilization and for tracking and games benefit from the incorporation of optimal control methods: • infinite-horizon control for which the difficulty of solving partial differential Hamilton–Jacobi–Bellman equations directly is overcome, and proof provided that the iterative value function updating sequence converges to the infimum of all the value functions obtained by admissible control law sequences; • finite-...
Classification of mammographic masses using generalized dynamic fuzzy neural networks
International Nuclear Information System (INIS)
Lim, Wei Keat; Er, Meng Joo
2004-01-01
In this article, computer-aided classification of mammographic masses using generalized dynamic fuzzy neural networks (GDFNN) is presented. The texture parameters, derived from first-order gradient distribution and gray-level co-occurrence matrices, were computed from the regions of interest. A total of 343 images containing 180 benign masses and 163 malignant masses from the Digital Database for Screening Mammography were analyzed. A fast approach of automatically generating fuzzy rules from training samples was implemented to classify tumors. This work is novel in that it alleviates the problem of requiring a designer to examine all the input-output relationships of a training database in order to obtain the most appropriate structure for the classifier in a conventional computer-aided diagnosis. In this approach, not only the connection weights can be adjusted, but also the structure can be self-adaptive during the learning process. By virtue of the automatic generation of the classifier by the GDFNN learning algorithm, the area under the receiver-operating characteristic curve, A z , attains 0.868±0.020, which corresponds to a true-positive fraction of 95.0% at a false positive fraction of 52.8%. The corresponding accuracy is 70.0%, the positive predictive value is 62.0%, and the negative predictive value is 91.4%
ALADDIN: a neural model for event classification in dynamic processes
International Nuclear Information System (INIS)
Roverso, Davide
1998-02-01
ALADDIN is a prototype system which combines fuzzy clustering techniques and artificial neural network (ANN) models in a novel approach to the problem of classifying events in dynamic processes. The main motivation for the development of such a system derived originally from the problem of finding new principled methods to perform alarm structuring/suppression in a nuclear power plant (NPP) alarm system. One such method consists in basing the alarm structuring/suppression on a fast recognition of the event generating the alarms, so that a subset of alarms sufficient to efficiently handle the current fault can be selected to be presented to the operator, minimizing in this way the operator's workload in a potentially stressful situation. The scope of application of a system like ALADDIN goes however beyond alarm handling, to include diagnostic tasks in general. The eventual application of the system to domains other than NPPs was also taken into special consideration during the design phase. In this document we report on the first phase of the ALADDIN project which consisted mainly in a comparative study of a series of ANN-based approaches to event classification, and on the proposal of a first system prototype which is to undergo further tests and, eventually, be integrated in existing alarm, diagnosis, and accident management systems such as CASH, IDS, and CAMS. (author)
Neural dynamics of learning sound-action associations.
Directory of Open Access Journals (Sweden)
Adam McNamara
Full Text Available A motor component is pre-requisite to any communicative act as one must inherently move to communicate. To learn to make a communicative act, the brain must be able to dynamically associate arbitrary percepts to the neural substrate underlying the pre-requisite motor activity. We aimed to investigate whether brain regions involved in complex gestures (ventral pre-motor cortex, Brodmann Area 44 were involved in mediating association between novel abstract auditory stimuli and novel gestural movements. In a functional resonance imaging (fMRI study we asked participants to learn associations between previously unrelated novel sounds and meaningless gestures inside the scanner. We use functional connectivity analysis to eliminate the often present confound of 'strategic covert naming' when dealing with BA44 and to rule out effects of non-specific reductions in signal. Brodmann Area 44, a region incorporating Broca's region showed strong, bilateral, negative correlation of BOLD (blood oxygen level dependent response with learning of sound-action associations during data acquisition. Left-inferior-parietal-lobule (l-IPL and bilateral loci in and around visual area V5, right-orbital-frontal-gyrus, right-hippocampus, left-para-hippocampus, right-head-of-caudate, right-insula and left-lingual-gyrus also showed decreases in BOLD response with learning. Concurrent with these decreases in BOLD response, an increasing connectivity between areas of the imaged network as well as the right-middle-frontal-gyrus with rising learning performance was revealed by a psychophysiological interaction (PPI analysis. The increasing connectivity therefore occurs within an increasingly energy efficient network as learning proceeds. Strongest learning related connectivity between regions was found when analysing BA44 and l-IPL seeds. The results clearly show that BA44 and l-IPL is dynamically involved in linking gesture and sound and therefore provides evidence that one of
Identification of Complex Dynamical Systems with Neural Networks (2/2)
CERN. Geneva
2016-01-01
The identification and analysis of high dimensional nonlinear systems is obviously a challenging task. Neural networks have been proven to be universal approximators but this still leaves the identification task a hard one. To do it efficiently, we have to violate some of the rules of classical regression theory. Furthermore we should focus on the interpretation of the resulting model to overcome its black box character. First, we will discuss function approximation with 3 layer feedforward neural networks up to new developments in deep neural networks and deep learning. These nets are not only of interest in connection with image analysis but are a center point of the current artificial intelligence developments. Second, we will focus on the analysis of complex dynamical system in the form of state space models realized as recurrent neural networks. After the introduction of small open dynamical systems we will study dynamical systems on manifolds. Here manifold and dynamics have to be identified in parall...
Identification of Complex Dynamical Systems with Neural Networks (1/2)
CERN. Geneva
2016-01-01
The identification and analysis of high dimensional nonlinear systems is obviously a challenging task. Neural networks have been proven to be universal approximators but this still leaves the identification task a hard one. To do it efficiently, we have to violate some of the rules of classical regression theory. Furthermore we should focus on the interpretation of the resulting model to overcome its black box character. First, we will discuss function approximation with 3 layer feedforward neural networks up to new developments in deep neural networks and deep learning. These nets are not only of interest in connection with image analysis but are a center point of the current artificial intelligence developments. Second, we will focus on the analysis of complex dynamical system in the form of state space models realized as recurrent neural networks. After the introduction of small open dynamical systems we will study dynamical systems on manifolds. Here manifold and dynamics have to be identified in parall...
Dynamic Neural State Identification in Deep Brain Local Field Potentials of Neuropathic Pain.
Luo, Huichun; Huang, Yongzhi; Du, Xueying; Zhang, Yunpeng; Green, Alexander L; Aziz, Tipu Z; Wang, Shouyan
2018-01-01
In neuropathic pain, the neurophysiological and neuropathological function of the ventro-posterolateral nucleus of the thalamus (VPL) and the periventricular gray/periaqueductal gray area (PVAG) involves multiple frequency oscillations. Moreover, oscillations related to pain perception and modulation change dynamically over time. Fluctuations in these neural oscillations reflect the dynamic neural states of the nucleus. In this study, an approach to classifying the synchronization level was developed to dynamically identify the neural states. An oscillation extraction model based on windowed wavelet packet transform was designed to characterize the activity level of oscillations. The wavelet packet coefficients sparsely represented the activity level of theta and alpha oscillations in local field potentials (LFPs). Then, a state discrimination model was designed to calculate an adaptive threshold to determine the activity level of oscillations. Finally, the neural state was represented by the activity levels of both theta and alpha oscillations. The relationship between neural states and pain relief was further evaluated. The performance of the state identification approach achieved sensitivity and specificity beyond 80% in simulation signals. Neural states of the PVAG and VPL were dynamically identified from LFPs of neuropathic pain patients. The occurrence of neural states based on theta and alpha oscillations were correlated to the degree of pain relief by deep brain stimulation. In the PVAG LFPs, the occurrence of the state with high activity levels of theta oscillations independent of alpha and the state with low-level alpha and high-level theta oscillations were significantly correlated with pain relief by deep brain stimulation. This study provides a reliable approach to identifying the dynamic neural states in LFPs with a low signal-to-noise ratio by using sparse representation based on wavelet packet transform. Furthermore, it may advance closed-loop deep
Nonlinear Dynamics and Chaos in Fractional-Order Hopfield Neural Networks with Delay
Directory of Open Access Journals (Sweden)
Xia Huang
2013-01-01
Full Text Available A fractional-order two-neuron Hopfield neural network with delay is proposed based on the classic well-known Hopfield neural networks, and further, the complex dynamical behaviors of such a network are investigated. A great variety of interesting dynamical phenomena, including single-periodic, multiple-periodic, and chaotic motions, are found to exist. The existence of chaotic attractors is verified by the bifurcation diagram and phase portraits as well.
Oscillatory phase dynamics in neural entrainment underpin illusory percepts of time.
Herrmann, Björn; Henry, Molly J; Grigutsch, Maren; Obleser, Jonas
2013-10-02
Neural oscillatory dynamics are a candidate mechanism to steer perception of time and temporal rate change. While oscillator models of time perception are strongly supported by behavioral evidence, a direct link to neural oscillations and oscillatory entrainment has not yet been provided. In addition, it has thus far remained unaddressed how context-induced illusory percepts of time are coded for in oscillator models of time perception. To investigate these questions, we used magnetoencephalography and examined the neural oscillatory dynamics that underpin pitch-induced illusory percepts of temporal rate change. Human participants listened to frequency-modulated sounds that varied over time in both modulation rate and pitch, and judged the direction of rate change (decrease vs increase). Our results demonstrate distinct neural mechanisms of rate perception: Modulation rate changes directly affected listeners' rate percept as well as the exact frequency of the neural oscillation. However, pitch-induced illusory rate changes were unrelated to the exact frequency of the neural responses. The rate change illusion was instead linked to changes in neural phase patterns, which allowed for single-trial decoding of percepts. That is, illusory underestimations or overestimations of perceived rate change were tightly coupled to increased intertrial phase coherence and changes in cerebro-acoustic phase lag. The results provide insight on how illusory percepts of time are coded for by neural oscillatory dynamics.
A neural network approach to the study of dynamics and structure of molecular systems
International Nuclear Information System (INIS)
Getino, C.; Sumpter, B.G.; Noid, D.W.
1994-01-01
Neural networks are used to study intramolecular energy flow in molecular systems (tetratomics to macromolecules), developing new techniques for efficient analysis of data obtained from molecular-dynamics and quantum mechanics calculations. Neural networks can map phase space points to intramolecular vibrational energies along a classical trajectory (example of complicated coordinate transformation), producing reasonably accurate values for any region of the multidimensional phase space of a tetratomic molecule. Neural network energy flow predictions are found to significantly enhance the molecular-dynamics method to longer time-scales and extensive averaging of trajectories for macromolecular systems. Pattern recognition abilities of neural networks can be used to discern phase space features. Neural networks can also expand model calculations by interpolation of costly quantum mechanical ab initio data, used to develop semiempirical potential energy functions
The neural dynamics of song syntax in songbirds
Jin, Dezhe
2010-03-01
Songbird is ``the hydrogen atom'' of the neuroscience of complex, learned vocalizations such as human speech. Songs of Bengalese finch consist of sequences of syllables. While syllables are temporally stereotypical, syllable sequences can vary and follow complex, probabilistic syntactic rules, which are rudimentarily similar to grammars in human language. Songbird brain is accessible to experimental probes, and is understood well enough to construct biologically constrained, predictive computational models. In this talk, I will discuss the structure and dynamics of neural networks underlying the stereotypy of the birdsong syllables and the flexibility of syllable sequences. Recent experiments and computational models suggest that a syllable is encoded in a chain network of projection neurons in premotor nucleus HVC (proper name). Precisely timed spikes propagate along the chain, driving vocalization of the syllable through downstream nuclei. Through a computational model, I show that that variable syllable sequences can be generated through spike propagations in a network in HVC in which the syllable-encoding chain networks are connected into a branching chain pattern. The neurons mutually inhibit each other through the inhibitory HVC interneurons, and are driven by external inputs from nuclei upstream of HVC. At a branching point that connects the final group of a chain to the first groups of several chains, the spike activity selects one branch to continue the propagation. The selection is probabilistic, and is due to the winner-take-all mechanism mediated by the inhibition and noise. The model predicts that the syllable sequences statistically follow partially observable Markov models. Experimental results supporting this and other predictions of the model will be presented. We suggest that the syntax of birdsong syllable sequences is embedded in the connection patterns of HVC projection neurons.
Topological defects control collective dynamics in neural progenitor cell cultures
Kawaguchi, Kyogo; Kageyama, Ryoichiro; Sano, Masaki
2017-04-01
Cultured stem cells have become a standard platform not only for regenerative medicine and developmental biology but also for biophysical studies. Yet, the characterization of cultured stem cells at the level of morphology and of the macroscopic patterns resulting from cell-to-cell interactions remains largely qualitative. Here we report on the collective dynamics of cultured murine neural progenitor cells (NPCs), which are multipotent stem cells that give rise to cells in the central nervous system. At low densities, NPCs moved randomly in an amoeba-like fashion. However, NPCs at high density elongated and aligned their shapes with one another, gliding at relatively high velocities. Although the direction of motion of individual cells reversed stochastically along the axes of alignment, the cells were capable of forming an aligned pattern up to length scales similar to that of the migratory stream observed in the adult brain. The two-dimensional order of alignment within the culture showed a liquid-crystalline pattern containing interspersed topological defects with winding numbers of +1/2 and -1/2 (half-integer due to the nematic feature that arises from the head-tail symmetry of cell-to-cell interaction). We identified rapid cell accumulation at +1/2 defects and the formation of three-dimensional mounds. Imaging at the single-cell level around the defects allowed us to quantify the velocity field and the evolving cell density; cells not only concentrate at +1/2 defects, but also escape from -1/2 defects. We propose a generic mechanism for the instability in cell density around the defects that arises from the interplay between the anisotropic friction and the active force field.
Hybrid neural network bushing model for vehicle dynamics simulation
International Nuclear Information System (INIS)
Sohn, Jeong Hyun; Lee, Seung Kyu; Yoo, Wan Suk
2008-01-01
Although the linear model was widely used for the bushing model in vehicle suspension systems, it could not express the nonlinear characteristics of bushing in terms of the amplitude and the frequency. An artificial neural network model was suggested to consider the hysteretic responses of bushings. This model, however, often diverges due to the uncertainties of the neural network under the unexpected excitation inputs. In this paper, a hybrid neural network bushing model combining linear and neural network is suggested. A linear model was employed to represent linear stiffness and damping effects, and the artificial neural network algorithm was adopted to take into account the hysteretic responses. A rubber test was performed to capture bushing characteristics, where sine excitation with different frequencies and amplitudes is applied. Random test results were used to update the weighting factors of the neural network model. It is proven that the proposed model has more robust characteristics than a simple neural network model under step excitation input. A full car simulation was carried out to verify the proposed bushing models. It was shown that the hybrid model results are almost identical to the linear model under several maneuvers
Standard representation and unified stability analysis for dynamic artificial neural network models.
Kim, Kwang-Ki K; Patrón, Ernesto Ríos; Braatz, Richard D
2018-02-01
An overview is provided of dynamic artificial neural network models (DANNs) for nonlinear dynamical system identification and control problems, and convex stability conditions are proposed that are less conservative than past results. The three most popular classes of dynamic artificial neural network models are described, with their mathematical representations and architectures followed by transformations based on their block diagrams that are convenient for stability and performance analyses. Classes of nonlinear dynamical systems that are universally approximated by such models are characterized, which include rigorous upper bounds on the approximation errors. A unified framework and linear matrix inequality-based stability conditions are described for different classes of dynamic artificial neural network models that take additional information into account such as local slope restrictions and whether the nonlinearities within the DANNs are odd. A theoretical example shows reduced conservatism obtained by the conditions. Copyright © 2017. Published by Elsevier Ltd.
Rule of Thumb and Dynamic Programming
Lettau, M.; Uhlig, H.F.H.V.S.
1995-01-01
This paper studies the relationships between learning about rules of thumb (represented by classifier systems) and dynamic programming. Building on a result about Markovian stochastic approximation algorithms, we characterize all decision functions that can be asymptotically obtained through
Predicting Expressive Dynamics in Piano Performances using Neural Networks
van Herwaarden, Sam; Grachten, Maarten; de Haas, W. Bas
2014-01-01
This paper presents a model for predicting expressive accentuation in piano performances with neural networks. Using Restricted Boltzmann Machines (RBMs), features are learned from performance data, after which these features are used to predict performed loudness. During feature learning, data
Complex Dynamical Network Control for Trajectory Tracking Using Delayed Recurrent Neural Networks
Directory of Open Access Journals (Sweden)
Jose P. Perez
2014-01-01
Full Text Available In this paper, the problem of trajectory tracking is studied. Based on the V-stability and Lyapunov theory, a control law that achieves the global asymptotic stability of the tracking error between a delayed recurrent neural network and a complex dynamical network is obtained. To illustrate the analytic results, we present a tracking simulation of a dynamical network with each node being just one Lorenz’s dynamical system and three identical Chen’s dynamical systems.
Dynamic Programming: An Introduction by Example
Zietz, Joachim
2007-01-01
The author introduces some basic dynamic programming techniques, using examples, with the help of the computer algebra system "Maple". The emphasis is on building confidence and intuition for the solution of dynamic problems in economics. To integrate the material better, the same examples are used to introduce different techniques. One covers the…
Guidelines for dynamic international programs
International Nuclear Information System (INIS)
Gold, M.A.
1993-01-01
Matters of global concern-deforestation, global warming, biodiversity loss, sustainable development, fuelwood crises, watershed destruction, and large-scale flooding-frequently involve forests and natural resources. In the future, university students will enter a global setting that more than ever depends on a strong knowledge of international issues. USA land-grant universities are attempting to prepare students for this challenge by improving their international programs including forestry. To improve university programs, several factors will need to be addressed and are discussed, with examples, in this article: commitment of the faculty; program specialization; geographic specialization; reward systems for international contributions; international collaboration; recycled dollars within the university; active teaching programs; research; extention and outreach; language training; international faculty; travel grants; twinning relationships with sister institutions; selective in pursuit of international development assistance; and study centers. 6 refs
Directory of Open Access Journals (Sweden)
Daniel Durstewitz
2017-06-01
Full Text Available The computational and cognitive properties of neural systems are often thought to be implemented in terms of their (stochastic network dynamics. Hence, recovering the system dynamics from experimentally observed neuronal time series, like multiple single-unit recordings or neuroimaging data, is an important step toward understanding its computations. Ideally, one would not only seek a (lower-dimensional state space representation of the dynamics, but would wish to have access to its statistical properties and their generative equations for in-depth analysis. Recurrent neural networks (RNNs are a computationally powerful and dynamically universal formal framework which has been extensively studied from both the computational and the dynamical systems perspective. Here we develop a semi-analytical maximum-likelihood estimation scheme for piecewise-linear RNNs (PLRNNs within the statistical framework of state space models, which accounts for noise in both the underlying latent dynamics and the observation process. The Expectation-Maximization algorithm is used to infer the latent state distribution, through a global Laplace approximation, and the PLRNN parameters iteratively. After validating the procedure on toy examples, and using inference through particle filters for comparison, the approach is applied to multiple single-unit recordings from the rodent anterior cingulate cortex (ACC obtained during performance of a classical working memory task, delayed alternation. Models estimated from kernel-smoothed spike time data were able to capture the essential computational dynamics underlying task performance, including stimulus-selective delay activity. The estimated models were rarely multi-stable, however, but rather were tuned to exhibit slow dynamics in the vicinity of a bifurcation point. In summary, the present work advances a semi-analytical (thus reasonably fast maximum-likelihood estimation framework for PLRNNs that may enable to recover
Evaluating Dynamic Analysis Techniques for Program Comprehension
Cornelissen, S.G.M.
2009-01-01
Program comprehension is an essential part of software development and software maintenance, as software must be sufficiently understood before it can be properly modified. One of the common approaches in getting to understand a program is the study of its execution, also known as dynamic analysis.
Hybrid Differential Dynamic Programming with Stochastic Search
Aziz, Jonathan; Parker, Jeffrey; Englander, Jacob
2016-01-01
Differential dynamic programming (DDP) has been demonstrated as a viable approach to low-thrust trajectory optimization, namely with the recent success of NASAs Dawn mission. The Dawn trajectory was designed with the DDP-based Static Dynamic Optimal Control algorithm used in the Mystic software. Another recently developed method, Hybrid Differential Dynamic Programming (HDDP) is a variant of the standard DDP formulation that leverages both first-order and second-order state transition matrices in addition to nonlinear programming (NLP) techniques. Areas of improvement over standard DDP include constraint handling, convergence properties, continuous dynamics, and multi-phase capability. DDP is a gradient based method and will converge to a solution nearby an initial guess. In this study, monotonic basin hopping (MBH) is employed as a stochastic search method to overcome this limitation, by augmenting the HDDP algorithm for a wider search of the solution space.
Hybrid computing using a neural network with dynamic external memory.
Graves, Alex; Wayne, Greg; Reynolds, Malcolm; Harley, Tim; Danihelka, Ivo; Grabska-Barwińska, Agnieszka; Colmenarejo, Sergio Gómez; Grefenstette, Edward; Ramalho, Tiago; Agapiou, John; Badia, Adrià Puigdomènech; Hermann, Karl Moritz; Zwols, Yori; Ostrovski, Georg; Cain, Adam; King, Helen; Summerfield, Christopher; Blunsom, Phil; Kavukcuoglu, Koray; Hassabis, Demis
2016-10-27
Artificial neural networks are remarkably adept at sensory processing, sequence learning and reinforcement learning, but are limited in their ability to represent variables and data structures and to store data over long timescales, owing to the lack of an external memory. Here we introduce a machine learning model called a differentiable neural computer (DNC), which consists of a neural network that can read from and write to an external memory matrix, analogous to the random-access memory in a conventional computer. Like a conventional computer, it can use its memory to represent and manipulate complex data structures, but, like a neural network, it can learn to do so from data. When trained with supervised learning, we demonstrate that a DNC can successfully answer synthetic questions designed to emulate reasoning and inference problems in natural language. We show that it can learn tasks such as finding the shortest path between specified points and inferring the missing links in randomly generated graphs, and then generalize these tasks to specific graphs such as transport networks and family trees. When trained with reinforcement learning, a DNC can complete a moving blocks puzzle in which changing goals are specified by sequences of symbols. Taken together, our results demonstrate that DNCs have the capacity to solve complex, structured tasks that are inaccessible to neural networks without external read-write memory.
Dynamic programming for QFD in PES optimization
Energy Technology Data Exchange (ETDEWEB)
Sorrentino, R. [Mediterranean Univ. of Reggio Calabria, Reggio Calabria (Italy). Dept. of Computer Science and Electrical Technology
2008-07-01
Quality function deployment (QFD) is a method for linking the needs of the customer with design, development, engineering, manufacturing, and service functions. In the electric power industry, QFD is used to help designers concentrate on the most important technical attributes to develop better electrical services. Most optimization approaches used in QFD analysis have been based on integer or linear programming. These approaches perform well in certain circumstances, but there are problems that hinder their practical use. This paper proposed an approach to optimize Power and Energy Systems (PES). A dynamic programming approach was used along with an extended House of Quality to gather information. Dynamic programming was used to allocate the limited resources to the technical attributes. The approach integrated dynamic programming into the electrical service design process. The dynamic programming approach did not require the full relationship curve between technical attributes and customer satisfaction, or the relationship between technical attributes and cost. It only used a group of discrete points containing information about customer satisfaction, technical attributes, and the cost to find the optimal product design. Therefore, it required less time and resources than other approaches. At the end of the optimization process, the value of each technical attribute, the related cost, and the overall customer satisfaction were obtained at the same time. It was concluded that compared with other optimization methods, the dynamic programming method requires less information and the optimal results are more relevant. 21 refs., 2 tabs., 2 figs.
A Neural Network Approach to Fluid Quantity Measurement in Dynamic Environments
Terzic, Edin; Nagarajah, Romesh; Alamgir, Muhammad
2012-01-01
Sloshing causes liquid to fluctuate, making accurate level readings difficult to obtain in dynamic environments. The measurement system described uses a single-tube capacitive sensor to obtain an instantaneous level reading of the fluid surface, thereby accurately determining the fluid quantity in the presence of slosh. A neural network based classification technique has been applied to predict the actual quantity of the fluid contained in a tank under sloshing conditions. In A neural network approach to fluid quantity measurement in dynamic environments, effects of temperature variations and contamination on the capacitive sensor are discussed, and the authors propose that these effects can also be eliminated with the proposed neural network based classification system. To examine the performance of the classification system, many field trials were carried out on a running vehicle at various tank volume levels that range from 5 L to 50 L. The effectiveness of signal enhancement on the neural network base...
Chaos Synchronization Using Adaptive Dynamic Neural Network Controller with Variable Learning Rates
Directory of Open Access Journals (Sweden)
Chih-Hong Kao
2011-01-01
Full Text Available This paper addresses the synchronization of chaotic gyros with unknown parameters and external disturbance via an adaptive dynamic neural network control (ADNNC system. The proposed ADNNC system is composed of a neural controller and a smooth compensator. The neural controller uses a dynamic RBF (DRBF network to online approximate an ideal controller. The DRBF network can create new hidden neurons online if the input data falls outside the hidden layer and prune the insignificant hidden neurons online if the hidden neuron is inappropriate. The smooth compensator is designed to compensate for the approximation error between the neural controller and the ideal controller. Moreover, the variable learning rates of the parameter adaptation laws are derived based on a discrete-type Lyapunov function to speed up the convergence rate of the tracking error. Finally, the simulation results which verified the chaotic behavior of two nonlinear identical chaotic gyros can be synchronized using the proposed ADNNC scheme.
Modelling of word usage frequency dynamics using artificial neural network
International Nuclear Information System (INIS)
Maslennikova, Yu S; Bochkarev, V V; Voloskov, D S
2014-01-01
In this paper the method for modelling of word usage frequency time series is proposed. An artificial feedforward neural network was used to predict word usage frequencies. The neural network was trained using the maximum likelihood criterion. The Google Books Ngram corpus was used for the analysis. This database provides a large amount of data on frequency of specific word forms for 7 languages. Statistical modelling of word usage frequency time series allows finding optimal fitting and filtering algorithm for subsequent lexicographic analysis and verification of frequency trend models
Artificial Neural Networks for Nonlinear Dynamic Response Simulation in Mechanical Systems
DEFF Research Database (Denmark)
Christiansen, Niels Hørbye; Høgsberg, Jan Becker; Winther, Ole
2011-01-01
It is shown how artificial neural networks can be trained to predict dynamic response of a simple nonlinear structure. Data generated using a nonlinear finite element model of a simplified wind turbine is used to train a one layer artificial neural network. When trained properly the network is ab...... to perform accurate response prediction much faster than the corresponding finite element model. Initial result indicate a reduction in cpu time by two orders of magnitude....
Dynamics of coupled mode solitons in bursting neural networks
Nfor, N. Oma; Ghomsi, P. Guemkam; Moukam Kakmeni, F. M.
2018-02-01
Using an electrically coupled chain of Hindmarsh-Rose neural models, we analytically derived the nonlinearly coupled complex Ginzburg-Landau equations. This is realized by superimposing the lower and upper cutoff modes of wave propagation and by employing the multiple scale expansions in the semidiscrete approximation. We explore the modified Hirota method to analytically obtain the bright-bright pulse soliton solutions of our nonlinearly coupled equations. With these bright solitons as initial conditions of our numerical scheme, and knowing that electrical signals are the basis of information transfer in the nervous system, it is found that prior to collisions at the boundaries of the network, neural information is purely conveyed by bisolitons at lower cutoff mode. After collision, the bisolitons are completely annihilated and neural information is now relayed by the upper cutoff mode via the propagation of plane waves. It is also shown that the linear gain of the system is inextricably linked to the complex physiological mechanisms of ion mobility, since the speeds and spatial profiles of the coupled nerve impulses vary with the gain. A linear stability analysis performed on the coupled system mainly confirms the instability of plane waves in the neural network, with a glaring example of the transition of weak plane waves into a dark soliton and then static kinks. Numerical simulations have confirmed the annihilation phenomenon subsequent to collision in neural systems. They equally showed that the symmetry breaking of the pulse solution of the system leaves in the network static internal modes, sometime referred to as Goldstone modes.
Dynamic analysis program for frame structure
International Nuclear Information System (INIS)
Ando, Kozo; Chiba, Toshio
1975-01-01
A general purpose computer program named ISTRAN/FD (Isub(HI) STRucture ANalysis/Frame structure, Dynamic analysis) has been developed for dynamic analysis of three-dimensional frame structures. This program has functions of free vibration analysis, seismic response analysis, graphic display by plotter and CRT, etc. This paper introduces ISTRAN/FD; examples of its application are shown with various problems : idealization of the cantilever, dynamic analysis of the main tower of the suspension bridge, three-dimensional vibration in the plate girder bridge, seismic response in the boiler steel structure, and dynamic properties of the underground LNG tank. In this last example, solid elements, in addition to beam elements, are especially used for the analysis. (auth.)
Neural Network Based Real-time Correction of Transducer Dynamic Errors
Roj, J.
2013-12-01
In order to carry out real-time dynamic error correction of transducers described by a linear differential equation, a novel recurrent neural network was developed. The network structure is based on solving this equation with respect to the input quantity when using the state variables. It is shown that such a real-time correction can be carried out using simple linear perceptrons. Due to the use of a neural technique, knowledge of the dynamic parameters of the transducer is not necessary. Theoretical considerations are illustrated by the results of simulation studies performed for the modeled second order transducer. The most important properties of the neural dynamic error correction, when emphasizing the fundamental advantages and disadvantages, are discussed.
Hamiltonian-Driven Adaptive Dynamic Programming for Continuous Nonlinear Dynamical Systems.
Yang, Yongliang; Wunsch, Donald; Yin, Yixin
2017-08-01
This paper presents a Hamiltonian-driven framework of adaptive dynamic programming (ADP) for continuous time nonlinear systems, which consists of evaluation of an admissible control, comparison between two different admissible policies with respect to the corresponding the performance function, and the performance improvement of an admissible control. It is showed that the Hamiltonian can serve as the temporal difference for continuous-time systems. In the Hamiltonian-driven ADP, the critic network is trained to output the value gradient. Then, the inner product between the critic and the system dynamics produces the value derivative. Under some conditions, the minimization of the Hamiltonian functional is equivalent to the value function approximation. An iterative algorithm starting from an arbitrary admissible control is presented for the optimal control approximation with its convergence proof. The implementation is accomplished by a neural network approximation. Two simulation studies demonstrate the effectiveness of Hamiltonian-driven ADP.
Planar multibody dynamics formulation, programming and applications
Nikravesh, Parviz E
2007-01-01
Introduction Multibody Mechanical Systems Types of Analyses Methods of Formulation Computer Programming Application Examples Unit System Remarks Preliminaries Reference Axes Scalars and Vectors Matrices Vector, Array, and Matrix Differentiation Equations and Expressions Remarks Problems Fundamentals of Kinematics A Particle Kinematics of a Rigid Body Definitions Remarks Problems Fundamentals of Dynamics Newton's Laws of Motion Dynamics of a Body Force Elements Applied Forces Reaction Force Remarks Problems Point-Coordinates: Kinematics Multipoint
Directory of Open Access Journals (Sweden)
Min Wang
2017-01-01
Full Text Available A dynamic learning method is developed for an uncertain n-link robot with unknown system dynamics, achieving predefined performance attributes on the link angular position and velocity tracking errors. For a known nonsingular initial robotic condition, performance functions and unconstrained transformation errors are employed to prevent the violation of the full-state tracking error constraints. By combining two independent Lyapunov functions and radial basis function (RBF neural network (NN approximator, a novel and simple adaptive neural control scheme is proposed for the dynamics of the unconstrained transformation errors, which guarantees uniformly ultimate boundedness of all the signals in the closed-loop system. In the steady-state control process, RBF NNs are verified to satisfy the partial persistent excitation (PE condition. Subsequently, an appropriate state transformation is adopted to achieve the accurate convergence of neural weight estimates. The corresponding experienced knowledge on unknown robotic dynamics is stored in NNs with constant neural weight values. Using the stored knowledge, a static neural learning controller is developed to improve the full-state tracking performance. A comparative simulation study on a 2-link robot illustrates the effectiveness of the proposed scheme.
Configuring Airspace Sectors with Approximate Dynamic Programming
Bloem, Michael; Gupta, Pramod
2010-01-01
In response to changing traffic and staffing conditions, supervisors dynamically configure airspace sectors by assigning them to control positions. A finite horizon airspace sector configuration problem models this supervisor decision. The problem is to select an airspace configuration at each time step while considering a workload cost, a reconfiguration cost, and a constraint on the number of control positions at each time step. Three algorithms for this problem are proposed and evaluated: a myopic heuristic, an exact dynamic programming algorithm, and a rollouts approximate dynamic programming algorithm. On problem instances from current operations with only dozens of possible configurations, an exact dynamic programming solution gives the optimal cost value. The rollouts algorithm achieves costs within 2% of optimal for these instances, on average. For larger problem instances that are representative of future operations and have thousands of possible configurations, excessive computation time prohibits the use of exact dynamic programming. On such problem instances, the rollouts algorithm reduces the cost achieved by the heuristic by more than 15% on average with an acceptable computation time.
A new neural network model for solving random interval linear programming problems.
Arjmandzadeh, Ziba; Safi, Mohammadreza; Nazemi, Alireza
2017-05-01
This paper presents a neural network model for solving random interval linear programming problems. The original problem involving random interval variable coefficients is first transformed into an equivalent convex second order cone programming problem. A neural network model is then constructed for solving the obtained convex second order cone problem. Employing Lyapunov function approach, it is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact satisfactory solution of the original problem. Several illustrative examples are solved in support of this technique. Copyright © 2017 Elsevier Ltd. All rights reserved.
An Artificial Neural Network Based Short-term Dynamic Prediction of Algae Bloom
Directory of Open Access Journals (Sweden)
Yao Junyang
2014-06-01
Full Text Available This paper proposes a method of short-term prediction of algae bloom based on artificial neural network. Firstly, principal component analysis is applied to water environmental factors in algae bloom raceway ponds to get main factors that influence the formation of algae blooms. Then, a model of short-term dynamic prediction based on neural network is built with the current chlorophyll_a values as input and the chlorophyll_a values in the next moment as output to realize short-term dynamic prediction of algae bloom. Simulation results show that the model can realize short-term prediction of algae bloom effectively.
Neural correlates of dynamically evolving interpersonal ties predict prosocial behaviour
Directory of Open Access Journals (Sweden)
Johannes Jacobus Fahrenfort
2012-03-01
Full Text Available There is a growing interest for the determinants of human choice behaviour in social settings. Upon initial contact, investment choices in social settings can be inherently risky, as the degree to which the other person will reciprocate is unknown. Nevertheless, people have been shown to exhibit prosocial behaviour even in one-shot laboratory settings where all interaction has been taken away. A logical step has been to link such behaviour to trait empathy-related neurobiological networks. However, as a social interaction unfolds, the degree of uncertainty with respect to the expected payoff of choice behaviour may change as a function of the interaction. Here we attempt to capture this factor. We show that the interpersonal tie one develops with another person during interaction - rather than trait empathy - motivates investment in a public good that is shared with an anonymous interaction partner. We examined how individual differences in trait empathy and interpersonal ties modulate neural responses to imposed monetary sharing. After, but not before interaction in a public good game, sharing prompted activation of neural systems associated with reward (striatum, empathy (anterior insular cortex [AIC] and anterior cingulate cortex [ACC] as well as altruism and social significance (posterior superior temporal sulcus [pSTS]. Although these activations could be linked to both empathy and interpersonal ties, only tie-related pSTS activation predicted prosocial behaviour during subsequent interaction, suggesting a neural substrate for keeping track of social relevance.
Firing rate dynamics in recurrent spiking neural networks with intrinsic and network heterogeneity.
Ly, Cheng
2015-12-01
Heterogeneity of neural attributes has recently gained a lot of attention and is increasing recognized as a crucial feature in neural processing. Despite its importance, this physiological feature has traditionally been neglected in theoretical studies of cortical neural networks. Thus, there is still a lot unknown about the consequences of cellular and circuit heterogeneity in spiking neural networks. In particular, combining network or synaptic heterogeneity and intrinsic heterogeneity has yet to be considered systematically despite the fact that both are known to exist and likely have significant roles in neural network dynamics. In a canonical recurrent spiking neural network model, we study how these two forms of heterogeneity lead to different distributions of excitatory firing rates. To analytically characterize how these types of heterogeneities affect the network, we employ a dimension reduction method that relies on a combination of Monte Carlo simulations and probability density function equations. We find that the relationship between intrinsic and network heterogeneity has a strong effect on the overall level of heterogeneity of the firing rates. Specifically, this relationship can lead to amplification or attenuation of firing rate heterogeneity, and these effects depend on whether the recurrent network is firing asynchronously or rhythmically firing. These observations are captured with the aforementioned reduction method, and furthermore simpler analytic descriptions based on this dimension reduction method are developed. The final analytic descriptions provide compact and descriptive formulas for how the relationship between intrinsic and network heterogeneity determines the firing rate heterogeneity dynamics in various settings.
Directory of Open Access Journals (Sweden)
Mark D. Humphries
2017-12-01
Full Text Available Systems neuroscience is in a headlong rush to record from as many neurons at the same time as possible. As the brain computes and codes using neuron populations, it is hoped these data will uncover the fundamentals of neural computation. But with hundreds, thousands, or more simultaneously recorded neurons come the inescapable problems of visualizing, describing, and quantifying their interactions. Here I argue that network science provides a set of scalable, analytical tools that already solve these problems. By treating neurons as nodes and their interactions as links, a single network can visualize and describe an arbitrarily large recording. I show that with this description we can quantify the effects of manipulating a neural circuit, track changes in population dynamics over time, and quantitatively define theoretical concepts of neural populations such as cell assemblies. Using network science as a core part of analyzing population recordings will thus provide both qualitative and quantitative advances to our understanding of neural computation.
Robustness analysis of uncertain dynamical neural networks with multiple time delays.
Senan, Sibel
2015-10-01
This paper studies the problem of global robust asymptotic stability of the equilibrium point for the class of dynamical neural networks with multiple time delays with respect to the class of slope-bounded activation functions and in the presence of the uncertainties of system parameters of the considered neural network model. By using an appropriate Lyapunov functional and exploiting the properties of the homeomorphism mapping theorem, we derive a new sufficient condition for the existence, uniqueness and global robust asymptotic stability of the equilibrium point for the class of neural networks with multiple time delays. The obtained stability condition basically relies on testing some relationships imposed on the interconnection matrices of the neural system, which can be easily verified by using some certain properties of matrices. An instructive numerical example is also given to illustrate the applicability of our result and show the advantages of this new condition over the previously reported corresponding results. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Dynamic Geometrisation of Computer Programming
Sinclair, Nathalie; Patterson, Margaret
2018-01-01
The goal of this paper is to explore dynamic geometry environments (DGE) as a type of computer programming language. Using projects created by secondary students in one particular DGE, we analyse the extent to which the various aspects of computational thinking--including both ways of doing things and particular concepts--were evident in their…
A Dynamic Programming Approach to Constrained Portfolios
DEFF Research Database (Denmark)
Kraft, Holger; Steffensen, Mogens
2013-01-01
This paper studies constrained portfolio problems that may involve constraints on the probability or the expected size of a shortfall of wealth or consumption. Our first contribution is that we solve the problems by dynamic programming, which is in contrast to the existing literature that applies...
Quantum optical device accelerating dynamic programming
Grigoriev, D.; Kazakov, A.; Vakulenko, S.
2005-01-01
In this paper we discuss analogue computers based on quantum optical systems accelerating dynamic programming for some computational problems. These computers, at least in principle, can be realized by actually existing devices. We estimate an acceleration in resolving of some NP-hard problems that can be obtained in such a way versus deterministic computers
Microsoft Dynamics NAV 7 programming cookbook
Raul, Rakesh
2013-01-01
Written in the style of a cookbook. Microsoft Dynamics NAV 7 Programming Cookbook is full of recipes to help you get the job done.If you are a junior / entry-level NAV developer then the first half of the book is designed primarily for you. You may or may not have any experience programming. It focuses on the basics of NAV programming.If you are a mid-level NAV developer, you will find these chapters explain how to think outside of the NAV box when building solutions. There are also recipes that senior developers will find useful.
Efficient dynamic optimization of logic programs
Laird, Phil
1992-01-01
A summary is given of the dynamic optimization approach to speed up learning for logic programs. The problem is to restructure a recursive program into an equivalent program whose expected performance is optimal for an unknown but fixed population of problem instances. We define the term 'optimal' relative to the source of input instances and sketch an algorithm that can come within a logarithmic factor of optimal with high probability. Finally, we show that finding high-utility unfolding operations (such as EBG) can be reduced to clause reordering.
Stochastic control theory dynamic programming principle
Nisio, Makiko
2015-01-01
This book offers a systematic introduction to the optimal stochastic control theory via the dynamic programming principle, which is a powerful tool to analyze control problems. First we consider completely observable control problems with finite horizons. Using a time discretization we construct a nonlinear semigroup related to the dynamic programming principle (DPP), whose generator provides the Hamilton–Jacobi–Bellman (HJB) equation, and we characterize the value function via the nonlinear semigroup, besides the viscosity solution theory. When we control not only the dynamics of a system but also the terminal time of its evolution, control-stopping problems arise. This problem is treated in the same frameworks, via the nonlinear semigroup. Its results are applicable to the American option price problem. Zero-sum two-player time-homogeneous stochastic differential games and viscosity solutions of the Isaacs equations arising from such games are studied via a nonlinear semigroup related to DPP (the min-ma...
From behavior to neural dynamics: An integrated theory of attention
Buschman, Timothy J.; Kastner, Sabine
2015-01-01
The brain has a limited capacity and therefore needs mechanisms to selectively enhance the information most relevant to one’s current behavior. We refer to these mechanisms as ‘attention’. Attention acts by increasing the strength of selected neural representations and preferentially routing them through the brain’s large-scale network. This is a critical component of cognition and therefore has been a central topic in cognitive neuroscience. Here we review a diverse literature that has studied attention at the level of behavior, networks, circuits and neurons. We then integrate these disparate results into a unified theory of attention. PMID:26447577
Parameter estimation of breast tumour using dynamic neural network from thermal pattern
Directory of Open Access Journals (Sweden)
Elham Saniei
2016-11-01
Full Text Available This article presents a new approach for estimating the depth, size, and metabolic heat generation rate of a tumour. For this purpose, the surface temperature distribution of a breast thermal image and the dynamic neural network was used. The research consisted of two steps: forward and inverse. For the forward section, a finite element model was created. The Pennes bio-heat equation was solved to find surface and depth temperature distributions. Data from the analysis, then, were used to train the dynamic neural network model (DNN. Results from the DNN training/testing confirmed those of the finite element model. For the inverse section, the trained neural network was applied to estimate the depth temperature distribution (tumour position from the surface temperature profile, extracted from the thermal image. Finally, tumour parameters were obtained from the depth temperature distribution. Experimental findings (20 patients were promising in terms of the model’s potential for retrieving tumour parameters.
Directory of Open Access Journals (Sweden)
ZHANG Yongzhi
2016-10-01
Full Text Available A dynamic fuzzy RBF neural network model was built to predict the mechanical properties of welded joints, and the purpose of the model was to overcome the shortcomings of static neural networks including structural identification, dynamic sample training and learning algorithm. The structure and parameters of the model are no longer head of default, dynamic adaptive adjustment in the training, suitable for dynamic sample data for learning, learning algorithm introduces hierarchical learning and fuzzy rule pruning strategy, to accelerate the training speed of model and make the model more compact. Simulation of the model was carried out by using three kinds of thickness and different process TC4 titanium alloy TIG welding test data. The results show that the model has higher prediction accuracy, which is suitable for predicting the mechanical properties of welded joints, and has opened up a new way for the on-line control of the welding process.
Shoaib, Muhammad; Shamseldin, Asaad Y.; Melville, Bruce W.; Khan, Mudasser Muneer
2016-04-01
In order to predict runoff accurately from a rainfall event, the multilayer perceptron type of neural network models are commonly used in hydrology. Furthermore, the wavelet coupled multilayer perceptron neural network (MLPNN) models has also been found superior relative to the simple neural network models which are not coupled with wavelet. However, the MLPNN models are considered as static and memory less networks and lack the ability to examine the temporal dimension of data. Recurrent neural network models, on the other hand, have the ability to learn from the preceding conditions of the system and hence considered as dynamic models. This study for the first time explores the potential of wavelet coupled time lagged recurrent neural network (TLRNN) models for runoff prediction using rainfall data. The Discrete Wavelet Transformation (DWT) is employed in this study to decompose the input rainfall data using six of the most commonly used wavelet functions. The performance of the simple and the wavelet coupled static MLPNN models is compared with their counterpart dynamic TLRNN models. The study found that the dynamic wavelet coupled TLRNN models can be considered as alternative to the static wavelet MLPNN models. The study also investigated the effect of memory depth on the performance of static and dynamic neural network models. The memory depth refers to how much past information (lagged data) is required as it is not known a priori. The db8 wavelet function is found to yield the best results with the static MLPNN models and with the TLRNN models having small memory depths. The performance of the wavelet coupled TLRNN models with large memory depths is found insensitive to the selection of the wavelet function as all wavelet functions have similar performance.
Neural dynamics of motion processing and speed discrimination.
Chey, J; Grossberg, S; Mingolla, E
1998-09-01
A neural network model of visual motion perception and speed discrimination is presented. The model shows how a distributed population code of speed tuning, that realizes a size-speed correlation, can be derived from the simplest mechanisms whereby activations of multiple spatially short-range filters of different size are transformed into speed-turned cell responses. These mechanisms use transient cell responses to moving stimuli, output thresholds that covary with filter size, and competition. These mechanisms are proposed to occur in the V1-->MT cortical processing stream. The model reproduces empirically derived speed discrimination curves and simulates data showing how visual speed perception and discrimination can be affected by stimulus contrast, duration, dot density and spatial frequency. Model motion mechanisms are analogous to mechanisms that have been used to model 3-D form and figure-ground perception. The model forms the front end of a larger motion processing system that has been used to simulate how global motion capture occurs, and how spatial attention is drawn to moving forms. It provides a computational foundation for an emerging neural theory of 3-D form and motion perception.
Simulation of sensory integration dysfunction in autism with dynamic neural fields model
Chonnaparamutt, W.; Barakova, E.I.; Rutkowski, L.; Taseusiewicz, R.
2008-01-01
This paper applies dynamic neural fields model [1,23,7] to multimodal interaction of sensory cues obtained from a mobile robot, and shows the impact of different temporal aspects of the integration to the precision of movements. We speculate that temporally uncoordinated sensory integration might be
Zion-Golumbic, Elana; Kutas, Marta; Bentin, Shlomo
2010-01-01
Prior semantic knowledge facilitates episodic recognition memory for faces. To examine the neural manifestation of the interplay between semantic and episodic memory, we investigated neuroelectric dynamics during the creation (study) and the retrieval (test) of episodic memories for famous and nonfamous faces. Episodic memory effects were evident…
Schilders, W.H.A.; Meijer, P.B.L.; Ciggaar, E.
2008-01-01
In this paper we discuss the use of the state-space modelling MOESP algorithm to generate precise information about the number of neurons and hidden layers in dynamic neural networks developed for the behavioural modelling of electronic circuits. The Bartels–Stewart algorithm is used to transform
Predicting the topology of dynamic neural networks for the simulation of electronic circuits
Schilders, W.H.A.
2009-01-01
In this paper we discuss the use of the state-space modelling MOESP algorithm to generate precise information about the number of neurons and hidden layers in dynamic neural networks developed for the behavioural modelling of electronic circuits. The Bartels–Stewart algorithm is used to transform
Dynamical Behaviors of Stochastic Reaction-Diffusion Cohen-Grossberg Neural Networks with Delays
Directory of Open Access Journals (Sweden)
Li Wan
2012-01-01
Full Text Available This paper investigates dynamical behaviors of stochastic Cohen-Grossberg neural network with delays and reaction diffusion. By employing Lyapunov method, Poincaré inequality and matrix technique, some sufficient criteria on ultimate boundedness, weak attractor, and asymptotic stability are obtained. Finally, a numerical example is given to illustrate the correctness and effectiveness of our theoretical results.
Paudel, S.; Elmtiri, M.; Kling, W.L.; Corre, le O.; Lacarriere, B.
2014-01-01
This paper presents the building heating demand prediction model with occupancy profile and operational heating power level characteristics in short time horizon (a couple of days) using artificial neural network. In addition, novel pseudo dynamic transitional model is introduced, which consider
A Neural Network Model of the Structure and Dynamics of Human Personality
Read, Stephen J.; Monroe, Brian M.; Brownstein, Aaron L.; Yang, Yu; Chopra, Gurveen; Miller, Lynn C.
2010-01-01
We present a neural network model that aims to bridge the historical gap between dynamic and structural approaches to personality. The model integrates work on the structure of the trait lexicon, the neurobiology of personality, temperament, goal-based models of personality, and an evolutionary analysis of motives. It is organized in terms of two…
The influence of mental fatigue and motivation on neural network dynamics; an EEG coherence study
Lorist, Monicque M.; Bezdan, Eniko; Caat, Michael ten; Span, Mark M.; Roerdink, Jos B.T.M.; Maurits, Natasha M.
2009-01-01
The purpose of the present study is to examine the effects of mental fatigue and motivation on neural network dynamics activated during task switching. Mental fatigue was induced by 2 h of continuous performance; after which subjects were motivated by using social comparison and monetary reward as
Li, Shuhui; Fairbank, Michael; Johnson, Cameron; Wunsch, Donald C; Alonso, Eduardo; Proaño, Julio L
2014-04-01
Three-phase grid-connected converters are widely used in renewable and electric power system applications. Traditionally, grid-connected converters are controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations in their applicability to dynamic systems. This paper investigates how to mitigate such restrictions using a neural network to control a grid-connected rectifier/inverter. The neural network implements a dynamic programming algorithm and is trained by using back-propagation through time. To enhance performance and stability under disturbance, additional strategies are adopted, including the use of integrals of error signals to the network inputs and the introduction of grid disturbance voltage to the outputs of a well-trained network. The performance of the neural-network controller is studied under typical vector control conditions and compared against conventional vector control methods, which demonstrates that the neural vector control strategy proposed in this paper is effective. Even in dynamic and power converter switching environments, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for a faulted power system.
Biophysical Neural Spiking, Bursting, and Excitability Dynamics in Reconfigurable Analog VLSI.
Yu, T; Sejnowski, T J; Cauwenberghs, G
2011-10-01
We study a range of neural dynamics under variations in biophysical parameters underlying extended Morris-Lecar and Hodgkin-Huxley models in three gating variables. The extended models are implemented in NeuroDyn, a four neuron, twelve synapse continuous-time analog VLSI programmable neural emulation platform with generalized channel kinetics and biophysical membrane dynamics. The dynamics exhibit a wide range of time scales extending beyond 100 ms neglected in typical silicon models of tonic spiking neurons. Circuit simulations and measurements show transition from tonic spiking to tonic bursting dynamics through variation of a single conductance parameter governing calcium recovery. We similarly demonstrate transition from graded to all-or-none neural excitability in the onset of spiking dynamics through the variation of channel kinetic parameters governing the speed of potassium activation. Other combinations of variations in conductance and channel kinetic parameters give rise to phasic spiking and spike frequency adaptation dynamics. The NeuroDyn chip consumes 1.29 mW and occupies 3 mm × 3 mm in 0.5 μm CMOS, supporting emerging developments in neuromorphic silicon-neuron interfaces.
Exploring Neural Cell Dynamics with Digital Holographic Microscopy
Marquet, Pierre; Jourdain, Pascal; Boss, Daniel; Depeursinge, Christian D.; Magistretti, Pierre J.
2013-01-01
In this talk, I will present how digital holographic microscopy, as a powerful quantitative phase technique, can non-invasively measure cell dynamics and especially resolve local neuronal network activity through simultaneous multiple site optical recording.
Exploring Neural Cell Dynamics with Digital Holographic Microscopy
Marquet, Pierre
2013-04-21
In this talk, I will present how digital holographic microscopy, as a powerful quantitative phase technique, can non-invasively measure cell dynamics and especially resolve local neuronal network activity through simultaneous multiple site optical recording.
Directory of Open Access Journals (Sweden)
Mattia Rigotti
2010-10-01
Full Text Available Neural activity of behaving animals, especially in the prefrontal cortex, is highly heterogeneous, with selective responses to diverse aspects of the executed task. We propose a general model of recurrent neural networks that perform complex rule-based tasks, and we show that the diversity of neuronal responses plays a fundamental role when the behavioral responses are context dependent. Specifically, we found that when the inner mental states encoding the task rules are represented by stable patterns of neural activity (attractors of the neural dynamics, the neurons must be selective for combinations of sensory stimuli and inner mental states. Such mixed selectivity is easily obtained by neurons that connect with random synaptic strengths both to the recurrent network and to neurons encoding sensory inputs. The number of randomly connected neurons needed to solve a task is on average only three times as large as the number of neurons needed in a network designed ad hoc. Moreover, the number of needed neurons grows only linearly with the number of task-relevant events and mental states, provided that each neuron responds to a large proportion of events (dense/distributed coding. A biologically realistic implementation of the model captures several aspects of the activity recorded from monkeys performing context dependent tasks. Our findings explain the importance of the diversity of neural responses and provide us with simple and general principles for designing attractor neural networks that perform complex computation.
Dynamic Neural Processing of Linguistic Cues Related to Death
Ma, Yina; Qin, Jungang; Han, Shihui
2013-01-01
Behavioral studies suggest that humans evolve the capacity to cope with anxiety induced by the awareness of death’s inevitability. However, the neurocognitive processes that underlie online death-related thoughts remain unclear. Our recent functional MRI study found that the processing of linguistic cues related to death was characterized by decreased neural activity in human insular cortex. The current study further investigated the time course of neural processing of death-related linguistic cues. We recorded event-related potentials (ERP) to death-related, life-related, negative-valence, and neutral-valence words in a modified Stroop task that required color naming of words. We found that the amplitude of an early frontal/central negativity at 84–120 ms (N1) decreased to death-related words but increased to life-related words relative to neutral-valence words. The N1 effect associated with death-related and life-related words was correlated respectively with individuals’ pessimistic and optimistic attitudes toward life. Death-related words also increased the amplitude of a frontal/central positivity at 124–300 ms (P2) and of a frontal/central positivity at 300–500 ms (P3). However, the P2 and P3 modulations were observed for both death-related and negative-valence words but not for life-related words. The ERP results suggest an early inverse coding of linguistic cues related to life and death, which is followed by negative emotional responses to death-related information. PMID:23840787
Directory of Open Access Journals (Sweden)
Svitlana Volkova
Full Text Available This work is the first to take advantage of recurrent neural networks to predict influenza-like illness (ILI dynamics from various linguistic signals extracted from social media data. Unlike other approaches that rely on timeseries analysis of historical ILI data and the state-of-the-art machine learning models, we build and evaluate the predictive power of neural network architectures based on Long Short Term Memory (LSTMs units capable of nowcasting (predicting in "real-time" and forecasting (predicting the future ILI dynamics in the 2011 - 2014 influenza seasons. To build our models we integrate information people post in social media e.g., topics, embeddings, word ngrams, stylistic patterns, and communication behavior using hashtags and mentions. We then quantitatively evaluate the predictive power of different social media signals and contrast the performance of the-state-of-the-art regression models with neural networks using a diverse set of evaluation metrics. Finally, we combine ILI and social media signals to build a joint neural network model for ILI dynamics prediction. Unlike the majority of the existing work, we specifically focus on developing models for local rather than national ILI surveillance, specifically for military rather than general populations in 26 U.S. and six international locations., and analyze how model performance depends on the amount of social media data available per location. Our approach demonstrates several advantages: (a Neural network architectures that rely on LSTM units trained on social media data yield the best performance compared to previously used regression models. (b Previously under-explored language and communication behavior features are more predictive of ILI dynamics than stylistic and topic signals expressed in social media. (c Neural network models learned exclusively from social media signals yield comparable or better performance to the models learned from ILI historical data, thus
Volkova, Svitlana; Ayton, Ellyn; Porterfield, Katherine; Corley, Courtney D
2017-01-01
This work is the first to take advantage of recurrent neural networks to predict influenza-like illness (ILI) dynamics from various linguistic signals extracted from social media data. Unlike other approaches that rely on timeseries analysis of historical ILI data and the state-of-the-art machine learning models, we build and evaluate the predictive power of neural network architectures based on Long Short Term Memory (LSTMs) units capable of nowcasting (predicting in "real-time") and forecasting (predicting the future) ILI dynamics in the 2011 - 2014 influenza seasons. To build our models we integrate information people post in social media e.g., topics, embeddings, word ngrams, stylistic patterns, and communication behavior using hashtags and mentions. We then quantitatively evaluate the predictive power of different social media signals and contrast the performance of the-state-of-the-art regression models with neural networks using a diverse set of evaluation metrics. Finally, we combine ILI and social media signals to build a joint neural network model for ILI dynamics prediction. Unlike the majority of the existing work, we specifically focus on developing models for local rather than national ILI surveillance, specifically for military rather than general populations in 26 U.S. and six international locations., and analyze how model performance depends on the amount of social media data available per location. Our approach demonstrates several advantages: (a) Neural network architectures that rely on LSTM units trained on social media data yield the best performance compared to previously used regression models. (b) Previously under-explored language and communication behavior features are more predictive of ILI dynamics than stylistic and topic signals expressed in social media. (c) Neural network models learned exclusively from social media signals yield comparable or better performance to the models learned from ILI historical data, thus, signals from
Petrović, Jelena; Ibrić, Svetlana; Betz, Gabriele; Đurić, Zorica
2012-05-30
The main objective of the study was to develop artificial intelligence methods for optimization of drug release from matrix tablets regardless of the matrix type. Static and dynamic artificial neural networks of the same topology were developed to model dissolution profiles of different matrix tablets types (hydrophilic/lipid) using formulation composition, compression force used for tableting and tablets porosity and tensile strength as input data. Potential application of decision trees in discovering knowledge from experimental data was also investigated. Polyethylene oxide polymer and glyceryl palmitostearate were used as matrix forming materials for hydrophilic and lipid matrix tablets, respectively whereas selected model drugs were diclofenac sodium and caffeine. Matrix tablets were prepared by direct compression method and tested for in vitro dissolution profiles. Optimization of static and dynamic neural networks used for modeling of drug release was performed using Monte Carlo simulations or genetic algorithms optimizer. Decision trees were constructed following discretization of data. Calculated difference (f(1)) and similarity (f(2)) factors for predicted and experimentally obtained dissolution profiles of test matrix tablets formulations indicate that Elman dynamic neural networks as well as decision trees are capable of accurate predictions of both hydrophilic and lipid matrix tablets dissolution profiles. Elman neural networks were compared to most frequently used static network, Multi-layered perceptron, and superiority of Elman networks have been demonstrated. Developed methods allow simple, yet very precise way of drug release predictions for both hydrophilic and lipid matrix tablets having controlled drug release. Copyright © 2012 Elsevier B.V. All rights reserved.
Markdown Optimization via Approximate Dynamic Programming
Directory of Open Access Journals (Sweden)
Cos?gun
2013-02-01
Full Text Available We consider the markdown optimization problem faced by the leading apparel retail chain. Because of substitution among products the markdown policy of one product affects the sales of other products. Therefore, markdown policies for product groups having a significant crossprice elasticity among each other should be jointly determined. Since the state space of the problem is very huge, we use Approximate Dynamic Programming. Finally, we provide insights on the behavior of how each product price affects the markdown policy.
Linking dynamic patterns of neural activity in orbitofrontal cortex with decision making.
Rich, Erin L; Stoll, Frederic M; Rudebeck, Peter H
2018-04-01
Humans and animals demonstrate extraordinary flexibility in choice behavior, particularly when deciding based on subjective preferences. We evaluate options on different scales, deliberate, and often change our minds. Little is known about the neural mechanisms that underlie these dynamic aspects of decision-making, although neural activity in orbitofrontal cortex (OFC) likely plays a central role. Recent evidence from studies in macaques shows that attention modulates value responses in OFC, and that ensembles of OFC neurons dynamically signal different options during choices. When contexts change, these ensembles flexibly remap to encode the new task. Determining how these dynamic patterns emerge and relate to choices will inform models of decision-making and OFC function. Copyright © 2017 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Huo Haifeng; Li Wantong
2009-01-01
This paper is concerned with the global stability characteristics of a system of equations modelling the dynamics of continuous-time bidirectional associative memory neural networks with impulses. Sufficient conditions which guarantee the existence of a unique equilibrium and its exponential stability of the networks are obtained. For the goal of computation, discrete-time analogues of the corresponding continuous-time bidirectional associative memory neural networks with impulses are also formulated and studied. Our results show that the above continuous-time and discrete-time systems with impulses preserve the dynamics of the networks without impulses when we make some modifications and impose some additional conditions on the systems, the convergence characteristics dynamics of the networks are preserved by both continuous-time and discrete-time systems with some restriction imposed on the impulse effect.
Joint Chance-Constrained Dynamic Programming
Ono, Masahiro; Kuwata, Yoshiaki; Balaram, J. Bob
2012-01-01
This paper presents a novel dynamic programming algorithm with a joint chance constraint, which explicitly bounds the risk of failure in order to maintain the state within a specified feasible region. A joint chance constraint cannot be handled by existing constrained dynamic programming approaches since their application is limited to constraints in the same form as the cost function, that is, an expectation over a sum of one-stage costs. We overcome this challenge by reformulating the joint chance constraint into a constraint on an expectation over a sum of indicator functions, which can be incorporated into the cost function by dualizing the optimization problem. As a result, the primal variables can be optimized by a standard dynamic programming, while the dual variable is optimized by a root-finding algorithm that converges exponentially. Error bounds on the primal and dual objective values are rigorously derived. We demonstrate the algorithm on a path planning problem, as well as an optimal control problem for Mars entry, descent and landing. The simulations are conducted using a real terrain data of Mars, with four million discrete states at each time step.
Computing single step operators of logic programming in radial basis function neural networks
Energy Technology Data Exchange (ETDEWEB)
Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)
2014-07-10
Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (T{sub p}:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.
Computing single step operators of logic programming in radial basis function neural networks
Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong
2014-07-01
Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (Tp:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.
Computing single step operators of logic programming in radial basis function neural networks
International Nuclear Information System (INIS)
Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong
2014-01-01
Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (T p :I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks
Dynamically constrained pipeline for tracking neural progenitor cells
DEFF Research Database (Denmark)
Vestergaard, Jacob Schack; Dahl, Anders; Holm, Peter
2013-01-01
. A mitosis detector constructed from empirical observations of cells in a pre-mitotic state interacts with the graph formulation to dynamically allow for cell mitosis when appropriate. Track consistency is ensured by introducing pragmatic constraints and the notion of blob states. We validate the proposed...
Gradient Learning in Spiking Neural Networks by Dynamic Perturbation of Conductances
International Nuclear Information System (INIS)
Fiete, Ila R.; Seung, H. Sebastian
2006-01-01
We present a method of estimating the gradient of an objective function with respect to the synaptic weights of a spiking neural network. The method works by measuring the fluctuations in the objective function in response to dynamic perturbation of the membrane conductances of the neurons. It is compatible with recurrent networks of conductance-based model neurons with dynamic synapses. The method can be interpreted as a biologically plausible synaptic learning rule, if the dynamic perturbations are generated by a special class of 'empiric' synapses driven by random spike trains from an external source
Generalized activity equations for spiking neural network dynamics
Directory of Open Access Journals (Sweden)
Michael A Buice
2013-11-01
Full Text Available Much progress has been made in uncovering the computational capabilities of spiking neural networks. However, spiking neurons will always be more expensive to simulate compared to rate neurons because of the inherent disparity in time scales - the spike duration time is much shorter than the inter-spike time, which is much shorter than any learning time scale. In numerical analysis, this is a classic stiff problem. Spiking neurons are also much more difficult to study analytically. One possible approach to making spiking networks more tractable is to augment mean field activity models with some information about spiking correlations. For example, such a generalized activity model could carry information about spiking rates and correlations between spikes self-consistently. Here, we will show how this can be accomplished by constructing a complete formal probabilistic description of the network and then expanding around a small parameter such as the inverse of the number of neurons in the network. The mean field theory of the system gives a rate-like description. The first order terms in the perturbation expansion keep track of covariances.
What does scalar timing tell us about neural dynamics?
Directory of Open Access Journals (Sweden)
Harel Z Shouval
2014-06-01
Full Text Available The Scalar Timing Law, which is a temporal domain generalization of the well known Weber Law, states that the errors in estimating temporal intervals scale linearly with the durations of the intervals. Linear scaling has been studied extensively in human and animal models and holds over several orders of magnitude, though to date there is no agreed upon explanation for its physiological basis. Starting from the assumption that behavioral variability stems from neural variability, this work shows how to derive firing rate functions that are consistent with scalar timing. We show that firing rate functions with a log-power form, and a set of parameters that depend on spike count statistics, can account for scalar timing. Our derivation depends on a linear approximation, but we use simulations to validate the theory and show that log-power firing rate functions result in scalar timing over a large range of times and parameters.Simulation results also show that our theory as first posed exhibits a slight bias towards overestimation.We show that this bias can be corrected using a simple iterative approach to learn a decision threshold.
Buss, Aaron T; Wifall, Tim; Hazeltine, Eliot; Spencer, John P
2014-02-01
People are typically slower when executing two tasks than when only performing a single task. These dual-task costs are initially robust but are reduced with practice. Dux et al. (2009) explored the neural basis of dual-task costs and learning using fMRI. Inferior frontal junction (IFJ) showed a larger hemodynamic response on dual-task trials compared with single-task trial early in learning. As dual-task costs were eliminated, dual-task hemodynamics in IFJ reduced to single-task levels. Dux and colleagues concluded that the reduction of dual-task costs is accomplished through increased efficiency of information processing in IFJ. We present a dynamic field theory of response selection that addresses two questions regarding these results. First, what mechanism leads to the reduction of dual-task costs and associated changes in hemodynamics? We show that a simple Hebbian learning mechanism is able to capture the quantitative details of learning at both the behavioral and neural levels. Second, is efficiency isolated to cognitive control areas such as IFJ, or is it also evident in sensory motor areas? To investigate this, we restrict Hebbian learning to different parts of the neural model. None of the restricted learning models showed the same reductions in dual-task costs as the unrestricted learning model, suggesting that efficiency is distributed across cognitive control and sensory motor processing systems.
Sandia Dynamic Materials Program Strategic Plan.
Energy Technology Data Exchange (ETDEWEB)
Flicker, Dawn Gustine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Benage, John F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Desjarlais, Michael P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knudson, Marcus D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Leifeste, Gordon T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lemke, Raymond W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mattsson, Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wise, Jack L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-05-01
Materials in nuclear and conventional weapons can reach multi-megabar pressures and 1000s of degree temperatures on timescales ranging from microseconds to nanoseconds. Understanding the response of complex materials under these conditions is important for designing and assessing changes to nuclear weapons. In the next few decades, a major concern will be evaluating the behavior of aging materials and remanufactured components. The science to enable the program to underwrite decisions quickly and confidently on use, remanufacturing, and replacement of these materials will be critical to NNSA’s new Stockpile Responsiveness Program. Material response is also important for assessing the risks posed by adversaries or proliferants. Dynamic materials research, which refers to the use of high-speed experiments to produce extreme conditions in matter, is an important part of NNSA’s Stockpile Stewardship Program.
Neural network-based adaptive dynamic surface control for permanent magnet synchronous motors.
Yu, Jinpeng; Shi, Peng; Dong, Wenjie; Chen, Bing; Lin, Chong
2015-03-01
This brief considers the problem of neural networks (NNs)-based adaptive dynamic surface control (DSC) for permanent magnet synchronous motors (PMSMs) with parameter uncertainties and load torque disturbance. First, NNs are used to approximate the unknown and nonlinear functions of PMSM drive system and a novel adaptive DSC is constructed to avoid the explosion of complexity in the backstepping design. Next, under the proposed adaptive neural DSC, the number of adaptive parameters required is reduced to only one, and the designed neural controllers structure is much simpler than some existing results in literature, which can guarantee that the tracking error converges to a small neighborhood of the origin. Then, simulations are given to illustrate the effectiveness and potential of the new design technique.
Xu, Bin; Yang, Chenguang; Pan, Yongping
2015-10-01
This paper studies both indirect and direct global neural control of strict-feedback systems in the presence of unknown dynamics, using the dynamic surface control (DSC) technique in a novel manner. A new switching mechanism is designed to combine an adaptive neural controller in the neural approximation domain, together with the robust controller that pulls the transient states back into the neural approximation domain from the outside. In comparison with the conventional control techniques, which could only achieve semiglobally uniformly ultimately bounded stability, the proposed control scheme guarantees all the signals in the closed-loop system are globally uniformly ultimately bounded, such that the conventional constraints on initial conditions of the neural control system can be relaxed. The simulation studies of hypersonic flight vehicle (HFV) are performed to demonstrate the effectiveness of the proposed global neural DSC design.
Dynamic programming algorithms for biological sequence comparison.
Pearson, W R; Miller, W
1992-01-01
Efficient dynamic programming algorithms are available for a broad class of protein and DNA sequence comparison problems. These algorithms require computer time proportional to the product of the lengths of the two sequences being compared [O(N2)] but require memory space proportional only to the sum of these lengths [O(N)]. Although the requirement for O(N2) time limits use of the algorithms to the largest computers when searching protein and DNA sequence databases, many other applications of these algorithms, such as calculation of distances for evolutionary trees and comparison of a new sequence to a library of sequence profiles, are well within the capabilities of desktop computers. In particular, the results of library searches with rapid searching programs, such as FASTA or BLAST, should be confirmed by performing a rigorous optimal alignment. Whereas rapid methods do not overlook significant sequence similarities, FASTA limits the number of gaps that can be inserted into an alignment, so that a rigorous alignment may extend the alignment substantially in some cases. BLAST does not allow gaps in the local regions that it reports; a calculation that allows gaps is very likely to extend the alignment substantially. Although a Monte Carlo evaluation of the statistical significance of a similarity score with a rigorous algorithm is much slower than the heuristic approach used by the RDF2 program, the dynamic programming approach should take less than 1 hr on a 386-based PC or desktop Unix workstation. For descriptive purposes, we have limited our discussion to methods for calculating similarity scores and distances that use gap penalties of the form g = rk. Nevertheless, programs for the more general case (g = q+rk) are readily available. Versions of these programs that run either on Unix workstations, IBM-PC class computers, or the Macintosh can be obtained from either of the authors.
LETTER TO THE EDITOR: Dynamics of interacting neural networks
Kinzel, W.; Metzler, R.; Kanter, I.
2000-04-01
The dynamics of interacting perceptrons is solved analytically. For a directed flow of information the system runs into a state which has a higher symmetry than the topology of the model. A symmetry-breaking phase transition is found with increasing learning rate. In addition, it is shown that a system of interacting perceptrons which is trained on the history of its minority decisions develops a good strategy for the problem of adaptive competition known as the bar problem or minority game.
Offline analysis of HEP events by ''dynamic perceptron'' neural network
International Nuclear Information System (INIS)
Perrone, A.L.; Basti, G.; Messi, R.; Pasqualucci, E.; Paoluzi, L.
1997-01-01
In this paper we start from a critical analysis of the fundamental problems of the parallel calculus in linear structures and of their extension to the partial solutions obtained with non-linear architectures. Then, we present shortly a new dynamic architecture able to solve the limitations of the previous architectures through an automatic re-definition of the topology. This architecture is applied to real-time recognition of particle tracks in high-energy accelerators. (orig.)
Neural basis for dynamic updating of object representation in visual working memory.
Takahama, Sachiko; Miyauchi, Satoru; Saiki, Jun
2010-02-15
In real world, objects have multiple features and change dynamically. Thus, object representations must satisfy dynamic updating and feature binding. Previous studies have investigated the neural activity of dynamic updating or feature binding alone, but not both simultaneously. We investigated the neural basis of feature-bound object representation in a dynamically updating situation by conducting a multiple object permanence tracking task, which required observers to simultaneously process both the maintenance and dynamic updating of feature-bound objects. Using an event-related design, we separated activities during memory maintenance and change detection. In the search for regions showing selective activation in dynamic updating of feature-bound objects, we identified a network during memory maintenance that was comprised of the inferior precentral sulcus, superior parietal lobule, and middle frontal gyrus. In the change detection period, various prefrontal regions, including the anterior prefrontal cortex, were activated. In updating object representation of dynamically moving objects, the inferior precentral sulcus closely cooperates with a so-called "frontoparietal network", and subregions of the frontoparietal network can be decomposed into those sensitive to spatial updating and feature binding. The anterior prefrontal cortex identifies changes in object representation by comparing memory and perceptual representations rather than maintaining object representations per se, as previously suggested. Copyright 2009 Elsevier Inc. All rights reserved.
Satisfiability of logic programming based on radial basis function neural networks
International Nuclear Information System (INIS)
Hamadneh, Nawaf; Sathasivam, Saratha; Tilahun, Surafel Luleseged; Choon, Ong Hong
2014-01-01
In this paper, we propose a new technique to test the Satisfiability of propositional logic programming and quantified Boolean formula problem in radial basis function neural networks. For this purpose, we built radial basis function neural networks to represent the proportional logic which has exactly three variables in each clause. We used the Prey-predator algorithm to calculate the output weights of the neural networks, while the K-means clustering algorithm is used to determine the hidden parameters (the centers and the widths). Mean of the sum squared error function is used to measure the activity of the two algorithms. We applied the developed technique with the recurrent radial basis function neural networks to represent the quantified Boolean formulas. The new technique can be applied to solve many applications such as electronic circuits and NP-complete problems
Satisfiability of logic programming based on radial basis function neural networks
Energy Technology Data Exchange (ETDEWEB)
Hamadneh, Nawaf; Sathasivam, Saratha; Tilahun, Surafel Luleseged; Choon, Ong Hong [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)
2014-07-10
In this paper, we propose a new technique to test the Satisfiability of propositional logic programming and quantified Boolean formula problem in radial basis function neural networks. For this purpose, we built radial basis function neural networks to represent the proportional logic which has exactly three variables in each clause. We used the Prey-predator algorithm to calculate the output weights of the neural networks, while the K-means clustering algorithm is used to determine the hidden parameters (the centers and the widths). Mean of the sum squared error function is used to measure the activity of the two algorithms. We applied the developed technique with the recurrent radial basis function neural networks to represent the quantified Boolean formulas. The new technique can be applied to solve many applications such as electronic circuits and NP-complete problems.
Discrete Globalised Dual Heuristic Dynamic Programming in Control of the Two-Wheeled Mobile Robot
Directory of Open Access Journals (Sweden)
Marcin Szuster
2014-01-01
Full Text Available Network-based control systems have been emerging technologies in the control of nonlinear systems over the past few years. This paper focuses on the implementation of the approximate dynamic programming algorithm in the network-based tracking control system of the two-wheeled mobile robot, Pioneer 2-DX. The proposed discrete tracking control system consists of the globalised dual heuristic dynamic programming algorithm, the PD controller, the supervisory term, and an additional control signal. The structure of the supervisory term derives from the stability analysis realised using the Lyapunov stability theorem. The globalised dual heuristic dynamic programming algorithm consists of two structures: the actor and the critic, realised in a form of neural networks. The actor generates the suboptimal control law, while the critic evaluates the realised control strategy by approximation of value function from the Bellman’s equation. The presented discrete tracking control system works online, the neural networks’ weights adaptation process is realised in every iteration step, and the neural networks preliminary learning procedure is not required. The performance of the proposed control system was verified by a series of computer simulations and experiments realised using the wheeled mobile robot Pioneer 2-DX.
Dynamic modeling of physical phenomena for PRAs using neural networks
International Nuclear Information System (INIS)
Benjamin, A.S.; Brown, N.N.; Paez, T.L.
1998-04-01
In most probabilistic risk assessments, there is a set of accident scenarios that involves the physical responses of a system to environmental challenges. Examples include the effects of earthquakes and fires on the operability of a nuclear reactor safety system, the effects of fires and impacts on the safety integrity of a nuclear weapon, and the effects of human intrusions on the transport of radionuclides from an underground waste facility. The physical responses of the system to these challenges can be quite complex, and their evaluation may require the use of detailed computer codes that are very time consuming to execute. Yet, to perform meaningful probabilistic analyses, it is necessary to evaluate the responses for a large number of variations in the input parameters that describe the initial state of the system, the environments to which it is exposed, and the effects of human interaction. Because the uncertainties of the system response may be very large, it may also be necessary to perform these evaluations for various values of modeling parameters that have high uncertainties, such as material stiffnesses, surface emissivities, and ground permeabilities. The authors have been exploring the use of artificial neural networks (ANNs) as a means for estimating the physical responses of complex systems to phenomenological events such as those cited above. These networks are designed as mathematical constructs with adjustable parameters that can be trained so that the results obtained from the networks will simulate the results obtained from the detailed computer codes. The intent is for the networks to provide an adequate simulation of the detailed codes over a significant range of variables while requiring only a small fraction of the computer processing time required by the detailed codes. This enables the authors to integrate the physical response analyses into the probabilistic models in order to estimate the probabilities of various responses
Soft tissue deformation modelling through neural dynamics-based reaction-diffusion mechanics.
Zhang, Jinao; Zhong, Yongmin; Gu, Chengfan
2018-05-30
Soft tissue deformation modelling forms the basis of development of surgical simulation, surgical planning and robotic-assisted minimally invasive surgery. This paper presents a new methodology for modelling of soft tissue deformation based on reaction-diffusion mechanics via neural dynamics. The potential energy stored in soft tissues due to a mechanical load to deform tissues away from their rest state is treated as the equivalent transmembrane potential energy, and it is distributed in the tissue masses in the manner of reaction-diffusion propagation of nonlinear electrical waves. The reaction-diffusion propagation of mechanical potential energy and nonrigid mechanics of motion are combined to model soft tissue deformation and its dynamics, both of which are further formulated as the dynamics of cellular neural networks to achieve real-time computational performance. The proposed methodology is implemented with a haptic device for interactive soft tissue deformation with force feedback. Experimental results demonstrate that the proposed methodology exhibits nonlinear force-displacement relationship for nonlinear soft tissue deformation. Homogeneous, anisotropic and heterogeneous soft tissue material properties can be modelled through the inherent physical properties of mass points. Graphical abstract Soft tissue deformation modelling with haptic feedback via neural dynamics-based reaction-diffusion mechanics.
Robust fault detection of wind energy conversion systems based on dynamic neural networks.
Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad
2014-01-01
Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate.
Models of neural dynamics in brain information processing - the developments of 'the decade'
Energy Technology Data Exchange (ETDEWEB)
Borisyuk, G N; Borisyuk, R M; Kazanovich, Yakov B [Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow region (Russian Federation); Ivanitskii, Genrikh R [Institute for Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region (Russian Federation)
2002-10-31
Neural network models are discussed that have been developed during the last decade with the purpose of reproducing spatio-temporal patterns of neural activity in different brain structures. The main goal of the modeling was to test hypotheses of synchronization, temporal and phase relations in brain information processing. The models being considered are those of temporal structure of spike sequences, of neural activity dynamics, and oscillatory models of attention and feature integration. (reviews of topical problems)
Dynamically Partitionable Autoassociative Networks as a Solution to the Neural Binding Problem
Directory of Open Access Journals (Sweden)
Kenneth Jeffrey Hayworth
2012-09-01
Full Text Available An outstanding question in theoretical neuroscience is how the brain solves the neural binding problem. In vision, binding can be summarized as the ability to represent that certain properties belong to one object while other properties belong to a different object. I review the binding problem in visual and other domains, and review its simplest proposed solution – the anatomical binding hypothesis. This hypothesis has traditionally been rejected as a true solution because it seems to require a type of one-to-one wiring of neurons that would be impossible in a biological system (as opposed to an engineered system like a computer. I show that this requirement for one-to-one wiring can be loosened by carefully considering how the neural representation is actually put to use by the rest of the brain. This leads to a solution where a symbol is represented not as a particular pattern of neural activation but instead as a piece of a global stable attractor state. I introduce the Dynamically Partitionable AutoAssociative Network (DPAAN as an implementation of this solution and show how DPANNs can be used in systems which perform perceptual binding and in systems that implement syntax-sensitive rules. Finally I show how the core parts of the cognitive architecture ACT-R can be neurally implemented using a DPAAN as ACT-R’s global workspace. Because the DPAAN solution to the binding problem requires only ‘flat’ neural representations (as opposed to the phase encoded representation hypothesized in neural synchrony solutions it is directly compatible with the most well developed neural models of learning, memory, and pattern recognition.
Autonomous dynamics in neural networks: the dHAN concept and associative thought processes
Gros, Claudius
2007-02-01
The neural activity of the human brain is dominated by self-sustained activities. External sensory stimuli influence this autonomous activity but they do not drive the brain directly. Most standard artificial neural network models are however input driven and do not show spontaneous activities. It constitutes a challenge to develop organizational principles for controlled, self-sustained activity in artificial neural networks. Here we propose and examine the dHAN concept for autonomous associative thought processes in dense and homogeneous associative networks. An associative thought-process is characterized, within this approach, by a time-series of transient attractors. Each transient state corresponds to a stored information, a memory. The subsequent transient states are characterized by large associative overlaps, which are identical to acquired patterns. Memory states, the acquired patterns, have such a dual functionality. In this approach the self-sustained neural activity has a central functional role. The network acquires a discrimination capability, as external stimuli need to compete with the autonomous activity. Noise in the input is readily filtered-out. Hebbian learning of external patterns occurs coinstantaneous with the ongoing associative thought process. The autonomous dynamics needs a long-term working-point optimization which acquires within the dHAN concept a dual functionality: It stabilizes the time development of the associative thought process and limits runaway synaptic growth, which generically occurs otherwise in neural networks with self-induced activities and Hebbian-type learning rules.
Lin, Yang-Yin; Chang, Jyh-Yeong; Lin, Chin-Teng
2013-02-01
This paper presents a novel recurrent fuzzy neural network, called an interactively recurrent self-evolving fuzzy neural network (IRSFNN), for prediction and identification of dynamic systems. The recurrent structure in an IRSFNN is formed as an external loops and internal feedback by feeding the rule firing strength of each rule to others rules and itself. The consequent part in the IRSFNN is composed of a Takagi-Sugeno-Kang (TSK) or functional-link-based type. The proposed IRSFNN employs a functional link neural network (FLNN) to the consequent part of fuzzy rules for promoting the mapping ability. Unlike a TSK-type fuzzy neural network, the FLNN in the consequent part is a nonlinear function of input variables. An IRSFNNs learning starts with an empty rule base and all of the rules are generated and learned online through a simultaneous structure and parameter learning. An on-line clustering algorithm is effective in generating fuzzy rules. The consequent update parameters are derived by a variable-dimensional Kalman filter algorithm. The premise and recurrent parameters are learned through a gradient descent algorithm. We test the IRSFNN for the prediction and identification of dynamic plants and compare it to other well-known recurrent FNNs. The proposed model obtains enhanced performance results.
Dynamic neural networking as a basis for plasticity in the control of heart rate.
Kember, G; Armour, J A; Zamir, M
2013-01-21
A model is proposed in which the relationship between individual neurons within a neural network is dynamically changing to the effect of providing a measure of "plasticity" in the control of heart rate. The neural network on which the model is based consists of three populations of neurons residing in the central nervous system, the intrathoracic extracardiac nervous system, and the intrinsic cardiac nervous system. This hierarchy of neural centers is used to challenge the classical view that the control of heart rate, a key clinical index, resides entirely in central neuronal command (spinal cord, medulla oblongata, and higher centers). Our results indicate that dynamic networking allows for the possibility of an interplay among the three populations of neurons to the effect of altering the order of control of heart rate among them. This interplay among the three levels of control allows for different neural pathways for the control of heart rate to emerge under different blood flow demands or disease conditions and, as such, it has significant clinical implications because current understanding and treatment of heart rate anomalies are based largely on a single level of control and on neurons acting in unison as a single entity rather than individually within a (plastically) interconnected network. Copyright © 2012 Elsevier Ltd. All rights reserved.
Research of Dynamic Competitive Learning in Neural Networks
Institute of Scientific and Technical Information of China (English)
PAN Hao; CEN Li; ZHONG Luo
2005-01-01
Introduce a method of generation of new units within a cluster and a algorithm of generating new clusters.The model automatically builds up its dynamically growing internal representation structure during the learning process.Comparing model with other typical classification algorithm such as the Kohonen's self-organizing map, the model realizes a multilevel classification of the input pattern with an op tional accuracy and gives a strong support possibility for the parallel computational main processor. The idea is suitable for the high level storage of complex datas struetures for object recognition.
Complex Dynamics of Delay-Coupled Neural Networks
Mao, Xiaochen
2016-09-01
This paper reveals the complicated dynamics of a delay-coupled system that consists of a pair of sub-networks and multiple bidirectional couplings. Time delays are introduced into the internal connections and network-couplings, respectively. The stability and instability of the coupled network are discussed. The sufficient conditions for the existence of oscillations are given. Case studies of numerical simulations are given to validate the analytical results. Interesting and complicated neuronal activities are observed numerically, such as rest states, periodic oscillations, multiple switches of rest states and oscillations, and the coexistence of different types of oscillations.
International Nuclear Information System (INIS)
Wang Rubin; Yu Wei
2005-01-01
In this paper, we investigate how the population of neuronal oscillators deals with information and the dynamic evolution of neural coding when the external stimulation acts on it. Numerically computing method is used to describe the evolution process of neural coding in three-dimensioned space. The numerical result proves that only the suitable stimulation can change the coupling structure and plasticity of neurons
Emerging phenomena in neural networks with dynamic synapses and their computational implications
Directory of Open Access Journals (Sweden)
Joaquin J. eTorres
2013-04-01
Full Text Available In this paper we review our research on the effect and computational role of dynamical synapses on feed-forward and recurrent neural networks. Among others, we report on the appearance of a new class of dynamical memories which result from the destabilisation of learned memory attractors. This has important consequences for dynamic information processing allowing the system to sequentially access the information stored in the memories under changing stimuli. Although storage capacity of stable memories also decreases, our study demonstrated the positive effect of synaptic facilitation to recover maximum storage capacity and to enlarge the capacity of the system for memory recall in noisy conditions. Possibly, the new dynamical behaviour can be associated with the voltage transitions between up and down states observed in cortical areas in the brain. We investigated the conditions for which the permanence times in the up state are power-law distributed, which is a sign for criticality, and concluded that the experimentally observed large variability of permanence times could be explained as the result of noisy dynamic synapses with large recovery times. Finally, we report how short-term synaptic processes can transmit weak signals throughout more than one frequency range in noisy neural networks, displaying a kind of stochastic multi-resonance. This effect is due to competition between activity-dependent synaptic fluctuations (due to dynamic synapses and the existence of neuron firing threshold which adapts to the incoming mean synaptic input.
Adaptive online inverse control of a shape memory alloy wire actuator using a dynamic neural network
International Nuclear Information System (INIS)
Mai, Huanhuan; Liao, Xiaofeng; Song, Gangbing
2013-01-01
Shape memory alloy (SMA) actuators exhibit severe hysteresis, a nonlinear behavior, which complicates control strategies and limits their applications. This paper presents a new approach to controlling an SMA actuator through an adaptive inverse model based controller that consists of a dynamic neural network (DNN) identifier, a copy dynamic neural network (CDNN) feedforward term and a proportional (P) feedback action. Unlike fixed hysteresis models used in most inverse controllers, the proposed one uses a DNN to identify online the relationship between the applied voltage to the actuator and the displacement (the inverse model). Even without a priori knowledge of the SMA hysteresis and without pre-training, the proposed controller can precisely control the SMA wire actuator in various tracking tasks by identifying online the inverse model of the SMA actuator. Experiments were conducted, and experimental results demonstrated real-time modeling capabilities of DNN and the performance of the adaptive inverse controller. (paper)
Adaptive online inverse control of a shape memory alloy wire actuator using a dynamic neural network
Mai, Huanhuan; Song, Gangbing; Liao, Xiaofeng
2013-01-01
Shape memory alloy (SMA) actuators exhibit severe hysteresis, a nonlinear behavior, which complicates control strategies and limits their applications. This paper presents a new approach to controlling an SMA actuator through an adaptive inverse model based controller that consists of a dynamic neural network (DNN) identifier, a copy dynamic neural network (CDNN) feedforward term and a proportional (P) feedback action. Unlike fixed hysteresis models used in most inverse controllers, the proposed one uses a DNN to identify online the relationship between the applied voltage to the actuator and the displacement (the inverse model). Even without a priori knowledge of the SMA hysteresis and without pre-training, the proposed controller can precisely control the SMA wire actuator in various tracking tasks by identifying online the inverse model of the SMA actuator. Experiments were conducted, and experimental results demonstrated real-time modeling capabilities of DNN and the performance of the adaptive inverse controller.
Asymmetrically extremely dilute neural networks with Langevin dynamics and unconventional results
International Nuclear Information System (INIS)
Hatchett, J P L; Coolen, A C C
2004-01-01
We study graded response attractor neural networks with asymmetrically extremely dilute interactions and Langevin dynamics. We solve our model in the thermodynamic limit using generating functional analysis, and find (in contrast to the binary neurons case) that even in statics, for T > 0 or large α, one cannot eliminate the non-persistent order parameters, atypically for recurrent neural network models. The macroscopic dynamics is driven by the (non-trivial) joint distribution of neurons and fields, rather than just the (Gaussian) field distribution. We calculate phase transition lines and find, as may be expected for this asymmetric model, that there is no spin-glass phase, only recall and paramagnetic phases. We present simulation results in support of our theory
Lukasiewicz-Topos Models of Neural Networks, Cell Genome and Interactome Nonlinear Dynamic Models
Baianu, I C
2004-01-01
A categorical and Lukasiewicz-Topos framework for Lukasiewicz Algebraic Logic models of nonlinear dynamics in complex functional systems such as neural networks, genomes and cell interactomes is proposed. Lukasiewicz Algebraic Logic models of genetic networks and signaling pathways in cells are formulated in terms of nonlinear dynamic systems with n-state components that allow for the generalization of previous logical models of both genetic activities and neural networks. An algebraic formulation of variable 'next-state functions' is extended to a Lukasiewicz Topos with an n-valued Lukasiewicz Algebraic Logic subobject classifier description that represents non-random and nonlinear network activities as well as their transformations in developmental processes and carcinogenesis.
Exploring neural cell dynamics with digital holographic microscopy
Marquet, Pierre; Depeursinge, Christian D.; Magistretti, Pierre J.
2013-01-01
In this review, we summarize how the new concept of digital optics applied to the field of holographic microscopy has allowed the development of a reliable and flexible digital holographic quantitative phase microscopy (DH-QPM) technique at the nanoscale particularly suitable for cell imaging. Particular emphasis is placed on the original biological ormation provided by the quantitative phase signal. We present the most relevant DH-QPM applications in the field of cell biology, including automated cell counts, recognition, classification, three-dimensional tracking, discrimination between physiological and pathophysiological states, and the study of cell membrane fluctuations at the nanoscale. In the last part, original results show how DH-QPM can address two important issues in the field of neurobiology, namely, multiple-site optical recording of neuronal activity and noninvasive visualization of dendritic spine dynamics resulting from a full digital holographic microscopy tomographic approach. Copyright © 2013 by Annual Reviews.
Exploring neural cell dynamics with digital holographic microscopy
Marquet, Pierre
2013-07-11
In this review, we summarize how the new concept of digital optics applied to the field of holographic microscopy has allowed the development of a reliable and flexible digital holographic quantitative phase microscopy (DH-QPM) technique at the nanoscale particularly suitable for cell imaging. Particular emphasis is placed on the original biological ormation provided by the quantitative phase signal. We present the most relevant DH-QPM applications in the field of cell biology, including automated cell counts, recognition, classification, three-dimensional tracking, discrimination between physiological and pathophysiological states, and the study of cell membrane fluctuations at the nanoscale. In the last part, original results show how DH-QPM can address two important issues in the field of neurobiology, namely, multiple-site optical recording of neuronal activity and noninvasive visualization of dendritic spine dynamics resulting from a full digital holographic microscopy tomographic approach. Copyright © 2013 by Annual Reviews.
International Nuclear Information System (INIS)
Cadini, F.; Zio, E.; Pedroni, N.
2007-01-01
In this paper, a locally recurrent neural network (LRNN) is employed for approximating the temporal evolution of a nonlinear dynamic system model of a simplified nuclear reactor. To this aim, an infinite impulse response multi-layer perceptron (IIR-MLP) is trained according to a recursive back-propagation (RBP) algorithm. The network nodes contain internal feedback paths and their connections are realized by means of IIR synaptic filters, which provide the LRNN with the necessary system state memory
SuperNeurons: Dynamic GPU Memory Management for Training Deep Neural Networks
Wang, Linnan; Ye, Jinmian; Zhao, Yiyang; Wu, Wei; Li, Ang; Song, Shuaiwen Leon; Xu, Zenglin; Kraska, Tim
2018-01-01
Going deeper and wider in neural architectures improves the accuracy, while the limited GPU DRAM places an undesired restriction on the network design domain. Deep Learning (DL) practitioners either need change to less desired network architectures, or nontrivially dissect a network across multiGPUs. These distract DL practitioners from concentrating on their original machine learning tasks. We present SuperNeurons: a dynamic GPU memory scheduling runtime to enable the network training far be...
Synchronization of cellular neural networks of neutral type via dynamic feedback controller
International Nuclear Information System (INIS)
Park, Ju H.
2009-01-01
In this paper, we aim to study global synchronization for neural networks with neutral delay. A dynamic feedback control scheme is proposed to achieve the synchronization between drive network and response network. By utilizing the Lyapunov function and linear matrix inequalities (LMIs), we derive simple and efficient criterion in terms of LMIs for synchronization. The feedback controllers can be easily obtained by solving the derived LMIs.
Adaptive dynamic inversion robust control for BTT missile based on wavelet neural network
Li, Chuanfeng; Wang, Yongji; Deng, Zhixiang; Wu, Hao
2009-10-01
A new nonlinear control strategy incorporated the dynamic inversion method with wavelet neural networks is presented for the nonlinear coupling system of Bank-to-Turn(BTT) missile in reentry phase. The basic control law is designed by using the dynamic inversion feedback linearization method, and the online learning wavelet neural network is used to compensate the inversion error due to aerodynamic parameter errors, modeling imprecise and external disturbance in view of the time-frequency localization properties of wavelet transform. Weights adjusting laws are derived according to Lyapunov stability theory, which can guarantee the boundedness of all signals in the whole system. Furthermore, robust stability of the closed-loop system under this tracking law is proved. Finally, the six degree-of-freedom(6DOF) simulation results have shown that the attitude angles can track the anticipant command precisely under the circumstances of existing external disturbance and in the presence of parameter uncertainty. It means that the dependence on model by dynamic inversion method is reduced and the robustness of control system is enhanced by using wavelet neural network(WNN) to reconstruct inversion error on-line.
The dynamic brain: from spiking neurons to neural masses and cortical fields.
Directory of Open Access Journals (Sweden)
Gustavo Deco
2008-08-01
Full Text Available The cortex is a complex system, characterized by its dynamics and architecture, which underlie many functions such as action, perception, learning, language, and cognition. Its structural architecture has been studied for more than a hundred years; however, its dynamics have been addressed much less thoroughly. In this paper, we review and integrate, in a unifying framework, a variety of computational approaches that have been used to characterize the dynamics of the cortex, as evidenced at different levels of measurement. Computational models at different space-time scales help us understand the fundamental mechanisms that underpin neural processes and relate these processes to neuroscience data. Modeling at the single neuron level is necessary because this is the level at which information is exchanged between the computing elements of the brain; the neurons. Mesoscopic models tell us how neural elements interact to yield emergent behavior at the level of microcolumns and cortical columns. Macroscopic models can inform us about whole brain dynamics and interactions between large-scale neural systems such as cortical regions, the thalamus, and brain stem. Each level of description relates uniquely to neuroscience data, from single-unit recordings, through local field potentials to functional magnetic resonance imaging (fMRI, electroencephalogram (EEG, and magnetoencephalogram (MEG. Models of the cortex can establish which types of large-scale neuronal networks can perform computations and characterize their emergent properties. Mean-field and related formulations of dynamics also play an essential and complementary role as forward models that can be inverted given empirical data. This makes dynamic models critical in integrating theory and experiments. We argue that elaborating principled and informed models is a prerequisite for grounding empirical neuroscience in a cogent theoretical framework, commensurate with the achievements in the
The simplest problem in the collective dynamics of neural networks: is synchrony stable?
International Nuclear Information System (INIS)
Timme, Marc; Wolf, Fred
2008-01-01
For spiking neural networks we consider the stability problem of global synchrony, arguably the simplest non-trivial collective dynamics in such networks. We find that even this simplest dynamical problem—local stability of synchrony—is non-trivial to solve and requires novel methods for its solution. In particular, the discrete mode of pulsed communication together with the complicated connectivity of neural interaction networks requires a non-standard approach. The dynamics in the vicinity of the synchronous state is determined by a multitude of linear operators, in contrast to a single stability matrix in conventional linear stability theory. This unusual property qualitatively depends on network topology and may be neglected for globally coupled homogeneous networks. For generic networks, however, the number of operators increases exponentially with the size of the network. We present methods to treat this multi-operator problem exactly. First, based on the Gershgorin and Perron–Frobenius theorems, we derive bounds on the eigenvalues that provide important information about the synchronization process but are not sufficient to establish the asymptotic stability or instability of the synchronous state. We then present a complete analysis of asymptotic stability for topologically strongly connected networks using simple graph-theoretical considerations. For inhibitory interactions between dissipative (leaky) oscillatory neurons the synchronous state is stable, independent of the parameters and the network connectivity. These results indicate that pulse-like interactions play a profound role in network dynamical systems, and in particular in the dynamics of biological synchronization, unless the coupling is homogeneous and all-to-all. The concepts introduced here are expected to also facilitate the exact analysis of more complicated dynamical network states, for instance the irregular balanced activity in cortical neural networks
Music enrichment programs improve the neural encoding of speech in at-risk children.
Kraus, Nina; Slater, Jessica; Thompson, Elaine C; Hornickel, Jane; Strait, Dana L; Nicol, Trent; White-Schwoch, Travis
2014-09-03
Musicians are often reported to have enhanced neurophysiological functions, especially in the auditory system. Musical training is thought to improve nervous system function by focusing attention on meaningful acoustic cues, and these improvements in auditory processing cascade to language and cognitive skills. Correlational studies have reported musician enhancements in a variety of populations across the life span. In light of these reports, educators are considering the potential for co-curricular music programs to provide auditory-cognitive enrichment to children during critical developmental years. To date, however, no studies have evaluated biological changes following participation in existing, successful music education programs. We used a randomized control design to investigate whether community music participation induces a tangible change in auditory processing. The community music training was a longstanding and successful program that provides free music instruction to children from underserved backgrounds who stand at high risk for learning and social problems. Children who completed 2 years of music training had a stronger neurophysiological distinction of stop consonants, a neural mechanism linked to reading and language skills. One year of training was insufficient to elicit changes in nervous system function; beyond 1 year, however, greater amounts of instrumental music training were associated with larger gains in neural processing. We therefore provide the first direct evidence that community music programs enhance the neural processing of speech in at-risk children, suggesting that active and repeated engagement with sound changes neural function. Copyright © 2014 the authors 0270-6474/14/3411913-06$15.00/0.
International Nuclear Information System (INIS)
Rong Bao; Rui Xiaoting; Tao Ling
2012-01-01
In this paper, a dynamic modeling method and an active vibration control scheme for a smart flexible four-bar linkage mechanism featuring piezoelectric actuators and strain gauge sensors are presented. The dynamics of this smart mechanism is described by the Discrete Time Transfer Matrix Method of Multibody System (MS-DTTMM). Then a nonlinear fuzzy neural network control is employed to suppress the vibration of this smart mechanism. For improving the dynamic performance of the fuzzy neural network, a genetic algorithm based on the MS-DTTMM is designed offline to tune the initial parameters of the fuzzy neural network. The MS-DTTMM avoids the global dynamics equations of the system, which results in the matrices involved are always very small, so the computational efficiency of the dynamic analysis and control system optimization can be greatly improved. Formulations of the method as well as a numerical simulation are given to demonstrate the proposed dynamic method and control scheme.
Automated Flight Routing Using Stochastic Dynamic Programming
Ng, Hok K.; Morando, Alex; Grabbe, Shon
2010-01-01
Airspace capacity reduction due to convective weather impedes air traffic flows and causes traffic congestion. This study presents an algorithm that reroutes flights in the presence of winds, enroute convective weather, and congested airspace based on stochastic dynamic programming. A stochastic disturbance model incorporates into the reroute design process the capacity uncertainty. A trajectory-based airspace demand model is employed for calculating current and future airspace demand. The optimal routes minimize the total expected traveling time, weather incursion, and induced congestion costs. They are compared to weather-avoidance routes calculated using deterministic dynamic programming. The stochastic reroutes have smaller deviation probability than the deterministic counterpart when both reroutes have similar total flight distance. The stochastic rerouting algorithm takes into account all convective weather fields with all severity levels while the deterministic algorithm only accounts for convective weather systems exceeding a specified level of severity. When the stochastic reroutes are compared to the actual flight routes, they have similar total flight time, and both have about 1% of travel time crossing congested enroute sectors on average. The actual flight routes induce slightly less traffic congestion than the stochastic reroutes but intercept more severe convective weather.
Runway Scheduling Using Generalized Dynamic Programming
Montoya, Justin; Wood, Zachary; Rathinam, Sivakumar
2011-01-01
A generalized dynamic programming method for finding a set of pareto optimal solutions for a runway scheduling problem is introduced. The algorithm generates a set of runway fight sequences that are optimal for both runway throughput and delay. Realistic time-based operational constraints are considered, including miles-in-trail separation, runway crossings, and wake vortex separation. The authors also model divergent runway takeoff operations to allow for reduced wake vortex separation. A modeled Dallas/Fort Worth International airport and three baseline heuristics are used to illustrate preliminary benefits of using the generalized dynamic programming method. Simulated traffic levels ranged from 10 aircraft to 30 aircraft with each test case spanning 15 minutes. The optimal solution shows a 40-70 percent decrease in the expected delay per aircraft over the baseline schedulers. Computational results suggest that the algorithm is promising for real-time application with an average computation time of 4.5 seconds. For even faster computation times, two heuristics are developed. As compared to the optimal, the heuristics are within 5% of the expected delay per aircraft and 1% of the expected number of runway operations per hour ad can be 100x faster.
Fuzzy Counter Propagation Neural Network Control for a Class of Nonlinear Dynamical Systems.
Sakhre, Vandana; Jain, Sanjeev; Sapkal, Vilas S; Agarwal, Dev P
2015-01-01
Fuzzy Counter Propagation Neural Network (FCPN) controller design is developed, for a class of nonlinear dynamical systems. In this process, the weight connecting between the instar and outstar, that is, input-hidden and hidden-output layer, respectively, is adjusted by using Fuzzy Competitive Learning (FCL). FCL paradigm adopts the principle of learning, which is used to calculate Best Matched Node (BMN) which is proposed. This strategy offers a robust control of nonlinear dynamical systems. FCPN is compared with the existing network like Dynamic Network (DN) and Back Propagation Network (BPN) on the basis of Mean Absolute Error (MAE), Mean Square Error (MSE), Best Fit Rate (BFR), and so forth. It envisages that the proposed FCPN gives better results than DN and BPN. The effectiveness of the proposed FCPN algorithms is demonstrated through simulations of four nonlinear dynamical systems and multiple input and single output (MISO) and a single input and single output (SISO) gas furnace Box-Jenkins time series data.
International Nuclear Information System (INIS)
Seker, Serhat; Tuerkcan, Erdinc; Ayaz, Emine; Barutcu, Burak
2003-01-01
This paper addresses to the problem of utilisation of the artificial neural networks (ANNs) for detecting anomalies as well as physical parameters of a nuclear power plant during power operation in real time. Three different types of neural network algorithms were used namely, feed-forward neural network (back-propagation, BP) and two types of recurrent neural networks (RNN). The data used in this paper were gathered from the simulation of the power operation of the Japan's High Temperature Engineering Testing Reactor (HTTR). For the wide range of power operation, 56 signals were generated by the reactor dynamic simulation code for several hours of normal power operation at different power ramps between 30 and 100% nominal power. Paper will compare the outcomes of different neural networks and presents the neural network system and the determination of physical parameters from the simulated operating data
An implantable wireless neural interface for recording cortical circuit dynamics in moving primates
Borton, David A.; Yin, Ming; Aceros, Juan; Nurmikko, Arto
2013-04-01
Objective. Neural interface technology suitable for clinical translation has the potential to significantly impact the lives of amputees, spinal cord injury victims and those living with severe neuromotor disease. Such systems must be chronically safe, durable and effective. Approach. We have designed and implemented a neural interface microsystem, housed in a compact, subcutaneous and hermetically sealed titanium enclosure. The implanted device interfaces the brain with a 510k-approved, 100-element silicon-based microelectrode array via a custom hermetic feedthrough design. Full spectrum neural signals were amplified (0.1 Hz to 7.8 kHz, 200× gain) and multiplexed by a custom application specific integrated circuit, digitized and then packaged for transmission. The neural data (24 Mbps) were transmitted by a wireless data link carried on a frequency-shift-key-modulated signal at 3.2 and 3.8 GHz to a receiver 1 m away by design as a point-to-point communication link for human clinical use. The system was powered by an embedded medical grade rechargeable Li-ion battery for 7 h continuous operation between recharge via an inductive transcutaneous wireless power link at 2 MHz. Main results. Device verification and early validation were performed in both swine and non-human primate freely-moving animal models and showed that the wireless implant was electrically stable, effective in capturing and delivering broadband neural data, and safe for over one year of testing. In addition, we have used the multichannel data from these mobile animal models to demonstrate the ability to decode neural population dynamics associated with motor activity. Significance. We have developed an implanted wireless broadband neural recording device evaluated in non-human primate and swine. The use of this new implantable neural interface technology can provide insight into how to advance human neuroprostheses beyond the present early clinical trials. Further, such tools enable mobile
A novel neural network for multi project programming with limited resources
International Nuclear Information System (INIS)
Liping, Z.; Jianhua, W.; Fenfang, Z.; Guojian, H.
1996-01-01
This paper discusses the theory of multi project programming and how to use Artificial Neural Network model to solve this problem. To obtain global optimum solution, the simulated annealing technology is used in our scheme. To improve the convergence property of argument matrix in the process of optimization for target function. Lagrange operator is replaced with the inverse of temperature in simulated annealing. Combining the Hopfield networks algorithm, this problem is solved speedily and satisfactorily. Experimental results show it is very effective to use Artificial Neural Network to solve the problem
International Nuclear Information System (INIS)
Stefaniak, B.; Cholewinski, W.; Tarkowska, A.
2005-01-01
Artificial Neural Networks (ANN) may be a tool alternative and complementary to typical statistical analysis. However, in spite of many computer application of various ANN algorithms ready for use, artificial intelligence is relatively rarely applied to data processing. In this paper practical aspects of scientific application of ANN in medicine using the Statistical Neural Networks Computer program, were presented. Several steps of data analysis with the above ANN software package were discussed shortly, from material selection and its dividing into groups to the types of obtained results. The typical problems connected with assessing scintigrams by ANN were also described. (author)
DO DYNAMIC NEURAL NETWORKS STAND A BETTER CHANCE IN FRACTIONALLY INTEGRATED PROCESS FORECASTING?
Directory of Open Access Journals (Sweden)
Majid Delavari
2013-04-01
Full Text Available The main purpose of the present study was to investigate the capabilities of two generations of models such as those based on dynamic neural network (e.g., Nonlinear Neural network Auto Regressive or NNAR model and a regressive (Auto Regressive Fractionally Integrated Moving Average model which is based on Fractional Integration Approach in forecasting daily data related to the return index of Tehran Stock Exchange (TSE. In order to compare these models under similar conditions, Mean Square Error (MSE and also Root Mean Square Error (RMSE were selected as criteria for the models’ simulated out-of-sample forecasting performance. Besides, fractal markets hypothesis was examined and according to the findings, fractal structure was confirmed to exist in the time series under investigation. Another finding of the study was that dynamic artificial neural network model had the best performance in out-of-sample forecasting based on the criteria introduced for calculating forecasting error in comparison with the ARFIMA model.
Design of Neural Networks for Fast Convergence and Accuracy: Dynamics and Control
Maghami, Peiman G.; Sparks, Dean W., Jr.
1997-01-01
A procedure for the design and training of artificial neural networks, used for rapid and efficient controls and dynamics design and analysis for flexible space systems, has been developed. Artificial neural networks are employed, such that once properly trained, they provide a means of evaluating the impact of design changes rapidly. Specifically, two-layer feedforward neural networks are designed to approximate the functional relationship between the component/spacecraft design changes and measures of its performance or nonlinear dynamics of the system/components. A training algorithm, based on statistical sampling theory, is presented, which guarantees that the trained networks provide a designer-specified degree of accuracy in mapping the functional relationship. Within each iteration of this statistical-based algorithm, a sequential design algorithm is used for the design and training of the feedforward network to provide rapid convergence to the network goals. Here, at each sequence a new network is trained to minimize the error of previous network. The proposed method should work for applications wherein an arbitrary large source of training data can be generated. Two numerical examples are performed on a spacecraft application in order to demonstrate the feasibility of the proposed approach.
Kwong, C K; Fung, K Y; Jiang, Huimin; Chan, K Y; Siu, Kin Wai Michael
2013-01-01
Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort.
Kumar, Rajesh; Srivastava, Smriti; Gupta, J R P
2017-03-01
In this paper adaptive control of nonlinear dynamical systems using diagonal recurrent neural network (DRNN) is proposed. The structure of DRNN is a modification of fully connected recurrent neural network (FCRNN). Presence of self-recurrent neurons in the hidden layer of DRNN gives it an ability to capture the dynamic behaviour of the nonlinear plant under consideration (to be controlled). To ensure stability, update rules are developed using lyapunov stability criterion. These rules are then used for adjusting the various parameters of DRNN. The responses of plants obtained with DRNN are compared with those obtained when multi-layer feed forward neural network (MLFFNN) is used as a controller. Also, in example 4, FCRNN is also investigated and compared with DRNN and MLFFNN. Robustness of the proposed control scheme is also tested against parameter variations and disturbance signals. Four simulation examples including one-link robotic manipulator and inverted pendulum are considered on which the proposed controller is applied. The results so obtained show the superiority of DRNN over MLFFNN as a controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Buesing, Lars; Bill, Johannes; Nessler, Bernhard; Maass, Wolfgang
2011-11-01
The organization of computations in networks of spiking neurons in the brain is still largely unknown, in particular in view of the inherently stochastic features of their firing activity and the experimentally observed trial-to-trial variability of neural systems in the brain. In principle there exists a powerful computational framework for stochastic computations, probabilistic inference by sampling, which can explain a large number of macroscopic experimental data in neuroscience and cognitive science. But it has turned out to be surprisingly difficult to create a link between these abstract models for stochastic computations and more detailed models of the dynamics of networks of spiking neurons. Here we create such a link and show that under some conditions the stochastic firing activity of networks of spiking neurons can be interpreted as probabilistic inference via Markov chain Monte Carlo (MCMC) sampling. Since common methods for MCMC sampling in distributed systems, such as Gibbs sampling, are inconsistent with the dynamics of spiking neurons, we introduce a different approach based on non-reversible Markov chains that is able to reflect inherent temporal processes of spiking neuronal activity through a suitable choice of random variables. We propose a neural network model and show by a rigorous theoretical analysis that its neural activity implements MCMC sampling of a given distribution, both for the case of discrete and continuous time. This provides a step towards closing the gap between abstract functional models of cortical computation and more detailed models of networks of spiking neurons.
Learning by stimulation avoidance: A principle to control spiking neural networks dynamics.
Sinapayen, Lana; Masumori, Atsushi; Ikegami, Takashi
2017-01-01
Learning based on networks of real neurons, and learning based on biologically inspired models of neural networks, have yet to find general learning rules leading to widespread applications. In this paper, we argue for the existence of a principle allowing to steer the dynamics of a biologically inspired neural network. Using carefully timed external stimulation, the network can be driven towards a desired dynamical state. We term this principle "Learning by Stimulation Avoidance" (LSA). We demonstrate through simulation that the minimal sufficient conditions leading to LSA in artificial networks are also sufficient to reproduce learning results similar to those obtained in biological neurons by Shahaf and Marom, and in addition explains synaptic pruning. We examined the underlying mechanism by simulating a small network of 3 neurons, then scaled it up to a hundred neurons. We show that LSA has a higher explanatory power than existing hypotheses about the response of biological neural networks to external simulation, and can be used as a learning rule for an embodied application: learning of wall avoidance by a simulated robot. In other works, reinforcement learning with spiking networks can be obtained through global reward signals akin simulating the dopamine system; we believe that this is the first project demonstrating sensory-motor learning with random spiking networks through Hebbian learning relying on environmental conditions without a separate reward system.
Directory of Open Access Journals (Sweden)
C. K. Kwong
2013-01-01
Full Text Available Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1 the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS failed to run due to a large number of inputs; (2 the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort.
Context-dependent retrieval of information by neural-network dynamics with continuous attractors.
Tsuboshita, Yukihiro; Okamoto, Hiroshi
2007-08-01
Memory retrieval in neural networks has traditionally been described by dynamic systems with discrete attractors. However, recent neurophysiological findings of graded persistent activity suggest that memory retrieval in the brain is more likely to be described by dynamic systems with continuous attractors. To explore what sort of information processing is achieved by continuous-attractor dynamics, keyword extraction from documents by a network of bistable neurons, which gives robust continuous attractors, is examined. Given an associative network of terms, a continuous attractor led by propagation of neuronal activation in this network appears to represent keywords that express underlying meaning of a document encoded in the initial state of the network-activation pattern. A dominant hypothesis in cognitive psychology is that long-term memory is archived in the network structure, which resembles associative networks of terms. Our results suggest that keyword extraction by the neural-network dynamics with continuous attractors might symbolically represent context-dependent retrieval of short-term memory from long-term memory in the brain.
Kim, Junkyeong; Lee, Chaggil; Park, Seunghee
2017-06-07
Concrete is one of the most common materials used to construct a variety of civil infrastructures. However, since concrete might be susceptible to brittle fracture, it is essential to confirm the strength of concrete at the early-age stage of the curing process to prevent unexpected collapse. To address this issue, this study proposes a novel method to estimate the early-age strength of concrete, by integrating an artificial neural network algorithm with a dynamic response measurement of the concrete material. The dynamic response signals of the concrete, including both electromechanical impedances and guided ultrasonic waves, are obtained from an embedded piezoelectric sensor module. The cross-correlation coefficient of the electromechanical impedance signals and the amplitude of the guided ultrasonic wave signals are selected to quantify the variation in dynamic responses according to the strength of the concrete. Furthermore, an artificial neural network algorithm is used to verify a relationship between the variation in dynamic response signals and concrete strength. The results of an experimental study confirm that the proposed approach can be effectively applied to estimate the strength of concrete material from the early-age stage of the curing process.
Barmpalexis, Panagiotis; Grypioti, Agni; Eleftheriadis, Georgios K; Fatouros, Dimitris G
2018-02-01
In the present study, liquisolid formulations were developed for improving dissolution profile of aprepitant (APT) in a solid dosage form. Experimental studies were complemented with artificial neural networks and genetic programming. Specifically, the type and concentration of liquid vehicle was evaluated through saturation-solubility studies, while the effect of the amount of viscosity increasing agent (HPMC), the type of wetting (Soluplus® vs. PVP) and solubilizing (Poloxamer®407 vs. Kolliphor®ELP) agents, and the ratio of solid coating (microcrystalline cellulose) to carrier (colloidal silicon dioxide) were evaluated based on in vitro drug release studies. The optimum liquisolid formulation exhibited improved dissolution characteristics compared to the marketed product Emend®. X-ray diffraction (XRD), scanning electron microscopy (SEM) and a novel method combining particle size analysis by dynamic light scattering (DLS) and HPLC, revealed that the increase in dissolution rate of APT in the optimum liquisolid formulation was due to the formation of stable APT nanocrystals. Differential scanning calorimetry (DSC) and attenuated total reflection FTIR spectroscopy (ATR-FTIR) revealed the presence of intermolecular interactions between APT and liquisolid formulation excipients. Multilinear regression analysis (MLR), artificial neural networks (ANNs), and genetic programming (GP) were used to correlate several formulation variables with dissolution profile parameters (Y 15min and Y 30min ) using a full factorial experimental design. Results showed increased correlation efficacy for ANNs and GP (RMSE of 0.151 and 0.273, respectively) compared to MLR (RMSE = 0.413).
Neural networks for tracking of unknown SISO discrete-time nonlinear dynamic systems.
Aftab, Muhammad Saleheen; Shafiq, Muhammad
2015-11-01
This article presents a Lyapunov function based neural network tracking (LNT) strategy for single-input, single-output (SISO) discrete-time nonlinear dynamic systems. The proposed LNT architecture is composed of two feedforward neural networks operating as controller and estimator. A Lyapunov function based back propagation learning algorithm is used for online adjustment of the controller and estimator parameters. The controller and estimator error convergence and closed-loop system stability analysis is performed by Lyapunov stability theory. Moreover, two simulation examples and one real-time experiment are investigated as case studies. The achieved results successfully validate the controller performance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Differential Neural Networks for Identification and Filtering in Nonlinear Dynamic Games
Directory of Open Access Journals (Sweden)
Emmanuel García
2014-01-01
Full Text Available This paper deals with the problem of identifying and filtering a class of continuous-time nonlinear dynamic games (nonlinear differential games subject to additive and undesired deterministic perturbations. Moreover, the mathematical model of this class is completely unknown with the exception of the control actions of each player, and even though the deterministic noises are known, their power (or their effect is not. Therefore, two differential neural networks are designed in order to obtain a feedback (perfect state information pattern for the mentioned class of games. In this way, the stability conditions for two state identification errors and for a filtering error are established, the upper bounds of these errors are obtained, and two new learning laws for each neural network are suggested. Finally, an illustrating example shows the applicability of this approach.
Recovery of Dynamics and Function in Spiking Neural Networks with Closed-Loop Control.
Vlachos, Ioannis; Deniz, Taşkin; Aertsen, Ad; Kumar, Arvind
2016-02-01
There is a growing interest in developing novel brain stimulation methods to control disease-related aberrant neural activity and to address basic neuroscience questions. Conventional methods for manipulating brain activity rely on open-loop approaches that usually lead to excessive stimulation and, crucially, do not restore the original computations performed by the network. Thus, they are often accompanied by undesired side-effects. Here, we introduce delayed feedback control (DFC), a conceptually simple but effective method, to control pathological oscillations in spiking neural networks (SNNs). Using mathematical analysis and numerical simulations we show that DFC can restore a wide range of aberrant network dynamics either by suppressing or enhancing synchronous irregular activity. Importantly, DFC, besides steering the system back to a healthy state, also recovers the computations performed by the underlying network. Finally, using our theory we identify the role of single neuron and synapse properties in determining the stability of the closed-loop system.
Pareto optimization in algebraic dynamic programming.
Saule, Cédric; Giegerich, Robert
2015-01-01
Pareto optimization combines independent objectives by computing the Pareto front of its search space, defined as the set of all solutions for which no other candidate solution scores better under all objectives. This gives, in a precise sense, better information than an artificial amalgamation of different scores into a single objective, but is more costly to compute. Pareto optimization naturally occurs with genetic algorithms, albeit in a heuristic fashion. Non-heuristic Pareto optimization so far has been used only with a few applications in bioinformatics. We study exact Pareto optimization for two objectives in a dynamic programming framework. We define a binary Pareto product operator [Formula: see text] on arbitrary scoring schemes. Independent of a particular algorithm, we prove that for two scoring schemes A and B used in dynamic programming, the scoring scheme [Formula: see text] correctly performs Pareto optimization over the same search space. We study different implementations of the Pareto operator with respect to their asymptotic and empirical efficiency. Without artificial amalgamation of objectives, and with no heuristics involved, Pareto optimization is faster than computing the same number of answers separately for each objective. For RNA structure prediction under the minimum free energy versus the maximum expected accuracy model, we show that the empirical size of the Pareto front remains within reasonable bounds. Pareto optimization lends itself to the comparative investigation of the behavior of two alternative scoring schemes for the same purpose. For the above scoring schemes, we observe that the Pareto front can be seen as a composition of a few macrostates, each consisting of several microstates that differ in the same limited way. We also study the relationship between abstract shape analysis and the Pareto front, and find that they extract information of a different nature from the folding space and can be meaningfully combined.
Implementing a Dynamic Street-Children's Program: Successes and ...
African Journals Online (AJOL)
dynamic street children's program in Mzuzu Malawi – using a developmental ... dynamics of parentchild, parent-parent and child-parent-environment; life-events; ... of child and adolescent development, and how they can influence the child's ...
Wang, Ziyin; Liu, Mandan; Cheng, Yicheng; Wang, Rubin
2017-06-01
In this paper, a dynamical recurrent artificial neural network (ANN) is proposed and studied. Inspired from a recent research in neuroscience, we introduced nonsynaptic coupling to form a dynamical component of the network. We mathematically proved that, with adequate neurons provided, this dynamical ANN model is capable of approximating any continuous dynamic system with an arbitrarily small error in a limited time interval. Its extreme concise Jacobian matrix makes the local stability easy to control. We designed this ANN for fitting and forecasting dynamic data and obtained satisfied results in simulation. The fitting performance is also compared with those of both the classic dynamic ANN and the state-of-the-art models. Sufficient trials and the statistical results indicated that our model is superior to those have been compared. Moreover, we proposed a robust approximation problem, which asking the ANN to approximate a cluster of input-output data pairs in large ranges and to forecast the output of the system under previously unseen input. Our model and learning scheme proposed in this paper have successfully solved this problem, and through this, the approximation becomes much more robust and adaptive to noise, perturbation, and low-order harmonic wave. This approach is actually an efficient method for compressing massive external data of a dynamic system into the weight of the ANN.
A Neural Network Model to Learn Multiple Tasks under Dynamic Environments
Tsumori, Kenji; Ozawa, Seiichi
When environments are dynamically changed for agents, the knowledge acquired in an environment might be useless in future. In such dynamic environments, agents should be able to not only acquire new knowledge but also modify old knowledge in learning. However, modifying all knowledge acquired before is not efficient because the knowledge once acquired may be useful again when similar environment reappears and some knowledge can be shared among different environments. To learn efficiently in such environments, we propose a neural network model that consists of the following modules: resource allocating network, long-term & short-term memory, and environment change detector. We evaluate the model under a class of dynamic environments where multiple function approximation tasks are sequentially given. The experimental results demonstrate that the proposed model possesses stable incremental learning, accurate environmental change detection, proper association and recall of old knowledge, and efficient knowledge transfer.
Optimal system size for complex dynamics in random neural networks near criticality
Energy Technology Data Exchange (ETDEWEB)
Wainrib, Gilles, E-mail: wainrib@math.univ-paris13.fr [Laboratoire Analyse Géométrie et Applications, Université Paris XIII, Villetaneuse (France); García del Molino, Luis Carlos, E-mail: garciadelmolino@ijm.univ-paris-diderot.fr [Institute Jacques Monod, Université Paris VII, Paris (France)
2013-12-15
In this article, we consider a model of dynamical agents coupled through a random connectivity matrix, as introduced by Sompolinsky et al. [Phys. Rev. Lett. 61(3), 259–262 (1988)] in the context of random neural networks. When system size is infinite, it is known that increasing the disorder parameter induces a phase transition leading to chaotic dynamics. We observe and investigate here a novel phenomenon in the sub-critical regime for finite size systems: the probability of observing complex dynamics is maximal for an intermediate system size when the disorder is close enough to criticality. We give a more general explanation of this type of system size resonance in the framework of extreme values theory for eigenvalues of random matrices.
Optimal system size for complex dynamics in random neural networks near criticality
International Nuclear Information System (INIS)
Wainrib, Gilles; García del Molino, Luis Carlos
2013-01-01
In this article, we consider a model of dynamical agents coupled through a random connectivity matrix, as introduced by Sompolinsky et al. [Phys. Rev. Lett. 61(3), 259–262 (1988)] in the context of random neural networks. When system size is infinite, it is known that increasing the disorder parameter induces a phase transition leading to chaotic dynamics. We observe and investigate here a novel phenomenon in the sub-critical regime for finite size systems: the probability of observing complex dynamics is maximal for an intermediate system size when the disorder is close enough to criticality. We give a more general explanation of this type of system size resonance in the framework of extreme values theory for eigenvalues of random matrices
Directory of Open Access Journals (Sweden)
R.A.T.M. Ranasinghe
2017-04-01
Full Text Available Rolling dynamic compaction (RDC, which involves the towing of a noncircular module, is now widespread and accepted among many other soil compaction methods. However, to date, there is no accurate method for reliable prediction of the densification of soil and the extent of ground improvement by means of RDC. This study presents the application of artificial neural networks (ANNs for a priori prediction of the effectiveness of RDC. The models are trained with in situ dynamic cone penetration (DCP test data obtained from previous civil projects associated with the 4-sided impact roller. The predictions from the ANN models are in good agreement with the measured field data, as indicated by the model correlation coefficient of approximately 0.8. It is concluded that the ANN models developed in this study can be successfully employed to provide more accurate prediction of the performance of the RDC on a range of soil types.
Convergence of Sample Path Optimal Policies for Stochastic Dynamic Programming
National Research Council Canada - National Science Library
Fu, Michael C; Jin, Xing
2005-01-01
.... These results have practical implications for Monte Carlo simulation-based solution approaches to stochastic dynamic programming problems where it is impractical to extract the explicit transition...
A neural model for transient identification in dynamic processes with 'don't know' response
International Nuclear Information System (INIS)
Mol, Antonio C. de A.; Martinez, Aquilino S.; Schirru, Roberto
2003-01-01
This work presents an approach for neural network based transient identification which allows either dynamic identification or a 'don't know' response. The approach uses two 'jump' multilayer neural networks (NN) trained with the backpropagation algorithm. The 'jump' network is used because it is useful to dealing with very complex patterns, which is the case of the space of the state variables during some abnormal events. The first one is responsible for the dynamic identification. This NN uses, as input, a short set (in a moving time window) of recent measurements of each variable avoiding the necessity of using starting events. The other one is used to validate the instantaneous identification (from the first net) through the validation of each variable. This net is responsible for allowing the system to provide a 'don't know' response. In order to validate the method, a Nuclear Power Plant (NPP) transient identification problem comprising 15 postulated accidents, simulated for a pressurized water reactor (PWR), was proposed in the validation process it has been considered noisy data in order to evaluate the method robustness. Obtained results reveal the ability of the method in dealing with both dynamic identification of transients and correct 'don't know' response. Another important point studied in this work is that the system has shown to be independent of a trigger signal which indicates the beginning of the transient, thus making it robust in relation to this limitation
Nonlinear dynamics analysis of a self-organizing recurrent neural network: chaos waning.
Eser, Jürgen; Zheng, Pengsheng; Triesch, Jochen
2014-01-01
Self-organization is thought to play an important role in structuring nervous systems. It frequently arises as a consequence of plasticity mechanisms in neural networks: connectivity determines network dynamics which in turn feed back on network structure through various forms of plasticity. Recently, self-organizing recurrent neural network models (SORNs) have been shown to learn non-trivial structure in their inputs and to reproduce the experimentally observed statistics and fluctuations of synaptic connection strengths in cortex and hippocampus. However, the dynamics in these networks and how they change with network evolution are still poorly understood. Here we investigate the degree of chaos in SORNs by studying how the networks' self-organization changes their response to small perturbations. We study the effect of perturbations to the excitatory-to-excitatory weight matrix on connection strengths and on unit activities. We find that the network dynamics, characterized by an estimate of the maximum Lyapunov exponent, becomes less chaotic during its self-organization, developing into a regime where only few perturbations become amplified. We also find that due to the mixing of discrete and (quasi-)continuous variables in SORNs, small perturbations to the synaptic weights may become amplified only after a substantial delay, a phenomenon we propose to call deferred chaos.
Diano, Matteo; Tamietto, Marco; Celeghin, Alessia; Weiskrantz, Lawrence; Tatu, Mona-Karina; Bagnis, Arianna; Duca, Sergio; Geminiani, Giuliano; Cauda, Franco; Costa, Tommaso
2017-03-27
The quest to characterize the neural signature distinctive of different basic emotions has recently come under renewed scrutiny. Here we investigated whether facial expressions of different basic emotions modulate the functional connectivity of the amygdala with the rest of the brain. To this end, we presented seventeen healthy participants (8 females) with facial expressions of anger, disgust, fear, happiness, sadness and emotional neutrality and analyzed amygdala's psychophysiological interaction (PPI). In fact, PPI can reveal how inter-regional amygdala communications change dynamically depending on perception of various emotional expressions to recruit different brain networks, compared to the functional interactions it entertains during perception of neutral expressions. We found that for each emotion the amygdala recruited a distinctive and spatially distributed set of structures to interact with. These changes in amygdala connectional patters characterize the dynamic signature prototypical of individual emotion processing, and seemingly represent a neural mechanism that serves to implement the distinctive influence that each emotion exerts on perceptual, cognitive, and motor responses. Besides these differences, all emotions enhanced amygdala functional integration with premotor cortices compared to neutral faces. The present findings thus concur to reconceptualise the structure-function relation between brain-emotion from the traditional one-to-one mapping toward a network-based and dynamic perspective.
The Temporal Derivative of Expected Utility: A Neural Mechanism for Dynamic Decision-making
Zhang, Xian; Hirsch, Joy
2012-01-01
Real world tasks involving moving targets, such as driving a vehicle, are performed based on continuous decisions thought to depend upon the temporal derivative of the expected utility (∂V/∂t), where the expected utility (V) is the effective value of a future reward. However, those neural mechanisms that underlie dynamic decision-making are not well understood. This study investigates human neural correlates of both V and ∂V/∂t using fMRI and a novel experimental paradigm based on a pursuit-evasion game optimized to isolate components of dynamic decision processes. Our behavioral data show that players of the pursuit-evasion game adopt an exponential discounting function, supporting the expected utility theory. The continuous functions of V and ∂V/∂t were derived from the behavioral data and applied as regressors in fMRI analysis, enabling temporal resolution that exceeded the sampling rate of image acquisition, hyper-temporal resolution, by taking advantage of numerous trials that provide rich and independent manipulation of those variables. V and ∂V/∂t were each associated with distinct neural activity. Specifically, ∂V/∂t was associated with anterior and posterior cingulate cortices, superior parietal lobule, and ventral pallidum, whereas V was primarily associated with supplementary motor, pre and post central gyri, cerebellum, and thalamus. The association between the ∂V/∂t and brain regions previously related to decision-making is consistent with the primary role of the temporal derivative of expected utility in dynamic decision-making. PMID:22963852
The temporal derivative of expected utility: a neural mechanism for dynamic decision-making.
Zhang, Xian; Hirsch, Joy
2013-01-15
Real world tasks involving moving targets, such as driving a vehicle, are performed based on continuous decisions thought to depend upon the temporal derivative of the expected utility (∂V/∂t), where the expected utility (V) is the effective value of a future reward. However, the neural mechanisms that underlie dynamic decision-making are not well understood. This study investigates human neural correlates of both V and ∂V/∂t using fMRI and a novel experimental paradigm based on a pursuit-evasion game optimized to isolate components of dynamic decision processes. Our behavioral data show that players of the pursuit-evasion game adopt an exponential discounting function, supporting the expected utility theory. The continuous functions of V and ∂V/∂t were derived from the behavioral data and applied as regressors in fMRI analysis, enabling temporal resolution that exceeded the sampling rate of image acquisition, hyper-temporal resolution, by taking advantage of numerous trials that provide rich and independent manipulation of those variables. V and ∂V/∂t were each associated with distinct neural activity. Specifically, ∂V/∂t was associated with anterior and posterior cingulate cortices, superior parietal lobule, and ventral pallidum, whereas V was primarily associated with supplementary motor, pre and post central gyri, cerebellum, and thalamus. The association between the ∂V/∂t and brain regions previously related to decision-making is consistent with the primary role of the temporal derivative of expected utility in dynamic decision-making. Copyright © 2012 Elsevier Inc. All rights reserved.
McDermott, Timothy J; Badura-Brack, Amy S; Becker, Katherine M; Ryan, Tara J; Khanna, Maya M; Heinrichs-Graham, Elizabeth; Wilson, Tony W
2016-06-01
Posttraumatic stress disorder (PTSD) is associated with executive functioning deficits, including disruptions in working memory. In this study, we examined the neural dynamics of working memory processing in veterans with PTSD and a matched healthy control sample using magnetoencephalography (MEG). Our sample of recent combat veterans with PTSD and demographically matched participants without PTSD completed a working memory task during a 306-sensor MEG recording. The MEG data were preprocessed and transformed into the time-frequency domain. Significant oscillatory brain responses were imaged using a beamforming approach to identify spatiotemporal dynamics. Fifty-one men were included in our analyses: 27 combat veterans with PTSD and 24 controls. Across all participants, a dynamic wave of neural activity spread from posterior visual cortices to left frontotemporal regions during encoding, consistent with a verbal working memory task, and was sustained throughout maintenance. Differences related to PTSD emerged during early encoding, with patients exhibiting stronger α oscillatory responses than controls in the right inferior frontal gyrus (IFG). Differences spread to the right supramarginal and temporal cortices during later encoding where, along with the right IFG, they persisted throughout the maintenance period. This study focused on men with combat-related PTSD using a verbal working memory task. Future studies should evaluate women and the impact of various traumatic experiences using diverse tasks. Posttraumatic stress disorder is associated with neurophysiological abnormalities during working memory encoding and maintenance. Veterans with PTSD engaged a bilateral network, including the inferior prefrontal cortices and supramarginal gyri. Right hemispheric neural activity likely reflects compensatory processing, as veterans with PTSD work to maintain accurate performance despite known cognitive deficits associated with the disorder.
Rich spectrum of neural field dynamics in the presence of short-term synaptic depression
Wang, He; Lam, Kin; Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si
2015-09-01
In continuous attractor neural networks (CANNs), spatially continuous information such as orientation, head direction, and spatial location is represented by Gaussian-like tuning curves that can be displaced continuously in the space of the preferred stimuli of the neurons. We investigate how short-term synaptic depression (STD) can reshape the intrinsic dynamics of the CANN model and its responses to a single static input. In particular, CANNs with STD can support various complex firing patterns and chaotic behaviors. These chaotic behaviors have the potential to encode various stimuli in the neuronal system.
Passivation and control of partially known SISO nonlinear systems via dynamic neural networks
Directory of Open Access Journals (Sweden)
Reyes-Reyes J.
2000-01-01
Full Text Available In this paper, an adaptive technique is suggested to provide the passivity property for a class of partially known SISO nonlinear systems. A simple Dynamic Neural Network (DNN, containing only two neurons and without any hidden-layers, is used to identify the unknown nonlinear system. By means of a Lyapunov-like analysis the new learning law for this DNN, guarantying both successful identification and passivation effects, is derived. Based on this adaptive DNN model, an adaptive feedback controller, serving for wide class of nonlinear systems with an a priori incomplete model description, is designed. Two typical examples illustrate the effectiveness of the suggested approach.
International Nuclear Information System (INIS)
Liao Xiaofeng; Wong, K.-W.; Yang Shizhong
2003-01-01
In this Letter, the characteristics of the convergence dynamics of hybrid bidirectional associative memory neural networks with distributed transmission delays are studied. Without assuming the symmetry of synaptic connection weights and the monotonicity and differentiability of activation functions, the Lyapunov functionals are constructed and the generalized Halanay-type inequalities are employed to derive the delay-independent sufficient conditions under which the networks converge exponentially to the equilibria associated with temporally uniform external inputs. Some examples are given to illustrate the correctness of our results
Dynamics of delay-coupled FitzHugh-Nagumo neural rings
Mao, Xiaochen; Sun, Jianqiao; Li, Shaofan
2018-01-01
This paper studies the dynamical behaviors of a pair of FitzHugh-Nagumo neural networks with bidirectional delayed couplings. It presents a detailed analysis of delay-independent and delay-dependent stabilities and the existence of bifurcated oscillations. Illustrative examples are performed to validate the analytical results and to discover interesting phenomena. It is shown that the network exhibits a variety of complicated activities, such as multiple stability switches, the coexistence of periodic and quasi-periodic oscillations, the coexistence of periodic and chaotic orbits, and the coexisting chaotic attractors.
Neural correlates of the perception of dynamic versus static facial expressions of emotion.
Kessler, Henrik; Doyen-Waldecker, Cornelia; Hofer, Christian; Hoffmann, Holger; Traue, Harald C; Abler, Birgit
2011-04-20
This study investigated brain areas involved in the perception of dynamic facial expressions of emotion. A group of 30 healthy subjects was measured with fMRI when passively viewing prototypical facial expressions of fear, disgust, sadness and happiness. Using morphing techniques, all faces were displayed as still images and also dynamically as a film clip with the expressions evolving from neutral to emotional. Irrespective of a specific emotion, dynamic stimuli selectively activated bilateral superior temporal sulcus, visual area V5, fusiform gyrus, thalamus and other frontal and parietal areas. Interaction effects of emotion and mode of presentation (static/dynamic) were only found for the expression of happiness, where static faces evoked greater activity in the medial prefrontal cortex. Our results confirm previous findings on neural correlates of the perception of dynamic facial expressions and are in line with studies showing the importance of the superior temporal sulcus and V5 in the perception of biological motion. Differential activation in the fusiform gyrus for dynamic stimuli stands in contrast to classical models of face perception but is coherent with new findings arguing for a more general role of the fusiform gyrus in the processing of socially relevant stimuli.
Directory of Open Access Journals (Sweden)
Qingbai Zhao
Full Text Available The key components of insight include breaking mental sets and forming the novel, task-related associations. The majority of researchers have agreed that the anterior cingulate cortex may mediate processes of breaking one's mental set, while the exact neural correlates of forming novel associations are still debatable. In the present study, we used a paradigm of answer selection to explore brain activations of insight by using event-related functional magnetic resonance imaging during solving Chinese 'chengyu' (in Chinese pinyin riddles. Based on the participant's choice, the trials were classified into the insight and non-insight conditions. Both stimulus-locked and response-locked analyses are conducted to detect the neural activity corresponding to the early and late periods of insight solution, respectively. Our data indicate that the early period of insight solution shows more activation in the middle temporal gyrus, the middle frontal gyrus and the anterior cingulate cortex. These activities might be associated to the extensive semantic processing, as well as detecting and resolving cognitive conflicts. In contrast, the late period of insight solution produced increased activities in the hippocampus and the amygdala, possibly reflecting the forming of novel association and the concomitant "Aha" feeling. Our study supports the key role of hippocampus in forming novel associations, and indicates a dynamic neural network during insight solution.
Maier, M A; Shupe, L E; Fetz, E E
2005-10-01
Dynamic recurrent neural networks were derived to simulate neuronal populations generating bidirectional wrist movements in the monkey. The models incorporate anatomical connections of cortical and rubral neurons, muscle afferents, segmental interneurons and motoneurons; they also incorporate the response profiles of four populations of neurons observed in behaving monkeys. The networks were derived by gradient descent algorithms to generate the eight characteristic patterns of motor unit activations observed during alternating flexion-extension wrist movements. The resulting model generated the appropriate input-output transforms and developed connection strengths resembling those in physiological pathways. We found that this network could be further trained to simulate additional tasks, such as experimentally observed reflex responses to limb perturbations that stretched or shortened the active muscles, and scaling of response amplitudes in proportion to inputs. In the final comprehensive network, motor units are driven by the combined activity of cortical, rubral, spinal and afferent units during step tracking and perturbations. The model displayed many emergent properties corresponding to physiological characteristics. The resulting neural network provides a working model of premotoneuronal circuitry and elucidates the neural mechanisms controlling motoneuron activity. It also predicts several features to be experimentally tested, for example the consequences of eliminating inhibitory connections in cortex and red nucleus. It also reveals that co-contraction can be achieved by simultaneous activation of the flexor and extensor circuits without invoking features specific to co-contraction.
Spatial cluster detection using dynamic programming
Directory of Open Access Journals (Sweden)
Sverchkov Yuriy
2012-03-01
Full Text Available Abstract Background The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. Methods We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. Results When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. Conclusions We conclude that the dynamic
Directory of Open Access Journals (Sweden)
Khalil Samira
2010-08-01
Full Text Available Neural-linguistic programming is an organised method to know the human self construction and dealing with it in fixed means and styles so as to decesisively affect the processes of perception, thinking, imaging, ideas,feeling and also in behavior, skills and the human body and mental performance (1 Neural-linguistic programming has a private nature because it is a group of mechanisms and practicaltechniques far from likeliness, so it enters in the circle of application and employment of the human abilities and possibilities. (9 Al Fiky (2001 points out that neural linguistic programming created the favourable environment to help individuals to get rid of their diseased fears and controlling in their negative reactions and thus improving communication with themselves and with others. He shows it took its way into the human life fields because itsways and strategies are used in the sectors of health, education, marketing and administration(2. The modern administration embarks on the human element that represents the most valuable elementsof administration and is the most effective on the productivity and with the increasing the effect of the human element in the efficacy of the administrative organizations, the need increased to consider the management of the human resources as an independent function of administrative functions that cancers the human element and onwhose efficiency, abilities, experience and zeal for work, the administration efficacy depends.
Hoellinger, Thomas; Petieau, Mathieu; Duvinage, Matthieu; Castermans, Thierry; Seetharaman, Karthik; Cebolla, Ana-Maria; Bengoetxea, Ana; Ivanenko, Yuri; Dan, Bernard; Cheron, Guy
2013-01-01
The existence of dedicated neuronal modules such as those organized in the cerebral cortex, thalamus, basal ganglia, cerebellum, or spinal cord raises the question of how these functional modules are coordinated for appropriate motor behavior. Study of human locomotion offers an interesting field for addressing this central question. The coordination of the elevation of the 3 leg segments under a planar covariation rule (Borghese et al., 1996) was recently modeled (Barliya et al., 2009) by phase-adjusted simple oscillators shedding new light on the understanding of the central pattern generator (CPG) processing relevant oscillation signals. We describe the use of a dynamic recurrent neural network (DRNN) mimicking the natural oscillatory behavior of human locomotion for reproducing the planar covariation rule in both legs at different walking speeds. Neural network learning was based on sinusoid signals integrating frequency and amplitude features of the first three harmonics of the sagittal elevation angles of the thigh, shank, and foot of each lower limb. We verified the biological plausibility of the neural networks. Best results were obtained with oscillations extracted from the first three harmonics in comparison to oscillations outside the harmonic frequency peaks. Physiological replication steadily increased with the number of neuronal units from 1 to 80, where similarity index reached 0.99. Analysis of synaptic weighting showed that the proportion of inhibitory connections consistently increased with the number of neuronal units in the DRNN. This emerging property in the artificial neural networks resonates with recent advances in neurophysiology of inhibitory neurons that are involved in central nervous system oscillatory activities. The main message of this study is that this type of DRNN may offer a useful model of physiological central pattern generator for gaining insights in basic research and developing clinical applications.
Complex dynamics of a delayed discrete neural network of two nonidentical neurons
Energy Technology Data Exchange (ETDEWEB)
Chen, Yuanlong [Mathematics Department, GuangDong University of Finance, Guangzhou 510521 (China); Huang, Tingwen [Mathematics Department, Texas A and M University at Qatar, P. O. Box 23874, Doha (Qatar); Huang, Yu, E-mail: stshyu@mail.sysu.edu.cn [Mathematics Department, Sun Yat-Sen University, Guangzhou 510275, People' s Republic China (China)
2014-03-15
In this paper, we discover that a delayed discrete Hopfield neural network of two nonidentical neurons with self-connections and no self-connections can demonstrate chaotic behaviors. To this end, we first transform the model, by a novel way, into an equivalent system which has some interesting properties. Then, we identify the chaotic invariant set for this system and show that the dynamics of this system within this set is topologically conjugate to the dynamics of the full shift map with two symbols. This confirms chaos in the sense of Devaney. Our main results generalize the relevant results of Huang and Zou [J. Nonlinear Sci. 15, 291–303 (2005)], Kaslik and Balint [J. Nonlinear Sci. 18, 415–432 (2008)] and Chen et al. [Sci. China Math. 56(9), 1869–1878 (2013)]. We also give some numeric simulations to verify our theoretical results.
Complex dynamics of a delayed discrete neural network of two nonidentical neurons
International Nuclear Information System (INIS)
Chen, Yuanlong; Huang, Tingwen; Huang, Yu
2014-01-01
In this paper, we discover that a delayed discrete Hopfield neural network of two nonidentical neurons with self-connections and no self-connections can demonstrate chaotic behaviors. To this end, we first transform the model, by a novel way, into an equivalent system which has some interesting properties. Then, we identify the chaotic invariant set for this system and show that the dynamics of this system within this set is topologically conjugate to the dynamics of the full shift map with two symbols. This confirms chaos in the sense of Devaney. Our main results generalize the relevant results of Huang and Zou [J. Nonlinear Sci. 15, 291–303 (2005)], Kaslik and Balint [J. Nonlinear Sci. 18, 415–432 (2008)] and Chen et al. [Sci. China Math. 56(9), 1869–1878 (2013)]. We also give some numeric simulations to verify our theoretical results
Pereira, Clayton R; Pereira, Danilo R; Rosa, Gustavo H; Albuquerque, Victor H C; Weber, Silke A T; Hook, Christian; Papa, João P
2018-04-16
Parkinson's disease (PD) is considered a degenerative disorder that affects the motor system, which may cause tremors, micrography, and the freezing of gait. Although PD is related to the lack of dopamine, the triggering process of its development is not fully understood yet. In this work, we introduce convolutional neural networks to learn features from images produced by handwritten dynamics, which capture different information during the individual's assessment. Additionally, we make available a dataset composed of images and signal-based data to foster the research related to computer-aided PD diagnosis. The proposed approach was compared against raw data and texture-based descriptors, showing suitable results, mainly in the context of early stage detection, with results nearly to 95%. The analysis of handwritten dynamics using deep learning techniques showed to be useful for automatic Parkinson's disease identification, as well as it can outperform handcrafted features. Copyright © 2018 Elsevier B.V. All rights reserved.
An Incremental Time-delay Neural Network for Dynamical Recurrent Associative Memory
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
An incremental time-delay neural network based on synapse growth, which is suitable for dynamic control and learning of autonomous robots, is proposed to improve the learning and retrieving performance of dynamical recurrent associative memory architecture. The model allows steady and continuous establishment of associative memory for spatio-temporal regularities and time series in discrete sequence of inputs. The inserted hidden units can be taken as the long-term memories that expand the capacity of network and sometimes may fade away under certain condition. Preliminary experiment has shown that this incremental network may be a promising approach to endow autonomous robots with the ability of adapting to new data without destroying the learned patterns. The system also benefits from its potential chaos character for emergence.
Effects of neuronal loss in the dynamic model of neural networks
International Nuclear Information System (INIS)
Yoon, B-G; Choi, J; Choi, M Y
2008-01-01
We study the phase transitions and dynamic behavior of the dynamic model of neural networks, with an emphasis on the effects of neuronal loss due to external stress. In the absence of loss the overall results obtained numerically are found to agree excellently with the theoretical ones. When the external stress is turned on, some neurons may deteriorate and die; such loss of neurons, in general, weakens the memory in the system. As the loss increases beyond a critical value, the order parameter measuring the strength of memory decreases to zero either continuously or discontinuously, namely, the system loses its memory via a second- or a first-order transition, depending on the ratio of the refractory period to the duration of action potential
Complex dynamics of a delayed discrete neural network of two nonidentical neurons.
Chen, Yuanlong; Huang, Tingwen; Huang, Yu
2014-03-01
In this paper, we discover that a delayed discrete Hopfield neural network of two nonidentical neurons with self-connections and no self-connections can demonstrate chaotic behaviors. To this end, we first transform the model, by a novel way, into an equivalent system which has some interesting properties. Then, we identify the chaotic invariant set for this system and show that the dynamics of this system within this set is topologically conjugate to the dynamics of the full shift map with two symbols. This confirms chaos in the sense of Devaney. Our main results generalize the relevant results of Huang and Zou [J. Nonlinear Sci. 15, 291-303 (2005)], Kaslik and Balint [J. Nonlinear Sci. 18, 415-432 (2008)] and Chen et al. [Sci. China Math. 56(9), 1869-1878 (2013)]. We also give some numeric simulations to verify our theoretical results.
Application of cellular neural network (CNN) method to the nuclear reactor dynamics equations
International Nuclear Information System (INIS)
Hadad, K.; Piroozmand, A.
2007-01-01
This paper describes the application of a multilayer cellular neural network (CNN) to model and solve the nuclear reactor dynamic equations. An equivalent electrical circuit is analyzed and the governing equations of a bare, homogeneous reactor core are modeled via CNN. The validity of the CNN result is compared with numerical solution of the system of nonlinear governing partial differential equations (PDE) using MATLAB. Steady state as well as transient simulations, show very good comparison between the two methods. We used our CNN model to simulate space-time response of different reactivity excursions in a typical nuclear reactor. On line solution of reactor dynamic equations is used as an aid to reactor operation decision making. The complete algorithm could also be implemented using very large scale integrated circuit (VLSI) circuitry. The efficiency of the calculation method makes it useful for small size nuclear reactors such as the ones used in space missions
Fei, Juntao; Lu, Cheng
2018-04-01
In this paper, an adaptive sliding mode control system using a double loop recurrent neural network (DLRNN) structure is proposed for a class of nonlinear dynamic systems. A new three-layer RNN is proposed to approximate unknown dynamics with two different kinds of feedback loops where the firing weights and output signal calculated in the last step are stored and used as the feedback signals in each feedback loop. Since the new structure has combined the advantages of internal feedback NN and external feedback NN, it can acquire the internal state information while the output signal is also captured, thus the new designed DLRNN can achieve better approximation performance compared with the regular NNs without feedback loops or the regular RNNs with a single feedback loop. The new proposed DLRNN structure is employed in an equivalent controller to approximate the unknown nonlinear system dynamics, and the parameters of the DLRNN are updated online by adaptive laws to get favorable approximation performance. To investigate the effectiveness of the proposed controller, the designed adaptive sliding mode controller with the DLRNN is applied to a -axis microelectromechanical system gyroscope to control the vibrating dynamics of the proof mass. Simulation results demonstrate that the proposed methodology can achieve good tracking property, and the comparisons of the approximation performance between radial basis function NN, RNN, and DLRNN show that the DLRNN can accurately estimate the unknown dynamics with a fast speed while the internal states of DLRNN are more stable.
Neural network approach to time-dependent dividing surfaces in classical reaction dynamics
Schraft, Philippe; Junginger, Andrej; Feldmaier, Matthias; Bardakcioglu, Robin; Main, Jörg; Wunner, Günter; Hernandez, Rigoberto
2018-04-01
In a dynamical system, the transition between reactants and products is typically mediated by an energy barrier whose properties determine the corresponding pathways and rates. The latter is the flux through a dividing surface (DS) between the two corresponding regions, and it is exact only if it is free of recrossings. For time-independent barriers, the DS can be attached to the top of the corresponding saddle point of the potential energy surface, and in time-dependent systems, the DS is a moving object. The precise determination of these direct reaction rates, e.g., using transition state theory, requires the actual construction of a DS for a given saddle geometry, which is in general a demanding methodical and computational task, especially in high-dimensional systems. In this paper, we demonstrate how such time-dependent, global, and recrossing-free DSs can be constructed using neural networks. In our approach, the neural network uses the bath coordinates and time as input, and it is trained in a way that its output provides the position of the DS along the reaction coordinate. An advantage of this procedure is that, once the neural network is trained, the complete information about the dynamical phase space separation is stored in the network's parameters, and a precise distinction between reactants and products can be made for all possible system configurations, all times, and with little computational effort. We demonstrate this general method for two- and three-dimensional systems and explain its straightforward extension to even more degrees of freedom.
Moghadam, Saeed Montazeri; Seyyedsalehi, Seyyed Ali
2018-05-31
Nonlinear components extracted from deep structures of bottleneck neural networks exhibit a great ability to express input space in a low-dimensional manifold. Sharing and combining the components boost the capability of the neural networks to synthesize and interpolate new and imaginary data. This synthesis is possibly a simple model of imaginations in human brain where the components are expressed in a nonlinear low dimensional manifold. The current paper introduces a novel Dynamic Deep Bottleneck Neural Network to analyze and extract three main features of videos regarding the expression of emotions on the face. These main features are identity, emotion and expression intensity that are laid in three different sub-manifolds of one nonlinear general manifold. The proposed model enjoying the advantages of recurrent networks was used to analyze the sequence and dynamics of information in videos. It is noteworthy to mention that this model also has also the potential to synthesize new videos showing variations of one specific emotion on the face of unknown subjects. Experiments on discrimination and recognition ability of extracted components showed that the proposed model has an average of 97.77% accuracy in recognition of six prominent emotions (Fear, Surprise, Sadness, Anger, Disgust, and Happiness), and 78.17% accuracy in the recognition of intensity. The produced videos revealed variations from neutral to the apex of an emotion on the face of the unfamiliar test subject which is on average 0.8 similar to reference videos in the scale of the SSIM method. Copyright © 2018 Elsevier Ltd. All rights reserved.
Brain Dynamics in Predicting Driving Fatigue Using a Recurrent Self-Evolving Fuzzy Neural Network.
Liu, Yu-Ting; Lin, Yang-Yin; Wu, Shang-Lin; Chuang, Chun-Hsiang; Lin, Chin-Teng
2016-02-01
This paper proposes a generalized prediction system called a recurrent self-evolving fuzzy neural network (RSEFNN) that employs an on-line gradient descent learning rule to address the electroencephalography (EEG) regression problem in brain dynamics for driving fatigue. The cognitive states of drivers significantly affect driving safety; in particular, fatigue driving, or drowsy driving, endangers both the individual and the public. For this reason, the development of brain-computer interfaces (BCIs) that can identify drowsy driving states is a crucial and urgent topic of study. Many EEG-based BCIs have been developed as artificial auxiliary systems for use in various practical applications because of the benefits of measuring EEG signals. In the literature, the efficacy of EEG-based BCIs in recognition tasks has been limited by low resolutions. The system proposed in this paper represents the first attempt to use the recurrent fuzzy neural network (RFNN) architecture to increase adaptability in realistic EEG applications to overcome this bottleneck. This paper further analyzes brain dynamics in a simulated car driving task in a virtual-reality environment. The proposed RSEFNN model is evaluated using the generalized cross-subject approach, and the results indicate that the RSEFNN is superior to competing models regardless of the use of recurrent or nonrecurrent structures.
Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision.
Shi, Junxing; Wen, Haiguang; Zhang, Yizhen; Han, Kuan; Liu, Zhongming
2018-05-01
The human visual cortex extracts both spatial and temporal visual features to support perception and guide behavior. Deep convolutional neural networks (CNNs) provide a computational framework to model cortical representation and organization for spatial visual processing, but unable to explain how the brain processes temporal information. To overcome this limitation, we extended a CNN by adding recurrent connections to different layers of the CNN to allow spatial representations to be remembered and accumulated over time. The extended model, or the recurrent neural network (RNN), embodied a hierarchical and distributed model of process memory as an integral part of visual processing. Unlike the CNN, the RNN learned spatiotemporal features from videos to enable action recognition. The RNN better predicted cortical responses to natural movie stimuli than the CNN, at all visual areas, especially those along the dorsal stream. As a fully observable model of visual processing, the RNN also revealed a cortical hierarchy of temporal receptive window, dynamics of process memory, and spatiotemporal representations. These results support the hypothesis of process memory, and demonstrate the potential of using the RNN for in-depth computational understanding of dynamic natural vision. © 2018 Wiley Periodicals, Inc.
Neural pathways in processing of sexual arousal: a dynamic causal modeling study.
Seok, J-W; Park, M-S; Sohn, J-H
2016-09-01
Three decades of research have investigated brain processing of visual sexual stimuli with neuroimaging methods. These researchers have found that sexual arousal stimuli elicit activity in a broad neural network of cortical and subcortical brain areas that are known to be associated with cognitive, emotional, motivational and physiological components. However, it is not completely understood how these neural systems integrate and modulated incoming information. Therefore, we identify cerebral areas whose activations were correlated with sexual arousal using event-related functional magnetic resonance imaging and used the dynamic causal modeling method for searching the effective connectivity about the sexual arousal processing network. Thirteen heterosexual males were scanned while they passively viewed alternating short trials of erotic and neutral pictures on a monitor. We created a subset of seven models based on our results and previous studies and selected a dominant connectivity model. Consequently, we suggest a dynamic causal model of the brain processes mediating the cognitive, emotional, motivational and physiological factors of human male sexual arousal. These findings are significant implications for the neuropsychology of male sexuality.
Integration of Continuous-Time Dynamics in a Spiking Neural Network Simulator
Directory of Open Access Journals (Sweden)
Jan Hahne
2017-05-01
Full Text Available Contemporary modeling approaches to the dynamics of neural networks include two important classes of models: biologically grounded spiking neuron models and functionally inspired rate-based units. We present a unified simulation framework that supports the combination of the two for multi-scale modeling, enables the quantitative validation of mean-field approaches by spiking network simulations, and provides an increase in reliability by usage of the same simulation code and the same network model specifications for both model classes. While most spiking simulations rely on the communication of discrete events, rate models require time-continuous interactions between neurons. Exploiting the conceptual similarity to the inclusion of gap junctions in spiking network simulations, we arrive at a reference implementation of instantaneous and delayed interactions between rate-based models in a spiking network simulator. The separation of rate dynamics from the general connection and communication infrastructure ensures flexibility of the framework. In addition to the standard implementation we present an iterative approach based on waveform-relaxation techniques to reduce communication and increase performance for large-scale simulations of rate-based models with instantaneous interactions. Finally we demonstrate the broad applicability of the framework by considering various examples from the literature, ranging from random networks to neural-field models. The study provides the prerequisite for interactions between rate-based and spiking models in a joint simulation.
Integration of Continuous-Time Dynamics in a Spiking Neural Network Simulator.
Hahne, Jan; Dahmen, David; Schuecker, Jannis; Frommer, Andreas; Bolten, Matthias; Helias, Moritz; Diesmann, Markus
2017-01-01
Contemporary modeling approaches to the dynamics of neural networks include two important classes of models: biologically grounded spiking neuron models and functionally inspired rate-based units. We present a unified simulation framework that supports the combination of the two for multi-scale modeling, enables the quantitative validation of mean-field approaches by spiking network simulations, and provides an increase in reliability by usage of the same simulation code and the same network model specifications for both model classes. While most spiking simulations rely on the communication of discrete events, rate models require time-continuous interactions between neurons. Exploiting the conceptual similarity to the inclusion of gap junctions in spiking network simulations, we arrive at a reference implementation of instantaneous and delayed interactions between rate-based models in a spiking network simulator. The separation of rate dynamics from the general connection and communication infrastructure ensures flexibility of the framework. In addition to the standard implementation we present an iterative approach based on waveform-relaxation techniques to reduce communication and increase performance for large-scale simulations of rate-based models with instantaneous interactions. Finally we demonstrate the broad applicability of the framework by considering various examples from the literature, ranging from random networks to neural-field models. The study provides the prerequisite for interactions between rate-based and spiking models in a joint simulation.
Dynamic neural networks based on-line identification and control of high performance motor drives
Rubaai, Ahmed; Kotaru, Raj
1995-01-01
In the automated and high-tech industries of the future, there wil be a need for high performance motor drives both in the low-power range and in the high-power range. To meet very straight demands of tracking and regulation in the two quadrants of operation, advanced control technologies are of a considerable interest and need to be developed. In response a dynamics learning control architecture is developed with simultaneous on-line identification and control. the feature of the proposed approach, to efficiently combine the dual task of system identification (learning) and adaptive control of nonlinear motor drives into a single operation is presented. This approach, therefore, not only adapts to uncertainties of the dynamic parameters of the motor drives but also learns about their inherent nonlinearities. In fact, most of the neural networks based adaptive control approaches in use have an identification phase entirely separate from the control phase. Because these approaches separate the identification and control modes, it is not possible to cope with dynamic changes in a controlled process. Extensive simulation studies have been conducted and good performance was observed. The robustness characteristics of neuro-controllers to perform efficiently in a noisy environment is also demonstrated. With this initial success, the principal investigator believes that the proposed approach with the suggested neural structure can be used successfully for the control of high performance motor drives. Two identification and control topologies based on the model reference adaptive control technique are used in this present analysis. No prior knowledge of load dynamics is assumed in either topology while the second topology also assumes no knowledge of the motor parameters.
Directory of Open Access Journals (Sweden)
Lorenzo Peppoloni
Full Text Available The Strength-Dexterity (SD test measures the ability of the pulps of the thumb and index finger to compress a compliant and slender spring prone to buckling at low forces (<3N. We know that factors such as aging and neurodegenerative conditions bring deteriorating physiological changes (e.g., at the level of motor cortex, cerebellum, and basal ganglia, which lead to an overall loss of dexterous ability. However, little is known about how these changes reflect upon the dynamics of the underlying biological system. The spring-hand system exhibits nonlinear dynamical behavior and here we characterize the dynamical behavior of the phase portraits using attractor reconstruction. Thirty participants performed the SD test: 10 young adults, 10 older adults, and 10 older adults with Parkinson's disease (PD. We used delayed embedding of the applied force to reconstruct its attractor. We characterized the distribution of points of the phase portraits by their density (number of distant points and interquartile range and geometric features (trajectory length and size. We find phase portraits from older adults exhibit more distant points (p = 0.028 than young adults and participants with PD have larger interquartile ranges (p = 0.001, trajectory lengths (p = 0.005, and size (p = 0.003 than their healthy counterparts. The increased size of the phase portraits with healthy aging suggests a change in the dynamical properties of the system, which may represent a weakening of the neural control strategy. In contrast, the distortion of the attractor in PD suggests a fundamental change in the underlying biological system, and disruption of the neural control strategy. This ability to detect differences in the biological mechanisms of dexterity in healthy and pathological aging provides a simple means to assess their disruption in neurodegenerative conditions and justifies further studies to understand the link with the physiological changes.
Optimal Control of Complex Systems Based on Improved Dual Heuristic Dynamic Programming Algorithm
Directory of Open Access Journals (Sweden)
Hui Li
2017-01-01
Full Text Available When applied to solving the data modeling and optimal control problems of complex systems, the dual heuristic dynamic programming (DHP technique, which is based on the BP neural network algorithm (BP-DHP, has difficulty in prediction accuracy, slow convergence speed, poor stability, and so forth. In this paper, a dual DHP technique based on Extreme Learning Machine (ELM algorithm (ELM-DHP was proposed. Through constructing three kinds of network structures, the paper gives the detailed realization process of the DHP technique in the ELM. The controller designed upon the ELM-DHP algorithm controlled a molecular distillation system with complex features, such as multivariability, strong coupling, and nonlinearity. Finally, the effectiveness of the algorithm is verified by the simulation that compares DHP and HDP algorithms based on ELM and BP neural network. The algorithm can also be applied to solve the data modeling and optimal control problems of similar complex systems.
Direct heuristic dynamic programming for damping oscillations in a large power system.
Lu, Chao; Si, Jennie; Xie, Xiaorong
2008-08-01
This paper applies a neural-network-based approximate dynamic programming method, namely, the direct heuristic dynamic programming (direct HDP), to a large power system stability control problem. The direct HDP is a learning- and approximation-based approach to addressing nonlinear coordinated control under uncertainty. One of the major design parameters, the controller learning objective function, is formulated to directly account for network-wide low-frequency oscillation with the presence of nonlinearity, uncertainty, and coupling effect among system components. Results include a novel learning control structure based on the direct HDP with applications to two power system problems. The first case involves static var compensator supplementary damping control, which is used to provide a comprehensive evaluation of the learning control performance. The second case aims at addressing a difficult complex system challenge by providing a new solution to a large interconnected power network oscillation damping control problem that frequently occurs in the China Southern Power Grid.
Gr-GDHP: A New Architecture for Globalized Dual Heuristic Dynamic Programming.
Zhong, Xiangnan; Ni, Zhen; He, Haibo
2017-10-01
Goal representation globalized dual heuristic dynamic programming (Gr-GDHP) method is proposed in this paper. A goal neural network is integrated into the traditional GDHP method providing an internal reinforcement signal and its derivatives to help the control and learning process. From the proposed architecture, it is shown that the obtained internal reinforcement signal and its derivatives can be able to adjust themselves online over time rather than a fixed or predefined function in literature. Furthermore, the obtained derivatives can directly contribute to the objective function of the critic network, whose learning process is thus simplified. Numerical simulation studies are applied to show the performance of the proposed Gr-GDHP method and compare the results with other existing adaptive dynamic programming designs. We also investigate this method on a ball-and-beam balancing system. The statistical simulation results are presented for both the Gr-GDHP and the GDHP methods to demonstrate the improved learning and controlling performance.
Kutejova, Eva; Sasai, Noriaki; Shah, Ankita; Gouti, Mina; Briscoe, James
2016-03-21
In the vertebrate neural tube, a morphogen-induced transcriptional network produces multiple molecularly distinct progenitor domains, each generating different neuronal subtypes. Using an in vitro differentiation system, we defined gene expression signatures of distinct progenitor populations and identified direct gene-regulatory inputs corresponding to locations of specific transcription factor binding. Combined with targeted perturbations of the network, this revealed a mechanism in which a progenitor identity is installed by active repression of the entire transcriptional programs of other neural progenitor fates. In the ventral neural tube, sonic hedgehog (Shh) signaling, together with broadly expressed transcriptional activators, concurrently activates the gene expression programs of several domains. The specific outcome is selected by repressive input provided by Shh-induced transcription factors that act as the key nodes in the network, enabling progenitors to adopt a single definitive identity from several initially permitted options. Together, the data suggest design principles relevant to many developing tissues. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
MyT1 Counteracts the Neural Progenitor Program to Promote Vertebrate Neurogenesis
Directory of Open Access Journals (Sweden)
Francisca F. Vasconcelos
2016-10-01
Full Text Available The generation of neurons from neural stem cells requires large-scale changes in gene expression that are controlled to a large extent by proneural transcription factors, such as Ascl1. While recent studies have characterized the differentiation genes activated by proneural factors, less is known on the mechanisms that suppress progenitor cell identity. Here, we show that Ascl1 induces the transcription factor MyT1 while promoting neuronal differentiation. We combined functional studies of MyT1 during neurogenesis with the characterization of its transcriptional program. MyT1 binding is associated with repression of gene transcription in neural progenitor cells. It promotes neuronal differentiation by counteracting the inhibitory activity of Notch signaling at multiple levels, targeting the Notch1 receptor and many of its downstream targets. These include regulators of the neural progenitor program, such as Hes1, Sox2, Id3, and Olig1. Thus, Ascl1 suppresses Notch signaling cell-autonomously via MyT1, coupling neuronal differentiation with repression of the progenitor fate.
Park, Choongseok; Worth, Robert M.; Rubchinsky, Leonid L.
2011-04-01
Synchronous oscillatory dynamics is frequently observed in the human brain. We analyze the fine temporal structure of phase-locking in a realistic network model and match it with the experimental data from Parkinsonian patients. We show that the experimentally observed intermittent synchrony can be generated just by moderately increased coupling strength in the basal ganglia circuits due to the lack of dopamine. Comparison of the experimental and modeling data suggest that brain activity in Parkinson's disease resides in the large boundary region between synchronized and nonsynchronized dynamics. Being on the edge of synchrony may allow for easy formation of transient neuronal assemblies.
BWR-plant simulator and its neural network companion with programming under mat lab environment
International Nuclear Information System (INIS)
Ghenniwa, Fatma Suleiman
2008-01-01
Stand alone nuclear power plant simulators, as well as building blocks based nuclear power simulator are available from different companies throughout the world. In this work, a review of such simulators has been explored for both types. Also a survey of the possible authoring tools for such simulators development has been performed. It is decided, in this research, to develop prototype simulator based on components building blocks. Further more, the authoring tool (Mat lab software) has been selected for programming. It has all the basic tools required for the simulator development similar to that developed by specialized companies for simulator like MMS, APROS and others. Components simulations, as well as integrated components for power plant simulation have been demonstrated. Preliminary neural network reactor model as part of a prepared neural network modules library has been used to demonstrate module order shuffling during simulation. The developed components library can be refined and extended for further development. (author)
Fuzzy Counter Propagation Neural Network Control for a Class of Nonlinear Dynamical Systems
Directory of Open Access Journals (Sweden)
Vandana Sakhre
2015-01-01
Full Text Available Fuzzy Counter Propagation Neural Network (FCPN controller design is developed, for a class of nonlinear dynamical systems. In this process, the weight connecting between the instar and outstar, that is, input-hidden and hidden-output layer, respectively, is adjusted by using Fuzzy Competitive Learning (FCL. FCL paradigm adopts the principle of learning, which is used to calculate Best Matched Node (BMN which is proposed. This strategy offers a robust control of nonlinear dynamical systems. FCPN is compared with the existing network like Dynamic Network (DN and Back Propagation Network (BPN on the basis of Mean Absolute Error (MAE, Mean Square Error (MSE, Best Fit Rate (BFR, and so forth. It envisages that the proposed FCPN gives better results than DN and BPN. The effectiveness of the proposed FCPN algorithms is demonstrated through simulations of four nonlinear dynamical systems and multiple input and single output (MISO and a single input and single output (SISO gas furnace Box-Jenkins time series data.
Directory of Open Access Journals (Sweden)
Caroline M. Whiting
2013-11-01
Full Text Available Rapid and automatic processing of grammatical complexity is argued to take place during speech comprehension, engaging a left-lateralised fronto-temporal language network. Here we address how neural activity in these regions is modulated by the grammatical properties of spoken words. We used combined magneto- and electroencephalography (MEG, EEG to delineate the spatiotemporal patterns of activity that support the recognition of morphologically complex words in English with inflectional (-s and derivational (-er affixes (e.g. bakes, baker. The mismatch negativity (MMN, an index of linguistic memory traces elicited in a passive listening paradigm, was used to examine the neural dynamics elicited by morphologically complex words. Results revealed an initial peak 130-180 ms after the deviation point with a major source in left superior temporal cortex. The localisation of this early activation showed a sensitivity to two grammatical properties of the stimuli: 1 the presence of morphological complexity, with affixed words showing increased left-laterality compared to non-affixed words; and 2 the grammatical category, with affixed verbs showing greater left-lateralisation in inferior frontal gyrus compared to affixed nouns (bakes vs. beaks. This automatic brain response was additionally sensitive to semantic coherence (the meaning of the stem vs. the meaning of the whole form in fronto-temporal regions. These results demonstrate that the spatiotemporal pattern of neural activity in spoken word processing is modulated by the presence of morphological structure, predominantly engaging the left-hemisphere’s fronto-temporal language network, and does not require focused attention on the linguistic input.
Approximate Dynamic Programming Solving the Curses of Dimensionality
Powell, Warren B
2011-01-01
Praise for the First Edition "Finally, a book devoted to dynamic programming and written using the language of operations research (OR)! This beautiful book fills a gap in the libraries of OR specialists and practitioners."-Computing Reviews This new edition showcases a focus on modeling and computation for complex classes of approximate dynamic programming problems Understanding approximate dynamic programming (ADP) is vital in order to develop practical and high-quality solutions to complex industrial problems, particularly when those problems involve making decisions in the presence of unce
Enhanced Dynamic Model of Pneumatic Muscle Actuator with Elman Neural Network
Directory of Open Access Journals (Sweden)
Alexander Hošovský
2015-01-01
Full Text Available To make effective use of model-based control system design techniques, one needs a good model which captures system’s dynamic properties in the range of interest. Here an analytical model of pneumatic muscle actuator with two pneumatic artificial muscles driving a rotational joint is developed. Use of analytical model makes it possible to retain the physical interpretation of the model and the model is validated using open-loop responses. Since it was considered important to design a robust controller based on this model, the effect of changed moment of inertia (as a representation of uncertain parameter was taken into account and compared with nominal case. To improve the accuracy of the model, these effects are treated as a disturbance modeled using the recurrent (Elman neural network. Recurrent neural network was preferred over feedforward type due to its better long-term prediction capabilities well suited for simulation use of the model. The results confirm that this method improves the model performance (tested for five of the measured variables: joint angle, muscle pressures, and muscle forces while retaining its physical interpretation.
Coordinated three-dimensional motion of the head and torso by dynamic neural networks.
Kim, J; Hemami, H
1998-01-01
The problem of trajectory tracking control of a three dimensional (3D) model of the human upper torso and head is considered. The torso and the head are modeled as two rigid bodies connected at one point, and the Newton-Euler method is used to derive the nonlinear differential equations that govern the motion of the system. The two-link system is driven by six pairs of muscle like actuators that possess physiologically inspired alpha like and gamma like inputs, and spindle like and Golgi tendon organ like outputs. These outputs are utilized as reflex feedback for stability and stiffness control, in a long loop feedback for the purpose of estimating the state of the system (somesthesis), and as part of the input to the controller. Ideal delays of different duration are included in the feedforward and feedback paths of the system to emulate such delays encountered in physiological systems. Dynamical neural networks are trained to learn effective control of the desired maneuvers of the system. The feasibility of the controller is demonstrated by computer simulation of the successful execution of the desired maneuvers. This work demonstrates the capabilities of neural circuits in controlling highly nonlinear systems with multidelays in their feedforward and feedback paths. The ultimate long range goal of this research is toward understanding the working of the central nervous system in controlling movement. It is an interdisciplinary effort relying on mechanics, biomechanics, neuroscience, system theory, physiology and anatomy, and its short range relevance to rehabilitation must be noted.
McDermott, Timothy J; Badura-Brack, Amy S; Becker, Katherine M; Ryan, Tara J; Bar-Haim, Yair; Pine, Daniel S; Khanna, Maya M; Heinrichs-Graham, Elizabeth; Wilson, Tony W
2016-12-01
Posttraumatic stress disorder (PTSD) is associated with executive functioning deficits, including disruptions in working memory (WM). Recent studies suggest that attention training reduces PTSD symptomatology, but the underlying neural mechanisms are unknown. We used high-density magnetoencephalography (MEG) to evaluate whether attention training modulates brain regions serving WM processing in PTSD. Fourteen veterans with PTSD completed a WM task during a 306-sensor MEG recording before and after 8 sessions of attention training treatment. A matched comparison sample of 12 combat-exposed veterans without PTSD completed the same WM task during a single MEG session. To identify the spatiotemporal dynamics, each group's data were transformed into the time-frequency domain, and significant oscillatory brain responses were imaged using a beamforming approach. All participants exhibited activity in left hemispheric language areas consistent with a verbal WM task. Additionally, veterans with PTSD and combat-exposed healthy controls each exhibited oscillatory responses in right hemispheric homologue regions (e.g., right Broca's area); however, these responses were in opposite directions. Group differences in oscillatory activity emerged in the theta band (4-8 Hz) during encoding and in the alpha band (9-12 Hz) during maintenance and were significant in right prefrontal and right supramarginal and inferior parietal regions. Importantly, following attention training, these significant group differences were reduced or eliminated. This study provides initial evidence that attention training improves aberrant neural activity in brain networks serving WM processing.
Ni, Jianjun; Wu, Liuying; Shi, Pengfei; Yang, Simon X
2017-01-01
Real-time path planning for autonomous underwater vehicle (AUV) is a very difficult and challenging task. Bioinspired neural network (BINN) has been used to deal with this problem for its many distinct advantages: that is, no learning process is needed and realization is also easy. However, there are some shortcomings when BINN is applied to AUV path planning in a three-dimensional (3D) unknown environment, including complex computing problem when the environment is very large and repeated path problem when the size of obstacles is bigger than the detection range of sensors. To deal with these problems, an improved dynamic BINN is proposed in this paper. In this proposed method, the AUV is regarded as the core of the BINN and the size of the BINN is based on the detection range of sensors. Then the BINN will move with the AUV and the computing could be reduced. A virtual target is proposed in the path planning method to ensure that the AUV can move to the real target effectively and avoid big-size obstacles automatically. Furthermore, a target attractor concept is introduced to improve the computing efficiency of neural activities. Finally, some experiments are conducted under various 3D underwater environments. The experimental results show that the proposed BINN based method can deal with the real-time path planning problem for AUV efficiently.
Neural substrates and behavioral profiles of romantic jealousy and its temporal dynamics.
Sun, Yan; Yu, Hongbo; Chen, Jie; Liang, Jie; Lu, Lin; Zhou, Xiaolin; Shi, Jie
2016-06-07
Jealousy is not only a way of experiencing love but also a stabilizer of romantic relationships, although morbid romantic jealousy is maladaptive. Being engaged in a formal romantic relationship can tune one's romantic jealousy towards a specific target. Little is known about how the human brain processes romantic jealousy by now. Here, by combining scenario-based imagination and functional MRI, we investigated the behavioral and neural correlates of romantic jealousy and their development across stages (before vs. after being in a formal relationship). Romantic jealousy scenarios elicited activations primarily in the basal ganglia (BG) across stages, and were significantly higher after the relationship was established in both the behavioral rating and BG activation. The intensity of romantic jealousy was related to the intensity of romantic happiness, which mainly correlated with ventral medial prefrontal cortex activation. The increase in jealousy across stages was associated with the tendency for interpersonal aggression. These results bridge the gap between the theoretical conceptualization of romantic jealousy and its neural correlates and shed light on the dynamic changes in jealousy.
Self: an adaptive pressure arising from self-organization, chaotic dynamics, and neural Darwinism.
Bruzzo, Angela Alessia; Vimal, Ram Lakhan Pandey
2007-12-01
In this article, we establish a model to delineate the emergence of "self" in the brain making recourse to the theory of chaos. Self is considered as the subjective experience of a subject. As essential ingredients of subjective experiences, our model includes wakefulness, re-entry, attention, memory, and proto-experiences. The stability as stated by chaos theory can potentially describe the non-linear function of "self" as sensitive to initial conditions and can characterize it as underlying order from apparently random signals. Self-similarity is discussed as a latent menace of a pathological confusion between "self" and "others". Our test hypothesis is that (1) consciousness might have emerged and evolved from a primordial potential or proto-experience in matter, such as the physical attractions and repulsions experienced by electrons, and (2) "self" arises from chaotic dynamics, self-organization and selective mechanisms during ontogenesis, while emerging post-ontogenically as an adaptive pressure driven by both volume and synaptic-neural transmission and influencing the functional connectivity of neural nets (structure).
Calsyntenins Are Expressed in a Dynamic and Partially Overlapping Manner during Neural Development
Directory of Open Access Journals (Sweden)
Gemma de Ramon Francàs
2017-08-01
Full Text Available Calsyntenins form a family of linker proteins between distinct populations of vesicles and kinesin motors for axonal transport. They were implicated in synapse formation and synaptic plasticity by findings in worms, mice and humans. These findings were in accordance with the postsynaptic localization of the Calsyntenins in the adult brain. However, they also affect the formation of neural circuits, as loss of Calsyntenin-1 (Clstn1 was shown to interfere with axonal branching and axon guidance. Despite the fact that Calsyntenins were discovered originally in embryonic chicken motoneurons, their distribution in the developing nervous system has not been analyzed in detail so far. Here, we summarize our analysis of the temporal and spatial expression patterns of the cargo-docking proteins Clstn1, Clstn2 and Clstn3 during neural development by comparing the dynamic distribution of their mRNAs by in situ hybridization in the spinal cord, the cerebellum, the retina and the tectum, as well as in the dorsal root ganglia (DRG.
Neural dynamics underlying attentional orienting to auditory representations in short-term memory.
Backer, Kristina C; Binns, Malcolm A; Alain, Claude
2015-01-21
Sounds are ephemeral. Thus, coherent auditory perception depends on "hearing" back in time: retrospectively attending that which was lost externally but preserved in short-term memory (STM). Current theories of auditory attention assume that sound features are integrated into a perceptual object, that multiple objects can coexist in STM, and that attention can be deployed to an object in STM. Recording electroencephalography from humans, we tested these assumptions, elucidating feature-general and feature-specific neural correlates of auditory attention to STM. Alpha/beta oscillations and frontal and posterior event-related potentials indexed feature-general top-down attentional control to one of several coexisting auditory representations in STM. Particularly, task performance during attentional orienting was correlated with alpha/low-beta desynchronization (i.e., power suppression). However, attention to one feature could occur without simultaneous processing of the second feature of the representation. Therefore, auditory attention to memory relies on both feature-specific and feature-general neural dynamics. Copyright © 2015 the authors 0270-6474/15/351307-12$15.00/0.
Granular contact dynamics using mathematical programming methods
DEFF Research Database (Denmark)
Krabbenhoft, K.; Lyamin, A. V.; Huang, J.
2012-01-01
granular contact dynamics formulation uses an implicit time discretization, thus allowing for large time steps. Moreover, in the limit of an infinite time step, the general dynamic formulation reduces to a static formulation that is useful in simulating common quasi-static problems such as triaxial tests...... is developed and it is concluded that the associated sliding rule, in the context of granular contact dynamics, may be viewed as an artifact of the time discretization and that the use of an associated flow rule at the particle scale level generally is physically acceptable. (C) 2012 Elsevier Ltd. All rights...
Bernal, Javier; Torres-Jimenez, Jose
2015-01-01
SAGRAD (Simulated Annealing GRADient), a Fortran 77 program for computing neural networks for classification using batch learning, is discussed. Neural network training in SAGRAD is based on a combination of simulated annealing and Møller's scaled conjugate gradient algorithm, the latter a variation of the traditional conjugate gradient method, better suited for the nonquadratic nature of neural networks. Different aspects of the implementation of the training process in SAGRAD are discussed, such as the efficient computation of gradients and multiplication of vectors by Hessian matrices that are required by Møller's algorithm; the (re)initialization of weights with simulated annealing required to (re)start Møller's algorithm the first time and each time thereafter that it shows insufficient progress in reaching a possibly local minimum; and the use of simulated annealing when Møller's algorithm, after possibly making considerable progress, becomes stuck at a local minimum or flat area of weight space. Outlines of the scaled conjugate gradient algorithm, the simulated annealing procedure and the training process used in SAGRAD are presented together with results from running SAGRAD on two examples of training data.
Jindal, Shweta; Chiriki, Siva; Bulusu, Satya S
2017-05-28
We propose a highly efficient method for fitting the potential energy surface of a nanocluster using a spherical harmonics based descriptor integrated with an artificial neural network. Our method achieves the accuracy of quantum mechanics and speed of empirical potentials. For large sized gold clusters (Au 147 ), the computational time for accurate calculation of energy and forces is about 1.7 s, which is faster by several orders of magnitude compared to density functional theory (DFT). This method is used to perform the global minimum optimizations and molecular dynamics simulations for Au 147 , and it is found that its global minimum is not an icosahedron. The isomer that can be regarded as the global minimum is found to be 4 eV lower in energy than the icosahedron and is confirmed from DFT. The geometry of the obtained global minimum contains 105 atoms on the surface and 42 atoms in the core. A brief study on the fluxionality in Au 147 is performed, and it is concluded that Au 147 has a dynamic surface, thus opening a new window for studying its reaction dynamics.
Naqvi, Syed Rameez; Akram, Tallha; Iqbal, Saba; Haider, Sajjad Ali; Kamran, Muhammad; Muhammad, Nazeer
2018-02-01
Considering the lack of optimization support for Quantum-dot Cellular Automata, we propose a dynamically reconfigurable logic cell capable of implementing various logic operations by means of artificial neural networks. The cell can be reconfigured to any 2-input combinational logic gate by altering the strength of connections, called weights and biases. We demonstrate how these cells may appositely be organized to perform multi-bit arithmetic and logic operations. The proposed work is important in that it gives a standard implementation of an 8-bit arithmetic and logic unit for quantum-dot cellular automata with minimal area and latency overhead. We also compare the proposed design with a few existing arithmetic and logic units, and show that it is more area efficient than any equivalent available in literature. Furthermore, the design is adaptable to 16, 32, and 64 bit architectures.
Application of NARX neural networks in thermal dynamics identification of a pulsating heat pipe
International Nuclear Information System (INIS)
Lee Yawei; Chang Tienli
2009-01-01
The pulsating heat pipe (PHP) receiving much attention in industries is a novel type of cooling device. The distinguishing feature of PHPs is the unsteady flow oscillations formed by the passing non-uniform distributions of vapour plugs and liquid slugs. This study introduces a methodology of a non-linear auto-regressive with exogenous (NARX) neural network to analyze the thermal dynamics of a PHP in both the time and frequency domains. Three heating powers: 30, 70, and 110 W are tested, and all the predicted results are presented in quite good agreement with the measured results. Herein, the harmonic analysis of the non-linear structure can be equivalently conducted with generalized frequency response functions (GFRFs). Based on the non-linear coupling between the various input spectral components, the interpretations of the higher order GFRFs have been extensively presented for demonstrating the non-linear effects on the heat transfer of a PHP at different operating conditions
Directory of Open Access Journals (Sweden)
Ridho Bayuaji
2018-04-01
Full Text Available No-fines lightweight concrete wall with horizontal reinforcement refers to an alternative material for wall construction with an aim of improving the wall quality towards horizontal loads. This study is focused on artificial neural network (ANN application to predicting the deflection deformation caused by dynamic loads. The ANN method is able to capture the complex interactions among input/output variables in a system without any knowledge of interaction nature and without any explicit assumption to model form. This paper explains the existing data research, data selection and process of ANN modelling training process and validation. The results of this research show that the deformation can be predicted more accurately, simply and quickly due to the alternating horizontal loads.
Mandal, Sumantra; Sivaprasad, P. V.; Dube, R. K.
2007-12-01
An artificial neural network (ANN) model was developed to predict the microstructural evolution of a 15Cr-15Ni-2.2Mo-Ti modified austenitic stainless steel (Alloy D9) during dynamic recrystallization (DRX). The input parameters were strain, strain rate, and temperature whereas microstructural features namely, %DRX and average grain size were the output parameters. The ANN was trained with the database obtained from various industrial scale metal-forming operations like forge hammer, hydraulic press, and rolling carried out in the temperature range 1173-1473 K to various strain levels. The performance of the model was evaluated using a wide variety of statistical indices and the predictability of the model was found to be good. The combined influence of temperature and strain on microstructural features has been simulated employing the developed model. The results were found to be consistent with the relevant fundamental metallurgical phenomena.
Han, Seong-Ik; Lee, Jang-Myung
2014-01-01
This paper proposes a backstepping control system that uses a tracking error constraint and recurrent fuzzy neural networks (RFNNs) to achieve a prescribed tracking performance for a strict-feedback nonlinear dynamic system. A new constraint variable was defined to generate the virtual control that forces the tracking error to fall within prescribed boundaries. An adaptive RFNN was also used to obtain the required improvement on the approximation performances in order to avoid calculating the explosive number of terms generated by the recursive steps of traditional backstepping control. The boundedness and convergence of the closed-loop system was confirmed based on the Lyapunov stability theory. The prescribed performance of the proposed control scheme was validated by using it to control the prescribed error of a nonlinear system and a robot manipulator. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
How single node dynamics enhances synchronization in neural networks with electrical coupling
International Nuclear Information System (INIS)
Bonacini, E.; Burioni, R.; Di Volo, M.; Groppi, M.; Soresina, C.; Vezzani, A.
2016-01-01
The stability of the completely synchronous state in neural networks with electrical coupling is analytically investigated applying both the Master Stability Function approach (MSF), developed by Pecora and Carroll (1998), and the Connection Graph Stability method (CGS) proposed by Belykh et al. (2004). The local dynamics is described by Morris–Lecar model for spiking neurons and by Hindmarsh–Rose model in spike, burst, irregular spike and irregular burst regimes. The combined application of both CGS and MSF methods provides an efficient estimate of the synchronization thresholds, namely bounds for the coupling strength ranges in which the synchronous state is stable. In all the considered cases, we observe that high values of coupling strength tend to synchronize the system. Furthermore, we observe a correlation between the single node attractor and the local stability properties given by MSF. The analytical results are compared with numerical simulations on a sample network, with excellent agreement.
Identification of nonlinear dynamics in power plant components using neural networks
International Nuclear Information System (INIS)
Parlos, A.G.; Fernandez, B.; Tsai, W.K.
1990-01-01
Advances in digital computer technology have enabled widespread implementation of closed-loop digital control systems in a variety of industries. In some instances, however, the complexity of the plant and the uncertainty associated with the parameters involved in the mathematical modeling narrow the range of applicability of most systematic control system design methodologies. A multiyear project has been initiated to assess the feasibility of the artificial neural networks (ANNs) technology for computerized enhanced diagnostics and control of nuclear power plant components. At this stage of the project, a new methodology, based on backpropagation learning, has been developed for identifying the nonlinear dynamic systems from a set of input-output data known as the training set
Dutt-Mazumder, Aviroop; Button, Chris; Robins, Anthony; Bartlett, Roger
2011-12-01
Recent studies have explored the organization of player movements in team sports using a range of statistical tools. However, the factors that best explain the performance of association football teams remain elusive. Arguably, this is due to the high-dimensional behavioural outputs that illustrate the complex, evolving configurations typical of team games. According to dynamical system analysts, movement patterns in team sports exhibit nonlinear self-organizing features. Nonlinear processing tools (i.e. Artificial Neural Networks; ANNs) are becoming increasingly popular to investigate the coordination of participants in sports competitions. ANNs are well suited to describing high-dimensional data sets with nonlinear attributes, however, limited information concerning the processes required to apply ANNs exists. This review investigates the relative value of various ANN learning approaches used in sports performance analysis of team sports focusing on potential applications for association football. Sixty-two research sources were summarized and reviewed from electronic literature search engines such as SPORTDiscus, Google Scholar, IEEE Xplore, Scirus, ScienceDirect and Elsevier. Typical ANN learning algorithms can be adapted to perform pattern recognition and pattern classification. Particularly, dimensionality reduction by a Kohonen feature map (KFM) can compress chaotic high-dimensional datasets into low-dimensional relevant information. Such information would be useful for developing effective training drills that should enhance self-organizing coordination among players. We conclude that ANN-based qualitative analysis is a promising approach to understand the dynamical attributes of association football players.
Stochastic dynamic programming model for optimal resource ...
Indian Academy of Sciences (India)
M Bhuvaneswari
2018-04-11
Apr 11, 2018 ... handover in VANET; because of high dynamics in net- work topology, collaboration ... containers, doctors, nurses, cash and stocks. Similarly, ... GTBA does not take the resource types and availability into consideration.
Chen, Zhong; Liu, June; Li, Xiong
2017-01-01
A two-stage artificial neural network (ANN) based on scalarization method is proposed for bilevel biobjective programming problem (BLBOP). The induced set of the BLBOP is firstly expressed as the set of minimal solutions of a biobjective optimization problem by using scalar approach, and then the whole efficient set of the BLBOP is derived by the proposed two-stage ANN for exploring the induced set. In order to illustrate the proposed method, seven numerical examples are tested and compared with results in the classical literature. Finally, a practical problem is solved by the proposed algorithm. PMID:29312446
Dynamic Programming Algorithms in Speech Recognition
Directory of Open Access Journals (Sweden)
Titus Felix FURTUNA
2008-01-01
Full Text Available In a system of speech recognition containing words, the recognition requires the comparison between the entry signal of the word and the various words of the dictionary. The problem can be solved efficiently by a dynamic comparison algorithm whose goal is to put in optimal correspondence the temporal scales of the two words. An algorithm of this type is Dynamic Time Warping. This paper presents two alternatives for implementation of the algorithm designed for recognition of the isolated words.
Gilam, Gadi; Lin, Tamar; Raz, Gal; Azrielant, Shir; Fruchter, Eyal; Ariely, Dan; Hendler, Talma
2015-10-15
In managing our way through interpersonal conflict, anger might be crucial in determining whether the dispute escalates to aggressive behaviors or resolves cooperatively. The Ultimatum Game (UG) is a social decision-making paradigm that provides a framework for studying interpersonal conflict over division of monetary resources. Unfair monetary UG-offers elicit anger and while accepting them engages regulatory processes, rejecting them is regarded as an aggressive retribution. Ventro-medial prefrontal-cortex (vmPFC) activity has been shown to relate to idiosyncratic tendencies in accepting unfair offers possibly through its role in emotion regulation. Nevertheless, standard UG paradigms lack fundamental aspects of real-life social interactions in which one reacts to other people in a response contingent fashion. To uncover the neural substrates underlying the tendency to accept anger-infused ultimatum offers during dynamic social interactions, we incorporated on-line verbal negotiations with an obnoxious partner in a repeated-UG during fMRI scanning. We hypothesized that vmPFC activity will differentiate between individuals with high or low monetary gains accumulated throughout the game and reflect a divergence in the associated emotional experience. We found that as individuals gained more money, they reported less anger but also more positive feelings and had slower sympathetic response. In addition, high-gain individuals had increased vmPFC activity, but also decreased brainstem activity, which possibly reflected the locus coeruleus. During the more angering unfair offers, these individuals had increased dorsal-posterior Insula (dpI) activity which functionally coupled to the medial-thalamus (mT). Finally, both vmPFC activity and dpI-mT connectivity contributed to increased gain, possibly by modulating the ongoing subjective emotional experience. These ecologically valid findings point towards a neural mechanism that might nurture pro-social interactions by
Fragility in dynamic networks: application to neural networks in the epileptic cortex.
Sritharan, Duluxan; Sarma, Sridevi V
2014-10-01
Epilepsy is a network phenomenon characterized by atypical activity at the neuronal and population levels during seizures, including tonic spiking, increased heterogeneity in spiking rates, and synchronization. The etiology of epilepsy is unclear, but a common theme among proposed mechanisms is that structural connectivity between neurons is altered. It is hypothesized that epilepsy arises not from random changes in connectivity, but from specific structural changes to the most fragile nodes or neurons in the network. In this letter, the minimum energy perturbation on functional connectivity required to destabilize linear networks is derived. Perturbation results are then applied to a probabilistic nonlinear neural network model that operates at a stable fixed point. That is, if a small stimulus is applied to the network, the activation probabilities of each neuron respond transiently but eventually recover to their baseline values. When the perturbed network is destabilized, the activation probabilities shift to larger or smaller values or oscillate when a small stimulus is applied. Finally, the structural modifications to the neural network that achieve the functional perturbation are derived. Simulations of the unperturbed and perturbed networks qualitatively reflect neuronal activity observed in epilepsy patients, suggesting that the changes in network dynamics due to destabilizing perturbations, including the emergence of an unstable manifold or a stable limit cycle, may be indicative of neuronal or population dynamics during seizure. That is, the epileptic cortex is always on the brink of instability and minute changes in the synaptic weights associated with the most fragile node can suddenly destabilize the network to cause seizures. Finally, the theory developed here and its interpretation of epileptic networks enables the design of a straightforward feedback controller that first detects when the network has destabilized and then applies linear state
Suemitsu, Yoshikazu; Nara, Shigetoshi
2004-09-01
Chaotic dynamics introduced into a neural network model is applied to solving two-dimensional mazes, which are ill-posed problems. A moving object moves from the position at t to t + 1 by simply defined motion function calculated from firing patterns of the neural network model at each time step t. We have embedded several prototype attractors that correspond to the simple motion of the object orienting toward several directions in two-dimensional space in our neural network model. Introducing chaotic dynamics into the network gives outputs sampled from intermediate state points between embedded attractors in a state space, and these dynamics enable the object to move in various directions. System parameter switching between a chaotic and an attractor regime in the state space of the neural network enables the object to move to a set target in a two-dimensional maze. Results of computer simulations show that the success rate for this method over 300 trials is higher than that of random walk. To investigate why the proposed method gives better performance, we calculate and discuss statistical data with respect to dynamical structure.
International Nuclear Information System (INIS)
Hunter, J.A.
1984-01-01
Equipment qualification research is being conducted to investigate acceptable criteria, requirements, and methodologies for the dynamic (including seismic) and environmental qualification of mechanical equipment and for the dynamic (including seismic) qualification of electrical equipment. The program is organized into three elements: (1) General Research, (2) Environmental Research, and (3) Dynamic Research. This paper presents the highlights of the results to date in these three elements of the program
Effects of Aging on Cortical Neural Dynamics and Local Sleep Homeostasis in Mice.
McKillop, Laura E; Fisher, Simon P; Cui, Nanyi; Peirson, Stuart N; Foster, Russell G; Wafford, Keith A; Vyazovskiy, Vladyslav V
2018-04-18
Healthy aging is associated with marked effects on sleep, including its daily amount and architecture, as well as the specific EEG oscillations. Neither the neurophysiological underpinnings nor the biological significance of these changes are understood, and crucially the question remains whether aging is associated with reduced sleep need or a diminished capacity to generate sufficient sleep. Here we tested the hypothesis that aging may affect local cortical networks, disrupting the capacity to generate and sustain sleep oscillations, and with it the local homeostatic response to sleep loss. We performed chronic recordings of cortical neural activity and local field potentials from the motor cortex in young and older male C57BL/6J mice, during spontaneous waking and sleep, as well as during sleep after sleep deprivation. In older animals, we observed an increase in the incidence of non-rapid eye movement sleep local field potential slow waves and their associated neuronal silent (OFF) periods, whereas the overall pattern of state-dependent cortical neuronal firing was generally similar between ages. Furthermore, we observed that the response to sleep deprivation at the level of local cortical network activity was not affected by aging. Our data thus suggest that the local cortical neural dynamics and local sleep homeostatic mechanisms, at least in the motor cortex, are not impaired during healthy senescence in mice. This indicates that powerful protective or compensatory mechanisms may exist to maintain neuronal function stable across the life span, counteracting global changes in sleep amount and architecture. SIGNIFICANCE STATEMENT The biological significance of age-dependent changes in sleep is unknown but may reflect either a diminished sleep need or a reduced capacity to generate deep sleep stages. As aging has been linked to profound disruptions in cortical sleep oscillations and because sleep need is reflected in specific patterns of cortical activity, we
Dynamic programming approach to optimization of approximate decision rules
Amin, Talha M.; Chikalov, Igor; Moshkov, Mikhail; Zielosko, Beata
2013-01-01
This paper is devoted to the study of an extension of dynamic programming approach which allows sequential optimization of approximate decision rules relative to the length and coverage. We introduce an uncertainty measure R(T) which is the number
Dynamic Programming Approach for Exact Decision Rule Optimization
Amin, Talha M.; Chikalov, Igor; Moshkov, Mikhail; Zielosko, Beata
2013-01-01
This chapter is devoted to the study of an extension of dynamic programming approach that allows sequential optimization of exact decision rules relative to the length and coverage. It contains also results of experiments with decision tables from
An Online Energy Management Control for Hybrid Electric Vehicles Based on Neuro-Dynamic Programming
Directory of Open Access Journals (Sweden)
Feiyan Qin
2018-03-01
Full Text Available Hybrid electric vehicles are a compromise between traditional vehicles and pure electric vehicles and can be part of the solution to the energy shortage problem. Energy management strategies (EMSs are highly related to energy utilization in HEVs’ fuel economy. In this research, we have employed a neuro-dynamic programming (NDP method to simultaneously optimize fuel economy and battery state of charge (SOC. In this NDP method, the critic network is a multi-resolution wavelet neural network based on the Meyer wavelet function, and the action network is a conventional wavelet neural network based on the Morlet function. The weights and parameters of both networks are obtained by an algorithm of backpropagation type. The NDP-based EMS has been applied to a parallel HEV and compared with a previously reported NDP EMS and a stochastic dynamic programing-based method. Simulation results under ADVISOR2002 have shown that the proposed NDP approach achieves better performance than both the methods. These indicate that the proposed NDP EMS, and the CWNN and MRWNN, are effective in approximating a nonlinear system.
Point process modeling and estimation: Advances in the analysis of dynamic neural spiking data
Deng, Xinyi
2016-08-01
A common interest of scientists in many fields is to understand the relationship between the dynamics of a physical system and the occurrences of discrete events within such physical system. Seismologists study the connection between mechanical vibrations of the Earth and the occurrences of earthquakes so that future earthquakes can be better predicted. Astrophysicists study the association between the oscillating energy of celestial regions and the emission of photons to learn the Universe's various objects and their interactions. Neuroscientists study the link between behavior and the millisecond-timescale spike patterns of neurons to understand higher brain functions. Such relationships can often be formulated within the framework of state-space models with point process observations. The basic idea is that the dynamics of the physical systems are driven by the dynamics of some stochastic state variables and the discrete events we observe in an interval are noisy observations with distributions determined by the state variables. This thesis proposes several new methodological developments that advance the framework of state-space models with point process observations at the intersection of statistics and neuroscience. In particular, we develop new methods 1) to characterize the rhythmic spiking activity using history-dependent structure, 2) to model population spike activity using marked point process models, 3) to allow for real-time decision making, and 4) to take into account the need for dimensionality reduction for high-dimensional state and observation processes. We applied these methods to a novel problem of tracking rhythmic dynamics in the spiking of neurons in the subthalamic nucleus of Parkinson's patients with the goal of optimizing placement of deep brain stimulation electrodes. We developed a decoding algorithm that can make decision in real-time (for example, to stimulate the neurons or not) based on various sources of information present in
An Improved Dynamic Programming Decomposition Approach for Network Revenue Management
Dan Zhang
2011-01-01
We consider a nonlinear nonseparable functional approximation to the value function of a dynamic programming formulation for the network revenue management (RM) problem with customer choice. We propose a simultaneous dynamic programming approach to solve the resulting problem, which is a nonlinear optimization problem with nonlinear constraints. We show that our approximation leads to a tighter upper bound on optimal expected revenue than some known bounds in the literature. Our approach can ...
Dynamic Programming Approaches for the Traveling Salesman Problem with Drone
Bouman, Paul; Agatz, Niels; Schmidt, Marie
2017-01-01
markdownabstractA promising new delivery model involves the use of a delivery truck that collaborates with a drone to make deliveries. Effectively combining a drone and a truck gives rise to a new planning problem that is known as the Traveling Salesman Problem with Drone (TSP-D). This paper presents an exact solution approach for the TSP-D based on dynamic programming and present experimental results of different dynamic programming based heuristics. Our numerical experiments show that our a...
Dynamic Performance Tuning Supported by Program Specification
Directory of Open Access Journals (Sweden)
Eduardo César
2002-01-01
Full Text Available Performance analysis and tuning of parallel/distributed applications are very difficult tasks for non-expert programmers. It is necessary to provide tools that automatically carry out these tasks. These can be static tools that carry out the analysis on a post-mortem phase or can tune the application on the fly. Both kind of tools have their target applications. Static automatic analysis tools are suitable for stable application while dynamic tuning tools are more appropriate to applications with dynamic behaviour. In this paper, we describe KappaPi as an example of a static automatic performance analysis tool, and also a general environment based on parallel patterns for developing and dynamically tuning parallel/distributed applications.
Directory of Open Access Journals (Sweden)
Tatsuro Yamada
2016-07-01
Full Text Available To work cooperatively with humans by using language, robots must not only acquire a mapping between language and their behavior but also autonomously utilize the mapping in appropriate contexts of interactive tasks online. To this end, we propose a novel learning method linking language to robot behavior by means of a recurrent neural network. In this method, the network learns from correct examples of the imposed task that are given not as explicitly separated sets of language and behavior but as sequential data constructed from the actual temporal flow of the task. By doing this, the internal dynamics of the network models both language--behavior relationships and the temporal patterns of interaction. Here, ``internal dynamics'' refers to the time development of the system defined on the fixed-dimensional space of the internal states of the context layer. Thus, in the execution phase, by constantly representing where in the interaction context it is as its current state, the network autonomously switches between recognition and generation phases without any explicit signs and utilizes the acquired mapping in appropriate contexts. To evaluate our method, we conducted an experiment in which a robot generates appropriate behavior responding to a human's linguistic instruction. After learning, the network actually formed the attractor structure representing both language--behavior relationships and the task's temporal pattern in its internal dynamics. In the dynamics, language--behavior mapping was achieved by the branching structure. Repetition of human's instruction and robot's behavioral response was represented as the cyclic structure, and besides, waiting to a subsequent instruction was represented as the fixed-point attractor. Thanks to this structure, the robot was able to interact online with a human concerning the given task by autonomously switching phases.
Yamada, Tatsuro; Murata, Shingo; Arie, Hiroaki; Ogata, Tetsuya
2016-01-01
To work cooperatively with humans by using language, robots must not only acquire a mapping between language and their behavior but also autonomously utilize the mapping in appropriate contexts of interactive tasks online. To this end, we propose a novel learning method linking language to robot behavior by means of a recurrent neural network. In this method, the network learns from correct examples of the imposed task that are given not as explicitly separated sets of language and behavior but as sequential data constructed from the actual temporal flow of the task. By doing this, the internal dynamics of the network models both language-behavior relationships and the temporal patterns of interaction. Here, "internal dynamics" refers to the time development of the system defined on the fixed-dimensional space of the internal states of the context layer. Thus, in the execution phase, by constantly representing where in the interaction context it is as its current state, the network autonomously switches between recognition and generation phases without any explicit signs and utilizes the acquired mapping in appropriate contexts. To evaluate our method, we conducted an experiment in which a robot generates appropriate behavior responding to a human's linguistic instruction. After learning, the network actually formed the attractor structure representing both language-behavior relationships and the task's temporal pattern in its internal dynamics. In the dynamics, language-behavior mapping was achieved by the branching structure. Repetition of human's instruction and robot's behavioral response was represented as the cyclic structure, and besides, waiting to a subsequent instruction was represented as the fixed-point attractor. Thanks to this structure, the robot was able to interact online with a human concerning the given task by autonomously switching phases.
Dynamic neural network modeling of HF radar current maps for forecasting oil spill trajectories
International Nuclear Information System (INIS)
Tissot, P.; Perez, J.; Kelly, F.J.; Bonner, J.; Michaud, P.
2001-01-01
This paper examined the concept of dynamic neural network (NN) modeling for short-term forecasts of coastal high-frequency (HF) radar current maps offshore of Galveston Texas. HF radar technology is emerging as a viable and affordable way to measure surface currents in real time and the number of users applying the technology is increasing. A 25 megahertz, two site, Seasonde HF radar system was used to map ocean and bay surface currents along the coast of Texas where wind and river discharge create complex and rapidly changing current patters that override the weaker tidal flow component. The HF radar system is particularly useful in this type of setting because its mobility makes it a good marine spill response tool that could provide hourly current maps. This capability helps improve deployment of response resources. In addition, the NN model recently developed by the Conrad Blucher Institute can be used to forecast water levels during storm events. Forecasted currents are based on time series of current vectors from HF radar plus wind speed, wind direction, and water levels, as well as tidal forecasts. The dynamic NN model was tested to evaluate its performance and the results were compared with a baseline model which assumes the currents do not change from the time of the forecast up to the forecasted time. The NN model showed improvements over the baseline model for forecasting time equal or greater than 3 hours, but the difference was relatively small. The test demonstrated the ability of the dynamic NN model to link meteorological forcing functions with HF radar current maps. Development of the dynamic NN modeling is still ongoing. 18 refs., 1 tab., 5 figs
Neural network error correction for solving coupled ordinary differential equations
Shelton, R. O.; Darsey, J. A.; Sumpter, B. G.; Noid, D. W.
1992-01-01
A neural network is presented to learn errors generated by a numerical algorithm for solving coupled nonlinear differential equations. The method is based on using a neural network to correctly learn the error generated by, for example, Runge-Kutta on a model molecular dynamics (MD) problem. The neural network programs used in this study were developed by NASA. Comparisons are made for training the neural network using backpropagation and a new method which was found to converge with fewer iterations. The neural net programs, the MD model and the calculations are discussed.
INDDGO: Integrated Network Decomposition & Dynamic programming for Graph Optimization
Energy Technology Data Exchange (ETDEWEB)
Groer, Christopher S [ORNL; Sullivan, Blair D [ORNL; Weerapurage, Dinesh P [ORNL
2012-10-01
It is well-known that dynamic programming algorithms can utilize tree decompositions to provide a way to solve some \\emph{NP}-hard problems on graphs where the complexity is polynomial in the number of nodes and edges in the graph, but exponential in the width of the underlying tree decomposition. However, there has been relatively little computational work done to determine the practical utility of such dynamic programming algorithms. We have developed software to construct tree decompositions using various heuristics and have created a fast, memory-efficient dynamic programming implementation for solving maximum weighted independent set. We describe our software and the algorithms we have implemented, focusing on memory saving techniques for the dynamic programming. We compare the running time and memory usage of our implementation with other techniques for solving maximum weighted independent set, including a commercial integer programming solver and a semi-definite programming solver. Our results indicate that it is possible to solve some instances where the underlying decomposition has width much larger than suggested by the literature. For certain types of problems, our dynamic programming code runs several times faster than these other methods.
Shen, Lin; Yang, Weitao
2018-03-13
Direct molecular dynamics (MD) simulation with ab initio quantum mechanical and molecular mechanical (QM/MM) methods is very powerful for studying the mechanism of chemical reactions in a complex environment but also very time-consuming. The computational cost of QM/MM calculations during MD simulations can be reduced significantly using semiempirical QM/MM methods with lower accuracy. To achieve higher accuracy at the ab initio QM/MM level, a correction on the existing semiempirical QM/MM model is an attractive idea. Recently, we reported a neural network (NN) method as QM/MM-NN to predict the potential energy difference between semiempirical and ab initio QM/MM approaches. The high-level results can be obtained using neural network based on semiempirical QM/MM MD simulations, but the lack of direct MD samplings at the ab initio QM/MM level is still a deficiency that limits the applications of QM/MM-NN. In the present paper, we developed a dynamic scheme of QM/MM-NN for direct MD simulations on the NN-predicted potential energy surface to approximate ab initio QM/MM MD. Since some configurations excluded from the database for NN training were encountered during simulations, which may cause some difficulties on MD samplings, an adaptive procedure inspired by the selection scheme reported by Behler [ Behler Int. J. Quantum Chem. 2015 , 115 , 1032 ; Behler Angew. Chem., Int. Ed. 2017 , 56 , 12828 ] was employed with some adaptions to update NN and carry out MD iteratively. We further applied the adaptive QM/MM-NN MD method to the free energy calculation and transition path optimization on chemical reactions in water. The results at the ab initio QM/MM level can be well reproduced using this method after 2-4 iteration cycles. The saving in computational cost is about 2 orders of magnitude. It demonstrates that the QM/MM-NN with direct MD simulations has great potentials not only for the calculation of thermodynamic properties but also for the characterization of
Jiang, Jun; Zhang, Qinglin; Van Gaal, Simon
2015-07-14
Although previous work has shown that conflict can be detected in the absence of awareness, it is unknown how different sources of conflict (i.e., semantic, response) are processed in the human brain and whether these processes are differently modulated by conflict awareness. To explore this issue, we extracted oscillatory power dynamics from electroencephalographic (EEG) data recorded while human participants performed a modified version of the Stroop task. Crucially, in this task conflict awareness was manipulated by masking a conflict-inducing color word preceding a color patch target. We isolated semantic from response conflict by introducing four color words/patches, of which two were matched to the same response. We observed that both semantic as well as response conflict were associated with mid-frontal theta-band and parietal alpha-band power modulations, irrespective of the level of conflict awareness (high vs. low), although awareness of conflict increased these conflict-related power dynamics. These results show that both semantic and response conflict can be processed in the human brain and suggest that the neural oscillatory mechanisms in EEG reflect mainly "domain general" conflict processing mechanisms, instead of conflict source specific effects.
Jiang, Jun; Zhang, Qinglin; Van Gaal, Simon
2015-01-01
Although previous work has shown that conflict can be detected in the absence of awareness, it is unknown how different sources of conflict (i.e., semantic, response) are processed in the human brain and whether these processes are differently modulated by conflict awareness. To explore this issue, we extracted oscillatory power dynamics from electroencephalographic (EEG) data recorded while human participants performed a modified version of the Stroop task. Crucially, in this task conflict awareness was manipulated by masking a conflict-inducing color word preceding a color patch target. We isolated semantic from response conflict by introducing four color words/patches, of which two were matched to the same response. We observed that both semantic as well as response conflict were associated with mid-frontal theta-band and parietal alpha-band power modulations, irrespective of the level of conflict awareness (high vs. low), although awareness of conflict increased these conflict-related power dynamics. These results show that both semantic and response conflict can be processed in the human brain and suggest that the neural oscillatory mechanisms in EEG reflect mainly “domain general” conflict processing mechanisms, instead of conflict source specific effects. PMID:26169473
Lęski, Szymon; Kublik, Ewa; Swiejkowski, Daniel A; Wróbel, Andrzej; Wójcik, Daniel K
2010-12-01
Local field potentials have good temporal resolution but are blurred due to the slow spatial decay of the electric field. For simultaneous recordings on regular grids one can reconstruct efficiently the current sources (CSD) using the inverse Current Source Density method (iCSD). It is possible to decompose the resultant spatiotemporal information about the current dynamics into functional components using Independent Component Analysis (ICA). We show on test data modeling recordings of evoked potentials on a grid of 4 × 5 × 7 points that meaningful results are obtained with spatial ICA decomposition of reconstructed CSD. The components obtained through decomposition of CSD are better defined and allow easier physiological interpretation than the results of similar analysis of corresponding evoked potentials in the thalamus. We show that spatiotemporal ICA decompositions can perform better for certain types of sources but it does not seem to be the case for the experimental data studied. Having found the appropriate approach to decomposing neural dynamics into functional components we use the technique to study the somatosensory evoked potentials recorded on a grid spanning a large part of the forebrain. We discuss two example components associated with the first waves of activation of the somatosensory thalamus. We show that the proposed method brings up new, more detailed information on the time and spatial location of specific activity conveyed through various parts of the somatosensory thalamus in the rat.
International Nuclear Information System (INIS)
Dang Xuanju; Tan Yonghong
2005-01-01
A new neural networks dynamic hysteresis model for piezoceramic actuator is proposed by combining the Preisach model with diagonal recurrent neural networks. The Preisach model is based on elementary rate-independent operators and is not suitable for modeling piezoceramic actuator across a wide frequency band because of the rate-dependent hysteresis characteristic of the piezoceramic actuator. The structure of the developed model is based on the structure of the Preisach model, in which the rate-independent relay hysteresis operators (cells) are replaced by the rate-dependent hysteresis operators of first-order differential equation. The diagonal recurrent neural networks being modified by an adjustable factor can be used to model the hysteresis behavior of the pizeoceramic actuator because its structure is similar to the structure of the modified Preisach model. Therefore, the proposed model not only possesses that of the Preisach model, but also can be used for describing its dynamic hysteresis behavior. Through the experimental results of both the approximation and the prediction, the effectiveness of the neural networks dynamic hysteresis model for the piezoceramic actuator is demonstrated
Dynamic Learning Objects to Teach Java Programming Language
Narasimhamurthy, Uma; Al Shawkani, Khuloud
2010-01-01
This article describes a model for teaching Java Programming Language through Dynamic Learning Objects. The design of the learning objects was based on effective learning design principles to help students learn the complex topic of Java Programming. Visualization was also used to facilitate the learning of the concepts. (Contains 1 figure and 2…
Proving deadlock freedom of logic programs with dynamic scheduling
E. Marchiori; F. Teusink (Frank)
1996-01-01
textabstractIn increasingly many logic programming systems, the Prolog left to right selection rule has been replaced with dynamic selection rules, that select an atom of a query among those satisfying suitable conditions. These conditions describe the form of the arguments of every program
Kappel, David; Legenstein, Robert; Habenschuss, Stefan; Hsieh, Michael; Maass, Wolfgang
2018-01-01
Synaptic connections between neurons in the brain are dynamic because of continuously ongoing spine dynamics, axonal sprouting, and other processes. In fact, it was recently shown that the spontaneous synapse-autonomous component of spine dynamics is at least as large as the component that depends on the history of pre- and postsynaptic neural activity. These data are inconsistent with common models for network plasticity and raise the following questions: how can neural circuits maintain a stable computational function in spite of these continuously ongoing processes, and what could be functional uses of these ongoing processes? Here, we present a rigorous theoretical framework for these seemingly stochastic spine dynamics and rewiring processes in the context of reward-based learning tasks. We show that spontaneous synapse-autonomous processes, in combination with reward signals such as dopamine, can explain the capability of networks of neurons in the brain to configure themselves for specific computational tasks, and to compensate automatically for later changes in the network or task. Furthermore, we show theoretically and through computer simulations that stable computational performance is compatible with continuously ongoing synapse-autonomous changes. After reaching good computational performance it causes primarily a slow drift of network architecture and dynamics in task-irrelevant dimensions, as observed for neural activity in motor cortex and other areas. On the more abstract level of reinforcement learning the resulting model gives rise to an understanding of reward-driven network plasticity as continuous sampling of network configurations.
Nonlinear beam dynamics experimental program at SPEAR
International Nuclear Information System (INIS)
Tran, P.; Pellegrini, C.; Cornacchia, M.; Lee, M.; Corbett, W.
1995-01-01
Since nonlinear effects can impose strict performance limitations on modern colliders and storage rings, future performance improvements depend on further understanding of nonlinear beam dynamics. Experimental studies of nonlinear beam motion in three-dimensional space have begun in SPEAR using turn-by-turn transverse and longitudinal phase-space monitors. This paper presents preliminary results from an on-going experiment in SPEAR
Dynamic changes in connexin expression following engraftment of neural stem cells to striatal tissue
International Nuclear Information System (INIS)
Jaederstad, Johan; Jaederstad, Linda Maria; Herlenius, Eric
2011-01-01
Gap-junctional intercellular communication between grafted neural stem cells (NSCs) and host cells seem to be essential for many of the beneficial effects associated with NSC engraftment. Utilizing murine NSCs (mNSCs) grafted into an organotypic ex vivo model system for striatal tissue we examined the prerequisites for formation of gap-junctional couplings between graft and host cells at different time points following implantation. We utilized flow cytometry (to quantify the proportion of connexin (Cx) 26 and 43 expressing cells), immunohistochemistry (for localization of the gap-junctional proteins in graft and host cells), dye-transfer studies with and without pharmacological gap-junctional blockers (assaying the functionality of the formed gap-junctional couplings), and proliferation assays (to estimate the role of gap junctions for NSC well-being) to this end. Immunohistochemical staining and dye-transfer studies revealed that the NSCs already form functional gap junctions prior to engraftment, thereby creating a substrate for subsequent graft and host communication. The expression of Cx43 by grafted NSCs was decreased by neurotrophin-3 overexpression in NSCs and culturing of grafted tissue in serum-free Neurobasal B27 medium. Cx43 expression in NSC-derived cells also changed significantly following engraftment. In host cells the expression of Cx43 peaked following traumatic stimulation and then declined within two weeks, suggesting a window of opportunity for successful host cell rescue by NSC engraftment. Further investigation of the dynamic changes in gap junction expression in graft and host cells and the associated variations in intercellular communication between implanted and endogenous cells might help to understand and control the early positive and negative effects evident following neural stem cell transplantation and thereby optimize the outcome of future clinical NSC transplantation therapies.
Striatal Activity and Reward Relativity: Neural Signals Encoding Dynamic Outcome Valuation.
Webber, Emily S; Mankin, David E; Cromwell, Howard C
2016-01-01
The striatum is a key brain region involved in reward processing. Striatal activity has been linked to encoding reward magnitude and integrating diverse reward outcome information. Recent work has supported the involvement of striatum in the valuation of outcomes. The present work extends this idea by examining striatal activity during dynamic shifts in value that include different levels and directions of magnitude disparity. A novel task was used to produce diverse relative reward effects on a chain of instrumental action. Rats ( Rattus norvegicus ) were trained to respond to cues associated with specific outcomes varying by food pellet magnitude. Animals were exposed to single-outcome sessions followed by mixed-outcome sessions, and neural activity was compared among identical outcome trials from the different behavioral contexts. Results recording striatal activity show that neural responses to different task elements reflect incentive contrast as well as other relative effects that involve generalization between outcomes or possible influences of outcome variety. The activity that was most prevalent was linked to food consumption and post-food consumption periods. Relative encoding was sensitive to magnitude disparity. A within-session analysis showed strong contrast effects that were dependent upon the outcome received in the immediately preceding trial. Significantly higher numbers of responses were found in ventral striatum linked to relative outcome effects. Our results support the idea that relative value can incorporate diverse relationships, including comparisons from specific individual outcomes to general behavioral contexts. The striatum contains these diverse relative processes, possibly enabling both a higher information yield concerning value shifts and a greater behavioral flexibility.
Mühlhäusler, B S
2007-01-01
The concept of a functional foetal "appetite regulatory neural network" is a new and potentially critical one. There is a growing body of evidence showing that the nutritional environment to which the foetus is exposed during prenatal and perinatal development has long-term consequences for the function of the appetite-regulating neural network and therefore the way in which an individual regulates energy balance throughout later life. This is of particular importance in the context of evidence obtained from a wide range of epidemiological studies, which have shown that individuals exposed to an elevated nutrient supply before birth have an increased risk of becoming obese as children and adults. This review summarises the key pieces of experimental evidence, by our group and others, that have contributed to our current understanding of the programming of appetite, and highlights the important questions that are yet to be answered. It is clear that this area of research has the potential to generate, within the next few years, interventions that could begin to alleviate the adverse long-term consequences of being exposed to an elevated nutrient supply before birth.
Directory of Open Access Journals (Sweden)
Helmut Schmidt
2014-11-01
Full Text Available Graph theory has evolved into a useful tool for studying complex brain networks inferred from a variety of measures of neural activity, including fMRI, DTI, MEG and EEG. In the study of neurological disorders, recent work has discovered differences in the structure of graphs inferred from patient and control cohorts. However, most of these studies pursue a purely observational approach; identifying correlations between properties of graphs and the cohort which they describe, without consideration of the underlying mechanisms. To move beyond this necessitates the development of computational modeling approaches to appropriately interpret network interactions and the alterations in brain dynamics they permit, which in the field of complexity sciences is known as dynamics on networks. In this study we describe the development and application of this framework using modular networks of Kuramoto oscillators. We use this framework to understand functional networks inferred from resting state EEG recordings of a cohort of 35 adults with heterogeneous idiopathic generalized epilepsies and 40 healthy adult controls. Taking emergent synchrony across the global network as a proxy for seizures, our study finds that the critical strength of coupling required to synchronize the global network is significantly decreased for the epilepsy cohort for functional networks inferred from both theta (3-6 Hz and low-alpha (6-9 Hz bands. We further identify left frontal regions as a potential driver of seizure activity within these networks. We also explore the ability of our method to identify individuals with epilepsy, observing up to 80% predictive power through use of receiver operating characteristic analysis. Collectively these findings demonstrate that a computer model based analysis of routine clinical EEG provides significant additional information beyond standard clinical interpretation, which should ultimately enable a more appropriate mechanistic
Modelling of windmill induction generators in dynamic simulation programs
DEFF Research Database (Denmark)
Akhmatov, Vladislav; Knudsen, Hans
1999-01-01
with and without a model of the mechanical shaft. The reason for the discrepancies are explained, and it is shown that the phenomenon is due partly to the presence of DC offset currents in the induction machine stator, and partly to the mechanical shaft system of the wind turbine and the generator rotor......For AC networks with large amounts of induction generators-in case of e.g. windmills-the paper demonstrates a significant discrepancy in the simulated voltage recovery after faults in weak networks, when comparing result obtained with dynamic stability programs and transient programs, respectively....... It is shown that it is possible to include a transient model in dynamic stability programs and thus obtain correct results also in dynamic stability programs. A mechanical model of the shaft system has also been included in the generator model...
Neural dynamics of feedforward and feedback processing in figure-ground segregation.
Layton, Oliver W; Mingolla, Ennio; Yazdanbakhsh, Arash
2014-01-01
Determining whether a region belongs to the interior or exterior of a shape (figure-ground segregation) is a core competency of the primate brain, yet the underlying mechanisms are not well understood. Many models assume that figure-ground segregation occurs by assembling progressively more complex representations through feedforward connections, with feedback playing only a modulatory role. We present a dynamical model of figure-ground segregation in the primate ventral stream wherein feedback plays a crucial role in disambiguating a figure's interior and exterior. We introduce a processing strategy whereby jitter in RF center locations and variation in RF sizes is exploited to enhance and suppress neural activity inside and outside of figures, respectively. Feedforward projections emanate from units that model cells in V4 known to respond to the curvature of boundary contours (curved contour cells), and feedback projections from units predicted to exist in IT that strategically group neurons with different RF sizes and RF center locations (teardrop cells). Neurons (convex cells) that preferentially respond when centered on a figure dynamically balance feedforward (bottom-up) information and feedback from higher visual areas. The activation is enhanced when an interior portion of a figure is in the RF via feedback from units that detect closure in the boundary contours of a figure. Our model produces maximal activity along the medial axis of well-known figures with and without concavities, and inside algorithmically generated shapes. Our results suggest that the dynamic balancing of feedforward signals with the specific feedback mechanisms proposed by the model is crucial for figure-ground segregation.
Neural Dynamics of Feedforward and Feedback Processing in Figure-Ground Segregation
Directory of Open Access Journals (Sweden)
Oliver W. Layton
2014-09-01
Full Text Available Determining whether a region belongs to the interior or exterior of a shape (figure-ground segregation is a core competency of the primate brain, yet the underlying mechanisms are not well understood. Many models assume that figure-ground segregation occurs by assembling progressively more complex representations through feedforward connections, with feedback playing only a modulatory role. We present a dynamical model of figure-ground segregation in the primate ventral stream wherein feedback plays a crucial role in disambiguating a figure’s interior and exterior. We introduce a processing strategy whereby jitter in RF center locations and variation in RF sizes is exploited to enhance and suppress neural activity inside and outside of figures, respectively. Feedforward projections emanate from units that model cells in V4 known to respond to the curvature of boundary contours (curved contour cells, and feedback projections from units predicted to exist in IT that strategically group neurons with different RF sizes and RF center locations (teardrop cells. Neurons (convex cells that preferentially respond when centered on a figure dynamically balance feedforward (bottom-up information and feedback from higher visual areas. The activation is enhanced when an interior portion of a figure is in the RF via feedback from units that detect closure in the boundary contours of a figure. Our model produces maximal activity along the medial axis of well-known figures with and without concavities, and inside algorithmically generated shapes. Our results suggest that the dynamic balancing of feedforward signals with the specific feedback mechanisms proposed by the model is crucial for figure-ground segregation.
Neural dynamics of feedforward and feedback processing in figure-ground segregation
Layton, Oliver W.; Mingolla, Ennio; Yazdanbakhsh, Arash
2014-01-01
Determining whether a region belongs to the interior or exterior of a shape (figure-ground segregation) is a core competency of the primate brain, yet the underlying mechanisms are not well understood. Many models assume that figure-ground segregation occurs by assembling progressively more complex representations through feedforward connections, with feedback playing only a modulatory role. We present a dynamical model of figure-ground segregation in the primate ventral stream wherein feedback plays a crucial role in disambiguating a figure's interior and exterior. We introduce a processing strategy whereby jitter in RF center locations and variation in RF sizes is exploited to enhance and suppress neural activity inside and outside of figures, respectively. Feedforward projections emanate from units that model cells in V4 known to respond to the curvature of boundary contours (curved contour cells), and feedback projections from units predicted to exist in IT that strategically group neurons with different RF sizes and RF center locations (teardrop cells). Neurons (convex cells) that preferentially respond when centered on a figure dynamically balance feedforward (bottom-up) information and feedback from higher visual areas. The activation is enhanced when an interior portion of a figure is in the RF via feedback from units that detect closure in the boundary contours of a figure. Our model produces maximal activity along the medial axis of well-known figures with and without concavities, and inside algorithmically generated shapes. Our results suggest that the dynamic balancing of feedforward signals with the specific feedback mechanisms proposed by the model is crucial for figure-ground segregation. PMID:25346703
Xu, Bin; Yang, Daipeng; Shi, Zhongke; Pan, Yongping; Chen, Badong; Sun, Fuchun
2017-09-25
This paper investigates the online recorded data-based composite neural control of uncertain strict-feedback systems using the backstepping framework. In each step of the virtual control design, neural network (NN) is employed for uncertainty approximation. In previous works, most designs are directly toward system stability ignoring the fact how the NN is working as an approximator. In this paper, to enhance the learning ability, a novel prediction error signal is constructed to provide additional correction information for NN weight update using online recorded data. In this way, the neural approximation precision is highly improved, and the convergence speed can be faster. Furthermore, the sliding mode differentiator is employed to approximate the derivative of the virtual control signal, and thus, the complex analysis of the backstepping design can be avoided. The closed-loop stability is rigorously established, and the boundedness of the tracking error can be guaranteed. Through simulation of hypersonic flight dynamics, the proposed approach exhibits better tracking performance.
Program packages for dynamics systems analysis and design
International Nuclear Information System (INIS)
Athani, V.V.
1976-01-01
The development of computer program packages for dynamic system analysis and design are reported. The purpose of developing these program packages is to take the burden of writing computer programs off the mind of the system engineer and to enable him to concentrate on his main system analysis and design work. Towards this end, four standard computer program packages have been prepared : (1) TFANA - starting from system transfer function this program computes transient response, frequency response, root locus and stability by Routh Hurwitz criterion, (2) TFSYN - classical synthesis using algebraic method of Shipley, (3) MODANA - starting from state equations of the system this program computes solution of state equations, controllability, observability and stability, (4) OPTCON - This program obtains solutions of (i) linear regulator problem, (ii) servomechanism problems and (iii) problem of pole placement. The paper describes these program packages with the help of flowcharts and illustrates their use with the help of examples. (author)
Samarasinghe, S; Ling, H
In this paper, we show how to extend our previously proposed novel continuous time Recurrent Neural Networks (RNN) approach that retains the advantage of continuous dynamics offered by Ordinary Differential Equations (ODE) while enabling parameter estimation through adaptation, to larger signalling networks using a modular approach. Specifically, the signalling network is decomposed into several sub-models based on important temporal events in the network. Each sub-model is represented by the proposed RNN and trained using data generated from the corresponding ODE model. Trained sub-models are assembled into a whole system RNN which is then subjected to systems dynamics and sensitivity analyses. The concept is illustrated by application to G1/S transition in cell cycle using Iwamoto et al. (2008) ODE model. We decomposed the G1/S network into 3 sub-models: (i) E2F transcription factor release; (ii) E2F and CycE positive feedback loop for elevating cyclin levels; and (iii) E2F and CycA negative feedback to degrade E2F. The trained sub-models accurately represented system dynamics and parameters were in good agreement with the ODE model. The whole system RNN however revealed couple of parameters contributing to compounding errors due to feedback and required refinement to sub-model 2. These related to the reversible reaction between CycE/CDK2 and p27, its inhibitor. The revised whole system RNN model very accurately matched dynamics of the ODE system. Local sensitivity analysis of the whole system model further revealed the most dominant influence of the above two parameters in perturbing G1/S transition, giving support to a recent hypothesis that the release of inhibitor p27 from Cyc/CDK complex triggers cell cycle stage transition. To make the model useful in a practical setting, we modified each RNN sub-model with a time relay switch to facilitate larger interval input data (≈20min) (original model used data for 30s or less) and retrained them that produced
Curley, J Lowry; Jennings, Scott R; Moore, Michael J
2011-02-11
Increasingly, patterned cell culture environments are becoming a relevant technique to study cellular characteristics, and many researchers believe in the need for 3D environments to represent in vitro experiments which better mimic in vivo qualities. Studies in fields such as cancer research, neural engineering, cardiac physiology, and cell-matrix interaction have shown cell behavior differs substantially between traditional monolayer cultures and 3D constructs. Hydrogels are used as 3D environments because of their variety, versatility and ability to tailor molecular composition through functionalization. Numerous techniques exist for creation of constructs as cell-supportive matrices, including electrospinning, elastomer stamps, inkjet printing, additive photopatterning, static photomask projection-lithography, and dynamic mask microstereolithography. Unfortunately, these methods involve multiple production steps and/or equipment not readily adaptable to conventional cell and tissue culture methods. The technique employed in this protocol adapts the latter two methods, using a digital micromirror device (DMD) to create dynamic photomasks for crosslinking geometrically specific poly-(ethylene glycol) (PEG) hydrogels, induced through UV initiated free radical polymerization. The resulting "2.5D" structures provide a constrained 3D environment for neural growth. We employ a dual-hydrogel approach, where PEG serves as a cell-restrictive region supplying structure to an otherwise shapeless but cell-permissive self-assembling gel made from either Puramatrix or agarose. The process is a quick simple one step fabrication which is highly reproducible and easily adapted for use with conventional cell culture methods and substrates. Whole tissue explants, such as embryonic dorsal root ganglia (DRG), can be incorporated into the dual hydrogel constructs for experimental assays such as neurite outgrowth. Additionally, dissociated cells can be encapsulated in the
Macroscopic reality and the dynamical reduction program
International Nuclear Information System (INIS)
Ghirardi, G.C.
1995-10-01
With reference to recently proposed theoretical models accounting for reduction in terms of a unified dynamics governing all physical processes, we analyze the problem of working out a worldview accommodating our knowledge about natural phenomena. We stress the relevant conceptual differences between the considered models and standard quantum mechanics. In spite of the fact that both theories describe individual physical systems within a genuine Hilbert space framework, the nice features of spontaneous reduction theories drastically limit the class of states which are dynamically stable. This allows one to work out a description of the world in terms of a mass density function in ordinary configuration space. A topology based on this function and differing radically from the one characterizing the Hilbert space is introduced and in terms of it the idea of similarity of macroscopic situations is made precise. Finally it is shown how the formalism and the proposed interpretation yield a natural criterion for establishing the psychophysical parallelism. The conclusion is that, within the considered theoretical models and at the nonrelativistic level, one can satisfy all sensible requirements for a consistent, unified, and objective description of reality at the macroscopic level. (author). 16 refs
Macroscopic reality and the dynamical reduction program
Energy Technology Data Exchange (ETDEWEB)
Ghirardi, G C
1995-10-01
With reference to recently proposed theoretical models accounting for reduction in terms of a unified dynamics governing all physical processes, we analyze the problem of working out a worldview accommodating our knowledge about natural phenomena. We stress the relevant conceptual differences between the considered models and standard quantum mechanics. In spite of the fact that both theories describe individual physical systems within a genuine Hilbert space framework, the nice features of spontaneous reduction theories drastically limit the class of states which are dynamically stable. This allows one to work out a description of the world in terms of a mass density function in ordinary configuration space. A topology based on this function and differing radically from the one characterizing the Hilbert space is introduced and in terms of it the idea of similarity of macroscopic situations is made precise. Finally it is shown how the formalism and the proposed interpretation yield a natural criterion for establishing the psychophysical parallelism. The conclusion is that, within the considered theoretical models and at the nonrelativistic level, one can satisfy all sensible requirements for a consistent, unified, and objective description of reality at the macroscopic level. (author). 16 refs.
The application of dynamic programming in production planning
Wu, Run
2017-05-01
Nowadays, with the popularity of the computers, various industries and fields are widely applying computer information technology, which brings about huge demand for a variety of application software. In order to develop software meeting various needs with most economical cost and best quality, programmers must design efficient algorithms. A superior algorithm can not only soul up one thing, but also maximize the benefits and generate the smallest overhead. As one of the common algorithms, dynamic programming algorithms are used to solving problems with some sort of optimal properties. When solving problems with a large amount of sub-problems that needs repetitive calculations, the ordinary sub-recursive method requires to consume exponential time, and dynamic programming algorithm can reduce the time complexity of the algorithm to the polynomial level, according to which we can conclude that dynamic programming algorithm is a very efficient compared to other algorithms reducing the computational complexity and enriching the computational results. In this paper, we expound the concept, basic elements, properties, core, solving steps and difficulties of the dynamic programming algorithm besides, establish the dynamic programming model of the production planning problem.
Interplay between autophagy and programmed cell death in mammalian neural stem cells
Directory of Open Access Journals (Sweden)
Kyung Min Chung
2013-08-01
Full Text Available Mammalian neural stem cells (NSCs are of particular interestbecause of their role in brain development and function. Recentfindings suggest the intimate involvement of programmed celldeath (PCD in the turnover of NSCs. However, the underlyingmechanisms of PCD are largely unknown. Although apoptosis isthe best-defined form of PCD, accumulating evidence hasrevealed a wide spectrum of PCD encompassing apoptosis,autophagic cell death (ACD and necrosis. This mini-reviewaims to illustrate a unique regulation of PCD in NSCs. Theresults of our recent studies on autophagic death of adulthippocampal neural stem (HCN cells are also discussed. HCNcell death following insulin withdrawal clearly provides areliable model that can be used to analyze the molecularmechanisms of ACD in the larger context of PCD. Moreresearch efforts are needed to increase our understanding of themolecular basis of NSC turnover under degenerating conditions,such as aging, stress and neurological diseases. Efforts aimed atprotecting and harnessing endogenous NSCs will offer novelopportunities for the development of new therapeutic strategiesfor neuropathologies. [BMB Reports 2013; 46(8: 383-390
Ling, Hong; Samarasinghe, Sandhya; Kulasiri, Don
2013-12-01
Understanding the control of cellular networks consisting of gene and protein interactions and their emergent properties is a central activity of Systems Biology research. For this, continuous, discrete, hybrid, and stochastic methods have been proposed. Currently, the most common approach to modelling accurate temporal dynamics of networks is ordinary differential equations (ODE). However, critical limitations of ODE models are difficulty in kinetic parameter estimation and numerical solution of a large number of equations, making them more suited to smaller systems. In this article, we introduce a novel recurrent artificial neural network (RNN) that addresses above limitations and produces a continuous model that easily estimates parameters from data, can handle a large number of molecular interactions and quantifies temporal dynamics and emergent systems properties. This RNN is based on a system of ODEs representing molecular interactions in a signalling network. Each neuron represents concentration change of one molecule represented by an ODE. Weights of the RNN correspond to kinetic parameters in the system and can be adjusted incrementally during network training. The method is applied to the p53-Mdm2 oscillation system - a crucial component of the DNA damage response pathways activated by a damage signal. Simulation results indicate that the proposed RNN can successfully represent the behaviour of the p53-Mdm2 oscillation system and solve the parameter estimation problem with high accuracy. Furthermore, we presented a modified form of the RNN that estimates parameters and captures systems dynamics from sparse data collected over relatively large time steps. We also investigate the robustness of the p53-Mdm2 system using the trained RNN under various levels of parameter perturbation to gain a greater understanding of the control of the p53-Mdm2 system. Its outcomes on robustness are consistent with the current biological knowledge of this system. As more
Kasabov, Nikola; Dhoble, Kshitij; Nuntalid, Nuttapod; Indiveri, Giacomo
2013-05-01
On-line learning and recognition of spatio- and spectro-temporal data (SSTD) is a very challenging task and an important one for the future development of autonomous machine learning systems with broad applications. Models based on spiking neural networks (SNN) have already proved their potential in capturing spatial and temporal data. One class of them, the evolving SNN (eSNN), uses a one-pass rank-order learning mechanism and a strategy to evolve a new spiking neuron and new connections to learn new patterns from incoming data. So far these networks have been mainly used for fast image and speech frame-based recognition. Alternative spike-time learning methods, such as Spike-Timing Dependent Plasticity (STDP) and its variant Spike Driven Synaptic Plasticity (SDSP), can also be used to learn spatio-temporal representations, but they usually require many iterations in an unsupervised or semi-supervised mode of learning. This paper introduces a new class of eSNN, dynamic eSNN, that utilise both rank-order learning and dynamic synapses to learn SSTD in a fast, on-line mode. The paper also introduces a new model called deSNN, that utilises rank-order learning and SDSP spike-time learning in unsupervised, supervised, or semi-supervised modes. The SDSP learning is used to evolve dynamically the network changing connection weights that capture spatio-temporal spike data clusters both during training and during recall. The new deSNN model is first illustrated on simple examples and then applied on two case study applications: (1) moving object recognition using address-event representation (AER) with data collected using a silicon retina device; (2) EEG SSTD recognition for brain-computer interfaces. The deSNN models resulted in a superior performance in terms of accuracy and speed when compared with other SNN models that use either rank-order or STDP learning. The reason is that the deSNN makes use of both the information contained in the order of the first input spikes
Han, Zifa; Leung, Chi Sing; So, Hing Cheung; Constantinides, Anthony George
2017-08-15
A commonly used measurement model for locating a mobile source is time-difference-of-arrival (TDOA). As each TDOA measurement defines a hyperbola, it is not straightforward to compute the mobile source position due to the nonlinear relationship in the measurements. This brief exploits the Lagrange programming neural network (LPNN), which provides a general framework to solve nonlinear constrained optimization problems, for the TDOA-based localization. The local stability of the proposed LPNN solution is also analyzed. Simulation results are included to evaluate the localization accuracy of the LPNN scheme by comparing with the state-of-the-art methods and the optimality benchmark of Cramér-Rao lower bound.
Neural Encoding and Decoding with Deep Learning for Dynamic Natural Vision.
Wen, Haiguang; Shi, Junxing; Zhang, Yizhen; Lu, Kun-Han; Cao, Jiayue; Liu, Zhongming
2017-10-20
Convolutional neural network (CNN) driven by image recognition has been shown to be able to explain cortical responses to static pictures at ventral-stream areas. Here, we further showed that such CNN could reliably predict and decode functional magnetic resonance imaging data from humans watching natural movies, despite its lack of any mechanism to account for temporal dynamics or feedback processing. Using separate data, encoding and decoding models were developed and evaluated for describing the bi-directional relationships between the CNN and the brain. Through the encoding models, the CNN-predicted areas covered not only the ventral stream, but also the dorsal stream, albeit to a lesser degree; single-voxel response was visualized as the specific pixel pattern that drove the response, revealing the distinct representation of individual cortical location; cortical activation was synthesized from natural images with high-throughput to map category representation, contrast, and selectivity. Through the decoding models, fMRI signals were directly decoded to estimate the feature representations in both visual and semantic spaces, for direct visual reconstruction and semantic categorization, respectively. These results corroborate, generalize, and extend previous findings, and highlight the value of using deep learning, as an all-in-one model of the visual cortex, to understand and decode natural vision. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
The neural dynamics underlying the interpersonal effects of emotional expression on decision making.
Chen, Xuhai; Zheng, Tingting; Han, Lingzi; Chang, Yingchao; Luo, Yangmei
2017-04-20
Although numerous studies explore the effects of emotion on decision-making, the existing research has mainly focused on the influence of intrapersonal emotions, leaving the influence of one person's emotions on another's decisions underestimated. To specify how interpersonal emotions shape decision-making and delineate the underlying neural dynamics involved, the present study examined brain responses to utilitarian feedback combined with angry or happy faces in competitive and cooperative contexts. Behavioral results showed that participants responded slower following losses than wins when competitors express happiness but responded faster following losses than wins when cooperators express anger. Importantly, angry faces in competitive context reversed the differentiation pattern of feedback-related negativity (FRN) between losses and wins and diminished the difference between losses and wins on both P300 and theta power, but only diminished the difference on FRN between losses and wins in cooperative context. However, when partner displays happiness, losses versus wins elicited larger FRN and theta power in competitive context but smaller P300 in both contexts. These results suggest that interpersonal emotions shape decisions during both automatic motivational salience valuation (FRN) and conscious cognitive appraisal (P300) stages of processing, in which different emotional expressions exert interpersonal influence through different routes.
Directory of Open Access Journals (Sweden)
Xiaoyan Liao
2017-06-01
Full Text Available This study used event-related potentials (ERPs to investigate the effects of age on neural temporal dynamics of processing task-relevant facial expressions and their relationship to cognitive functions. Negative (sad, afraid, angry, and disgusted, positive (happy, and neutral faces were presented to 30 older and 31 young participants who performed a facial emotion categorization task. Behavioral and ERP indices of facial emotion processing were analyzed. An enhanced N170 for negative faces, in addition to intact right-hemispheric N170 for positive faces, was observed in older adults relative to their younger counterparts. Moreover, older adults demonstrated an attenuated within-group N170 laterality effect for neutral faces, while younger adults showed the opposite pattern. Furthermore, older adults exhibited sustained temporo-occipital negativity deflection over the time range of 200–500 ms post-stimulus, while young adults showed posterior positivity and subsequent emotion-specific frontal negativity deflections. In older adults, decreased accuracy for labeling negative faces was positively correlated with Montreal Cognitive Assessment Scores, and accuracy for labeling neutral faces was negatively correlated with age. These findings suggest that older people may exert more effort in structural encoding for negative faces and there are different response patterns for the categorization of different facial emotions. Cognitive functioning may be related to facial emotion categorization deficits observed in older adults. This may not be attributable to positivity effects: it may represent a selective deficit for the processing of negative facial expressions in older adults.
Blind Source Separation and Dynamic Fuzzy Neural Network for Fault Diagnosis in Machines
International Nuclear Information System (INIS)
Huang, Haifeng; Ouyang, Huajiang; Gao, Hongli
2015-01-01
Many assessment and detection methods are used to diagnose faults in machines. High accuracy in fault detection and diagnosis can be achieved by using numerical methods with noise-resistant properties. However, to some extent, noise always exists in measured data on real machines, which affects the identification results, especially in the diagnosis of early- stage faults. In view of this situation, a damage assessment method based on blind source separation and dynamic fuzzy neural network (DFNN) is presented to diagnose the early-stage machinery faults in this paper. In the processing of measurement signals, blind source separation is adopted to reduce noise. Then sensitive features of these faults are obtained by extracting low dimensional manifold characteristics from the signals. The model for fault diagnosis is established based on DFNN. Furthermore, on-line computation is accelerated by means of compressed sensing. Numerical vibration signals of ball screw fault modes are processed on the model for mechanical fault diagnosis and the results are in good agreement with the actual condition even at the early stage of fault development. This detection method is very useful in practice and feasible for early-stage fault diagnosis. (paper)
Local community detection as pattern restoration by attractor dynamics of recurrent neural networks.
Okamoto, Hiroshi
2016-08-01
Densely connected parts in networks are referred to as "communities". Community structure is a hallmark of a variety of real-world networks. Individual communities in networks form functional modules of complex systems described by networks. Therefore, finding communities in networks is essential to approaching and understanding complex systems described by networks. In fact, network science has made a great deal of effort to develop effective and efficient methods for detecting communities in networks. Here we put forward a type of community detection, which has been little examined so far but will be practically useful. Suppose that we are given a set of source nodes that includes some (but not all) of "true" members of a particular community; suppose also that the set includes some nodes that are not the members of this community (i.e., "false" members of the community). We propose to detect the community from this "imperfect" and "inaccurate" set of source nodes using attractor dynamics of recurrent neural networks. Community detection by the proposed method can be viewed as restoration of the original pattern from a deteriorated pattern, which is analogous to cue-triggered recall of short-term memory in the brain. We demonstrate the effectiveness of the proposed method using synthetic networks and real social networks for which correct communities are known. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
El-Nagar, Ahmad M
2018-01-01
In this study, a novel structure of a recurrent interval type-2 Takagi-Sugeno-Kang (TSK) fuzzy neural network (FNN) is introduced for nonlinear dynamic and time-varying systems identification. It combines the type-2 fuzzy sets (T2FSs) and a recurrent FNN to avoid the data uncertainties. The fuzzy firing strengths in the proposed structure are returned to the network input as internal variables. The interval type-2 fuzzy sets (IT2FSs) is used to describe the antecedent part for each rule while the consequent part is a TSK-type, which is a linear function of the internal variables and the external inputs with interval weights. All the type-2 fuzzy rules for the proposed RIT2TSKFNN are learned on-line based on structure and parameter learning, which are performed using the type-2 fuzzy clustering. The antecedent and consequent parameters of the proposed RIT2TSKFNN are updated based on the Lyapunov function to achieve network stability. The obtained results indicate that our proposed network has a small root mean square error (RMSE) and a small integral of square error (ISE) with a small number of rules and a small computation time compared with other type-2 FNNs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Dynamic indoor thermal comfort model identification based on neural computing PMV index
International Nuclear Information System (INIS)
Sahari, K S Mohamed; Jalal, M F Abdul; Homod, R Z; Eng, Y K
2013-01-01
This paper focuses on modelling and simulation of building dynamic thermal comfort control for non-linear HVAC system. Thermal comfort in general refers to temperature and also humidity. However in reality, temperature or humidity is just one of the factors affecting the thermal comfort but not the main measures. Besides, as HVAC control system has the characteristic of time delay, large inertia, and highly nonlinear behaviour, it is difficult to determine the thermal comfort sensation accurately if we use traditional Fanger's PMV index. Hence, Artificial Neural Network (ANN) has been introduced due to its ability to approximate any nonlinear mapping. Using ANN to train, we can get the input-output mapping of HVAC control system or in other word; we can propose a practical approach to identify thermal comfort of a building. Simulations were carried out to validate and verify the proposed method. Results show that the proposed ANN method can track down the desired thermal sensation for a specified condition space.
Degradation Prediction Model Based on a Neural Network with Dynamic Windows
Zhang, Xinghui; Xiao, Lei; Kang, Jianshe
2015-01-01
Tracking degradation of mechanical components is very critical for effective maintenance decision making. Remaining useful life (RUL) estimation is a widely used form of degradation prediction. RUL prediction methods when enough run-to-failure condition monitoring data can be used have been fully researched, but for some high reliability components, it is very difficult to collect run-to-failure condition monitoring data, i.e., from normal to failure. Only a certain number of condition indicators in certain period can be used to estimate RUL. In addition, some existing prediction methods have problems which block RUL estimation due to poor extrapolability. The predicted value converges to a certain constant or fluctuates in certain range. Moreover, the fluctuant condition features also have bad effects on prediction. In order to solve these dilemmas, this paper proposes a RUL prediction model based on neural network with dynamic windows. This model mainly consists of three steps: window size determination by increasing rate, change point detection and rolling prediction. The proposed method has two dominant strengths. One is that the proposed approach does not need to assume the degradation trajectory is subject to a certain distribution. The other is it can adapt to variation of degradation indicators which greatly benefits RUL prediction. Finally, the performance of the proposed RUL prediction model is validated by real field data and simulation data. PMID:25806873
Sridharan, Devarajan; Levitin, Daniel J; Chafe, Chris H; Berger, Jonathan; Menon, Vinod
2007-08-02
The real world presents our sensory systems with a continuous stream of undifferentiated information. Segmentation of this stream at event boundaries is necessary for object identification and feature extraction. Here, we investigate the neural dynamics of event segmentation in entire musical symphonies under natural listening conditions. We isolated time-dependent sequences of brain responses in a 10 s window surrounding transitions between movements of symphonic works. A strikingly right-lateralized network of brain regions showed peak response during the movement transitions when, paradoxically, there was no physical stimulus. Model-dependent and model-free analysis techniques provided converging evidence for activity in two distinct functional networks at the movement transition: a ventral fronto-temporal network associated with detecting salient events, followed in time by a dorsal fronto-parietal network associated with maintaining attention and updating working memory. Our study provides direct experimental evidence for dissociable and causally linked ventral and dorsal networks during event segmentation of ecologically valid auditory stimuli.
The neural dynamics of competition resolution for language production in the prefrontal cortex.
Bourguignon, Nicolas J; Ohashi, Hiroki; Nguyen, Don; Gracco, Vincent L
2018-03-01
Previous research suggests a pivotal role of the prefrontal cortex (PFC) in word selection during tasks of confrontation naming (CN) and verb generation (VG), both of which feature varying degrees of competition between candidate responses. However, discrepancies in prefrontal activity have also been reported between the two tasks, in particular more widespread and intense activation in VG extending into (left) ventrolateral PFC, the functional significance of which remains unclear. We propose that these variations reflect differences in competition resolution processes tied to distinct underlying lexico-semantic operations: Although CN involves selecting lexical entries out of limited sets of alternatives, VG requires exploration of possible semantic relations not readily evident from the object itself, requiring prefrontal areas previously shown to be recruited in top-down retrieval of information from lexico-semantic memory. We tested this hypothesis through combined independent component analysis of functional imaging data and information-theoretic measurements of variations in selection competition associated with participants' performance in overt CN and VG tasks. Selection competition during CN engaged the anterior insula and surrounding opercular tissue, while competition during VG recruited additional activity of left ventrolateral PFC. These patterns remained after controlling for participants' speech onset latencies indicative of possible task differences in mental effort. These findings have implications for understanding the neural-computational dynamics of cognitive control in language production and how it relates to the functional architecture of adaptive behavior. © 2017 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
GEMAN, O.
2014-02-01
Full Text Available Neurological diseases like Alzheimer, epilepsy, Parkinson's disease, multiple sclerosis and other dementias influence the lives of patients, their families and society. Parkinson's disease (PD is a neurodegenerative disease that occurs due to loss of dopamine, a neurotransmitter and slow destruction of neurons. Brain area affected by progressive destruction of neurons is responsible for controlling movements, and patients with PD reveal rigid and uncontrollable gestures, postural instability, small handwriting and tremor. Commercial activity-promoting gaming systems such as the Nintendo Wii and Xbox Kinect can be used as tools for tremor, gait or other biomedical signals acquisitions. They also can aid for rehabilitation in clinical settings. This paper emphasizes the use of intelligent optical sensors or accelerometers in biomedical signal acquisition, and of the specific nonlinear dynamics parameters or fuzzy logic in Parkinson's disease tremor analysis. Nowadays, there is no screening test for early detection of PD. So, we investigated a method to predict PD, based on the image processing of the handwriting belonging to a candidate of PD. For classification and discrimination between healthy people and PD people we used Artificial Neural Networks (Radial Basis Function - RBF and Multilayer Perceptron - MLP and an Adaptive Neuro-Fuzzy Classifier (ANFC. In general, the results may be expressed as a prognostic (risk degree to contact PD.
Directory of Open Access Journals (Sweden)
Shaohua Luo
2014-01-01
Full Text Available This paper is concerned with the problem of the nonlinear dynamic surface control (DSC of chaos based on the minimum weights of RBF neural network for the permanent magnet synchronous motor system (PMSM wherein the unknown parameters, disturbances, and chaos are presented. RBF neural network is used to approximate the nonlinearities and an adaptive law is employed to estimate unknown parameters. Then, a simple and effective controller is designed by introducing dynamic surface control technique on the basis of first-order filters. Asymptotically tracking stability in the sense of uniformly ultimate boundedness is achieved in a short time. Finally, the performance of the proposed controller is testified through simulation results.
Yan, Zheng; Wang, Jun
2014-03-01
This paper presents a neural network approach to robust model predictive control (MPC) for constrained discrete-time nonlinear systems with unmodeled dynamics affected by bounded uncertainties. The exact nonlinear model of underlying process is not precisely known, but a partially known nominal model is available. This partially known nonlinear model is first decomposed to an affine term plus an unknown high-order term via Jacobian linearization. The linearization residue combined with unmodeled dynamics is then modeled using an extreme learning machine via supervised learning. The minimax methodology is exploited to deal with bounded uncertainties. The minimax optimization problem is reformulated as a convex minimization problem and is iteratively solved by a two-layer recurrent neural network. The proposed neurodynamic approach to nonlinear MPC improves the computational efficiency and sheds a light for real-time implementability of MPC technology. Simulation results are provided to substantiate the effectiveness and characteristics of the proposed approach.
Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana M; Dan, Bernard; McIntyre, Joseph; Cheron, Guy
2014-01-01
In this study we employed a dynamic recurrent neural network (DRNN) in a novel fashion to reveal characteristics of control modules underlying the generation of muscle activations when drawing figures with the outstretched arm. We asked healthy human subjects to perform four different figure-eight movements in each of two workspaces (frontal plane and sagittal plane). We then trained a DRNN to predict the movement of the wrist from information in the EMG signals from seven different muscles. We trained different instances of the same network on a single movement direction, on all four movement directions in a single movement plane, or on all eight possible movement patterns and looked at the ability of the DRNN to generalize and predict movements for trials that were not included in the training set. Within a single movement plane, a DRNN trained on one movement direction was not able to predict movements of the hand for trials in the other three directions, but a DRNN trained simultaneously on all four movement directions could generalize across movement directions within the same plane. Similarly, the DRNN was able to reproduce the kinematics of the hand for both movement planes, but only if it was trained on examples performed in each one. As we will discuss, these results indicate that there are important dynamical constraints on the mapping of EMG to hand movement that depend on both the time sequence of the movement and on the anatomical constraints of the musculoskeletal system. In a second step, we injected EMG signals constructed from different synergies derived by the PCA in order to identify the mechanical significance of each of these components. From these results, one can surmise that discrete-rhythmic movements may be constructed from three different fundamental modules, one regulating the co-activation of all muscles over the time span of the movement and two others elliciting patterns of reciprocal activation operating in orthogonal directions.
The dynamics of long-term transgene expression in engrafted neural stem cells.
Lee, Jean-Pyo; Tsai, David J; In Park, Kook; Harvey, Alan R; Snyder, Evan Y
2009-07-01
To assess the dynamics and confounding variables that influence transgene expression in neural stem cells (NSCs), we generated distinct NSC clones from the same pool of cells, carrying the same reporter gene transcribed from the same promoter, transduced by the same retroviral vector, and transplanted similarly at the same differentiation state, at the same time and location, into the brains of newborn mouse littermates, and monitored in parallel for over a year in vivo (without immunosuppression). Therefore, the sole variables were transgene chromosomal insertion site and copy number. We then adapted and optimized a technique that tests, at the single cell level, persistence of stem cell-mediated transgene expression in vivo based on correlating the presence of the transgene in a given NSC's nucleus (by fluorescence in situ hybridization [FISH]) with the frequency of that transgene's product within the same cell (by combined immunohistochemistry [IHC]). Under the above-stated conditions, insertion site is likely the most contributory variable dictating transgene downregulation in an NSC after 3 months in vivo. We also observed that this obstacle could be effectively and safely counteracted by simple serial infections (as few as three) inserting redundant copies of the transgene into the prospective donor NSC. (The preservation of normal growth control mechanisms and an absence of tumorigenic potential can be readily screened and ensured ex vivo prior to transplantation.) The combined FISH/IHC strategy employed here for monitoring the dynamics of transgene expression at the single cell level in vivo may be used for other types of therapeutic and housekeeping genes in endogenous and exogenous stem cells of many organs and lineages. Copyright 2009 Wiley-Liss, Inc.
Approximate dynamic programming solving the curses of dimensionality
Powell, Warren B
2007-01-01
Warren B. Powell, PhD, is Professor of Operations Research and Financial Engineering at Princeton University, where he is founder and Director of CASTLE Laboratory, a research unit that works with industrial partners to test new ideas found in operations research. The recipient of the 2004 INFORMS Fellow Award, Dr. Powell has authored over 100 refereed publications on stochastic optimization, approximate dynamic programming, and dynamic resource management.
Data systems and computer science: Neural networks base R/T program overview
Gulati, Sandeep
1991-01-01
The research base, in the U.S. and abroad, for the development of neural network technology is discussed. The technical objectives are to develop and demonstrate adaptive, neural information processing concepts. The leveraging of external funding is also discussed.
Dynamic electricity pricing—Which programs do consumers prefer?
International Nuclear Information System (INIS)
Dütschke, Elisabeth; Paetz, Alexandra-Gwyn
2013-01-01
Dynamic pricing is being discussed as one method of demand side management (DSM) which could be crucial for integrating more renewable energy sources into the electricity system. At the same time, there have been very few analyses of consumer preferences in this regard: Which type of pricing program are consumers most likely to choose and why? This paper sheds some light on these issues based on two empirical studies from Germany: (1) A questionnaire study including a conjoint analysis-design and (2) A field experiment with test-residents of a smart home laboratory. The results show that consumers are open to dynamic pricing, but prefer simple programs to complex and highly dynamic ones; smart home technologies including demand automation are seen as a prerequisite for DSM. The study provides some indications that consumers might be more willing to accept more dynamic pricing programs if they have the chance to experience in practice how these can be managed in everyday life. At the same time, the individual and societal advantages of such programs are not obvious to consumers. For this reason, any market roll-out will need to be accompanied by convincing communication and information campaigns to ensure that these advantages are perceived. - Highlights: • Little is known about consumer preferences on dynamic pricing. • Two studies are conducted to analyze this topic. • A survey shows that consumers without experience prefer conventional programs. • Test residents of a smart home were more open to dynamic pricing. • They also prefer well-structured programs
Neural Architectures for Control
Peterson, James K.
1991-01-01
The cerebellar model articulated controller (CMAC) neural architectures are shown to be viable for the purposes of real-time learning and control. Software tools for the exploration of CMAC performance are developed for three hardware platforms, the MacIntosh, the IBM PC, and the SUN workstation. All algorithm development was done using the C programming language. These software tools were then used to implement an adaptive critic neuro-control design that learns in real-time how to back up a trailer truck. The truck backer-upper experiment is a standard performance measure in the neural network literature, but previously the training of the controllers was done off-line. With the CMAC neural architectures, it was possible to train the neuro-controllers on-line in real-time on a MS-DOS PC 386. CMAC neural architectures are also used in conjunction with a hierarchical planning approach to find collision-free paths over 2-D analog valued obstacle fields. The method constructs a coarse resolution version of the original problem and then finds the corresponding coarse optimal path using multipass dynamic programming. CMAC artificial neural architectures are used to estimate the analog transition costs that dynamic programming requires. The CMAC architectures are trained in real-time for each obstacle field presented. The coarse optimal path is then used as a baseline for the construction of a fine scale optimal path through the original obstacle array. These results are a very good indication of the potential power of the neural architectures in control design. In order to reach as wide an audience as possible, we have run a seminar on neuro-control that has met once per week since 20 May 1991. This seminar has thoroughly discussed the CMAC architecture, relevant portions of classical control, back propagation through time, and adaptive critic designs.
Step by step parallel programming method for molecular dynamics code
International Nuclear Information System (INIS)
Orii, Shigeo; Ohta, Toshio
1996-07-01
Parallel programming for a numerical simulation program of molecular dynamics is carried out with a step-by-step programming technique using the two phase method. As a result, within the range of a certain computing parameters, it is found to obtain parallel performance by using the level of parallel programming which decomposes the calculation according to indices of do-loops into each processor on the vector parallel computer VPP500 and the scalar parallel computer Paragon. It is also found that VPP500 shows parallel performance in wider range computing parameters. The reason is that the time cost of the program parts, which can not be reduced by the do-loop level of the parallel programming, can be reduced to the negligible level by the vectorization. After that, the time consuming parts of the program are concentrated on less parts that can be accelerated by the do-loop level of the parallel programming. This report shows the step-by-step parallel programming method and the parallel performance of the molecular dynamics code on VPP500 and Paragon. (author)
Abdelkarim M. Ertiame; D. W. Yu; D. L. Yu; J. B. Gomm
2015-01-01
In this paper, a robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor, when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics, and using the weighted sum-squared prediction error as the residual. The Recursive Orthogonal Least Squares algorithm (ROLS) is emplo...
Fast and Cache-Oblivious Dynamic Programming with Local Dependencies
DEFF Research Database (Denmark)
Bille, Philip; Stöckel, Morten
2012-01-01
are widely used in bioinformatics to compare DNA and protein sequences. These problems can all be solved using essentially the same dynamic programming scheme over a two-dimensional matrix, where each entry depends locally on at most 3 neighboring entries. We present a simple, fast, and cache......-oblivious algorithm for this type of local dynamic programming suitable for comparing large-scale strings. Our algorithm outperforms the previous state-of-the-art solutions. Surprisingly, our new simple algorithm is competitive with a complicated, optimized, and tuned implementation of the best cache-aware algorithm...
A short note on dynamic programming in a band.
Gibrat, Jean-François
2018-06-15
Third generation sequencing technologies generate long reads that exhibit high error rates, in particular for insertions and deletions which are usually the most difficult errors to cope with. The only exact algorithm capable of aligning sequences with insertions and deletions is a dynamic programming algorithm. In this note, for the sake of efficiency, we consider dynamic programming in a band. We show how to choose the band width in function of the long reads' error rates, thus obtaining an [Formula: see text] algorithm in space and time. We also propose a procedure to decide whether this algorithm, when applied to semi-global alignments, provides the optimal score. We suggest that dynamic programming in a band is well suited to the problem of aligning long reads between themselves and can be used as a core component of methods for obtaining a consensus sequence from the long reads alone. The function implementing the dynamic programming algorithm in a band is available, as a standalone program, at: https://forgemia.inra.fr/jean-francois.gibrat/BAND_DYN_PROG.git.
Directory of Open Access Journals (Sweden)
Toly Chen
2012-01-01
Full Text Available A nonlinear programming and artificial neural network approach is presented in this study to optimize the performance of a job dispatching rule in a wafer fabrication factory. The proposed methodology fuses two existing rules and constructs a nonlinear programming model to choose the best values of parameters in the two rules by dynamically maximizing the standard deviation of the slack, which has been shown to benefit scheduling performance by several studies. In addition, a more effective approach is also applied to estimate the remaining cycle time of a job, which is empirically shown to be conducive to the scheduling performance. The efficacy of the proposed methodology was validated with a simulated case; evidence was found to support its effectiveness. We also suggested several directions in which it can be exploited in the future.
A Dynamic Programming Algorithm for the k-Haplotyping Problem
Institute of Scientific and Technical Information of China (English)
Zhen-ping Li; Ling-yun Wu; Yu-ying Zhao; Xiang-sun Zhang
2006-01-01
The Minimum Fragments Removal (MFR) problem is one of the haplotyping problems: given a set of fragments, remove the minimum number of fragments so that the resulting fragments can be partitioned into k classes of non-conflicting subsets. In this paper, we formulate the k-MFR problem as an integer linear programming problem, and develop a dynamic programming approach to solve the k-MFR problem for both the gapless and gap cases.
Effect of the CTL proliferation program on virus dynamics
DEFF Research Database (Denmark)
Wodarz, Dominik; Thomsen, Allan Randrup
2005-01-01
Experiments have established that CTLs do not require continuous antigenic stimulation for expansion. Instead, responses develop by a process of programmed proliferation which involves approximately 7-10 antigen-independent cell divisions, the generation of effector cells and the differentiation...... virus loads and thus acute symptoms. The reason is that the programmed divisions are independent from antigenic stimulation, and an increase in virus load does not speed up the rate of CTL expansion. We hypothesize that the 7-10 programmed divisions observed in vivo represent an optimal solution...... into memory cells. The effect of this program on the infection dynamics and the advantages gained by the program have, however, not been explored yet. We investigate this with mathematical models. We find that more programmed divisions can make virus clearance more efficient because CTL division continues...
A dynamical systems approach to characterizing the contribution of neurogenesis to neural coding
Directory of Open Access Journals (Sweden)
Merav Stern
2014-03-01
that agreed with experimental measurements (Cameron and McKay, 2001; Deng et al., 2010; Tashiro et al., 2007, with no adjustable parameters. It is also important to note that the optimal regime for encoding input signals is often poised near an instability associated with chaotic dynamics (Aljadeff et al., 2013; Sompolinsky et al., 1988. This observation could explain the frequent occurrence of seizures at the early stages of Alzheimer’s disease (Palop and Mucke, 2010a; Palop and Mucke, 2010b. To that extent, we analytically derive conditions for observing chaotic dynamics in networks with of an arbitrary number of neuron types. The analytical results accurately mirrored simulation in predicting the composition of the network (fraction of young neurons and the difference in their excitability and number of synapses when the networks undergoes transformation from stable to chaotic dynamics (Figure 2. Overall, these results demonstrate how a small fraction of neurons can increase the representational capacity of the neural circuit as a whole in a distributed way and provide a quantitative framework for characterizing more heterogeneous networks composed of multiple types of neurons. Figure 1. The representational capacity of a heterogeneous network. Results are shown as a function of the fraction of young neurons (y-axis and the ratio of their hyper-excitability relatively to mature neurons (x-axis. The synaptic weights between neurons are initially set to random values drawn from a Gaussian distribution. In the case of young neurons we used a distribution with larger variance compared to the value used for mature neurons. The networks were tasked with encoding a desired input pattern; the connection weights were adjusted using the algorithm from (Sussillo and Abbott, 2009. The average representation error divided by the average activity of the network is the “learning capacity index” (color. Black lines are contour plots of equal magnitude. The learning capacity
A note on dynamic programming in accounts receivable management
Dirickx, Y.M.I.; Kistner, K.-P.
1982-01-01
The paper considers a dynamic programming formulation of the accounts receivable problem for single outstanding amounts. An optimal collection policy can be computed efficiently by invoking a “planning horizon” result that determines a time period beyond which the decision process cannot extend. The
PACE: A dynamic programming algorithm for hardware/software partitioning
DEFF Research Database (Denmark)
Knudsen, Peter Voigt; Madsen, Jan
1996-01-01
This paper presents the PACE partitioning algorithm which is used in the LYCOS co-synthesis system for partitioning control/dataflow graphs into hardware and software parts. The algorithm is a dynamic programming algorithm which solves both the problem of minimizing system execution time...
Dynamic Programming Approach for Exact Decision Rule Optimization
Amin, Talha
2013-01-01
This chapter is devoted to the study of an extension of dynamic programming approach that allows sequential optimization of exact decision rules relative to the length and coverage. It contains also results of experiments with decision tables from UCI Machine Learning Repository. © Springer-Verlag Berlin Heidelberg 2013.
Dynamic Frames Based Verification Method for Concurrent Java Programs
Mostowski, Wojciech
2016-01-01
In this paper we discuss a verification method for concurrent Java programs based on the concept of dynamic frames. We build on our earlier work that proposes a new, symbolic permission system for concurrent reasoning and we provide the following new contributions. First, we describe our approach
Optimum workforce-size model using dynamic programming approach
African Journals Online (AJOL)
This paper presents an optimum workforce-size model which determines the minimum number of excess workers (overstaffing) as well as the minimum total recruitment cost during a specified planning horizon. The model is an extension of other existing dynamic programming models for manpower planning in the sense ...
The Functional Programming Language R and the Paradigm of Dynamic Scientific Programming
Trancón y Widemann, B.; Bolz, C.F.; Grelck, C.; Loidl, H.-W.; Peña, R.
2013-01-01
R is an environment and functional programming language for statistical data analysis and visualization. Largely unknown to the functional programming community, it is popular and influential in many empirical sciences. Due to its integrated combination of dynamic and reflective scripting on one
Ziv, Omer; Zaritsky, Assaf; Yaffe, Yakey; Mutukula, Naresh; Edri, Reuven; Elkabetz, Yechiel
2015-10-01
Neural stem cells (NSCs) are progenitor cells for brain development, where cellular spatial composition (cytoarchitecture) and dynamics are hypothesized to be linked to critical NSC capabilities. However, understanding cytoarchitectural dynamics of this process has been limited by the difficulty to quantitatively image brain development in vivo. Here, we study NSC dynamics within Neural Rosettes--highly organized multicellular structures derived from human pluripotent stem cells. Neural rosettes contain NSCs with strong epithelial polarity and are expected to perform apical-basal interkinetic nuclear migration (INM)--a hallmark of cortical radial glial cell development. We developed a quantitative live imaging framework to characterize INM dynamics within rosettes. We first show that the tendency of cells to follow the INM orientation--a phenomenon we referred to as radial organization, is associated with rosette size, presumably via mechanical constraints of the confining structure. Second, early forming rosettes, which are abundant with founder NSCs and correspond to the early proliferative developing cortex, show fast motions and enhanced radial organization. In contrast, later derived rosettes, which are characterized by reduced NSC capacity and elevated numbers of differentiated neurons, and thus correspond to neurogenesis mode in the developing cortex, exhibit slower motions and decreased radial organization. Third, later derived rosettes are characterized by temporal instability in INM measures, in agreement with progressive loss in rosette integrity at later developmental stages. Finally, molecular perturbations of INM by inhibition of actin or non-muscle myosin-II (NMII) reduced INM measures. Our framework enables quantification of cytoarchitecture NSC dynamics and may have implications in functional molecular studies, drug screening, and iPS cell-based platforms for disease modeling.
Directory of Open Access Journals (Sweden)
Omer Ziv
2015-10-01
Full Text Available Neural stem cells (NSCs are progenitor cells for brain development, where cellular spatial composition (cytoarchitecture and dynamics are hypothesized to be linked to critical NSC capabilities. However, understanding cytoarchitectural dynamics of this process has been limited by the difficulty to quantitatively image brain development in vivo. Here, we study NSC dynamics within Neural Rosettes--highly organized multicellular structures derived from human pluripotent stem cells. Neural rosettes contain NSCs with strong epithelial polarity and are expected to perform apical-basal interkinetic nuclear migration (INM--a hallmark of cortical radial glial cell development. We developed a quantitative live imaging framework to characterize INM dynamics within rosettes. We first show that the tendency of cells to follow the INM orientation--a phenomenon we referred to as radial organization, is associated with rosette size, presumably via mechanical constraints of the confining structure. Second, early forming rosettes, which are abundant with founder NSCs and correspond to the early proliferative developing cortex, show fast motions and enhanced radial organization. In contrast, later derived rosettes, which are characterized by reduced NSC capacity and elevated numbers of differentiated neurons, and thus correspond to neurogenesis mode in the developing cortex, exhibit slower motions and decreased radial organization. Third, later derived rosettes are characterized by temporal instability in INM measures, in agreement with progressive loss in rosette integrity at later developmental stages. Finally, molecular perturbations of INM by inhibition of actin or non-muscle myosin-II (NMII reduced INM measures. Our framework enables quantification of cytoarchitecture NSC dynamics and may have implications in functional molecular studies, drug screening, and iPS cell-based platforms for disease modeling.
Noninvasive fetal QRS detection using an echo state network and dynamic programming.
Lukoševičius, Mantas; Marozas, Vaidotas
2014-08-01
We address a classical fetal QRS detection problem from abdominal ECG recordings with a data-driven statistical machine learning approach. Our goal is to have a powerful, yet conceptually clean, solution. There are two novel key components at the heart of our approach: an echo state recurrent neural network that is trained to indicate fetal QRS complexes, and several increasingly sophisticated versions of statistics-based dynamic programming algorithms, which are derived from and rooted in probability theory. We also employ a standard technique for preprocessing and removing maternal ECG complexes from the signals, but do not take this as the main focus of this work. The proposed approach is quite generic and can be extended to other types of signals and annotations. Open-source code is provided.
Noninvasive fetal QRS detection using an echo state network and dynamic programming
International Nuclear Information System (INIS)
Lukoševičius, Mantas; Marozas, Vaidotas
2014-01-01
We address a classical fetal QRS detection problem from abdominal ECG recordings with a data-driven statistical machine learning approach. Our goal is to have a powerful, yet conceptually clean, solution. There are two novel key components at the heart of our approach: an echo state recurrent neural network that is trained to indicate fetal QRS complexes, and several increasingly sophisticated versions of statistics-based dynamic programming algorithms, which are derived from and rooted in probability theory. We also employ a standard technique for preprocessing and removing maternal ECG complexes from the signals, but do not take this as the main focus of this work. The proposed approach is quite generic and can be extended to other types of signals and annotations. Open-source code is provided. (paper)
Intensive Research Program on Advances in Nonsmooth Dynamics 2016
Jeffrey, Mike; Lázaro, J; Olm, Josep
2017-01-01
This volume contains extended abstracts outlining selected talks and other selected presentations given by participants throughout the "Intensive Research Program on Advances in Nonsmooth Dynamics 2016", held at the Centre de Recerca Matemàtica (CRM) in Barcelona from February 1st to April 29th, 2016. They include brief research articles reporting new results, descriptions of preliminary work or open problems, and outlines of prominent discussion sessions. The articles are all the result of direct collaborations initiated during the research program. The topic is the theory and applications of Nonsmooth Dynamics. This includes systems involving elements of: impacting, switching, on/off control, hybrid discrete-continuous dynamics, jumps in physical properties, and many others. Applications include: electronics, climate modeling, life sciences, mechanics, ecology, and more. Numerous new results are reported concerning the dimensionality and robustness of nonsmooth models, shadowing variables, numbers of limit...
Hybrid Semantics of Stochastic Programs with Dynamic Reconfiguration
Directory of Open Access Journals (Sweden)
Alberto Policriti
2009-10-01
Full Text Available We begin by reviewing a technique to approximate the dynamics of stochastic programs --written in a stochastic process algebra-- by a hybrid system, suitable to capture a mixed discrete/continuous evolution. In a nutshell, the discrete dynamics is kept stochastic while the continuous evolution is given in terms of ODEs, and the overall technique, therefore, naturally associates a Piecewise Deterministic Markov Process with a stochastic program. The speciﬁc contribution in this work consists in an increase of the ﬂexibility of the translation scheme, obtained by allowing a dynamic reconﬁguration of the degree of discreteness/continuity of the semantics. We also discuss the relationships of this approach with other hybrid simulation strategies for biochemical systems.
Artificial Neural Networks and Gene Expression Programing based age estimation using facial features
Directory of Open Access Journals (Sweden)
Baddrud Z. Laskar
2015-10-01
Full Text Available This work is about estimating human age automatically through analysis of facial images. It has got a lot of real-world applications. Due to prompt advances in the fields of machine vision, facial image processing, and computer graphics, automatic age estimation via faces in computer is one of the dominant topics these days. This is due to widespread real-world applications, in areas of biometrics, security, surveillance, control, forensic art, entertainment, online customer management and support, along with cosmetology. As it is difficult to estimate the exact age, this system is to estimate a certain range of ages. Four sets of classifications have been used to differentiate a person’s data into one of the different age groups. The uniqueness about this study is the usage of two technologies i.e., Artificial Neural Networks (ANN and Gene Expression Programing (GEP to estimate the age and then compare the results. New methodologies like Gene Expression Programing (GEP have been explored here and significant results were found. The dataset has been developed to provide more efficient results by superior preprocessing methods. This proposed approach has been developed, tested and trained using both the methods. A public data set was used to test the system, FG-NET. The quality of the proposed system for age estimation using facial features is shown by broad experiments on the available database of FG-NET.
Neural dynamics of motion perception: direction fields, apertures, and resonant grouping.
Grossberg, S; Mingolla, E
1993-03-01
A neural network model of global motion segmentation by visual cortex is described. Called the motion boundary contour system (BCS), the model clarifies how ambiguous local movements on a complex moving shape are actively reorganized into a coherent global motion signal. Unlike many previous researchers, we analyze how a coherent motion signal is imparted to all regions of a moving figure, not only to regions at which unambiguous motion signals exist. The model hereby suggests a solution to the global aperture problem. The motion BCS describes how preprocessing of motion signals by a motion oriented contrast (MOC) filter is joined to long-range cooperative grouping mechanisms in a motion cooperative-competitive (MOCC) loop to control phenomena such as motion capture. The motion BCS is computed in parallel with the static BCS of Grossberg and Mingolla (1985a, 1985b, 1987). Homologous properties of the motion BCS and the static BCS, specialized to process motion directions and static orientations, respectively, support a unified explanation of many data about static form perception and motion form perception that have heretofore been unexplained or treated separately. Predictions about microscopic computational differences of the parallel cortical streams V1-->MT and V1-->V2-->MT are made--notably, the magnocellular thick stripe and parvocellular interstripe streams. It is shown how the motion BCS can compute motion directions that may be synthesized from multiple orientations with opposite directions of contrast. Interactions of model simple cells, complex cells, hyper-complex cells, and bipole cells are described, with special emphasis given to new functional roles in direction disambiguation for endstopping at multiple processing stages and to the dynamic interplay of spatially short-range and long-range interactions.
Directory of Open Access Journals (Sweden)
Laura Dempere-Marco
Full Text Available The study of working memory capacity is of outmost importance in cognitive psychology as working memory is at the basis of general cognitive function. Although the working memory capacity limit has been thoroughly studied, its origin still remains a matter of strong debate. Only recently has the role of visual saliency in modulating working memory storage capacity been assessed experimentally and proved to provide valuable insights into working memory function. In the computational arena, attractor networks have successfully accounted for psychophysical and neurophysiological data in numerous working memory tasks given their ability to produce a sustained elevated firing rate during a delay period. Here we investigate the mechanisms underlying working memory capacity by means of a biophysically-realistic attractor network with spiking neurons while accounting for two recent experimental observations: 1 the presence of a visually salient item reduces the number of items that can be held in working memory, and 2 visually salient items are commonly kept in memory at the cost of not keeping as many non-salient items. Our model suggests that working memory capacity is determined by two fundamental processes: encoding of visual items into working memory and maintenance of the encoded items upon their removal from the visual display. While maintenance critically depends on the constraints that lateral inhibition imposes to the mnemonic activity, encoding is limited by the ability of the stimulated neural assemblies to reach a sufficiently high level of excitation, a process governed by the dynamics of competition and cooperation among neuronal pools. Encoding is therefore contingent upon the visual working memory task and has led us to introduce the concept of effective working memory capacity (eWMC in contrast to the maximal upper capacity limit only reached under ideal conditions.
Dempere-Marco, Laura; Melcher, David P; Deco, Gustavo
2012-01-01
The study of working memory capacity is of outmost importance in cognitive psychology as working memory is at the basis of general cognitive function. Although the working memory capacity limit has been thoroughly studied, its origin still remains a matter of strong debate. Only recently has the role of visual saliency in modulating working memory storage capacity been assessed experimentally and proved to provide valuable insights into working memory function. In the computational arena, attractor networks have successfully accounted for psychophysical and neurophysiological data in numerous working memory tasks given their ability to produce a sustained elevated firing rate during a delay period. Here we investigate the mechanisms underlying working memory capacity by means of a biophysically-realistic attractor network with spiking neurons while accounting for two recent experimental observations: 1) the presence of a visually salient item reduces the number of items that can be held in working memory, and 2) visually salient items are commonly kept in memory at the cost of not keeping as many non-salient items. Our model suggests that working memory capacity is determined by two fundamental processes: encoding of visual items into working memory and maintenance of the encoded items upon their removal from the visual display. While maintenance critically depends on the constraints that lateral inhibition imposes to the mnemonic activity, encoding is limited by the ability of the stimulated neural assemblies to reach a sufficiently high level of excitation, a process governed by the dynamics of competition and cooperation among neuronal pools. Encoding is therefore contingent upon the visual working memory task and has led us to introduce the concept of effective working memory capacity (eWMC) in contrast to the maximal upper capacity limit only reached under ideal conditions.
The neural dynamics of conflict adaptation within a look-to-do transition.
Directory of Open Access Journals (Sweden)
Dandan Tang
Full Text Available BACKGROUND: For optimal performance in conflict situations, conflict adaptation (conflict detection and adjustment is necessary. However, the neural dynamics of conflict adaptation is still unclear. METHODS: In the present study, behavioral and electroencephalography (EEG data were recorded from seventeen healthy participants during performance of a color-word Stroop task with a novel look-to-do transition. Within this transition, participants looked at the Stroop stimuli but no responses were required in the 'look' trials; or made manual responses to the Stroop stimuli in the 'do' trials. RESULTS: In the 'look' trials, the amplitude modulation of N450 occurred exclusively in the right-frontal region. Subsequently, the amplitude modulation of sustained potential (SP emerged in the posterior parietal and right-frontal regions. A significantly positive correlation between the modulation of reconfiguration in the 'look' trials and the behavioral conflict adaptation in the 'do' trials was observed. Specially, a stronger information flow from right-frontal region to posterior parietal region in the beta band was observed for incongruent condition than for congruent condition. In the 'do' trials, the conflict of 'look' trials enhanced the amplitude modulations of N450 in the right-frontal and posterior parietal regions, but decreased the amplitude modulations of SP in these regions. Uniquely, a stronger information flow from centro-parietal region to right-frontal region in the theta band was observed for iI condition than for cI condition. CONCLUSION: All these findings showed that top-down conflict adaptation is implemented by: (1 enhancing the sensitivity to conflict detection and the adaptation to conflict resolution; (2 modulating the effective connectivity between parietal region and right-frontal region.
Dempere-Marco, Laura; Melcher, David P.; Deco, Gustavo
2012-01-01
The study of working memory capacity is of outmost importance in cognitive psychology as working memory is at the basis of general cognitive function. Although the working memory capacity limit has been thoroughly studied, its origin still remains a matter of strong debate. Only recently has the role of visual saliency in modulating working memory storage capacity been assessed experimentally and proved to provide valuable insights into working memory function. In the computational arena, attractor networks have successfully accounted for psychophysical and neurophysiological data in numerous working memory tasks given their ability to produce a sustained elevated firing rate during a delay period. Here we investigate the mechanisms underlying working memory capacity by means of a biophysically-realistic attractor network with spiking neurons while accounting for two recent experimental observations: 1) the presence of a visually salient item reduces the number of items that can be held in working memory, and 2) visually salient items are commonly kept in memory at the cost of not keeping as many non-salient items. Our model suggests that working memory capacity is determined by two fundamental processes: encoding of visual items into working memory and maintenance of the encoded items upon their removal from the visual display. While maintenance critically depends on the constraints that lateral inhibition imposes to the mnemonic activity, encoding is limited by the ability of the stimulated neural assemblies to reach a sufficiently high level of excitation, a process governed by the dynamics of competition and cooperation among neuronal pools. Encoding is therefore contingent upon the visual working memory task and has led us to introduce the concept of effective working memory capacity (eWMC) in contrast to the maximal upper capacity limit only reached under ideal conditions. PMID:22952608
The neural dynamics of reward value and risk coding in the human orbitofrontal cortex.
Li, Yansong; Vanni-Mercier, Giovanna; Isnard, Jean; Mauguière, François; Dreher, Jean-Claude
2016-04-01
The orbitofrontal cortex is known to carry information regarding expected reward, risk and experienced outcome. Yet, due to inherent limitations in lesion and neuroimaging methods, the neural dynamics of these computations has remained elusive in humans. Here, taking advantage of the high temporal definition of intracranial recordings, we characterize the neurophysiological signatures of the intact orbitofrontal cortex in processing information relevant for risky decisions. Local field potentials were recorded from the intact orbitofrontal cortex of patients suffering from drug-refractory partial epilepsy with implanted depth electrodes as they performed a probabilistic reward learning task that required them to associate visual cues with distinct reward probabilities. We observed three successive signals: (i) around 400 ms after cue presentation, the amplitudes of the local field potentials increased with reward probability; (ii) a risk signal emerged during the late phase of reward anticipation and during the outcome phase; and (iii) an experienced value signal appeared at the time of reward delivery. Both the medial and lateral orbitofrontal cortex encoded risk and reward probability while the lateral orbitofrontal cortex played a dominant role in coding experienced value. The present study provides the first evidence from intracranial recordings that the human orbitofrontal cortex codes reward risk both during late reward anticipation and during the outcome phase at a time scale of milliseconds. Our findings offer insights into the rapid mechanisms underlying the ability to learn structural relationships from the environment. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Health impact on Economy by Artificial Neural Network and Dynamic Ordinary Least Squares
Directory of Open Access Journals (Sweden)
Marziyeh Sadat Safe
2017-10-01
Full Text Available Introduction: Achievement of economic growth, as one of the most important macroeconomic variables, depends on the precise understanding of potential routes and the factors affecting on it. The aim of this study was to evaluate the health care sector’s effect on Iran Gross Domestic Product (GDP, as the status of economy. Method: Artificial Neural Network (ANN and Dynamic Ordinary Least Squares (DOLS were performed according to Iran GDP as the output variable and the input variables of life expectancy at birth, under five mortality rates, public health expenditures, the number of doctors and hospital beds during 1961-2012 in Iran. Data were collected from the Statistical Center of Iran, the Central Bank of the Islamic Republic of Iran, the World Health Organization and the World Bank databases. Data management and analysis were performed using Eviewes 7, stata 11 and also Mathlab. MSE, MAE and R2 were calculated to assess and compare the models. Results: One percent reduction in deaths of children under 5-years could improve Iran GDP as much as 1.9%. Additionally, one percent increment in the number of doctors, hospital beds or health expenditure would increase GDP by 0.37%, 0.27% and 0.29%, respectively. Mean Absolute Error (MAE demonstrated the superiority of DOLS in the model estimation. Conclusion: The lack of sufficient considerations and excellent models in the health care sector is the main reason for underestimating the effect of this sector on economy. This limitation leads to neglecting the resource allocation to the health care sector, as the great potential motivation of the economic growth.
Wang, Huanqing; Liu, Peter Xiaoping; Li, Shuai; Wang, Ding
2017-08-29
This paper presents the development of an adaptive neural controller for a class of nonlinear systems with unmodeled dynamics and immeasurable states. An observer is designed to estimate system states. The structure consistency of virtual control signals and the variable partition technique are combined to overcome the difficulties appearing in a nonlower triangular form. An adaptive neural output-feedback controller is developed based on the backstepping technique and the universal approximation property of the radial basis function (RBF) neural networks. By using the Lyapunov stability analysis, the semiglobally and uniformly ultimate boundedness of all signals within the closed-loop system is guaranteed. The simulation results show that the controlled system converges quickly, and all the signals are bounded. This paper is novel at least in the two aspects: 1) an output-feedback control strategy is developed for a class of nonlower triangular nonlinear systems with unmodeled dynamics and 2) the nonlinear disturbances and their bounds are the functions of all states, which is in a more general form than existing results.
Hu, Cheng; Yu, Juan; Chen, Zhanheng; Jiang, Haijun; Huang, Tingwen
2017-05-01
In this paper, the fixed-time stability of dynamical systems and the fixed-time synchronization of coupled discontinuous neural networks are investigated under the framework of Filippov solution. Firstly, by means of reduction to absurdity, a theorem of fixed-time stability is established and a high-precision estimation of the settling-time is given. It is shown by theoretic proof that the estimation bound of the settling time given in this paper is less conservative and more accurate compared with the classical results. Besides, as an important application, the fixed-time synchronization of coupled neural networks with discontinuous activation functions is proposed. By designing a discontinuous control law and using the theory of differential inclusions, some new criteria are derived to ensure the fixed-time synchronization of the addressed coupled networks. Finally, two numerical examples are provided to show the effectiveness and validity of the theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Di Canio, Giuliano; Larsen, Jørgen Christian; Wörgötter, Florentin
2016-01-01
Robotic systems inspired from humans have always been lightening up the curiosity of engineers and scientists. Of many challenges, human locomotion is a very difficult one where a number of different systems needs to interact in order to generate a correct and balanced pattern. To simulate...... the interaction of these systems, implementations with reflexbased or central pattern generator (CPG)-based controllers have been tested on bipedal robot systems. In this paper we will combine the two controller types, into a controller that works with both reflex and CPG signals. We use a reflex-based neural...... network to generate basic walking patterns of a dynamic bipedal walking robot (DACBOT) and then a CPG-based neural network to ensure robust walking behavior...
International Nuclear Information System (INIS)
Vijayakumar, C.; Bhargava, Sunil; Gharpure, Damayanti Chandrashekhar
2008-01-01
A novel Neuro - level set shape detection algorithm is proposed and evaluated for segmentation and grading of brain tumours. The algorithm evaluates vascular and cellular information provided by dynamic contrast susceptibility magnetic resonance images and apparent diffusion coefficient maps. The proposed neural shape detection algorithm is based on the levels at algorithm (shape detection algorithm) and utilizes a neural block to provide the speed image for the level set methods. In this study, two different architectures of level set method have been implemented and their results are compared. The results show that the proposed Neuro-shape detection performs better in differentiating the tumor, edema, necrosis in reconstructed images of perfusion and diffusion weighted magnetic resonance images. (author)
Parametric models to relate spike train and LFP dynamics with neural information processing.
Banerjee, Arpan; Dean, Heather L; Pesaran, Bijan
2012-01-01
Spike trains and local field potentials (LFPs) resulting from extracellular current flows provide a substrate for neural information processing. Understanding the neural code from simultaneous spike-field recordings and subsequent decoding of information processing events will have widespread applications. One way to demonstrate an understanding of the neural code, with particular advantages for the development of applications, is to formulate a parametric statistical model of neural activity and its covariates. Here, we propose a set of parametric spike-field models (unified models) that can be used with existing decoding algorithms to reveal the timing of task or stimulus specific processing. Our proposed unified modeling framework captures the effects of two important features of information processing: time-varying stimulus-driven inputs and ongoing background activity that occurs even in the absence of environmental inputs. We have applied this framework for decoding neural latencies in simulated and experimentally recorded spike-field sessions obtained from the lateral intraparietal area (LIP) of awake, behaving monkeys performing cued look-and-reach movements to spatial targets. Using both simulated and experimental data, we find that estimates of trial-by-trial parameters are not significantly affected by the presence of ongoing background activity. However, including background activity in the unified model improves goodness of fit for predicting individual spiking events. Uncovering the relationship between the model parameters and the timing of movements offers new ways to test hypotheses about the relationship between neural activity and behavior. We obtained significant spike-field onset time correlations from single trials using a previously published data set where significantly strong correlation was only obtained through trial averaging. We also found that unified models extracted a stronger relationship between neural response latency and trial
Dynamic analysis of stochastic bidirectional associative memory neural networks with delays
International Nuclear Information System (INIS)
Zhao Hongyong; Ding Nan
2007-01-01
In this paper, stochastic bidirectional associative memory neural networks model with delays is considered. By constructing Lyapunov functionals, and using stochastic analysis method and inequality technique, we give some sufficient criteria ensuring almost sure exponential stability, pth exponential stability and mean value exponential stability. The obtained criteria can be used as theoretic guidance to stabilize neural networks in practical applications when stochastic noise is taken into consideration
Optimal Operation of Radial Distribution Systems Using Extended Dynamic Programming
DEFF Research Database (Denmark)
Lopez, Juan Camilo; Vergara, Pedro P.; Lyra, Christiano
2018-01-01
An extended dynamic programming (EDP) approach is developed to optimize the ac steady-state operation of radial electrical distribution systems (EDS). Based on the optimality principle of the recursive Hamilton-Jacobi-Bellman equations, the proposed EDP approach determines the optimal operation o...... approach is illustrated using real-scale systems and comparisons with commercial programming solvers. Finally, generalizations to consider other EDS operation problems are also discussed.......An extended dynamic programming (EDP) approach is developed to optimize the ac steady-state operation of radial electrical distribution systems (EDS). Based on the optimality principle of the recursive Hamilton-Jacobi-Bellman equations, the proposed EDP approach determines the optimal operation...... of the EDS by setting the values of the controllable variables at each time period. A suitable definition for the stages of the problem makes it possible to represent the optimal ac power flow of radial EDS as a dynamic programming problem, wherein the 'curse of dimensionality' is a minor concern, since...
Directory of Open Access Journals (Sweden)
Haifeng Chen
2018-05-01
Full Text Available Background/Objectives: Mild cognitive impairment (MCI has been associated with risk for Alzheimer's Disease (AD. Previous investigations have suggested that vascular risk factors (VRFs were associated with cognitive decline and AD pathogenesis, and the intervention of VRFs may be a possible way to prevent dementia. However, in MCI, little is known about the potential impacts of VRFs on neural networks and their neural substrates, which may be a neuroimaging biomarker of the disease progression.Methods: 128 elderly Han Chinese participants (67 MCI subjects and 61 matched normal elderly with or without VRFs (hypertension, diabetes mellitus, hypercholesterolemia, smoking and alcohol drinking underwent the resting-state functional magnetic resonance imaging (fMRI and neuropsychological tests. We obtained the default mode network (DMN to identify alterations in MCI with the varying number of the VRF and analyzed the significant correlation with behavioral performance.Results: The effects of VRF on the DMN were primarily in bilateral dorsolateral prefrontal cortex (DLPFC (i.e., middle frontal gyrus. Normal elderly showed the gradually increased functional activity of DLPFC, while a fluctuant activation of DLPFC was displayed in MCI with the growing number of the VRF. Interestingly, the left DLPFC further displayed significantly dynamic correlation with executive function as the variation of VRF loading. Initial level of compensation was observed in normal aging and none-vascular risk factor (NVRF MCI, while these compensatory neural processes were suppressed in One-VRF MCI and were subsequently re-aroused in Over-One-VRF MCI.Conclusions: These findings suggested that the dose-dependent effects of VRF on DLPFC were highlighted in MCI, and the dynamic compensatory neural processes that fluctuated along with variations of VRF loading could be key role in the progression of MCI.
Directory of Open Access Journals (Sweden)
Edin TERZIC
2010-03-01
Full Text Available A measurement system has been developed using a single tube capacitive sensor to accurately determine the fluid level in vehicular fuel tanks. A novel approach based on artificial neural networks based signal pre-processing and classification has been described in this article. A broad investigation on the Backpropagation neural network and some selected signal pre-processing filters, namely, Moving Mean, Moving Median, and Wavelet Filter has also been presented. An on field drive trial was conducted under normal driving conditions at various fuel volumes ranging from 5 L to 50 L to acquire training samples from the capacitive sensor. A second field trial was conducted to obtain test samples to verify the performance of the neural network. The neural network was trained and verified with 50 % of the training and test samples. The results obtained using the neural network approach having different filtration methods are compared with the results obtained using simple Moving Mean and Moving Median functions. It is demonstrated that the Backpropagation neural network with Moving Median filter produced the most accurate outcome compared with the other signal filtration methods.
Perone, Sammy; Spencer, John P
2013-01-01
Looking is a fundamental exploratory behavior by which infants acquire knowledge about the world. In theories of infant habituation, however, looking as an exploratory behavior has been deemphasized relative to the reliable nature with which looking indexes active cognitive processing. We present a new theory that connects looking to the dynamics of memory formation and formally implement this theory in a Dynamic Neural Field model that learns autonomously as it actively looks and looks away from a stimulus. We situate this model in a habituation task and illustrate the mechanisms by which looking, encoding, working memory formation, and long-term memory formation give rise to habituation across multiple stimulus and task contexts. We also illustrate how the act of looking and the temporal dynamics of learning affect each other. Finally, we test a new hypothesis about the sources of developmental differences in looking. Copyright © 2012 Cognitive Science Society, Inc.
Boundary Control of Linear Uncertain 1-D Parabolic PDE Using Approximate Dynamic Programming.
Talaei, Behzad; Jagannathan, Sarangapani; Singler, John
2018-04-01
This paper develops a near optimal boundary control method for distributed parameter systems governed by uncertain linear 1-D parabolic partial differential equations (PDE) by using approximate dynamic programming. A quadratic surface integral is proposed to express the optimal cost functional for the infinite-dimensional state space. Accordingly, the Hamilton-Jacobi-Bellman (HJB) equation is formulated in the infinite-dimensional domain without using any model reduction. Subsequently, a neural network identifier is developed to estimate the unknown spatially varying coefficient in PDE dynamics. Novel tuning law is proposed to guarantee the boundedness of identifier approximation error in the PDE domain. A radial basis network (RBN) is subsequently proposed to generate an approximate solution for the optimal surface kernel function online. The tuning law for near optimal RBN weights is created, such that the HJB equation error is minimized while the dynamics are identified and closed-loop system remains stable. Ultimate boundedness (UB) of the closed-loop system is verified by using the Lyapunov theory. The performance of the proposed controller is successfully confirmed by simulation on an unstable diffusion-reaction process.
Zhu, Yuanheng; Zhao, Dongbin; Li, Xiangjun
2017-03-01
H ∞ control is a powerful method to solve the disturbance attenuation problems that occur in some control systems. The design of such controllers relies on solving the zero-sum game (ZSG). But in practical applications, the exact dynamics is mostly unknown. Identification of dynamics also produces errors that are detrimental to the control performance. To overcome this problem, an iterative adaptive dynamic programming algorithm is proposed in this paper to solve the continuous-time, unknown nonlinear ZSG with only online data. A model-free approach to the Hamilton-Jacobi-Isaacs equation is developed based on the policy iteration method. Control and disturbance policies and value are approximated by neural networks (NNs) under the critic-actor-disturber structure. The NN weights are solved by the least-squares method. According to the theoretical analysis, our algorithm is equivalent to a Gauss-Newton method solving an optimization problem, and it converges uniformly to the optimal solution. The online data can also be used repeatedly, which is highly efficient. Simulation results demonstrate its feasibility to solve the unknown nonlinear ZSG. When compared with other algorithms, it saves a significant amount of online measurement time.
International Nuclear Information System (INIS)
Zameer, Aneela; Arshad, Junaid; Khan, Asifullah; Raja, Muhammad Asif Zahoor
2017-01-01
Highlights: • Genetic programming based ensemble of neural networks is employed for short term wind power prediction. • Proposed predictor shows resilience against abrupt changes in weather. • Genetic programming evolves nonlinear mapping between meteorological measures and wind-power. • Proposed approach gives mathematical expressions of wind power to its independent variables. • Proposed model shows relatively accurate and steady wind-power prediction performance. - Abstract: The inherent instability of wind power production leads to critical problems for smooth power generation from wind turbines, which then requires an accurate forecast of wind power. In this study, an effective short term wind power prediction methodology is presented, which uses an intelligent ensemble regressor that comprises Artificial Neural Networks and Genetic Programming. In contrast to existing series based combination of wind power predictors, whereby the error or variation in the leading predictor is propagated down the stream to the next predictors, the proposed intelligent ensemble predictor avoids this shortcoming by introducing Genetical Programming based semi-stochastic combination of neural networks. It is observed that the decision of the individual base regressors may vary due to the frequent and inherent fluctuations in the atmospheric conditions and thus meteorological properties. The novelty of the reported work lies in creating ensemble to generate an intelligent, collective and robust decision space and thereby avoiding large errors due to the sensitivity of the individual wind predictors. The proposed ensemble based regressor, Genetic Programming based ensemble of Artificial Neural Networks, has been implemented and tested on data taken from five different wind farms located in Europe. Obtained numerical results of the proposed model in terms of various error measures are compared with the recent artificial intelligence based strategies to demonstrate the
Kisi, Ozgur; Sanikhani, Hadi; Cobaner, Murat
2017-08-01
The applicability of artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS), and genetic programming (GP) techniques in estimating soil temperatures (ST) at different depths is investigated in this study. Weather data from two stations, Mersin and Adana, Turkey, were used as inputs to the applied models in order to model monthly STs. The first part of the study focused on comparison of ANN, ANFIS, and GP models in modeling ST of two stations at the depths of 10, 50, and 100 cm. GP was found to perform better than the ANN and ANFIS-SC in estimating monthly ST. The effect of periodicity (month of the year) on models' accuracy was also investigated. Including periodicity component in models' inputs considerably increased their accuracies. The root mean square error (RMSE) of ANN models was respectively decreased by 34 and 27 % for the depths of 10 and 100 cm adding the periodicity input. In the second part of the study, the accuracies of the ANN, ANFIS, and GP models were compared in estimating ST of Mersin Station using the climatic data of Adana Station. The ANN models generally performed better than the ANFIS-SC and GP in modeling ST of Mersin Station without local climatic inputs.
Synthesizing Dynamic Programming Algorithms from Linear Temporal Logic Formulae
Rosu, Grigore; Havelund, Klaus
2001-01-01
The problem of testing a linear temporal logic (LTL) formula on a finite execution trace of events, generated by an executing program, occurs naturally in runtime analysis of software. We present an algorithm which takes an LTL formula and generates an efficient dynamic programming algorithm. The generated algorithm tests whether the LTL formula is satisfied by a finite trace of events given as input. The generated algorithm runs in linear time, its constant depending on the size of the LTL formula. The memory needed is constant, also depending on the size of the formula.
GLOBEC (Global Ocean Ecosystems Dynamics: Northwest Atlantic program
1991-01-01
The specific objective of the meeting was to plan an experiment in the Northwestern Atlantic to study the marine ecosystem and its role, together with that of climate and physical dynamics, in determining fisheries recruitment. The underlying focus of the GLOBEC initiative is to understand the marine ecosystem as it related to marine living resources and to understand how fluctuation in these resources are driven by climate change and exploitation. In this sense the goal is a solid scientific program to provide basic information concerning major fisheries stocks and the environment that sustains them. The plan is to attempt to reach this understanding through a multidisciplinary program that brings to bear new techniques as disparate as numerical fluid dynamic models of ocean circulation, molecular biology and modern acoustic imaging. The effort will also make use of the massive historical data sets on fisheries and the state of the climate in a coordinated manner.
Adaptive dynamic programming with applications in optimal control
Liu, Derong; Wang, Ding; Yang, Xiong; Li, Hongliang
2017-01-01
This book covers the most recent developments in adaptive dynamic programming (ADP). The text begins with a thorough background review of ADP making sure that readers are sufficiently familiar with the fundamentals. In the core of the book, the authors address first discrete- and then continuous-time systems. Coverage of discrete-time systems starts with a more general form of value iteration to demonstrate its convergence, optimality, and stability with complete and thorough theoretical analysis. A more realistic form of value iteration is studied where value function approximations are assumed to have finite errors. Adaptive Dynamic Programming also details another avenue of the ADP approach: policy iteration. Both basic and generalized forms of policy-iteration-based ADP are studied with complete and thorough theoretical analysis in terms of convergence, optimality, stability, and error bounds. Among continuous-time systems, the control of affine and nonaffine nonlinear systems is studied using the ADP app...
Optimization of a pump-pipe system by dynamic programming
DEFF Research Database (Denmark)
Vidal, Rene Victor Valqui; Ferreira, Jose S.
1984-01-01
In this paper the problem of minimizing the total cost of a pump-pipe system in series is considered. The route of the pipeline and the number of pumping stations are known. The optimization will then consist in determining the control variables, diameter and thickness of the pipe and the size of...... of the pumps. A general mathematical model is formulated and Dynamic Programming is used to find an optimal solution....
Systems and methods for interpolation-based dynamic programming
Rockwood, Alyn
2013-01-03
Embodiments of systems and methods for interpolation-based dynamic programming. In one embodiment, the method includes receiving an object function and a set of constraints associated with the objective function. The method may also include identifying a solution on the objective function corresponding to intersections of the constraints. Additionally, the method may include generating an interpolated surface that is in constant contact with the solution. The method may also include generating a vector field in response to the interpolated surface.
Dynamic Programming Approach for Construction of Association Rule Systems
Alsolami, Fawaz
2016-11-18
In the paper, an application of dynamic programming approach for optimization of association rules from the point of view of knowledge representation is considered. The association rule set is optimized in two stages, first for minimum cardinality and then for minimum length of rules. Experimental results present cardinality of the set of association rules constructed for information system and lower bound on minimum possible cardinality of rule set based on the information obtained during algorithm work as well as obtained results for length.
Systems and methods for interpolation-based dynamic programming
Rockwood, Alyn
2013-01-01
Embodiments of systems and methods for interpolation-based dynamic programming. In one embodiment, the method includes receiving an object function and a set of constraints associated with the objective function. The method may also include identifying a solution on the objective function corresponding to intersections of the constraints. Additionally, the method may include generating an interpolated surface that is in constant contact with the solution. The method may also include generating a vector field in response to the interpolated surface.
DYNAMIC PROGRAMMING – EFFICIENT TOOL FOR POWER SYSTEM EXPANSION PLANNING
Directory of Open Access Journals (Sweden)
SIMO A.
2015-03-01
Full Text Available The paper isfocusing on dynamic programming use for power system expansion planning (EP – transmission network (TNEP and distribution network (DNEP. The EP problem has been approached from the retrospective and prospective point of view. To achieve this goal, the authors are developing two software-tools in Matlab environment. Two techniques have been tackled: particle swarm optimization (PSO and genetic algorithms (GA. The case study refers to Test 25 buses test power system developed within the Power Systems Department.
Dynamic Programming Approach for Construction of Association Rule Systems
Alsolami, Fawaz; Amin, Talha M.; Chikalov, Igor; Moshkov, Mikhail; Zielosko, Beata
2016-01-01
In the paper, an application of dynamic programming approach for optimization of association rules from the point of view of knowledge representation is considered. The association rule set is optimized in two stages, first for minimum cardinality and then for minimum length of rules. Experimental results present cardinality of the set of association rules constructed for information system and lower bound on minimum possible cardinality of rule set based on the information obtained during algorithm work as well as obtained results for length.
SEWER NETWORK DISCHARGE OPTIMIZATION USING THE DYNAMIC PROGRAMMING
Directory of Open Access Journals (Sweden)
Viorel MINZU
2015-12-01
Full Text Available It is necessary to adopt an optimal control that allows an efficient usage of the existing sewer networks, in order to avoid the building of new retention facilities. The main objective of the control action is to minimize the overflow volume of a sewer network. This paper proposes a method to apply a solution obtained by discrete dynamic programming through a realistic closed loop system.
An Approximate Dynamic Programming Mode for Optimal MEDEVAC Dispatching
2015-03-26
over the myopic policy. This indicates the ADP policy is efficiently managing resources by 28 not immediately sending the nearest available MEDEVAC...DISPATCHING THESIS Presented to the Faculty Department of Operational Sciences Graduate School of Engineering and Management Air Force Institute of Technology...medical evacuation (MEDEVAC) dispatch policies. To solve the MDP, we apply an ap- proximate dynamic programming (ADP) technique. The problem of deciding
Approximate Dynamic Programming Based on High Dimensional Model Representation
Czech Academy of Sciences Publication Activity Database
Pištěk, Miroslav
2013-01-01
Roč. 49, č. 5 (2013), s. 720-737 ISSN 0023-5954 R&D Projects: GA ČR(CZ) GAP102/11/0437 Institutional support: RVO:67985556 Keywords : approximate dynamic programming * Bellman equation * approximate HDMR minimization * trust region problem Subject RIV: BC - Control Systems Theory Impact factor: 0.563, year: 2013 http://library.utia.cas.cz/separaty/2013/AS/pistek-0399560.pdf
An algorithm for the solution of dynamic linear programs
Psiaki, Mark L.
1989-01-01
The algorithm's objective is to efficiently solve Dynamic Linear Programs (DLP) by taking advantage of their special staircase structure. This algorithm constitutes a stepping stone to an improved algorithm for solving Dynamic Quadratic Programs, which, in turn, would make the nonlinear programming method of Successive Quadratic Programs more practical for solving trajectory optimization problems. The ultimate goal is to being trajectory optimization solution speeds into the realm of real-time control. The algorithm exploits the staircase nature of the large constraint matrix of the equality-constrained DLPs encountered when solving inequality-constrained DLPs by an active set approach. A numerically-stable, staircase QL factorization of the staircase constraint matrix is carried out starting from its last rows and columns. The resulting recursion is like the time-varying Riccati equation from multi-stage LQR theory. The resulting factorization increases the efficiency of all of the typical LP solution operations over that of a dense matrix LP code. At the same time numerical stability is ensured. The algorithm also takes advantage of dynamic programming ideas about the cost-to-go by relaxing active pseudo constraints in a backwards sweeping process. This further decreases the cost per update of the LP rank-1 updating procedure, although it may result in more changes of the active set that if pseudo constraints were relaxed in a non-stagewise fashion. The usual stability of closed-loop Linear/Quadratic optimally-controlled systems, if it carries over to strictly linear cost functions, implies that the saving due to reduced factor update effort may outweigh the cost of an increased number of updates. An aerospace example is presented in which a ground-to-ground rocket's distance is maximized. This example demonstrates the applicability of this class of algorithms to aerospace guidance. It also sheds light on the efficacy of the proposed pseudo constraint relaxation
Barrett, Frederick S; Preller, Katrin H; Herdener, Marcus; Janata, Petr; Vollenweider, Franz X
2017-09-28
Classic psychedelic drugs (serotonin 2A, or 5HT2A, receptor agonists) have notable effects on music listening. In the current report, blood oxygen level-dependent (BOLD) signal was collected during music listening in 25 healthy adults after administration of placebo, lysergic acid diethylamide (LSD), and LSD pretreated with the 5HT2A antagonist ketanserin, to investigate the role of 5HT2A receptor signaling in the neural response to the time-varying tonal structure of music. Tonality-tracking analysis of BOLD data revealed that 5HT2A receptor signaling alters the neural response to music in brain regions supporting basic and higher-level musical and auditory processing, and areas involved in memory, emotion, and self-referential processing. This suggests a critical role of 5HT2A receptor signaling in supporting the neural tracking of dynamic tonal structure in music, as well as in supporting the associated increases in emotionality, connectedness, and meaningfulness in response to music that are commonly observed after the administration of LSD and other psychedelics. Together, these findings inform the neuropsychopharmacology of music perception and cognition, meaningful music listening experiences, and altered perception of music during psychedelic experiences. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Bagattini, Chiara; Mazza, Veronica; Panizza, Laura; Ferrari, Clarissa; Bonomini, Cristina; Brignani, Debora
2017-01-01
The aim of this study was to investigate the behavioral and electrophysiological dynamics of multiple object processing (MOP) in mild cognitive impairment (MCI) and Alzheimer's disease (AD), and to test whether its neural signatures may represent reliable diagnostic biomarkers. Behavioral performance and event-related potentials [N2pc and contralateral delay activity (CDA)] were measured in AD, MCI, and healthy controls during a MOP task, which consisted in enumerating a variable number of targets presented among distractors. AD patients showed an overall decline in accuracy for both small and large target quantities, whereas in MCI patients, only enumeration of large quantities was impaired. N2pc, a neural marker of attentive individuation, was spared in both AD and MCI patients. In contrast, CDA, which indexes visual short term memory abilities, was altered in both groups of patients, with a non-linear pattern of amplitude modulation along the continuum of the disease: a reduction in AD and an increase in MCI. These results indicate that AD pathology shows a progressive decline in MOP, which is associated to the decay of visual short-term memory mechanisms. Crucially, CDA may be considered as a useful neural signature both to distinguish between healthy and pathological aging and to characterize the different stages along the AD continuum, possibly becoming a reliable candidate for an early diagnostic biomarker of AD pathology.
Hou, Saing Paul; Haddad, Wassim M; Meskin, Nader; Bailey, James M
2015-12-01
With the advances in biochemistry, molecular biology, and neurochemistry there has been impressive progress in understanding the molecular properties of anesthetic agents. However, there has been little focus on how the molecular properties of anesthetic agents lead to the observed macroscopic property that defines the anesthetic state, that is, lack of responsiveness to noxious stimuli. In this paper, we use dynamical system theory to develop a mechanistic mean field model for neural activity to study the abrupt transition from consciousness to unconsciousness as the concentration of the anesthetic agent increases. The proposed synaptic drive firing-rate model predicts the conscious-unconscious transition as the applied anesthetic concentration increases, where excitatory neural activity is characterized by a Poincaré-Andronov-Hopf bifurcation with the awake state transitioning to a stable limit cycle and then subsequently to an asymptotically stable unconscious equilibrium state. Furthermore, we address the more general question of synchronization and partial state equipartitioning of neural activity without mean field assumptions. This is done by focusing on a postulated subset of inhibitory neurons that are not themselves connected to other inhibitory neurons. Finally, several numerical experiments are presented to illustrate the different aspects of the proposed theory.
Directory of Open Access Journals (Sweden)
Hayriye Gül KURUYER
2017-06-01
Full Text Available The main purpose of the current study is to explain the effect of an enrichment reading program on the cognitive processes and neural structures of children experiencing reading difficulties. The current study was carried out in line with a single-subject research method and the between-subjects multiple probe design belonging to this method. This research focuses on a group of eight students with reading difficulties. Within the context of the study, memory capacities, attention spans, reading-related activation and white matter pathways of the students were determined before and after the application of the enrichment reading program. This determination process was carried out in two stages. Neuro-imaging was performed in the first stage and in the second stage the students’ cognitive processes and neural structures were investigated in terms of focusing attention and memory capacities by using the following tools: Stroop Test TBAG Form, Auditory Verbal Digit Span Test-Form B, Cancellation Test and Number Order Learning Test. The results obtained show that the enrichment reading program resulted in an improvement in the reading profiles of the students having reading difficulties in terms of their cognitive processes and neural structures.
Dynamic methylation and expression of Oct4 in early neural stem cells.
Lee, Shih-Han; Jeyapalan, Jennie N; Appleby, Vanessa; Mohamed Noor, Dzul Azri; Sottile, Virginie; Scotting, Paul J
2010-09-01
Neural stem cells are a multipotent population of tissue-specific stem cells with a broad but limited differentiation potential. However, recent studies have shown that over-expression of the pluripotency gene, Oct4, alone is sufficient to initiate a process by which these can form 'induced pluripotent stem cells' (iPS cells) with the same broad potential as embryonic stem cells. This led us to examine the expression of Oct4 in endogenous neural stem cells, as data regarding its expression in neural stem cells in vivo are contradictory and incomplete. In this study we have therefore analysed the expression of Oct4 and other genes associated with pluripotency throughout development of the mouse CNS and in neural stem cells grown in vitro. We find that Oct4 is still expressed in the CNS by E8.5, but that this expression declines rapidly until it is undetectable by E15.5. This decline is coincident with the gradual methylation of the Oct4 promoter and proximal enhancer. Immunostaining suggests that the Oct4 protein is predominantly cytoplasmic in location. We also found that neural stem cells from all ages expressed the pluripotency associated genes, Sox2, c-Myc, Klf4 and Nanog. These data provide an explanation for the varying behaviour of cells from the early neuroepithelium at different stages of development. The expression of these genes also provides an indication of why Oct4 alone is sufficient to induce iPS formation in neural stem cells at later stages.
Programming Unconventional Computers: Dynamics, Development, Self-Reference
Directory of Open Access Journals (Sweden)
Susan Stepney
2012-10-01
Full Text Available Classical computing has well-established formalisms for specifying, refining, composing, proving, and otherwise reasoning about computations. These formalisms have matured over the past 70 years or so. Unconventional Computing includes the use of novel kinds of substrates–from black holes and quantum effects, through to chemicals, biomolecules, even slime moulds–to perform computations that do not conform to the classical model. Although many of these unconventional substrates can be coerced into performing classical computation, this is not how they “naturally” compute. Our ability to exploit unconventional computing is partly hampered by a lack of corresponding programming formalisms: we need models for building, composing, and reasoning about programs that execute in these substrates. What might, say, a slime mould programming language look like? Here I outline some of the issues and properties of these unconventional substrates that need to be addressed to find “natural” approaches to programming them. Important concepts include embodied real values, processes and dynamical systems, generative systems and their meta-dynamics, and embodied self-reference.
A Case Study on Neural Inspired Dynamic Memory Management Strategies for High Performance Computing.
Energy Technology Data Exchange (ETDEWEB)
Vineyard, Craig Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Verzi, Stephen Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-09-01
As high performance computing architectures pursue more computational power there is a need for increased memory capacity and bandwidth as well. A multi-level memory (MLM) architecture addresses this need by combining multiple memory types with different characteristics as varying levels of the same architecture. How to efficiently utilize this memory infrastructure is an unknown challenge, and in this research we sought to investigate whether neural inspired approaches can meaningfully help with memory management. In particular we explored neurogenesis inspired re- source allocation, and were able to show a neural inspired mixed controller policy can beneficially impact how MLM architectures utilize memory.
Dynamic stability analysis of fractional order leaky integrator echo state neural networks
Pahnehkolaei, Seyed Mehdi Abedi; Alfi, Alireza; Tenreiro Machado, J. A.
2017-06-01
The Leaky integrator echo state neural network (Leaky-ESN) is an improved model of the recurrent neural network (RNN) and adopts an interconnected recurrent grid of processing neurons. This paper presents a new proof for the convergence of a Lyapunov candidate function to zero when time tends to infinity by means of the Caputo fractional derivative with order lying in the range (0, 1). The stability of Fractional-Order Leaky-ESN (FO Leaky-ESN) is then analyzed, and the existence, uniqueness and stability of the equilibrium point are provided. A numerical example demonstrates the feasibility of the proposed method.
A program for dynamic noise investigations of reactor systems
International Nuclear Information System (INIS)
Antonov, N.A.; Yaneva, N.B.
1980-01-01
A stochastic process analysis in nuclear reactors is used for the state diagnosis and dynamic characteristic investigation of the reactor system. A program DENSITY adapted and tested on an IBM 360 ES type computer is developed. The program is adjusted for fast processing of long series exploiting a relatively small memory. The testing procedure is discussed and the method of the periodic sequences corresponding to characteristic reactivity perturbations of the reactor systems is considered. The program is written for calculating the auto-power spectral density and the cross-power spectral density, as well as the coherence function of stationary statistical time series using the advantages of the fast Fourier transformation. In particular, it is shown that the multi-frequency binary sequences are very useful with respect to the signal-to-noise ratio and the frequency distribution in view of the frequency reactor test
Energy Technology Data Exchange (ETDEWEB)
Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin, E-mail: xmli@cqu.edu.cn [Key Laboratory of Dependable Service Computing in Cyber Physical Society of Ministry of Education, Chongqing University, Chongqing 400044 (China); College of Automation, Chongqing University, Chongqing 400044 (China)
2015-11-15
In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.
International Nuclear Information System (INIS)
Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin
2015-01-01
In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing
2012-03-30
... DEPARTMENT OF TRANSPORTATION Dynamic Mobility Applications and Data Capture Management Programs... stakeholders an update on the Data Capture and Management (DCM) and Dynamic Mobility Applications (DMA... critical issues designed to garner stakeholder feedback. About the Dynamic Mobility Application and Data...
International Nuclear Information System (INIS)
Cofré, Rodrigo; Cessac, Bruno
2013-01-01
We investigate the effect of electric synapses (gap junctions) on collective neuronal dynamics and spike statistics in a conductance-based integrate-and-fire neural network, driven by Brownian noise, where conductances depend upon spike history. We compute explicitly the time evolution operator and show that, given the spike-history of the network and the membrane potentials at a given time, the further dynamical evolution can be written in a closed form. We show that spike train statistics is described by a Gibbs distribution whose potential can be approximated with an explicit formula, when the noise is weak. This potential form encompasses existing models for spike trains statistics analysis such as maximum entropy models or generalized linear models (GLM). We also discuss the different types of correlations: those induced by a shared stimulus and those induced by neurons interactions
Neural Network Based Reactive Navigation for Mobile Robot in Dynamic Environment
Czech Academy of Sciences Publication Activity Database
Krejsa, Jiří; Věchet, S.; Ripel, T.
2013-01-01
Roč. 198, č. 2013 (2013), s. 108-113 ISSN 1012-0394 Institutional research plan: CEZ:AV0Z20760514 Institutional support: RVO:61388998 Keywords : mobile robot * reactive navigation * artificial neural networks Subject RIV: JD - Computer Applications, Robotics
Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Oliva, Aude
2017-01-01
Human scene recognition is a rapid multistep process evolving over time from single scene image to spatial layout processing. We used multivariate pattern analyses on magnetoencephalography (MEG) data to unravel the time course of this cortical process. Following an early signal for lower-level visual analysis of single scenes at ~100 ms, we found a marker of real-world scene size, i.e. spatial layout processing, at ~250 ms indexing neural representations robust to changes in unrelated scene properties and viewing conditions. For a quantitative model of how scene size representations may arise in the brain, we compared MEG data to a deep neural network model trained on scene classification. Representations of scene size emerged intrinsically in the model, and resolved emerging neural scene size representation. Together our data provide a first description of an electrophysiological signal for layout processing in humans, and suggest that deep neural networks are a promising framework to investigate how spatial layout representations emerge in the human brain. PMID:27039703
Dynamic analysis of high-order Cohen-Grossberg neural networks with time delay
International Nuclear Information System (INIS)
Chen Zhang; Zhao Donghua; Ruan Jiong
2007-01-01
In this paper, a class of high-order Cohen-Grossberg neural networks with time delay is studied. Several sufficient conditions are obtained for global asymptotic stability and global exponential stability using Lyapunov and LMI method. Finally, two examples are given to illustrate the effectiveness of our method
Neural estimation of kinetic rate constants from dynamic PET-scans
DEFF Research Database (Denmark)
Fog, Torben L.; Nielsen, Lars Hupfeldt; Hansen, Lars Kai
1994-01-01
A feedforward neural net is trained to invert a simple three compartment model describing the tracer kinetics involved in the metabolism of [18F]fluorodeoxyglucose in the human brain. The network can estimate rate constants from positron emission tomography sequences and is about 50 times faster ...
Directory of Open Access Journals (Sweden)
Evangelos Stromatias
2017-06-01
Full Text Available This paper introduces a novel methodology for training an event-driven classifier within a Spiking Neural Network (SNN System capable of yielding good classification results when using both synthetic input data and real data captured from Dynamic Vision Sensor (DVS chips. The proposed supervised method uses the spiking activity provided by an arbitrary topology of prior SNN layers to build histograms and train the classifier in the frame domain using the stochastic gradient descent algorithm. In addition, this approach can cope with leaky integrate-and-fire neuron models within the SNN, a desirable feature for real-world SNN applications, where neural activation must fade away after some time in the absence of inputs. Consequently, this way of building histograms captures the dynamics of spikes immediately before the classifier. We tested our method on the MNIST data set using different synthetic encodings and real DVS sensory data sets such as N-MNIST, MNIST-DVS, and Poker-DVS using the same network topology and feature maps. We demonstrate the effectiveness of our approach by achieving the highest classification accuracy reported on the N-MNIST (97.77% and Poker-DVS (100% real DVS data sets to date with a spiking convolutional network. Moreover, by using the proposed method we were able to retrain the output layer of a previously reported spiking neural network and increase its performance by 2%, suggesting that the proposed classifier can be used as the output layer in works where features are extracted using unsupervised spike-based learning methods. In addition, we also analyze SNN performance figures such as total event activity and network latencies, which are relevant for eventual hardware implementations. In summary, the paper aggregates unsupervised-trained SNNs with a supervised-trained SNN classifier, combining and applying them to heterogeneous sets of benchmarks, both synthetic and from real DVS chips.
Stromatias, Evangelos; Soto, Miguel; Serrano-Gotarredona, Teresa; Linares-Barranco, Bernabé
2017-01-01
This paper introduces a novel methodology for training an event-driven classifier within a Spiking Neural Network (SNN) System capable of yielding good classification results when using both synthetic input data and real data captured from Dynamic Vision Sensor (DVS) chips. The proposed supervised method uses the spiking activity provided by an arbitrary topology of prior SNN layers to build histograms and train the classifier in the frame domain using the stochastic gradient descent algorithm. In addition, this approach can cope with leaky integrate-and-fire neuron models within the SNN, a desirable feature for real-world SNN applications, where neural activation must fade away after some time in the absence of inputs. Consequently, this way of building histograms captures the dynamics of spikes immediately before the classifier. We tested our method on the MNIST data set using different synthetic encodings and real DVS sensory data sets such as N-MNIST, MNIST-DVS, and Poker-DVS using the same network topology and feature maps. We demonstrate the effectiveness of our approach by achieving the highest classification accuracy reported on the N-MNIST (97.77%) and Poker-DVS (100%) real DVS data sets to date with a spiking convolutional network. Moreover, by using the proposed method we were able to retrain the output layer of a previously reported spiking neural network and increase its performance by 2%, suggesting that the proposed classifier can be used as the output layer in works where features are extracted using unsupervised spike-based learning methods. In addition, we also analyze SNN performance figures such as total event activity and network latencies, which are relevant for eventual hardware implementations. In summary, the paper aggregates unsupervised-trained SNNs with a supervised-trained SNN classifier, combining and applying them to heterogeneous sets of benchmarks, both synthetic and from real DVS chips.
Development and demonstration program for dynamic nuclear materials control
International Nuclear Information System (INIS)
Augustson, R.H.; Baron, N.; Ford, R.F.; Ford, W.; Hagen, J.; Li, T.K.; Marshall, R.S.; Reams, V.S.; Severe, W.R.; Shirk, D.G.
1978-01-01
A significant portion of the Los Alamos Scientific Laboratory Safeguards Program is directed toward the development and demonstration of dynamic nuclear materials control. The building chosen for the demonstration system is the new Plutonium Processing Facility in Los Alamos, which houses such operations as metal-to-oxide conversion, fuel pellet fabrication, and scrap recovery. A DYnamic MAterials Control (DYMAC) system is currently being installed in the facility as an integral part of the processing operation. DYMAC is structured around interlocking unit-process accounting areas. It relies heavily on nondestructive assay measurements made in the process line to draw dynamic material balances in near real time. In conjunction with the nondestructive assay instrumentation, process operators use interactive terminals to transmit additional accounting and process information to a dedicated computer. The computer verifies and organizes the incoming data, immediately updates the inventory records, monitors material in transit using elapsed time, and alerts the Nuclear Materials Officer in the event that material balances exceed the predetermined action limits. DYMAC is part of the United States safeguards system under control of the facility operator. Because of its advanced features, the system will present a new set of inspection conditions to the IAEA, whose response is the subject of a study being sponsored by the US-IAEA Technical Assistance Program. The central issue is how the IAEA can use the increased capabilities of such a system and still maintain independent verification
Tong, Shaocheng; Wang, Tong; Li, Yongming; Zhang, Huaguang
2014-06-01
This paper discusses the problem of adaptive neural network output feedback control for a class of stochastic nonlinear strict-feedback systems. The concerned systems have certain characteristics, such as unknown nonlinear uncertainties, unknown dead-zones, unmodeled dynamics and without the direct measurements of state variables. In this paper, the neural networks (NNs) are employed to approximate the unknown nonlinear uncertainties, and then by representing the dead-zone as a time-varying system with a bounded disturbance. An NN state observer is designed to estimate the unmeasured states. Based on both backstepping design technique and a stochastic small-gain theorem, a robust adaptive NN output feedback control scheme is developed. It is proved that all the variables involved in the closed-loop system are input-state-practically stable in probability, and also have robustness to the unmodeled dynamics. Meanwhile, the observer errors and the output of the system can be regulated to a small neighborhood of the origin by selecting appropriate design parameters. Simulation examples are also provided to illustrate the effectiveness of the proposed approach.
Bu, Xiangwei; He, Guangjun; Wang, Ke
2018-04-01
This study considers the design of a new back-stepping control approach for air-breathing hypersonic vehicle (AHV) non-affine models via neural approximation. The AHV's non-affine dynamics is decomposed into velocity subsystem and altitude subsystem to be controlled separately, and robust adaptive tracking control laws are developed using improved back-stepping designs. Neural networks are applied to estimate the unknown non-affine dynamics, which guarantees the addressed controllers with satisfactory robustness against uncertainties. In comparison with the existing control methodologies, the special contributions are that the non-affine issue is handled by constructing two low-pass filters based on model transformations, and virtual controllers are treated as intermediate variables such that they aren't needed for back-stepping designs any more. Lyapunov techniques are employed to show the uniformly ultimately boundedness of all closed-loop signals. Finally, simulation results are presented to verify the tracking performance and superiorities of the investigated control strategy. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Siri, Benoît; Berry, Hugues; Cessac, Bruno; Delord, Bruno; Quoy, Mathias
2008-12-01
We present a mathematical analysis of the effects of Hebbian learning in random recurrent neural networks, with a generic Hebbian learning rule, including passive forgetting and different timescales, for neuronal activity and learning dynamics. Previous numerical work has reported that Hebbian learning drives the system from chaos to a steady state through a sequence of bifurcations. Here, we interpret these results mathematically and show that these effects, involving a complex coupling between neuronal dynamics and synaptic graph structure, can be analyzed using Jacobian matrices, which introduce both a structural and a dynamical point of view on neural network evolution. Furthermore, we show that sensitivity to a learned pattern is maximal when the largest Lyapunov exponent is close to 0. We discuss how neural networks may take advantage of this regime of high functional interest.
National Research Council Canada - National Science Library
Depireux, Didier A; Simon, Jonathan Z; Klein, David J; Shamma, Shihab A
1999-01-01
.... It is calculated here from the responses to elementary 'ripples,' a family of sounds with drifting, sinusoidal, spectral envelopes - the complex spectrotemporal envelope of any broadband, dynamic...
Musical structure analysis using similarity matrix and dynamic programming
Shiu, Yu; Jeong, Hong; Kuo, C.-C. Jay
2005-10-01
Automatic music segmentation and structure analysis from audio waveforms based on a three-level hierarchy is examined in this research, where the three-level hierarchy includes notes, measures and parts. The pitch class profile (PCP) feature is first extracted at the note level. Then, a similarity matrix is constructed at the measure level, where a dynamic time warping (DTW) technique is used to enhance the similarity computation by taking the temporal distortion of similar audio segments into account. By processing the similarity matrix, we can obtain a coarse-grain music segmentation result. Finally, dynamic programming is applied to the coarse-grain segments so that a song can be decomposed into several major parts such as intro, verse, chorus, bridge and outro. The performance of the proposed music structure analysis system is demonstrated for pop and rock music.
Neural dynamics of social tie formation in economic decision-making
Bault, N.; Pelloux, B.; Fahrenfort, J.J.; Ridderinkhof, K.R.; van Winden, F.
2015-01-01
The disposition for prosocial conduct, which contributes to cooperation as arising during social interaction, requires cortical network dynamics responsive to the development of social ties, or care about the interests of specific interaction partners. Here, we formulate a dynamic computational
Dynamic Programming and Graph Algorithms in Computer Vision*
Felzenszwalb, Pedro F.; Zabih, Ramin
2013-01-01
Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting, since by carefully exploiting problem structure they often provide non-trivial guarantees concerning solution quality. In this paper we briefly review dynamic programming and graph algorithms, and discuss representative examples of how these discrete optimization techniques have been applied to some classical vision problems. We focus on the low-level vision problem of stereo; the mid-level problem of interactive object segmentation; and the high-level problem of model-based recognition. PMID:20660950
Optimization of Algorithms Using Extensions of Dynamic Programming
AbouEisha, Hassan M.
2017-04-09
We study and answer questions related to the complexity of various important problems such as: multi-frontal solvers of hp-adaptive finite element method, sorting and majority. We advocate the use of dynamic programming as a viable tool to study optimal algorithms for these problems. The main approach used to attack these problems is modeling classes of algorithms that may solve this problem using a discrete model of computation then defining cost functions on this discrete structure that reflect different complexity measures of the represented algorithms. As a last step, dynamic programming algorithms are designed and used to optimize those models (algorithms) and to obtain exact results on the complexity of the studied problems. The first part of the thesis presents a novel model of computation (element partition tree) that represents a class of algorithms for multi-frontal solvers along with cost functions reflecting various complexity measures such as: time and space. It then introduces dynamic programming algorithms for multi-stage and bi-criteria optimization of element partition trees. In addition, it presents results based on optimal element partition trees for famous benchmark meshes such as: meshes with point and edge singularities. New improved heuristics for those benchmark meshes were ob- tained based on insights of the optimal results found by our algorithms. The second part of the thesis starts by introducing a general problem where different problems can be reduced to and show how to use a decision table to model such problem. We describe how decision trees and decision tests for this table correspond to adaptive and non-adaptive algorithms for the original problem. We present exact bounds on the average time complexity of adaptive algorithms for the eight elements sorting problem. Then bounds on adaptive and non-adaptive algorithms for a variant of the majority problem are introduced. Adaptive algorithms are modeled as decision trees whose depth
Directory of Open Access Journals (Sweden)
YanBin Liu
2017-01-01
Full Text Available The inversion design approach is a very useful tool for the complex multiple-input-multiple-output nonlinear systems to implement the decoupling control goal, such as the airplane model and spacecraft model. In this work, the flight control law is proposed using the neural-based inversion design method associated with the nonlinear compensation for a general longitudinal model of the airplane. First, the nonlinear mathematic model is converted to the equivalent linear model based on the feedback linearization theory. Then, the flight control law integrated with this inversion model is developed to stabilize the nonlinear system and relieve the coupling effect. Afterwards, the inversion control combined with the neural network and nonlinear portion is presented to improve the transient performance and attenuate the uncertain effects on both external disturbances and model errors. Finally, the simulation results demonstrate the effectiveness of this controller.
Ehret, Phillip J; Monroe, Brian M; Read, Stephen J
2015-05-01
We present a neural network implementation of central components of the iterative reprocessing (IR) model. The IR model argues that the evaluation of social stimuli (attitudes, stereotypes) is the result of the IR of stimuli in a hierarchy of neural systems: The evaluation of social stimuli develops and changes over processing. The network has a multilevel, bidirectional feedback evaluation system that integrates initial perceptual processing and later developing semantic processing. The network processes stimuli (e.g., an individual's appearance) over repeated iterations, with increasingly higher levels of semantic processing over time. As a result, the network's evaluations of stimuli evolve. We discuss the implications of the network for a number of different issues involved in attitudes and social evaluation. The success of the network supports the IR model framework and provides new insights into attitude theory. © 2014 by the Society for Personality and Social Psychology, Inc.
Continual and One-Shot Learning Through Neural Networks with Dynamic External Memory
DEFF Research Database (Denmark)
Lüders, Benno; Schläger, Mikkel; Korach, Aleksandra
2017-01-01
it easier to find unused memory location and therefor facilitates the evolution of continual learning networks. Our results suggest that augmenting evolving networks with an external memory component is not only a viable mechanism for adaptive behaviors in neuroevolution but also allows these networks...... a new task is learned. This paper takes a step in overcoming this limitation by building on the recently proposed Evolving Neural Turing Machine (ENTM) approach. In the ENTM, neural networks are augmented with an external memory component that they can write to and read from, which allows them to store...... associations quickly and over long periods of time. The results in this paper demonstrate that the ENTM is able to perform one-shot learning in reinforcement learning tasks without catastrophic forgetting of previously stored associations. Additionally, we introduce a new ENTM default jump mechanism that makes...
DEGAS: Dynamic Exascale Global Address Space Programming Environments
Energy Technology Data Exchange (ETDEWEB)
Demmel, James [Univ. of California, Berkeley, CA (United States)
2018-02-23
The Dynamic, Exascale Global Address Space programming environment (DEGAS) project will develop the next generation of programming models and runtime systems to meet the challenges of Exascale computing. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speed and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speed and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics.
Dynamics of the public concern and risk communication program implementation.
Zaryabova, Victoria; Israel, Michel
2015-09-01
The public concern about electromagnetic field (EMF) exposure varies due to different reasons. A part of them are connected with the better and higher quality of information that people receive from science, media, Internet, social networks, industry, but others are based on good communication programs performed by the responsible institutions, administration and persons. Especially, in Bulgaria, public concern follows interesting changes, some of them in correlation with the European processes of concern, but others following the economic and political processes in the country. Here, we analyze the dynamics of the public concern over the last 10 years. Our explanation of the decrease of the people's complaints against EMF exposure from base stations for mobile communication is as a result of our risk communication program that is in implementation for >10 years.
Dynamics in a Delayed Neural Network Model of Two Neurons with Inertial Coupling
Directory of Open Access Journals (Sweden)
Changjin Xu
2012-01-01
Full Text Available A delayed neural network model of two neurons with inertial coupling is dealt with in this paper. The stability is investigated and Hopf bifurcation is demonstrated. Applying the normal form theory and the center manifold argument, we derive the explicit formulas for determining the properties of the bifurcating periodic solutions. An illustrative example is given to demonstrate the effectiveness of the obtained results.
Effects of Spike Anticipation on the Spiking Dynamics of Neural Networks.
de Santos-Sierra, Daniel; Sanchez-Jimenez, Abel; Garcia-Vellisca, Mariano A; Navas, Adrian; Villacorta-Atienza, Jose A
2015-01-01
Synchronization is one of the central phenomena involved in information processing in living systems. It is known that the nervous system requires the coordinated activity of both local and distant neural populations. Such an interplay allows to merge different information modalities in a whole processing supporting high-level mental skills as understanding, memory, abstraction, etc. Though, the biological processes underlying synchronization in the brain are not fully understood there have been reported a variety of mechanisms supporting different types of synchronization both at theoretical and experimental level. One of the more intriguing of these phenomena is the anticipating synchronization, which has been recently reported in a pair of unidirectionally coupled artificial neurons under simple conditions (Pyragiene and Pyragas, 2013), where the slave neuron is able to anticipate in time the behavior of the master one. In this paper, we explore the effect of spike anticipation over the information processing performed by a neural network at functional and structural level. We show that the introduction of intermediary neurons in the network enhances spike anticipation and analyse how these variations in spike anticipation can significantly change the firing regime of the neural network according to its functional and structural properties. In addition we show that the interspike interval (ISI), one of the main features of the neural response associated with the information coding, can be closely related to spike anticipation by each spike, and how synaptic plasticity can be modulated through that relationship. This study has been performed through numerical simulation of a coupled system of Hindmarsh-Rose neurons.
Effects of Spike Anticipation on the Spiking Dynamics of Neural Networks
Directory of Open Access Journals (Sweden)
Daniel ede Santos-Sierra
2015-11-01
Full Text Available Synchronization is one of the central phenomena involved in information processing in living systems. It is known that the nervous system requires the coordinated activity of both local and distant neural populations. Such an interplay allows to merge different information modalities in a whole processing supporting high-level mental skills as understanding, memory, abstraction, etc. Though the biological processes underlying synchronization in the brain are not fully understood there have been reported a variety of mechanisms supporting different types of synchronization both at theoretical and experimental level. One of the more intriguing of these phenomena is the anticipating synchronization, which has been recently reported in a pair of unidirectionally coupled artificial neurons under simple conditions cite{Pyragas}, where the slave neuron is able to anticipate in time the behaviour of the master one. In this paper we explore the effect of spike anticipation over the information processing performed by a neural network at functional and structural level. We show that the introduction of intermediary neurons in the network enhances spike anticipation and analyse how these variations in spike anticipation can significantly change the firing regime of the neural network according to its functional and structural properties. In addition we show that the interspike interval (ISI, one of the main features of the neural response associated to the information coding, can be closely related to spike anticipation by each spike, and how synaptic plasticity can be modulated through that relationship. This study has been performed through numerical simulation of a coupled system of Hindmarsh-Rose neurons.
Dynamics of a class of cellular neural networks with time-varying delays
International Nuclear Information System (INIS)
Huang Lihong; Huang Chuangxia; Liu Bingwen
2005-01-01
Employing Brouwer's fixed point theorem, matrix theory, a continuation theorem of the coincidence degree and inequality analysis, the authors make a further investigation of a class of cellular neural networks with delays (DCNNs) in this Letter. A family of sufficient conditions are given for checking global exponential stability and the existence of periodic solutions of DCNNs. These results have important leading significance in the design and applications of globally stable DCNNs and periodic oscillatory DCNNs. Our results extend and improve some earlier publications
A neural model for transient identification in dynamic processes with 'don't know' response
Energy Technology Data Exchange (ETDEWEB)
Mol, Antonio C. de A. E-mail: mol@ien.gov.br; Martinez, Aquilino S. E-mail: aquilino@lmp.ufrj.br; Schirru, Roberto E-mail: schirru@lmp.ufrj.br
2003-09-01
This work presents an approach for neural network based transient identification which allows either dynamic identification or a 'don't know' response. The approach uses two 'jump' multilayer neural networks (NN) trained with the backpropagation algorithm. The 'jump' network is used because it is useful to dealing with very complex patterns, which is the case of the space of the state variables during some abnormal events. The first one is responsible for the dynamic identification. This NN uses, as input, a short set (in a moving time window) of recent measurements of each variable avoiding the necessity of using starting events. The other one is used to validate the instantaneous identification (from the first net) through the validation of each variable. This net is responsible for allowing the system to provide a 'don't know' response. In order to validate the method, a Nuclear Power Plant (NPP) transient identification problem comprising 15 postulated accidents, simulated for a pressurized water reactor (PWR), was proposed in the validation process it has been considered noisy data in order to evaluate the method robustness. Obtained results reveal the ability of the method in dealing with both dynamic identification of transients and correct 'don't know' response. Another important point studied in this work is that the system has shown to be independent of a trigger signal which indicates the beginning of the transient, thus making it robust in relation to this limitation.
International Nuclear Information System (INIS)
Vomweg, T.W.; Teifke, A.; Kauczor, H.U.; Achenbach, T.; Rieker, O.; Schreiber, W.G.; Heitmann, K.R.; Beier, T.; Thelen, M.
2005-01-01
Purpose: Investigation and statistical evaluation of 'Self-Organizing Maps', a special type of neural networks in the field of artificial intelligence, classifying contrast enhancing lesions in dynamic MR-mammography. Material and Methods: 176 investigations with proven histology after core biopsy or operation were randomly divided into two groups. Several Self-Organizing Maps were trained by investigations of the first group to detect and classify contrast enhancing lesions in dynamic MR-mammography. Each single pixel's signal/time curve of all patients within the second group was analyzed by the Self-Organizing Maps. The likelihood of malignancy was visualized by color overlays on the MR-images. At last assessment of contrast-enhancing lesions by each different network was rated visually and evaluated statistically. Results: A well balanced neural network achieved a sensitivity of 90.5% and a specificity of 72.2% in predicting malignancy of 88 enhancing lesions. Detailed analysis of false-positive results revealed that every second fibroadenoma showed a 'typical malignant' signal/time curve without any chance to differentiate between fibroadenomas and malignant tissue regarding contrast enhancement alone; but this special group of lesions was represented by a well-defined area of the Self-Organizing Map. Discussion: Self-Organizing Maps are capable of classifying a dynamic signal/time curve as 'typical benign' or 'typical malignant'. Therefore, they can be used as second opinion. In view of the now known localization of fibroadenomas enhancing like malignant tumors at the Self-Organizing Map, these lesions could be passed to further analysis by additional post-processing elements (e.g., based on T2-weighted series or morphology analysis) in the future. (orig.)
Development of nonlinear dynamic analysis program for nuclear piping systems
International Nuclear Information System (INIS)
Kamichika, Ryoichi; Izawa, Masahiro; Yamadera, Masao
1980-01-01
In the design for nuclear power piping, pipe-whip protection shall be considered in order to keep the function of safety related system even when postulated piping rupture occurs. This guideline was shown in U.S. Regulatory Guide 1.46 for the first time and has been applied in Japanese nuclear power plants. In order to analyze the dynamic behavior followed by pipe rupture, nonlinear analysis is required for the piping system including restraints which play the role of an energy absorber. REAPPS (Rupture Effective Analysis of Piping Systems) has been developed for this purpose. This program can be applied to general piping systems having branches etc. Pre- and post- processors are prepared in this program in order to easily input the data for the piping engineer and show the results optically by use of a graphic display respectively. The piping designer can easily solve many problems in his daily work by use of this program. This paper describes about the theoretical background and functions of this program and shows some examples. (author)
Truccolo, Wilson
2016-11-01
This review presents a perspective on capturing collective dynamics in recorded neuronal ensembles based on multivariate point process models, inference of low-dimensional dynamics and coarse graining of spatiotemporal measurements. A general probabilistic framework for continuous time point processes reviewed, with an emphasis on multivariate nonlinear Hawkes processes with exogenous inputs. A point process generalized linear model (PP-GLM) framework for the estimation of discrete time multivariate nonlinear Hawkes processes is described. The approach is illustrated with the modeling of collective dynamics in neocortical neuronal ensembles recorded in human and non-human primates, and prediction of single-neuron spiking. A complementary approach to capture collective dynamics based on low-dimensional dynamics ("order parameters") inferred via latent state-space models with point process observations is presented. The approach is illustrated by inferring and decoding low-dimensional dynamics in primate motor cortex during naturalistic reach and grasp movements. Finally, we briefly review hypothesis tests based on conditional inference and spatiotemporal coarse graining for assessing collective dynamics in recorded neuronal ensembles. Published by Elsevier Ltd.
Evaluation of Electric Power Procurement Strategies by Stochastic Dynamic Programming
Saisho, Yuichi; Hayashi, Taketo; Fujii, Yasumasa; Yamaji, Kenji
In deregulated electricity markets, the role of a distribution company is to purchase electricity from the wholesale electricity market at randomly fluctuating prices and to provide it to its customers at a given fixed price. Therefore the company has to take risk stemming from the uncertainties of electricity prices and/or demand fluctuation instead of the customers. The way to avoid the risk is to make a bilateral contact with generating companies or install its own power generation facility. This entails the necessity to develop a certain method to make an optimal strategy for electric power procurement. In such a circumstance, this research has the purpose for proposing a mathematical method based on stochastic dynamic programming and additionally considering the characteristics of the start-up cost of electric power generation facility to evaluate strategies of combination of the bilateral contract and power auto-generation with its own facility for procuring electric power in deregulated electricity market. In the beginning we proposed two approaches to solve the stochastic dynamic programming, and they are a Monte Carlo simulation method and a finite difference method to derive the solution of a partial differential equation of the total procurement cost of electric power. Finally we discussed the influences of the price uncertainty on optimal strategies of power procurement.
A mathematical programming approach for sequential clustering of dynamic networks
Silva, Jonathan C.; Bennett, Laura; Papageorgiou, Lazaros G.; Tsoka, Sophia
2016-02-01
A common analysis performed on dynamic networks is community structure detection, a challenging problem that aims to track the temporal evolution of network modules. An emerging area in this field is evolutionary clustering, where the community structure of a network snapshot is identified by taking into account both its current state as well as previous time points. Based on this concept, we have developed a mixed integer non-linear programming (MINLP) model, SeqMod, that sequentially clusters each snapshot of a dynamic network. The modularity metric is used to determine the quality of community structure of the current snapshot and the historical cost is accounted for by optimising the number of node pairs co-clustered at the previous time point that remain so in the current snapshot partition. Our method is tested on social networks of interactions among high school students, college students and members of the Brazilian Congress. We show that, for an adequate parameter setting, our algorithm detects the classes that these students belong more accurately than partitioning each time step individually or by partitioning the aggregated snapshots. Our method also detects drastic discontinuities in interaction patterns across network snapshots. Finally, we present comparative results with similar community detection methods for time-dependent networks from the literature. Overall, we illustrate the applicability of mathematical programming as a flexible, adaptable and systematic approach for these community detection problems. Contribution to the Topical Issue "Temporal Network Theory and Applications", edited by Petter Holme.
Noto, M; Nishikawa, J; Tateno, T
2016-03-24
A sound interrupted by silence is perceived as discontinuous. However, when high-intensity noise is inserted during the silence, the missing sound may be perceptually restored and be heard as uninterrupted. This illusory phenomenon is called auditory induction. Recent electrophysiological studies have revealed that auditory induction is associated with the primary auditory cortex (A1). Although experimental evidence has been accumulating, the neural mechanisms underlying auditory induction in A1 neurons are poorly understood. To elucidate this, we used both experimental and computational approaches. First, using an optical imaging method, we characterized population responses across auditory cortical fields to sound and identified five subfields in rats. Next, we examined neural population activity related to auditory induction with high temporal and spatial resolution in the rat auditory cortex (AC), including the A1 and several other AC subfields. Our imaging results showed that tone-burst stimuli interrupted by a silent gap elicited early phasic responses to the first tone and similar or smaller responses to the second tone following the gap. In contrast, tone stimuli interrupted by broadband noise (BN), considered to cause auditory induction, considerably suppressed or eliminated responses to the tone following the noise. Additionally, tone-burst stimuli that were interrupted by notched noise centered at the tone frequency, which is considered to decrease the strength of auditory induction, partially restored the second responses from the suppression caused by BN. To phenomenologically mimic the neural population activity in the A1 and thus investigate the mechanisms underlying auditory induction, we constructed a computational model from the periphery through the AC, including a nonlinear dynamical system. The computational model successively reproduced some of the above-mentioned experimental results. Therefore, our results suggest that a nonlinear, self
Patriarca, M.; Kuronen, A.; Robles, M.; Kaski, K.
2007-01-01
The study of crystal defects and the complex processes underlying their formation and time evolution has motivated the development of the program ALINE for interactive molecular dynamics experiments. This program couples a molecular dynamics code to a Graphical User Interface and runs on a UNIX-X11 Window System platform with the MOTIF library, which is contained in many standard Linux releases. ALINE is written in C, thus giving the user the possibility to modify the source code, and, at the same time, provides an effective and user-friendly framework for numerical experiments, in which the main parameters can be interactively varied and the system visualized in various ways. We illustrate the main features of the program through some examples of detection and dynamical tracking of point-defects, linear defects, and planar defects, such as stacking faults in lattice-mismatched heterostructures. Program summaryTitle of program:ALINE Catalogue identifier:ADYJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYJ_v1_0 Program obtainable from: CPC Program Library, Queen University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: Computers:DEC ALPHA 300, Intel i386 compatible computers, G4 Apple Computers Installations:Laboratory of Computational Engineering, Helsinki University of Technology, Helsinki, Finland Operating systems under which the program has been tested:True64 UNIX, Linux-i386, Mac OS X 10.3 and 10.4 Programming language used:Standard C and MOTIF libraries Memory required to execute with typical data:6 Mbytes but may be larger depending on the system size No. of lines in distributed program, including test data, etc.:16 901 No. of bytes in distributed program, including test data, etc.:449 559 Distribution format:tar.gz Nature of physical problem:Some phenomena involving defects take place inside three-dimensional crystals at times which can be hardly predicted. For this reason they are
Directory of Open Access Journals (Sweden)
Katja M. Piltti
2015-09-01
Full Text Available The effect of transplantation dose on the spatiotemporal dynamics of human neural stem cell (hNSC engraftment has not been quantitatively evaluated in the central nervous system. We investigated changes over time in engraftment/survival, proliferation, and migration of multipotent human central nervous system-derived neural stem cells (hCNS-SCns transplanted at doses ranging from 10,000 to 500,000 cells in spinal cord injured immunodeficient mice. Transplant dose was inversely correlated with measures of donor cell proliferation at 2 weeks post-transplant (WPT and dose-normalized engraftment at 16 WPT. Critically, mice receiving the highest cell dose exhibited an engraftment plateau, in which the total number of engrafted human cells never exceeded the initial dose. These data suggest that donor cell expansion was inversely regulated by target niche parameters and/or transplantation density. Investigation of the response of donor cells to the host microenvironment should be a key variable in defining target cell dose in pre-clinical models of CNS disease and injury.
Kalkkuhl, J; Hunt, K J; Fritz, H
1999-01-01
An finite-element methods (FEM)-based neural-network approach to Nonlinear AutoRegressive with eXogenous input (NARX) modeling is presented. The method uses multilinear interpolation functions on C0 rectangular elements. The local and global structure of the resulting model is analyzed. It is shown that the model can be interpreted both as a local model network and a single layer feedforward neural network. The main aim is to use the model for nonlinear control design. The proposed FEM NARX description is easily accessible to feedback linearizing control techniques. Its use with a two-degrees of freedom nonlinear internal model controller is discussed. The approach is applied to modeling of the nonlinear longitudinal dynamics of an experimental lorry, using measured data. The modeling results are compared with local model network and multilayer perceptron approaches. A nonlinear speed controller was designed based on the identified FEM model. The controller was implemented in a test vehicle, and several experimental results are presented.
Si, Wenjie; Dong, Xunde; Yang, Feifei
2018-03-01
This paper is concerned with the problem of decentralized adaptive backstepping state-feedback control for uncertain high-order large-scale stochastic nonlinear time-delay systems. For the control design of high-order large-scale nonlinear systems, only one adaptive parameter is constructed to overcome the over-parameterization, and neural networks are employed to cope with the difficulties raised by completely unknown system dynamics and stochastic disturbances. And then, the appropriate Lyapunov-Krasovskii functional and the property of hyperbolic tangent functions are used to deal with the unknown unmatched time-delay interactions of high-order large-scale systems for the first time. At last, on the basis of Lyapunov stability theory, the decentralized adaptive neural controller was developed, and it decreases the number of learning parameters. The actual controller can be designed so as to ensure that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB) and the tracking error converges in the small neighborhood of zero. The simulation example is used to further show the validity of the design method. Copyright © 2018 Elsevier Ltd. All rights reserved.
A Comparative Study of Neural Networks and Fuzzy Systems in Modeling of a Nonlinear Dynamic System
Directory of Open Access Journals (Sweden)
Metin Demirtas
2011-07-01
Full Text Available The aim of this paper is to compare the neural networks and fuzzy modeling approaches on a nonlinear system. We have taken Permanent Magnet Brushless Direct Current (PMBDC motor data and have generated models using both approaches. The predictive performance of both methods was compared on the data set for model configurations. The paper describes the results of these tests and discusses the effects of changing model parameters on predictive and practical performance. Modeling sensitivity was used to compare for two methods.
International Nuclear Information System (INIS)
Luo, Shaohua; Wu, Songli; Gao, Ruizhen
2015-01-01
This paper investigates chaos control for the brushless DC motor (BLDCM) system by adaptive dynamic surface approach based on neural network with the minimum weights. The BLDCM system contains parameter perturbation, chaotic behavior, and uncertainty. With the help of radial basis function (RBF) neural network to approximate the unknown nonlinear functions, the adaptive law is established to overcome uncertainty of the control gain. By introducing the RBF neural network and adaptive technology into the dynamic surface control design, a robust chaos control scheme is developed. It is proved that the proposed control approach can guarantee that all signals in the closed-loop system are globally uniformly bounded, and the tracking error converges to a small neighborhood of the origin. Simulation results are provided to show that the proposed approach works well in suppressing chaos and parameter perturbation
Luo, Shaohua; Wu, Songli; Gao, Ruizhen
2015-07-01
This paper investigates chaos control for the brushless DC motor (BLDCM) system by adaptive dynamic surface approach based on neural network with the minimum weights. The BLDCM system contains parameter perturbation, chaotic behavior, and uncertainty. With the help of radial basis function (RBF) neural network to approximate the unknown nonlinear functions, the adaptive law is established to overcome uncertainty of the control gain. By introducing the RBF neural network and adaptive technology into the dynamic surface control design, a robust chaos control scheme is developed. It is proved that the proposed control approach can guarantee that all signals in the closed-loop system are globally uniformly bounded, and the tracking error converges to a small neighborhood of the origin. Simulation results are provided to show that the proposed approach works well in suppressing chaos and parameter perturbation.
Dynamic electricity pricing for electric vehicles using stochastic programming
International Nuclear Information System (INIS)
Soares, João; Ghazvini, Mohammad Ali Fotouhi; Borges, Nuno; Vale, Zita
2017-01-01
Electric Vehicles (EVs) are an important source of uncertainty, due to their variable demand, departure time and location. In smart grids, the electricity demand can be controlled via Demand Response (DR) programs. Smart charging and vehicle-to-grid seem highly promising methods for EVs control. However, high capital costs remain a barrier to implementation. Meanwhile, incentive and price-based schemes that do not require high level of control can be implemented to influence the EVs' demand. Having effective tools to deal with the increasing level of uncertainty is increasingly important for players, such as energy aggregators. This paper formulates a stochastic model for day-ahead energy resource scheduling, integrated with the dynamic electricity pricing for EVs, to address the challenges brought by the demand and renewable sources uncertainty. The two-stage stochastic programming approach is used to obtain the optimal electricity pricing for EVs. A realistic case study projected for 2030 is presented based on Zaragoza network. The results demonstrate that it is more effective than the deterministic model and that the optimal pricing is preferable. This study indicates that adequate DR schemes like the proposed one are promising to increase the customers' satisfaction in addition to improve the profitability of the energy aggregation business. - Highlights: • A stochastic model for energy scheduling tackling several uncertainty sources. • A two-stage stochastic programming is used to tackle the developed model. • Optimal EV electricity pricing seems to improve the profits. • The propose results suggest to increase the customers' satisfaction.
Han, Min; Fan, Jianchao; Wang, Jun
2011-09-01
A dynamic feedforward neural network (DFNN) is proposed for predictive control, whose adaptive parameters are adjusted by using Gaussian particle swarm optimization (GPSO) in the training process. Adaptive time-delay operators are added in the DFNN to improve its generalization for poorly known nonlinear dynamic systems with long time delays. Furthermore, GPSO adopts a chaotic map with Gaussian function to balance the exploration and exploitation capabilities of particles, which improves the computational efficiency without compromising the performance of the DFNN. The stability of the particle dynamics is analyzed, based on the robust stability theory, without any restrictive assumption. A stability condition for the GPSO+DFNN model is derived, which ensures a satisfactory global search and quick convergence, without the need for gradients. The particle velocity ranges could change adaptively during the optimization process. The results of a comparative study show that the performance of the proposed algorithm can compete with selected algorithms on benchmark problems. Additional simulation results demonstrate the effectiveness and accuracy of the proposed combination algorithm in identifying and controlling nonlinear systems with long time delays.
Directory of Open Access Journals (Sweden)
Leonid A Safonov
Full Text Available A neuron embedded in an intact brain, unlike an isolated neuron, participates in network activity at various spatial resolutions. Such multiple scale spatial dynamics is potentially reflected in multiple time scales of temporal dynamics. We identify such multiple dynamical time scales of the inter-spike interval (ISI fluctuations of neurons of waking/sleeping rats by means of multiscale analysis. The time scale of large non-Gaussianity in the ISI fluctuations, measured with the Castaing method, ranges up to several minutes, markedly escaping the low-pass filtering characteristics of neurons. A comparison between neural activity during waking and sleeping reveals that non-Gaussianity is stronger during waking than sleeping throughout the entire range of scales observed. We find a remarkable property of near scale independence of the magnitude correlations as the primary cause of persistent non-Gaussianity. Such scale-invariance of correlations is characteristic of multiplicative cascade processes and raises the possibility of the existence of a scale independent memory preserving mechanism.
Zhu, Wei; Wang, Dandan; Liu, Lu; Feng, Gang
2017-08-18
This paper investigates exponential stabilization of continuous-time dynamic systems (CDSs) via event-based impulsive control (EIC) approaches, where the impulsive instants are determined by certain state-dependent triggering condition. The global exponential stability criteria via EIC are derived for nonlinear and linear CDSs, respectively. It is also shown that there is no Zeno-behavior for the concerned closed loop control system. In addition, the developed event-based impulsive scheme is applied to the synchronization problem of master and slave memristive neural networks. Furthermore, a self-triggered impulsive control scheme is developed to avoid continuous communication between the master system and slave system. Finally, two numerical simulation examples are presented to illustrate the effectiveness of the proposed event-based impulsive controllers.
Directory of Open Access Journals (Sweden)
C. H. López-Caraballo
2015-01-01
Full Text Available An artificial neural network (ANN based on particle swarm optimization (PSO was developed for the time series prediction. The hybrid ANN+PSO algorithm was applied on Mackey-Glass chaotic time series in the short-term xt+6. The performance prediction was evaluated and compared with other studies available in the literature. Also, we presented properties of the dynamical system via the study of chaotic behaviour obtained from the predicted time series. Next, the hybrid ANN+PSO algorithm was complemented with a Gaussian stochastic procedure (called stochastic hybrid ANN+PSO in order to obtain a new estimator of the predictions, which also allowed us to compute the uncertainties of predictions for noisy Mackey-Glass chaotic time series. Thus, we studied the impact of noise for several cases with a white noise level σN from 0.01 to 0.1.
Chen, C P; Wan, J Z
1999-01-01
A fast learning algorithm is proposed to find an optimal weights of the flat neural networks (especially, the functional-link network). Although the flat networks are used for nonlinear function approximation, they can be formulated as linear systems. Thus, the weights of the networks can be solved easily using a linear least-square method. This formulation makes it easier to update the weights instantly for both a new added pattern and a new added enhancement node. A dynamic stepwise updating algorithm is proposed to update the weights of the system on-the-fly. The model is tested on several time-series data including an infrared laser data set, a chaotic time-series, a monthly flour price data set, and a nonlinear system identification problem. The simulation results are compared to existing models in which more complex architectures and more costly training are needed. The results indicate that the proposed model is very attractive to real-time processes.
Kida, S; Kato, T
2015-01-01
Psychiatric disorders are caused not only by genetic factors but also by complicated factors such as environmental ones. Moreover, environmental factors are rarely quantitated as biological and biochemical indicators, making it extremely difficult to understand the pathological conditions of psychiatric disorders as well as their underlying pathogenic mechanisms. Additionally, we have actually no other option but to perform biological studies on postmortem human brains that display features of psychiatric disorders, thereby resulting in a lack of experimental materials to characterize the basic biology of these disorders. From these backgrounds, animal, tissue, or cell models that can be used in basic research are indispensable to understand biologically the pathogenic mechanisms of psychiatric disorders. In this review, we discuss the importance of microendophenotypes of psychiatric disorders, i.e., phenotypes at the level of molecular dynamics, neurons, synapses, and neural circuits, as targets of basic research on these disorders.
Directory of Open Access Journals (Sweden)
Yuichi eYamashita
2011-04-01
Full Text Available How the brain learns and generates temporal sequences is a fundamental issue in neuroscience. The production of birdsongs, a process which involves complex learned sequences, provides researchers with an excellent biological model for this topic. The Bengalese finch in particular learns a highly complex song with syntactical structure. The nucleus HVC (HVC, a premotor nucleus within the avian song system, plays a key role in generating the temporal structures of their songs. From lesion studies, the nucleus interfacialis (NIf projecting to the HVC is considered one of the essential regions that contribute to the complexity of their songs. However, the types of interaction between the HVC and the NIf that can produce complex syntactical songs remain unclear. In order to investigate the function of interactions between the HVC and NIf, we have proposed a neural network model based on previous biological evidence. The HVC is modeled by a recurrent neural network (RNN that learns to generate temporal patterns of songs. The NIf is modeled as a mechanism that provides auditory feedback to the HVC and generates random noise that feeds into the HVC. The model showed that complex syntactical songs can be replicated by simple interactions between deterministic dynamics of the RNN and random noise. In the current study, the plausibility of the model is tested by the comparison between the changes in the songs of actual birds induced by pharmacological inhibition of the NIf and the changes in the songs produced by the model resulting from modification of parameters representing NIf functions. The efficacy of the model demonstrates that the changes of songs induced by pharmacological inhibition of the NIf can be interpreted as a trade-off between the effects of noise and the effects of feedback on the dynamics of the RNN of the HVC. These facts suggest that the current model provides a convincing hypothesis for the functional role of NIf-HVC interaction.
Directory of Open Access Journals (Sweden)
Adrian G Guggisberg
2008-03-01
Full Text Available We examine the relative timing of numerous brain regions involved in human decisions that are based on external criteria, learned information, personal preferences, or unconstrained internal considerations. Using magnetoencephalography (MEG and advanced signal analysis techniques, we were able to non-invasively reconstruct oscillations of distributed neural networks in the high-gamma frequency band (60–150 Hz. The time course of the observed neural activity suggested that two-alternative forced choice tasks are processed in four overlapping stages: processing of sensory input, option evaluation, intention formation, and action execution. Visual areas are activated fi rst, and show recurring activations throughout the entire decision process. The temporo-occipital junction and the intraparietal sulcus are active during evaluation of external values of the options, 250–500 ms after stimulus presentation. Simultaneously, personal preference is mediated by cortical midline structures. Subsequently, the posterior parietal and superior occipital cortices appear to encode intention, with different subregions being responsible for different types of choice. The cerebellum and inferior parietal cortex are recruited for internal generation of decisions and actions, when all options have the same value. Action execution was accompanied by activation peaks in the contralateral motor cortex. These results suggest that high-gamma oscillations as recorded by MEG allow a reliable reconstruction of decision processes with excellent spatiotemporal resolution.
The dissociable neural dynamics of cognitive conflict and emotional conflict control: An ERP study.
Xue, Song; Li, Yu; Kong, Xia; He, Qiaolin; Liu, Jia; Qiu, Jiang
2016-04-21
This study investigated differences in the neural time-course of cognitive conflict and emotional conflict control, using event-related potentials (ERPs). Although imaging studies have provided some evidence that distinct, dissociable neural systems underlie emotional and nonemotional conflict resolution, no ERP study has directly compared these two types of conflict. Therefore, the present study used a modified face-word Stroop task to explore the electrophysiological correlates of cognitive and emotional conflict control. The behavioral data showed that the difference in response time of congruency (incongruent condition minus the congruent condition) was larger in the cognitive conflict task than in the emotional conflict task, which indicated that cognitive conflict was stronger than the emotional conflict in the present tasks. Analysis of the ERP data revealed a main effect of task type on N2, which may be associated with top-down attention. The N450 results showed an interaction between cognitive and emotional conflict, which might be related to conflict detection. In addition, we found the incongruent condition elicited a larger SP than the congruent condition, which might be related to conflict resolution. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Hosoda, Chihiro; Tanaka, Kanji; Nariai, Tadashi; Honda, Manabu; Hanakawa, Takashi
2013-08-21
It remains unsettled whether human language relies exclusively on innately privileged brain structure in the left hemisphere or is more flexibly shaped through experiences, which induce neuroplastic changes in potentially relevant neural circuits. Here we show that learning of second language (L2) vocabulary and its cessation can induce bidirectional changes in the mirror-reverse of the traditional language areas. A cross-sectional study identified that gray matter volume in the inferior frontal gyrus pars opercularis (IFGop) and connectivity of the IFGop with the caudate nucleus and the superior temporal gyrus/supramarginal (STG/SMG), predominantly in the right hemisphere, were positively correlated with L2 vocabulary competence. We then implemented a cohort study involving 16 weeks of L2 training in university students. Brain structure before training did not predict the later gain in L2 ability. However, training intervention did increase IFGop volume and reorganization of white matter including the IFGop-caudate and IFGop-STG/SMG pathways in the right hemisphere. These "positive" plastic changes were correlated with the gain in L2 ability in the trained group but were not observed in the control group. We propose that the right hemispheric network can be reorganized into language-related areas through use-dependent plasticity in young adults, reflecting a repertoire of flexible reorganization of the neural substrates responding to linguistic experiences.
International Nuclear Information System (INIS)
Zio, Enrico; Pedroni, Nicola; Broggi, Matteo; Golea, Lucia Roxana
2009-01-01
In this paper, an infinite impulse response locally recurrent neural network (IIR-LRNN) is employed for modelling the dynamics of the Lead Bismuth Eutectic eXperimental Accelerator Driven System (LBE-XADS). The network is trained by recursive back-propagation (RBP) and its ability in estimating transients is tested under various conditions. The results demonstrate the robustness of the locally recurrent scheme in the reconstruction of complex nonlinear dynamic relationships
Lewis, F L; Vamvoudakis, Kyriakos G
2011-02-01
Approximate dynamic programming (ADP) is a class of reinforcement learning methods that have shown their importance in a variety of applications, including feedback control of dynamical systems. ADP generally requires full information about the system internal states, which is usually not available in practical situations. In this paper, we show how to implement ADP methods using only measured input/output data from the system. Linear dynamical systems with deterministic behavior are considered herein, which are systems of great interest in the control system community. In control system theory, these types of methods are referred to as output feedback (OPFB). The stochastic equivalent of the systems dealt with in this paper is a class of partially observable Markov decision processes. We develop both policy iteration and value iteration algorithms that converge to an optimal controller that requires only OPFB. It is shown that, similar to Q -learning, the new methods have the important advantage that knowledge of the system dynamics is not needed for the implementation of these learning algorithms or for the OPFB control. Only the order of the system, as well as an upper bound on its "observability index," must be known. The learned OPFB controller is in the form of a polynomial autoregressive moving-average controller that has equivalent performance with the optimal state variable feedback gain.
Directory of Open Access Journals (Sweden)
Jooyoung Park
2015-05-01
Full Text Available Recently, the optimization of power flows in portable hybrid power-supply systems (HPSSs has become an important issue with the advent of a variety of mobile systems and hybrid energy technologies. In this paper, a control strategy is considered for dynamically managing power flows in portable HPSSs employing batteries and supercapacitors. Our dynamic power management strategy utilizes the concept of approximate dynamic programming (ADP. ADP methods are important tools in the fields of stochastic control and machine learning, and the utilization of these tools for practical engineering problems is now an active and promising research field. We propose an ADP-based procedure based on optimization under constraints including the iterated Bellman inequalities, which can be solved by convex optimization carried out offline, to find the optimal power management rules for portable HPSSs. The effectiveness of the proposed procedure is tested through dynamic simulations for smartphone workload scenarios, and simulation results show that the proposed strategy can successfully cope with uncertain workload demands.
Phase dynamics of complex-valued neural networks and its application to traffic signal control.
Nishikawa, Ikuko; Iritani, Takeshi; Sakakibara, Kazutoshi; Kuroe, Yasuaki
2005-01-01
Complex-valued Hopfield networks which possess the energy function are analyzed. The dynamics of the network with certain forms of an activation function is de-composable into the dynamics of the amplitude and phase of each neuron. Then the phase dynamics is described as a coupled system of phase oscillators with a pair-wise sinusoidal interaction. Therefore its phase synchronization mechanism is useful for the area-wide offset control of the traffic signals. The computer simulations show the effectiveness under the various traffic conditions.
Hortos, William S.
1997-04-01
The use of artificial neural networks (NNs) to address the channel assignment problem (CAP) for cellular time-division multiple access and code-division multiple access networks has previously been investigated by this author and many others. The investigations to date have been based on a hexagonal cell structure established by omnidirectional antennas at the base stations. No account was taken of the use of spatial isolation enabled by directional antennas to reduce interference between mobiles. Any reduction in interference translates into increased capacity and consequently alters the performance of the NNs. Previous studies have sought to improve the performance of Hopfield- Tank network algorithms and self-organizing feature map algorithms applied primarily to static channel assignment (SCA) for cellular networks that handle uniformly distributed, stationary traffic in each cell for a single type of service. The resulting algorithms minimize energy functions representing interference constraint and ad hoc conditions that promote convergence to optimal solutions. While the structures of the derived neural network algorithms (NNAs) offer the potential advantages of inherent parallelism and adaptability to changing system conditions, this potential has yet to be fulfilled the CAP for emerging mobile networks. The next-generation communication infrastructures must accommodate dynamic operating conditions. Macrocell topologies are being refined to microcells and picocells that can be dynamically sectored by adaptively controlled, directional antennas and programmable transceivers. These networks must support the time-varying demands for personal communication services (PCS) that simultaneously carry voice, data and video and, thus, require new dynamic channel assignment (DCA) algorithms. This paper examines the impact of dynamic cell sectoring and geometric conditioning on NNAs developed for SCA in omnicell networks with stationary traffic to improve the metrics
Optimization of decision rules based on dynamic programming approach
Zielosko, Beata
2014-01-14
This chapter is devoted to the study of an extension of dynamic programming approach which allows optimization of approximate decision rules relative to the length and coverage. We introduce an uncertainty measure that is the difference between number of rows in a given decision table and the number of rows labeled with the most common decision for this table divided by the number of rows in the decision table. We fix a threshold γ, such that 0 ≤ γ < 1, and study so-called γ-decision rules (approximate decision rules) that localize rows in subtables which uncertainty is at most γ. Presented algorithm constructs a directed acyclic graph Δ γ T which nodes are subtables of the decision table T given by pairs "attribute = value". The algorithm finishes the partitioning of a subtable when its uncertainty is at most γ. The chapter contains also results of experiments with decision tables from UCI Machine Learning Repository. © 2014 Springer International Publishing Switzerland.
Estimating Arrhenius parameters using temperature programmed molecular dynamics
International Nuclear Information System (INIS)
Imandi, Venkataramana; Chatterjee, Abhijit
2016-01-01
Kinetic rates at different temperatures and the associated Arrhenius parameters, whenever Arrhenius law is obeyed, are efficiently estimated by applying maximum likelihood analysis to waiting times collected using the temperature programmed molecular dynamics method. When transitions involving many activated pathways are available in the dataset, their rates may be calculated using the same collection of waiting times. Arrhenius behaviour is ascertained by comparing rates at the sampled temperatures with ones from the Arrhenius expression. Three prototype systems with corrugated energy landscapes, namely, solvated alanine dipeptide, diffusion at the metal-solvent interphase, and lithium diffusion in silicon, are studied to highlight various aspects of the method. The method becomes particularly appealing when the Arrhenius parameters can be used to find rates at low temperatures where transitions are rare. Systematic coarse-graining of states can further extend the time scales accessible to the method. Good estimates for the rate parameters are obtained with 500-1000 waiting times.
Estimating Arrhenius parameters using temperature programmed molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Imandi, Venkataramana; Chatterjee, Abhijit, E-mail: abhijit@che.iitb.ac.in [Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076 (India)
2016-07-21
Kinetic rates at different temperatures and the associated Arrhenius parameters, whenever Arrhenius law is obeyed, are efficiently estimated by applying maximum likelihood analysis to waiting times collected using the temperature programmed molecular dynamics method. When transitions involving many activated pathways are available in the dataset, their rates may be calculated using the same collection of waiting times. Arrhenius behaviour is ascertained by comparing rates at the sampled temperatures with ones from the Arrhenius expression. Three prototype systems with corrugated energy landscapes, namely, solvated alanine dipeptide, diffusion at the metal-solvent interphase, and lithium diffusion in silicon, are studied to highlight various aspects of the method. The method becomes particularly appealing when the Arrhenius parameters can be used to find rates at low temperatures where transitions are rare. Systematic coarse-graining of states can further extend the time scales accessible to the method. Good estimates for the rate parameters are obtained with 500-1000 waiting times.
The sequence relay selection strategy based on stochastic dynamic programming
Zhu, Rui; Chen, Xihao; Huang, Yangchao
2017-07-01
Relay-assisted (RA) network with relay node selection is a kind of effective method to improve the channel capacity and convergence performance. However, most of the existing researches about the relay selection did not consider the statically channel state information and the selection cost. This shortage limited the performance and application of RA network in practical scenarios. In order to overcome this drawback, a sequence relay selection strategy (SRSS) was proposed. And the performance upper bound of SRSS was also analyzed in this paper. Furthermore, in order to make SRSS more practical, a novel threshold determination algorithm based on the stochastic dynamic program (SDP) was given to work with SRSS. Numerical results are also presented to exhibit the performance of SRSS with SDP.
Approximate dynamic programming approaches for appointment scheduling with patient preferences.
Li, Xin; Wang, Jin; Fung, Richard Y K
2018-04-01
During the appointment booking process in out-patient departments, the level of patient satisfaction can be affected by whether or not their preferences can be met, including the choice of physicians and preferred time slot. In addition, because the appointments are sequential, considering future possible requests is also necessary for a successful appointment system. This paper proposes a Markov decision process model for optimizing the scheduling of sequential appointments with patient preferences. In contrast to existing models, the evaluation of a booking decision in this model focuses on the extent to which preferences are satisfied. Characteristics of the model are analysed to develop a system for formulating booking policies. Based on these characteristics, two types of approximate dynamic programming algorithms are developed to avoid the curse of dimensionality. Experimental results suggest directions for further fine-tuning of the model, as well as improving the efficiency of the two proposed algorithms. Copyright © 2018 Elsevier B.V. All rights reserved.