WorldWideScience

Sample records for neural dynamic programming

  1. A novel neural dynamical approach to convex quadratic program and its efficient applications.

    Science.gov (United States)

    Xia, Youshen; Sun, Changyin

    2009-12-01

    This paper proposes a novel neural dynamical approach to a class of convex quadratic programming problems where the number of variables is larger than the number of equality constraints. The proposed continuous-time and proposed discrete-time neural dynamical approach are guaranteed to be globally convergent to an optimal solution. Moreover, the number of its neurons is equal to the number of equality constraints. In contrast, the number of neurons in existing neural dynamical methods is at least the number of the variables. Therefore, the proposed neural dynamical approach has a low computational complexity. Compared with conventional numerical optimization methods, the proposed discrete-time neural dynamical approach reduces multiplication operation per iteration and has a large computational step length. Computational examples and two efficient applications to signal processing and robot control further confirm the good performance of the proposed approach.

  2. A dynamic programming approach to missing data estimation using neural networks

    CSIR Research Space (South Africa)

    Nelwamondo, FV

    2013-01-01

    Full Text Available This paper develops and presents a novel technique for missing data estimation using a combination of dynamic programming, neural networks and genetic algorithms (GA) on suitable subsets of the input data. The method proposed here is well suited...

  3. Neural network design for J function approximation in dynamic programming

    CERN Document Server

    Pang, X

    1998-01-01

    This paper shows that a new type of artificial neural network (ANN) -- the Simultaneous Recurrent Network (SRN) -- can, if properly trained, solve a difficult function approximation problem which conventional ANNs -- either feedforward or Hebbian -- cannot. This problem, the problem of generalized maze navigation, is typical of problems which arise in building true intelligent control systems using neural networks. (Such systems are discussed in the chapter by Werbos in K.Pribram, Brain and Values, Erlbaum 1998.) The paper provides a general review of other types of recurrent networks and alternative training techniques, including a flowchart of the Error Critic training design, arguable the only plausible approach to explain how the brain adapts time-lagged recurrent systems in real-time. The C code of the test is appended. As in the first tests of backprop, the training here was slow, but there are ways to do better after more experience using this type of network.

  4. Neural-network-observer-based optimal control for unknown nonlinear systems using adaptive dynamic programming

    Science.gov (United States)

    Liu, Derong; Huang, Yuzhu; Wang, Ding; Wei, Qinglai

    2013-09-01

    In this paper, an observer-based optimal control scheme is developed for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. First, a neural-network (NN) observer is designed to estimate system states. Then, based on the observed states, a neuro-controller is constructed via ADP method to obtain the optimal control. In this design, two NN structures are used: a three-layer NN is used to construct the observer which can be applied to systems with higher degrees of nonlinearity and without a priori knowledge of system dynamics, and a critic NN is employed to approximate the value function. The optimal control law is computed using the critic NN and the observer NN. Uniform ultimate boundedness of the closed-loop system is guaranteed. The actor, critic, and observer structures are all implemented in real-time, continuously and simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.

  5. Dynamics of neural cryptography.

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Kanter, Ido

    2007-05-01

    Synchronization of neural networks has been used for public channel protocols in cryptography. In the case of tree parity machines the dynamics of both bidirectional synchronization and unidirectional learning is driven by attractive and repulsive stochastic forces. Thus it can be described well by a random walk model for the overlap between participating neural networks. For that purpose transition probabilities and scaling laws for the step sizes are derived analytically. Both these calculations as well as numerical simulations show that bidirectional interaction leads to full synchronization on average. In contrast, successful learning is only possible by means of fluctuations. Consequently, synchronization is much faster than learning, which is essential for the security of the neural key-exchange protocol. However, this qualitative difference between bidirectional and unidirectional interaction vanishes if tree parity machines with more than three hidden units are used, so that those neural networks are not suitable for neural cryptography. In addition, the effective number of keys which can be generated by the neural key-exchange protocol is calculated using the entropy of the weight distribution. As this quantity increases exponentially with the system size, brute-force attacks on neural cryptography can easily be made unfeasible.

  6. Neural Oscillators Programming Simplified

    Directory of Open Access Journals (Sweden)

    Patrick McDowell

    2012-01-01

    Full Text Available The neurological mechanism used for generating rhythmic patterns for functions such as swallowing, walking, and chewing has been modeled computationally by the neural oscillator. It has been widely studied by biologists to model various aspects of organisms and by computer scientists and robotics engineers as a method for controlling and coordinating the gaits of walking robots. Although there has been significant study in this area, it is difficult to find basic guidelines for programming neural oscillators. In this paper, the authors approach neural oscillators from a programmer’s point of view, providing background and examples for developing neural oscillators to generate rhythmic patterns that can be used in biological modeling and robotics applications.

  7. Derivative-free neural network for optimizing the scoring functions associated with dynamic programming of pairwise-profile alignment.

    Science.gov (United States)

    Yamada, Kazunori D

    2018-01-01

    A profile-comparison method with position-specific scoring matrix (PSSM) is among the most accurate alignment methods. Currently, cosine similarity and correlation coefficients are used as scoring functions of dynamic programming to calculate similarity between PSSMs. However, it is unclear whether these functions are optimal for profile alignment methods. By definition, these functions cannot capture nonlinear relationships between profiles. Therefore, we attempted to discover a novel scoring function, which was more suitable for the profile-comparison method than existing functions, using neural networks. Although neural networks required derivative-of-cost functions, the problem being addressed in this study lacked them. Therefore, we implemented a novel derivative-free neural network by combining a conventional neural network with an evolutionary strategy optimization method used as a solver. Using this novel neural network system, we optimized the scoring function to align remote sequence pairs. Our results showed that the pairwise-profile aligner using the novel scoring function significantly improved both alignment sensitivity and precision relative to aligners using existing functions. We developed and implemented a novel derivative-free neural network and aligner (Nepal) for optimizing sequence alignments. Nepal improved alignment quality by adapting to remote sequence alignments and increasing the expressiveness of similarity scores. Additionally, this novel scoring function can be realized using a simple matrix operation and easily incorporated into other aligners. Moreover our scoring function could potentially improve the performance of homology detection and/or multiple-sequence alignment of remote homologous sequences. The goal of the study was to provide a novel scoring function for profile alignment method and develop a novel learning system capable of addressing derivative-free problems. Our system is capable of optimizing the performance of other

  8. Dynamic properties of cellular neural networks

    Directory of Open Access Journals (Sweden)

    Angela Slavova

    1993-01-01

    Full Text Available Dynamic behavior of a new class of information-processing systems called Cellular Neural Networks is investigated. In this paper we introduce a small parameter in the state equation of a cellular neural network and we seek for periodic phenomena. New approach is used for proving stability of a cellular neural network by constructing Lyapunov's majorizing equations. This algorithm is helpful for finding a map from initial continuous state space of a cellular neural network into discrete output. A comparison between cellular neural networks and cellular automata is made.

  9. Dynamical genetic programming in XCSF.

    Science.gov (United States)

    Preen, Richard J; Bull, Larry

    2013-01-01

    A number of representation schemes have been presented for use within learning classifier systems, ranging from binary encodings to artificial neural networks. This paper presents results from an investigation into using a temporally dynamic symbolic representation within the XCSF learning classifier system. In particular, dynamical arithmetic networks are used to represent the traditional condition-action production system rules to solve continuous-valued reinforcement learning problems and to perform symbolic regression, finding competitive performance with traditional genetic programming on a number of composite polynomial tasks. In addition, the network outputs are later repeatedly sampled at varying temporal intervals to perform multistep-ahead predictions of a financial time series.

  10. A complex-valued neural dynamical optimization approach and its stability analysis.

    Science.gov (United States)

    Zhang, Songchuan; Xia, Youshen; Zheng, Weixing

    2015-01-01

    In this paper, we propose a complex-valued neural dynamical method for solving a complex-valued nonlinear convex programming problem. Theoretically, we prove that the proposed complex-valued neural dynamical approach is globally stable and convergent to the optimal solution. The proposed neural dynamical approach significantly generalizes the real-valued nonlinear Lagrange network completely in the complex domain. Compared with existing real-valued neural networks and numerical optimization methods for solving complex-valued quadratic convex programming problems, the proposed complex-valued neural dynamical approach can avoid redundant computation in a double real-valued space and thus has a low model complexity and storage capacity. Numerical simulations are presented to show the effectiveness of the proposed complex-valued neural dynamical approach.

  11. Introduction to dynamic programming

    CERN Document Server

    Cooper, Leon; Rodin, E Y

    1981-01-01

    Introduction to Dynamic Programming provides information pertinent to the fundamental aspects of dynamic programming. This book considers problems that can be quantitatively formulated and deals with mathematical models of situations or phenomena that exists in the real world.Organized into 10 chapters, this book begins with an overview of the fundamental components of any mathematical optimization model. This text then presents the details of the application of dynamic programming to variational problems. Other chapters consider the application of dynamic programming to inventory theory, Mark

  12. Influence of neural adaptation on dynamics and equilibrium state of neural activities in a ring neural network

    Science.gov (United States)

    Takiyama, Ken

    2017-12-01

    How neural adaptation affects neural information processing (i.e. the dynamics and equilibrium state of neural activities) is a central question in computational neuroscience. In my previous works, I analytically clarified the dynamics and equilibrium state of neural activities in a ring-type neural network model that is widely used to model the visual cortex, motor cortex, and several other brain regions. The neural dynamics and the equilibrium state in the neural network model corresponded to a Bayesian computation and statistically optimal multiple information integration, respectively, under a biologically inspired condition. These results were revealed in an analytically tractable manner; however, adaptation effects were not considered. Here, I analytically reveal how the dynamics and equilibrium state of neural activities in a ring neural network are influenced by spike-frequency adaptation (SFA). SFA is an adaptation that causes gradual inhibition of neural activity when a sustained stimulus is applied, and the strength of this inhibition depends on neural activities. I reveal that SFA plays three roles: (1) SFA amplifies the influence of external input in neural dynamics; (2) SFA allows the history of the external input to affect neural dynamics; and (3) the equilibrium state corresponds to the statistically optimal multiple information integration independent of the existence of SFA. In addition, the equilibrium state in a ring neural network model corresponds to the statistically optimal integration of multiple information sources under biologically inspired conditions, independent of the existence of SFA.

  13. Dynamic causal models of neural system dynamics: current state ...

    Indian Academy of Sciences (India)

    2006-09-28

    Sep 28, 2006 ... Keywords. Dynamic causal modelling; EEG; effective connectivity; event-related potentials; fMRI; neural system ... In this article, we review the conceptual and mathematical basis of DCM and its implementation for functional magnetic resonance imaging data and event-related potentials. After introducing ...

  14. Foetal ECG recovery using dynamic neural networks.

    Science.gov (United States)

    Camps-Valls, Gustavo; Martínez-Sober, Marcelino; Soria-Olivas, Emilio; Magdalena-Benedito, Rafael; Calpe-Maravilla, Javier; Guerrero-Martínez, Juan

    2004-07-01

    Non-invasive electrocardiography has proven to be a very interesting method for obtaining information about the foetus state and thus to assure its well-being during pregnancy. One of the main applications in this field is foetal electrocardiogram (ECG) recovery by means of automatic methods. Evident problems found in the literature are the limited number of available registers, the lack of performance indicators, and the limited use of non-linear adaptive methods. In order to circumvent these problems, we first introduce the generation of synthetic registers and discuss the influence of different kinds of noise to the modelling. Second, a method which is based on numerical (correlation coefficient) and statistical (analysis of variance, ANOVA) measures allows us to select the best recovery model. Finally, finite impulse response (FIR) and gamma neural networks are included in the adaptive noise cancellation (ANC) scheme in order to provide highly non-linear, dynamic capabilities to the recovery model. Neural networks are benchmarked with classical adaptive methods such as the least mean squares (LMS) and the normalized LMS (NLMS) algorithms in simulated and real registers and some conclusions are drawn. For synthetic registers, the most determinant factor in the identification of the models is the foetal-maternal signal-to-noise ratio (SNR). In addition, as the electromyogram contribution becomes more relevant, neural networks clearly outperform the LMS-based algorithm. From the ANOVA test, we found statistical differences between LMS-based models and neural models when complex situations (high foetal-maternal and foetal-noise SNRs) were present. These conclusions were confirmed after doing robustness tests on synthetic registers, visual inspection of the recovered signals and calculation of the recognition rates of foetal R-peaks for real situations. Finally, the best compromise between model complexity and outcomes was provided by the FIR neural network. Both

  15. Cognitive and Neural Sciences Division 1991 Programs

    Science.gov (United States)

    1991-08-01

    techniques on a mobile robotic deriveter. Approach: NETROLOGiC will capitalize on its research programs in applying neural networks to problems in pattern...and association fiber differences in STP in piriform cortex. J. Neurophysiol. 64: 179-190. 217 TITLE: Nonlinear Neurodynamics of Biological Pattern

  16. A New Neural Dynamic Classification Algorithm.

    Science.gov (United States)

    Rafiei, Mohammad Hossein; Adeli, Hojjat

    2017-12-01

    The keys for the development of an effective classification algorithm are: 1) discovering feature spaces with large margins between clusters and close proximity of the classmates and 2) discovering the smallest number of the features to perform accurate classification. In this paper, a new supervised classification algorithm, called neural dynamic classification (NDC), is presented with the goal of: 1) discovering the most effective feature spaces and 2) finding the optimum number of features required for accurate classification using the patented robust neural dynamic optimization model of Adeli and Park. The new classification algorithm is compared with the probabilistic neural network (PNN), enhanced PNN (EPNN), and support vector machine using two sets of classification problems. The first set consists of five standard benchmark problems. The second set is a large benchmark problem called Mixed National Institute of Standards and Technology database of handwritten digits. In general, NDC yields the most accurate classification results followed by EPNN. A beauty of the new algorithm is the smoothness of convergence curves which is an indication of robustness and good performance of the algorithm. The main aim is to maximize the prediction accuracy.

  17. Dynamic Neural Fields with Intrinsic Plasticity.

    Science.gov (United States)

    Strub, Claudius; Schöner, Gregor; Wörgötter, Florentin; Sandamirskaya, Yulia

    2017-01-01

    Dynamic neural fields (DNFs) are dynamical systems models that approximate the activity of large, homogeneous, and recurrently connected neural networks based on a mean field approach. Within dynamic field theory, the DNFs have been used as building blocks in architectures to model sensorimotor embedding of cognitive processes. Typically, the parameters of a DNF in an architecture are manually tuned in order to achieve a specific dynamic behavior (e.g., decision making, selection, or working memory) for a given input pattern. This manual parameters search requires expert knowledge and time to find and verify a suited set of parameters. The DNF parametrization may be particular challenging if the input distribution is not known in advance, e.g., when processing sensory information. In this paper, we propose the autonomous adaptation of the DNF resting level and gain by a learning mechanism of intrinsic plasticity (IP). To enable this adaptation, an input and output measure for the DNF are introduced, together with a hyper parameter to define the desired output distribution. The online adaptation by IP gives the possibility to pre-define the DNF output statistics without knowledge of the input distribution and thus, also to compensate for changes in it. The capabilities and limitations of this approach are evaluated in a number of experiments.

  18. Program Aids Simulation Of Neural Networks

    Science.gov (United States)

    Baffes, Paul T.

    1990-01-01

    Computer program NETS - Tool for Development and Evaluation of Neural Networks - provides simulation of neural-network algorithms plus software environment for development of such algorithms. Enables user to customize patterns of connections between layers of network, and provides features for saving weight values of network, providing for more precise control over learning process. Consists of translating problem into format using input/output pairs, designing network configuration for problem, and finally training network with input/output pairs until acceptable error reached. Written in C.

  19. Natural neural projection dynamics underlying social behavior.

    Science.gov (United States)

    Gunaydin, Lisa A; Grosenick, Logan; Finkelstein, Joel C; Kauvar, Isaac V; Fenno, Lief E; Adhikari, Avishek; Lammel, Stephan; Mirzabekov, Julie J; Airan, Raag D; Zalocusky, Kelly A; Tye, Kay M; Anikeeva, Polina; Malenka, Robert C; Deisseroth, Karl

    2014-06-19

    Social interaction is a complex behavior essential for many species and is impaired in major neuropsychiatric disorders. Pharmacological studies have implicated certain neurotransmitter systems in social behavior, but circuit-level understanding of endogenous neural activity during social interaction is lacking. We therefore developed and applied a new methodology, termed fiber photometry, to optically record natural neural activity in genetically and connectivity-defined projections to elucidate the real-time role of specified pathways in mammalian behavior. Fiber photometry revealed that activity dynamics of a ventral tegmental area (VTA)-to-nucleus accumbens (NAc) projection could encode and predict key features of social, but not novel object, interaction. Consistent with this observation, optogenetic control of cells specifically contributing to this projection was sufficient to modulate social behavior, which was mediated by type 1 dopamine receptor signaling downstream in the NAc. Direct observation of deep projection-specific activity in this way captures a fundamental and previously inaccessible dimension of mammalian circuit dynamics. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Dynamic Object Identification with SOM-based neural networks

    Directory of Open Access Journals (Sweden)

    Aleksey Averkin

    2014-03-01

    Full Text Available In this article a number of neural networks based on self-organizing maps, that can be successfully used for dynamic object identification, is described. Unique SOM-based modular neural networks with vector quantized associative memory and recurrent self-organizing maps as modules are presented. The structured algorithms of learning and operation of such SOM-based neural networks are described in details, also some experimental results and comparison with some other neural networks are given.

  1. Neural Network Program Package for Prosody Modeling

    Directory of Open Access Journals (Sweden)

    J. Santarius

    2004-04-01

    Full Text Available This contribution describes the programme for one part of theautomatic Text-to-Speech (TTS synthesis. Some experiments (for example[14] documented the considerable improvement of the naturalness ofsynthetic speech, but this approach requires completing the inputfeature values by hand. This completing takes a lot of time for bigfiles. We need to improve the prosody by other approaches which useonly automatically classified features (input parameters. Theartificial neural network (ANN approach is used for the modeling ofprosody parameters. The program package contains all modules necessaryfor the text and speech signal pre-processing, neural network training,sensitivity analysis, result processing and a module for the creationof the input data protocol for Czech speech synthesizer ARTIC [1].

  2. Spatial Dynamics of Multilayer Cellular Neural Networks

    Science.gov (United States)

    Wu, Shi-Liang; Hsu, Cheng-Hsiung

    2018-02-01

    The purpose of this work is to study the spatial dynamics of one-dimensional multilayer cellular neural networks. We first establish the existence of rightward and leftward spreading speeds of the model. Then we show that the spreading speeds coincide with the minimum wave speeds of the traveling wave fronts in the right and left directions. Moreover, we obtain the asymptotic behavior of the traveling wave fronts when the wave speeds are positive and greater than the spreading speeds. According to the asymptotic behavior and using various kinds of comparison theorems, some front-like entire solutions are constructed by combining the rightward and leftward traveling wave fronts with different speeds and a spatially homogeneous solution of the model. Finally, various qualitative features of such entire solutions are investigated.

  3. Coordination: Neural, Behavioral and Social Dynamics

    CERN Document Server

    Fuchs, Armin

    2008-01-01

    One of the most striking features of Coordination Dynamics is its interdisciplinary character. The problems we are trying to solve in this field range from behavioral phenomena of interlimb coordination and coordination between stimuli and movements (perception-action tasks) through neural activation patterns that can be observed during these tasks to clinical applications and social behavior. It is not surprising that close collaboration among scientists from different fields as psychology, kinesiology, neurology and even physics are imperative to deal with the enormous difficulties we are facing when we try to understand a system as complex as the human brain. The chapters in this volume are not simply write-ups of the lectures given by the experts at the meeting but are written in a way that they give sufficient introductory information to be comprehensible and useful for all interested scientists and students.

  4. An efficient neural network approach to dynamic robot motion planning.

    Science.gov (United States)

    Yang, S X; Meng, M

    2000-03-01

    In this paper, a biologically inspired neural network approach to real-time collision-free motion planning of mobile robots or robot manipulators in a nonstationary environment is proposed. Each neuron in the topologically organized neural network has only local connections, whose neural dynamics is characterized by a shunting equation. Thus the computational complexity linearly depends on the neural network size. The real-time robot motion is planned through the dynamic activity landscape of the neural network without any prior knowledge of the dynamic environment, without explicitly searching over the free workspace or the collision paths, and without any learning procedures. Therefore it is computationally efficient. The global stability of the neural network is guaranteed by qualitative analysis and the Lyapunov stability theory. The effectiveness and efficiency of the proposed approach are demonstrated through simulation studies.

  5. Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.

    Science.gov (United States)

    Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu

    2017-10-01

    This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.

  6. Neural dynamics during repetitive visual stimulation

    Science.gov (United States)

    Tsoneva, Tsvetomira; Garcia-Molina, Gary; Desain, Peter

    2015-12-01

    Objective. Steady-state visual evoked potentials (SSVEPs), the brain responses to repetitive visual stimulation (RVS), are widely utilized in neuroscience. Their high signal-to-noise ratio and ability to entrain oscillatory brain activity are beneficial for their applications in brain-computer interfaces, investigation of neural processes underlying brain rhythmic activity (steady-state topography) and probing the causal role of brain rhythms in cognition and emotion. This paper aims at analyzing the space and time EEG dynamics in response to RVS at the frequency of stimulation and ongoing rhythms in the delta, theta, alpha, beta, and gamma bands. Approach.We used electroencephalography (EEG) to study the oscillatory brain dynamics during RVS at 10 frequencies in the gamma band (40-60 Hz). We collected an extensive EEG data set from 32 participants and analyzed the RVS evoked and induced responses in the time-frequency domain. Main results. Stable SSVEP over parieto-occipital sites was observed at each of the fundamental frequencies and their harmonics and sub-harmonics. Both the strength and the spatial propagation of the SSVEP response seem sensitive to stimulus frequency. The SSVEP was more localized around the parieto-occipital sites for higher frequencies (>54 Hz) and spread to fronto-central locations for lower frequencies. We observed a strong negative correlation between stimulation frequency and relative power change at that frequency, the first harmonic and the sub-harmonic components over occipital sites. Interestingly, over parietal sites for sub-harmonics a positive correlation of relative power change and stimulation frequency was found. A number of distinct patterns in delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz) and beta (15-30 Hz) bands were also observed. The transient response, from 0 to about 300 ms after stimulation onset, was accompanied by increase in delta and theta power over fronto-central and occipital sites, which returned to baseline

  7. Shaping the learning curve: epigenetic dynamics in neural plasticity.

    Science.gov (United States)

    Bronfman, Zohar Z; Ginsburg, Simona; Jablonka, Eva

    2014-01-01

    A key characteristic of learning and neural plasticity is state-dependent acquisition dynamics reflected by the non-linear learning curve that links increase in learning with practice. Here we propose that the manner by which epigenetic states of individual cells change during learning contributes to the shape of the neural and behavioral learning curve. We base our suggestion on recent studies showing that epigenetic mechanisms such as DNA methylation, histone acetylation, and RNA-mediated gene regulation are intimately involved in the establishment and maintenance of long-term neural plasticity, reflecting specific learning-histories and influencing future learning. Our model, which is the first to suggest a dynamic molecular account of the shape of the learning curve, leads to several testable predictions regarding the link between epigenetic dynamics at the promoter, gene-network, and neural-network levels. This perspective opens up new avenues for therapeutic interventions in neurological pathologies.

  8. Advanced models of neural networks nonlinear dynamics and stochasticity in biological neurons

    CERN Document Server

    Rigatos, Gerasimos G

    2015-01-01

    This book provides a complete study on neural structures exhibiting nonlinear and stochastic dynamics, elaborating on neural dynamics by introducing advanced models of neural networks. It overviews the main findings in the modelling of neural dynamics in terms of electrical circuits and examines their stability properties with the use of dynamical systems theory. It is suitable for researchers and postgraduate students engaged with neural networks and dynamical systems theory.

  9. Data Driven Broiler Weight Forecasting using Dynamic Neural Network Models

    DEFF Research Database (Denmark)

    Johansen, Simon Vestergaard; Bendtsen, Jan Dimon; Riisgaard-Jensen, Martin

    2017-01-01

    In this article, the dynamic influence of environmental broiler house conditions and broiler growth is investigated. Dynamic neural network forecasting models have been trained on farm-scale broiler batch production data from 12 batches from the same house. The model forecasts future broiler weight...

  10. Evolution of Neural Dynamics in an Ecological Model

    Directory of Open Access Journals (Sweden)

    Steven Williams

    2017-07-01

    Full Text Available What is the optimal level of chaos in a computational system? If a system is too chaotic, it cannot reliably store information. If it is too ordered, it cannot transmit information. A variety of computational systems exhibit dynamics at the “edge of chaos”, the transition between the ordered and chaotic regimes. In this work, we examine the evolved neural networks of Polyworld, an artificial life model consisting of a simulated ecology populated with biologically inspired agents. As these agents adapt to their environment, their initially simple neural networks become increasingly capable of exhibiting rich dynamics. Dynamical systems analysis reveals that natural selection drives these networks toward the edge of chaos until the agent population is able to sustain itself. After this point, the evolutionary trend stabilizes, with neural dynamics remaining on average significantly far from the transition to chaos.

  11. The Complexity of Dynamics in Small Neural Circuits.

    Directory of Open Access Journals (Sweden)

    Diego Fasoli

    2016-08-01

    Full Text Available Mean-field approximations are a powerful tool for studying large neural networks. However, they do not describe well the behavior of networks composed of a small number of neurons. In this case, major differences between the mean-field approximation and the real behavior of the network can arise. Yet, many interesting problems in neuroscience involve the study of mesoscopic networks composed of a few tens of neurons. Nonetheless, mathematical methods that correctly describe networks of small size are still rare, and this prevents us to make progress in understanding neural dynamics at these intermediate scales. Here we develop a novel systematic analysis of the dynamics of arbitrarily small networks composed of homogeneous populations of excitatory and inhibitory firing-rate neurons. We study the local bifurcations of their neural activity with an approach that is largely analytically tractable, and we numerically determine the global bifurcations. We find that for strong inhibition these networks give rise to very complex dynamics, caused by the formation of multiple branching solutions of the neural dynamics equations that emerge through spontaneous symmetry-breaking. This qualitative change of the neural dynamics is a finite-size effect of the network, that reveals qualitative and previously unexplored differences between mesoscopic cortical circuits and their mean-field approximation. The most important consequence of spontaneous symmetry-breaking is the ability of mesoscopic networks to regulate their degree of functional heterogeneity, which is thought to help reducing the detrimental effect of noise correlations on cortical information processing.

  12. Neural Dynamics Underlying Event-Related Potentials

    Science.gov (United States)

    Shah, Ankoor S.; Bressler, Steven L.; Knuth, Kevin H.; Ding, Ming-Zhou; Mehta, Ashesh D.; Ulbert, Istvan; Schroeder, Charles E.

    2003-01-01

    There are two opposing hypotheses about the brain mechanisms underlying sensory event-related potentials (ERPs). One holds that sensory ERPs are generated by phase resetting of ongoing electroencephalographic (EEG) activity, and the other that they result from signal averaging of stimulus-evoked neural responses. We tested several contrasting predictions of these hypotheses by direct intracortical analysis of neural activity in monkeys. Our findings clearly demonstrate evoked response contributions to the sensory ERP in the monkey, and they suggest the likelihood that a mixed (Evoked/Phase Resetting) model may account for the generation of scalp ERPs in humans.

  13. Neural Computations in a Dynamical System with Multiple Time Scales

    Science.gov (United States)

    Mi, Yuanyuan; Lin, Xiaohan; Wu, Si

    2016-01-01

    Neural systems display rich short-term dynamics at various levels, e.g., spike-frequency adaptation (SFA) at the single-neuron level, and short-term facilitation (STF) and depression (STD) at the synapse level. These dynamical features typically cover a broad range of time scales and exhibit large diversity in different brain regions. It remains unclear what is the computational benefit for the brain to have such variability in short-term dynamics. In this study, we propose that the brain can exploit such dynamical features to implement multiple seemingly contradictory computations in a single neural circuit. To demonstrate this idea, we use continuous attractor neural network (CANN) as a working model and include STF, SFA and STD with increasing time constants in its dynamics. Three computational tasks are considered, which are persistent activity, adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, and hence cannot be implemented by a single dynamical feature or any combination with similar time constants. However, with properly coordinated STF, SFA and STD, we show that the network is able to implement the three computational tasks concurrently. We hope this study will shed light on the understanding of how the brain orchestrates its rich dynamics at various levels to realize diverse cognitive functions. PMID:27679569

  14. Dynamical foundations of the neural circuit for bayesian decision making.

    Science.gov (United States)

    Morita, Kenji

    2009-07-01

    On the basis of accumulating behavioral and neural evidences, it has recently been proposed that the brain neural circuits of humans and animals are equipped with several specific properties, which ensure that perceptual decision making implemented by the circuits can be nearly optimal in terms of Bayesian inference. Here, I introduce the basic ideas of such a proposal and discuss its implications from the standpoint of biophysical modeling developed in the framework of dynamical systems.

  15. Discriminating lysosomal membrane protein types using dynamic neural network.

    Science.gov (United States)

    Tripathi, Vijay; Gupta, Dwijendra Kumar

    2014-01-01

    This work presents a dynamic artificial neural network methodology, which classifies the proteins into their classes from their sequences alone: the lysosomal membrane protein classes and the various other membranes protein classes. In this paper, neural networks-based lysosomal-associated membrane protein type prediction system is proposed. Different protein sequence representations are fused to extract the features of a protein sequence, which includes seven feature sets; amino acid (AA) composition, sequence length, hydrophobic group, electronic group, sum of hydrophobicity, R-group, and dipeptide composition. To reduce the dimensionality of the large feature vector, we applied the principal component analysis. The probabilistic neural network, generalized regression neural network, and Elman regression neural network (RNN) are used as classifiers and compared with layer recurrent network (LRN), a dynamic network. The dynamic networks have memory, i.e. its output depends not only on the input but the previous outputs also. Thus, the accuracy of LRN classifier among all other artificial neural networks comes out to be the highest. The overall accuracy of jackknife cross-validation is 93.2% for the data-set. These predicted results suggest that the method can be effectively applied to discriminate lysosomal associated membrane proteins from other membrane proteins (Type-I, Outer membrane proteins, GPI-Anchored) and Globular proteins, and it also indicates that the protein sequence representation can better reflect the core feature of membrane proteins than the classical AA composition.

  16. Dual adaptive dynamic control of mobile robots using neural networks.

    Science.gov (United States)

    Bugeja, Marvin K; Fabri, Simon G; Camilleri, Liberato

    2009-02-01

    This paper proposes two novel dual adaptive neural control schemes for the dynamic control of nonholonomic mobile robots. The two schemes are developed in discrete time, and the robot's nonlinear dynamic functions are assumed to be unknown. Gaussian radial basis function and sigmoidal multilayer perceptron neural networks are used for function approximation. In each scheme, the unknown network parameters are estimated stochastically in real time, and no preliminary offline neural network training is used. In contrast to other adaptive techniques hitherto proposed in the literature on mobile robots, the dual control laws presented in this paper do not rely on the heuristic certainty equivalence property but account for the uncertainty in the estimates. This results in a major improvement in tracking performance, despite the plant uncertainty and unmodeled dynamics. Monte Carlo simulation and statistical hypothesis testing are used to illustrate the effectiveness of the two proposed stochastic controllers as applied to the trajectory-tracking problem of a differentially driven wheeled mobile robot.

  17. Neural network approaches to dynamic collision-free trajectory generation.

    Science.gov (United States)

    Yang, S X; Meng, M

    2001-01-01

    In this paper, dynamic collision-free trajectory generation in a nonstationary environment is studied using biologically inspired neural network approaches. The proposed neural network is topologically organized, where the dynamics of each neuron is characterized by a shunting equation or an additive equation. The state space of the neural network can be either the Cartesian workspace or the joint space of multi-joint robot manipulators. There are only local lateral connections among neurons. The real-time optimal trajectory is generated through the dynamic activity landscape of the neural network without explicitly searching over the free space nor the collision paths, without explicitly optimizing any global cost functions, without any prior knowledge of the dynamic environment, and without any learning procedures. Therefore the model algorithm is computationally efficient. The stability of the neural network system is guaranteed by the existence of a Lyapunov function candidate. In addition, this model is not very sensitive to the model parameters. Several model variations are presented and the differences are discussed. As examples, the proposed models are applied to generate collision-free trajectories for a mobile robot to solve a maze-type of problem, to avoid concave U-shaped obstacles, to track a moving target and at the same to avoid varying obstacles, and to generate a trajectory for a two-link planar robot with two targets. The effectiveness and efficiency of the proposed approaches are demonstrated through simulation and comparison studies.

  18. Estimating Neural Signal Dynamics in the Human Brain

    Directory of Open Access Journals (Sweden)

    Christopher W Tyler

    2011-06-01

    Full Text Available Although brain imaging methods are highly effective for localizing the effects of neural activation throughout the human brain in terms of the blood oxygenation level dependent (BOLD response, there is currently no way to estimate the underlying neural signal dynamics in generating the BOLD response in each local activation region (except for processes slower than the BOLD time course. Knowledge of the neural signal is critical information if spatial mapping is to progress to the analysis of dynamic information flow through the cortical networks as the brain performs its tasks. We introduce an analytic approach that provides a new level of conceptualization and specificity in the study of brain processing by noninvasive methods. This technique allows us to use brain imaging methods to determine the dynamics of local neural population responses to their native temporal resolution throughout the human brain, with relatively narrow confidence intervals on many response properties. The ability to characterize local neural dynamics in the human brain represents a significant enhancement of brain imaging capabilities, with potential application from general cognitive studies to assessment of neuropathologies.

  19. Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks.

    Science.gov (United States)

    Miconi, Thomas

    2017-02-23

    Neural activity during cognitive tasks exhibits complex dynamics that flexibly encode task-relevant variables. Chaotic recurrent networks, which spontaneously generate rich dynamics, have been proposed as a model of cortical computation during cognitive tasks. However, existing methods for training these networks are either biologically implausible, and/or require a continuous, real-time error signal to guide learning. Here we show that a biologically plausible learning rule can train such recurrent networks, guided solely by delayed, phasic rewards at the end of each trial. Networks endowed with this learning rule can successfully learn nontrivial tasks requiring flexible (context-dependent) associations, memory maintenance, nonlinear mixed selectivities, and coordination among multiple outputs. The resulting networks replicate complex dynamics previously observed in animal cortex, such as dynamic encoding of task features and selective integration of sensory inputs. We conclude that recurrent neural networks offer a plausible model of cortical dynamics during both learning and performance of flexible behavior.

  20. Introduction to stochastic dynamic programming

    CERN Document Server

    Ross, Sheldon M; Lukacs, E

    1983-01-01

    Introduction to Stochastic Dynamic Programming presents the basic theory and examines the scope of applications of stochastic dynamic programming. The book begins with a chapter on various finite-stage models, illustrating the wide range of applications of stochastic dynamic programming. Subsequent chapters study infinite-stage models: discounting future returns, minimizing nonnegative costs, maximizing nonnegative returns, and maximizing the long-run average return. Each of these chapters first considers whether an optimal policy need exist-providing counterexamples where appropriate-and the

  1. A Dynamic Neural Network Approach to CBM

    Science.gov (United States)

    2011-03-15

    Therefore post-processing is needed to extract the time difference between corresponding events from which to calculate the crankshaft rotational speed...potentially already available from existing sensors (such as a crankshaft timing device) and a Neural Network processor to carry out the calculation . As...files are designated with the “_genmod” suffix. These files were the sources for the training and testing sets and made the extraction process easy

  2. Electrokinetic confinement of axonal growth for dynamically configurable neural networks

    Science.gov (United States)

    Honegger, Thibault; Scott, Mark A.; Yanik, Mehmet F.; Voldman, Joel

    2013-01-01

    Axons in the developing nervous system are directed via guidance cues, whose expression varies both spatially and temporally, to create functional neural circuits. Existing methods to create patterns of neural connectivity in vitro use only static geometries, and are unable to dynamically alter the guidance cues imparted on the cells. We introduce the use of AC electrokinetics to dynamically control axonal growth in cultured rat hippocampal neurons. We find that the application of modest voltages at frequencies on the order of 105 Hz can cause developing axons to be stopped adjacent to the electrodes while axons away from the electric fields exhibit uninhibited growth. By switching electrodes on or off, we can reversibly inhibit or permit axon passage across the electrodes. Our models suggest that dielectrophoresis is the causative AC electrokinetic effect. We make use of our dynamic control over axon elongation to create an axon-diode via an axon-lock system that consists of a pair of electrode `gates' that either permit or prevent axons from passing through. Finally, we developed a neural circuit consisting of three populations of neurons, separated by three axon-locks to demonstrate the assembly of a functional, engineered neural network. Action potential recordings demonstrate that the AC electrokinetic effect does not harm axons, and Ca2+ imaging demonstrated the unidirectional nature of the synaptic connections. AC electrokinetic confinement of axonal growth has potential for creating configurable, directional neural networks. PMID:23314575

  3. Dynamic programming models and applications

    CERN Document Server

    Denardo, Eric V

    2003-01-01

    Introduction to sequential decision processes covers use of dynamic programming in studying models of resource allocation, methods for approximating solutions of control problems in continuous time, production control, more. 1982 edition.

  4. Neural stochastic dynamics of perceptual decision making

    OpenAIRE

    Martí Ortega, Daniel

    2008-01-01

    Models computacionals basats en xarxes a gran escala d'inspiració neurobiològica permeten descriure els correlats neurals de la decisió observats en certes àrees corticals com una transició entre atractors de la xarxa cortical. L'estimulació provoca un canvi en el paisatge d'atractors que afavoreix la transició entre l'atractor neutre inicial a un dels atractors associats a les eleccions categòriques. El soroll present en el sistema introdueix indeterminació en les transicions. En aquest treb...

  5. Synthesis of recurrent neural networks for dynamical system simulation.

    Science.gov (United States)

    Trischler, Adam P; D'Eleuterio, Gabriele M T

    2016-08-01

    We review several of the most widely used techniques for training recurrent neural networks to approximate dynamical systems, then describe a novel algorithm for this task. The algorithm is based on an earlier theoretical result that guarantees the quality of the network approximation. We show that a feedforward neural network can be trained on the vector-field representation of a given dynamical system using backpropagation, then recast it as a recurrent network that replicates the original system's dynamics. After detailing this algorithm and its relation to earlier approaches, we present numerical examples that demonstrate its capabilities. One of the distinguishing features of our approach is that both the original dynamical systems and the recurrent networks that simulate them operate in continuous time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Logic Dynamics for Deductive Inference -- Its Stability and Neural Basis

    Science.gov (United States)

    Tsuda, Ichiro

    2014-12-01

    We propose a dynamical model that represents a process of deductive inference. We discuss the stability of logic dynamics and a neural basis for the dynamics. We propose a new concept of descriptive stability, thereby enabling a structure of stable descriptions of mathematical models concerning dynamic phenomena to be clarified. The present theory is based on the wider and deeper thoughts of John S. Nicolis. In particular, it is based on our joint paper on the chaos theory of human short-term memories with a magic number of seven plus or minus two.

  7. Secure Dynamic Program Repartitioning

    DEFF Research Database (Denmark)

    Hansen, Rene Rydhoff; Probst, Christian

    2005-01-01

    Secure program partitioning has been introduced as a language-based technique to allow the distribution of data and computation across mutualy untrusted hosts, while at the same time guaranteeing the protection of confidential data. Programs that have been annotated with security types...... are automaticaly partitioned by the compiler. The main drawback in this setting is that both the trust hierarchy and the set of hosts are fixed once the program has been partitioned. This paper suggests an enhanced version of the partitioning framework, where the trust relation stil remains fixed...

  8. A Neural Network Model for Dynamics Simulation | Bholoa ...

    African Journals Online (AJOL)

    University of Mauritius Research Journal. Journal Home · ABOUT · Advanced Search · Current Issue · Archives · Journal Home > Vol 15, No 1 (2009) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. A Neural Network Model for Dynamics Simulation. Ajeevsing ...

  9. Dynamic Adaptive Neural Network Arrays: A Neuromorphic Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Disney, Adam [University of Tennessee (UT); Reynolds, John [University of Tennessee (UT)

    2015-01-01

    Dynamic Adaptive Neural Network Array (DANNA) is a neuromorphic hardware implementation. It differs from most other neuromorphic projects in that it allows for programmability of structure, and it is trained or designed using evolutionary optimization. This paper describes the DANNA structure, how DANNA is trained using evolutionary optimization, and an application of DANNA to a very simple classification task.

  10. Slow diffusive dynamics in a chaotic balanced neural network.

    Science.gov (United States)

    Shaham, Nimrod; Burak, Yoram

    2017-05-01

    It has been proposed that neural noise in the cortex arises from chaotic dynamics in the balanced state: in this model of cortical dynamics, the excitatory and inhibitory inputs to each neuron approximately cancel, and activity is driven by fluctuations of the synaptic inputs around their mean. It remains unclear whether neural networks in the balanced state can perform tasks that are highly sensitive to noise, such as storage of continuous parameters in working memory, while also accounting for the irregular behavior of single neurons. Here we show that continuous parameter working memory can be maintained in the balanced state, in a neural circuit with a simple network architecture. We show analytically that in the limit of an infinite network, the dynamics generated by this architecture are characterized by a continuous set of steady balanced states, allowing for the indefinite storage of a continuous parameter. In finite networks, we show that the chaotic noise drives diffusive motion along the approximate attractor, which gradually degrades the stored memory. We analyze the dynamics and show that the slow diffusive motion induces slowly decaying temporal cross correlations in the activity, which differ substantially from those previously described in the balanced state. We calculate the diffusivity, and show that it is inversely proportional to the system size. For large enough (but realistic) neural population sizes, and with suitable tuning of the network connections, the proposed balanced network can sustain continuous parameter values in memory over time scales larger by several orders of magnitude than the single neuron time scale.

  11. Dynamics of macro- and microscopic neural networks

    DEFF Research Database (Denmark)

    Mikkelsen, Kaare

    2014-01-01

    GN), which is a class of signals with a non-trivial low-frequency component. It is assumed that certain characteristica about the low-frequency component can yield information about the neural processes behind the signal. The method has been used in a range of different studies over the course of the past 10...... that the method continues to find use, of which examples are presented. In the second part of the thesis, numerical simulations of networks of neurons are described. To simplify the analysis, a relatively simpled neuron model - Leaky Integrate and Fire - is chosen. The strengths of the connections between...... shown that the syncronizing effect of the plasticity disappears when the strengths of the connections are frozen in time. Subsequently, the so-called ``Sisyphus'' mechanism is discussed, which is shown to cause slow fluctuations in the both the network synchronization and the strengths...

  12. Cognitive And Neural Sciences Division 1992 Programs

    Science.gov (United States)

    1992-08-01

    Neuronal Micronets as Nodal Elements PRINCIPAL INVESTIGATOR: Thomas H. Brown Yale University Department of Psychology (203) 432-7008 R&T PROJECT CODE...of neural nets, and to develop a micronet architecture which captures the computations in neurons. Approach: Simulations will be conducted of the

  13. Dynamic behaviors of the non-neural ectoderm during mammalian cranial neural tube closure.

    Science.gov (United States)

    Ray, Heather J; Niswander, Lee A

    2016-08-15

    The embryonic brain and spinal cord initially form through the process of neural tube closure (NTC). NTC is thought to be highly similar between rodents and humans, and studies of mouse genetic mutants have greatly increased our understanding of the molecular basis of NTC with relevance for human neural tube defects. In addition, studies using amphibian and chick embryos have shed light into the cellular and tissue dynamics underlying NTC. However, the dynamics of mammalian NTC has been difficult to study due to in utero development until recently when advances in mouse embryo ex vivo culture techniques along with confocal microscopy have allowed for imaging of mouse NTC in real time. Here, we have performed live imaging of mouse embryos with a particular focus on the non-neural ectoderm (NNE). Previous studies in multiple model systems have found that the NNE is important for proper NTC, but little is known about the behavior of these cells during mammalian NTC. Here we utilized a NNE-specific genetic labeling system to assess NNE dynamics during murine NTC and identified different NNE cell behaviors as the cranial region undergoes NTC. These results bring valuable new insight into regional differences in cellular behavior during NTC that may be driven by different molecular regulators and which may underlie the various positional disruptions of NTC observed in humans with neural tube defects. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns.

    Directory of Open Access Journals (Sweden)

    Andrea Maesani

    2015-11-01

    Full Text Available The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs-locomotor bouts-matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior.

  15. Dynamic Pricing in Electronic Commerce Using Neural Network

    Science.gov (United States)

    Ghose, Tapu Kumar; Tran, Thomas T.

    In this paper, we propose an approach where feed-forward neural network is used for dynamically calculating a competitive price of a product in order to maximize sellers’ revenue. In the approach we considered that along with product price other attributes such as product quality, delivery time, after sales service and seller’s reputation contribute in consumers purchase decision. We showed that once the sellers, by using their limited prior knowledge, set an initial price of a product our model adjusts the price automatically with the help of neural network so that sellers’ revenue is maximized.

  16. Neural network dynamics in Parkinson's disease

    NARCIS (Netherlands)

    Lourens, Marcel Antonius Johannes

    2013-01-01

    Parkinson's disease (PD) is characterized by the cell death of neuronal brain cells producing the signaling molecule dopamine. Due to resulting shortage of dopamine, the dynamics of neuronal cells changes, most notably abnormal synchronization of neuronal activity. Such changes complicate the

  17. Comparative Study between Robust Control of Robotic Manipulators by Static and Dynamic Neural Networks

    OpenAIRE

    Ghrab, Nadya; Kallel, Hichem

    2013-01-01

    A comparative study between static and dynamic neural networks for robotic systems control is considered. So, two approaches of neural robot control were selected, exposed, and compared. One uses a static neural network; the other uses a dynamic neural network. Both compensate the nonlinear modeling and uncertainties of robotic systems. The first approach is direct; it approximates the nonlinearities and uncertainties by a static neural network. The second approach is indirect; it uses a dyna...

  18. Transient dynamics for sequence processing neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Masaki [Faculty of Science, Yamaguchi University, Yamaguchi (Japan)]. E-mail: kawamura@sci.yamaguchi-u.ac.jp; Okada, Masato [RIKEN BSI, Hirosawa, Wako-shi (Japan)

    2002-01-18

    An exact solution of the transient dynamics for a sequential associative memory model is discussed through both the path-integral method and the statistical neurodynamics. Although the path-integral method has the ability to give an exact solution of the transient dynamics, only stationary properties have been discussed for the sequential associative memory. We have succeeded in deriving an exact macroscopic description of the transient dynamics by analysing the correlation of crosstalk noise. Surprisingly, the order parameter equations of this exact solution are completely equivalent to those of the statistical neurodynamics, which is an approximation theory that assumes crosstalk noise to obey the Gaussian distribution. In order to examine our theoretical findings, we numerically obtain cumulants of the crosstalk noise. We verify that the third- and fourth-order cumulants are equal to zero, and that the crosstalk noise is normally distributed even in the non-retrieval case. We show that the results obtained by our theory agree with those obtained by computer simulations. We have also found that the macroscopic unstable state completely coincides with the separatrix. (author)

  19. EDITORIAL: Special issue on applied neurodynamics: from neural dynamics to neural engineering Special issue on applied neurodynamics: from neural dynamics to neural engineering

    Science.gov (United States)

    Chiel, Hillel J.; Thomas, Peter J.

    2011-12-01

    , the sun, earth and moon) proved to be far more difficult. In the late nineteenth century, Poincaré made significant progress on this problem, introducing a geometric method of reasoning about solutions to differential equations (Diacu and Holmes 1996). This work had a powerful impact on mathematicians and physicists, and also began to influence biology. In his 1925 book, based on his work starting in 1907, and that of others, Lotka used nonlinear differential equations and concepts from dynamical systems theory to analyze a wide variety of biological problems, including oscillations in the numbers of predators and prey (Lotka 1925). Although little was known in detail about the function of the nervous system, Lotka concluded his book with speculations about consciousness and the implications this might have for creating a mathematical formulation of biological systems. Much experimental work in the 1930s and 1940s focused on the biophysical mechanisms of excitability in neural tissue, and Rashevsky and others continued to apply tools and concepts from nonlinear dynamical systems theory as a means of providing a more general framework for understanding these results (Rashevsky 1960, Landahl and Podolsky 1949). The publication of Hodgkin and Huxley's classic quantitative model of the action potential in 1952 created a new impetus for these studies (Hodgkin and Huxley 1952). In 1955, FitzHugh published an important paper that summarized much of the earlier literature, and used concepts from phase plane analysis such as asymptotic stability, saddle points, separatrices and the role of noise to provide a deeper theoretical and conceptual understanding of threshold phenomena (Fitzhugh 1955, Izhikevich and FitzHugh 2006). The Fitzhugh-Nagumo equations constituted an important two-dimensional simplification of the four-dimensional Hodgkin and Huxley equations, and gave rise to an extensive literature of analysis. Many of the papers in this special issue build on tools

  20. Neural network for solving convex quadratic bilevel programming problems.

    Science.gov (United States)

    He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie

    2014-03-01

    In this paper, using the idea of successive approximation, we propose a neural network to solve convex quadratic bilevel programming problems (CQBPPs), which is modeled by a nonautonomous differential inclusion. Different from the existing neural network for CQBPP, the model has the least number of state variables and simple structure. Based on the theory of nonsmooth analysis, differential inclusions and Lyapunov-like method, the limit equilibrium points sequence of the proposed neural networks can approximately converge to an optimal solution of CQBPP under certain conditions. Finally, simulation results on two numerical examples and the portfolio selection problem show the effectiveness and performance of the proposed neural network. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Simulating dynamic plastic continuous neural networks by finite elements.

    Science.gov (United States)

    Joghataie, Abdolreza; Torghabehi, Omid Oliyan

    2014-08-01

    We introduce dynamic plastic continuous neural network (DPCNN), which is comprised of neurons distributed in a nonlinear plastic medium where wire-like connections of neural networks are replaced with the continuous medium. We use finite element method to model the dynamic phenomenon of information processing within the DPCNNs. During the training, instead of weights, the properties of the continuous material at its different locations and some properties of neurons are modified. Input and output can be vectors and/or continuous functions over lines and/or areas. Delay and feedback from neurons to themselves and from outputs occur in the DPCNNs. We model a simple form of the DPCNN where the medium is a rectangular plate of bilinear material, and the neurons continuously fire a signal, which is a function of the horizontal displacement.

  2. Persistent activity in neural networks with dynamic synapses.

    Directory of Open Access Journals (Sweden)

    Omri Barak

    2007-02-01

    Full Text Available Persistent activity states (attractors, observed in several neocortical areas after the removal of a sensory stimulus, are believed to be the neuronal basis of working memory. One of the possible mechanisms that can underlie persistent activity is recurrent excitation mediated by intracortical synaptic connections. A recent experimental study revealed that connections between pyramidal cells in prefrontal cortex exhibit various degrees of synaptic depression and facilitation. Here we analyze the effect of synaptic dynamics on the emergence and persistence of attractor states in interconnected neural networks. We show that different combinations of synaptic depression and facilitation result in qualitatively different network dynamics with respect to the emergence of the attractor states. This analysis raises the possibility that the framework of attractor neural networks can be extended to represent time-dependent stimuli.

  3. Shaping the dynamics of a bidirectional neural interface.

    Directory of Open Access Journals (Sweden)

    Alessandro Vato

    Full Text Available Progress in decoding neural signals has enabled the development of interfaces that translate cortical brain activities into commands for operating robotic arms and other devices. The electrical stimulation of sensory areas provides a means to create artificial sensory information about the state of a device. Taken together, neural activity recording and microstimulation techniques allow us to embed a portion of the central nervous system within a closed-loop system, whose behavior emerges from the combined dynamical properties of its neural and artificial components. In this study we asked if it is possible to concurrently regulate this bidirectional brain-machine interaction so as to shape a desired dynamical behavior of the combined system. To this end, we followed a well-known biological pathway. In vertebrates, the communications between brain and limb mechanics are mediated by the spinal cord, which combines brain instructions with sensory information and organizes coordinated patterns of muscle forces driving the limbs along dynamically stable trajectories. We report the creation and testing of the first neural interface that emulates this sensory-motor interaction. The interface organizes a bidirectional communication between sensory and motor areas of the brain of anaesthetized rats and an external dynamical object with programmable properties. The system includes (a a motor interface decoding signals from a motor cortical area, and (b a sensory interface encoding the state of the external object into electrical stimuli to a somatosensory area. The interactions between brain activities and the state of the external object generate a family of trajectories converging upon a selected equilibrium point from arbitrary starting locations. Thus, the bidirectional interface establishes the possibility to specify not only a particular movement trajectory but an entire family of motions, which includes the prescribed reactions to unexpected

  4. Shaping the Dynamics of a Bidirectional Neural Interface

    Science.gov (United States)

    Vato, Alessandro; Semprini, Marianna; Maggiolini, Emma; Szymanski, Francois D.; Fadiga, Luciano; Panzeri, Stefano; Mussa-Ivaldi, Ferdinando A.

    2012-01-01

    Progress in decoding neural signals has enabled the development of interfaces that translate cortical brain activities into commands for operating robotic arms and other devices. The electrical stimulation of sensory areas provides a means to create artificial sensory information about the state of a device. Taken together, neural activity recording and microstimulation techniques allow us to embed a portion of the central nervous system within a closed-loop system, whose behavior emerges from the combined dynamical properties of its neural and artificial components. In this study we asked if it is possible to concurrently regulate this bidirectional brain-machine interaction so as to shape a desired dynamical behavior of the combined system. To this end, we followed a well-known biological pathway. In vertebrates, the communications between brain and limb mechanics are mediated by the spinal cord, which combines brain instructions with sensory information and organizes coordinated patterns of muscle forces driving the limbs along dynamically stable trajectories. We report the creation and testing of the first neural interface that emulates this sensory-motor interaction. The interface organizes a bidirectional communication between sensory and motor areas of the brain of anaesthetized rats and an external dynamical object with programmable properties. The system includes (a) a motor interface decoding signals from a motor cortical area, and (b) a sensory interface encoding the state of the external object into electrical stimuli to a somatosensory area. The interactions between brain activities and the state of the external object generate a family of trajectories converging upon a selected equilibrium point from arbitrary starting locations. Thus, the bidirectional interface establishes the possibility to specify not only a particular movement trajectory but an entire family of motions, which includes the prescribed reactions to unexpected perturbations. PMID

  5. Slow diffusive dynamics in a chaotic balanced neural network.

    Directory of Open Access Journals (Sweden)

    Nimrod Shaham

    2017-05-01

    Full Text Available It has been proposed that neural noise in the cortex arises from chaotic dynamics in the balanced state: in this model of cortical dynamics, the excitatory and inhibitory inputs to each neuron approximately cancel, and activity is driven by fluctuations of the synaptic inputs around their mean. It remains unclear whether neural networks in the balanced state can perform tasks that are highly sensitive to noise, such as storage of continuous parameters in working memory, while also accounting for the irregular behavior of single neurons. Here we show that continuous parameter working memory can be maintained in the balanced state, in a neural circuit with a simple network architecture. We show analytically that in the limit of an infinite network, the dynamics generated by this architecture are characterized by a continuous set of steady balanced states, allowing for the indefinite storage of a continuous parameter. In finite networks, we show that the chaotic noise drives diffusive motion along the approximate attractor, which gradually degrades the stored memory. We analyze the dynamics and show that the slow diffusive motion induces slowly decaying temporal cross correlations in the activity, which differ substantially from those previously described in the balanced state. We calculate the diffusivity, and show that it is inversely proportional to the system size. For large enough (but realistic neural population sizes, and with suitable tuning of the network connections, the proposed balanced network can sustain continuous parameter values in memory over time scales larger by several orders of magnitude than the single neuron time scale.

  6. Empirical Modeling of the Plasmasphere Dynamics Using Neural Networks

    Science.gov (United States)

    Zhelavskaya, Irina S.; Shprits, Yuri Y.; Spasojević, Maria

    2017-11-01

    We present the PINE (Plasma density in the Inner magnetosphere Neural network-based Empirical) model - a new empirical model for reconstructing the global dynamics of the cold plasma density distribution based only on solar wind data and geomagnetic indices. Utilizing the density database obtained using the NURD (Neural-network-based Upper hybrid Resonance Determination) algorithm for the period of 1 October 2012 to 1 July 2016, in conjunction with solar wind data and geomagnetic indices, we develop a neural network model that is capable of globally reconstructing the dynamics of the cold plasma density distribution for 2≤L≤6 and all local times. We validate and test the model by measuring its performance on independent data sets withheld from the training set and by comparing the model-predicted global evolution with global images of He+ distribution in the Earth's plasmasphere from the IMAGE Extreme UltraViolet (EUV) instrument. We identify the parameters that best quantify the plasmasphere dynamics by training and comparing multiple neural networks with different combinations of input parameters (geomagnetic indices, solar wind data, and different durations of their time history). The optimal model is based on the 96 h time history of Kp, AE, SYM-H, and F10.7 indices. The model successfully reproduces erosion of the plasmasphere on the nightside and plume formation and evolution. We demonstrate results of both local and global plasma density reconstruction. This study illustrates how global dynamics can be reconstructed from local in situ observations by using machine learning techniques.

  7. Predicting Physical Time Series Using Dynamic Ridge Polynomial Neural Networks

    Science.gov (United States)

    Al-Jumeily, Dhiya; Ghazali, Rozaida; Hussain, Abir

    2014-01-01

    Forecasting naturally occurring phenomena is a common problem in many domains of science, and this has been addressed and investigated by many scientists. The importance of time series prediction stems from the fact that it has wide range of applications, including control systems, engineering processes, environmental systems and economics. From the knowledge of some aspects of the previous behaviour of the system, the aim of the prediction process is to determine or predict its future behaviour. In this paper, we consider a novel application of a higher order polynomial neural network architecture called Dynamic Ridge Polynomial Neural Network that combines the properties of higher order and recurrent neural networks for the prediction of physical time series. In this study, four types of signals have been used, which are; The Lorenz attractor, mean value of the AE index, sunspot number, and heat wave temperature. The simulation results showed good improvements in terms of the signal to noise ratio in comparison to a number of higher order and feedforward neural networks in comparison to the benchmarked techniques. PMID:25157950

  8. Neural network simulation of the industrial producer price index dynamical series

    OpenAIRE

    Soshnikov, L. E.

    2013-01-01

    This paper is devoted the simulation and forecast of dynamical series of the economical indicators. Multilayer perceptron and Radial basis function neural networks have been used. The neural networks model results are compared with the econometrical modeling.

  9. Neural Population Dynamics Modeled by Mean-Field Graphs

    Science.gov (United States)

    Kozma, Robert; Puljic, Marko

    2011-09-01

    In this work we apply random graph theory approach to describe neural population dynamics. There are important advantages of using random graph theory approach in addition to ordinary and partial differential equations. The mathematical theory of large-scale random graphs provides an efficient tool to describe transitions between high- and low-dimensional spaces. Recent advances in studying neural correlates of higher cognition indicate the significance of sudden changes in space-time neurodynamics, which can be efficiently described as phase transitions in the neuropil medium. Phase transitions are rigorously defined mathematically on random graph sequences and they can be naturally generalized to a class of percolation processes called neuropercolation. In this work we employ mean-field graphs with given vertex degree distribution and edge strength distribution. We demonstrate the emergence of collective oscillations in the style of brains.

  10. Bio-Inspired Neural Model for Learning Dynamic Models

    Science.gov (United States)

    Duong, Tuan; Duong, Vu; Suri, Ronald

    2009-01-01

    A neural-network mathematical model that, relative to prior such models, places greater emphasis on some of the temporal aspects of real neural physical processes, has been proposed as a basis for massively parallel, distributed algorithms that learn dynamic models of possibly complex external processes by means of learning rules that are local in space and time. The algorithms could be made to perform such functions as recognition and prediction of words in speech and of objects depicted in video images. The approach embodied in this model is said to be "hardware-friendly" in the following sense: The algorithms would be amenable to execution by special-purpose computers implemented as very-large-scale integrated (VLSI) circuits that would operate at relatively high speeds and low power demands.

  11. Neural dynamics of phonological processing in the dorsal auditory stream.

    Science.gov (United States)

    Liebenthal, Einat; Sabri, Merav; Beardsley, Scott A; Mangalathu-Arumana, Jain; Desai, Anjali

    2013-09-25

    Neuroanatomical models hypothesize a role for the dorsal auditory pathway in phonological processing as a feedforward efferent system (Davis and Johnsrude, 2007; Rauschecker and Scott, 2009; Hickok et al., 2011). But the functional organization of the pathway, in terms of time course of interactions between auditory, somatosensory, and motor regions, and the hemispheric lateralization pattern is largely unknown. Here, ambiguous duplex syllables, with elements presented dichotically at varying interaural asynchronies, were used to parametrically modulate phonological processing and associated neural activity in the human dorsal auditory stream. Subjects performed syllable and chirp identification tasks, while event-related potentials and functional magnetic resonance images were concurrently collected. Joint independent component analysis was applied to fuse the neuroimaging data and study the neural dynamics of brain regions involved in phonological processing with high spatiotemporal resolution. Results revealed a highly interactive neural network associated with phonological processing, composed of functional fields in posterior temporal gyrus (pSTG), inferior parietal lobule (IPL), and ventral central sulcus (vCS) that were engaged early and almost simultaneously (at 80-100 ms), consistent with a direct influence of articulatory somatomotor areas on phonemic perception. Left hemispheric lateralization was observed 250 ms earlier in IPL and vCS than pSTG, suggesting that functional specialization of somatomotor (and not auditory) areas determined lateralization in the dorsal auditory pathway. The temporal dynamics of the dorsal auditory pathway described here offer a new understanding of its functional organization and demonstrate that temporal information is essential to resolve neural circuits underlying complex behaviors.

  12. Spatio-Temporal Dynamics in Cellular Neural Networks

    Directory of Open Access Journals (Sweden)

    Liviu GORAS

    2009-07-01

    Full Text Available Analog Parallel Architectures like Cellular Neural Networks (CNN’s have been thoroughly studied not only for their potential in high-speed image processing applications but also for their rich and exciting spatio-temporal dynamics. An interesting behavior such architectures can exhibit is spatio-temporal filtering and pattern formation, aspects that will be discussed in this work for a general structure consisting of linear cells locally and homogeneously connected within a specified neighborhood. The results are generalizations of those regarding Turing pattern formation in CNN’s. Using linear cells (or piecewise linear cells working in the central linear part of their characteristic allows the use of the decoupling technique – a powerful technique that gives significant insight into the dynamics of the CNN. The roles of the cell structure as well as that of the connection template are discussed and models for the spatial modes dynamics are made as well.

  13. A neural network approach to dynamic task assignment of multirobots.

    Science.gov (United States)

    Zhu, Anmin; Yang, Simon X

    2006-09-01

    In this paper, a neural network approach to task assignment, based on a self-organizing map (SOM), is proposed for a multirobot system in dynamic environments subject to uncertainties. It is capable of dynamically controlling a group of mobile robots to achieve multiple tasks at different locations, so that the desired number of robots will arrive at every target location from arbitrary initial locations. In the proposed approach, the robot motion planning is integrated with the task assignment, thus the robots start to move once the overall task is given. The robot navigation can be dynamically adjusted to guarantee that each target location has the desired number of robots, even under uncertainties such as when some robots break down. The proposed approach is capable of dealing with changing environments. The effectiveness and efficiency of the proposed approach are demonstrated by simulation studies.

  14. Dynamic Programming on Nominal Graphs

    Directory of Open Access Journals (Sweden)

    Nicklas Hoch

    2015-04-01

    Full Text Available Many optimization problems can be naturally represented as (hyper graphs, where vertices correspond to variables and edges to tasks, whose cost depends on the values of the adjacent variables. Capitalizing on the structure of the graph, suitable dynamic programming strategies can select certain orders of evaluation of the variables which guarantee to reach both an optimal solution and a minimal size of the tables computed in the optimization process. In this paper we introduce a simple algebraic specification with parallel composition and restriction whose terms up to structural axioms are the graphs mentioned above. In addition, free (unrestricted vertices are labelled with variables, and the specification includes operations of name permutation with finite support. We show a correspondence between the well-known tree decompositions of graphs and our terms. If an axiom of scope extension is dropped, several (hierarchical terms actually correspond to the same graph. A suitable graphical structure can be found, corresponding to every hierarchical term. Evaluating such a graphical structure in some target algebra yields a dynamic programming strategy. If the target algebra satisfies the scope extension axiom, then the result does not depend on the particular structure, but only on the original graph. We apply our approach to the parking optimization problem developed in the ASCENS e-mobility case study, in collaboration with Volkswagen. Dynamic programming evaluations are particularly interesting for autonomic systems, where actual behavior often consists of propagating local knowledge to obtain global knowledge and getting it back for local decisions.

  15. Forecasting financial asset processes: stochastic dynamics via learning neural networks.

    Science.gov (United States)

    Giebel, S; Rainer, M

    2010-01-01

    Models for financial asset dynamics usually take into account their inherent unpredictable nature by including a suitable stochastic component into their process. Unknown (forward) values of financial assets (at a given time in the future) are usually estimated as expectations of the stochastic asset under a suitable risk-neutral measure. This estimation requires the stochastic model to be calibrated to some history of sufficient length in the past. Apart from inherent limitations, due to the stochastic nature of the process, the predictive power is also limited by the simplifying assumptions of the common calibration methods, such as maximum likelihood estimation and regression methods, performed often without weights on the historic time series, or with static weights only. Here we propose a novel method of "intelligent" calibration, using learning neural networks in order to dynamically adapt the parameters of the stochastic model. Hence we have a stochastic process with time dependent parameters, the dynamics of the parameters being themselves learned continuously by a neural network. The back propagation in training the previous weights is limited to a certain memory length (in the examples we consider 10 previous business days), which is similar to the maximal time lag of autoregressive processes. We demonstrate the learning efficiency of the new algorithm by tracking the next-day forecasts for the EURTRY and EUR-HUF exchange rates each.

  16. Corticothalamic feedback dynamics for neural correlates of auditory selective attention.

    Science.gov (United States)

    Trenado, Carlos; Haab, Lars; Strauss, Daniel J

    2009-02-01

    Auditory evoked cortical potentials (AECPs) have been consolidated as a diagnostic tool in audiology. Further applications of this technique are in experimental neuropsychology, neuroscience, and psychiatry, e.g., for the attention deficit disorder, schizophrenia, or for studying the tinnitus decompensation. In particular, numerous psychophysiological studies have emphasized their dynamic characteristics in relation to exogenous and endogenous attention. However, the effect of corticothalamic feedback dynamics to neural correlates of focal and nonfocal attention and its large-scale effect reflected in AECPs is far from being understood. To address this issue, we model neural correlates of auditory selective attention reflected in AECPs by using corticothalamic feedback dynamics. In our framework, we make use of a well-known multiscale model of evoked potentials, for which we define for the first time a neurofunctional map of relevant corticothalamic loops to the hearing path. Such loops are in turn are coupled to our proposed probabilistic scheme of auditory selective attention. It is concluded that our model represents a promising approach to gain a deeper understanding of the neurodynamics of auditory attention and might be used as an efficient forward model to support hypotheses that are obtained in experimental paradigms involving AECPs.

  17. Two-photon imaging and analysis of neural network dynamics

    Science.gov (United States)

    Lütcke, Henry; Helmchen, Fritjof

    2011-08-01

    The glow of a starry night sky, the smell of a freshly brewed cup of coffee or the sound of ocean waves breaking on the beach are representations of the physical world that have been created by the dynamic interactions of thousands of neurons in our brains. How the brain mediates perceptions, creates thoughts, stores memories and initiates actions remains one of the most profound puzzles in biology, if not all of science. A key to a mechanistic understanding of how the nervous system works is the ability to measure and analyze the dynamics of neuronal networks in the living organism in the context of sensory stimulation and behavior. Dynamic brain properties have been fairly well characterized on the microscopic level of individual neurons and on the macroscopic level of whole brain areas largely with the help of various electrophysiological techniques. However, our understanding of the mesoscopic level comprising local populations of hundreds to thousands of neurons (so-called 'microcircuits') remains comparably poor. Predominantly, this has been due to the technical difficulties involved in recording from large networks of neurons with single-cell spatial resolution and near-millisecond temporal resolution in the brain of living animals. In recent years, two-photon microscopy has emerged as a technique which meets many of these requirements and thus has become the method of choice for the interrogation of local neural circuits. Here, we review the state-of-research in the field of two-photon imaging of neuronal populations, covering the topics of microscope technology, suitable fluorescent indicator dyes, staining techniques, and in particular analysis techniques for extracting relevant information from the fluorescence data. We expect that functional analysis of neural networks using two-photon imaging will help to decipher fundamental operational principles of neural microcircuits.

  18. Two-photon imaging and analysis of neural network dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Luetcke, Henry; Helmchen, Fritjof [Brain Research Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich (Switzerland)

    2011-08-15

    The glow of a starry night sky, the smell of a freshly brewed cup of coffee or the sound of ocean waves breaking on the beach are representations of the physical world that have been created by the dynamic interactions of thousands of neurons in our brains. How the brain mediates perceptions, creates thoughts, stores memories and initiates actions remains one of the most profound puzzles in biology, if not all of science. A key to a mechanistic understanding of how the nervous system works is the ability to measure and analyze the dynamics of neuronal networks in the living organism in the context of sensory stimulation and behavior. Dynamic brain properties have been fairly well characterized on the microscopic level of individual neurons and on the macroscopic level of whole brain areas largely with the help of various electrophysiological techniques. However, our understanding of the mesoscopic level comprising local populations of hundreds to thousands of neurons (so-called 'microcircuits') remains comparably poor. Predominantly, this has been due to the technical difficulties involved in recording from large networks of neurons with single-cell spatial resolution and near-millisecond temporal resolution in the brain of living animals. In recent years, two-photon microscopy has emerged as a technique which meets many of these requirements and thus has become the method of choice for the interrogation of local neural circuits. Here, we review the state-of-research in the field of two-photon imaging of neuronal populations, covering the topics of microscope technology, suitable fluorescent indicator dyes, staining techniques, and in particular analysis techniques for extracting relevant information from the fluorescence data. We expect that functional analysis of neural networks using two-photon imaging will help to decipher fundamental operational principles of neural microcircuits.

  19. Optical Neural Network Models Applied To Logic Program Execution

    Science.gov (United States)

    Stormon, Charles D.

    1988-05-01

    Logic programming is being used extensively by Artificial Intelligence researchers to solve problems including natural language processing and expert systems. These languages, of which Prolog is the most widely used, promise to revolutionize software engineering, but much greater performance is needed. Researchers have demonstrated the applicability of neural network models to the solution of certain NP-complete problems, but these methods are not obviously applicable to the execution of logic programs. This paper outlines the use of neural networks in four aspects of the logic program execution cycle, and discusses results of a simulation of three of these. Four neural network functional units are described, called the substitution agent, the clause filter, the structure processor, and the heuristics generator, respectively. Simulation results suggest that the system described may provide several orders of magnitude improvement in execution speed for large logic programs. However, practical implementation of the proposed architecture will require the application of optical computing techniques due to the large number of neurons required, and the need for massive, adaptive connectivity.

  20. A dynamic neural field model of temporal order judgments.

    Science.gov (United States)

    Hecht, Lauren N; Spencer, John P; Vecera, Shaun P

    2015-12-01

    Temporal ordering of events is biased, or influenced, by perceptual organization-figure-ground organization-and by spatial attention. For example, within a region assigned figural status or at an attended location, onset events are processed earlier (Lester, Hecht, & Vecera, 2009; Shore, Spence, & Klein, 2001), and offset events are processed for longer durations (Hecht & Vecera, 2011; Rolke, Ulrich, & Bausenhart, 2006). Here, we present an extension of a dynamic field model of change detection (Johnson, Spencer, Luck, & Schöner, 2009; Johnson, Spencer, & Schöner, 2009) that accounts for both the onset and offset performance for figural and attended regions. The model posits that neural populations processing the figure are more active, resulting in a peak of activation that quickly builds toward a detection threshold when the onset of a target is presented. This same enhanced activation for some neural populations is maintained when a present target is removed, creating delays in the perception of the target's offset. We discuss the broader implications of this model, including insights regarding how neural activation can be generated in response to the disappearance of information. (c) 2015 APA, all rights reserved).

  1. Neural ensemble dynamics underlying a long-term associative memory

    Science.gov (United States)

    Grewe, Benjamin F.; Gründemann, Jan; Kitch, Lacey J.; Lecoq, Jerome A.; Parker, Jones G.; Marshall, Jesse D.; Larkin, Margaret C.; Jercog, Pablo E.; Grenier, Francois; Li, Jin Zhong; Lüthi, Andreas; Schnitzer, Mark J.

    2017-01-01

    The brain’s ability to associate different stimuli is vital to long-term memory, but how neural ensembles encode associative memories is unknown. Here we studied how cell ensembles in the basal and lateral amygdala (BLA) encode associations between conditioned and unconditioned stimuli (CS, US). Using a miniature fluorescence microscope, we tracked BLA ensemble neural Ca2+ dynamics during fear learning and extinction over six days in behaving mice. Fear conditioning induced both up- and down-regulation of individual cells’ CS-evoked responses. This bi-directional plasticity mainly occurred after conditioning and reshaped the CS ensemble neural representation to gain similarity to the US-representation. During extinction training with repetitive CS presentations, the CS-representation became more distinctive without reverting to its original form. Throughout, the strength of the ensemble-encoded CS-US association predicted each mouse’s level of behavioral conditioning. These findings support a supervised learning model in which activation of the US-representation guides the transformation of the CS-representation. PMID:28329757

  2. Research of Recurrent Dynamic Neural Networks for Adaptive Control of Complex Dynamic Systems

    Science.gov (United States)

    2010-07-08

    of human brain . Neural Dynamic Associative Memory can be considered as an analogue of mechanisms of brain memory that explains processes of forming...4402.85 UAH. Total, without VAT 13164.30 UAH. Pure VAT 2632.86 UAH. Total with VAT

  3. Dynamic Neural Fields as a Step Towards Cognitive Neuromorphic Architectures

    Directory of Open Access Journals (Sweden)

    Yulia eSandamirskaya

    2014-01-01

    Full Text Available Dynamic Field Theory (DFT is an established framework for modelling embodied cognition. In DFT, elementary cognitive functions such as memory formation, formation of grounded representations, attentional processes, decision making, adaptation, and learning emerge from neuronal dynamics. The basic computational element of this framework is a Dynamic Neural Field (DNF. Under constraints on the time-scale of the dynamics, the DNF is computationally equivalent to a soft winner-take-all (WTA network, which is considered one of the basic computational units in neuronal processing. Recently, it has been shown how a WTA network may be implemented in neuromorphic hardware, such as analogue Very Large Scale Integration (VLSI device. This paper leverages the relationship between DFT and soft WTA networks to systematically revise and integrate established DFT mechanisms that have previously been spread among different architectures. In addition, I also identify some novel computational and architectural mechanisms of DFT which may be implemented in neuromorphic VLSI devices using WTA networks as an intermediate computational layer. These specific mechanisms include the stabilization of working memory, the coupling of sensory systems to motor dynamics, intentionality, and autonomous learning. I further demonstrate how all these elements may be integrated into a unified architecture to generate behavior and autonomous learning.

  4. Programming an interpreter using molecular dynamics

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2007-01-01

    PGA (ProGram Algebra) is an algebra of programs which concerns programs in their simplest form: sequences of instructions. Molecular dynamics is a simple model of computation developed in the setting of \\PGA, which bears on the use of dynamic data structures in programming. We consider the

  5. Neural Dynamics and Information Representation in Microcircuits of Motor Cortex

    Directory of Open Access Journals (Sweden)

    Yasuhiro eTsubo

    2013-05-01

    Full Text Available The brain has to analyze and respond to external events that can change rapidly from time to time, suggesting that information processing by the brain may be essentially dynamic rather than static. The dynamical features of neural computation are of significant importance in motor cortex that governs the process of movement generation and learning. In this paper, we discuss these features based primarily on our recent findings on neural dynamics and information coding in the microcircuit of rat motor cortex. In fact, cortical neurons show a variety of dynamical behavior from rhythmic activity in various frequency bands to highly irregular spike firing. Of particular interest are the similarity and dissimilarity of the neuronal response properties in different layers of motor cortex. By conducting electrophysiological recordings in slice preparation, we report the phase response curves of neurons in different cortical layers to demonstrate their layer-dependent synchronization properties. We then study how motor cortex recruits task-related neurons in different layers for voluntary arm movements by simultaneous juxtacellular and multiunit recordings from behaving rats. The results suggest an interesting difference in the spectrum of functional activity between the superficial and deep layers. Furthermore, the task-related activities recorded from various layers exhibited power law distributions of inter-spike intervals (ISIs, in contrast to a general belief that ISIs obey Poisson or Gamma distributions in cortical neurons. We present a theoretical argument that this power law of in vivo neurons may represent the maximization of the entropy of firing rate with limited energy consumption of spike generation. Though further studies are required to fully clarify the functional implications of this coding principle, it may shed new light on information representations by neurons and circuits in motor cortex.

  6. Nonlinear modeling of neural population dynamics for hippocampal prostheses.

    Science.gov (United States)

    Song, Dong; Chan, Rosa H M; Marmarelis, Vasilis Z; Hampson, Robert E; Deadwyler, Sam A; Berger, Theodore W

    2009-11-01

    Developing a neural prosthesis for the damaged hippocampus requires restoring the transformation of population neural activities performed by the hippocampal circuitry. To bypass a damaged region, output spike trains need to be predicted from the input spike trains and then reinstated through stimulation. We formulate a multiple-input, multiple-output (MIMO) nonlinear dynamic model for the input-output transformation of spike trains. In this approach, a MIMO model comprises a series of physiologically-plausible multiple-input, single-output (MISO) neuron models that consist of five components each: (1) feedforward Volterra kernels transforming the input spike trains into the synaptic potential, (2) a feedback kernel transforming the output spikes into the spike-triggered after-potential, (3) a noise term capturing the system uncertainty, (4) an adder generating the pre-threshold potential, and (5) a threshold function generating output spikes. It is shown that this model is equivalent to a generalized linear model with a probit link function. To reduce model complexity and avoid overfitting, statistical model selection and cross-validation methods are employed to choose the significant inputs and interactions between inputs. The model is applied successfully to the hippocampal CA3-CA1 population dynamics. Such a model can serve as a computational basis for the development of hippocampal prostheses.

  7. TUTORIAL: The dynamic neural field approach to cognitive robotics

    Science.gov (United States)

    Erlhagen, Wolfram; Bicho, Estela

    2006-09-01

    This tutorial presents an architecture for autonomous robots to generate behavior in joint action tasks. To efficiently interact with another agent in solving a mutual task, a robot should be endowed with cognitive skills such as memory, decision making, action understanding and prediction. The proposed architecture is strongly inspired by our current understanding of the processing principles and the neuronal circuitry underlying these functionalities in the primate brain. As a mathematical framework, we use a coupled system of dynamic neural fields, each representing the basic functionality of neuronal populations in different brain areas. It implements goal-directed behavior in joint action as a continuous process that builds on the interpretation of observed movements in terms of the partner's action goal. We validate the architecture in two experimental paradigms: (1) a joint search task; (2) a reproduction of an observed or inferred end state of a grasping-placing sequence. We also review some of the mathematical results about dynamic neural fields that are important for the implementation work. .

  8. Dynamic Constrained Economic/Emission Dispatch Scheduling Using Neural Network

    Directory of Open Access Journals (Sweden)

    Farid Benhamida

    2013-01-01

    Full Text Available In this paper, a Dynamic Economic/Emission Dispatch (DEED problem is obtained by considering both the economy and emission objectives with required constraints dynamically. This paper presents an optimization algorithm for solving constrained combined economic emission dispatch (EED problem and DEED, through the application of neural network, which is a flexible Hopfield neural network (FHNN. The constrained DEED must not only satisfy the system load demand and the spinning reserve capacity, but some practical operation constraints of generators, such as ramp rate limits and prohibited operating zone, are also considered in practical generator operation. The feasibility of the proposed FHNN using to solve DEED is demonstrated using three power systems, and it is compared with the other methods in terms of solution quality and computation efficiency. The simulation results showed that the proposed FHNN method was indeed capable of obtaining higher quality solutions efficiently in constrained DEED and EED problems with a much shorter computation time compared to other methods.

  9. Sensitivity analysis of linear programming problem through a recurrent neural network

    Science.gov (United States)

    Das, Raja

    2017-11-01

    In this paper we study the recurrent neural network for solving linear programming problems. To achieve optimality in accuracy and also in computational effort, an algorithm is presented. We investigate the sensitivity analysis of linear programming problem through the neural network. A detailed example is also presented to demonstrate the performance of the recurrent neural network.

  10. Multiplex visibility graphs to investigate recurrent neural network dynamics

    Science.gov (United States)

    Bianchi, Filippo Maria; Livi, Lorenzo; Alippi, Cesare; Jenssen, Robert

    2017-03-01

    A recurrent neural network (RNN) is a universal approximator of dynamical systems, whose performance often depends on sensitive hyperparameters. Tuning them properly may be difficult and, typically, based on a trial-and-error approach. In this work, we adopt a graph-based framework to interpret and characterize internal dynamics of a class of RNNs called echo state networks (ESNs). We design principled unsupervised methods to derive hyperparameters configurations yielding maximal ESN performance, expressed in terms of prediction error and memory capacity. In particular, we propose to model time series generated by each neuron activations with a horizontal visibility graph, whose topological properties have been shown to be related to the underlying system dynamics. Successively, horizontal visibility graphs associated with all neurons become layers of a larger structure called a multiplex. We show that topological properties of such a multiplex reflect important features of ESN dynamics that can be used to guide the tuning of its hyperparamers. Results obtained on several benchmarks and a real-world dataset of telephone call data records show the effectiveness of the proposed methods.

  11. A novel recurrent neural network with finite-time convergence for linear programming.

    Science.gov (United States)

    Liu, Qingshan; Cao, Jinde; Chen, Guanrong

    2010-11-01

    In this letter, a novel recurrent neural network based on the gradient method is proposed for solving linear programming problems. Finite-time convergence of the proposed neural network is proved by using the Lyapunov method. Compared with the existing neural networks for linear programming, the proposed neural network is globally convergent to exact optimal solutions in finite time, which is remarkable and rare in the literature of neural networks for optimization. Some numerical examples are given to show the effectiveness and excellent performance of the new recurrent neural network.

  12. A place for time: the spatiotemporal structure of neural dynamics during natural audition

    NARCIS (Netherlands)

    Stephens, G.J.; Honey, C.J.; Hasson, U.

    2013-01-01

    We use functional magnetic resonance imaging (fMRI) to analyze neural responses to natural auditory stimuli. We characterize the fMRI time series through the shape of the voxel power spectrum and find that the timescales of neural dynamics vary along a spatial gradient, with faster dynamics in early

  13. Spatiotemporal neural network dynamics for the processing of dynamic facial expressions

    Science.gov (United States)

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota

    2015-01-01

    The dynamic facial expressions of emotion automatically elicit multifaceted psychological activities; however, the temporal profiles and dynamic interaction patterns of brain activities remain unknown. We investigated these issues using magnetoencephalography. Participants passively observed dynamic facial expressions of fear and happiness, or dynamic mosaics. Source-reconstruction analyses utilizing functional magnetic-resonance imaging data revealed higher activation in broad regions of the bilateral occipital and temporal cortices in response to dynamic facial expressions than in response to dynamic mosaics at 150–200 ms and some later time points. The right inferior frontal gyrus exhibited higher activity for dynamic faces versus mosaics at 300–350 ms. Dynamic causal-modeling analyses revealed that dynamic faces activated the dual visual routes and visual–motor route. Superior influences of feedforward and feedback connections were identified before and after 200 ms, respectively. These results indicate that hierarchical, bidirectional neural network dynamics within a few hundred milliseconds implement the processing of dynamic facial expressions. PMID:26206708

  14. Neural network based adaptive control for nonlinear dynamic regimes

    Science.gov (United States)

    Shin, Yoonghyun

    Adaptive control designs using neural networks (NNs) based on dynamic inversion are investigated for aerospace vehicles which are operated at highly nonlinear dynamic regimes. NNs play a key role as the principal element of adaptation to approximately cancel the effect of inversion error, which subsequently improves robustness to parametric uncertainty and unmodeled dynamics in nonlinear regimes. An adaptive control scheme previously named 'composite model reference adaptive control' is further developed so that it can be applied to multi-input multi-output output feedback dynamic inversion. It can have adaptive elements in both the dynamic compensator (linear controller) part and/or in the conventional adaptive controller part, also utilizing state estimation information for NN adaptation. This methodology has more flexibility and thus hopefully greater potential than conventional adaptive designs for adaptive flight control in highly nonlinear flight regimes. The stability of the control system is proved through Lyapunov theorems, and validated with simulations. The control designs in this thesis also include the use of 'pseudo-control hedging' techniques which are introduced to prevent the NNs from attempting to adapt to various actuation nonlinearities such as actuator position and rate saturations. Control allocation is introduced for the case of redundant control effectors including thrust vectoring nozzles. A thorough comparison study of conventional and NN-based adaptive designs for a system under a limit cycle, wing-rock, is included in this research, and the NN-based adaptive control designs demonstrate their performances for two highly maneuverable aerial vehicles, NASA F-15 ACTIVE and FQM-117B unmanned aerial vehicle (UAV), operated under various nonlinearities and uncertainties.

  15. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    Science.gov (United States)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  16. Dynamic Programming Applications in Water Resources

    Science.gov (United States)

    Yakowitz, Sidney

    1982-08-01

    The central intention of this survey is to review dynamic programming models for water resource problems and to examine computational techniques which have been used to obtain solutions to these problems. Problem areas surveyed here include aqueduct design, irrigation system control, project development, water quality maintenance, and reservoir operations analysis. Computational considerations impose severe limitation on the scale of dynamic programming problems which can be solved. Inventive numerical techniques for implementing dynamic programming have been applied to water resource problems. Discrete dynamic programming, differential dynamic programming, state incremental dynamic programming, and Howard's policy iteration method are among the techniques reviewed. Attempts have been made to delineate the successful applications, and speculative ideas are offered toward attacking problems which have not been solved satisfactorily.

  17. Neural dynamics of the cognitive map in the hippocampus.

    Science.gov (United States)

    Wagatsuma, Hiroaki; Yamaguchi, Yoko

    2007-06-01

    The rodent hippocampus has been thought to represent the spatial environment as a cognitive map. In the classical theory, the cognitive map has been explained as a consequence of the fact that different spatial regions are assigned to different cell populations in the framework of rate coding. Recently, the relation between place cell firing and local field oscillation theta in terms of theta phase precession was experimentally discovered and suggested as a temporal coding mechanism leading to memory formation of behavioral sequences accompanied with asymmetric Hebbian plasticity. The cognitive map theory is apparently outside of the sequence memory view. Therefore, theoretical analysis is necessary to consider the biological neural dynamics for the sequence encoding of the memory of behavioral sequences, providing the cognitive map formation. In this article, we summarize the theoretical neural dynamics of the real-time sequence encoding by theta phase precession, called theta phase coding, and review a series of theoretical models with the theta phase coding that we previously reported. With respect to memory encoding functions, instantaneous memory formation of one-time experience was first demonstrated, and then the ability of integration of memories of behavioral sequences into a network of the cognitive map was shown. In terms of memory retrieval functions, theta phase coding enables the hippocampus to represent the spatial location in the current behavioral context even with ambiguous sensory input when multiple sequences were coded. Finally, for utilization, retrieved temporal sequences in the hippocampus can be available for action selection, through the process of reverting theta rhythm-dependent activities to information in the behavioral time scale. This theoretical approach allows us to investigate how the behavioral sequences are encoded, updated, retrieved and used in the hippocampus, as the real-time interaction with the external environment. It may

  18. Beyond slots and resources: grounding cognitive concepts in neural dynamics.

    Science.gov (United States)

    Johnson, Jeffrey S; Simmering, Vanessa R; Buss, Aaron T

    2014-08-01

    Research over the past decade has suggested that the ability to hold information in visual working memory (VWM) may be limited to as few as three to four items. However, the precise nature and source of these capacity limits remains hotly debated. Most commonly, capacity limits have been inferred from studies of visual change detection, in which performance declines systematically as a function of the number of items that participants must remember. According to one view, such declines indicate that a limited number of fixed-resolution representations are held in independent memory "slots." Another view suggests that such capacity limits are more apparent than real, but emerge as limited memory resources are distributed across more to-be-remembered items. Here we argue that, although both perspectives have merit and have generated and explained impressive amounts of empirical data, their central focus on the representations--rather than processes--underlying VWM may ultimately limit continuing progress in this area. As an alternative, we describe a neurally grounded, process-based approach to VWM: the dynamic field theory. Simulations demonstrate that this model can account for key aspects of behavioral performance in change detection, in addition to generating novel behavioral predictions that have been confirmed experimentally. Furthermore, we describe extensions of the model to recall tasks, the integration of visual features, cognitive development, individual differences, and functional imaging studies of VWM. We conclude by discussing the importance of grounding psychological concepts in neural dynamics, as a first step toward understanding the link between brain and behavior.

  19. A dynamical systems view of motor preparation: Implications for neural prosthetic system design

    Science.gov (United States)

    Shenoy, Krishna V.; Kaufman, Matthew T.; Sahani, Maneesh; Churchland, Mark M.

    2013-01-01

    Neural prosthetic systems aim to help disabled patients suffering from a range of neurological injuries and disease by using neural activity from the brain to directly control assistive devices. This approach in effect bypasses the dysfunctional neural circuitry, such as an injured spinal cord. To do so, neural prostheses depend critically on a scientific understanding of the neural activity that drives them. We review here several recent studies aimed at understanding the neural processes in premotor cortex that precede arm movements and lead to the initiation of movement. These studies were motivated by hypotheses and predictions conceived of within a dynamical systems perspective. This perspective concentrates on describing the neural state using as few degrees of freedom as possible and on inferring the rules that govern the motion of that neural state. Although quite general, this perspective has led to a number of specific predictions that have been addressed experimentally. It is hoped that the resulting picture of the dynamical role of preparatory and movement-related neural activity will be particularly helpful to the development of neural prostheses, which can themselves be viewed as dynamical systems under the control of the larger dynamical system to which they are attached. PMID:21763517

  20. ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation.

    Science.gov (United States)

    Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-07-20

    Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue in the field of surgical simulation. In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue deformation by combining neural dynamics of cellular neural network with ChainMail mechanism. The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into the neural dynamics of cellular neural network. Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues' nonlinear deformation and typical mechanical behaviors. The proposed method not only improves ChainMail's linear deformation with the nonlinear characteristics of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft tissue deformation.

  1. A recurrent neural network for solving bilevel linear programming problem.

    Science.gov (United States)

    He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie; Huang, Junjian

    2014-04-01

    In this brief, based on the method of penalty functions, a recurrent neural network (NN) modeled by means of a differential inclusion is proposed for solving the bilevel linear programming problem (BLPP). Compared with the existing NNs for BLPP, the model has the least number of state variables and simple structure. Using nonsmooth analysis, the theory of differential inclusions, and Lyapunov-like method, the equilibrium point sequence of the proposed NNs can approximately converge to an optimal solution of BLPP under certain conditions. Finally, the numerical simulations of a supply chain distribution model have shown excellent performance of the proposed recurrent NNs.

  2. Behavioral dynamics and neural grounding of a dynamic field theory of multi-object tracking.

    Science.gov (United States)

    Spencer, J P; Barich, K; Goldberg, J; Perone, S

    2012-09-01

    The ability to dynamically track moving objects in the environment is crucial for efficient interaction with the local surrounds. Here, we examined this ability in the context of the multi-object tracking (MOT) task. Several theories have been proposed to explain how people track moving objects; however, only one of these previous theories is implemented in a real-time process model, and there has been no direct contact between theories of object tracking and the growing neural literature using ERPs and fMRI. Here, we present a neural process model of object tracking that builds from a Dynamic Field Theory of spatial cognition. Simulations reveal that our dynamic field model captures recent behavioral data examining the impact of speed and tracking duration on MOT performance. Moreover, we show that the same model with the same trajectories and parameters can shed light on recent ERP results probing how people distribute attentional resources to targets vs. distractors. We conclude by comparing this new theory of object tracking to other recent accounts, and discuss how the neural grounding of the theory might be effectively explored in future work.

  3. Approximate Dynamic Programming in Tracking Control of a Robotic Manipulator

    Directory of Open Access Journals (Sweden)

    Marcin Szuster

    2016-02-01

    Full Text Available This article focuses on the implementation of an approximate dynamic programming algorithm in the discrete tracking control system of the three-degrees of freedom Scorbot-ER 4pc robotic manipulator. The controlled system is included in an articulated robots group which uses rotary joints to access their work space. The main part of the control system is a dual heuristic dynamic programming algorithm that consists of two structures designed in the form of neural networks: an actor and a critic. The actor generates the suboptimal control law while the critic approximates the difference of the value function from Bellman's equation with respect to the state. The residual elements of the control system are the PD controller, the supervisory term and an additional control signal. The structure of the supervisory term derives from the stability analysis performed using the Lyapunov stability theorem. The control system works online, the neural networks' weights-adaptation procedure is performed in every iteration step, and the neural networks' preliminary learning process is not required. The performance of the control system was verified by a series of computer simulations and experiments performed using the Scorbot-ER 4pc robotic manipulator.

  4. Boundary detection via dynamic programming

    Science.gov (United States)

    Udupa, Jayaram K.; Samarasekera, Supun; Barrett, William A.

    1992-09-01

    This paper reports a new method for detecting optimal boundaries in multidimensional scene data via dynamic programming (DP). In its current form the algorithm detects 2-D contours on slices and differs from other reported DP-based algorithms in an essential way in that it allows freedom in 2-D for finding optimal contour paths (as opposed to a single degree of freedom in the published methods). The method is being successfully used in segmenting object boundaries in a variety of medical applications including orbital volume from CT images (for craniofacial surgical planning), segmenting bone in MR images for kinematic analysis of the joints of the foot, segmenting the surface of the brain from the inner surface of the cranial vault, segmenting pituitary gland tumor for following the effect of a drug on the tumor, segmenting the boundaries of the heart in MR images, and segmenting the olfactory bulb for verifying hypotheses related to the size of this bulb in certain disease states.

  5. A new one-layer neural network for linear and quadratic programming.

    Science.gov (United States)

    Gao, Xingbao; Liao, Li-Zhi

    2010-06-01

    In this paper, we present a new neural network for solving linear and quadratic programming problems in real time by introducing some new vectors. The proposed neural network is stable in the sense of Lyapunov and can converge to an exact optimal solution of the original problem when the objective function is convex on the set defined by equality constraints. Compared with existing one-layer neural networks for quadratic programming problems, the proposed neural network has the least neurons and requires weak stability conditions. The validity and transient behavior of the proposed neural network are demonstrated by some simulation results.

  6. Program Complex For Cyclotron Beam Dynamic Simulations

    CERN Document Server

    Glazov, A A; Karamysheva, G A; Lisenkova, O E

    2004-01-01

    The program complex in MATLAB intended for particle dynamic simulations is described. Programming in an easy-to-use environment permits creation of models in a short space of time. Advanced graphical tools of MATLAB give good visualization features to created models. The beam dynamic modelling results by the example of two different cyclotron designs are presented.

  7. Addressing Dynamic Issues of Program Model Checking

    Science.gov (United States)

    Lerda, Flavio; Visser, Willem

    2001-01-01

    Model checking real programs has recently become an active research area. Programs however exhibit two characteristics that make model checking difficult: the complexity of their state and the dynamic nature of many programs. Here we address both these issues within the context of the Java PathFinder (JPF) model checker. Firstly, we will show how the state of a Java program can be encoded efficiently and how this encoding can be exploited to improve model checking. Next we show how to use symmetry reductions to alleviate some of the problems introduced by the dynamic nature of Java programs. Lastly, we show how distributed model checking of a dynamic program can be achieved, and furthermore, how dynamic partitions of the state space can improve model checking. We support all our findings with results from applying these techniques within the JPF model checker.

  8. Adaptive Dynamic Programming for Control Algorithms and Stability

    CERN Document Server

    Zhang, Huaguang; Luo, Yanhong; Wang, Ding

    2013-01-01

    There are many methods of stable controller design for nonlinear systems. In seeking to go beyond the minimum requirement of stability, Adaptive Dynamic Programming for Control approaches the challenging topic of optimal control for nonlinear systems using the tools of  adaptive dynamic programming (ADP). The range of systems treated is extensive; affine, switched, singularly perturbed and time-delay nonlinear systems are discussed as are the uses of neural networks and techniques of value and policy iteration. The text features three main aspects of ADP in which the methods proposed for stabilization and for tracking and games benefit from the incorporation of optimal control methods: • infinite-horizon control for which the difficulty of solving partial differential Hamilton–Jacobi–Bellman equations directly is overcome, and  proof provided that the iterative value function updating sequence converges to the infimum of all the value functions obtained by admissible control law sequences; • finite-...

  9. A Matlab Program for Textural Classification Using Neural Networks

    Science.gov (United States)

    Leite, E. P.; de Souza, C.

    2008-12-01

    A new MATLAB code that provides tools to perform classification of textural images for applications in the Geosciences is presented. The program, here coined TEXTNN, comprises the computation of variogram maps in the frequency domain for specific lag distances in the neighborhood of a pixel. The result is then converted back to spatial domain, where directional or ominidirectional semivariograms are extracted. Feature vectors are built with textural information composed of the semivariance values at these lag distances and, moreover, with histogram measures of mean, standard deviation and weighted fill-ratio. This procedure is applied to a selected group of pixels or to all pixels in an image using a moving window. A feed- forward back-propagation Neural Network can then be designed and trained on feature vectors of predefined classes (training set). The training phase minimizes the mean-squared error on the training set. Additionally, at each iteration, the mean-squared error for every validation is assessed and a test set is evaluated. The program also calculates contingency matrices, global accuracy and kappa coefficient for the three data sets, allowing a quantitative appraisal of the predictive power of the Neural Network models. The interpreter is able to select the best model obtained from a k-fold cross-validation or to use a unique split-sample data set for classification of all pixels in a given textural image. The code is opened to the geoscientific community and is very flexible, allowing the experienced user to modify it as necessary. The performance of the algorithms and the end-user program were tested using synthetic images, orbital SAR (RADARSAT) imagery for oil seepage detection, and airborne, multi-polarimetric SAR imagery for geologic mapping. The overall results proved very promising.

  10. Dynamic neural network-based methods for compensation of nonlinear effects in multimode communication lines

    Science.gov (United States)

    Sidelnikov, O. S.; Redyuk, A. A.; Sygletos, S.

    2017-12-01

    We consider neural network-based schemes of digital signal processing. It is shown that the use of a dynamic neural network-based scheme of signal processing ensures an increase in the optical signal transmission quality in comparison with that provided by other methods for nonlinear distortion compensation.

  11. Research on quasi-dynamic calibration model of plastic sensitive element based on neural networks

    Science.gov (United States)

    Wang, Fang; Kong, Deren; Yang, Lixia; Zhang, Zouzou

    2017-08-01

    Quasi-dynamic calibration accuracy of the plastic sensitive element depends on the accuracy of the fitting model between pressure and deformation. By using the excellent nonlinear mapping ability of RBF (Radial Basis Function) neural network, a calibration model is established which use the peak pressure as the input and use the deformation of the plastic sensitive element as the output in this paper. The calibration experiments of a batch of copper cylinders are carried out on the quasi-dynamic pressure calibration device, which pressure range is within the range of 200MPa to 700MPa. The experiment data are acquired according to the standard pressure monitoring system. The network train and study are done to quasi dynamic calibration model based on neural network by using MATLAB neural network toolbox. Taking the testing samples as the research object, the prediction accuracy of neural network model is compared with the exponential fitting model and the second-order polynomial fitting model. The results show that prediction of the neural network model is most close to the testing samples, and the accuracy of prediction model based on neural network is better than 0.5%, respectively one order higher than the second-order polynomial fitting model and two orders higher than the exponential fitting model. The quasi-dynamic calibration model between pressure peak and deformation of plastic sensitive element, which is based on neural network, provides important basis for creating higher accuracy quasi-dynamic calibration table.

  12. Cellular neural network modelling of soft tissue dynamics for surgical simulation.

    Science.gov (United States)

    Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-07-20

    Currently, the mechanical dynamics of soft tissue deformation is achieved by numerical time integrations such as the explicit or implicit integration; however, the explicit integration is stable only under a small time step, whereas the implicit integration is computationally expensive in spite of the accommodation of a large time step. This paper presents a cellular neural network method for stable simulation of soft tissue deformation dynamics. The non-rigid motion equation is formulated as a cellular neural network with local connectivity of cells, and thus the dynamics of soft tissue deformation is transformed into the neural dynamics of the cellular neural network. Results show that the proposed method can achieve good accuracy at a small time step. It still remains stable at a large time step, while maintaining the computational efficiency of the explicit integration. The proposed method can achieve stable soft tissue deformation with efficiency of explicit integration for surgical simulation.

  13. Identification of Complex Dynamical Systems with Neural Networks (2/2)

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The identification and analysis of high dimensional nonlinear systems is obviously a challenging task. Neural networks have been proven to be universal approximators but this still leaves the identification task a hard one. To do it efficiently, we have to violate some of the rules of classical regression theory. Furthermore we should focus on the interpretation of the resulting model to overcome its black box character. First, we will discuss function approximation with 3 layer feedforward neural networks up to new developments in deep neural networks and deep learning. These nets are not only of interest in connection with image analysis but are a center point of the current artificial intelligence developments. Second, we will focus on the analysis of complex dynamical system in the form of state space models realized as recurrent neural networks. After the introduction of small open dynamical systems we will study dynamical systems on manifolds. Here manifold and dynamics have to be identified in parall...

  14. Identification of Complex Dynamical Systems with Neural Networks (1/2)

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The identification and analysis of high dimensional nonlinear systems is obviously a challenging task. Neural networks have been proven to be universal approximators but this still leaves the identification task a hard one. To do it efficiently, we have to violate some of the rules of classical regression theory. Furthermore we should focus on the interpretation of the resulting model to overcome its black box character. First, we will discuss function approximation with 3 layer feedforward neural networks up to new developments in deep neural networks and deep learning. These nets are not only of interest in connection with image analysis but are a center point of the current artificial intelligence developments. Second, we will focus on the analysis of complex dynamical system in the form of state space models realized as recurrent neural networks. After the introduction of small open dynamical systems we will study dynamical systems on manifolds. Here manifold and dynamics have to be identified in parall...

  15. Cognitive Flexibility through Metastable Neural Dynamics Is Disrupted by Damage to the Structural Connectome

    Science.gov (United States)

    Hellyer, Peter J.; Scott, Gregory; Shanahan, Murray; Sharp, David J.

    2015-01-01

    Current theory proposes that healthy neural dynamics operate in a metastable regime, where brain regions interact to simultaneously maximize integration and segregation. Metastability may confer important behavioral properties, such as cognitive flexibility. It is increasingly recognized that neural dynamics are constrained by the underlying structural connections between brain regions. An important challenge is, therefore, to relate structural connectivity, neural dynamics, and behavior. Traumatic brain injury (TBI) is a pre-eminent structural disconnection disorder whereby traumatic axonal injury damages large-scale connectivity, producing characteristic cognitive impairments, including slowed information processing speed and reduced cognitive flexibility, that may be a result of disrupted metastable dynamics. Therefore, TBI provides an experimental and theoretical model to examine how metastable dynamics relate to structural connectivity and cognition. Here, we use complementary empirical and computational approaches to investigate how metastability arises from the healthy structural connectome and relates to cognitive performance. We found reduced metastability in large-scale neural dynamics after TBI, measured with resting-state functional MRI. This reduction in metastability was associated with damage to the connectome, measured using diffusion MRI. Furthermore, decreased metastability was associated with reduced cognitive flexibility and information processing. A computational model, defined by empirically derived connectivity data, demonstrates how behaviorally relevant changes in neural dynamics result from structural disconnection. Our findings suggest how metastable dynamics are important for normal brain function and contingent on the structure of the human connectome. PMID:26085630

  16. Rule of Thumb and Dynamic Programming

    NARCIS (Netherlands)

    Lettau, M.; Uhlig, H.F.H.V.S.

    1995-01-01

    This paper studies the relationships between learning about rules of thumb (represented by classifier systems) and dynamic programming. Building on a result about Markovian stochastic approximation algorithms, we characterize all decision functions that can be asymptotically obtained through

  17. The relevance of network micro-structure for neural dynamics

    Directory of Open Access Journals (Sweden)

    Volker ePernice

    2013-06-01

    Full Text Available The activity of cortical neurons is determined by the input they receive from presynaptic neurons. Many previousstudies have investigated how specific aspects of the statistics of the input affect the spike trains of single neurons and neuronsin recurrent networks. However, typically very simple random network models are considered in such studies. Here weuse a recently developed algorithm to construct networks based on a quasi-fractal probability measure which are much morevariable than commonly used network models, and which therefore promise to sample the space of recurrent networks ina more exhaustive fashion than previously possible. We use the generated graphs as the underlying network topology insimulations of networks of integrate-and-fire neurons in an asynchronous and irregular state. Based on an extensive datasetof networks and neuronal simulations we assess statistical relations between features of the network structure and the spikingactivity. Our results highlight the strong influence that some details of the network structure have on the activity dynamics ofboth single neurons and populations, even if some global network parameters are kept fixed. We observe specific and consistentrelations between activity characteristics like spike-train irregularity or correlations and network properties, for example thedistributions of the numbers of in- and outgoing connections or clustering. Exploiting these relations, we demonstrate that itis possible to estimate structural characteristics of the network from activity data. We also assess higher order correlationsof spiking activity in the various networks considered here, and find that their occurrence strongly depends on the networkstructure. These results provide directions for further theoretical studies on recurrent networks, as well as new ways to interpretspike train recordings from neural circuits.

  18. Topological defects control collective dynamics in neural progenitor cell cultures

    Science.gov (United States)

    Kawaguchi, Kyogo; Kageyama, Ryoichiro; Sano, Masaki

    2017-04-01

    Cultured stem cells have become a standard platform not only for regenerative medicine and developmental biology but also for biophysical studies. Yet, the characterization of cultured stem cells at the level of morphology and of the macroscopic patterns resulting from cell-to-cell interactions remains largely qualitative. Here we report on the collective dynamics of cultured murine neural progenitor cells (NPCs), which are multipotent stem cells that give rise to cells in the central nervous system. At low densities, NPCs moved randomly in an amoeba-like fashion. However, NPCs at high density elongated and aligned their shapes with one another, gliding at relatively high velocities. Although the direction of motion of individual cells reversed stochastically along the axes of alignment, the cells were capable of forming an aligned pattern up to length scales similar to that of the migratory stream observed in the adult brain. The two-dimensional order of alignment within the culture showed a liquid-crystalline pattern containing interspersed topological defects with winding numbers of +1/2 and -1/2 (half-integer due to the nematic feature that arises from the head-tail symmetry of cell-to-cell interaction). We identified rapid cell accumulation at +1/2 defects and the formation of three-dimensional mounds. Imaging at the single-cell level around the defects allowed us to quantify the velocity field and the evolving cell density; cells not only concentrate at +1/2 defects, but also escape from -1/2 defects. We propose a generic mechanism for the instability in cell density around the defects that arises from the interplay between the anisotropic friction and the active force field.

  19. Hybrid neural network bushing model for vehicle dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jeong Hyun [Pukyong National University, Busan (Korea, Republic of); Lee, Seung Kyu [Hyosung Corporation, Changwon (Korea, Republic of); Yoo, Wan Suk [Pusan National University, Busan (Korea, Republic of)

    2008-12-15

    Although the linear model was widely used for the bushing model in vehicle suspension systems, it could not express the nonlinear characteristics of bushing in terms of the amplitude and the frequency. An artificial neural network model was suggested to consider the hysteretic responses of bushings. This model, however, often diverges due to the uncertainties of the neural network under the unexpected excitation inputs. In this paper, a hybrid neural network bushing model combining linear and neural network is suggested. A linear model was employed to represent linear stiffness and damping effects, and the artificial neural network algorithm was adopted to take into account the hysteretic responses. A rubber test was performed to capture bushing characteristics, where sine excitation with different frequencies and amplitudes is applied. Random test results were used to update the weighting factors of the neural network model. It is proven that the proposed model has more robust characteristics than a simple neural network model under step excitation input. A full car simulation was carried out to verify the proposed bushing models. It was shown that the hybrid model results are almost identical to the linear model under several maneuvers

  20. Dynamic Programming: An Introduction by Example

    Science.gov (United States)

    Zietz, Joachim

    2007-01-01

    The author introduces some basic dynamic programming techniques, using examples, with the help of the computer algebra system "Maple". The emphasis is on building confidence and intuition for the solution of dynamic problems in economics. To integrate the material better, the same examples are used to introduce different techniques. One covers the…

  1. Integrating Pareto Optimization into Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Thomas Gatter

    2016-01-01

    Full Text Available Pareto optimization combines independent objectives by computing the Pareto front of the search space, yielding a set of optima where none scores better on all objectives than any other. Recently, it was shown that Pareto optimization seamlessly integrates with algebraic dynamic programming: when scoring schemes A and B can correctly evaluate the search space via dynamic programming, then so can Pareto optimization with respect to A and B. However, the integration of Pareto optimization into dynamic programming opens a wide range of algorithmic alternatives, which we study in substantial detail in this article, using real-world applications in biosequence analysis, a field where dynamic programming is ubiquitous. Our results are two-fold: (1 We introduce the operation of a “Pareto algebra product” in the dynamic programming framework of Bellman’s GAP. Users of this framework can now ask for Pareto optimization with a single keystroke. Careful evaluation of the implementation alternatives by means of an extended Bellman’s GAP compiler demonstrates the dependence of the best implementation choice on the application at hand. (2 We extract from our experiments several pieces of advice to programmers who do not use a system such as Bellman’s GAP, but who choose to hand-craft their dynamic programming recurrences, incorporating Pareto optimization from scratch.

  2. Standard representation and unified stability analysis for dynamic artificial neural network models.

    Science.gov (United States)

    Kim, Kwang-Ki K; Patrón, Ernesto Ríos; Braatz, Richard D

    2017-12-02

    An overview is provided of dynamic artificial neural network models (DANNs) for nonlinear dynamical system identification and control problems, and convex stability conditions are proposed that are less conservative than past results. The three most popular classes of dynamic artificial neural network models are described, with their mathematical representations and architectures followed by transformations based on their block diagrams that are convenient for stability and performance analyses. Classes of nonlinear dynamical systems that are universally approximated by such models are characterized, which include rigorous upper bounds on the approximation errors. A unified framework and linear matrix inequality-based stability conditions are described for different classes of dynamic artificial neural network models that take additional information into account such as local slope restrictions and whether the nonlinearities within the DANNs are odd. A theoretical example shows reduced conservatism obtained by the conditions. Copyright © 2017. Published by Elsevier Ltd.

  3. Complex Dynamical Network Control for Trajectory Tracking Using Delayed Recurrent Neural Networks

    Directory of Open Access Journals (Sweden)

    Jose P. Perez

    2014-01-01

    Full Text Available In this paper, the problem of trajectory tracking is studied. Based on the V-stability and Lyapunov theory, a control law that achieves the global asymptotic stability of the tracking error between a delayed recurrent neural network and a complex dynamical network is obtained. To illustrate the analytic results, we present a tracking simulation of a dynamical network with each node being just one Lorenz’s dynamical system and three identical Chen’s dynamical systems.

  4. Neural-Dynamic-Method-Based Dual-Arm CMG Scheme With Time-Varying Constraints Applied to Humanoid Robots.

    Science.gov (United States)

    Zhang, Zhijun; Li, Zhijun; Zhang, Yunong; Luo, Yamei; Li, Yuanqing

    2015-12-01

    We propose a dual-arm cyclic-motion-generation (DACMG) scheme by a neural-dynamic method, which can remedy the joint-angle-drift phenomenon of a humanoid robot. In particular, according to a neural-dynamic design method, first, a cyclic-motion performance index is exploited and applied. This cyclic-motion performance index is then integrated into a quadratic programming (QP)-type scheme with time-varying constraints, called the time-varying-constrained DACMG (TVC-DACMG) scheme. The scheme includes the kinematic motion equations of two arms and the time-varying joint limits. The scheme can not only generate the cyclic motion of two arms for a humanoid robot but also control the arms to move to the desired position. In addition, the scheme considers the physical limit avoidance. To solve the QP problem, a recurrent neural network is presented and used to obtain the optimal solutions. Computer simulations and physical experiments demonstrate the effectiveness and the accuracy of such a TVC-DACMG scheme and the neural network solver.

  5. Predicting Expressive Dynamics in Piano Performances using Neural Networks

    NARCIS (Netherlands)

    van Herwaarden, Sam; Grachten, Maarten; de Haas, W. Bas

    2014-01-01

    This paper presents a model for predicting expressive accentuation in piano performances with neural networks. Using Restricted Boltzmann Machines (RBMs), features are learned from performance data, after which these features are used to predict performed loudness. During feature learning, data

  6. A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations.

    Science.gov (United States)

    Xia, Youshen; Feng, Gang; Wang, Jun

    2004-09-01

    This paper presents a recurrent neural network for solving strict convex quadratic programming problems and related linear piecewise equations. Compared with the existing neural networks for quadratic program, the proposed neural network has a one-layer structure with a low model complexity. Moreover, the proposed neural network is shown to have a finite-time convergence and exponential convergence. Illustrative examples further show the good performance of the proposed neural network in real-time applications.

  7. Program of Research in Structures and Dynamics

    Science.gov (United States)

    1988-01-01

    The Structures and Dynamics Program was first initiated in 1972 with the following two major objectives: to provide a basic understanding and working knowledge of some key areas pertinent to structures, solid mechanics, and dynamics technology including computer aided design; and to provide a comprehensive educational and research program at the NASA Langley Research Center leading to advanced degrees in the structures and dynamics areas. During the operation of the program the research work was done in support of the activities of both the Structures and Dynamics Division and the Loads and Aeroelasticity Division. During the period of 1972 to 1986 the Program provided support for two full-time faculty members, one part-time faculty member, three postdoctoral fellows, one research engineer, eight programmers, and 28 graduate research assistants. The faculty and staff of the program have published 144 papers and reports, and made 70 presentations at national and international meetings, describing their research findings. In addition, they organized and helped in the organization of 10 workshops and national symposia in the structures and dynamics areas. The graduate research assistants and the students enrolled in the program have written 20 masters theses and 2 doctoral dissertations. The overall progress is summarized.

  8. A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements.

    Directory of Open Access Journals (Sweden)

    Daniel Durstewitz

    2017-06-01

    Full Text Available The computational and cognitive properties of neural systems are often thought to be implemented in terms of their (stochastic network dynamics. Hence, recovering the system dynamics from experimentally observed neuronal time series, like multiple single-unit recordings or neuroimaging data, is an important step toward understanding its computations. Ideally, one would not only seek a (lower-dimensional state space representation of the dynamics, but would wish to have access to its statistical properties and their generative equations for in-depth analysis. Recurrent neural networks (RNNs are a computationally powerful and dynamically universal formal framework which has been extensively studied from both the computational and the dynamical systems perspective. Here we develop a semi-analytical maximum-likelihood estimation scheme for piecewise-linear RNNs (PLRNNs within the statistical framework of state space models, which accounts for noise in both the underlying latent dynamics and the observation process. The Expectation-Maximization algorithm is used to infer the latent state distribution, through a global Laplace approximation, and the PLRNN parameters iteratively. After validating the procedure on toy examples, and using inference through particle filters for comparison, the approach is applied to multiple single-unit recordings from the rodent anterior cingulate cortex (ACC obtained during performance of a classical working memory task, delayed alternation. Models estimated from kernel-smoothed spike time data were able to capture the essential computational dynamics underlying task performance, including stimulus-selective delay activity. The estimated models were rarely multi-stable, however, but rather were tuned to exhibit slow dynamics in the vicinity of a bifurcation point. In summary, the present work advances a semi-analytical (thus reasonably fast maximum-likelihood estimation framework for PLRNNs that may enable to recover

  9. A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements.

    Science.gov (United States)

    Durstewitz, Daniel

    2017-06-01

    The computational and cognitive properties of neural systems are often thought to be implemented in terms of their (stochastic) network dynamics. Hence, recovering the system dynamics from experimentally observed neuronal time series, like multiple single-unit recordings or neuroimaging data, is an important step toward understanding its computations. Ideally, one would not only seek a (lower-dimensional) state space representation of the dynamics, but would wish to have access to its statistical properties and their generative equations for in-depth analysis. Recurrent neural networks (RNNs) are a computationally powerful and dynamically universal formal framework which has been extensively studied from both the computational and the dynamical systems perspective. Here we develop a semi-analytical maximum-likelihood estimation scheme for piecewise-linear RNNs (PLRNNs) within the statistical framework of state space models, which accounts for noise in both the underlying latent dynamics and the observation process. The Expectation-Maximization algorithm is used to infer the latent state distribution, through a global Laplace approximation, and the PLRNN parameters iteratively. After validating the procedure on toy examples, and using inference through particle filters for comparison, the approach is applied to multiple single-unit recordings from the rodent anterior cingulate cortex (ACC) obtained during performance of a classical working memory task, delayed alternation. Models estimated from kernel-smoothed spike time data were able to capture the essential computational dynamics underlying task performance, including stimulus-selective delay activity. The estimated models were rarely multi-stable, however, but rather were tuned to exhibit slow dynamics in the vicinity of a bifurcation point. In summary, the present work advances a semi-analytical (thus reasonably fast) maximum-likelihood estimation framework for PLRNNs that may enable to recover relevant aspects

  10. Précis of Neural organization: structure, function, and dynamics.

    Science.gov (United States)

    Arbib, M A; Erdi, P

    2000-08-01

    NEURAL ORGANIZATION: Structure, function, and dynamics shows how theory and experiment can supplement each other in an integrated, evolving account of the brain's structure, function, and dynamics. (1) STRUCTURE: Studies of brain function and dynamics build on and contribute to an understanding of many brain regions, the neural circuits that constitute them, and their spatial relations. We emphasize Szentágothai's modular architectonics principle, but also stress the importance of the microcomplexes of cerebellar circuitry and the lamellae of hippocampus. (2) FUNCTION: Control of eye movements, reaching and grasping, cognitive maps, and the roles of vision receive a functional decomposition in terms of schemas. Hypotheses as to how each schema is implemented through the interaction of specific brain regions provide the basis for modeling the overall function by neural networks constrained by neural data. Synthetic PET integrates modeling of primate circuitry with data from human brain imaging. (3) DYNAMICS: Dynamic system theory analyzes spatiotemporal neural phenomena, such as oscillatory and chaotic activity in both single neurons and (often synchronized) neural networks, the self-organizing development and plasticity of ordered neural structures, and learning and memory phenomena associated with synaptic modification. Rhythm generation involves multiple levels of analysis, from intrinsic cellular processes to loops involving multiple brain regions. A variety of rhythms are related to memory functions. The Précis presents a multifaceted case study of the hippocampus. We conclude with the claim that language and other cognitive processes can be fruitfully studied within the framework of neural organization that the authors have charted with John Szentágothai.

  11. Cognitive and Neural Modeling of Dynamics of Trust in Competitive Trustees

    NARCIS (Netherlands)

    Hoogendoorn, M.; Jaffry, S.W.Q.; Treur, J.

    2012-01-01

    Trust dynamics can be modeled in relation to experiences. In this paper two models to represent human trust dynamics are introduced, namely a model on a cognitive level and a neural model. These models include a number of parameters, providing the possibility to express certain relations between

  12. A Neural Network Approach to Fluid Quantity Measurement in Dynamic Environments

    CERN Document Server

    Terzic, Edin; Nagarajah, Romesh; Alamgir, Muhammad

    2012-01-01

    Sloshing causes liquid to fluctuate, making accurate level readings difficult to obtain in dynamic environments. The measurement system described uses a single-tube capacitive sensor to obtain an instantaneous level reading of the fluid surface, thereby accurately determining the fluid quantity in the presence of slosh. A neural network based classification technique has been applied to predict the actual quantity of the fluid contained in a tank under sloshing conditions.   In A neural network approach to fluid quantity measurement in dynamic environments, effects of temperature variations and contamination on the capacitive sensor are discussed, and the authors propose that these effects can also be eliminated with the proposed neural network based classification system. To examine the performance of the classification system, many field trials were carried out on a running vehicle at various tank volume levels that range from 5 L to 50 L. The effectiveness of signal enhancement on the neural network base...

  13. Artificial Neural Networks for Nonlinear Dynamic Response Simulation in Mechanical Systems

    DEFF Research Database (Denmark)

    Christiansen, Niels Hørbye; Høgsberg, Jan Becker; Winther, Ole

    2011-01-01

    It is shown how artificial neural networks can be trained to predict dynamic response of a simple nonlinear structure. Data generated using a nonlinear finite element model of a simplified wind turbine is used to train a one layer artificial neural network. When trained properly the network is ab...... to perform accurate response prediction much faster than the corresponding finite element model. Initial result indicate a reduction in cpu time by two orders of magnitude.......It is shown how artificial neural networks can be trained to predict dynamic response of a simple nonlinear structure. Data generated using a nonlinear finite element model of a simplified wind turbine is used to train a one layer artificial neural network. When trained properly the network is able...

  14. Modelling of word usage frequency dynamics using artificial neural network

    Science.gov (United States)

    Maslennikova, Yu S.; Bochkarev, V. V.; Voloskov, D. S.

    2014-03-01

    In this paper the method for modelling of word usage frequency time series is proposed. An artificial feedforward neural network was used to predict word usage frequencies. The neural network was trained using the maximum likelihood criterion. The Google Books Ngram corpus was used for the analysis. This database provides a large amount of data on frequency of specific word forms for 7 languages. Statistical modelling of word usage frequency time series allows finding optimal fitting and filtering algorithm for subsequent lexicographic analysis and verification of frequency trend models.

  15. Planar multibody dynamics formulation, programming and applications

    CERN Document Server

    Nikravesh, Parviz E

    2007-01-01

    Introduction Multibody Mechanical Systems Types of Analyses Methods of Formulation Computer Programming Application Examples Unit System Remarks Preliminaries Reference Axes Scalars and Vectors Matrices Vector, Array, and Matrix Differentiation Equations and Expressions Remarks Problems Fundamentals of Kinematics A Particle Kinematics of a Rigid Body Definitions Remarks Problems Fundamentals of Dynamics Newton's Laws of Motion Dynamics of a Body Force Elements Applied Forces Reaction Force Remarks Problems Point-Coordinates: Kinematics Multipoint

  16. Configuring Airspace Sectors with Approximate Dynamic Programming

    Science.gov (United States)

    Bloem, Michael; Gupta, Pramod

    2010-01-01

    In response to changing traffic and staffing conditions, supervisors dynamically configure airspace sectors by assigning them to control positions. A finite horizon airspace sector configuration problem models this supervisor decision. The problem is to select an airspace configuration at each time step while considering a workload cost, a reconfiguration cost, and a constraint on the number of control positions at each time step. Three algorithms for this problem are proposed and evaluated: a myopic heuristic, an exact dynamic programming algorithm, and a rollouts approximate dynamic programming algorithm. On problem instances from current operations with only dozens of possible configurations, an exact dynamic programming solution gives the optimal cost value. The rollouts algorithm achieves costs within 2% of optimal for these instances, on average. For larger problem instances that are representative of future operations and have thousands of possible configurations, excessive computation time prohibits the use of exact dynamic programming. On such problem instances, the rollouts algorithm reduces the cost achieved by the heuristic by more than 15% on average with an acceptable computation time.

  17. Dynamic Programming Based Segmentation in Biomedical Imaging.

    Science.gov (United States)

    Ungru, Kathrin; Jiang, Xiaoyi

    2017-01-01

    Many applications in biomedical imaging have a demand on automatic detection of lines, contours, or boundaries of bones, organs, vessels, and cells. Aim is to support expert decisions in interactive applications or to include it as part of a processing pipeline for automatic image analysis. Biomedical images often suffer from noisy data and fuzzy edges. Therefore, there is a need for robust methods for contour and line detection. Dynamic programming is a popular technique that satisfies these requirements in many ways. This work gives a brief overview over approaches and applications that utilize dynamic programming to solve problems in the challenging field of biomedical imaging.

  18. The dynamic wave expansion neural network model for robot motion planning in time-varying environments.

    Science.gov (United States)

    Lebedev, Dmitry V; Steil, Jochen J; Ritter, Helge J

    2005-04-01

    We introduce a new type of neural network--the dynamic wave expansion neural network (DWENN)--for path generation in a dynamic environment for both mobile robots and robotic manipulators. Our model is parameter-free, computationally efficient, and its complexity does not explicitly depend on the dimensionality of the configuration space. We give a review of existing neural networks for trajectory generation in a time-varying domain, which are compared to the presented model. We demonstrate several representative simulative comparisons as well as the results of long-run comparisons in a number of randomly-generated scenes, which reveal that the proposed model yields dominantly shorter paths, especially in highly-dynamic environments.

  19. Evolvable Block-Based Neural Network Design for Applications in Dynamic Environments

    Directory of Open Access Journals (Sweden)

    Saumil G. Merchant

    2010-01-01

    Full Text Available Dedicated hardware implementations of artificial neural networks promise to provide faster, lower-power operation when compared to software implementations executing on microprocessors, but rarely do these implementations have the flexibility to adapt and train online under dynamic conditions. A typical design process for artificial neural networks involves offline training using software simulations and synthesis and hardware implementation of the obtained network offline. This paper presents a design of block-based neural networks (BbNNs on FPGAs capable of dynamic adaptation and online training. Specifically the network structure and the internal parameters, the two pieces of the multiparametric evolution of the BbNNs, can be adapted intrinsically, in-field under the control of the training algorithm. This ability enables deployment of the platform in dynamic environments, thereby significantly expanding the range of target applications, deployment lifetimes, and system reliability. The potential and functionality of the platform are demonstrated using several case studies.

  20. Dynamic Learning from Adaptive Neural Control of Uncertain Robots with Guaranteed Full-State Tracking Precision

    Directory of Open Access Journals (Sweden)

    Min Wang

    2017-01-01

    Full Text Available A dynamic learning method is developed for an uncertain n-link robot with unknown system dynamics, achieving predefined performance attributes on the link angular position and velocity tracking errors. For a known nonsingular initial robotic condition, performance functions and unconstrained transformation errors are employed to prevent the violation of the full-state tracking error constraints. By combining two independent Lyapunov functions and radial basis function (RBF neural network (NN approximator, a novel and simple adaptive neural control scheme is proposed for the dynamics of the unconstrained transformation errors, which guarantees uniformly ultimate boundedness of all the signals in the closed-loop system. In the steady-state control process, RBF NNs are verified to satisfy the partial persistent excitation (PE condition. Subsequently, an appropriate state transformation is adopted to achieve the accurate convergence of neural weight estimates. The corresponding experienced knowledge on unknown robotic dynamics is stored in NNs with constant neural weight values. Using the stored knowledge, a static neural learning controller is developed to improve the full-state tracking performance. A comparative simulation study on a 2-link robot illustrates the effectiveness of the proposed scheme.

  1. Stability analysis and the stabilization of a class of discrete-time dynamic neural networks.

    Science.gov (United States)

    Patan, Krzysztof

    2007-05-01

    This paper deals with problems of stability and the stabilization of discrete-time neural networks. Neural structures under consideration belong to the class of the so-called locally recurrent globally feedforward networks. The single processing unit possesses dynamic behavior. It is realized by introducing into the neuron structure a linear dynamic system in the form of an infinite impulse response filter. In this way, a dynamic neural network is obtained. It is well known that the crucial problem with neural networks of the dynamic type is stability as well as stabilization in learning problems. The paper formulates stability conditions for the analyzed class of neural networks. Moreover, a stabilization problem is defined and solved as a constrained optimization task. In order to tackle this problem two methods are proposed. The first one is based on a gradient projection (GP) and the second one on a minimum distance projection (MDP). It is worth noting that these methods can be easily introduced into the existing learning algorithm as an additional step, and suitable convergence conditions can be developed for them. The efficiency and usefulness of the proposed approaches are justified by using a number of experiments including numerical complexity analysis, stabilization effectiveness, and the identification of an industrial process.

  2. A new neural network model for solving random interval linear programming problems.

    Science.gov (United States)

    Arjmandzadeh, Ziba; Safi, Mohammadreza; Nazemi, Alireza

    2017-05-01

    This paper presents a neural network model for solving random interval linear programming problems. The original problem involving random interval variable coefficients is first transformed into an equivalent convex second order cone programming problem. A neural network model is then constructed for solving the obtained convex second order cone problem. Employing Lyapunov function approach, it is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact satisfactory solution of the original problem. Several illustrative examples are solved in support of this technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. An Artificial Neural Network Based Short-term Dynamic Prediction of Algae Bloom

    Directory of Open Access Journals (Sweden)

    Yao Junyang

    2014-06-01

    Full Text Available This paper proposes a method of short-term prediction of algae bloom based on artificial neural network. Firstly, principal component analysis is applied to water environmental factors in algae bloom raceway ponds to get main factors that influence the formation of algae blooms. Then, a model of short-term dynamic prediction based on neural network is built with the current chlorophyll_a values as input and the chlorophyll_a values in the next moment as output to realize short-term dynamic prediction of algae bloom. Simulation results show that the model can realize short-term prediction of algae bloom effectively.

  4. The Dynamic Geometrisation of Computer Programming

    Science.gov (United States)

    Sinclair, Nathalie; Patterson, Margaret

    2018-01-01

    The goal of this paper is to explore dynamic geometry environments (DGE) as a type of computer programming language. Using projects created by secondary students in one particular DGE, we analyse the extent to which the various aspects of computational thinking--including both ways of doing things and particular concepts--were evident in their…

  5. Approximate Dynamic Programming by Practical Examples

    NARCIS (Netherlands)

    Mes, Martijn R.K.; Perez Rivera, Arturo Eduardo; Boucherie, Richard; van Dijk, Nico M.

    2017-01-01

    Computing the exact solution of an MDP model is generally difficult and possibly intractable for realistically sized problem instances. A powerful technique to solve the large scale discrete time multistage stochastic control processes is Approximate Dynamic Programming (ADP). Although ADP is used

  6. Neural correlates of dynamically evolving interpersonal ties predict prosocial behaviour

    Directory of Open Access Journals (Sweden)

    Johannes Jacobus Fahrenfort

    2012-03-01

    Full Text Available There is a growing interest for the determinants of human choice behaviour in social settings. Upon initial contact, investment choices in social settings can be inherently risky, as the degree to which the other person will reciprocate is unknown. Nevertheless, people have been shown to exhibit prosocial behaviour even in one-shot laboratory settings where all interaction has been taken away. A logical step has been to link such behaviour to trait empathy-related neurobiological networks. However, as a social interaction unfolds, the degree of uncertainty with respect to the expected payoff of choice behaviour may change as a function of the interaction. Here we attempt to capture this factor. We show that the interpersonal tie one develops with another person during interaction - rather than trait empathy - motivates investment in a public good that is shared with an anonymous interaction partner. We examined how individual differences in trait empathy and interpersonal ties modulate neural responses to imposed monetary sharing. After, but not before interaction in a public good game, sharing prompted activation of neural systems associated with reward (striatum, empathy (anterior insular cortex [AIC] and anterior cingulate cortex [ACC] as well as altruism and social significance (posterior superior temporal sulcus [pSTS]. Although these activations could be linked to both empathy and interpersonal ties, only tie-related pSTS activation predicted prosocial behaviour during subsequent interaction, suggesting a neural substrate for keeping track of social relevance.

  7. Neural correlates of dynamically evolving interpersonal ties predict prosocial behavior.

    Science.gov (United States)

    Fahrenfort, Johannes J; van Winden, Frans; Pelloux, Benjamin; Stallen, Mirre; Ridderinkhof, K Richard

    2012-01-01

    There is a growing interest for the determinants of human choice behavior in social settings. Upon initial contact, investment choices in social settings can be inherently risky, as the degree to which the other person will reciprocate is unknown. Nevertheless, people have been shown to exhibit prosocial behavior even in one-shot laboratory settings where all interaction has been taken away. A logical step has been to link such behavior to trait empathy-related neurobiological networks. However, as a social interaction unfolds, the degree of uncertainty with respect to the expected payoff of choice behavior may change as a function of the interaction. Here we attempt to capture this factor. We show that the interpersonal tie one develops with another person during interaction - rather than trait empathy - motivates investment in a public good that is shared with an anonymous interaction partner. We examined how individual differences in trait empathy and interpersonal ties modulate neural responses to imposed monetary sharing. After, but not before interaction in a public good game, sharing prompted activation of neural systems associated with reward (striatum), empathy (anterior insular cortex and anterior cingulate cortex) as well as altruism, and social significance [posterior superior temporal sulcus (pSTS)]. Although these activations could be linked to both empathy and interpersonal ties, only tie-related pSTS activation predicted prosocial behavior during subsequent interaction, suggesting a neural substrate for keeping track of social relevance.

  8. Neural Correlates of Dynamically Evolving Interpersonal Ties Predict Prosocial Behavior

    Science.gov (United States)

    Fahrenfort, Johannes J.; van Winden, Frans; Pelloux, Benjamin; Stallen, Mirre; Ridderinkhof, K. Richard

    2011-01-01

    There is a growing interest for the determinants of human choice behavior in social settings. Upon initial contact, investment choices in social settings can be inherently risky, as the degree to which the other person will reciprocate is unknown. Nevertheless, people have been shown to exhibit prosocial behavior even in one-shot laboratory settings where all interaction has been taken away. A logical step has been to link such behavior to trait empathy-related neurobiological networks. However, as a social interaction unfolds, the degree of uncertainty with respect to the expected payoff of choice behavior may change as a function of the interaction. Here we attempt to capture this factor. We show that the interpersonal tie one develops with another person during interaction – rather than trait empathy – motivates investment in a public good that is shared with an anonymous interaction partner. We examined how individual differences in trait empathy and interpersonal ties modulate neural responses to imposed monetary sharing. After, but not before interaction in a public good game, sharing prompted activation of neural systems associated with reward (striatum), empathy (anterior insular cortex and anterior cingulate cortex) as well as altruism, and social significance [posterior superior temporal sulcus (pSTS)]. Although these activations could be linked to both empathy and interpersonal ties, only tie-related pSTS activation predicted prosocial behavior during subsequent interaction, suggesting a neural substrate for keeping track of social relevance. PMID:22403524

  9. Microsoft Dynamics NAV 7 programming cookbook

    CERN Document Server

    Raul, Rakesh

    2013-01-01

    Written in the style of a cookbook. Microsoft Dynamics NAV 7 Programming Cookbook is full of recipes to help you get the job done.If you are a junior / entry-level NAV developer then the first half of the book is designed primarily for you. You may or may not have any experience programming. It focuses on the basics of NAV programming.If you are a mid-level NAV developer, you will find these chapters explain how to think outside of the NAV box when building solutions. There are also recipes that senior developers will find useful.

  10. Stochastic control theory dynamic programming principle

    CERN Document Server

    Nisio, Makiko

    2015-01-01

    This book offers a systematic introduction to the optimal stochastic control theory via the dynamic programming principle, which is a powerful tool to analyze control problems. First we consider completely observable control problems with finite horizons. Using a time discretization we construct a nonlinear semigroup related to the dynamic programming principle (DPP), whose generator provides the Hamilton–Jacobi–Bellman (HJB) equation, and we characterize the value function via the nonlinear semigroup, besides the viscosity solution theory. When we control not only the dynamics of a system but also the terminal time of its evolution, control-stopping problems arise. This problem is treated in the same frameworks, via the nonlinear semigroup. Its results are applicable to the American option price problem. Zero-sum two-player time-homogeneous stochastic differential games and viscosity solutions of the Isaacs equations arising from such games are studied via a nonlinear semigroup related to DPP (the min-ma...

  11. Firing rate dynamics in recurrent spiking neural networks with intrinsic and network heterogeneity.

    Science.gov (United States)

    Ly, Cheng

    2015-12-01

    Heterogeneity of neural attributes has recently gained a lot of attention and is increasing recognized as a crucial feature in neural processing. Despite its importance, this physiological feature has traditionally been neglected in theoretical studies of cortical neural networks. Thus, there is still a lot unknown about the consequences of cellular and circuit heterogeneity in spiking neural networks. In particular, combining network or synaptic heterogeneity and intrinsic heterogeneity has yet to be considered systematically despite the fact that both are known to exist and likely have significant roles in neural network dynamics. In a canonical recurrent spiking neural network model, we study how these two forms of heterogeneity lead to different distributions of excitatory firing rates. To analytically characterize how these types of heterogeneities affect the network, we employ a dimension reduction method that relies on a combination of Monte Carlo simulations and probability density function equations. We find that the relationship between intrinsic and network heterogeneity has a strong effect on the overall level of heterogeneity of the firing rates. Specifically, this relationship can lead to amplification or attenuation of firing rate heterogeneity, and these effects depend on whether the recurrent network is firing asynchronously or rhythmically firing. These observations are captured with the aforementioned reduction method, and furthermore simpler analytic descriptions based on this dimension reduction method are developed. The final analytic descriptions provide compact and descriptive formulas for how the relationship between intrinsic and network heterogeneity determines the firing rate heterogeneity dynamics in various settings.

  12. Robustness analysis of uncertain dynamical neural networks with multiple time delays.

    Science.gov (United States)

    Senan, Sibel

    2015-10-01

    This paper studies the problem of global robust asymptotic stability of the equilibrium point for the class of dynamical neural networks with multiple time delays with respect to the class of slope-bounded activation functions and in the presence of the uncertainties of system parameters of the considered neural network model. By using an appropriate Lyapunov functional and exploiting the properties of the homeomorphism mapping theorem, we derive a new sufficient condition for the existence, uniqueness and global robust asymptotic stability of the equilibrium point for the class of neural networks with multiple time delays. The obtained stability condition basically relies on testing some relationships imposed on the interconnection matrices of the neural system, which can be easily verified by using some certain properties of matrices. An instructive numerical example is also given to illustrate the applicability of our result and show the advantages of this new condition over the previously reported corresponding results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Implementing a Bayes Filter in a Neural Circuit: The Case of Unknown Stimulus Dynamics.

    Science.gov (United States)

    Sokoloski, Sacha

    2017-09-01

    In order to interact intelligently with objects in the world, animals must first transform neural population responses into estimates of the dynamic, unknown stimuli that caused them. The Bayesian solution to this problem is known as a Bayes filter, which applies Bayes' rule to combine population responses with the predictions of an internal model. The internal model of the Bayes filter is based on the true stimulus dynamics, and in this note, we present a method for training a theoretical neural circuit to approximately implement a Bayes filter when the stimulus dynamics are unknown. To do this we use the inferential properties of linear probabilistic population codes to compute Bayes' rule and train a neural network to compute approximate predictions by the method of maximum likelihood. In particular, we perform stochastic gradient descent on the negative log-likelihood of the neural network parameters with a novel approximation of the gradient. We demonstrate our methods on a finite-state, a linear, and a nonlinear filtering problem and show how the hidden layer of the neural network develops tuning curves consistent with findings in experimental neuroscience.

  14. Dynamic Encoding of Acoustic Features in Neural Responses to Continuous Speech.

    Science.gov (United States)

    Khalighinejad, Bahar; Cruzatto da Silva, Guilherme; Mesgarani, Nima

    2017-02-22

    Humans are unique in their ability to communicate using spoken language. However, it remains unclear how the speech signal is transformed and represented in the brain at different stages of the auditory pathway. In this study, we characterized electroencephalography responses to continuous speech by obtaining the time-locked responses to phoneme instances (phoneme-related potential). We showed that responses to different phoneme categories are organized by phonetic features. We found that each instance of a phoneme in continuous speech produces multiple distinguishable neural responses occurring as early as 50 ms and as late as 400 ms after the phoneme onset. Comparing the patterns of phoneme similarity in the neural responses and the acoustic signals confirms a repetitive appearance of acoustic distinctions of phonemes in the neural data. Analysis of the phonetic and speaker information in neural activations revealed that different time intervals jointly encode the acoustic similarity of both phonetic and speaker categories. These findings provide evidence for a dynamic neural transformation of low-level speech features as they propagate along the auditory pathway, and form an empirical framework to study the representational changes in learning, attention, and speech disorders.SIGNIFICANCE STATEMENT We characterized the properties of evoked neural responses to phoneme instances in continuous speech. We show that each instance of a phoneme in continuous speech produces several observable neural responses at different times occurring as early as 50 ms and as late as 400 ms after the phoneme onset. Each temporal event explicitly encodes the acoustic similarity of phonemes, and linguistic and nonlinguistic information are best represented at different time intervals. Finally, we show a joint encoding of phonetic and speaker information, where the neural representation of speakers is dependent on phoneme category. These findings provide compelling new evidence for

  15. Parameter estimation of breast tumour using dynamic neural network from thermal pattern

    Directory of Open Access Journals (Sweden)

    Elham Saniei

    2016-11-01

    Full Text Available This article presents a new approach for estimating the depth, size, and metabolic heat generation rate of a tumour. For this purpose, the surface temperature distribution of a breast thermal image and the dynamic neural network was used. The research consisted of two steps: forward and inverse. For the forward section, a finite element model was created. The Pennes bio-heat equation was solved to find surface and depth temperature distributions. Data from the analysis, then, were used to train the dynamic neural network model (DNN. Results from the DNN training/testing confirmed those of the finite element model. For the inverse section, the trained neural network was applied to estimate the depth temperature distribution (tumour position from the surface temperature profile, extracted from the thermal image. Finally, tumour parameters were obtained from the depth temperature distribution. Experimental findings (20 patients were promising in terms of the model’s potential for retrieving tumour parameters.

  16. Predictive Modeling of Mechanical Properties of Welded Joints Based on Dynamic Fuzzy RBF Neural Network

    Directory of Open Access Journals (Sweden)

    ZHANG Yongzhi

    2016-10-01

    Full Text Available A dynamic fuzzy RBF neural network model was built to predict the mechanical properties of welded joints, and the purpose of the model was to overcome the shortcomings of static neural networks including structural identification, dynamic sample training and learning algorithm. The structure and parameters of the model are no longer head of default, dynamic adaptive adjustment in the training, suitable for dynamic sample data for learning, learning algorithm introduces hierarchical learning and fuzzy rule pruning strategy, to accelerate the training speed of model and make the model more compact. Simulation of the model was carried out by using three kinds of thickness and different process TC4 titanium alloy TIG welding test data. The results show that the model has higher prediction accuracy, which is suitable for predicting the mechanical properties of welded joints, and has opened up a new way for the on-line control of the welding process.

  17. The influence of mental fatigue and motivation on neural network dynamics; an EEG coherence study

    NARCIS (Netherlands)

    Lorist, Monicque M.; Bezdan, Eniko; Caat, Michael ten; Span, Mark M.; Roerdink, Jos B.T.M.; Maurits, Natasha M.

    2009-01-01

    The purpose of the present study is to examine the effects of mental fatigue and motivation on neural network dynamics activated during task switching. Mental fatigue was induced by 2 h of continuous performance; after which subjects were motivated by using social comparison and monetary reward as

  18. A Neural Network Model of the Structure and Dynamics of Human Personality

    Science.gov (United States)

    Read, Stephen J.; Monroe, Brian M.; Brownstein, Aaron L.; Yang, Yu; Chopra, Gurveen; Miller, Lynn C.

    2010-01-01

    We present a neural network model that aims to bridge the historical gap between dynamic and structural approaches to personality. The model integrates work on the structure of the trait lexicon, the neurobiology of personality, temperament, goal-based models of personality, and an evolutionary analysis of motives. It is organized in terms of two…

  19. Synaptic organizations and dynamical properties of weakly connected neural oscillators. I. Analysis of a canonical model.

    Science.gov (United States)

    Hoppensteadt, F C; Izhikevich, E M

    1996-08-01

    We study weakly connected networks of neural oscillators near multiple Andronov-Hopf bifurcation points. We analyze relationships between synaptic organizations (anatomy) of the networks and their dynamical properties (function). Our principal assumptions are: (1) Each neural oscillator comprises two populations of neurons; excitatory and inhibitory ones; (2) activity of each population of neurons is described by a scalar (one-dimensional) variable; (3) each neural oscillator is near a nondegenerate supercritical Andronov-Hopf bifurcation point; (4) the synaptic connections between the neural oscillators are weak. All neural networks satisfying these hypotheses are governed by the same dynamical system, which we call the canonical model. Studying the canonical model shows that: (1) A neural oscillator can communicate only with those oscillators which have roughly the same natural frequency. That is, synaptic connections between a pair of oscillators having different natural frequencies are functionally insignificant. (2) Two neural oscillators having the same natural frequencies might not communicate if the connections between them are from among a class of pathological synaptic configurations. In both cases the anatomical presence of synaptic connections between neural oscillators does not necessarily guarantee that the connections are functionally significant. (3) There can be substantial phase differences (time delays) between the neural oscillators, which result from the synaptic organization of the network, not from the transmission delays. Using the canonical model we can illustrate self-ignition and autonomous quiescence (oscillator death) phenomena. That is, a network of passive elements can exhibit active properties and vice versa. We also study how Dale's principle affects dynamics of the networks, in particular, the phase differences that the network can reproduce. We present a complete classification of all possible synaptic organizations from this

  20. Artificial neural networks for control of a grid-connected rectifier/inverter under disturbance, dynamic and power converter switching conditions.

    Science.gov (United States)

    Li, Shuhui; Fairbank, Michael; Johnson, Cameron; Wunsch, Donald C; Alonso, Eduardo; Proaño, Julio L

    2014-04-01

    Three-phase grid-connected converters are widely used in renewable and electric power system applications. Traditionally, grid-connected converters are controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations in their applicability to dynamic systems. This paper investigates how to mitigate such restrictions using a neural network to control a grid-connected rectifier/inverter. The neural network implements a dynamic programming algorithm and is trained by using back-propagation through time. To enhance performance and stability under disturbance, additional strategies are adopted, including the use of integrals of error signals to the network inputs and the introduction of grid disturbance voltage to the outputs of a well-trained network. The performance of the neural-network controller is studied under typical vector control conditions and compared against conventional vector control methods, which demonstrates that the neural vector control strategy proposed in this paper is effective. Even in dynamic and power converter switching environments, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for a faulted power system.

  1. Real-time collision-free motion planning of a mobile robot using a Neural Dynamics-based approach.

    Science.gov (United States)

    Yang, S X; Meng, M H

    2003-01-01

    A neural dynamics based approach is proposed for real-time motion planning with obstacle avoidance of a mobile robot in a nonstationary environment. The dynamics of each neuron in the topologically organized neural network is characterized by a shunting equation or an additive equation. The real-time collision-free robot motion is planned through the dynamic neural activity landscape of the neural network without any learning procedures and without any local collision-checking procedures at each step of the robot movement. Therefore the model algorithm is computationally simple. There are only local connections among neurons. The computational complexity linearly depends on the neural network size. The stability of the proposed neural network system is proved by qualitative analysis and a Lyapunov stability theory. The effectiveness and efficiency of the proposed approach are demonstrated through simulation studies.

  2. Policy Subsystem Portfolio Management: A Neural Network Model of the Gulf of Mexico Program

    OpenAIRE

    Larkin, George Richard

    1999-01-01

    This study provides insights into the behavior of an environmental policy subsystem. The study uses neural network theory to model the Gulf of Mexico Program's allocation of implementation funds. The Gulf of Mexico Program is a prototype effort to institutionalize a policy subsystem. A project implementation fund is at the core of the Gulf of Mexico Program. The United States Environmental Protection Agency provides the implementation fund and the Mexico Program Office (GMPO) administers it. ...

  3. Exploring Neural Cell Dynamics with Digital Holographic Microscopy

    KAUST Repository

    Marquet, Pierre

    2013-04-21

    In this talk, I will present how digital holographic microscopy, as a powerful quantitative phase technique, can non-invasively measure cell dynamics and especially resolve local neuronal network activity through simultaneous multiple site optical recording.

  4. An ensemble of dynamic neural network identifiers for fault detection and isolation of gas turbine engines.

    Science.gov (United States)

    Amozegar, M; Khorasani, K

    2016-04-01

    In this paper, a new approach for Fault Detection and Isolation (FDI) of gas turbine engines is proposed by developing an ensemble of dynamic neural network identifiers. For health monitoring of the gas turbine engine, its dynamics is first identified by constructing three separate or individual dynamic neural network architectures. Specifically, a dynamic multi-layer perceptron (MLP), a dynamic radial-basis function (RBF) neural network, and a dynamic support vector machine (SVM) are trained to individually identify and represent the gas turbine engine dynamics. Next, three ensemble-based techniques are developed to represent the gas turbine engine dynamics, namely, two heterogeneous ensemble models and one homogeneous ensemble model. It is first shown that all ensemble approaches do significantly improve the overall performance and accuracy of the developed system identification scheme when compared to each of the stand-alone solutions. The best selected stand-alone model (i.e., the dynamic RBF network) and the best selected ensemble architecture (i.e., the heterogeneous ensemble) in terms of their performances in achieving an accurate system identification are then selected for solving the FDI task. The required residual signals are generated by using both a single model-based solution and an ensemble-based solution under various gas turbine engine health conditions. Our extensive simulation studies demonstrate that the fault detection and isolation task achieved by using the residuals that are obtained from the dynamic ensemble scheme results in a significantly more accurate and reliable performance as illustrated through detailed quantitative confusion matrix analysis and comparative studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Internal representation of task rules by recurrent dynamics: the importance of the diversity of neural responses

    Directory of Open Access Journals (Sweden)

    Mattia Rigotti

    2010-10-01

    Full Text Available Neural activity of behaving animals, especially in the prefrontal cortex, is highly heterogeneous, with selective responses to diverse aspects of the executed task. We propose a general model of recurrent neural networks that perform complex rule-based tasks, and we show that the diversity of neuronal responses plays a fundamental role when the behavioral responses are context dependent. Specifically, we found that when the inner mental states encoding the task rules are represented by stable patterns of neural activity (attractors of the neural dynamics, the neurons must be selective for combinations of sensory stimuli and inner mental states. Such mixed selectivity is easily obtained by neurons that connect with random synaptic strengths both to the recurrent network and to neurons encoding sensory inputs. The number of randomly connected neurons needed to solve a task is on average only three times as large as the number of neurons needed in a network designed ad hoc. Moreover, the number of needed neurons grows only linearly with the number of task-relevant events and mental states, provided that each neuron responds to a large proportion of events (dense/distributed coding. A biologically realistic implementation of the model captures several aspects of the activity recorded from monkeys performing context dependent tasks. Our findings explain the importance of the diversity of neural responses and provide us with simple and general principles for designing attractor neural networks that perform complex computation.

  6. Reconstructing neural dynamics using data assimilation with multiple models

    Science.gov (United States)

    Hamilton, Franz; Cressman, John; Peixoto, Nathalia; Sauer, Timothy

    2014-09-01

    Assimilation of data with models of physical processes is a critical component of modern scientific analysis. In recent years, nonlinear versions of Kalman filtering have been developed, in addition to methods that estimate model parameters in parallel with the system state. We propose a substantial extension of these tools to deal with the specific case of unmodeled variables, when training data from the variable is avaiable. The method uses a stack of several, nonidentical copies of a physical model to jointly reconstruct the variable in question. We demonstrate the ability of this technique to accurately recover an unmodeled experimental quantity, such as an ion concentration, from a single voltage trace after the training period is completed. The method is applied to reconstruct the potassium concentration in a neural culture from multielectrode array voltage measurements.

  7. Dynamic neural processing of linguistic cues related to death.

    Directory of Open Access Journals (Sweden)

    Xi Liu

    Full Text Available Behavioral studies suggest that humans evolve the capacity to cope with anxiety induced by the awareness of death's inevitability. However, the neurocognitive processes that underlie online death-related thoughts remain unclear. Our recent functional MRI study found that the processing of linguistic cues related to death was characterized by decreased neural activity in human insular cortex. The current study further investigated the time course of neural processing of death-related linguistic cues. We recorded event-related potentials (ERP to death-related, life-related, negative-valence, and neutral-valence words in a modified Stroop task that required color naming of words. We found that the amplitude of an early frontal/central negativity at 84-120 ms (N1 decreased to death-related words but increased to life-related words relative to neutral-valence words. The N1 effect associated with death-related and life-related words was correlated respectively with individuals' pessimistic and optimistic attitudes toward life. Death-related words also increased the amplitude of a frontal/central positivity at 124-300 ms (P2 and of a frontal/central positivity at 300-500 ms (P3. However, the P2 and P3 modulations were observed for both death-related and negative-valence words but not for life-related words. The ERP results suggest an early inverse coding of linguistic cues related to life and death, which is followed by negative emotional responses to death-related information.

  8. Dynamic neural processing of linguistic cues related to death.

    Science.gov (United States)

    Liu, Xi; Shi, Zhenhao; Ma, Yina; Qin, Jungang; Han, Shihui

    2013-01-01

    Behavioral studies suggest that humans evolve the capacity to cope with anxiety induced by the awareness of death's inevitability. However, the neurocognitive processes that underlie online death-related thoughts remain unclear. Our recent functional MRI study found that the processing of linguistic cues related to death was characterized by decreased neural activity in human insular cortex. The current study further investigated the time course of neural processing of death-related linguistic cues. We recorded event-related potentials (ERP) to death-related, life-related, negative-valence, and neutral-valence words in a modified Stroop task that required color naming of words. We found that the amplitude of an early frontal/central negativity at 84-120 ms (N1) decreased to death-related words but increased to life-related words relative to neutral-valence words. The N1 effect associated with death-related and life-related words was correlated respectively with individuals' pessimistic and optimistic attitudes toward life. Death-related words also increased the amplitude of a frontal/central positivity at 124-300 ms (P2) and of a frontal/central positivity at 300-500 ms (P3). However, the P2 and P3 modulations were observed for both death-related and negative-valence words but not for life-related words. The ERP results suggest an early inverse coding of linguistic cues related to life and death, which is followed by negative emotional responses to death-related information.

  9. Dynamic Neural Processing of Linguistic Cues Related to Death

    Science.gov (United States)

    Ma, Yina; Qin, Jungang; Han, Shihui

    2013-01-01

    Behavioral studies suggest that humans evolve the capacity to cope with anxiety induced by the awareness of death’s inevitability. However, the neurocognitive processes that underlie online death-related thoughts remain unclear. Our recent functional MRI study found that the processing of linguistic cues related to death was characterized by decreased neural activity in human insular cortex. The current study further investigated the time course of neural processing of death-related linguistic cues. We recorded event-related potentials (ERP) to death-related, life-related, negative-valence, and neutral-valence words in a modified Stroop task that required color naming of words. We found that the amplitude of an early frontal/central negativity at 84–120 ms (N1) decreased to death-related words but increased to life-related words relative to neutral-valence words. The N1 effect associated with death-related and life-related words was correlated respectively with individuals’ pessimistic and optimistic attitudes toward life. Death-related words also increased the amplitude of a frontal/central positivity at 124–300 ms (P2) and of a frontal/central positivity at 300–500 ms (P3). However, the P2 and P3 modulations were observed for both death-related and negative-valence words but not for life-related words. The ERP results suggest an early inverse coding of linguistic cues related to life and death, which is followed by negative emotional responses to death-related information. PMID:23840787

  10. Dynamic Economic Dispatch Menggunakan Quadratic Programming

    Directory of Open Access Journals (Sweden)

    Zainal Abidin

    2012-09-01

    Full Text Available Economic dispatch (ED dapat diterapkan untuk mengatasi masalah penjadwalan pembangkit secara optimal ekonomi, namum jika digunakan pada sistem dengan beban dalam rentang waktu tertentu, akan ada beberapa pembangkitan yang melewati batas dari parameter ramp rate pembangkit. Dengan parameter ramp rate, ED tidak dapat diselesaikan pada satu level beban. Dynamic economic dispatch (DED merupakan pengembangan dari economic dispatch konvensional karena memperhitungkan batasan ramp rate dari unit pembangkit. DED dapat digunakan untuk menentukan pembagian pembebanan unit pembangkit secara ekonomis dalam rentang waktu tertentu tanpa melanggar batasan ramp rate dari unit pembangkit. Pada tugas akhir ini digunakan quadratic programming untuk menyelesaikan dynamic economic dispatch. Hasil simulasi menunjukkan bahwa quadratic programming yang digunakan dapat menyelesaikan DED tanpa melanggar parameter ramp rate yang ditentukan. Pada percobaan dengan 3-unit pembangkit pada 4 profil beban berbeda dan percobaan dengan 10-unit pembangkit  menujukkan bahwa  parameter ramp rate menyebabkan pembagian pembebanan pada satu waktu tertentu akan mempengaruhi pembagian pembebanan pada waktu lain serta terdapat variasi pembangkitan yang berbeda antara economic dispatch dan dynamic economic dispatch. Parameter ramp rate juga menyebabkan total biaya pembangkitan pada dynamic economic dispatch  menjadi lebih mahal jika dibandingkan dengan economic dispatch.

  11. Joint Chance-Constrained Dynamic Programming

    Science.gov (United States)

    Ono, Masahiro; Kuwata, Yoshiaki; Balaram, J. Bob

    2012-01-01

    This paper presents a novel dynamic programming algorithm with a joint chance constraint, which explicitly bounds the risk of failure in order to maintain the state within a specified feasible region. A joint chance constraint cannot be handled by existing constrained dynamic programming approaches since their application is limited to constraints in the same form as the cost function, that is, an expectation over a sum of one-stage costs. We overcome this challenge by reformulating the joint chance constraint into a constraint on an expectation over a sum of indicator functions, which can be incorporated into the cost function by dualizing the optimization problem. As a result, the primal variables can be optimized by a standard dynamic programming, while the dual variable is optimized by a root-finding algorithm that converges exponentially. Error bounds on the primal and dual objective values are rigorously derived. We demonstrate the algorithm on a path planning problem, as well as an optimal control problem for Mars entry, descent and landing. The simulations are conducted using a real terrain data of Mars, with four million discrete states at each time step.

  12. Forecasting influenza-like illness dynamics for military populations using neural networks and social media.

    Directory of Open Access Journals (Sweden)

    Svitlana Volkova

    Full Text Available This work is the first to take advantage of recurrent neural networks to predict influenza-like illness (ILI dynamics from various linguistic signals extracted from social media data. Unlike other approaches that rely on timeseries analysis of historical ILI data and the state-of-the-art machine learning models, we build and evaluate the predictive power of neural network architectures based on Long Short Term Memory (LSTMs units capable of nowcasting (predicting in "real-time" and forecasting (predicting the future ILI dynamics in the 2011 - 2014 influenza seasons. To build our models we integrate information people post in social media e.g., topics, embeddings, word ngrams, stylistic patterns, and communication behavior using hashtags and mentions. We then quantitatively evaluate the predictive power of different social media signals and contrast the performance of the-state-of-the-art regression models with neural networks using a diverse set of evaluation metrics. Finally, we combine ILI and social media signals to build a joint neural network model for ILI dynamics prediction. Unlike the majority of the existing work, we specifically focus on developing models for local rather than national ILI surveillance, specifically for military rather than general populations in 26 U.S. and six international locations., and analyze how model performance depends on the amount of social media data available per location. Our approach demonstrates several advantages: (a Neural network architectures that rely on LSTM units trained on social media data yield the best performance compared to previously used regression models. (b Previously under-explored language and communication behavior features are more predictive of ILI dynamics than stylistic and topic signals expressed in social media. (c Neural network models learned exclusively from social media signals yield comparable or better performance to the models learned from ILI historical data, thus

  13. Forecasting influenza-like illness dynamics for military populations using neural networks and social media.

    Science.gov (United States)

    Volkova, Svitlana; Ayton, Ellyn; Porterfield, Katherine; Corley, Courtney D

    2017-01-01

    This work is the first to take advantage of recurrent neural networks to predict influenza-like illness (ILI) dynamics from various linguistic signals extracted from social media data. Unlike other approaches that rely on timeseries analysis of historical ILI data and the state-of-the-art machine learning models, we build and evaluate the predictive power of neural network architectures based on Long Short Term Memory (LSTMs) units capable of nowcasting (predicting in "real-time") and forecasting (predicting the future) ILI dynamics in the 2011 - 2014 influenza seasons. To build our models we integrate information people post in social media e.g., topics, embeddings, word ngrams, stylistic patterns, and communication behavior using hashtags and mentions. We then quantitatively evaluate the predictive power of different social media signals and contrast the performance of the-state-of-the-art regression models with neural networks using a diverse set of evaluation metrics. Finally, we combine ILI and social media signals to build a joint neural network model for ILI dynamics prediction. Unlike the majority of the existing work, we specifically focus on developing models for local rather than national ILI surveillance, specifically for military rather than general populations in 26 U.S. and six international locations., and analyze how model performance depends on the amount of social media data available per location. Our approach demonstrates several advantages: (a) Neural network architectures that rely on LSTM units trained on social media data yield the best performance compared to previously used regression models. (b) Previously under-explored language and communication behavior features are more predictive of ILI dynamics than stylistic and topic signals expressed in social media. (c) Neural network models learned exclusively from social media signals yield comparable or better performance to the models learned from ILI historical data, thus, signals from

  14. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates.

    Science.gov (United States)

    Borton, David A; Yin, Ming; Aceros, Juan; Nurmikko, Arto

    2013-04-01

    Neural interface technology suitable for clinical translation has the potential to significantly impact the lives of amputees, spinal cord injury victims and those living with severe neuromotor disease. Such systems must be chronically safe, durable and effective. We have designed and implemented a neural interface microsystem, housed in a compact, subcutaneous and hermetically sealed titanium enclosure. The implanted device interfaces the brain with a 510k-approved, 100-element silicon-based microelectrode array via a custom hermetic feedthrough design. Full spectrum neural signals were amplified (0.1 Hz to 7.8 kHz, 200× gain) and multiplexed by a custom application specific integrated circuit, digitized and then packaged for transmission. The neural data (24 Mbps) were transmitted by a wireless data link carried on a frequency-shift-key-modulated signal at 3.2 and 3.8 GHz to a receiver 1 m away by design as a point-to-point communication link for human clinical use. The system was powered by an embedded medical grade rechargeable Li-ion battery for 7 h continuous operation between recharge via an inductive transcutaneous wireless power link at 2 MHz. Device verification and early validation were performed in both swine and non-human primate freely-moving animal models and showed that the wireless implant was electrically stable, effective in capturing and delivering broadband neural data, and safe for over one year of testing. In addition, we have used the multichannel data from these mobile animal models to demonstrate the ability to decode neural population dynamics associated with motor activity. We have developed an implanted wireless broadband neural recording device evaluated in non-human primate and swine. The use of this new implantable neural interface technology can provide insight into how to advance human neuroprostheses beyond the present early clinical trials. Further, such tools enable mobile patient use, have the potential for wider diagnosis of

  15. Neural substrate of dynamic Bayesian inference in the cerebral cortex.

    Science.gov (United States)

    Funamizu, Akihiro; Kuhn, Bernd; Doya, Kenji

    2016-12-01

    Dynamic Bayesian inference allows a system to infer the environmental state under conditions of limited sensory observation. Using a goal-reaching task, we found that posterior parietal cortex (PPC) and adjacent posteromedial cortex (PM) implemented the two fundamental features of dynamic Bayesian inference: prediction of hidden states using an internal state transition model and updating the prediction with new sensory evidence. We optically imaged the activity of neurons in mouse PPC and PM layers 2, 3 and 5 in an acoustic virtual-reality system. As mice approached a reward site, anticipatory licking increased even when sound cues were intermittently presented; this was disturbed by PPC silencing. Probabilistic population decoding revealed that neurons in PPC and PM represented goal distances during sound omission (prediction), particularly in PPC layers 3 and 5, and prediction improved with the observation of cue sounds (updating). Our results illustrate how cerebral cortex realizes mental simulation using an action-dependent dynamic model.

  16. Dynamic control of ROV`s making use of the neural network concept

    Energy Technology Data Exchange (ETDEWEB)

    Ooi, Tadashi; Yoshida, Yuki; Takahashi, Yoshiaki; Kidoushi, Hideki [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan)

    1994-12-31

    An attempt is made to combine the classical controller with the concept of neural network, the result of which is a control system that they have named the Robust Adaptive Neural-net Controller (RANC). The RANC identifies the dynamic characteristics of the remotely operated vehicle (ROV) including its ambient environment involving cyclic disturbances such as forces induced by waves, and organizes automatically an optimized controller. A tank experiment is described in which the RANC is set to maintain a model ROV at a prescribed depth of water under artificially generated wave disturbance.

  17. Study of the neural dynamics for understanding communication in terms of complex hetero systems.

    Science.gov (United States)

    Tsuda, Ichiro; Yamaguchi, Yoko; Hashimoto, Takashi; Okuda, Jiro; Kawasaki, Masahiro; Nagasaka, Yasuo

    2015-01-01

    The purpose of the research project was to establish a new research area named "neural information science for communication" by elucidating its neural mechanism. The research was performed in collaboration with applied mathematicians in complex-systems science and experimental researchers in neuroscience. The project included measurements of brain activity during communication with or without languages and analyses performed with the help of extended theories for dynamical systems and stochastic systems. The communication paradigm was extended to the interactions between human and human, human and animal, human and robot, human and materials, and even animal and animal. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  18. Neural population dynamics in human motor cortex during movements in people with ALS.

    Science.gov (United States)

    Pandarinath, Chethan; Gilja, Vikash; Blabe, Christine H; Nuyujukian, Paul; Sarma, Anish A; Sorice, Brittany L; Eskandar, Emad N; Hochberg, Leigh R; Henderson, Jaimie M; Shenoy, Krishna V

    2015-06-23

    The prevailing view of motor cortex holds that motor cortical neural activity represents muscle or movement parameters. However, recent studies in non-human primates have shown that neural activity does not simply represent muscle or movement parameters; instead, its temporal structure is well-described by a dynamical system where activity during movement evolves lawfully from an initial pre-movement state. In this study, we analyze neuronal ensemble activity in motor cortex in two clinical trial participants diagnosed with Amyotrophic Lateral Sclerosis (ALS). We find that activity in human motor cortex has similar dynamical structure to that of non-human primates, indicating that human motor cortex contains a similar underlying dynamical system for movement generation.

  19. Computing single step operators of logic programming in radial basis function neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2014-07-10

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (T{sub p}:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.

  20. Sandia Dynamic Materials Program Strategic Plan.

    Energy Technology Data Exchange (ETDEWEB)

    Flicker, Dawn Gustine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Benage, John F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Desjarlais, Michael P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knudson, Marcus D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Leifeste, Gordon T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lemke, Raymond W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mattsson, Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wise, Jack L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    Materials in nuclear and conventional weapons can reach multi-megabar pressures and 1000s of degree temperatures on timescales ranging from microseconds to nanoseconds. Understanding the response of complex materials under these conditions is important for designing and assessing changes to nuclear weapons. In the next few decades, a major concern will be evaluating the behavior of aging materials and remanufactured components. The science to enable the program to underwrite decisions quickly and confidently on use, remanufacturing, and replacement of these materials will be critical to NNSA’s new Stockpile Responsiveness Program. Material response is also important for assessing the risks posed by adversaries or proliferants. Dynamic materials research, which refers to the use of high-speed experiments to produce extreme conditions in matter, is an important part of NNSA’s Stockpile Stewardship Program.

  1. Dynamically constrained pipeline for tracking neural progenitor cells

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Dahl, Anders; Holm, Peter

    2013-01-01

    . A mitosis detector constructed from empirical observations of cells in a pre-mitotic state interacts with the graph formulation to dynamically allow for cell mitosis when appropriate. Track consistency is ensured by introducing pragmatic constraints and the notion of blob states. We validate the proposed...

  2. Active Control of Complex Systems via Dynamic (Recurrent) Neural Networks

    Science.gov (United States)

    1992-05-30

    present in the underlying fluid dynamics, biology , chemistry, economics, etc. of observed processes. Robert May and others have demonstrated that process...3 _ ___ 2b__ 2’__ ___ ’T (miec) Wk=100 Figure___ 5.2_ (cotined) Firt-Ode Kernel CoptdbIeebr- aqa Aloih sn5DfeetSothn eat I. ____ _E__30 O(28I x(t) x(t

  3. Neural network-based adaptive dynamic surface control for permanent magnet synchronous motors.

    Science.gov (United States)

    Yu, Jinpeng; Shi, Peng; Dong, Wenjie; Chen, Bing; Lin, Chong

    2015-03-01

    This brief considers the problem of neural networks (NNs)-based adaptive dynamic surface control (DSC) for permanent magnet synchronous motors (PMSMs) with parameter uncertainties and load torque disturbance. First, NNs are used to approximate the unknown and nonlinear functions of PMSM drive system and a novel adaptive DSC is constructed to avoid the explosion of complexity in the backstepping design. Next, under the proposed adaptive neural DSC, the number of adaptive parameters required is reduced to only one, and the designed neural controllers structure is much simpler than some existing results in literature, which can guarantee that the tracking error converges to a small neighborhood of the origin. Then, simulations are given to illustrate the effectiveness and potential of the new design technique.

  4. Global neural dynamic surface tracking control of strict-feedback systems with application to hypersonic flight vehicle.

    Science.gov (United States)

    Xu, Bin; Yang, Chenguang; Pan, Yongping

    2015-10-01

    This paper studies both indirect and direct global neural control of strict-feedback systems in the presence of unknown dynamics, using the dynamic surface control (DSC) technique in a novel manner. A new switching mechanism is designed to combine an adaptive neural controller in the neural approximation domain, together with the robust controller that pulls the transient states back into the neural approximation domain from the outside. In comparison with the conventional control techniques, which could only achieve semiglobally uniformly ultimately bounded stability, the proposed control scheme guarantees all the signals in the closed-loop system are globally uniformly ultimately bounded, such that the conventional constraints on initial conditions of the neural control system can be relaxed. The simulation studies of hypersonic flight vehicle (HFV) are performed to demonstrate the effectiveness of the proposed global neural DSC design.

  5. Dynamical systems, attractors, and neural circuits [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Paul Miller

    2016-05-01

    Full Text Available Biology is the study of dynamical systems. Yet most of us working in biology have limited pedagogical training in the theory of dynamical systems, an unfortunate historical fact that can be remedied for future generations of life scientists. In my particular field of systems neuroscience, neural circuits are rife with nonlinearities at all levels of description, rendering simple methodologies and our own intuition unreliable. Therefore, our ideas are likely to be wrong unless informed by good models. These models should be based on the mathematical theories of dynamical systems since functioning neurons are dynamic—they change their membrane potential and firing rates with time. Thus, selecting the appropriate type of dynamical system upon which to base a model is an important first step in the modeling process. This step all too easily goes awry, in part because there are many frameworks to choose from, in part because the sparsely sampled data can be consistent with a variety of dynamical processes, and in part because each modeler has a preferred modeling approach that is difficult to move away from. This brief review summarizes some of the main dynamical paradigms that can arise in neural circuits, with comments on what they can achieve computationally and what signatures might reveal their presence within empirical data. I provide examples of different dynamical systems using simple circuits of two or three cells, emphasizing that any one connectivity pattern is compatible with multiple, diverse functions.

  6. Robust Fault Detection of Wind Energy Conversion Systems Based on Dynamic Neural Networks

    Directory of Open Access Journals (Sweden)

    Nasser Talebi

    2014-01-01

    Full Text Available Occurrence of faults in wind energy conversion systems (WECSs is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS is required. Recurrent neural networks (RNNs have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate.

  7. Robust fault detection of wind energy conversion systems based on dynamic neural networks.

    Science.gov (United States)

    Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad

    2014-01-01

    Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate.

  8. Neural network architecture for cognitive navigation in dynamic environments.

    Science.gov (United States)

    Villacorta-Atienza, José Antonio; Makarov, Valeri A

    2013-12-01

    Navigation in time-evolving environments with moving targets and obstacles requires cognitive abilities widely demonstrated by even simplest animals. However, it is a long-standing challenging problem for artificial agents. Cognitive autonomous robots coping with this problem must solve two essential tasks: 1) understand the environment in terms of what may happen and how I can deal with this and 2) learn successful experiences for their further use in an automatic subconscious way. The recently introduced concept of compact internal representation (CIR) provides the ground for both the tasks. CIR is a specific cognitive map that compacts time-evolving situations into static structures containing information necessary for navigation. It belongs to the class of global approaches, i.e., it finds trajectories to a target when they exist but also detects situations when no solution can be found. Here we extend the concept of situations with mobile targets. Then using CIR as a core, we propose a closed-loop neural network architecture consisting of conscious and subconscious pathways for efficient decision-making. The conscious pathway provides solutions to novel situations if the default subconscious pathway fails to guide the agent to a target. Employing experiments with roving robots and numerical simulations, we show that the proposed architecture provides the robot with cognitive abilities and enables reliable and flexible navigation in realistic time-evolving environments. We prove that the subconscious pathway is robust against uncertainty in the sensory information. Thus if a novel situation is similar but not identical to the previous experience (because of, e.g., noisy perception) then the subconscious pathway is able to provide an effective solution.

  9. Dynamic neural networking as a basis for plasticity in the control of heart rate.

    Science.gov (United States)

    Kember, G; Armour, J A; Zamir, M

    2013-01-21

    A model is proposed in which the relationship between individual neurons within a neural network is dynamically changing to the effect of providing a measure of "plasticity" in the control of heart rate. The neural network on which the model is based consists of three populations of neurons residing in the central nervous system, the intrathoracic extracardiac nervous system, and the intrinsic cardiac nervous system. This hierarchy of neural centers is used to challenge the classical view that the control of heart rate, a key clinical index, resides entirely in central neuronal command (spinal cord, medulla oblongata, and higher centers). Our results indicate that dynamic networking allows for the possibility of an interplay among the three populations of neurons to the effect of altering the order of control of heart rate among them. This interplay among the three levels of control allows for different neural pathways for the control of heart rate to emerge under different blood flow demands or disease conditions and, as such, it has significant clinical implications because current understanding and treatment of heart rate anomalies are based largely on a single level of control and on neurons acting in unison as a single entity rather than individually within a (plastically) interconnected network. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. High Precision Neural Decoding of Complex Movement Trajectories using Recursive Bayesian Estimation with Dynamic Movement Primitives.

    Science.gov (United States)

    Hotson, Guy; Smith, Ryan J; Rouse, Adam G; Schieber, Marc H; Thakor, Nitish V; Wester, Brock A

    2016-07-01

    Brain-machine interfaces (BMIs) are a rapidly progressing technology with the potential to restore function to victims of severe paralysis via neural control of robotic systems. Great strides have been made in directly mapping a user's cortical activity to control of the individual degrees of freedom of robotic end-effectors. While BMIs have yet to achieve the level of reliability desired for widespread clinical use, environmental sensors (e.g. RGB-D cameras for object detection) and prior knowledge of common movement trajectories hold great potential for improving system performance. Here we present a novel sensor fusion paradigm for BMIs that capitalizes on information able to be extracted from the environment to greatly improve the performance of control. This was accomplished by using dynamic movement primitives to model the 3D endpoint trajectories of manipulating various objects. We then used a switching unscented Kalman filter to continuously arbitrate between the 3D endpoint kinematics predicted by the dynamic movement primitives and control derived from neural signals. We experimentally validated our system by decoding 3D endpoint trajectories executed by a non-human primate manipulating four different objects at various locations. Performance using our system showed a dramatic improvement over using neural signals alone, with median distance between actual and decoded trajectories decreasing from 31.1 cm to 9.9 cm, and mean correlation increasing from 0.80 to 0.98. Our results indicate that our sensor fusion framework can dramatically increase the fidelity of neural prosthetic trajectory decoding.

  11. Eradication of Ebola Based on Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Jia-Ming Zhu

    2016-01-01

    Full Text Available This paper mainly studies the eradication of the Ebola virus, proposing a scientific system, including three modules for the eradication of Ebola virus. Firstly, we build a basic model combined with nonlinear incidence rate and maximum treatment capacity. Secondly, we use the dynamic programming method and the Dijkstra Algorithm to set up M-S (storage and several delivery locations in West Africa. Finally, we apply the previous results to calculate the total cost, production cost, storage cost, and shortage cost.

  12. Granular contact dynamics using mathematical programming methods

    DEFF Research Database (Denmark)

    Krabbenhoft, K.; Lyamin, A. V.; Huang, J.

    2012-01-01

    A class of variational formulations for discrete element analysis of granular media is presented. These formulations lead naturally to convex mathematical programs that can be solved using standard and readily available tools. In contrast to traditional discrete element analysis, the present...... is developed and it is concluded that the associated sliding rule, in the context of granular contact dynamics, may be viewed as an artifact of the time discretization and that the use of an associated flow rule at the particle scale level generally is physically acceptable. (C) 2012 Elsevier Ltd. All rights...

  13. Dynamic recurrent neural networks for stable adaptive control of wing rock motion

    Science.gov (United States)

    Kooi, Steven Boon-Lam

    Wing rock is a self-sustaining limit cycle oscillation (LCO) which occurs as the result of nonlinear coupling between the dynamic response of the aircraft and the unsteady aerodynamic forces. In this thesis, dynamic recurrent RBF (Radial Basis Function) network control methodology is proposed to control the wing rock motion. The concept based on the properties of the Presiach hysteresis model is used in the design of dynamic neural networks. The structure and memory mechanism in the Preisach model is analogous to the parallel connectivity and memory formation in the RBF neural networks. The proposed dynamic recurrent neural network has a feature for adding or pruning the neurons in the hidden layer according to the growth criteria based on the properties of ensemble average memory formation of the Preisach model. The recurrent feature of the RBF network deals with the dynamic nonlinearities and endowed temporal memories of the hysteresis model. The control of wing rock is a tracking problem, the trajectory starts from non-zero initial conditions and it tends to zero as time goes to infinity. In the proposed neural control structure, the recurrent dynamic RBF network performs identification process in order to approximate the unknown non-linearities of the physical system based on the input-output data obtained from the wing rock phenomenon. The design of the RBF networks together with the network controllers are carried out in discrete time domain. The recurrent RBF networks employ two separate adaptation schemes where the RBF's centre and width are adjusted by the Extended Kalman Filter in order to give a minimum networks size, while the outer networks layer weights are updated using the algorithm derived from Lyapunov stability analysis for the stable closed loop control. The issue of the robustness of the recurrent RBF networks is also addressed. The effectiveness of the proposed dynamic recurrent neural control methodology is demonstrated through simulations to

  14. Global dynamic evolution of the cold plasma inferred with neural networks

    Science.gov (United States)

    Zhelavskaya, Irina; Shprits, Yuri; Spasojevic, Maria

    2017-04-01

    The electron number density is a fundamental parameter of plasmas and is critical for the wave-particle interactions. Despite its global importance, the distribution of cold plasma and its dynamic dependence on solar wind conditions remains poorly quantified. Existing empirical models present statistical averages based on static geomagnetic parameters, but cannot reflect the dynamics of the highly structured and quickly varying plasmasphere environment, especially during times of high geomagnetic activity. Global imaging provides insights on the dynamics but quantitative inversion to electron number density has been lacking. We propose an empirical model for reconstruction of global dynamics of the cold plasma density distribution based only on solar wind data and geomagnetic indices. We develop a neural network that is capable of globally reconstructing the dynamics of the cold plasma density distribution for L shells from 2 to 6 and all local times. We utilize the density database obtained using the NURD algorithm [Zhelavskaya et al., 2016] in conjunction with solar wind data and geomagnetic indices to train the neural network. This study demonstrates how the global dynamics can be reconstructed from local in-situ observations by using machine learning tools. We describe aspects of the validation process in detail and discuss the selected inputs to the model and their physical implication.

  15. The Dynamical Recollection of Interconnected Neural Networks Using Meta-heuristics

    Science.gov (United States)

    Kuremoto, Takashi; Watanabe, Shun; Kobayashi, Kunikazu; Feng, Laing-Bing; Obayashi, Masanao

    The interconnected recurrent neural networks are well-known with their abilities of associative memory of characteristic patterns. For example, the traditional Hopfield network (HN) can recall stored pattern stably, meanwhile, Aihara's chaotic neural network (CNN) is able to realize dynamical recollection of a sequence of patterns. In this paper, we propose to use meta-heuristic (MH) methods such as the particle swarm optimization (PSO) and the genetic algorithm (GA) to improve traditional associative memory systems. Using PSO or GA, for CNN, optimal parameters are found to accelerate the recollection process and raise the rate of successful recollection, and for HN, optimized bias current is calculated to improve the network with dynamical association of a series of patterns. Simulation results of binary pattern association showed effectiveness of the proposed methods.

  16. Exploring neural cell dynamics with digital holographic microscopy

    KAUST Repository

    Marquet, Pierre

    2013-07-11

    In this review, we summarize how the new concept of digital optics applied to the field of holographic microscopy has allowed the development of a reliable and flexible digital holographic quantitative phase microscopy (DH-QPM) technique at the nanoscale particularly suitable for cell imaging. Particular emphasis is placed on the original biological ormation provided by the quantitative phase signal. We present the most relevant DH-QPM applications in the field of cell biology, including automated cell counts, recognition, classification, three-dimensional tracking, discrimination between physiological and pathophysiological states, and the study of cell membrane fluctuations at the nanoscale. In the last part, original results show how DH-QPM can address two important issues in the field of neurobiology, namely, multiple-site optical recording of neuronal activity and noninvasive visualization of dendritic spine dynamics resulting from a full digital holographic microscopy tomographic approach. Copyright © 2013 by Annual Reviews.

  17. Global dynamic evolution of the cold plasma inferred with neural networks

    Science.gov (United States)

    Zhelavskaya, I. S.; Shprits, Y. Y.; Spasojevic, M.

    2016-12-01

    The electron number density is a fundamental parameter of plasmas and a critical parameter in the wave-particle interactions. However, the distribution of cold plasma and its dynamic dependence on solar wind conditions remains poorly quantified. Existing empirical models provide us with statistical averages based on static geomagnetic parameters, but cannot reflect the dynamics of the highly structured and quickly varying plasmasphere environment, especially during times of high geomagnetic activity. Global imaging provides insights on the dynamics but does not provide quantitative estimates of number density. Accurately calculating the evolving distribution from first principles has also proven elusive due to the sheer number of physical processes involved.In this study, we propose an empirical model for reconstruction of global dynamics of the cold plasma density distribution based only on solar wind data and geomagnetic indices. We develop a neural network that is capable of globally reconstructing the dynamics of the cold plasma density distribution for L shells from 2 to 6 and all local times. First, we derive a plasma density database by using the NURD algorithm to identify the upper hybrid resonance band in plasma wave observations from Van Allen Probes [Zhelavskaya et al., 2016]. Then, we utilize the density database in conjunction with solar wind data and geomagnetic indices to train the neural network. To validate and test the model, we choose validation and test sets independently from the density database. We validate and test the neural network by measuring its performance on these sets and also by comparing the model predicted global evolution with global images of the He+ distribution in the Earth's plasmasphere from the IMAGE extreme ultraviolet (EUV) instrument.The present study demonstrates how we can reconstruct the global dynamics from local in-situ observations by using machine learning tools. We describe aspects of the validation process in

  18. The dynamic brain: from spiking neurons to neural masses and cortical fields.

    Directory of Open Access Journals (Sweden)

    Gustavo Deco

    2008-08-01

    Full Text Available The cortex is a complex system, characterized by its dynamics and architecture, which underlie many functions such as action, perception, learning, language, and cognition. Its structural architecture has been studied for more than a hundred years; however, its dynamics have been addressed much less thoroughly. In this paper, we review and integrate, in a unifying framework, a variety of computational approaches that have been used to characterize the dynamics of the cortex, as evidenced at different levels of measurement. Computational models at different space-time scales help us understand the fundamental mechanisms that underpin neural processes and relate these processes to neuroscience data. Modeling at the single neuron level is necessary because this is the level at which information is exchanged between the computing elements of the brain; the neurons. Mesoscopic models tell us how neural elements interact to yield emergent behavior at the level of microcolumns and cortical columns. Macroscopic models can inform us about whole brain dynamics and interactions between large-scale neural systems such as cortical regions, the thalamus, and brain stem. Each level of description relates uniquely to neuroscience data, from single-unit recordings, through local field potentials to functional magnetic resonance imaging (fMRI, electroencephalogram (EEG, and magnetoencephalogram (MEG. Models of the cortex can establish which types of large-scale neuronal networks can perform computations and characterize their emergent properties. Mean-field and related formulations of dynamics also play an essential and complementary role as forward models that can be inverted given empirical data. This makes dynamic models critical in integrating theory and experiments. We argue that elaborating principled and informed models is a prerequisite for grounding empirical neuroscience in a cogent theoretical framework, commensurate with the achievements in the

  19. Runway Scheduling Using Generalized Dynamic Programming

    Science.gov (United States)

    Montoya, Justin; Wood, Zachary; Rathinam, Sivakumar

    2011-01-01

    A generalized dynamic programming method for finding a set of pareto optimal solutions for a runway scheduling problem is introduced. The algorithm generates a set of runway fight sequences that are optimal for both runway throughput and delay. Realistic time-based operational constraints are considered, including miles-in-trail separation, runway crossings, and wake vortex separation. The authors also model divergent runway takeoff operations to allow for reduced wake vortex separation. A modeled Dallas/Fort Worth International airport and three baseline heuristics are used to illustrate preliminary benefits of using the generalized dynamic programming method. Simulated traffic levels ranged from 10 aircraft to 30 aircraft with each test case spanning 15 minutes. The optimal solution shows a 40-70 percent decrease in the expected delay per aircraft over the baseline schedulers. Computational results suggest that the algorithm is promising for real-time application with an average computation time of 4.5 seconds. For even faster computation times, two heuristics are developed. As compared to the optimal, the heuristics are within 5% of the expected delay per aircraft and 1% of the expected number of runway operations per hour ad can be 100x faster.

  20. Automated Flight Routing Using Stochastic Dynamic Programming

    Science.gov (United States)

    Ng, Hok K.; Morando, Alex; Grabbe, Shon

    2010-01-01

    Airspace capacity reduction due to convective weather impedes air traffic flows and causes traffic congestion. This study presents an algorithm that reroutes flights in the presence of winds, enroute convective weather, and congested airspace based on stochastic dynamic programming. A stochastic disturbance model incorporates into the reroute design process the capacity uncertainty. A trajectory-based airspace demand model is employed for calculating current and future airspace demand. The optimal routes minimize the total expected traveling time, weather incursion, and induced congestion costs. They are compared to weather-avoidance routes calculated using deterministic dynamic programming. The stochastic reroutes have smaller deviation probability than the deterministic counterpart when both reroutes have similar total flight distance. The stochastic rerouting algorithm takes into account all convective weather fields with all severity levels while the deterministic algorithm only accounts for convective weather systems exceeding a specified level of severity. When the stochastic reroutes are compared to the actual flight routes, they have similar total flight time, and both have about 1% of travel time crossing congested enroute sectors on average. The actual flight routes induce slightly less traffic congestion than the stochastic reroutes but intercept more severe convective weather.

  1. Neural dynamics of reward probability coding: a Magnetoencephalographic study in humans

    Directory of Open Access Journals (Sweden)

    Julie eThomas

    2013-11-01

    Full Text Available Prediction of future rewards and discrepancy between actual and expected outcomes (prediction error are crucial signals for adaptive behavior. In humans, a number of fMRI studies demonstrated that reward probability modulates these two signals in a large brain network. Yet, the spatio-temporal dynamics underlying the neural coding of reward probability remains unknown. Here, using magnetoencephalography, we investigated the neural dynamics of prediction and reward prediction error computations while subjects learned to associate cues of slot machines with monetary rewards with different probabilities. We showed that event-related magnetic fields (ERFs arising from the visual cortex coded the expected reward value 155 ms after the cue, demonstrating that reward value signals emerge early in the visual stream. Moreover, a prediction error was reflected in ERF peaking 300 ms after the rewarded outcome and showing decreasing amplitude with higher reward probability. This prediction error signal was generated in a network including the anterior and posterior cingulate cortex. These findings pinpoint the spatio-temporal characteristics underlying reward probability coding. Together, our results provide insights into the neural dynamics underlying the ability to learn probabilistic stimuli-reward contingencies.

  2. Music enrichment programs improve the neural encoding of speech in at-risk children.

    Science.gov (United States)

    Kraus, Nina; Slater, Jessica; Thompson, Elaine C; Hornickel, Jane; Strait, Dana L; Nicol, Trent; White-Schwoch, Travis

    2014-09-03

    Musicians are often reported to have enhanced neurophysiological functions, especially in the auditory system. Musical training is thought to improve nervous system function by focusing attention on meaningful acoustic cues, and these improvements in auditory processing cascade to language and cognitive skills. Correlational studies have reported musician enhancements in a variety of populations across the life span. In light of these reports, educators are considering the potential for co-curricular music programs to provide auditory-cognitive enrichment to children during critical developmental years. To date, however, no studies have evaluated biological changes following participation in existing, successful music education programs. We used a randomized control design to investigate whether community music participation induces a tangible change in auditory processing. The community music training was a longstanding and successful program that provides free music instruction to children from underserved backgrounds who stand at high risk for learning and social problems. Children who completed 2 years of music training had a stronger neurophysiological distinction of stop consonants, a neural mechanism linked to reading and language skills. One year of training was insufficient to elicit changes in nervous system function; beyond 1 year, however, greater amounts of instrumental music training were associated with larger gains in neural processing. We therefore provide the first direct evidence that community music programs enhance the neural processing of speech in at-risk children, suggesting that active and repeated engagement with sound changes neural function. Copyright © 2014 the authors 0270-6474/14/3411913-06$15.00/0.

  3. Dynamics and genetic fuzzy neural network vibration control design of a smart flexible four-bar linkage mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Rong Bao, E-mail: rongbao_nust@sina.com; Rui Xiaoting [Nanjing University of Science and Technology, Institute of Launch Dynamics (China); Tao Ling [Chinese Academy of Sciences (ASIPP), Institute of Plasma Physics (China)

    2012-11-15

    In this paper, a dynamic modeling method and an active vibration control scheme for a smart flexible four-bar linkage mechanism featuring piezoelectric actuators and strain gauge sensors are presented. The dynamics of this smart mechanism is described by the Discrete Time Transfer Matrix Method of Multibody System (MS-DTTMM). Then a nonlinear fuzzy neural network control is employed to suppress the vibration of this smart mechanism. For improving the dynamic performance of the fuzzy neural network, a genetic algorithm based on the MS-DTTMM is designed offline to tune the initial parameters of the fuzzy neural network. The MS-DTTMM avoids the global dynamics equations of the system, which results in the matrices involved are always very small, so the computational efficiency of the dynamic analysis and control system optimization can be greatly improved. Formulations of the method as well as a numerical simulation are given to demonstrate the proposed dynamic method and control scheme.

  4. Dynamic imaging and quantitative analysis of cranial neural tube closure in the mouse embryo using optical coherence tomography.

    Science.gov (United States)

    Wang, Shang; Garcia, Monica D; Lopez, Andrew L; Overbeek, Paul A; Larin, Kirill V; Larina, Irina V

    2017-01-01

    Neural tube closure is a critical feature of central nervous system morphogenesis during embryonic development. Failure of this process leads to neural tube defects, one of the most common forms of human congenital defects. Although molecular and genetic studies in model organisms have provided insights into the genes and proteins that are required for normal neural tube development, complications associated with live imaging of neural tube closure in mammals limit efficient morphological analyses. Here, we report the use of optical coherence tomography (OCT) for dynamic imaging and quantitative assessment of cranial neural tube closure in live mouse embryos in culture. Through time-lapse imaging, we captured two neural tube closure mechanisms in different cranial regions, zipper-like closure of the hindbrain region and button-like closure of the midbrain region. We also used OCT imaging for phenotypic characterization of a neural tube defect in a mouse mutant. These results suggest that the described approach is a useful tool for live dynamic analysis of normal neural tube closure and neural tube defects in the mouse model.

  5. Temporal and spatial neural dynamics in the perception of basic emotions from complex scenes.

    Science.gov (United States)

    Costa, Tommaso; Cauda, Franco; Crini, Manuella; Tatu, Mona-Karina; Celeghin, Alessia; de Gelder, Beatrice; Tamietto, Marco

    2014-11-01

    The different temporal dynamics of emotions are critical to understand their evolutionary role in the regulation of interactions with the surrounding environment. Here, we investigated the temporal dynamics underlying the perception of four basic emotions from complex scenes varying in valence and arousal (fear, disgust, happiness and sadness) with the millisecond time resolution of Electroencephalography (EEG). Event-related potentials were computed and each emotion showed a specific temporal profile, as revealed by distinct time segments of significant differences from the neutral scenes. Fear perception elicited significant activity at the earliest time segments, followed by disgust, happiness and sadness. Moreover, fear, disgust and happiness were characterized by two time segments of significant activity, whereas sadness showed only one long-latency time segment of activity. Multidimensional scaling was used to assess the correspondence between neural temporal dynamics and the subjective experience elicited by the four emotions in a subsequent behavioral task. We found a high coherence between these two classes of data, indicating that psychological categories defining emotions have a close correspondence at the brain level in terms of neural temporal dynamics. Finally, we localized the brain regions of time-dependent activity for each emotion and time segment with the low-resolution brain electromagnetic tomography. Fear and disgust showed widely distributed activations, predominantly in the right hemisphere. Happiness activated a number of areas mostly in the left hemisphere, whereas sadness showed a limited number of active areas at late latency. The present findings indicate that the neural signature of basic emotions can emerge as the byproduct of dynamic spatiotemporal brain networks as investigated with millisecond-range resolution, rather than in time-independent areas involved uniquely in the processing one specific emotion. © The Author (2013

  6. Caldesmon regulates actin dynamics to influence cranial neural crest migration in Xenopus.

    Science.gov (United States)

    Nie, Shuyi; Kee, Yun; Bronner-Fraser, Marianne

    2011-09-01

    Caldesmon (CaD) is an important actin modulator that associates with actin filaments to regulate cell morphology and motility. Although extensively studied in cultured cells, there is little functional information regarding the role of CaD in migrating cells in vivo. Here we show that nonmuscle CaD is highly expressed in both premigratory and migrating cranial neural crest cells of Xenopus embryos. Depletion of CaD with antisense morpholino oligonucleotides causes cranial neural crest cells to migrate a significantly shorter distance, prevents their segregation into distinct migratory streams, and later results in severe defects in cartilage formation. Demonstrating specificity, these effects are rescued by adding back exogenous CaD. Interestingly, CaD proteins with mutations in the Ca(2+)-calmodulin-binding sites or ErK/Cdk1 phosphorylation sites fail to rescue the knockdown phenotypes, whereas mutation of the PAK phosphorylation site is able to rescue them. Analysis of neural crest explants reveals that CaD is required for the dynamic arrangements of actin and, thus, for cell shape changes and process formation. Taken together, these results suggest that the actin-modulating activity of CaD may underlie its critical function and is regulated by distinct signaling pathways during normal neural crest migration.

  7. Distributed dynamical computation in neural circuits with propagating coherent activity patterns.

    Directory of Open Access Journals (Sweden)

    Pulin Gong

    2009-12-01

    Full Text Available Activity in neural circuits is spatiotemporally organized. Its spatial organization consists of multiple, localized coherent patterns, or patchy clusters. These patterns propagate across the circuits over time. This type of collective behavior has ubiquitously been observed, both in spontaneous activity and evoked responses; its function, however, has remained unclear. We construct a spatially extended, spiking neural circuit that generates emergent spatiotemporal activity patterns, thereby capturing some of the complexities of the patterns observed empirically. We elucidate what kind of fundamental function these patterns can serve by showing how they process information. As self-sustained objects, localized coherent patterns can signal information by propagating across the neural circuit. Computational operations occur when these emergent patterns interact, or collide with each other. The ongoing behaviors of these patterns naturally embody both distributed, parallel computation and cascaded logical operations. Such distributed computations enable the system to work in an inherently flexible and efficient way. Our work leads us to propose that propagating coherent activity patterns are the underlying primitives with which neural circuits carry out distributed dynamical computation.

  8. A new training algorithm using artificial neural networks to classify gender-specific dynamic gait patterns.

    Science.gov (United States)

    Andrade, Andre; Costa, Marcelo; Paolucci, Leopoldo; Braga, Antônio; Pires, Flavio; Ugrinowitsch, Herbert; Menzel, Hans-Joachim

    2015-01-01

    The aim of this study was to present a new training algorithm using artificial neural networks called multi-objective least absolute shrinkage and selection operator (MOBJ-LASSO) applied to the classification of dynamic gait patterns. The movement pattern is identified by 20 characteristics from the three components of the ground reaction force which are used as input information for the neural networks in gender-specific gait classification. The classification performance between MOBJ-LASSO (97.4%) and multi-objective algorithm (MOBJ) (97.1%) is similar, but the MOBJ-LASSO algorithm achieved more improved results than the MOBJ because it is able to eliminate the inputs and automatically select the parameters of the neural network. Thus, it is an effective tool for data mining using neural networks. From 20 inputs used for training, MOBJ-LASSO selected the first and second peaks of the vertical force and the force peak in the antero-posterior direction as the variables that classify the gait patterns of the different genders.

  9. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates

    Science.gov (United States)

    Borton, David A.; Yin, Ming; Aceros, Juan; Nurmikko, Arto

    2013-04-01

    Objective. Neural interface technology suitable for clinical translation has the potential to significantly impact the lives of amputees, spinal cord injury victims and those living with severe neuromotor disease. Such systems must be chronically safe, durable and effective. Approach. We have designed and implemented a neural interface microsystem, housed in a compact, subcutaneous and hermetically sealed titanium enclosure. The implanted device interfaces the brain with a 510k-approved, 100-element silicon-based microelectrode array via a custom hermetic feedthrough design. Full spectrum neural signals were amplified (0.1 Hz to 7.8 kHz, 200× gain) and multiplexed by a custom application specific integrated circuit, digitized and then packaged for transmission. The neural data (24 Mbps) were transmitted by a wireless data link carried on a frequency-shift-key-modulated signal at 3.2 and 3.8 GHz to a receiver 1 m away by design as a point-to-point communication link for human clinical use. The system was powered by an embedded medical grade rechargeable Li-ion battery for 7 h continuous operation between recharge via an inductive transcutaneous wireless power link at 2 MHz. Main results. Device verification and early validation were performed in both swine and non-human primate freely-moving animal models and showed that the wireless implant was electrically stable, effective in capturing and delivering broadband neural data, and safe for over one year of testing. In addition, we have used the multichannel data from these mobile animal models to demonstrate the ability to decode neural population dynamics associated with motor activity. Significance. We have developed an implanted wireless broadband neural recording device evaluated in non-human primate and swine. The use of this new implantable neural interface technology can provide insight into how to advance human neuroprostheses beyond the present early clinical trials. Further, such tools enable mobile

  10. A Dynamic Programming Approach to Constrained Portfolios

    DEFF Research Database (Denmark)

    Kraft, Holger; Steffensen, Mogens

    2013-01-01

    This paper studies constrained portfolio problems that may involve constraints on the probability or the expected size of a shortfall of wealth or consumption. Our first contribution is that we solve the problems by dynamic programming, which is in contrast to the existing literature that applies...... the martingale method. More precisely, we construct the non-separable value function by formalizing the optimal constrained terminal wealth to be a (conjectured) contingent claim on the optimal non-constrained terminal wealth. This is relevant by itself, but also opens up the opportunity to derive new solutions...... to constrained problems. As a second contribution, we thus derive new results for non-strict constraints on the shortfall of intermediate wealth and/or consumption....

  11. A Modified Dynamic Evolving Neural-Fuzzy Approach to Modeling Customer Satisfaction for Affective Design

    Directory of Open Access Journals (Sweden)

    C. K. Kwong

    2013-01-01

    Full Text Available Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1 the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS failed to run due to a large number of inputs; (2 the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort.

  12. A modified dynamic evolving neural-fuzzy approach to modeling customer satisfaction for affective design.

    Science.gov (United States)

    Kwong, C K; Fung, K Y; Jiang, Huimin; Chan, K Y; Siu, Kin Wai Michael

    2013-01-01

    Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort.

  13. Diagonal recurrent neural network based adaptive control of nonlinear dynamical systems using lyapunov stability criterion.

    Science.gov (United States)

    Kumar, Rajesh; Srivastava, Smriti; Gupta, J R P

    2017-03-01

    In this paper adaptive control of nonlinear dynamical systems using diagonal recurrent neural network (DRNN) is proposed. The structure of DRNN is a modification of fully connected recurrent neural network (FCRNN). Presence of self-recurrent neurons in the hidden layer of DRNN gives it an ability to capture the dynamic behaviour of the nonlinear plant under consideration (to be controlled). To ensure stability, update rules are developed using lyapunov stability criterion. These rules are then used for adjusting the various parameters of DRNN. The responses of plants obtained with DRNN are compared with those obtained when multi-layer feed forward neural network (MLFFNN) is used as a controller. Also, in example 4, FCRNN is also investigated and compared with DRNN and MLFFNN. Robustness of the proposed control scheme is also tested against parameter variations and disturbance signals. Four simulation examples including one-link robotic manipulator and inverted pendulum are considered on which the proposed controller is applied. The results so obtained show the superiority of DRNN over MLFFNN as a controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Hoxb1b controls oriented cell division, cell shape and microtubule dynamics in neural tube morphogenesis

    Science.gov (United States)

    Žigman, Mihaela; Laumann-Lipp, Nico; Titus, Tom; Postlethwait, John; Moens, Cecilia B.

    2014-01-01

    Hox genes are classically ascribed to function in patterning the anterior-posterior axis of bilaterian animals; however, their role in directing molecular mechanisms underlying morphogenesis at the cellular level remains largely unstudied. We unveil a non-classical role for the zebrafish hoxb1b gene, which shares ancestral functions with mammalian Hoxa1, in controlling progenitor cell shape and oriented cell division during zebrafish anterior hindbrain neural tube morphogenesis. This is likely distinct from its role in cell fate acquisition and segment boundary formation. We show that, without affecting major components of apico-basal or planar cell polarity, Hoxb1b regulates mitotic spindle rotation during the oriented neural keel symmetric mitoses that are required for normal neural tube lumen formation in the zebrafish. This function correlates with a non-cell-autonomous requirement for Hoxb1b in regulating microtubule plus-end dynamics in progenitor cells in interphase. We propose that Hox genes can influence global tissue morphogenesis by control of microtubule dynamics in individual cells in vivo. PMID:24449840

  15. Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons.

    Directory of Open Access Journals (Sweden)

    Lars Buesing

    2011-11-01

    Full Text Available The organization of computations in networks of spiking neurons in the brain is still largely unknown, in particular in view of the inherently stochastic features of their firing activity and the experimentally observed trial-to-trial variability of neural systems in the brain. In principle there exists a powerful computational framework for stochastic computations, probabilistic inference by sampling, which can explain a large number of macroscopic experimental data in neuroscience and cognitive science. But it has turned out to be surprisingly difficult to create a link between these abstract models for stochastic computations and more detailed models of the dynamics of networks of spiking neurons. Here we create such a link and show that under some conditions the stochastic firing activity of networks of spiking neurons can be interpreted as probabilistic inference via Markov chain Monte Carlo (MCMC sampling. Since common methods for MCMC sampling in distributed systems, such as Gibbs sampling, are inconsistent with the dynamics of spiking neurons, we introduce a different approach based on non-reversible Markov chains that is able to reflect inherent temporal processes of spiking neuronal activity through a suitable choice of random variables. We propose a neural network model and show by a rigorous theoretical analysis that its neural activity implements MCMC sampling of a given distribution, both for the case of discrete and continuous time. This provides a step towards closing the gap between abstract functional models of cortical computation and more detailed models of networks of spiking neurons.

  16. Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons.

    Science.gov (United States)

    Buesing, Lars; Bill, Johannes; Nessler, Bernhard; Maass, Wolfgang

    2011-11-01

    The organization of computations in networks of spiking neurons in the brain is still largely unknown, in particular in view of the inherently stochastic features of their firing activity and the experimentally observed trial-to-trial variability of neural systems in the brain. In principle there exists a powerful computational framework for stochastic computations, probabilistic inference by sampling, which can explain a large number of macroscopic experimental data in neuroscience and cognitive science. But it has turned out to be surprisingly difficult to create a link between these abstract models for stochastic computations and more detailed models of the dynamics of networks of spiking neurons. Here we create such a link and show that under some conditions the stochastic firing activity of networks of spiking neurons can be interpreted as probabilistic inference via Markov chain Monte Carlo (MCMC) sampling. Since common methods for MCMC sampling in distributed systems, such as Gibbs sampling, are inconsistent with the dynamics of spiking neurons, we introduce a different approach based on non-reversible Markov chains that is able to reflect inherent temporal processes of spiking neuronal activity through a suitable choice of random variables. We propose a neural network model and show by a rigorous theoretical analysis that its neural activity implements MCMC sampling of a given distribution, both for the case of discrete and continuous time. This provides a step towards closing the gap between abstract functional models of cortical computation and more detailed models of networks of spiking neurons.

  17. Learning by stimulation avoidance: A principle to control spiking neural networks dynamics.

    Science.gov (United States)

    Sinapayen, Lana; Masumori, Atsushi; Ikegami, Takashi

    2017-01-01

    Learning based on networks of real neurons, and learning based on biologically inspired models of neural networks, have yet to find general learning rules leading to widespread applications. In this paper, we argue for the existence of a principle allowing to steer the dynamics of a biologically inspired neural network. Using carefully timed external stimulation, the network can be driven towards a desired dynamical state. We term this principle "Learning by Stimulation Avoidance" (LSA). We demonstrate through simulation that the minimal sufficient conditions leading to LSA in artificial networks are also sufficient to reproduce learning results similar to those obtained in biological neurons by Shahaf and Marom, and in addition explains synaptic pruning. We examined the underlying mechanism by simulating a small network of 3 neurons, then scaled it up to a hundred neurons. We show that LSA has a higher explanatory power than existing hypotheses about the response of biological neural networks to external simulation, and can be used as a learning rule for an embodied application: learning of wall avoidance by a simulated robot. In other works, reinforcement learning with spiking networks can be obtained through global reward signals akin simulating the dopamine system; we believe that this is the first project demonstrating sensory-motor learning with random spiking networks through Hebbian learning relying on environmental conditions without a separate reward system.

  18. DO DYNAMIC NEURAL NETWORKS STAND A BETTER CHANCE IN FRACTIONALLY INTEGRATED PROCESS FORECASTING?

    Directory of Open Access Journals (Sweden)

    Majid Delavari

    2013-04-01

    Full Text Available The main purpose of the present study was to investigate the capabilities of two generations of models such as those based on dynamic neural network (e.g., Nonlinear Neural network Auto Regressive or NNAR model and a regressive (Auto Regressive Fractionally Integrated Moving Average model which is based on Fractional Integration Approach in forecasting daily data related to the return index of Tehran Stock Exchange (TSE. In order to compare these models under similar conditions, Mean Square Error (MSE and also Root Mean Square Error (RMSE were selected as criteria for the models’ simulated out-of-sample forecasting performance. Besides, fractal markets hypothesis was examined and according to the findings, fractal structure was confirmed to exist in the time series under investigation. Another finding of the study was that dynamic artificial neural network model had the best performance in out-of-sample forecasting based on the criteria introduced for calculating forecasting error in comparison with the ARFIMA model.

  19. Pareto optimization in algebraic dynamic programming.

    Science.gov (United States)

    Saule, Cédric; Giegerich, Robert

    2015-01-01

    Pareto optimization combines independent objectives by computing the Pareto front of its search space, defined as the set of all solutions for which no other candidate solution scores better under all objectives. This gives, in a precise sense, better information than an artificial amalgamation of different scores into a single objective, but is more costly to compute. Pareto optimization naturally occurs with genetic algorithms, albeit in a heuristic fashion. Non-heuristic Pareto optimization so far has been used only with a few applications in bioinformatics. We study exact Pareto optimization for two objectives in a dynamic programming framework. We define a binary Pareto product operator [Formula: see text] on arbitrary scoring schemes. Independent of a particular algorithm, we prove that for two scoring schemes A and B used in dynamic programming, the scoring scheme [Formula: see text] correctly performs Pareto optimization over the same search space. We study different implementations of the Pareto operator with respect to their asymptotic and empirical efficiency. Without artificial amalgamation of objectives, and with no heuristics involved, Pareto optimization is faster than computing the same number of answers separately for each objective. For RNA structure prediction under the minimum free energy versus the maximum expected accuracy model, we show that the empirical size of the Pareto front remains within reasonable bounds. Pareto optimization lends itself to the comparative investigation of the behavior of two alternative scoring schemes for the same purpose. For the above scoring schemes, we observe that the Pareto front can be seen as a composition of a few macrostates, each consisting of several microstates that differ in the same limited way. We also study the relationship between abstract shape analysis and the Pareto front, and find that they extract information of a different nature from the folding space and can be meaningfully combined.

  20. Artificial Neural Network-Based Early-Age Concrete Strength Monitoring Using Dynamic Response Signals.

    Science.gov (United States)

    Kim, Junkyeong; Lee, Chaggil; Park, Seunghee

    2017-06-07

    Concrete is one of the most common materials used to construct a variety of civil infrastructures. However, since concrete might be susceptible to brittle fracture, it is essential to confirm the strength of concrete at the early-age stage of the curing process to prevent unexpected collapse. To address this issue, this study proposes a novel method to estimate the early-age strength of concrete, by integrating an artificial neural network algorithm with a dynamic response measurement of the concrete material. The dynamic response signals of the concrete, including both electromechanical impedances and guided ultrasonic waves, are obtained from an embedded piezoelectric sensor module. The cross-correlation coefficient of the electromechanical impedance signals and the amplitude of the guided ultrasonic wave signals are selected to quantify the variation in dynamic responses according to the strength of the concrete. Furthermore, an artificial neural network algorithm is used to verify a relationship between the variation in dynamic response signals and concrete strength. The results of an experimental study confirm that the proposed approach can be effectively applied to estimate the strength of concrete material from the early-age stage of the curing process.

  1. Implementing a Dynamic Street-Children's Program: Successes and ...

    African Journals Online (AJOL)

    Implementing a Dynamic Street-Children's Program: Successes and Challenges. ... the influence that early childhood dynamics of parentchild, parent-parent and ... they can influence the child's behaviour in both positive and negative ways.

  2. Development of a New Aprepitant Liquisolid Formulation with the Aid of Artificial Neural Networks and Genetic Programming.

    Science.gov (United States)

    Barmpalexis, Panagiotis; Grypioti, Agni; Eleftheriadis, Georgios K; Fatouros, Dimitris G

    2018-02-01

    In the present study, liquisolid formulations were developed for improving dissolution profile of aprepitant (APT) in a solid dosage form. Experimental studies were complemented with artificial neural networks and genetic programming. Specifically, the type and concentration of liquid vehicle was evaluated through saturation-solubility studies, while the effect of the amount of viscosity increasing agent (HPMC), the type of wetting (Soluplus® vs. PVP) and solubilizing (Poloxamer®407 vs. Kolliphor®ELP) agents, and the ratio of solid coating (microcrystalline cellulose) to carrier (colloidal silicon dioxide) were evaluated based on in vitro drug release studies. The optimum liquisolid formulation exhibited improved dissolution characteristics compared to the marketed product Emend®. X-ray diffraction (XRD), scanning electron microscopy (SEM) and a novel method combining particle size analysis by dynamic light scattering (DLS) and HPLC, revealed that the increase in dissolution rate of APT in the optimum liquisolid formulation was due to the formation of stable APT nanocrystals. Differential scanning calorimetry (DSC) and attenuated total reflection FTIR spectroscopy (ATR-FTIR) revealed the presence of intermolecular interactions between APT and liquisolid formulation excipients. Multilinear regression analysis (MLR), artificial neural networks (ANNs), and genetic programming (GP) were used to correlate several formulation variables with dissolution profile parameters (Y 15min and Y 30min) using a full factorial experimental design. Results showed increased correlation efficacy for ANNs and GP (RMSE of 0.151 and 0.273, respectively) compared to MLR (RMSE = 0.413).

  3. Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition.

    Science.gov (United States)

    Brunton, Bingni W; Johnson, Lise A; Ojemann, Jeffrey G; Kutz, J Nathan

    2016-01-30

    There is a broad need in neuroscience to understand and visualize large-scale recordings of neural activity, big data acquired by tens or hundreds of electrodes recording dynamic brain activity over minutes to hours. Such datasets are characterized by coherent patterns across both space and time, yet existing computational methods are typically restricted to analysis either in space or in time separately. Here we report the adaptation of dynamic mode decomposition (DMD), an algorithm originally developed for studying fluid physics, to large-scale neural recordings. DMD is a modal decomposition algorithm that describes high-dimensional dynamic data using coupled spatial-temporal modes. The algorithm is robust to variations in noise and subsampling rate; it scales easily to very large numbers of simultaneously acquired measurements. We first validate the DMD approach on sub-dural electrode array recordings from human subjects performing a known motor task. Next, we combine DMD with unsupervised clustering, developing a novel method to extract spindle networks during sleep. We uncovered several distinct sleep spindle networks identifiable by their stereotypical cortical distribution patterns, frequency, and duration. DMD is closely related to principal components analysis (PCA) and discrete Fourier transform (DFT). We may think of DMD as a rotation of the low-dimensional PCA space such that each basis vector has coherent dynamics. The resulting analysis combines key features of performing PCA in space and power spectral analysis in time, making it particularly suitable for analyzing large-scale neural recordings. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Neural dynamics of speech act comprehension: an MEG study of naming and requesting.

    Science.gov (United States)

    Egorova, Natalia; Pulvermüller, Friedemann; Shtyrov, Yury

    2014-05-01

    The neurobiological basis and temporal dynamics of communicative language processing pose important yet unresolved questions. It has previously been suggested that comprehension of the communicative function of an utterance, i.e. the so-called speech act, is supported by an ensemble of neural networks, comprising lexico-semantic, action and mirror neuron as well as theory of mind circuits, all activated in concert. It has also been demonstrated that recognition of the speech act type occurs extremely rapidly. These findings however, were obtained in experiments with insufficient spatio-temporal resolution, thus possibly concealing important facets of the neural dynamics of the speech act comprehension process. Here, we used magnetoencephalography to investigate the comprehension of Naming and Request actions performed with utterances controlled for physical features, psycholinguistic properties and the probability of occurrence in variable contexts. The results show that different communicative actions are underpinned by a dynamic neural network, which differentiates between speech act types very early after the speech act onset. Within 50-90 ms, Requests engaged mirror-neuron action-comprehension systems in sensorimotor cortex, possibly for processing action knowledge and intentions. Still, within the first 200 ms of stimulus onset (100-150 ms), Naming activated brain areas involved in referential semantic retrieval. Subsequently (200-300 ms), theory of mind and mentalising circuits were activated in medial prefrontal and temporo-parietal areas, possibly indexing processing of intentions and assumptions of both communication partners. This cascade of stages of processing information about actions and intentions, referential semantics, and theory of mind may underlie dynamic and interactive speech act comprehension.

  5. Modified Neural Network for Dynamic Control and Operation of a Hybrid Generation Systems

    Directory of Open Access Journals (Sweden)

    Cong-Hui Huang

    2014-12-01

    Full Text Available This paper presents modified neural network for dynamic control and operation of a hybrid generation systems. PV and wind power are the primary power sources of the system to take full advantages of renewable energy, and the diesel-engine is used as a backup system. The simulation model of the hybrid system was developed using MATLAB Simulink. To achieve a fast and stable response for the real power control, the intelligent controller consists of a Radial Basis Function Network (RBFN and an modified Elman Neural Network (ENN for maximum power point tracking (MPPT. The pitch angle of wind turbine is controlled by ENN, and the PV system uses RBFN, where the output signal is used to control the DC I DC boost converters to achieve the MPPT. And the results show the hybrid generation system can effectively extract the maximum power from the PV and wind energy sources.

  6. Differential Neural Networks for Identification and Filtering in Nonlinear Dynamic Games

    Directory of Open Access Journals (Sweden)

    Emmanuel García

    2014-01-01

    Full Text Available This paper deals with the problem of identifying and filtering a class of continuous-time nonlinear dynamic games (nonlinear differential games subject to additive and undesired deterministic perturbations. Moreover, the mathematical model of this class is completely unknown with the exception of the control actions of each player, and even though the deterministic noises are known, their power (or their effect is not. Therefore, two differential neural networks are designed in order to obtain a feedback (perfect state information pattern for the mentioned class of games. In this way, the stability conditions for two state identification errors and for a filtering error are established, the upper bounds of these errors are obtained, and two new learning laws for each neural network are suggested. Finally, an illustrating example shows the applicability of this approach.

  7. A program for the Bayesian Neural Network in the ROOT framework

    Science.gov (United States)

    Zhong, Jiahang; Huang, Run-Sheng; Lee, Shih-Chang

    2011-12-01

    We present a Bayesian Neural Network algorithm implemented in the TMVA package (Hoecker et al., 2007 [1]), within the ROOT framework (Brun and Rademakers, 1997 [2]). Comparing to the conventional utilization of Neural Network as discriminator, this new implementation has more advantages as a non-parametric regression tool, particularly for fitting probabilities. It provides functionalities including cost function selection, complexity control and uncertainty estimation. An example of such application in High Energy Physics is shown. The algorithm is available with ROOT release later than 5.29. Program summaryProgram title: TMVA-BNN Catalogue identifier: AEJX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: BSD license No. of lines in distributed program, including test data, etc.: 5094 No. of bytes in distributed program, including test data, etc.: 1,320,987 Distribution format: tar.gz Programming language: C++ Computer: Any computer system or cluster with C++ compiler and UNIX-like operating system Operating system: Most UNIX/Linux systems. The application programs were thoroughly tested under Fedora and Scientific Linux CERN. Classification: 11.9 External routines: ROOT package version 5.29 or higher ( http://root.cern.ch) Nature of problem: Non-parametric fitting of multivariate distributions Solution method: An implementation of Neural Network following the Bayesian statistical interpretation. Uses Laplace approximation for the Bayesian marginalizations. Provides the functionalities of automatic complexity control and uncertainty estimation. Running time: Time consumption for the training depends substantially on the size of input sample, the NN topology, the number of training iterations, etc. For the example in this manuscript, about 7 min was used on a PC/Linux with 2.0 GHz processors.

  8. Segregated and overlapping neural circuits exist for the production of static and dynamic precision grip force

    Science.gov (United States)

    Neely, Kristina A.; Coombes, Stephen A.; Planetta, Peggy J.; Vaillancourt, David E.

    2011-01-01

    A central topic in sensorimotor neuroscience is the static-dynamic dichotomy that exists throughout the nervous system. Previous work examining motor unit synchronization reports that the activation strategy and timing of motor units differ for static and dynamic tasks. However, it remains unclear whether segregated or overlapping blood-oxygen-level-dependent (BOLD) activity exists in the brain for static and dynamic motor control. This study compared the neural circuits associated with the production of static force to those associated with the production of dynamic force pulses. To that end, healthy young adults (n = 17) completed static and dynamic precision grip force tasks during functional magnetic resonance imaging (fMRI). Both tasks activated core regions within the visuomotor network, including primary and sensory motor cortices, premotor cortices, multiple visual areas, putamen, and cerebellum. Static force was associated with unique activity in a right-lateralized cortical network including inferior parietal lobe, ventral premotor cortex, and dorsolateral prefrontal cortex. In contrast, dynamic force was associated with unique activity in left-lateralized and midline cortical regions, including supplementary motor area, superior parietal lobe, fusiform gyrus, and visual area V3. These findings provide the first neuroimaging evidence supporting a lateralized pattern of brain activity for the production of static and dynamic precision grip force. PMID:22109998

  9. Optimal system size for complex dynamics in random neural networks near criticality

    Energy Technology Data Exchange (ETDEWEB)

    Wainrib, Gilles, E-mail: wainrib@math.univ-paris13.fr [Laboratoire Analyse Géométrie et Applications, Université Paris XIII, Villetaneuse (France); García del Molino, Luis Carlos, E-mail: garciadelmolino@ijm.univ-paris-diderot.fr [Institute Jacques Monod, Université Paris VII, Paris (France)

    2013-12-15

    In this article, we consider a model of dynamical agents coupled through a random connectivity matrix, as introduced by Sompolinsky et al. [Phys. Rev. Lett. 61(3), 259–262 (1988)] in the context of random neural networks. When system size is infinite, it is known that increasing the disorder parameter induces a phase transition leading to chaotic dynamics. We observe and investigate here a novel phenomenon in the sub-critical regime for finite size systems: the probability of observing complex dynamics is maximal for an intermediate system size when the disorder is close enough to criticality. We give a more general explanation of this type of system size resonance in the framework of extreme values theory for eigenvalues of random matrices.

  10. Autonomous and Decentralized Optimization of Large-Scale Heterogeneous Wireless Networks by Neural Network Dynamics

    Science.gov (United States)

    Hasegawa, Mikio; Tran, Ha Nguyen; Miyamoto, Goh; Murata, Yoshitoshi; Harada, Hiroshi; Kato, Shuzo

    We propose a neurodynamical approach to a large-scale optimization problem in Cognitive Wireless Clouds, in which a huge number of mobile terminals with multiple different air interfaces autonomously utilize the most appropriate infrastructure wireless networks, by sensing available wireless networks, selecting the most appropriate one, and reconfiguring themselves with seamless handover to the target networks. To deal with such a cognitive radio network, game theory has been applied in order to analyze the stability of the dynamical systems consisting of the mobile terminals' distributed behaviors, but it is not a tool for globally optimizing the state of the network. As a natural optimization dynamical system model suitable for large-scale complex systems, we introduce the neural network dynamics which converges to an optimal state since its property is to continually decrease its energy function. In this paper, we apply such neurodynamics to the optimization problem of radio access technology selection. We compose a neural network that solves the problem, and we show that it is possible to improve total average throughput simply by using distributed and autonomous neuron updates on the terminal side.

  11. Dynamic network communication as a unifying neural basis for cognition, development, aging, and disease.

    Science.gov (United States)

    Voytek, Bradley; Knight, Robert T

    2015-06-15

    Perception, cognition, and social interaction depend upon coordinated neural activity. This coordination operates within noisy, overlapping, and distributed neural networks operating at multiple timescales. These networks are built upon a structural scaffolding with intrinsic neuroplasticity that changes with development, aging, disease, and personal experience. In this article, we begin from the perspective that successful interregional communication relies upon the transient synchronization between distinct low-frequency (communication via phase-coordinated local neuronal spiking. From this, we construct a theoretical framework for dynamic network communication, arguing that these networks reflect a balance between oscillatory coupling and local population spiking activity and that these two levels of activity interact. We theorize that when oscillatory coupling is too strong, spike timing within the local neuronal population becomes too synchronous; when oscillatory coupling is too weak, spike timing is too disorganized. Each results in specific disruptions to neural communication. These alterations in communication dynamics may underlie cognitive changes associated with healthy development and aging, in addition to neurological and psychiatric disorders. A number of neurological and psychiatric disorders-including Parkinson's disease, autism, depression, schizophrenia, and anxiety-are associated with abnormalities in oscillatory activity. Although aging, psychiatric and neurological disease, and experience differ in the biological changes to structural gray or white matter, neurotransmission, and gene expression, our framework suggests that any resultant cognitive and behavioral changes in normal or disordered states or their treatment are a product of how these physical processes affect dynamic network communication. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Male veterans with PTSD exhibit aberrant neural dynamics during working memory processing: an MEG study.

    Science.gov (United States)

    McDermott, Timothy J; Badura-Brack, Amy S; Becker, Katherine M; Ryan, Tara J; Khanna, Maya M; Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2016-06-01

    Posttraumatic stress disorder (PTSD) is associated with executive functioning deficits, including disruptions in working memory. In this study, we examined the neural dynamics of working memory processing in veterans with PTSD and a matched healthy control sample using magnetoencephalography (MEG). Our sample of recent combat veterans with PTSD and demographically matched participants without PTSD completed a working memory task during a 306-sensor MEG recording. The MEG data were preprocessed and transformed into the time-frequency domain. Significant oscillatory brain responses were imaged using a beamforming approach to identify spatiotemporal dynamics. Fifty-one men were included in our analyses: 27 combat veterans with PTSD and 24 controls. Across all participants, a dynamic wave of neural activity spread from posterior visual cortices to left frontotemporal regions during encoding, consistent with a verbal working memory task, and was sustained throughout maintenance. Differences related to PTSD emerged during early encoding, with patients exhibiting stronger α oscillatory responses than controls in the right inferior frontal gyrus (IFG). Differences spread to the right supramarginal and temporal cortices during later encoding where, along with the right IFG, they persisted throughout the maintenance period. This study focused on men with combat-related PTSD using a verbal working memory task. Future studies should evaluate women and the impact of various traumatic experiences using diverse tasks. Posttraumatic stress disorder is associated with neurophysiological abnormalities during working memory encoding and maintenance. Veterans with PTSD engaged a bilateral network, including the inferior prefrontal cortices and supramarginal gyri. Right hemispheric neural activity likely reflects compensatory processing, as veterans with PTSD work to maintain accurate performance despite known cognitive deficits associated with the disorder.

  13. Spatial cluster detection using dynamic programming

    Directory of Open Access Journals (Sweden)

    Sverchkov Yuriy

    2012-03-01

    Full Text Available Abstract Background The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. Methods We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. Results When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. Conclusions We conclude that the dynamic

  14. Spatial cluster detection using dynamic programming.

    Science.gov (United States)

    Sverchkov, Yuriy; Jiang, Xia; Cooper, Gregory F

    2012-03-25

    The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP) estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. We conclude that the dynamic programming algorithm performs on-par with other available methods for

  15. Automatic Estimation of the Dynamics of Channel Conductance Using a Recurrent Neural Network

    Directory of Open Access Journals (Sweden)

    Masaaki Takahashi

    2009-01-01

    Full Text Available In order to simulate neuronal electrical activities, we must estimate the dynamics of channel conductances from physiological experimental data. However, this approach requires the formulation of differential equations that express the time course of channel conductance. On the other hand, if the dynamics are automatically estimated, neuronal activities can be easily simulated. By using a recurrent neural network (RNN, it is possible to estimate the dynamics of channel conductances without formulating the differential equations. In the present study, we estimated the dynamics of the Na+ and K+ conductances of a squid giant axon using two different fully connected RNNs and were able to reproduce various neuronal activities of the axon. The reproduced activities were an action potential, a threshold, a refractory phenomenon, a rebound action potential, and periodic action potentials with a constant stimulation. RNNs can be trained using channels other than the Na+ and K+ channels. Therefore, using our RNN estimation method, the dynamics of channel conductance can be automatically estimated and the neuronal activities can be simulated using the channel RNNs. An RNN can be a useful tool to estimate the dynamics of the channel conductance of a neuron, and by using the method presented here, it is possible to simulate neuronal activities more easily than by using the previous methods.

  16. Identification of Nonlinear Dynamic Systems Using Hammerstein-Type Neural Network

    Directory of Open Access Journals (Sweden)

    Hongshan Yu

    2014-01-01

    Full Text Available Hammerstein model has been popularly applied to identify the nonlinear systems. In this paper, a Hammerstein-type neural network (HTNN is derived to formulate the well-known Hammerstein model. The HTNN consists of a nonlinear static gain in cascade with a linear dynamic part. First, the Lipschitz criterion for order determination is derived. Second, the backpropagation algorithm for updating the network weights is presented, and the stability analysis is also drawn. Finally, simulation results show that HTNN identification approach demonstrated identification performances.

  17. Passivation and control of partially known SISO nonlinear systems via dynamic neural networks

    Directory of Open Access Journals (Sweden)

    Reyes-Reyes J.

    2000-01-01

    Full Text Available In this paper, an adaptive technique is suggested to provide the passivity property for a class of partially known SISO nonlinear systems. A simple Dynamic Neural Network (DNN, containing only two neurons and without any hidden-layers, is used to identify the unknown nonlinear system. By means of a Lyapunov-like analysis the new learning law for this DNN, guarantying both successful identification and passivation effects, is derived. Based on this adaptive DNN model, an adaptive feedback controller, serving for wide class of nonlinear systems with an a priori incomplete model description, is designed. Two typical examples illustrate the effectiveness of the suggested approach.

  18. A New Robust Training Law for Dynamic Neural Networks with External Disturbance: An LMI Approach

    Directory of Open Access Journals (Sweden)

    Choon Ki Ahn

    2010-01-01

    Full Text Available A new robust training law, which is called an input/output-to-state stable training law (IOSSTL, is proposed for dynamic neural networks with external disturbance. Based on linear matrix inequality (LMI formulation, the IOSSTL is presented to not only guarantee exponential stability but also reduce the effect of an external disturbance. It is shown that the IOSSTL can be obtained by solving the LMI, which can be easily facilitated by using some standard numerical packages. Numerical examples are presented to demonstrate the validity of the proposed IOSSTL.

  19. PROPOSAL FOR NEURAL-LINGUISTIC PROGRAMMING (N.L.P. INTHE ADMINISTRATIVE DEVELOPMENT OF LEADERSHIP SPORTS

    Directory of Open Access Journals (Sweden)

    Khalil Samira

    2010-08-01

    Full Text Available Neural-linguistic programming is an organised method to know the human self construction and dealing with it in fixed means and styles so as to decesisively affect the processes of perception, thinking, imaging, ideas,feeling and also in behavior, skills and the human body and mental performance (1 Neural-linguistic programming has a private nature because it is a group of mechanisms and practicaltechniques far from likeliness, so it enters in the circle of application and employment of the human abilities and possibilities. (9 Al Fiky (2001 points out that neural linguistic programming created the favourable environment to help individuals to get rid of their diseased fears and controlling in their negative reactions and thus improving communication with themselves and with others. He shows it took its way into the human life fields because itsways and strategies are used in the sectors of health, education, marketing and administration(2. The modern administration embarks on the human element that represents the most valuable elementsof administration and is the most effective on the productivity and with the increasing the effect of the human element in the efficacy of the administrative organizations, the need increased to consider the management of the human resources as an independent function of administrative functions that cancers the human element and onwhose efficiency, abilities, experience and zeal for work, the administration efficacy depends.

  20. Biological oscillations for learning walking coordination: dynamic recurrent neural network functionally models physiological central pattern generator.

    Science.gov (United States)

    Hoellinger, Thomas; Petieau, Mathieu; Duvinage, Matthieu; Castermans, Thierry; Seetharaman, Karthik; Cebolla, Ana-Maria; Bengoetxea, Ana; Ivanenko, Yuri; Dan, Bernard; Cheron, Guy

    2013-01-01

    The existence of dedicated neuronal modules such as those organized in the cerebral cortex, thalamus, basal ganglia, cerebellum, or spinal cord raises the question of how these functional modules are coordinated for appropriate motor behavior. Study of human locomotion offers an interesting field for addressing this central question. The coordination of the elevation of the 3 leg segments under a planar covariation rule (Borghese et al., 1996) was recently modeled (Barliya et al., 2009) by phase-adjusted simple oscillators shedding new light on the understanding of the central pattern generator (CPG) processing relevant oscillation signals. We describe the use of a dynamic recurrent neural network (DRNN) mimicking the natural oscillatory behavior of human locomotion for reproducing the planar covariation rule in both legs at different walking speeds. Neural network learning was based on sinusoid signals integrating frequency and amplitude features of the first three harmonics of the sagittal elevation angles of the thigh, shank, and foot of each lower limb. We verified the biological plausibility of the neural networks. Best results were obtained with oscillations extracted from the first three harmonics in comparison to oscillations outside the harmonic frequency peaks. Physiological replication steadily increased with the number of neuronal units from 1 to 80, where similarity index reached 0.99. Analysis of synaptic weighting showed that the proportion of inhibitory connections consistently increased with the number of neuronal units in the DRNN. This emerging property in the artificial neural networks resonates with recent advances in neurophysiology of inhibitory neurons that are involved in central nervous system oscillatory activities. The main message of this study is that this type of DRNN may offer a useful model of physiological central pattern generator for gaining insights in basic research and developing clinical applications.

  1. Investigation of neural-net based control strategies for improved power system dynamic performance

    Energy Technology Data Exchange (ETDEWEB)

    Sobajic, D.J. [Electric Power Research Institute, Palo Alto, CA (United States)

    1995-12-31

    The ability to accurately predict the behavior of a dynamic system is of essential importance in monitoring and control of complex processes. In this regard recent advances in neural-net base system identification represent a significant step toward development and design of a new generation of control tools for increased system performance and reliability. The enabling functionality is the one of accurate representation of a model of a nonlinear and nonstationary dynamic system. This functionality provides valuable new opportunities including: (1) The ability to predict future system behavior on the basis of actual system observations, (2) On-line evaluation and display of system performance and design of early warning systems, and (3) Controller optimization for improved system performance. In this presentation, we discuss the issues involved in definition and design of learning control systems and their impact on power system control. Several numerical examples are provided for illustrative purpose.

  2. Optimal Control of Complex Systems Based on Improved Dual Heuristic Dynamic Programming Algorithm

    Directory of Open Access Journals (Sweden)

    Hui Li

    2017-01-01

    Full Text Available When applied to solving the data modeling and optimal control problems of complex systems, the dual heuristic dynamic programming (DHP technique, which is based on the BP neural network algorithm (BP-DHP, has difficulty in prediction accuracy, slow convergence speed, poor stability, and so forth. In this paper, a dual DHP technique based on Extreme Learning Machine (ELM algorithm (ELM-DHP was proposed. Through constructing three kinds of network structures, the paper gives the detailed realization process of the DHP technique in the ELM. The controller designed upon the ELM-DHP algorithm controlled a molecular distillation system with complex features, such as multivariability, strong coupling, and nonlinearity. Finally, the effectiveness of the algorithm is verified by the simulation that compares DHP and HDP algorithms based on ELM and BP neural network. The algorithm can also be applied to solve the data modeling and optimal control problems of similar complex systems.

  3. The effects of dynamical synapses on firing rate activity: a spiking neural network model.

    Science.gov (United States)

    Khalil, Radwa; Moftah, Marie Z; Moustafa, Ahmed A

    2017-11-01

    Accumulating evidence relates the fine-tuning of synaptic maturation and regulation of neural network activity to several key factors, including GABA A signaling and a lateral spread length between neighboring neurons (i.e., local connectivity). Furthermore, a number of studies consider short-term synaptic plasticity (STP) as an essential element in the instant modification of synaptic efficacy in the neuronal network and in modulating responses to sustained ranges of external Poisson input frequency (IF). Nevertheless, evaluating the firing activity in response to the dynamical interaction between STP (triggered by ranges of IF) and these key parameters in vitro remains elusive. Therefore, we designed a spiking neural network (SNN) model in which we incorporated the following parameters: local density of arbor essences and a lateral spread length between neighboring neurons. We also created several network scenarios based on these key parameters. Then, we implemented two classes of STP: (1) short-term synaptic depression (STD) and (2) short-term synaptic facilitation (STF). Each class has two differential forms based on the parametric value of its synaptic time constant (either for depressing or facilitating synapses). Lastly, we compared the neural firing responses before and after the treatment with STP. We found that dynamical synapses (STP) have a critical differential role on evaluating and modulating the firing rate activity in each network scenario. Moreover, we investigated the impact of changing the balance between excitation (E) and inhibition (I) on stabilizing this firing activity. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Dynamic emotional and neural responses to music depend on performance expression and listener experience.

    Science.gov (United States)

    Chapin, Heather; Jantzen, Kelly; Kelso, J A Scott; Steinberg, Fred; Large, Edward

    2010-12-16

    Apart from its natural relevance to cognition, music provides a window into the intimate relationships between production, perception, experience, and emotion. Here, emotional responses and neural activity were observed as they evolved together with stimulus parameters over several minutes. Participants listened to a skilled music performance that included the natural fluctuations in timing and sound intensity that musicians use to evoke emotional responses. A mechanical performance of the same piece served as a control. Before and after fMRI scanning, participants reported real-time emotional responses on a 2-dimensional rating scale (arousal and valence) as they listened to each performance. During fMRI scanning, participants listened without reporting emotional responses. Limbic and paralimbic brain areas responded to the expressive dynamics of human music performance, and both emotion and reward related activations during music listening were dependent upon musical training. Moreover, dynamic changes in timing predicted ratings of emotional arousal, as well as real-time changes in neural activity. BOLD signal changes correlated with expressive timing fluctuations in cortical and subcortical motor areas consistent with pulse perception, and in a network consistent with the human mirror neuron system. These findings show that expressive music performance evokes emotion and reward related neural activations, and that music's affective impact on the brains of listeners is altered by musical training. Our observations are consistent with the idea that music performance evokes an emotional response through a form of empathy that is based, at least in part, on the perception of movement and on violations of pulse-based temporal expectancies.

  5. Dynamic emotional and neural responses to music depend on performance expression and listener experience.

    Directory of Open Access Journals (Sweden)

    Heather Chapin

    2010-12-01

    Full Text Available Apart from its natural relevance to cognition, music provides a window into the intimate relationships between production, perception, experience, and emotion. Here, emotional responses and neural activity were observed as they evolved together with stimulus parameters over several minutes. Participants listened to a skilled music performance that included the natural fluctuations in timing and sound intensity that musicians use to evoke emotional responses. A mechanical performance of the same piece served as a control. Before and after fMRI scanning, participants reported real-time emotional responses on a 2-dimensional rating scale (arousal and valence as they listened to each performance. During fMRI scanning, participants listened without reporting emotional responses. Limbic and paralimbic brain areas responded to the expressive dynamics of human music performance, and both emotion and reward related activations during music listening were dependent upon musical training. Moreover, dynamic changes in timing predicted ratings of emotional arousal, as well as real-time changes in neural activity. BOLD signal changes correlated with expressive timing fluctuations in cortical and subcortical motor areas consistent with pulse perception, and in a network consistent with the human mirror neuron system. These findings show that expressive music performance evokes emotion and reward related neural activations, and that music's affective impact on the brains of listeners is altered by musical training. Our observations are consistent with the idea that music performance evokes an emotional response through a form of empathy that is based, at least in part, on the perception of movement and on violations of pulse-based temporal expectancies.

  6. Synaptic organizations and dynamical properties of weakly connected neural oscillators. II. Learning phase information.

    Science.gov (United States)

    Hoppensteadt, F C; Izhikevich, E M

    1996-08-01

    This is the second of two articles devoted to analyzing the relationship between synaptic organizations (anatomy) and dynamical properties (function) of networks of neural oscillators near multiple supercritical Andronov-Hopf bifurcation points. Here we analyze learning processes in such networks. Regarding learning dynamics, we assume (1) learning is local (i.e. synaptic modification depends on pre- and postsynaptic neurons but not on others), (2) synapses modify slowly relative to characteristic neuron response times, (3) in the absence of either pre- or postsynaptic activity, the synapse weakens (forgets). Our major goal is to analyze all synaptic organizations of oscillatory neural networks that can memorize and retrieve phase information or time delays. We show that such network have the following attributes: (1) the rate of synaptic plasticity connected with learning is determined locally by the presynaptic neurons, (2) the excitatory neurons must be long-axon relay neurons capable of forming distant connections with other excitatory and inhibitory neurons, (3) if inhibitory neurons have long axons, then the network can learn, passively forget and actively unlearn information by adjusting synaptic plasticity rates.

  7. Brain Dynamics in Predicting Driving Fatigue Using a Recurrent Self-Evolving Fuzzy Neural Network.

    Science.gov (United States)

    Liu, Yu-Ting; Lin, Yang-Yin; Wu, Shang-Lin; Chuang, Chun-Hsiang; Lin, Chin-Teng

    2016-02-01

    This paper proposes a generalized prediction system called a recurrent self-evolving fuzzy neural network (RSEFNN) that employs an on-line gradient descent learning rule to address the electroencephalography (EEG) regression problem in brain dynamics for driving fatigue. The cognitive states of drivers significantly affect driving safety; in particular, fatigue driving, or drowsy driving, endangers both the individual and the public. For this reason, the development of brain-computer interfaces (BCIs) that can identify drowsy driving states is a crucial and urgent topic of study. Many EEG-based BCIs have been developed as artificial auxiliary systems for use in various practical applications because of the benefits of measuring EEG signals. In the literature, the efficacy of EEG-based BCIs in recognition tasks has been limited by low resolutions. The system proposed in this paper represents the first attempt to use the recurrent fuzzy neural network (RFNN) architecture to increase adaptability in realistic EEG applications to overcome this bottleneck. This paper further analyzes brain dynamics in a simulated car driving task in a virtual-reality environment. The proposed RSEFNN model is evaluated using the generalized cross-subject approach, and the results indicate that the RSEFNN is superior to competing models regardless of the use of recurrent or nonrecurrent structures.

  8. A Neural-Dynamic Architecture for Concurrent Estimation of Object Pose and Identity

    Directory of Open Access Journals (Sweden)

    Oliver Lomp

    2017-04-01

    Full Text Available Handling objects or interacting with a human user about objects on a shared tabletop requires that objects be identified after learning from a small number of views and that object pose be estimated. We present a neurally inspired architecture that learns object instances by storing features extracted from a single view of each object. Input features are color and edge histograms from a localized area that is updated during processing. The system finds the best-matching view for the object in a novel input image while concurrently estimating the object’s pose, aligning the learned view with current input. The system is based on neural dynamics, computationally operating in real time, and can handle dynamic scenes directly off live video input. In a scenario with 30 everyday objects, the system achieves recognition rates of 87.2% from a single training view for each object, while also estimating pose quite precisely. We further demonstrate that the system can track moving objects, and that it can segment the visual array, selecting and recognizing one object while suppressing input from another known object in the immediate vicinity. Evaluation on the COIL-100 dataset, in which objects are depicted from different viewing angles, revealed recognition rates of 91.1% on the first 30 objects, each learned from four training views.

  9. Integration of Continuous-Time Dynamics in a Spiking Neural Network Simulator.

    Science.gov (United States)

    Hahne, Jan; Dahmen, David; Schuecker, Jannis; Frommer, Andreas; Bolten, Matthias; Helias, Moritz; Diesmann, Markus

    2017-01-01

    Contemporary modeling approaches to the dynamics of neural networks include two important classes of models: biologically grounded spiking neuron models and functionally inspired rate-based units. We present a unified simulation framework that supports the combination of the two for multi-scale modeling, enables the quantitative validation of mean-field approaches by spiking network simulations, and provides an increase in reliability by usage of the same simulation code and the same network model specifications for both model classes. While most spiking simulations rely on the communication of discrete events, rate models require time-continuous interactions between neurons. Exploiting the conceptual similarity to the inclusion of gap junctions in spiking network simulations, we arrive at a reference implementation of instantaneous and delayed interactions between rate-based models in a spiking network simulator. The separation of rate dynamics from the general connection and communication infrastructure ensures flexibility of the framework. In addition to the standard implementation we present an iterative approach based on waveform-relaxation techniques to reduce communication and increase performance for large-scale simulations of rate-based models with instantaneous interactions. Finally we demonstrate the broad applicability of the framework by considering various examples from the literature, ranging from random networks to neural-field models. The study provides the prerequisite for interactions between rate-based and spiking models in a joint simulation.

  10. A Neural-Dynamic Architecture for Concurrent Estimation of Object Pose and Identity.

    Science.gov (United States)

    Lomp, Oliver; Faubel, Christian; Schöner, Gregor

    2017-01-01

    Handling objects or interacting with a human user about objects on a shared tabletop requires that objects be identified after learning from a small number of views and that object pose be estimated. We present a neurally inspired architecture that learns object instances by storing features extracted from a single view of each object. Input features are color and edge histograms from a localized area that is updated during processing. The system finds the best-matching view for the object in a novel input image while concurrently estimating the object's pose, aligning the learned view with current input. The system is based on neural dynamics, computationally operating in real time, and can handle dynamic scenes directly off live video input. In a scenario with 30 everyday objects, the system achieves recognition rates of 87.2% from a single training view for each object, while also estimating pose quite precisely. We further demonstrate that the system can track moving objects, and that it can segment the visual array, selecting and recognizing one object while suppressing input from another known object in the immediate vicinity. Evaluation on the COIL-100 dataset, in which objects are depicted from different viewing angles, revealed recognition rates of 91.1% on the first 30 objects, each learned from four training views.

  11. A dynamic programming approach to adaptive fractionation.

    Science.gov (United States)

    Ramakrishnan, Jagdish; Craft, David; Bortfeld, Thomas; Tsitsiklis, John N

    2012-03-07

    We conduct a theoretical study of various solution methods for the adaptive fractionation problem. The two messages of this paper are as follows: (i) dynamic programming (DP) is a useful framework for adaptive radiation therapy, particularly adaptive fractionation, because it allows us to assess how close to optimal different methods are, and (ii) heuristic methods proposed in this paper are near-optimal, and therefore, can be used to evaluate the best possible benefit of using an adaptive fraction size. The essence of adaptive fractionation is to increase the fraction size when the tumor and organ-at-risk (OAR) are far apart (a 'favorable' anatomy) and to decrease the fraction size when they are close together. Given that a fixed prescribed dose must be delivered to the tumor over the course of the treatment, such an approach results in a lower cumulative dose to the OAR when compared to that resulting from standard fractionation. We first establish a benchmark by using the DP algorithm to solve the problem exactly. In this case, we characterize the structure of an optimal policy, which provides guidance for our choice of heuristics. We develop two intuitive, numerically near-optimal heuristic policies, which could be used for more complex, high-dimensional problems. Furthermore, one of the heuristics requires only a statistic of the motion probability distribution, making it a reasonable method for use in a realistic setting. Numerically, we find that the amount of decrease in dose to the OAR can vary significantly (5-85%) depending on the amount of motion in the anatomy, the number of fractions and the range of fraction sizes allowed. In general, the decrease in dose to the OAR is more pronounced when: (i) we have a high probability of large tumor-OAR distances, (ii) we use many fractions (as in a hyper-fractionated setting) and (iii) we allow large daily fraction size deviations.

  12. MyT1 Counteracts the Neural Progenitor Program to Promote Vertebrate Neurogenesis

    Directory of Open Access Journals (Sweden)

    Francisca F. Vasconcelos

    2016-10-01

    Full Text Available The generation of neurons from neural stem cells requires large-scale changes in gene expression that are controlled to a large extent by proneural transcription factors, such as Ascl1. While recent studies have characterized the differentiation genes activated by proneural factors, less is known on the mechanisms that suppress progenitor cell identity. Here, we show that Ascl1 induces the transcription factor MyT1 while promoting neuronal differentiation. We combined functional studies of MyT1 during neurogenesis with the characterization of its transcriptional program. MyT1 binding is associated with repression of gene transcription in neural progenitor cells. It promotes neuronal differentiation by counteracting the inhibitory activity of Notch signaling at multiple levels, targeting the Notch1 receptor and many of its downstream targets. These include regulators of the neural progenitor program, such as Hes1, Sox2, Id3, and Olig1. Thus, Ascl1 suppresses Notch signaling cell-autonomously via MyT1, coupling neuronal differentiation with repression of the progenitor fate.

  13. ALPprolog --- A New Logic Programming Method for Dynamic Domains

    OpenAIRE

    Drescher, Conrad; Thielscher, Michael

    2011-01-01

    Logic programming is a powerful paradigm for programming autonomous agents in dynamic domains, as witnessed by languages such as Golog and Flux. In this work we present ALPprolog, an expressive, yet efficient, logic programming language for the online control of agents that have to reason about incomplete information and sensing actions.

  14. Fuzzy Counter Propagation Neural Network Control for a Class of Nonlinear Dynamical Systems

    Directory of Open Access Journals (Sweden)

    Vandana Sakhre

    2015-01-01

    Full Text Available Fuzzy Counter Propagation Neural Network (FCPN controller design is developed, for a class of nonlinear dynamical systems. In this process, the weight connecting between the instar and outstar, that is, input-hidden and hidden-output layer, respectively, is adjusted by using Fuzzy Competitive Learning (FCL. FCL paradigm adopts the principle of learning, which is used to calculate Best Matched Node (BMN which is proposed. This strategy offers a robust control of nonlinear dynamical systems. FCPN is compared with the existing network like Dynamic Network (DN and Back Propagation Network (BPN on the basis of Mean Absolute Error (MAE, Mean Square Error (MSE, Best Fit Rate (BFR, and so forth. It envisages that the proposed FCPN gives better results than DN and BPN. The effectiveness of the proposed FCPN algorithms is demonstrated through simulations of four nonlinear dynamical systems and multiple input and single output (MISO and a single input and single output (SISO gas furnace Box-Jenkins time series data.

  15. Bifurcation Analysis on Phase-Amplitude Cross-Frequency Coupling in Neural Networks with Dynamic Synapses

    Science.gov (United States)

    Sase, Takumi; Katori, Yuichi; Komuro, Motomasa; Aihara, Kazuyuki

    2017-01-01

    We investigate a discrete-time network model composed of excitatory and inhibitory neurons and dynamic synapses with the aim at revealing dynamical properties behind oscillatory phenomena possibly related to brain functions. We use a stochastic neural network model to derive the corresponding macroscopic mean field dynamics, and subsequently analyze the dynamical properties of the network. In addition to slow and fast oscillations arising from excitatory and inhibitory networks, respectively, we show that the interaction between these two networks generates phase-amplitude cross-frequency coupling (CFC), in which multiple different frequency components coexist and the amplitude of the fast oscillation is modulated by the phase of the slow oscillation. Furthermore, we clarify the detailed properties of the oscillatory phenomena by applying the bifurcation analysis to the mean field model, and accordingly show that the intermittent and the continuous CFCs can be characterized by an aperiodic orbit on a closed curve and one on a torus, respectively. These two CFC modes switch depending on the coupling strength from the excitatory to inhibitory networks, via the saddle-node cycle bifurcation of a one-dimensional torus in map (MT1SNC), and may be associated with the function of multi-item representation. We believe that the present model might have potential for studying possible functional roles of phase-amplitude CFC in the cerebral cortex. PMID:28424606

  16. Development of compositional and contextual communicable congruence in robots by using dynamic neural network models.

    Science.gov (United States)

    Park, Gibeom; Tani, Jun

    2015-12-01

    The current study presents neurorobotics experiments on acquisition of skills for "communicable congruence" with human via learning. A dynamic neural network model which is characterized by its multiple timescale dynamics property was utilized as a neuromorphic model for controlling a humanoid robot. In the experimental task, the humanoid robot was trained to generate specific sequential movement patterns as responding to various sequences of imperative gesture patterns demonstrated by the human subjects by following predefined compositional semantic rules. The experimental results showed that (1) the adopted MTRNN can achieve generalization by learning in the lower feature perception level by using a limited set of tutoring patterns, (2) the MTRNN can learn to extract compositional semantic rules with generalization in its higher level characterized by slow timescale dynamics, (3) the MTRNN can develop another type of cognitive capability for controlling the internal contextual processes as situated to on-going task sequences without being provided with cues for explicitly indicating task segmentation points. The analysis on the dynamic property developed in the MTRNN via learning indicated that the aforementioned cognitive mechanisms were achieved by self-organization of adequate functional hierarchy by utilizing the constraint of the multiple timescale property and the topological connectivity imposed on the network configuration. These results of the current research could contribute to developments of socially intelligent robots endowed with cognitive communicative competency similar to that of human. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Approximate Dynamic Programming Solving the Curses of Dimensionality

    CERN Document Server

    Powell, Warren B

    2011-01-01

    Praise for the First Edition "Finally, a book devoted to dynamic programming and written using the language of operations research (OR)! This beautiful book fills a gap in the libraries of OR specialists and practitioners."-Computing Reviews This new edition showcases a focus on modeling and computation for complex classes of approximate dynamic programming problems Understanding approximate dynamic programming (ADP) is vital in order to develop practical and high-quality solutions to complex industrial problems, particularly when those problems involve making decisions in the presence of unce

  18. Reduction of dimensionality in dynamic programming-based solution methods for nonlinear integer programming

    Directory of Open Access Journals (Sweden)

    Balasubramanian Ram

    1988-01-01

    Full Text Available This paper suggests a method of formulating any nonlinear integer programming problem, with any number of constraints, as an equivalent single constraint problem, thus reducing the dimensionality of the associated dynamic programming problem.

  19. Analysis of neural interaction in motor cortex during reach-to-grasp task based on Dynamic Bayesian Networks.

    Science.gov (United States)

    Sang, Dong; Lv, Bin; He, Huiguang; He, Jiping; Wang, Feiyue

    2010-01-01

    In this work, we took the analysis of neural interaction based on the data recorded from the motor cortex of a monkey, when it was trained to complete multi-targets reach-to-grasp tasks. As a recently proved effective tool, Dynamic Bayesian Network (DBN) was applied to model and infer interactions of dependence between neurons. In the results, the gained networks of neural interactions, which correspond to different tasks with different directions and orientations, indicated that the target information was not encoded in simple ways by neuronal networks. We also explored the difference of neural interactions between delayed period and peri-movement period during reach-to-grasp task. We found that the motor control process always led to relatively more complex neural interaction networks than the plan thinking process.

  20. Neural dynamics of morphological processing in spoken word comprehension: Laterality and automaticity

    Directory of Open Access Journals (Sweden)

    Caroline M. Whiting

    2013-11-01

    Full Text Available Rapid and automatic processing of grammatical complexity is argued to take place during speech comprehension, engaging a left-lateralised fronto-temporal language network. Here we address how neural activity in these regions is modulated by the grammatical properties of spoken words. We used combined magneto- and electroencephalography (MEG, EEG to delineate the spatiotemporal patterns of activity that support the recognition of morphologically complex words in English with inflectional (-s and derivational (-er affixes (e.g. bakes, baker. The mismatch negativity (MMN, an index of linguistic memory traces elicited in a passive listening paradigm, was used to examine the neural dynamics elicited by morphologically complex words. Results revealed an initial peak 130-180 ms after the deviation point with a major source in left superior temporal cortex. The localisation of this early activation showed a sensitivity to two grammatical properties of the stimuli: 1 the presence of morphological complexity, with affixed words showing increased left-laterality compared to non-affixed words; and 2 the grammatical category, with affixed verbs showing greater left-lateralisation in inferior frontal gyrus compared to affixed nouns (bakes vs. beaks. This automatic brain response was additionally sensitive to semantic coherence (the meaning of the stem vs. the meaning of the whole form in fronto-temporal regions. These results demonstrate that the spatiotemporal pattern of neural activity in spoken word processing is modulated by the presence of morphological structure, predominantly engaging the left-hemisphere’s fronto-temporal language network, and does not require focused attention on the linguistic input.

  1. Dynamic transcriptional signature and cell fate analysis reveals plasticity of individual neural plate border cells.

    Science.gov (United States)

    Roellig, Daniela; Tan-Cabugao, Johanna; Esaian, Sevan; Bronner, Marianne E

    2017-03-29

    The 'neural plate border' of vertebrate embryos contains precursors of neural crest and placode cells, both defining vertebrate characteristics. How these lineages segregate from neural and epidermal fates has been a matter of debate. We address this by performing a fine-scale quantitative temporal analysis of transcription factor expression in the neural plate border of chick embryos. The results reveal significant overlap of transcription factors characteristic of multiple lineages in individual border cells from gastrula through neurula stages. Cell fate analysis using a Sox2 (neural) enhancer reveals that cells that are initially Sox2+ cells can contribute not only to neural tube but also to neural crest and epidermis. Moreover, modulating levels of Sox2 or Pax7 alters the apportionment of neural tube versus neural crest fates. Our results resolve a long-standing question and suggest that many individual border cells maintain ability to contribute to multiple ectodermal lineages until or beyond neural tube closure.

  2. Attention training improves aberrant neural dynamics during working memory processing in veterans with PTSD.

    Science.gov (United States)

    McDermott, Timothy J; Badura-Brack, Amy S; Becker, Katherine M; Ryan, Tara J; Bar-Haim, Yair; Pine, Daniel S; Khanna, Maya M; Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2016-12-01

    Posttraumatic stress disorder (PTSD) is associated with executive functioning deficits, including disruptions in working memory (WM). Recent studies suggest that attention training reduces PTSD symptomatology, but the underlying neural mechanisms are unknown. We used high-density magnetoencephalography (MEG) to evaluate whether attention training modulates brain regions serving WM processing in PTSD. Fourteen veterans with PTSD completed a WM task during a 306-sensor MEG recording before and after 8 sessions of attention training treatment. A matched comparison sample of 12 combat-exposed veterans without PTSD completed the same WM task during a single MEG session. To identify the spatiotemporal dynamics, each group's data were transformed into the time-frequency domain, and significant oscillatory brain responses were imaged using a beamforming approach. All participants exhibited activity in left hemispheric language areas consistent with a verbal WM task. Additionally, veterans with PTSD and combat-exposed healthy controls each exhibited oscillatory responses in right hemispheric homologue regions (e.g., right Broca's area); however, these responses were in opposite directions. Group differences in oscillatory activity emerged in the theta band (4-8 Hz) during encoding and in the alpha band (9-12 Hz) during maintenance and were significant in right prefrontal and right supramarginal and inferior parietal regions. Importantly, following attention training, these significant group differences were reduced or eliminated. This study provides initial evidence that attention training improves aberrant neural activity in brain networks serving WM processing.

  3. Self: an adaptive pressure arising from self-organization, chaotic dynamics, and neural Darwinism.

    Science.gov (United States)

    Bruzzo, Angela Alessia; Vimal, Ram Lakhan Pandey

    2007-12-01

    In this article, we establish a model to delineate the emergence of "self" in the brain making recourse to the theory of chaos. Self is considered as the subjective experience of a subject. As essential ingredients of subjective experiences, our model includes wakefulness, re-entry, attention, memory, and proto-experiences. The stability as stated by chaos theory can potentially describe the non-linear function of "self" as sensitive to initial conditions and can characterize it as underlying order from apparently random signals. Self-similarity is discussed as a latent menace of a pathological confusion between "self" and "others". Our test hypothesis is that (1) consciousness might have emerged and evolved from a primordial potential or proto-experience in matter, such as the physical attractions and repulsions experienced by electrons, and (2) "self" arises from chaotic dynamics, self-organization and selective mechanisms during ontogenesis, while emerging post-ontogenically as an adaptive pressure driven by both volume and synaptic-neural transmission and influencing the functional connectivity of neural nets (structure).

  4. Hybrid Generalised Additive Type-2 Fuzzy-Wavelet-Neural Network in Dynamic Data Mining

    Directory of Open Access Journals (Sweden)

    Bodyanskiy Yevgeniy

    2015-12-01

    Full Text Available In the paper, a new hybrid system of computational intelligence is proposed. This system combines the advantages of neuro-fuzzy system of Takagi-Sugeno-Kang, type-2 fuzzy logic, wavelet neural networks and generalised additive models of Hastie-Tibshirani. The proposed system has universal approximation properties and learning capability based on the experimental data sets which pertain to the neural networks and neuro-fuzzy systems; interpretability and transparency of the obtained results due to the soft computing systems and, first of all, due to type-2 fuzzy systems; possibility of effective description of local signal and process features due to the application of systems based on wavelet transform; simplicity and speed of learning process due to generalised additive models. The proposed system can be used for solving a wide class of dynamic data mining tasks, which are connected with non-stationary, nonlinear stochastic and chaotic signals. Such a system is sufficiently simple in numerical implementation and is characterised by a high speed of learning and information processing.

  5. Integrating Verbal and Nonverbal Communication in a Dynamic Neural Field Architecture for Human–Robot Interaction

    Science.gov (United States)

    Bicho, Estela; Louro, Luís; Erlhagen, Wolfram

    2010-01-01

    How do humans coordinate their intentions, goals and motor behaviors when performing joint action tasks? Recent experimental evidence suggests that resonance processes in the observer's motor system are crucially involved in our ability to understand actions of others’, to infer their goals and even to comprehend their action-related language. In this paper, we present a control architecture for human–robot collaboration that exploits this close perception-action linkage as a means to achieve more natural and efficient communication grounded in sensorimotor experiences. The architecture is formalized by a coupled system of dynamic neural fields representing a distributed network of neural populations that encode in their activation patterns goals, actions and shared task knowledge. We validate the verbal and nonverbal communication skills of the robot in a joint assembly task in which the human–robot team has to construct toy objects from their components. The experiments focus on the robot's capacity to anticipate the user's needs and to detect and communicate unexpected events that may occur during joint task execution. PMID:20725504

  6. Integrating verbal and nonverbal communication in a dynamic neural field architecture for human-robot interaction

    Directory of Open Access Journals (Sweden)

    Estela Bicho

    2010-05-01

    Full Text Available How do humans coordinate their intentions, goals and motor behaviors when performing joint action tasks? Recent experimental evidence suggests that resonance processes in the observer's motor system are crucially involved in our ability to understand actions of others', to infer their goals and even to comprehend their action-related language. In this paper, we present a control architecture for human-robot collaboration that exploits this close perception-action linkage as a means to achieve more natural and efficient communication grounded in sensorimotor experiences. The architecture is formalized by a coupled system of dynamic neural fields representing a distributed network of neural populations that encode in their activation patterns goals, actions and shared task knowledge. We validate the verbal and non-verbal communication skills of the robot in a joint assembly task in which the human-robot team has to construct toy objects from their components. The experiments focus on the robot’s capacity to anticipate the user’s needs and to detect and communicate unexpected events that may occur during joint task execution.

  7. A Dynamic Bioinspired Neural Network Based Real-Time Path Planning Method for Autonomous Underwater Vehicles.

    Science.gov (United States)

    Ni, Jianjun; Wu, Liuying; Shi, Pengfei; Yang, Simon X

    2017-01-01

    Real-time path planning for autonomous underwater vehicle (AUV) is a very difficult and challenging task. Bioinspired neural network (BINN) has been used to deal with this problem for its many distinct advantages: that is, no learning process is needed and realization is also easy. However, there are some shortcomings when BINN is applied to AUV path planning in a three-dimensional (3D) unknown environment, including complex computing problem when the environment is very large and repeated path problem when the size of obstacles is bigger than the detection range of sensors. To deal with these problems, an improved dynamic BINN is proposed in this paper. In this proposed method, the AUV is regarded as the core of the BINN and the size of the BINN is based on the detection range of sensors. Then the BINN will move with the AUV and the computing could be reduced. A virtual target is proposed in the path planning method to ensure that the AUV can move to the real target effectively and avoid big-size obstacles automatically. Furthermore, a target attractor concept is introduced to improve the computing efficiency of neural activities. Finally, some experiments are conducted under various 3D underwater environments. The experimental results show that the proposed BINN based method can deal with the real-time path planning problem for AUV efficiently.

  8. Neural substrates and behavioral profiles of romantic jealousy and its temporal dynamics.

    Science.gov (United States)

    Sun, Yan; Yu, Hongbo; Chen, Jie; Liang, Jie; Lu, Lin; Zhou, Xiaolin; Shi, Jie

    2016-06-07

    Jealousy is not only a way of experiencing love but also a stabilizer of romantic relationships, although morbid romantic jealousy is maladaptive. Being engaged in a formal romantic relationship can tune one's romantic jealousy towards a specific target. Little is known about how the human brain processes romantic jealousy by now. Here, by combining scenario-based imagination and functional MRI, we investigated the behavioral and neural correlates of romantic jealousy and their development across stages (before vs. after being in a formal relationship). Romantic jealousy scenarios elicited activations primarily in the basal ganglia (BG) across stages, and were significantly higher after the relationship was established in both the behavioral rating and BG activation. The intensity of romantic jealousy was related to the intensity of romantic happiness, which mainly correlated with ventral medial prefrontal cortex activation. The increase in jealousy across stages was associated with the tendency for interpersonal aggression. These results bridge the gap between the theoretical conceptualization of romantic jealousy and its neural correlates and shed light on the dynamic changes in jealousy.

  9. Dynamic Programming Algorithms in Speech Recognition

    Directory of Open Access Journals (Sweden)

    Titus Felix FURTUNA

    2008-01-01

    Full Text Available In a system of speech recognition containing words, the recognition requires the comparison between the entry signal of the word and the various words of the dictionary. The problem can be solved efficiently by a dynamic comparison algorithm whose goal is to put in optimal correspondence the temporal scales of the two words. An algorithm of this type is Dynamic Time Warping. This paper presents two alternatives for implementation of the algorithm designed for recognition of the isolated words.

  10. TEXTNN—A MATLAB program for textural classification using neural networks

    Science.gov (United States)

    Leite, Emilson Pereira; de Souza Filho, Carlos Roberto

    2009-10-01

    A new MATLAB code that provides tools to perform classification of textural images for applications in the geosciences is presented in this paper. The program, here coined as textural neural network (TEXTNN), comprises the computation of variogram maps in the frequency domain for specific lag distances in the neighborhood of a pixel. The result is then converted back to spatial domain, where directional or omni-directional semivariograms are extracted. Feature vectors are built with textural information composed of semivariance values at these lag distances and, moreover, with histogram measures of mean, standard deviation and weighted-rank fill ratio. This procedure is applied to a selected group of pixels or to all pixels in an image using a moving window. A feed-forward back-propagation neural network can then be designed and trained on feature vectors of predefined classes (training set). The training phase minimizes the mean-squared error on the training set. Additionally, at each iteration, the mean-squared error for every validation is assessed and a test set is evaluated. The program also calculates contingency matrices, global accuracy and kappa coefficient for the training, validation and test sets, allowing a quantitative appraisal of the predictive power of the neural network models. The interpreter is able to select the best model obtained from a k-fold cross-validation or to use a unique split-sample dataset for classification of all pixels in a given textural image. The performance of the algorithms and the end-user program were tested using synthetic images, orbital synthetic aperture radar (SAR) (RADARSAT) imagery for oil-seepage detection, and airborne, multi-polarized SAR imagery for geologic mapping, and the overall results are considered quite positive.

  11. Sustained neural activity to gaze and emotion perception in dynamic social scenes.

    Science.gov (United States)

    Ulloa, José Luis; Puce, Aina; Hugueville, Laurent; George, Nathalie

    2014-03-01

    To understand social interactions, we must decode dynamic social cues from seen faces. Here, we used magnetoencephalography (MEG) to study the neural responses underlying the perception of emotional expressions and gaze direction changes as depicted in an interaction between two agents. Subjects viewed displays of paired faces that first established a social scenario of gazing at each other (mutual attention) or gazing laterally together (deviated group attention) and then dynamically displayed either an angry or happy facial expression. The initial gaze change elicited a significantly larger M170 under the deviated than the mutual attention scenario. At around 400 ms after the dynamic emotion onset, responses at posterior MEG sensors differentiated between emotions, and between 1000 and 2200 ms, left posterior sensors were additionally modulated by social scenario. Moreover, activity on right anterior sensors showed both an early and prolonged interaction between emotion and social scenario. These results suggest that activity in right anterior sensors reflects an early integration of emotion and social attention, while posterior activity first differentiated between emotions only, supporting the view of a dual route for emotion processing. Altogether, our data demonstrate that both transient and sustained neurophysiological responses underlie social processing when observing interactions between others.

  12. Using motor imagery to study the neural substrates of dynamic balance.

    Directory of Open Access Journals (Sweden)

    Murielle Ursulla Ferraye

    Full Text Available This study examines the cerebral structures involved in dynamic balance using a motor imagery (MI protocol. We recorded cerebral activity with functional magnetic resonance imaging while subjects imagined swaying on a balance board along the sagittal plane to point a laser at target pairs of different sizes (small, large. We used a matched visual imagery (VI control task and recorded imagery durations during scanning. MI and VI durations were differentially influenced by the sway accuracy requirement, indicating that MI of balance is sensitive to the increased motor control necessary to point at a smaller target. Compared to VI, MI of dynamic balance recruited additional cortical and subcortical portions of the motor system, including frontal cortex, basal ganglia, cerebellum and mesencephalic locomotor region, the latter showing increased effective connectivity with the supplementary motor area. The regions involved in MI of dynamic balance were spatially distinct but contiguous to those involved in MI of gait (Bakker et al., 2008; Snijders et al., 2011; Crémers et al., 2012, in a pattern consistent with existing somatotopic maps of the trunk (for balance and legs (for gait. These findings validate a novel, quantitative approach for studying the neural control of balance in humans. This approach extends previous reports on MI of static stance (Jahn et al., 2004, 2008, and opens the way for studying gait and balance impairments in patients with neurodegenerative disorders.

  13. Spherical harmonics based descriptor for neural network potentials: Structure and dynamics of Au147 nanocluster

    Science.gov (United States)

    Jindal, Shweta; Chiriki, Siva; Bulusu, Satya S.

    2017-05-01

    We propose a highly efficient method for fitting the potential energy surface of a nanocluster using a spherical harmonics based descriptor integrated with an artificial neural network. Our method achieves the accuracy of quantum mechanics and speed of empirical potentials. For large sized gold clusters (Au147), the computational time for accurate calculation of energy and forces is about 1.7 s, which is faster by several orders of magnitude compared to density functional theory (DFT). This method is used to perform the global minimum optimizations and molecular dynamics simulations for Au147, and it is found that its global minimum is not an icosahedron. The isomer that can be regarded as the global minimum is found to be 4 eV lower in energy than the icosahedron and is confirmed from DFT. The geometry of the obtained global minimum contains 105 atoms on the surface and 42 atoms in the core. A brief study on the fluxionality in Au147 is performed, and it is concluded that Au147 has a dynamic surface, thus opening a new window for studying its reaction dynamics.

  14. Using motor imagery to study the neural substrates of dynamic balance.

    Science.gov (United States)

    Ferraye, Murielle Ursulla; Debû, Bettina; Heil, Lieke; Carpenter, Mark; Bloem, Bastiaan Roelof; Toni, Ivan

    2014-01-01

    This study examines the cerebral structures involved in dynamic balance using a motor imagery (MI) protocol. We recorded cerebral activity with functional magnetic resonance imaging while subjects imagined swaying on a balance board along the sagittal plane to point a laser at target pairs of different sizes (small, large). We used a matched visual imagery (VI) control task and recorded imagery durations during scanning. MI and VI durations were differentially influenced by the sway accuracy requirement, indicating that MI of balance is sensitive to the increased motor control necessary to point at a smaller target. Compared to VI, MI of dynamic balance recruited additional cortical and subcortical portions of the motor system, including frontal cortex, basal ganglia, cerebellum and mesencephalic locomotor region, the latter showing increased effective connectivity with the supplementary motor area. The regions involved in MI of dynamic balance were spatially distinct but contiguous to those involved in MI of gait (Bakker et al., 2008; Snijders et al., 2011; Crémers et al., 2012), in a pattern consistent with existing somatotopic maps of the trunk (for balance) and legs (for gait). These findings validate a novel, quantitative approach for studying the neural control of balance in humans. This approach extends previous reports on MI of static stance (Jahn et al., 2004, 2008), and opens the way for studying gait and balance impairments in patients with neurodegenerative disorders.

  15. Dynamic detection of abnormalities in video analysis of crowd behavior with DBSCAN and neural networks

    Directory of Open Access Journals (Sweden)

    Hocine Chebi

    2016-10-01

    Full Text Available Visual analysis of human behavior is a broad field within computer vision. In this field of work, we are interested in dynamic methods in the analysis of crowd behavior which consist in detecting the abnormal entities in a group in a dense scene. These scenes are characterized by the presence of a great number of people in the camera’s field of vision. The major problem is the development of an autonomous approach for the management of a great number of anomalies which is almost impossible to carry out by human operators. We present in this paper a new approach for the detection of dynamic anomalies of very dense scenes measuring the speed of both the individuals and the whole group. The various anomalies are detected by dynamically switching between two approaches: An artificial neural network (ANN for the management of group anomalies of people, and a Density-Based Spatial Clustering of Application with Noise (DBSCAN in the case of entities. For greater robustness and effectiveness, we introduced two routines that serve to eliminate the shades and the management of occlusions. The two latter phases have proven that the results of the simulation are comparable to existing work.

  16. Post-Traumatic Stress Constrains the Dynamic Repertoire of Neural Activity.

    Science.gov (United States)

    Mišić, Bratislav; Dunkley, Benjamin T; Sedge, Paul A; Da Costa, Leodante; Fatima, Zainab; Berman, Marc G; Doesburg, Sam M; McIntosh, Anthony R; Grodecki, Richard; Jetly, Rakesh; Pang, Elizabeth W; Taylor, Margot J

    2016-01-13

    Post-traumatic stress disorder (PTSD) is an anxiety disorder arising from exposure to a traumatic event. Although primarily defined in terms of behavioral symptoms, the global neurophysiological effects of traumatic stress are increasingly recognized as a critical facet of the human PTSD phenotype. Here we use magnetoencephalographic recordings to investigate two aspects of information processing: inter-regional communication (measured by functional connectivity) and the dynamic range of neural activity (measured in terms of local signal variability). We find that both measures differentiate soldiers diagnosed with PTSD from soldiers without PTSD, from healthy civilians, and from civilians with mild traumatic brain injury, which is commonly comorbid with PTSD. Specifically, soldiers with PTSD display inter-regional hypersynchrony at high frequencies (80-150 Hz), as well as a concomitant decrease in signal variability. The two patterns are spatially correlated and most pronounced in a left temporal subnetwork, including the hippocampus and amygdala. We hypothesize that the observed hypersynchrony may effectively constrain the expression of local dynamics, resulting in less variable activity and a reduced dynamic repertoire. Thus, the re-experiencing phenomena and affective sequelae in combat-related PTSD may result from functional networks becoming "stuck" in configurations reflecting memories, emotions, and thoughts originating from the traumatizing experience. The present study investigates the effects of post-traumatic stress disorder (PTSD) in combat-exposed soldiers. We find that soldiers with PTSD exhibit hypersynchrony in a circuit of temporal lobe areas associated with learning and memory function. This rigid functional architecture is associated with a decrease in signal variability in the same areas, suggesting that the observed hypersynchrony may constrain the expression of local dynamics, resulting in a reduced dynamic range. Our findings suggest that

  17. SAGRAD: A Program for Neural Network Training with Simulated Annealing and the Conjugate Gradient Method.

    Science.gov (United States)

    Bernal, Javier; Torres-Jimenez, Jose

    2015-01-01

    SAGRAD (Simulated Annealing GRADient), a Fortran 77 program for computing neural networks for classification using batch learning, is discussed. Neural network training in SAGRAD is based on a combination of simulated annealing and Møller's scaled conjugate gradient algorithm, the latter a variation of the traditional conjugate gradient method, better suited for the nonquadratic nature of neural networks. Different aspects of the implementation of the training process in SAGRAD are discussed, such as the efficient computation of gradients and multiplication of vectors by Hessian matrices that are required by Møller's algorithm; the (re)initialization of weights with simulated annealing required to (re)start Møller's algorithm the first time and each time thereafter that it shows insufficient progress in reaching a possibly local minimum; and the use of simulated annealing when Møller's algorithm, after possibly making considerable progress, becomes stuck at a local minimum or flat area of weight space. Outlines of the scaled conjugate gradient algorithm, the simulated annealing procedure and the training process used in SAGRAD are presented together with results from running SAGRAD on two examples of training data.

  18. Dynamic model of a PEM electrolyser based on artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Chavez-Ramirez, A.U.; Munoz-Guerrero, R.; Sanchez-Huerta, V.; Ramirez-Arredondo, Juan M.; Ornelas, R.; Arriaga, L.G.; Siracusano, S.; Brunaccini, G.; Napoli, G.; Antonucci, V.; Arico, A.S.

    2011-01-15

    Hydrogen production by electrolysis is emerging as a promising way to meet future fuel demand, and developing models capable of simulating the operation of electrolysis devices is indispensable to efficiently design power generation systems, reduce manufacturing costs and save resources. The nonlinear nature of the Artificial Neural Network (ANN) plays a key role in developing models predicting the performance of complex systems. The behaviour of a Polymer Electrolyte Membrane (PEM) Electrolyser of three cell stack was modelled successfully using a Multilayer Perceptron Network (MLP). This dynamic model was trained to learn the internal relationships of this electrolysis device and predict its behaviour without physical equations. Electric current supply and operation temperature were used as input vector able to predict each cell voltage behaviour. An accuracy (< 2%) was reached after comparing the single cell performance of the real electrolyser versus the ANN based model. This predictive model can be used as a virtual device into a more complex energy system.

  19. Using System Dynamic Model and Neural Network Model to Analyse Water Scarcity in Sudan

    Science.gov (United States)

    Li, Y.; Tang, C.; Xu, L.; Ye, S.

    2017-07-01

    Many parts of the world are facing the problem of Water Scarcity. Analysing Water Scarcity quantitatively is an important step to solve the problem. Water scarcity in a region is gauged by WSI (water scarcity index), which incorporate water supply and water demand. To get the WSI, Neural Network Model and SDM (System Dynamic Model) that depict how environmental and social factors affect water supply and demand are developed to depict how environmental and social factors affect water supply and demand. The uneven distribution of water resource and water demand across a region leads to an uneven distribution of WSI within this region. To predict WSI for the future, logistic model, Grey Prediction, and statistics are applied in predicting variables. Sudan suffers from severe water scarcity problem with WSI of 1 in 2014, water resource unevenly distributed. According to the result of modified model, after the intervention, Sudan’s water situation will become better.

  20. Modeling Microstructural Evolution During Dynamic Recrystallization of Alloy D9 Using Artificial Neural Network

    Science.gov (United States)

    Mandal, Sumantra; Sivaprasad, P. V.; Dube, R. K.

    2007-12-01

    An artificial neural network (ANN) model was developed to predict the microstructural evolution of a 15Cr-15Ni-2.2Mo-Ti modified austenitic stainless steel (Alloy D9) during dynamic recrystallization (DRX). The input parameters were strain, strain rate, and temperature whereas microstructural features namely, %DRX and average grain size were the output parameters. The ANN was trained with the database obtained from various industrial scale metal-forming operations like forge hammer, hydraulic press, and rolling carried out in the temperature range 1173-1473 K to various strain levels. The performance of the model was evaluated using a wide variety of statistical indices and the predictability of the model was found to be good. The combined influence of temperature and strain on microstructural features has been simulated employing the developed model. The results were found to be consistent with the relevant fundamental metallurgical phenomena.

  1. Neural network modelling and dynamical system theory: are they relevant to study the governing dynamics of association football players?

    Science.gov (United States)

    Dutt-Mazumder, Aviroop; Button, Chris; Robins, Anthony; Bartlett, Roger

    2011-12-01

    Recent studies have explored the organization of player movements in team sports using a range of statistical tools. However, the factors that best explain the performance of association football teams remain elusive. Arguably, this is due to the high-dimensional behavioural outputs that illustrate the complex, evolving configurations typical of team games. According to dynamical system analysts, movement patterns in team sports exhibit nonlinear self-organizing features. Nonlinear processing tools (i.e. Artificial Neural Networks; ANNs) are becoming increasingly popular to investigate the coordination of participants in sports competitions. ANNs are well suited to describing high-dimensional data sets with nonlinear attributes, however, limited information concerning the processes required to apply ANNs exists. This review investigates the relative value of various ANN learning approaches used in sports performance analysis of team sports focusing on potential applications for association football. Sixty-two research sources were summarized and reviewed from electronic literature search engines such as SPORTDiscus, Google Scholar, IEEE Xplore, Scirus, ScienceDirect and Elsevier. Typical ANN learning algorithms can be adapted to perform pattern recognition and pattern classification. Particularly, dimensionality reduction by a Kohonen feature map (KFM) can compress chaotic high-dimensional datasets into low-dimensional relevant information. Such information would be useful for developing effective training drills that should enhance self-organizing coordination among players. We conclude that ANN-based qualitative analysis is a promising approach to understand the dynamical attributes of association football players.

  2. Neural dynamics necessary and sufficient for transition into pre-sleep induced by EEG neurofeedback.

    Science.gov (United States)

    Kinreich, Sivan; Podlipsky, Ilana; Jamshy, Shahar; Intrator, Nathan; Hendler, Talma

    2014-08-15

    The transition from being fully awake to pre-sleep occurs daily just before falling asleep; thus its disturbance might be detrimental. Yet, the neuronal correlates of the transition remain unclear, mainly due to the difficulty in capturing its inherent dynamics. We used an EEG theta/alpha neurofeedback to rapidly induce the transition into pre-sleep and simultaneous fMRI to reveal state-dependent neural activity. The relaxed mental state was verified by the corresponding enhancement in the parasympathetic response. Neurofeedback sessions were categorized as successful or unsuccessful, based on the known EEG signature of theta power increases over alpha, temporally marked as a distinct "crossover" point. The fMRI activation was considered before and after this point. During successful transition into pre-sleep the period before the crossover was signified by alpha modulation that corresponded to decreased fMRI activity mainly in sensory gating related regions (e.g. medial thalamus). In parallel, although not sufficient for the transition, theta modulation corresponded with increased activity in limbic and autonomic control regions (e.g. hippocampus, cerebellum vermis, respectively). The post-crossover period was designated by alpha modulation further corresponding to reduced fMRI activity within the anterior salience network (e.g. anterior cingulate cortex, anterior insula), and in contrast theta modulation corresponded to the increased variance in the posterior salience network (e.g. posterior insula, posterior cingulate cortex). Our findings portray multi-level neural dynamics underlying the mental transition from awake to pre-sleep. To initiate the transition, decreased activity was required in external monitoring regions, and to sustain the transition, opposition between the anterior and posterior parts of the salience network was needed, reflecting shifting from extra- to intrapersonal based processing, respectively. Copyright © 2014 Elsevier Inc. All rights

  3. Fabrication of micropatterned hydrogels for neural culture systems using dynamic mask projection photolithography.

    Science.gov (United States)

    Curley, J Lowry; Jennings, Scott R; Moore, Michael J

    2011-02-11

    Increasingly, patterned cell culture environments are becoming a relevant technique to study cellular characteristics, and many researchers believe in the need for 3D environments to represent in vitro experiments which better mimic in vivo qualities. Studies in fields such as cancer research, neural engineering, cardiac physiology, and cell-matrix interaction have shown cell behavior differs substantially between traditional monolayer cultures and 3D constructs. Hydrogels are used as 3D environments because of their variety, versatility and ability to tailor molecular composition through functionalization. Numerous techniques exist for creation of constructs as cell-supportive matrices, including electrospinning, elastomer stamps, inkjet printing, additive photopatterning, static photomask projection-lithography, and dynamic mask microstereolithography. Unfortunately, these methods involve multiple production steps and/or equipment not readily adaptable to conventional cell and tissue culture methods. The technique employed in this protocol adapts the latter two methods, using a digital micromirror device (DMD) to create dynamic photomasks for crosslinking geometrically specific poly-(ethylene glycol) (PEG) hydrogels, induced through UV initiated free radical polymerization. The resulting "2.5D" structures provide a constrained 3D environment for neural growth. We employ a dual-hydrogel approach, where PEG serves as a cell-restrictive region supplying structure to an otherwise shapeless but cell-permissive self-assembling gel made from either Puramatrix or agarose. The process is a quick simple one step fabrication which is highly reproducible and easily adapted for use with conventional cell culture methods and substrates. Whole tissue explants, such as embryonic dorsal root ganglia (DRG), can be incorporated into the dual hydrogel constructs for experimental assays such as neurite outgrowth. Additionally, dissociated cells can be encapsulated in the

  4. Point process modeling and estimation: Advances in the analysis of dynamic neural spiking data

    Science.gov (United States)

    Deng, Xinyi

    2016-08-01

    A common interest of scientists in many fields is to understand the relationship between the dynamics of a physical system and the occurrences of discrete events within such physical system. Seismologists study the connection between mechanical vibrations of the Earth and the occurrences of earthquakes so that future earthquakes can be better predicted. Astrophysicists study the association between the oscillating energy of celestial regions and the emission of photons to learn the Universe's various objects and their interactions. Neuroscientists study the link between behavior and the millisecond-timescale spike patterns of neurons to understand higher brain functions. Such relationships can often be formulated within the framework of state-space models with point process observations. The basic idea is that the dynamics of the physical systems are driven by the dynamics of some stochastic state variables and the discrete events we observe in an interval are noisy observations with distributions determined by the state variables. This thesis proposes several new methodological developments that advance the framework of state-space models with point process observations at the intersection of statistics and neuroscience. In particular, we develop new methods 1) to characterize the rhythmic spiking activity using history-dependent structure, 2) to model population spike activity using marked point process models, 3) to allow for real-time decision making, and 4) to take into account the need for dimensionality reduction for high-dimensional state and observation processes. We applied these methods to a novel problem of tracking rhythmic dynamics in the spiking of neurons in the subthalamic nucleus of Parkinson's patients with the goal of optimizing placement of deep brain stimulation electrodes. We developed a decoding algorithm that can make decision in real-time (for example, to stimulate the neurons or not) based on various sources of information present in

  5. INDDGO: Integrated Network Decomposition & Dynamic programming for Graph Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Groer, Christopher S [ORNL; Sullivan, Blair D [ORNL; Weerapurage, Dinesh P [ORNL

    2012-10-01

    It is well-known that dynamic programming algorithms can utilize tree decompositions to provide a way to solve some \\emph{NP}-hard problems on graphs where the complexity is polynomial in the number of nodes and edges in the graph, but exponential in the width of the underlying tree decomposition. However, there has been relatively little computational work done to determine the practical utility of such dynamic programming algorithms. We have developed software to construct tree decompositions using various heuristics and have created a fast, memory-efficient dynamic programming implementation for solving maximum weighted independent set. We describe our software and the algorithms we have implemented, focusing on memory saving techniques for the dynamic programming. We compare the running time and memory usage of our implementation with other techniques for solving maximum weighted independent set, including a commercial integer programming solver and a semi-definite programming solver. Our results indicate that it is possible to solve some instances where the underlying decomposition has width much larger than suggested by the literature. For certain types of problems, our dynamic programming code runs several times faster than these other methods.

  6. Programming the dynamics of biochemical reaction networks.

    Science.gov (United States)

    Simmel, Friedrich C

    2013-01-22

    The development of complex self-organizing molecular systems for future nanotechnology requires not only robust formation of molecular structures by self-assembly but also precise control over their temporal dynamics. As an exquisite example of such control, in this issue of ACS Nano, Fujii and Rondelez demonstrate a particularly compact realization of a molecular "predator-prey" ecosystem consisting of only three DNA species and three enzymes. The system displays pronounced oscillatory dynamics, in good agreement with the predictions of a simple theoretical model. Moreover, its considerable modularity also allows for ecological studies of competition and cooperation within molecular networks.

  7. A neural-network-based model for the dynamic simulation of the tire/suspension system while traversing road irregularities.

    Science.gov (United States)

    Guarneri, Paolo; Rocca, Gianpiero; Gobbi, Massimiliano

    2008-09-01

    This paper deals with the simulation of the tire/suspension dynamics by using recurrent neural networks (RNNs). RNNs are derived from the multilayer feedforward neural networks, by adding feedback connections between output and input layers. The optimal network architecture derives from a parametric analysis based on the optimal tradeoff between network accuracy and size. The neural network can be trained with experimental data obtained in the laboratory from simulated road profiles (cleats). The results obtained from the neural network demonstrate good agreement with the experimental results over a wide range of operation conditions. The NN model can be effectively applied as a part of vehicle system model to accurately predict elastic bushings and tire dynamics behavior. Although the neural network model, as a black-box model, does not provide a good insight of the physical behavior of the tire/suspension system, it is a useful tool for assessing vehicle ride and noise, vibration, harshness (NVH) performance due to its good computational efficiency and accuracy.

  8. Data-driven inference of network connectivity for modeling the dynamics of neural codes in the insect antennal lobe

    Directory of Open Access Journals (Sweden)

    Eli eShlizerman

    2014-08-01

    Full Text Available The antennal lobe (AL, olfactory processing center in insects, is able to process stimuli into distinct neural activity patterns, called olfactory neural codes. To model their dynamics we perform multichannel recordings from the projection neurons in the AL driven by different odorants. We then derive a dynamic neuronal network from the electrophysiological data. The network consists of lateral-inhibitory neurons and excitatory neurons (modeled as firing-rate units, and is capable of producing unique olfactory neural codes for the tested odorants. To construct the network, we (i design a projection, an odor space, for the neural recording from the AL, which discriminates between distinct odorants trajectories (ii characterize scent recognition, i.e., decision-making based on olfactory signals and (iii infer the wiring of the neural circuit, the connectome of the AL. We show that the constructed model is consistent with biological observations, such as contrast enhancement and robustness to noise. The study suggests a data-driven approach to answer a key biological question in identifying how lateral inhibitory neurons can be wired to excitatory neurons to permit robust activity patterns.

  9. Data-driven inference of network connectivity for modeling the dynamics of neural codes in the insect antennal lobe.

    Science.gov (United States)

    Shlizerman, Eli; Riffell, Jeffrey A; Kutz, J Nathan

    2014-01-01

    The antennal lobe (AL), olfactory processing center in insects, is able to process stimuli into distinct neural activity patterns, called olfactory neural codes. To model their dynamics we perform multichannel recordings from the projection neurons in the AL driven by different odorants. We then derive a dynamic neuronal network from the electrophysiological data. The network consists of lateral-inhibitory neurons and excitatory neurons (modeled as firing-rate units), and is capable of producing unique olfactory neural codes for the tested odorants. To construct the network, we (1) design a projection, an odor space, for the neural recording from the AL, which discriminates between distinct odorants trajectories (2) characterize scent recognition, i.e., decision-making based on olfactory signals and (3) infer the wiring of the neural circuit, the connectome of the AL. We show that the constructed model is consistent with biological observations, such as contrast enhancement and robustness to noise. The study suggests a data-driven approach to answer a key biological question in identifying how lateral inhibitory neurons can be wired to excitatory neurons to permit robust activity patterns.

  10. Modelling of windmill induction generators in dynamic simulation programs

    DEFF Research Database (Denmark)

    Akhmatov, Vladislav; Knudsen, Hans

    1999-01-01

    For AC networks with large amounts of induction generators-in case of e.g. windmills-the paper demonstrates a significant discrepancy in the simulated voltage recovery after faults in weak networks, when comparing result obtained with dynamic stability programs and transient programs, respectively...

  11. Dynamic Learning Objects to Teach Java Programming Language

    Science.gov (United States)

    Narasimhamurthy, Uma; Al Shawkani, Khuloud

    2010-01-01

    This article describes a model for teaching Java Programming Language through Dynamic Learning Objects. The design of the learning objects was based on effective learning design principles to help students learn the complex topic of Java Programming. Visualization was also used to facilitate the learning of the concepts. (Contains 1 figure and 2…

  12. Modeling neural correlates of auditory attention in evoked potentials using corticothalamic feedback dynamics.

    Science.gov (United States)

    Trenado, Carlos; Haab, Lars; Strauss, Daniel J

    2007-01-01

    Auditory evoked cortical potentials (AECP) are well established as diagnostic tool in audiology and gain more and more impact in experimental neuropsychology, neuro-science, and psychiatry, e.g., for the attention deficit disorder, schizophrenia, or for studying the tinnitus decompensation. The modulation of AECP due to exogenous and endogenous attention plays a major role in many clinical applications and has experimentally been studied in neuropsychology. However the relation of corticothalamic feedback dynamics to focal and non-focal attention and its large-scale effect reflected in AECPs is far from being understood. In this paper, we model neural correlates of auditory attention reflected in AECPs using corticothalamic feedback dynamics. We present a mapping of a recently developed multiscale model of evoked potentials to the hearing path and discuss for the first time its neurofunctionality in terms of corticothalamic feedback loops related to focal and non-focal attention. Our model reinforced recent experimental results related to online attention monitoring using AECPs with application as objective tinnitus decompensation measure. It is concluded that our model presents a promising approach to gain a deeper understanding of the neurodynamics of auditory attention and might be use as an efficient forward model to reinforce hypotheses that are obtained from experimental paradigms involving AECPs.

  13. Injury to the Spinal Cord Niche Alters the Engraftment Dynamics of Human Neural Stem Cells

    Directory of Open Access Journals (Sweden)

    Christopher J. Sontag

    2014-05-01

    Full Text Available The microenvironment is a critical mediator of stem cell survival, proliferation, migration, and differentiation. The majority of preclinical studies involving transplantation of neural stem cells (NSCs into the CNS have focused on injured or degenerating microenvironments, leaving a dearth of information as to how NSCs differentially respond to intact versus damaged CNS. Furthermore, single, terminal histological endpoints predominate, providing limited insight into the spatiotemporal dynamics of NSC engraftment and migration. We investigated the early and long-term engraftment dynamics of human CNS stem cells propagated as neurospheres (hCNS-SCns following transplantation into uninjured versus subacutely injured spinal cords of immunodeficient NOD-scid mice. We stereologically quantified engraftment, survival, proliferation, migration, and differentiation at 1, 7, 14, 28, and 98 days posttransplantation, and identified injury-dependent alterations. Notably, the injured microenvironment decreased hCNS-SCns survival, delayed and altered the location of proliferation, influenced both total and fate-specific migration, and promoted oligodendrocyte maturation.

  14. Molecular Dynamics Simulations with Quantum Mechanics / Molecular Mechanics and Adaptive Neural Networks.

    Science.gov (United States)

    Shen, Lin; Yang, Weitao

    2018-02-13

    Direct molecular dynamics (MD) simulation with ab initio quantum mechanical and molecular mechanical (QM/MM) methods is very powerful for studying the mechanism of chemical reactions in complex environment but very time consuming. The computational cost on QM/MM calculations during MD simulations can be reduced significantly using semiempirical QM/MM methods with lower accuracy. To achieve higher accuracy at the ab initio QM/MM level, a correction on the existing semiempirical QM/MM model is an attractive way. Recently, we reported a neural network (NN) method as QM/MM-NN to predict the potential energy difference between semiempirical and ab initio QM/MM approaches. The high-level results can be obtained using neural network based on semiempirical QM/MM MD simulations, but the lack of direct MD samplings at the ab initio QM/MM level is still a deficiency that limits the applications of QM/MM-NN. In the present paper, we developed a dynamic scheme of QM/MM-NN for direct MD simulations on the NN-predicted potential energy surface to approximate ab initio QM/MM MD. Since some configurations excluded from the database for NN training were encountered during simulations, which may cause some difficulties on MD samplings, an adaptive procedure inspired by the selection scheme reported by Behler was employed with some adaptions to update NN and carry out MD iteratively. We further applied the adaptive QM/MM-NN MD method to the free energy calculation and transition path optimization on chemical reactions in water. The results at the ab initio QM/MM level can be well reproduced using this method after 2-4 iteration cycles. The saving in computational cost is about 2 orders of magnitude. It demonstrates that the QM/MM-NN with direct MD simulations has great potentials not only for the calculation of thermodynamic properties but also for the characterization of reaction dynamics, which provides a useful tool to study chemical or biochemical systems in solution or enzymes.

  15. Dynamic Economic Dispatch Menggunakan Quadratic Programming

    OpenAIRE

    Zainal Abidin; Imam Robandi; Rony Seto Wibowo

    2012-01-01

    Economic dispatch (ED) dapat diterapkan untuk mengatasi masalah penjadwalan pembangkit secara optimal ekonomi, namum jika digunakan pada sistem dengan beban dalam rentang waktu tertentu, akan ada beberapa pembangkitan yang melewati batas dari parameter ramp rate pembangkit. Dengan parameter ramp rate, ED tidak dapat diselesaikan pada satu level beban. Dynamic economic dispatch (DED) merupakan pengembangan dari economic dispatch konvensional karena memperhitungkan batasan ramp rate dari unit p...

  16. Comparison of a spiking neural network and an MLP for robust identification of generator dynamics in a multimachine power system.

    Science.gov (United States)

    Johnson, Cameron; Venayagamoorthy, Ganesh Kumar; Mitra, Pinaki

    2009-01-01

    The application of a spiking neural network (SNN) and a multi-layer perceptron (MLP) for online identification of generator dynamics in a multimachine power system are compared in this paper. An integrate-and-fire model of an SNN which communicates information via the inter-spike interval is applied. The neural network identifiers are used to predict the speed and terminal voltage deviations one time-step ahead of generators in a multimachine power system. The SNN is developed in two steps: (i) neuron centers determined by offline k-means clustering and (ii) output weights obtained by online training. The sensitivity of the SNN to the neuron centers determined in the first step is evaluated on generators of different ratings and parameters. Performances of the SNN and MLP are compared to evaluate robustness on the identification of generator dynamics under small and large disturbances, and to illustrate that SNNs are capable of learning nonlinear dynamics of complex systems.

  17. A New Powered Lower Limb Prosthesis Control Framework Based on Adaptive Dynamic Programming.

    Science.gov (United States)

    Wen, Yue; Si, Jennie; Gao, Xiang; Huang, Stephanie; Huang, He Helen

    2017-09-01

    This brief presents a novel application of adaptive dynamic programming (ADP) for optimal adaptive control of powered lower limb prostheses, a type of wearable robots to assist the motor function of the limb amputees. Current control of these robotic devices typically relies on finite state impedance control (FS-IC), which lacks adaptability to the user's physical condition. As a result, joint impedance settings are often customized manually and heuristically in clinics, which greatly hinder the wide use of these advanced medical devices. This simulation study aimed at demonstrating the feasibility of ADP for automatic tuning of the twelve knee joint impedance parameters during a complete gait cycle to achieve balanced walking. Given that the accurate models of human walking dynamics are difficult to obtain, the model-free ADP control algorithms were considered. First, direct heuristic dynamic programming (dHDP) was applied to the control problem, and its performance was evaluated on OpenSim, an often-used dynamic walking simulator. For the comparison purposes, we selected another established ADP algorithm, the neural fitted Q with continuous action (NFQCA). In both cases, the ADP controllers learned to control the right knee joint and achieved balanced walking, but dHDP outperformed NFQCA in this application during a 200 gait cycle-based testing.

  18. Striatal Activity and Reward Relativity: Neural Signals Encoding Dynamic Outcome Valuation.

    Science.gov (United States)

    Webber, Emily S; Mankin, David E; Cromwell, Howard C

    2016-01-01

    The striatum is a key brain region involved in reward processing. Striatal activity has been linked to encoding reward magnitude and integrating diverse reward outcome information. Recent work has supported the involvement of striatum in the valuation of outcomes. The present work extends this idea by examining striatal activity during dynamic shifts in value that include different levels and directions of magnitude disparity. A novel task was used to produce diverse relative reward effects on a chain of instrumental action. Rats (Rattus norvegicus) were trained to respond to cues associated with specific outcomes varying by food pellet magnitude. Animals were exposed to single-outcome sessions followed by mixed-outcome sessions, and neural activity was compared among identical outcome trials from the different behavioral contexts. Results recording striatal activity show that neural responses to different task elements reflect incentive contrast as well as other relative effects that involve generalization between outcomes or possible influences of outcome variety. The activity that was most prevalent was linked to food consumption and post-food consumption periods. Relative encoding was sensitive to magnitude disparity. A within-session analysis showed strong contrast effects that were dependent upon the outcome received in the immediately preceding trial. Significantly higher numbers of responses were found in ventral striatum linked to relative outcome effects. Our results support the idea that relative value can incorporate diverse relationships, including comparisons from specific individual outcomes to general behavioral contexts. The striatum contains these diverse relative processes, possibly enabling both a higher information yield concerning value shifts and a greater behavioral flexibility.

  19. Optimizationof neural network architecture using genetic programming improvesdetection and modeling of gene-gene interactions in studies of humandiseases

    Directory of Open Access Journals (Sweden)

    Hahn Lance W

    2003-07-01

    Full Text Available Abstract Background Appropriate definitionof neural network architecture prior to data analysis is crucialfor successful data mining. This can be challenging when the underlyingmodel of the data is unknown. The goal of this study was to determinewhether optimizing neural network architecture using genetic programmingas a machine learning strategy would improve the ability of neural networksto model and detect nonlinear interactions among genes in studiesof common human diseases. Results Using simulateddata, we show that a genetic programming optimized neural network approachis able to model gene-gene interactions as well as a traditionalback propagation neural network. Furthermore, the genetic programmingoptimized neural network is better than the traditional back propagationneural network approach in terms of predictive ability and powerto detect gene-gene interactions when non-functional polymorphismsare present. Conclusion This study suggeststhat a machine learning strategy for optimizing neural network architecturemay be preferable to traditional trial-and-error approaches forthe identification and characterization of gene-gene interactionsin common, complex human diseases.

  20. Dynamical Integration of Language and Behavior in a Recurrent Neural Network for Human–Robot Interaction

    Science.gov (United States)

    Yamada, Tatsuro; Murata, Shingo; Arie, Hiroaki; Ogata, Tetsuya

    2016-01-01

    To work cooperatively with humans by using language, robots must not only acquire a mapping between language and their behavior but also autonomously utilize the mapping in appropriate contexts of interactive tasks online. To this end, we propose a novel learning method linking language to robot behavior by means of a recurrent neural network. In this method, the network learns from correct examples of the imposed task that are given not as explicitly separated sets of language and behavior but as sequential data constructed from the actual temporal flow of the task. By doing this, the internal dynamics of the network models both language–behavior relationships and the temporal patterns of interaction. Here, “internal dynamics” refers to the time development of the system defined on the fixed-dimensional space of the internal states of the context layer. Thus, in the execution phase, by constantly representing where in the interaction context it is as its current state, the network autonomously switches between recognition and generation phases without any explicit signs and utilizes the acquired mapping in appropriate contexts. To evaluate our method, we conducted an experiment in which a robot generates appropriate behavior responding to a human’s linguistic instruction. After learning, the network actually formed the attractor structure representing both language–behavior relationships and the task’s temporal pattern in its internal dynamics. In the dynamics, language–behavior mapping was achieved by the branching structure. Repetition of human’s instruction and robot’s behavioral response was represented as the cyclic structure, and besides, waiting to a subsequent instruction was represented as the fixed-point attractor. Thanks to this structure, the robot was able to interact online with a human concerning the given task by autonomously switching phases. PMID:27471463

  1. Classification and Prediction of Event-based Suspended Sediment Dynamics using Artificial Neural Networks

    Science.gov (United States)

    Hamshaw, S. D.; Underwood, K.; Wemple, B. C.; Rizzo, D.

    2016-12-01

    Sediment transport can be an immensely complex process, yet plays a vital role in the transport of substances and nutrients that can impact receiving waters. Advancements in the use of sensors for indirect measurement of suspended sediments have allowed access to high frequency sediment data. This has promoted the use of more advanced computational tools to identify patterns in sediment data to improve our understanding of physical processes occurring in the watershed. In this study, a network of weather stations and in-stream turbidity sensors were deployed to capture more than three years of sediment dynamics and meteorological data in the Mad River watershed in central Vermont. Monitoring sites were located along the main stem of the the Mad River and on five tributaries. Separate storm events were identified from the data at each site to study event sediment dynamics associated with erosion and deposition over space and time. Two types of artificial neural networks (ANNs), a self-organizing map (SOM) and a radial basis function (RBF), were used to cluster the storm event data based on hydrometeorological metrics and were subsequently compared to traditional classes of hysteresis patterns in suspended sediment concentration - discharge (SSC-Q) relationships. Hysteresis patterns were also directly used as inputs to both ANNs to identify distinct patterns and test the applicability of performing pattern recognition on hysteresis patterns. The results of this study will be used to gain insight into the dynamic physical processes (both spatial and temporal) occurring in the watershed based on patterns observed in SSQ-Q data.

  2. The application of dynamic programming in production planning

    Science.gov (United States)

    Wu, Run

    2017-05-01

    Nowadays, with the popularity of the computers, various industries and fields are widely applying computer information technology, which brings about huge demand for a variety of application software. In order to develop software meeting various needs with most economical cost and best quality, programmers must design efficient algorithms. A superior algorithm can not only soul up one thing, but also maximize the benefits and generate the smallest overhead. As one of the common algorithms, dynamic programming algorithms are used to solving problems with some sort of optimal properties. When solving problems with a large amount of sub-problems that needs repetitive calculations, the ordinary sub-recursive method requires to consume exponential time, and dynamic programming algorithm can reduce the time complexity of the algorithm to the polynomial level, according to which we can conclude that dynamic programming algorithm is a very efficient compared to other algorithms reducing the computational complexity and enriching the computational results. In this paper, we expound the concept, basic elements, properties, core, solving steps and difficulties of the dynamic programming algorithm besides, establish the dynamic programming model of the production planning problem.

  3. Functional differential inclusions and dynamic behaviors for memristor-based BAM neural networks with time-varying delays

    Science.gov (United States)

    Cai, Zuowei; Huang, Lihong

    2014-05-01

    In this paper, we formulate and investigate a class of memristor-based BAM neural networks with time-varying delays. Under the framework of Filippov solutions, the viability and dissipativity of solutions for functional differential inclusions and memristive BAM neural networks can be guaranteed by the matrix measure approach and generalized Halanay inequalities. Then, a new method involving the application of set-valued version of Krasnoselskii' fixed point theorem in a cone is successfully employed to derive the existence of the positive periodic solution. The dynamic analysis in this paper utilizes the theory of set-valued maps and functional differential equations with discontinuous right-hand sides of Filippov type. The obtained results extend and improve some previous works on conventional BAM neural networks. Finally, numerical examples are given to demonstrate the theoretical results via computer simulations.

  4. A system of recurrent neural networks for modularising, parameterising and dynamic analysis of cell signalling networks.

    Science.gov (United States)

    Samarasinghe, S; Ling, H

    In this paper, we show how to extend our previously proposed novel continuous time Recurrent Neural Networks (RNN) approach that retains the advantage of continuous dynamics offered by Ordinary Differential Equations (ODE) while enabling parameter estimation through adaptation, to larger signalling networks using a modular approach. Specifically, the signalling network is decomposed into several sub-models based on important temporal events in the network. Each sub-model is represented by the proposed RNN and trained using data generated from the corresponding ODE model. Trained sub-models are assembled into a whole system RNN which is then subjected to systems dynamics and sensitivity analyses. The concept is illustrated by application to G1/S transition in cell cycle using Iwamoto et al. (2008) ODE model. We decomposed the G1/S network into 3 sub-models: (i) E2F transcription factor release; (ii) E2F and CycE positive feedback loop for elevating cyclin levels; and (iii) E2F and CycA negative feedback to degrade E2F. The trained sub-models accurately represented system dynamics and parameters were in good agreement with the ODE model. The whole system RNN however revealed couple of parameters contributing to compounding errors due to feedback and required refinement to sub-model 2. These related to the reversible reaction between CycE/CDK2 and p27, its inhibitor. The revised whole system RNN model very accurately matched dynamics of the ODE system. Local sensitivity analysis of the whole system model further revealed the most dominant influence of the above two parameters in perturbing G1/S transition, giving support to a recent hypothesis that the release of inhibitor p27 from Cyc/CDK complex triggers cell cycle stage transition. To make the model useful in a practical setting, we modified each RNN sub-model with a time relay switch to facilitate larger interval input data (≈20min) (original model used data for 30s or less) and retrained them that produced

  5. Dynamic transcriptional signature and cell fate analysis reveals plasticity of individual neural plate border cells

    Science.gov (United States)

    Roellig, Daniela; Tan-Cabugao, Johanna; Esaian, Sevan; Bronner, Marianne E

    2017-01-01

    The ‘neural plate border’ of vertebrate embryos contains precursors of neural crest and placode cells, both defining vertebrate characteristics. How these lineages segregate from neural and epidermal fates has been a matter of debate. We address this by performing a fine-scale quantitative temporal analysis of transcription factor expression in the neural plate border of chick embryos. The results reveal significant overlap of transcription factors characteristic of multiple lineages in individual border cells from gastrula through neurula stages. Cell fate analysis using a Sox2 (neural) enhancer reveals that cells that are initially Sox2+ cells can contribute not only to neural tube but also to neural crest and epidermis. Moreover, modulating levels of Sox2 or Pax7 alters the apportionment of neural tube versus neural crest fates. Our results resolve a long-standing question and suggest that many individual border cells maintain ability to contribute to multiple ectodermal lineages until or beyond neural tube closure. DOI: http://dx.doi.org/10.7554/eLife.21620.001 PMID:28355135

  6. Qualification of a computer program for drill string dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Stone, C.M.; Carne, T.G.; Caskey, B.C.

    1985-01-01

    A four point plan for the qualification of the GEODYN drill string dynamics computer program is described. The qualification plan investigates both modal response and transient response of a short drill string subjected to simulated cutting loads applied through a polycrystalline diamond compact (PDC) bit. The experimentally based qualification shows that the analytical techniques included in Phase 1 GEODYN correctly simulate the dynamic response of the bit-drill string system. 6 refs., 8 figs.

  7. Approximate dynamic programming solving the curses of dimensionality

    CERN Document Server

    Powell, Warren B

    2007-01-01

    Warren B. Powell, PhD, is Professor of Operations Research and Financial Engineering at Princeton University, where he is founder and Director of CASTLE Laboratory, a research unit that works with industrial partners to test new ideas found in operations research. The recipient of the 2004 INFORMS Fellow Award, Dr. Powell has authored over 100 refereed publications on stochastic optimization, approximate dynamic programming, and dynamic resource management.

  8. A Dynamic Fuzzy Controller to Meet Thermal Comfort by Using Neural Network Forecasted Parameters as the Input

    Directory of Open Access Journals (Sweden)

    Mario Collotta

    2014-07-01

    Full Text Available Heating, ventilating and air-conditioning (HVAC systems are typical non-linear time-variable multivariate systems with disturbances and uncertainties. In this paper, an approach based on a combined neuro-fuzzy model for dynamic and automatic regulation of indoor temperature is proposed. The proposed artificial neural network performs indoor temperatures forecasts that are used to feed a fuzzy logic control unit in order to manage the on/off switching of the HVAC system and the regulation of the inlet air speed. Moreover, the used neural network is optimized by the analytical calculation of the embedding parameters, and the goodness of this approach is tested through MATLAB. The fuzzy controller is driven by the indoor temperature forecasted by the neural network module and is able to adjust the membership functions dynamically, since thermal comfort is a very subjective factor and may vary even in the same subject. The paper shows some experimental results, through a real implementation in an embedded prototyping board, of the proposed approach in terms of the evolution of the inlet air speed injected by the fan coils, the indoor air temperature forecasted by the neural network model and the adjusting of the membership functions after receiving user feedback.

  9. Prediction of Compressive Strength of Concrete Using Artificial Neural Network and Genetic Programming

    Directory of Open Access Journals (Sweden)

    Palika Chopra

    2016-01-01

    Full Text Available An effort has been made to develop concrete compressive strength prediction models with the help of two emerging data mining techniques, namely, Artificial Neural Networks (ANNs and Genetic Programming (GP. The data for analysis and model development was collected at 28-, 56-, and 91-day curing periods through experiments conducted in the laboratory under standard controlled conditions. The developed models have also been tested on in situ concrete data taken from literature. A comparison of the prediction results obtained using both the models is presented and it can be inferred that the ANN model with the training function Levenberg-Marquardt (LM for the prediction of concrete compressive strength is the best prediction tool.

  10. Augmented Lagrange Programming Neural Network for Localization Using Time-Difference-of-Arrival Measurements.

    Science.gov (United States)

    Han, Zifa; Leung, Chi Sing; So, Hing Cheung; Constantinides, Anthony George

    2017-08-15

    A commonly used measurement model for locating a mobile source is time-difference-of-arrival (TDOA). As each TDOA measurement defines a hyperbola, it is not straightforward to compute the mobile source position due to the nonlinear relationship in the measurements. This brief exploits the Lagrange programming neural network (LPNN), which provides a general framework to solve nonlinear constrained optimization problems, for the TDOA-based localization. The local stability of the proposed LPNN solution is also analyzed. Simulation results are included to evaluate the localization accuracy of the LPNN scheme by comparing with the state-of-the-art methods and the optimality benchmark of Cramér-Rao lower bound.

  11. Dynamics of dual prism adaptation: relating novel experimental results to a minimalistic neural model.

    Directory of Open Access Journals (Sweden)

    Orlando Arévalo

    Full Text Available In everyday life, humans interact with a dynamic environment often requiring rapid adaptation of visual perception and motor control. In particular, new visuo-motor mappings must be learned while old skills have to be kept, such that after adaptation, subjects may be able to quickly change between two different modes of generating movements ('dual-adaptation'. A fundamental question is how the adaptation schedule determines the acquisition speed of new skills. Given a fixed number of movements in two different environments, will dual-adaptation be faster if switches ('phase changes' between the environments occur more frequently? We investigated the dynamics of dual-adaptation under different training schedules in a virtual pointing experiment. Surprisingly, we found that acquisition speed of dual visuo-motor mappings in a pointing task is largely independent of the number of phase changes. Next, we studied the neuronal mechanisms underlying this result and other key phenomena of dual-adaptation by relating model simulations to experimental data. We propose a simple and yet biologically plausible neural model consisting of a spatial mapping from an input layer to a pointing angle which is subjected to a global gain modulation. Adaptation is performed by reinforcement learning on the model parameters. Despite its simplicity, the model provides a unifying account for a broad range of experimental data: It quantitatively reproduced the learning rates in dual-adaptation experiments for both direct effect, i.e. adaptation to prisms, and aftereffect, i.e. behavior after removal of prisms, and their independence on the number of phase changes. Several other phenomena, e.g. initial pointing errors that are far smaller than the induced optical shift, were also captured. Moreover, the underlying mechanisms, a local adaptation of a spatial mapping and a global adaptation of a gain factor, explained asymmetric spatial transfer and generalization of prism

  12. Physiological modules for generating discrete and rhythmic movements: action identification by a dynamic recurrent neural network.

    Science.gov (United States)

    Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana M; Dan, Bernard; McIntyre, Joseph; Cheron, Guy

    2014-01-01

    In this study we employed a dynamic recurrent neural network (DRNN) in a novel fashion to reveal characteristics of control modules underlying the generation of muscle activations when drawing figures with the outstretched arm. We asked healthy human subjects to perform four different figure-eight movements in each of two workspaces (frontal plane and sagittal plane). We then trained a DRNN to predict the movement of the wrist from information in the EMG signals from seven different muscles. We trained different instances of the same network on a single movement direction, on all four movement directions in a single movement plane, or on all eight possible movement patterns and looked at the ability of the DRNN to generalize and predict movements for trials that were not included in the training set. Within a single movement plane, a DRNN trained on one movement direction was not able to predict movements of the hand for trials in the other three directions, but a DRNN trained simultaneously on all four movement directions could generalize across movement directions within the same plane. Similarly, the DRNN was able to reproduce the kinematics of the hand for both movement planes, but only if it was trained on examples performed in each one. As we will discuss, these results indicate that there are important dynamical constraints on the mapping of EMG to hand movement that depend on both the time sequence of the movement and on the anatomical constraints of the musculoskeletal system. In a second step, we injected EMG signals constructed from different synergies derived by the PCA in order to identify the mechanical significance of each of these components. From these results, one can surmise that discrete-rhythmic movements may be constructed from three different fundamental modules, one regulating the co-activation of all muscles over the time span of the movement and two others elliciting patterns of reciprocal activation operating in orthogonal directions.

  13. Physiological modules for generating discrete and rhythmic movements: action identification by a dynamic recurrent neural network.

    Directory of Open Access Journals (Sweden)

    Ana eBengoetxea

    2014-09-01

    Full Text Available In this study we employed a dynamic recurrent neural network (DRNN in a novel fashion to reveal characteristics of control modules underlying the generation of muscle activations when drawing figures with the outstretched arm. We asked healthy human subjects to perform four different figure-eight movements in each of two workspaces (frontal plane and sagittal plane. We then trained a DRNN to predict the movement of the wrist from information in the EMG signals from seven different muscles. We trained different instances of the same network on a single movement direction, on all four movement directions in a single movement plane, or on all eight possible movement patterns and looked at the ability of the DRNN to generalize and predict movements for trials that were not included in the training set. Within a single movement plane, a DRNN trained on one movement direction was not able to predict movements of the hand for trials in the other three directions, but a DRNN trained simultaneously on all four movement directions could generalize across movement directions within the same plane. Similarly, the DRNN was able to reproduce the kinematics of the hand for both movement planes, but only if it was trained on examples performed in each one. As we will discuss, these results indicate that there are important dynamical constraints on the mapping of EMG to hand movement that depend on both the time sequence of the movement and on the anatomical constraints of the musculoskeletal system. In a second step, we injected EMG signals constructed from different synergies derived by the PCA in order to identify the mechanical significance of each of these components. From these results, one can surmise that discrete-rhythmic movements may be constructed from three different fundamental modules, one regulating the co-activation of all muscles over the time span of the movement and two others patterns of reciprocal activation operating in orthogonal

  14. Learning from adaptive neural dynamic surface control of strict-feedback systems.

    Science.gov (United States)

    Wang, Min; Wang, Cong

    2015-06-01

    Learning plays an essential role in autonomous control systems. However, how to achieve learning in the nonstationary environment for nonlinear systems is a challenging problem. In this paper, we present learning method for a class of n th-order strict-feedback systems by adaptive dynamic surface control (DSC) technology, which achieves the human-like ability of learning by doing and doing with learned knowledge. To achieve the learning, this paper first proposes stable adaptive DSC with auxiliary first-order filters, which ensures the boundedness of all the signals in the closed-loop system and the convergence of tracking errors in a finite time. With the help of DSC, the derivative of the filter output variable is used as the neural network (NN) input instead of traditional intermediate variables. As a result, the proposed adaptive DSC method reduces greatly the dimension of NN inputs, especially for high-order systems. After the stable DSC design, we decompose the stable closed-loop system into a series of linear time-varying perturbed subsystems. Using a recursive design, the recurrent property of NN input variables is easily verified since the complexity is overcome using DSC. Subsequently, the partial persistent excitation condition of the radial basis function NN is satisfied. By combining a state transformation, accurate approximations of the closed-loop system dynamics are recursively achieved in a local region along recurrent orbits. Then, the learning control method using the learned knowledge is proposed to achieve the closed-loop stability and the improved control performance. Simulation studies are performed to demonstrate the proposed scheme can not only reuse the learned knowledge to achieve the better control performance with the faster tracking convergence rate and the smaller tracking error but also greatly alleviate the computational burden because of reducing the number and complexity of NN input variables.

  15. SPOT14-Positive Neural Stem/Progenitor Cells in the Hippocampus Respond Dynamically to Neurogenic Regulators

    Directory of Open Access Journals (Sweden)

    Marlen Knobloch

    2014-11-01

    Full Text Available Proliferation of neural stem/progenitor cells (NSPCs in the adult brain is tightly controlled to prevent exhaustion and to ensure proper neurogenesis. Several extrinsic stimuli affect NSPC regulation. However, the lack of unique markers led to controversial results regarding the in vivo behavior of NSPCs to different stimuli. We recently identified SPOT14, which controls NSPC proliferation through regulation of de novo lipogenesis, selectively in low-proliferating NSPCs. Whether SPOT14-expressing (SPOT14+ NSPCs react in vivo to neurogenic regulators is not known. We show that aging is accompanied by a marked disappearance of SPOT14+ NSPCs, whereas running, a positive neurogenic stimulus, increases proliferation of SPOT14+ NSPCs. Furthermore, transient depletion of highly proliferative cells recruits SPOT14+ NSPCs into the proliferative pool. Additionally, we have established endogenous SPOT14 protein staining, reflecting transgenic SPOT14-GFP expression. Thus, our data identify SPOT14 as a potent marker for adult NSPCs that react dynamically to positive and negative neurogenic regulators.

  16. Dynamic frame resizing with convolutional neural network for efficient video compression

    Science.gov (United States)

    Kim, Jaehwan; Park, Youngo; Choi, Kwang Pyo; Lee, JongSeok; Jeon, Sunyoung; Park, JeongHoon

    2017-09-01

    In the past, video codecs such as vc-1 and H.263 used a technique to encode reduced-resolution video and restore original resolution from the decoder for improvement of coding efficiency. The techniques of vc-1 and H.263 Annex Q are called dynamic frame resizing and reduced-resolution update mode, respectively. However, these techniques have not been widely used due to limited performance improvements that operate well only under specific conditions. In this paper, video frame resizing (reduced/restore) technique based on machine learning is proposed for improvement of coding efficiency. The proposed method features video of low resolution made by convolutional neural network (CNN) in encoder and reconstruction of original resolution using CNN in decoder. The proposed method shows improved subjective performance over all the high resolution videos which are dominantly consumed recently. In order to assess subjective quality of the proposed method, Video Multi-method Assessment Fusion (VMAF) which showed high reliability among many subjective measurement tools was used as subjective metric. Moreover, to assess general performance, diverse bitrates are tested. Experimental results showed that BD-rate based on VMAF was improved by about 51% compare to conventional HEVC. Especially, VMAF values were significantly improved in low bitrate. Also, when the method is subjectively tested, it had better subjective visual quality in similar bit rate.

  17. Neural Temporal Dynamics of Facial Emotion Processing: Age Effects and Relationship to Cognitive Function

    Directory of Open Access Journals (Sweden)

    Xiaoyan Liao

    2017-06-01

    Full Text Available This study used event-related potentials (ERPs to investigate the effects of age on neural temporal dynamics of processing task-relevant facial expressions and their relationship to cognitive functions. Negative (sad, afraid, angry, and disgusted, positive (happy, and neutral faces were presented to 30 older and 31 young participants who performed a facial emotion categorization task. Behavioral and ERP indices of facial emotion processing were analyzed. An enhanced N170 for negative faces, in addition to intact right-hemispheric N170 for positive faces, was observed in older adults relative to their younger counterparts. Moreover, older adults demonstrated an attenuated within-group N170 laterality effect for neutral faces, while younger adults showed the opposite pattern. Furthermore, older adults exhibited sustained temporo-occipital negativity deflection over the time range of 200–500 ms post-stimulus, while young adults showed posterior positivity and subsequent emotion-specific frontal negativity deflections. In older adults, decreased accuracy for labeling negative faces was positively correlated with Montreal Cognitive Assessment Scores, and accuracy for labeling neutral faces was negatively correlated with age. These findings suggest that older people may exert more effort in structural encoding for negative faces and there are different response patterns for the categorization of different facial emotions. Cognitive functioning may be related to facial emotion categorization deficits observed in older adults. This may not be attributable to positivity effects: it may represent a selective deficit for the processing of negative facial expressions in older adults.

  18. Nonlinear dynamic systems identification using recurrent interval type-2 TSK fuzzy neural network - A novel structure.

    Science.gov (United States)

    El-Nagar, Ahmad M

    2017-10-31

    In this study, a novel structure of a recurrent interval type-2 Takagi-Sugeno-Kang (TSK) fuzzy neural network (FNN) is introduced for nonlinear dynamic and time-varying systems identification. It combines the type-2 fuzzy sets (T2FSs) and a recurrent FNN to avoid the data uncertainties. The fuzzy firing strengths in the proposed structure are returned to the network input as internal variables. The interval type-2 fuzzy sets (IT2FSs) is used to describe the antecedent part for each rule while the consequent part is a TSK-type, which is a linear function of the internal variables and the external inputs with interval weights. All the type-2 fuzzy rules for the proposed RIT2TSKFNN are learned on-line based on structure and parameter learning, which are performed using the type-2 fuzzy clustering. The antecedent and consequent parameters of the proposed RIT2TSKFNN are updated based on the Lyapunov function to achieve network stability. The obtained results indicate that our proposed network has a small root mean square error (RMSE) and a small integral of square error (ISE) with a small number of rules and a small computation time compared with other type-2 FNNs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Automatic Assessing of Tremor Severity Using Nonlinear Dynamics, Artificial Neural Networks and Neuro-Fuzzy Classifier

    Directory of Open Access Journals (Sweden)

    GEMAN, O.

    2014-02-01

    Full Text Available Neurological diseases like Alzheimer, epilepsy, Parkinson's disease, multiple sclerosis and other dementias influence the lives of patients, their families and society. Parkinson's disease (PD is a neurodegenerative disease that occurs due to loss of dopamine, a neurotransmitter and slow destruction of neurons. Brain area affected by progressive destruction of neurons is responsible for controlling movements, and patients with PD reveal rigid and uncontrollable gestures, postural instability, small handwriting and tremor. Commercial activity-promoting gaming systems such as the Nintendo Wii and Xbox Kinect can be used as tools for tremor, gait or other biomedical signals acquisitions. They also can aid for rehabilitation in clinical settings. This paper emphasizes the use of intelligent optical sensors or accelerometers in biomedical signal acquisition, and of the specific nonlinear dynamics parameters or fuzzy logic in Parkinson's disease tremor analysis. Nowadays, there is no screening test for early detection of PD. So, we investigated a method to predict PD, based on the image processing of the handwriting belonging to a candidate of PD. For classification and discrimination between healthy people and PD people we used Artificial Neural Networks (Radial Basis Function - RBF and Multilayer Perceptron - MLP and an Adaptive Neuro-Fuzzy Classifier (ANFC. In general, the results may be expressed as a prognostic (risk degree to contact PD.

  20. Principal dynamic mode analysis of neural mass model for the identification of epileptic states

    Science.gov (United States)

    Cao, Yuzhen; Jin, Liu; Su, Fei; Wang, Jiang; Deng, Bin

    2016-11-01

    The detection of epileptic seizures in Electroencephalography (EEG) signals is significant for the diagnosis and treatment of epilepsy. In this paper, in order to obtain characteristics of various epileptiform EEGs that may differentiate different states of epilepsy, the concept of Principal Dynamic Modes (PDMs) was incorporated to an autoregressive model framework. First, the neural mass model was used to simulate the required intracerebral EEG signals of various epileptiform activities. Then, the PDMs estimated from the nonlinear autoregressive Volterra models, as well as the corresponding Associated Nonlinear Functions (ANFs), were used for the modeling of epileptic EEGs. The efficient PDM modeling approach provided physiological interpretation of the system. Results revealed that the ANFs of the 1st and 2nd PDMs for the auto-regressive input exhibited evident differences among different states of epilepsy, where the ANFs of the sustained spikes' activity encountered at seizure onset or during a seizure were the most differentiable from that of the normal state. Therefore, the ANFs may be characteristics for the classification of normal and seizure states in the clinical detection of seizures and thus provide assistance for the diagnosis of epilepsy.

  1. Dynamic mass redistribution assay decodes differentiation of a neural progenitor stem cell.

    Science.gov (United States)

    Pai, Sadashiva; Verrier, Florence; Sun, Haiyan; Hu, Haibei; Ferrie, Ann M; Eshraghi, Azita; Fang, Ye

    2012-10-01

    Stem cells hold great potential in drug discovery and development. However, challenges remain to quantitatively measure the functions of stem cells and their differentiated products. Here, we applied fluorescent imaging, quantitative real-time PCR, and label-free dynamic mass redistribution (DMR) assays to characterize the differentiation process of the ReNcell VM human neural progenitor stem cell. Immunofluorescence imaging showed that after growth factor withdrawal, the neuroprogenitor stem cell was differentiated into dopaminergic neurons, astrocytes, and oligodendrocytes, thus creating a neuronal cell system. High-performance liquid chromatography analysis showed that the differentiated cell system released dopamine upon depolarization with KCl. In conjunction with quantitative real-time PCR, DMR assays using a G-protein-coupled receptor agonist library revealed that a subset of receptors, including dopamine D(1) and D(4) receptors, underwent marked alterations in both receptor expression and signaling pathway during the differentiation process. These findings suggest that DMR assays can decode the differentiation process of stem cells at the cell system level.

  2. Topological dynamics in spike-timing dependent plastic model neural networks

    Directory of Open Access Journals (Sweden)

    David B. Stone

    2013-04-01

    Full Text Available Spike-timing dependent plasticity (STDP is a biologically constrained unsupervised form of learning that potentiates or depresses synaptic connections based on the precise timing of pre-synaptic and post-synaptic firings. The effects of on-going STDP on the topology of evolving model neural networks were assessed in 50 unique simulations which modeled two hours of activity. After a period of stabilization, a number of global and local topological features were monitored periodically to quantify on-going changes in network structure. Global topological features included the total number of remaining synapses, average synaptic strengths, and average number of synapses per neuron (degree. Under a range of different input regimes and initial network configurations, each network maintained a robust and highly stable global structure across time. Local topology was monitored by assessing state changes of all three-neuron subgraphs (triads present in the networks. Overall counts and the range of triad configurations varied little across the simulations; however, a substantial set of individual triads continued to undergo rapid state changes and revealed a dynamic local topology. In addition, specific small-world properties also fluctuated across time. These findings suggest that on-going STDP provides an efficient means of selecting and maintaining a stable yet flexible network organization.

  3. Degradation Prediction Model Based on a Neural Network with Dynamic Windows

    Directory of Open Access Journals (Sweden)

    Xinghui Zhang

    2015-03-01

    Full Text Available Tracking degradation of mechanical components is very critical for effective maintenance decision making. Remaining useful life (RUL estimation is a widely used form of degradation prediction. RUL prediction methods when enough run-to-failure condition monitoring data can be used have been fully researched, but for some high reliability components, it is very difficult to collect run-to-failure condition monitoring data, i.e., from normal to failure. Only a certain number of condition indicators in certain period can be used to estimate RUL. In addition, some existing prediction methods have problems which block RUL estimation due to poor extrapolability. The predicted value converges to a certain constant or fluctuates in certain range. Moreover, the fluctuant condition features also have bad effects on prediction. In order to solve these dilemmas, this paper proposes a RUL prediction model based on neural network with dynamic windows. This model mainly consists of three steps: window size determination by increasing rate, change point detection and rolling prediction. The proposed method has two dominant strengths. One is that the proposed approach does not need to assume the degradation trajectory is subject to a certain distribution. The other is it can adapt to variation of degradation indicators which greatly benefits RUL prediction. Finally, the performance of the proposed RUL prediction model is validated by real field data and simulation data.

  4. Nonlinear Dynamic Surface Control of Chaos in Permanent Magnet Synchronous Motor Based on the Minimum Weights of RBF Neural Network

    Directory of Open Access Journals (Sweden)

    Shaohua Luo

    2014-01-01

    Full Text Available This paper is concerned with the problem of the nonlinear dynamic surface control (DSC of chaos based on the minimum weights of RBF neural network for the permanent magnet synchronous motor system (PMSM wherein the unknown parameters, disturbances, and chaos are presented. RBF neural network is used to approximate the nonlinearities and an adaptive law is employed to estimate unknown parameters. Then, a simple and effective controller is designed by introducing dynamic surface control technique on the basis of first-order filters. Asymptotically tracking stability in the sense of uniformly ultimate boundedness is achieved in a short time. Finally, the performance of the proposed controller is testified through simulation results.

  5. Data systems and computer science: Neural networks base R/T program overview

    Science.gov (United States)

    Gulati, Sandeep

    1991-01-01

    The research base, in the U.S. and abroad, for the development of neural network technology is discussed. The technical objectives are to develop and demonstrate adaptive, neural information processing concepts. The leveraging of external funding is also discussed.

  6. The effects of long-term stress on neural dynamics of working memory processing: An investigation using ERP

    OpenAIRE

    Yiran Yuan; Leung, Ada W. S.; Hongxia Duan; Liang Zhang; Kan Zhang; Jianhui Wu; Shaozheng Qin

    2016-01-01

    This study examined the neural dynamics of working memory (WM) processing under long-term stress. Forty participants who had been exposed to a long period of major exam preparation (six months) and twenty-one control participants performed a numerical n-back task (n?=?1,?2) while electroencephalograms were recorded. Psychological and endocrinal measurements confirmed significantly higher levels of long-term stress for participants in the exam group. The exam group showed significantly increas...

  7. Dynamics of BMP and Hes1/Hairy1 signaling in the dorsal neural tube underlies the transition from neural crest to definitive roof plate.

    Science.gov (United States)

    Nitzan, Erez; Avraham, Oshri; Kahane, Nitza; Ofek, Shai; Kumar, Deepak; Kalcheim, Chaya

    2016-03-24

    The dorsal midline region of the neural tube that results from closure of the neural folds is generally termed the roof plate (RP). However, this domain is highly dynamic and complex, and is first transiently inhabited by prospective neural crest (NC) cells that sequentially emigrate from the neuroepithelium. It only later becomes the definitive RP, the dorsal midline cells of the spinal cord. We previously showed that at the trunk level of the axis, prospective RP progenitors originate ventral to the premigratory NC and progressively reach the dorsal midline following NC emigration. However, the molecular mechanisms underlying the end of NC production and formation of the definitive RP remain virtually unknown. Based on distinctive cellular and molecular traits, we have defined an initial NC and a subsequent RP stage, allowing us to investigate the mechanisms responsible for the transition between the two phases. We demonstrate that in spite of the constant production of BMP4 in the dorsal tube at both stages, RP progenitors only transiently respond to the ligand and lose competence shortly before they arrive at their final location. In addition, exposure of dorsal tube cells at the NC stage to high levels of BMP signaling induces premature RP traits, such as Hes1/Hairy1, while concomitantly inhibiting NC production. Reciprocally, early inhibition of BMP signaling prevents Hairy1 mRNA expression at the RP stage altogether, suggesting that BMP is both necessary and sufficient for the development of this RP-specific trait. Furthermore, when Hes1/Hairy1 is misexpressed at the NC stage, it inhibits BMP signaling and downregulates BMPR1A/Alk3 mRNA expression, transcription of BMP targets such as Foxd3, cell-cycle progression, and NC emigration. Reciprocally, Foxd3 inhibits Hairy1, suggesting that repressive cross-interactions at the level of, and downstream from, BMP ensure the temporal separation between both lineages. Together, our data suggest that BMP signaling is

  8. Dynamic boundary layer based neural network quasi-sliding mode control for soft touching down on asteroid

    Science.gov (United States)

    Liu, Xiaosong; Shan, Zebiao; Li, Yuanchun

    2017-04-01

    Pinpoint landing is a critical step in some asteroid exploring missions. This paper is concerned with the descent trajectory control for soft touching down on a small irregularly-shaped asteroid. A dynamic boundary layer based neural network quasi-sliding mode control law is proposed to track a desired descending path. The asteroid's gravitational acceleration acting on the spacecraft is described by the polyhedron method. Considering the presence of input constraint and unmodeled acceleration, the dynamic equation of relative motion is presented first. The desired descending path is planned using cubic polynomial method, and a collision detection algorithm is designed. To perform trajectory tracking, a neural network sliding mode control law is given first, where the sliding mode control is used to ensure the convergence of system states. Two radial basis function neural networks (RBFNNs) are respectively used as an approximator for the unmodeled term and a compensator for the difference between the actual control input with magnitude constraint and nominal control. To improve the chattering induced by the traditional sliding mode control and guarantee the reachability of the system, a specific saturation function with dynamic boundary layer is proposed to replace the sign function in the preceding control law. Through the Lyapunov approach, the reachability condition of the control system is given. The improved control law can guarantee the system state move within a gradually shrinking quasi-sliding mode band. Numerical simulation results demonstrate the effectiveness of the proposed control strategy.

  9. The Functional Programming Language R and the Paradigm of Dynamic Scientific Programming

    NARCIS (Netherlands)

    Trancón y Widemann, B.; Bolz, C.F.; Grelck, C.

    2013-01-01

    R is an environment and functional programming language for statistical data analysis and visualization. Largely unknown to the functional programming community, it is popular and influential in many empirical sciences. Due to its integrated combination of dynamic and reflective scripting on one

  10. Dynamic Programming Approach for Exact Decision Rule Optimization

    KAUST Repository

    Amin, Talha

    2013-01-01

    This chapter is devoted to the study of an extension of dynamic programming approach that allows sequential optimization of exact decision rules relative to the length and coverage. It contains also results of experiments with decision tables from UCI Machine Learning Repository. © Springer-Verlag Berlin Heidelberg 2013.

  11. optimum workforce-size model using dynamic programming approach

    African Journals Online (AJOL)

    DJFLEX

    This paper presents an optimum workforce-size model which determines the minimum number of excess workers (overstaffing) as well as the minimum total recruitment cost during a specified planning horizon. The model is an extension of other existing dynamic programming models for manpower planning in the sense ...

  12. Optimum workforce-size model using dynamic programming approach

    African Journals Online (AJOL)

    Abstract. This paper presents an optimum workforce-size model which determines the minimum number of excess workers (overstaffing) as well as the minimum total recruitment cost during a specified planning horizon. The model is an extension of other existing dynamic programming models for manpower planning in the ...

  13. A stochastic dynamic programming model for stream water quality ...

    Indian Academy of Sciences (India)

    This paper deals with development of a seasonal fraction-removal policy model for waste load allocation in streams addressing uncertainties due to randomness and fuzziness. A stochastic dynamic programming (SDP) model is developed to arrive at the steady-state seasonal fraction-removal policy. A fuzzy decision model ...

  14. Fast and Cache-Oblivious Dynamic Programming with Local Dependencies

    DEFF Research Database (Denmark)

    Bille, Philip; Stöckel, Morten

    2012-01-01

    -oblivious algorithm for this type of local dynamic programming suitable for comparing large-scale strings. Our algorithm outperforms the previous state-of-the-art solutions. Surprisingly, our new simple algorithm is competitive with a complicated, optimized, and tuned implementation of the best cache-aware algorithm...

  15. Dynamic Frames Based Verification Method for Concurrent Java Programs

    NARCIS (Netherlands)

    Mostowski, Wojciech

    2016-01-01

    In this paper we discuss a verification method for concurrent Java programs based on the concept of dynamic frames. We build on our earlier work that proposes a new, symbolic permission system for concurrent reasoning and we provide the following new contributions. First, we describe our approach

  16. Hybrid Semantics of Stochastic Programs with Dynamic Reconfiguration

    Directory of Open Access Journals (Sweden)

    Alberto Policriti

    2009-10-01

    Full Text Available We begin by reviewing a technique to approximate the dynamics of stochastic programs --written in a stochastic process algebra-- by a hybrid system, suitable to capture a mixed discrete/continuous evolution. In a nutshell, the discrete dynamics is kept stochastic while the continuous evolution is given in terms of ODEs, and the overall technique, therefore, naturally associates a Piecewise Deterministic Markov Process with a stochastic program. The specific contribution in this work consists in an increase of the flexibility of the translation scheme, obtained by allowing a dynamic reconfiguration of the degree of discreteness/continuity of the semantics. We also discuss the relationships of this approach with other hybrid simulation strategies for biochemical systems.

  17. Intensive Research Program on Advances in Nonsmooth Dynamics 2016

    CERN Document Server

    Jeffrey, Mike; Lázaro, J; Olm, Josep

    2017-01-01

    This volume contains extended abstracts outlining selected talks and other selected presentations given by participants throughout the "Intensive Research Program on Advances in Nonsmooth Dynamics 2016", held at the Centre de Recerca Matemàtica (CRM) in Barcelona from February 1st to April 29th, 2016. They include brief research articles reporting new results, descriptions of preliminary work or open problems, and outlines of prominent discussion sessions. The articles are all the result of direct collaborations initiated during the research program. The topic is the theory and applications of Nonsmooth Dynamics. This includes systems involving elements of: impacting, switching, on/off control, hybrid discrete-continuous dynamics, jumps in physical properties, and many others. Applications include: electronics, climate modeling, life sciences, mechanics, ecology, and more. Numerous new results are reported concerning the dimensionality and robustness of nonsmooth models, shadowing variables, numbers of limit...

  18. Variance-penalized Markov decision processes: dynamic programming and reinforcement learning techniques

    Science.gov (United States)

    Gosavi, Abhijit

    2014-08-01

    In control systems theory, the Markov decision process (MDP) is a widely used optimization model involving selection of the optimal action in each state visited by a discrete-event system driven by Markov chains. The classical MDP model is suitable for an agent/decision-maker interested in maximizing expected revenues, but does not account for minimizing variability in the revenues. An MDP model in which the agent can maximize the revenues while simultaneously controlling the variance in the revenues is proposed. This work is rooted in machine learning/neural network concepts, where updating is based on system feedback and step sizes. First, a Bellman equation for the problem is proposed. Thereafter, convergent dynamic programming and reinforcement learning techniques for solving the MDP are provided along with encouraging numerical results on a small MDP and a preventive maintenance problem.

  19. Noninvasive fetal QRS detection using an echo state network and dynamic programming.

    Science.gov (United States)

    Lukoševičius, Mantas; Marozas, Vaidotas

    2014-08-01

    We address a classical fetal QRS detection problem from abdominal ECG recordings with a data-driven statistical machine learning approach. Our goal is to have a powerful, yet conceptually clean, solution. There are two novel key components at the heart of our approach: an echo state recurrent neural network that is trained to indicate fetal QRS complexes, and several increasingly sophisticated versions of statistics-based dynamic programming algorithms, which are derived from and rooted in probability theory. We also employ a standard technique for preprocessing and removing maternal ECG complexes from the signals, but do not take this as the main focus of this work. The proposed approach is quite generic and can be extended to other types of signals and annotations. Open-source code is provided.

  20. The application of the dynamic programming method in investment optimization

    Directory of Open Access Journals (Sweden)

    Petković Nina

    2016-01-01

    Full Text Available This paper deals with the problem of investment in Measuring Transformers Factory in Zajecar and the application of the dynamic programming method as one of the methods used in business process optimization. Dynamic programming is a special case of nonlinear programming that is widely applicable to nonlinear systems in economics. Measuring Transformers Factory in Zajecar was founded in 1969. It manufactures electrical equipment, primarily low and medium voltage current measuring transformers, voltage transformers, bushings, etc. The company offers a wide range of products and for this paper's needs the company's management selected three products for each of which optimal investment costing was made. The purpose was to see which product would be the most profitable and thus proceed with the manufacturing and selling of that particular product or products.

  1. Quantitative Live Imaging of Human Embryonic Stem Cell Derived Neural Rosettes Reveals Structure-Function Dynamics Coupled to Cortical Development.

    Science.gov (United States)

    Ziv, Omer; Zaritsky, Assaf; Yaffe, Yakey; Mutukula, Naresh; Edri, Reuven; Elkabetz, Yechiel

    2015-10-01

    Neural stem cells (NSCs) are progenitor cells for brain development, where cellular spatial composition (cytoarchitecture) and dynamics are hypothesized to be linked to critical NSC capabilities. However, understanding cytoarchitectural dynamics of this process has been limited by the difficulty to quantitatively image brain development in vivo. Here, we study NSC dynamics within Neural Rosettes--highly organized multicellular structures derived from human pluripotent stem cells. Neural rosettes contain NSCs with strong epithelial polarity and are expected to perform apical-basal interkinetic nuclear migration (INM)--a hallmark of cortical radial glial cell development. We developed a quantitative live imaging framework to characterize INM dynamics within rosettes. We first show that the tendency of cells to follow the INM orientation--a phenomenon we referred to as radial organization, is associated with rosette size, presumably via mechanical constraints of the confining structure. Second, early forming rosettes, which are abundant with founder NSCs and correspond to the early proliferative developing cortex, show fast motions and enhanced radial organization. In contrast, later derived rosettes, which are characterized by reduced NSC capacity and elevated numbers of differentiated neurons, and thus correspond to neurogenesis mode in the developing cortex, exhibit slower motions and decreased radial organization. Third, later derived rosettes are characterized by temporal instability in INM measures, in agreement with progressive loss in rosette integrity at later developmental stages. Finally, molecular perturbations of INM by inhibition of actin or non-muscle myosin-II (NMII) reduced INM measures. Our framework enables quantification of cytoarchitecture NSC dynamics and may have implications in functional molecular studies, drug screening, and iPS cell-based platforms for disease modeling.

  2. Quantitative Live Imaging of Human Embryonic Stem Cell Derived Neural Rosettes Reveals Structure-Function Dynamics Coupled to Cortical Development.

    Directory of Open Access Journals (Sweden)

    Omer Ziv

    2015-10-01

    Full Text Available Neural stem cells (NSCs are progenitor cells for brain development, where cellular spatial composition (cytoarchitecture and dynamics are hypothesized to be linked to critical NSC capabilities. However, understanding cytoarchitectural dynamics of this process has been limited by the difficulty to quantitatively image brain development in vivo. Here, we study NSC dynamics within Neural Rosettes--highly organized multicellular structures derived from human pluripotent stem cells. Neural rosettes contain NSCs with strong epithelial polarity and are expected to perform apical-basal interkinetic nuclear migration (INM--a hallmark of cortical radial glial cell development. We developed a quantitative live imaging framework to characterize INM dynamics within rosettes. We first show that the tendency of cells to follow the INM orientation--a phenomenon we referred to as radial organization, is associated with rosette size, presumably via mechanical constraints of the confining structure. Second, early forming rosettes, which are abundant with founder NSCs and correspond to the early proliferative developing cortex, show fast motions and enhanced radial organization. In contrast, later derived rosettes, which are characterized by reduced NSC capacity and elevated numbers of differentiated neurons, and thus correspond to neurogenesis mode in the developing cortex, exhibit slower motions and decreased radial organization. Third, later derived rosettes are characterized by temporal instability in INM measures, in agreement with progressive loss in rosette integrity at later developmental stages. Finally, molecular perturbations of INM by inhibition of actin or non-muscle myosin-II (NMII reduced INM measures. Our framework enables quantification of cytoarchitecture NSC dynamics and may have implications in functional molecular studies, drug screening, and iPS cell-based platforms for disease modeling.

  3. Artificial Neural Networks and Gene Expression Programing based age estimation using facial features

    Directory of Open Access Journals (Sweden)

    Baddrud Z. Laskar

    2015-10-01

    Full Text Available This work is about estimating human age automatically through analysis of facial images. It has got a lot of real-world applications. Due to prompt advances in the fields of machine vision, facial image processing, and computer graphics, automatic age estimation via faces in computer is one of the dominant topics these days. This is due to widespread real-world applications, in areas of biometrics, security, surveillance, control, forensic art, entertainment, online customer management and support, along with cosmetology. As it is difficult to estimate the exact age, this system is to estimate a certain range of ages. Four sets of classifications have been used to differentiate a person’s data into one of the different age groups. The uniqueness about this study is the usage of two technologies i.e., Artificial Neural Networks (ANN and Gene Expression Programing (GEP to estimate the age and then compare the results. New methodologies like Gene Expression Programing (GEP have been explored here and significant results were found. The dataset has been developed to provide more efficient results by superior preprocessing methods. This proposed approach has been developed, tested and trained using both the methods. A public data set was used to test the system, FG-NET. The quality of the proposed system for age estimation using facial features is shown by broad experiments on the available database of FG-NET.

  4. Effective visual working memory capacity: an emergent effect from the neural dynamics in an attractor network.

    Directory of Open Access Journals (Sweden)

    Laura Dempere-Marco

    Full Text Available The study of working memory capacity is of outmost importance in cognitive psychology as working memory is at the basis of general cognitive function. Although the working memory capacity limit has been thoroughly studied, its origin still remains a matter of strong debate. Only recently has the role of visual saliency in modulating working memory storage capacity been assessed experimentally and proved to provide valuable insights into working memory function. In the computational arena, attractor networks have successfully accounted for psychophysical and neurophysiological data in numerous working memory tasks given their ability to produce a sustained elevated firing rate during a delay period. Here we investigate the mechanisms underlying working memory capacity by means of a biophysically-realistic attractor network with spiking neurons while accounting for two recent experimental observations: 1 the presence of a visually salient item reduces the number of items that can be held in working memory, and 2 visually salient items are commonly kept in memory at the cost of not keeping as many non-salient items. Our model suggests that working memory capacity is determined by two fundamental processes: encoding of visual items into working memory and maintenance of the encoded items upon their removal from the visual display. While maintenance critically depends on the constraints that lateral inhibition imposes to the mnemonic activity, encoding is limited by the ability of the stimulated neural assemblies to reach a sufficiently high level of excitation, a process governed by the dynamics of competition and cooperation among neuronal pools. Encoding is therefore contingent upon the visual working memory task and has led us to introduce the concept of effective working memory capacity (eWMC in contrast to the maximal upper capacity limit only reached under ideal conditions.

  5. The neural dynamics of reward value and risk coding in the human orbitofrontal cortex.

    Science.gov (United States)

    Li, Yansong; Vanni-Mercier, Giovanna; Isnard, Jean; Mauguière, François; Dreher, Jean-Claude

    2016-04-01

    The orbitofrontal cortex is known to carry information regarding expected reward, risk and experienced outcome. Yet, due to inherent limitations in lesion and neuroimaging methods, the neural dynamics of these computations has remained elusive in humans. Here, taking advantage of the high temporal definition of intracranial recordings, we characterize the neurophysiological signatures of the intact orbitofrontal cortex in processing information relevant for risky decisions. Local field potentials were recorded from the intact orbitofrontal cortex of patients suffering from drug-refractory partial epilepsy with implanted depth electrodes as they performed a probabilistic reward learning task that required them to associate visual cues with distinct reward probabilities. We observed three successive signals: (i) around 400 ms after cue presentation, the amplitudes of the local field potentials increased with reward probability; (ii) a risk signal emerged during the late phase of reward anticipation and during the outcome phase; and (iii) an experienced value signal appeared at the time of reward delivery. Both the medial and lateral orbitofrontal cortex encoded risk and reward probability while the lateral orbitofrontal cortex played a dominant role in coding experienced value. The present study provides the first evidence from intracranial recordings that the human orbitofrontal cortex codes reward risk both during late reward anticipation and during the outcome phase at a time scale of milliseconds. Our findings offer insights into the rapid mechanisms underlying the ability to learn structural relationships from the environment. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Health impact on Economy by Artificial Neural Network and Dynamic Ordinary Least Squares

    Directory of Open Access Journals (Sweden)

    Marziyeh Sadat Safe

    2017-10-01

    Full Text Available Introduction: Achievement of economic growth, as one of the most important macroeconomic variables, depends on the precise understanding of potential routes and the factors affecting on it. The aim of this study was to evaluate the health care sector’s effect on Iran Gross Domestic Product (GDP, as the status of economy. Method: Artificial Neural Network (ANN and Dynamic Ordinary Least Squares (DOLS were performed according to Iran GDP as the output variable and the input variables of life expectancy at birth, under five mortality rates, public health expenditures, the number of doctors and hospital beds during 1961-2012 in Iran. Data were collected from the Statistical Center of Iran, the Central Bank of the Islamic Republic of Iran, the World Health Organization and the World Bank databases. Data management and analysis were performed using Eviewes 7, stata 11 and also Mathlab. MSE, MAE and R2 were calculated to assess and compare the models. Results: One percent reduction in deaths of children under 5-years could improve Iran GDP as much as 1.9%. Additionally, one percent increment in the number of doctors, hospital beds or health expenditure would increase GDP by 0.37%, 0.27% and 0.29%, respectively. Mean Absolute Error (MAE demonstrated the superiority of DOLS in the model estimation. Conclusion: The lack of sufficient considerations and excellent models in the health care sector is the main reason for underestimating the effect of this sector on economy. This limitation leads to neglecting the resource allocation to the health care sector, as the great potential motivation of the economic growth.

  7. Short-term EEG dynamics and neural generators evoked by navigational images.

    Science.gov (United States)

    Leroy, Axelle; Cevallos, Carlos; Cebolla, Ana-Maria; Caharel, Stéphanie; Dan, Bernard; Cheron, Guy

    2017-01-01

    The ecological environment offered by virtual reality is primarily supported by visual information. The different image contents and their rhythmic presentation imply specific bottom-up and top-down processing. Because these processes already occur during passive observation we studied the brain responses evoked by the presentation of specific 3D virtual tunnels with respect to 2D checkerboard. For this, we characterized electroencephalograhy dynamics (EEG), the evoked potentials and related neural generators involved in various visual paradigms. Time-frequency analysis showed modulation of alpha-beta oscillations indicating the presence of stronger prediction and after-effects of the 3D-tunnel with respect to the checkerboard. Whatever the presented image, the generators of the P100 were situated bilaterally in the occipital cortex (BA18, BA19) and in the right inferior temporal cortex (BA20). In checkerboard but not 3D-tunnel presentation, the left fusiform gyrus (BA37) was additionally recruited. P200 generators were situated in the temporal cortex (BA21) and the cerebellum (lobule VI/Crus I) specifically for the checkerboard while the right parahippocampal gyrus (BA36) and the cerebellum (lobule IV/V and IX/X) were involved only during the 3D-tunnel presentation. For both type of image, P300 generators were localized in BA37 but also in BA19, the right BA21 and the cerebellar lobule VI for only the checkerboard and the left BA20-BA21 for only the 3D-tunnel. Stronger P300 delta-theta oscillations recorded in this later situation point to a prevalence of the effect of changing direction over the proper visual content of the 3D-tunnel. The parahippocampal gyrus (BA36) implicated in navigation was also identified when the 3D-tunnel was compared to their scrambled versions, highlighting an action-oriented effect linked to navigational content.

  8. Short-term EEG dynamics and neural generators evoked by navigational images.

    Directory of Open Access Journals (Sweden)

    Axelle Leroy

    Full Text Available The ecological environment offered by virtual reality is primarily supported by visual information. The different image contents and their rhythmic presentation imply specific bottom-up and top-down processing. Because these processes already occur during passive observation we studied the brain responses evoked by the presentation of specific 3D virtual tunnels with respect to 2D checkerboard. For this, we characterized electroencephalograhy dynamics (EEG, the evoked potentials and related neural generators involved in various visual paradigms. Time-frequency analysis showed modulation of alpha-beta oscillations indicating the presence of stronger prediction and after-effects of the 3D-tunnel with respect to the checkerboard. Whatever the presented image, the generators of the P100 were situated bilaterally in the occipital cortex (BA18, BA19 and in the right inferior temporal cortex (BA20. In checkerboard but not 3D-tunnel presentation, the left fusiform gyrus (BA37 was additionally recruited. P200 generators were situated in the temporal cortex (BA21 and the cerebellum (lobule VI/Crus I specifically for the checkerboard while the right parahippocampal gyrus (BA36 and the cerebellum (lobule IV/V and IX/X were involved only during the 3D-tunnel presentation. For both type of image, P300 generators were localized in BA37 but also in BA19, the right BA21 and the cerebellar lobule VI for only the checkerboard and the left BA20-BA21 for only the 3D-tunnel. Stronger P300 delta-theta oscillations recorded in this later situation point to a prevalence of the effect of changing direction over the proper visual content of the 3D-tunnel. The parahippocampal gyrus (BA36 implicated in navigation was also identified when the 3D-tunnel was compared to their scrambled versions, highlighting an action-oriented effect linked to navigational content.

  9. Effective Visual Working Memory Capacity: An Emergent Effect from the Neural Dynamics in an Attractor Network

    Science.gov (United States)

    Dempere-Marco, Laura; Melcher, David P.; Deco, Gustavo

    2012-01-01

    The study of working memory capacity is of outmost importance in cognitive psychology as working memory is at the basis of general cognitive function. Although the working memory capacity limit has been thoroughly studied, its origin still remains a matter of strong debate. Only recently has the role of visual saliency in modulating working memory storage capacity been assessed experimentally and proved to provide valuable insights into working memory function. In the computational arena, attractor networks have successfully accounted for psychophysical and neurophysiological data in numerous working memory tasks given their ability to produce a sustained elevated firing rate during a delay period. Here we investigate the mechanisms underlying working memory capacity by means of a biophysically-realistic attractor network with spiking neurons while accounting for two recent experimental observations: 1) the presence of a visually salient item reduces the number of items that can be held in working memory, and 2) visually salient items are commonly kept in memory at the cost of not keeping as many non-salient items. Our model suggests that working memory capacity is determined by two fundamental processes: encoding of visual items into working memory and maintenance of the encoded items upon their removal from the visual display. While maintenance critically depends on the constraints that lateral inhibition imposes to the mnemonic activity, encoding is limited by the ability of the stimulated neural assemblies to reach a sufficiently high level of excitation, a process governed by the dynamics of competition and cooperation among neuronal pools. Encoding is therefore contingent upon the visual working memory task and has led us to introduce the concept of effective working memory capacity (eWMC) in contrast to the maximal upper capacity limit only reached under ideal conditions. PMID:22952608

  10. Effective visual working memory capacity: an emergent effect from the neural dynamics in an attractor network.

    Science.gov (United States)

    Dempere-Marco, Laura; Melcher, David P; Deco, Gustavo

    2012-01-01

    The study of working memory capacity is of outmost importance in cognitive psychology as working memory is at the basis of general cognitive function. Although the working memory capacity limit has been thoroughly studied, its origin still remains a matter of strong debate. Only recently has the role of visual saliency in modulating working memory storage capacity been assessed experimentally and proved to provide valuable insights into working memory function. In the computational arena, attractor networks have successfully accounted for psychophysical and neurophysiological data in numerous working memory tasks given their ability to produce a sustained elevated firing rate during a delay period. Here we investigate the mechanisms underlying working memory capacity by means of a biophysically-realistic attractor network with spiking neurons while accounting for two recent experimental observations: 1) the presence of a visually salient item reduces the number of items that can be held in working memory, and 2) visually salient items are commonly kept in memory at the cost of not keeping as many non-salient items. Our model suggests that working memory capacity is determined by two fundamental processes: encoding of visual items into working memory and maintenance of the encoded items upon their removal from the visual display. While maintenance critically depends on the constraints that lateral inhibition imposes to the mnemonic activity, encoding is limited by the ability of the stimulated neural assemblies to reach a sufficiently high level of excitation, a process governed by the dynamics of competition and cooperation among neuronal pools. Encoding is therefore contingent upon the visual working memory task and has led us to introduce the concept of effective working memory capacity (eWMC) in contrast to the maximal upper capacity limit only reached under ideal conditions.

  11. Continual and One-Shot Learning Through Neural Networks with Dynamic External Memory

    DEFF Research Database (Denmark)

    Lüders, Benno; Schläger, Mikkel; Korach, Aleksandra

    2017-01-01

    Training neural networks to quickly learn new skills without forgetting previously learned skills is an important open challenge in machine learning. A common problem for adaptive networks that can learn during their lifetime is that the weights encoding a particular task are often overridden when...... a new task is learned. This paper takes a step in overcoming this limitation by building on the recently proposed Evolving Neural Turing Machine (ENTM) approach. In the ENTM, neural networks are augmented with an external memory component that they can write to and read from, which allows them to store...

  12. Dynamics of Uncertain Discrete-Time Neural Network with Delay and Impulses

    Directory of Open Access Journals (Sweden)

    Xuehui Mei

    2015-01-01

    Full Text Available The stability of discrete-time impulsive delay neural networks with and without uncertainty is investigated. First, by using Razumikhin-type theorem, a new less conservative condition for the exponential stability of discrete-time neural network with delay and impulse is proposed. Moreover, some new sufficient conditions are derived to guarantee the stability of uncertain discrete-time neural network with delay and impulse by using Lyapunov function and linear matrix inequality (LMI. Finally, several examples with numerical simulation are presented to demonstrate the effectiveness of the obtained results.

  13. Accurate Neural Network Description of Surface Phonons in Reactive Gas-Surface Dynamics: N2 + Ru(0001).

    Science.gov (United States)

    Shakouri, Khosrow; Behler, Jörg; Meyer, Jörg; Kroes, Geert-Jan

    2017-05-18

    Ab initio molecular dynamics (AIMD) simulations enable the accurate description of reactive molecule-surface scattering especially if energy transfer involving surface phonons is important. However, presently, the computational expense of AIMD rules out its application to systems where reaction probabilities are smaller than about 1%. Here we show that this problem can be overcome by a high-dimensional neural network fit of the molecule-surface interaction potential, which also incorporates the dependence on phonons by taking into account all degrees of freedom of the surface explicitly. As shown for N2 + Ru(0001), which is a prototypical case for highly activated dissociative chemisorption, the method allows an accurate description of the coupling of molecular and surface atom motion and accurately accounts for vibrational properties of the employed slab model of Ru(0001). The neural network potential allows reaction probabilities as low as 10-5 to be computed, showing good agreement with experimental results.

  14. Boundary Control of Linear Uncertain 1-D Parabolic PDE Using Approximate Dynamic Programming.

    Science.gov (United States)

    Talaei, Behzad; Jagannathan, Sarangapani; Singler, John

    2017-03-02

    This paper develops a near optimal boundary control method for distributed parameter systems governed by uncertain linear 1-D parabolic partial differential equations (PDE) by using approximate dynamic programming. A quadratic surface integral is proposed to express the optimal cost functional for the infinite-dimensional state space. Accordingly, the Hamilton-Jacobi-Bellman (HJB) equation is formulated in the infinite-dimensional domain without using any model reduction. Subsequently, a neural network identifier is developed to estimate the unknown spatially varying coefficient in PDE dynamics. Novel tuning law is proposed to guarantee the boundedness of identifier approximation error in the PDE domain. A radial basis network (RBN) is subsequently proposed to generate an approximate solution for the optimal surface kernel function online. The tuning law for near optimal RBN weights is created, such that the HJB equation error is minimized while the dynamics are identified and closed-loop system remains stable. Ultimate boundedness (UB) of the closed-loop system is verified by using the Lyapunov theory. The performance of the proposed controller is successfully confirmed by simulation on an unstable diffusion-reaction process.

  15. Caldesmon regulates actin dynamics to influence cranial neural crest migration in Xenopus

    OpenAIRE

    Nie, Shuyi; Kee, Yun; Bronner-Fraser, Marianne

    2011-01-01

    Caldesmon (CaD) is an important actin modulator that associates with actin filaments to regulate cell morphology and motility. Although extensively studied in cultured cells, there is little functional information regarding the role of CaD in migrating cells in vivo. Here we show that nonmuscle CaD is highly expressed in both premigratory and migrating cranial neural crest cells of Xenopus embryos. Depletion of CaD with antisense morpholino oligonucleotides causes cranial neural crest cells t...

  16. The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction.

    Science.gov (United States)

    Casey, M

    1996-08-15

    Recurrent neural networks (RNNs) can learn to perform finite state computations. It is shown that an RNN performing a finite state computation must organize its state space to mimic the states in the minimal deterministic finite state machine that can perform that computation, and a precise description of the attractor structure of such systems is given. This knowledge effectively predicts activation space dynamics, which allows one to understand RNN computation dynamics in spite of complexity in activation dynamics. This theory provides a theoretical framework for understanding finite state machine (FSM) extraction techniques and can be used to improve training methods for RNNs performing FSM computations. This provides an example of a successful approach to understanding a general class of complex systems that has not been explicitly designed, e.g., systems that have evolved or learned their internal structure.

  17. Autonomy in Action: Linking the Act of Looking to Memory Formation in Infancy via Dynamic Neural Fields

    Science.gov (United States)

    Perone, Sammy; Spencer, John P.

    2013-01-01

    Looking is a fundamental exploratory behavior by which infants acquire knowledge about the world. In theories of infant habituation, however, looking as an exploratory behavior has been deemphasized relative to the reliable nature with which looking indexes active cognitive processing. We present a new theory that connects looking to the dynamics of memory formation and formally implement this theory in a Dynamic Neural Field model that learns autonomously as it actively looks and looks away from a stimulus. We situate this model in a habituation task and illustrate the mechanisms by which looking, encoding, working memory formation, and long-term memory formation give rise to habituation across multiple stimulus and task contexts. We also illustrate how the act of looking and the temporal dynamics of learning affect each other. Finally, we test a new hypothesis about the sources of developmental differences in looking. PMID:23136815

  18. Adaptive dynamic programming with applications in optimal control

    CERN Document Server

    Liu, Derong; Wang, Ding; Yang, Xiong; Li, Hongliang

    2017-01-01

    This book covers the most recent developments in adaptive dynamic programming (ADP). The text begins with a thorough background review of ADP making sure that readers are sufficiently familiar with the fundamentals. In the core of the book, the authors address first discrete- and then continuous-time systems. Coverage of discrete-time systems starts with a more general form of value iteration to demonstrate its convergence, optimality, and stability with complete and thorough theoretical analysis. A more realistic form of value iteration is studied where value function approximations are assumed to have finite errors. Adaptive Dynamic Programming also details another avenue of the ADP approach: policy iteration. Both basic and generalized forms of policy-iteration-based ADP are studied with complete and thorough theoretical analysis in terms of convergence, optimality, stability, and error bounds. Among continuous-time systems, the control of affine and nonaffine nonlinear systems is studied using the ADP app...

  19. Fast unambiguous stereo matching using reliability-based dynamic programming.

    Science.gov (United States)

    Gong, Minglun; Yang, Yee-Hong

    2005-06-01

    An efficient unambiguous stereo matching technique is presented in this paper. Our main contribution is to introduce a new reliability measure to dynamic programming approaches in general. For stereo vision application, the reliability of a proposed match on a scanline is defined as the cost difference between the globally best disparity assignment that includes the match and the globally best assignment that does not include the match. A reliability-based dynamic programming algorithm is derived accordingly, which can selectively assign disparities to pixels when the corresponding reliabilities exceed a given threshold. The experimental results show that the new approach can produce dense (> 70 percent of the unoccluded pixels) and reliable (error rate < 0.5 percent) matches efficiently (< 0.2 sec on a 2GHz P4) for the four Middlebury stereo data sets.

  20. GLOBEC (Global Ocean Ecosystems Dynamics: Northwest Atlantic program

    Science.gov (United States)

    1991-01-01

    The specific objective of the meeting was to plan an experiment in the Northwestern Atlantic to study the marine ecosystem and its role, together with that of climate and physical dynamics, in determining fisheries recruitment. The underlying focus of the GLOBEC initiative is to understand the marine ecosystem as it related to marine living resources and to understand how fluctuation in these resources are driven by climate change and exploitation. In this sense the goal is a solid scientific program to provide basic information concerning major fisheries stocks and the environment that sustains them. The plan is to attempt to reach this understanding through a multidisciplinary program that brings to bear new techniques as disparate as numerical fluid dynamic models of ocean circulation, molecular biology and modern acoustic imaging. The effort will also make use of the massive historical data sets on fisheries and the state of the climate in a coordinated manner.

  1. Systems and methods for interpolation-based dynamic programming

    KAUST Repository

    Rockwood, Alyn

    2013-01-03

    Embodiments of systems and methods for interpolation-based dynamic programming. In one embodiment, the method includes receiving an object function and a set of constraints associated with the objective function. The method may also include identifying a solution on the objective function corresponding to intersections of the constraints. Additionally, the method may include generating an interpolated surface that is in constant contact with the solution. The method may also include generating a vector field in response to the interpolated surface.

  2. Affine Monotonic and Risk-Sensitive Models in Dynamic Programming

    OpenAIRE

    Bertsekas, Dimitri

    2016-01-01

    In this paper we consider a broad class of infinite horizon discrete-time optimal control models that involve a nonnegative cost function and an affine mapping in their dynamic programming equation. They include as special cases classical models such as stochastic undiscounted nonnegative cost problems, stochastic multiplicative cost problems, and risk-sensitive problems with exponential cost. We focus on the case where the state space is finite and the control space has some compactness prop...

  3. Application of a Dynamic Programming Algorithm for Weapon Target Assignment

    Science.gov (United States)

    2016-02-01

    responsible for its safe custody. UNCLASSIFIED UNCLASSIFIED Application of a Dynamic Programming Algorithm for Weapon Target Assignment...the technique used. As a precaution , such techniques are generally referred to as suboptimal. As mentioned above, an exact solution can only be...Skovde, Sweden, 2010. [5] K. C. Jha, “Very Large-Scale Neighborhood Search Heuristics for Combinatorial Optimization Problems,” University of Florida

  4. Dynamic Programming Approach for Construction of Association Rule Systems

    KAUST Repository

    Alsolami, Fawaz

    2016-11-18

    In the paper, an application of dynamic programming approach for optimization of association rules from the point of view of knowledge representation is considered. The association rule set is optimized in two stages, first for minimum cardinality and then for minimum length of rules. Experimental results present cardinality of the set of association rules constructed for information system and lower bound on minimum possible cardinality of rule set based on the information obtained during algorithm work as well as obtained results for length.

  5. Page 1 On Some Applications of Dynamic Programming to ...

    Indian Academy of Sciences (India)

    However for values of M which are not multiples of 10, the method of dynamic programming has to be used. (ii) As M increases, f. (M) also increases. This is expected since as. M increases the maximum entropy must increase. (iii) We find that if pi > p; then m; 2 mi. That this is true always can be seen as follows: (p; logs mi + ...

  6. DYNAMIC PROGRAMMING – EFFICIENT TOOL FOR POWER SYSTEM EXPANSION PLANNING

    Directory of Open Access Journals (Sweden)

    SIMO A.

    2015-03-01

    Full Text Available The paper isfocusing on dynamic programming use for power system expansion planning (EP – transmission network (TNEP and distribution network (DNEP. The EP problem has been approached from the retrospective and prospective point of view. To achieve this goal, the authors are developing two software-tools in Matlab environment. Two techniques have been tackled: particle swarm optimization (PSO and genetic algorithms (GA. The case study refers to Test 25 buses test power system developed within the Power Systems Department.

  7. SEWER NETWORK DISCHARGE OPTIMIZATION USING THE DYNAMIC PROGRAMMING

    Directory of Open Access Journals (Sweden)

    Viorel MINZU

    2015-12-01

    Full Text Available It is necessary to adopt an optimal control that allows an efficient usage of the existing sewer networks, in order to avoid the building of new retention facilities. The main objective of the control action is to minimize the overflow volume of a sewer network. This paper proposes a method to apply a solution obtained by discrete dynamic programming through a realistic closed loop system.

  8. Nation-Building Modeling and Resource Allocation Via Dynamic Programming

    Science.gov (United States)

    2014-09-01

    provides the ability to inform strategic resource alloca- tion decisions during ongoing nation– building operations. Historical examples may be modeled and...against moving to a peaceful state. 5.3 Model Including Violence Since enemy action information is not readily obtainable in nation– building oper...NATION– BUILDING MODELING AND RESOURCE ALLOCATION VIA DYNAMIC PROGRAMMING DISSERTATION Cade M. Saie, Major, USA AFIT–DS–ENS–14–S–18 DEPARTMENT OF THE

  9. Soil temperature modeling at different depths using neuro-fuzzy, neural network, and genetic programming techniques

    Science.gov (United States)

    Kisi, Ozgur; Sanikhani, Hadi; Cobaner, Murat

    2017-08-01

    The applicability of artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS), and genetic programming (GP) techniques in estimating soil temperatures (ST) at different depths is investigated in this study. Weather data from two stations, Mersin and Adana, Turkey, were used as inputs to the applied models in order to model monthly STs. The first part of the study focused on comparison of ANN, ANFIS, and GP models in modeling ST of two stations at the depths of 10, 50, and 100 cm. GP was found to perform better than the ANN and ANFIS-SC in estimating monthly ST. The effect of periodicity (month of the year) on models' accuracy was also investigated. Including periodicity component in models' inputs considerably increased their accuracies. The root mean square error (RMSE) of ANN models was respectively decreased by 34 and 27 % for the depths of 10 and 100 cm adding the periodicity input. In the second part of the study, the accuracies of the ANN, ANFIS, and GP models were compared in estimating ST of Mersin Station using the climatic data of Adana Station. The ANN models generally performed better than the ANFIS-SC and GP in modeling ST of Mersin Station without local climatic inputs.

  10. Evolutionary programming technique for reducing complexity of artifical neural networks for breast cancer diagnosis

    Science.gov (United States)

    Lo, Joseph Y.; Land, Walker H., Jr.; Morrison, Clayton T.

    2000-06-01

    An evolutionary programming (EP) technique was investigated to reduce the complexity of artificial neural network (ANN) models that predict the outcome of mammography-induced breast biopsy. By combining input variables consisting of mammography lesion descriptors and patient history data, the ANN predicted whether the lesion was benign or malignant, which may aide in reducing the number of unnecessary benign biopsies and thus the cost of mammography screening of breast cancer. The EP has the ability to optimize the ANN both structurally and parametrically. An EP was partially optimized using a data set of 882 biopsy-proven cases from Duke University Medical Center. Although many different architectures were evolved, the best were often perceptrons with no hidden nodes. A rank ordering of the inputs was performed using twenty independent EP runs. This confirmed the predictive value of the mass margin and patient age variables, and revealed the unexpected usefulness of the history of previous breast cancer. Further work is required to improve the performance of the EP over all cases in general and calcification cases in particular.

  11. A report of advancements in structural dynamic technology resulting from Saturn 5 programs

    Science.gov (United States)

    1970-01-01

    Two volume report on practical aspects of structural dynamic analysis in Saturn 5 program is described. Volume 1 is oriented toward program managers of future structural dynamic programs. Volume 2, oriented toward technical leaders of programs, discusses methods and procedures used in Saturn 5 program.

  12. Application of dynamic programming to control khuzestan water resources system

    Science.gov (United States)

    Jamshidi, M.; Heidari, M.

    1977-01-01

    An approximate optimization technique based on discrete dynamic programming called discrete differential dynamic programming (DDDP), is employed to obtain the near optimal operation policies of a water resources system in the Khuzestan Province of Iran. The technique makes use of an initial nominal state trajectory for each state variable, and forms corridors around the trajectories. These corridors represent a set of subdomains of the entire feasible domain. Starting with such a set of nominal state trajectories, improvements in objective function are sought within the corridors formed around them. This leads to a set of new nominal trajectories upon which more improvements may be sought. Since optimization is confined to a set of subdomains, considerable savings in memory and computer time are achieved over that of conventional dynamic programming. The Kuzestan water resources system considered in this study is located in southwest Iran, and consists of two rivers, three reservoirs, three hydropower plants, and three irrigable areas. Data and cost benefit functions for the analysis were obtained either from the historical records or from similar studies. ?? 1977.

  13. Programmed subcellular release to study the dynamics of cell detachment

    Science.gov (United States)

    Wildt, Bridget

    Cell detachment is central to a broad range of physio-pathological changes however there are no quantitative methods to study this process. Here we report programmed subcellular release, a method for spatially and temporally controlled cellular detachment and present the first quantitative results of the detachment dynamics of 3T3 fibroblasts at the subcellular level. Programmed subcellular release is an in vitro technique designed to trigger the detachment of distinct parts of a single cell from a patterned substrate with both spatial and temporal control. Subcellular release is achieved by plating cells on an array of patterned gold electrodes created by standard microfabrication techniques. The electrodes are biochemically functionalized with an adhesion-promoting RGD peptide sequence that is attached to the gold electrode via a thiol linkage. Each electrode is electrically isolated so that a subcellular section of a single cell spanning multiple electrodes can be released independently. Upon application of a voltage pulse to a single electrode, RGD-thiol molecules on an individual electrode undergo rapid electrochemical desorption that leads to subsequent cell contraction. The dynamics of cell contraction are found to have characteristic induction and contraction times. This thesis presents the first molecular inhibition studies conducted using programmed subcellular release verifying that this technique can be used to study complex signaling pathways critical to cell motility. Molecular level dynamics of focal adhesion proteins and actin stress fibers provide some insight into the complexities associated with triggered cell detachment. In addition to subcellular release, the programmed release of alkanethiols provides a tool for to study the spatially and temporally controlled release of small molecules or particles from individually addressable gold electrodes. Here we report on experiments which determine the dynamics of programmed release using fluorophore

  14. Dynamic measurements of cervical neural foramina during neck movements in asymptomatic young volunteers.

    Science.gov (United States)

    Chang, Victor; Basheer, Azam; Baumer, Timothy; Oravec, Daniel; McDonald, Colin P; Bey, Michael J; Bartol, Stephen; Yeni, Yener N

    2017-10-01

    Neural foraminal dimensions are considered important in nerve root compression and development of cervical radiculopathy, but baseline data regarding their range during normal motion are not available. An in vivo study of cervical foraminal motion was conducted to characterize normal 3D dynamic foraminal dimensions during physiological neck motion and compare between different tasks and intervertebral segments. Biplane X-ray imaging and computed tomography-based markerless tracking were used to measure foraminal height (FH) and width (FW) from five asymptomatic subjects during neck axial rotation and extension. FH and FW were quantified as the minimum (SI.Min and AP.Min), range (SI.Range and AP.Range), and median (SI.Med and AP.Med) of superoinferior (SI) and anteroposterior (AP) dimensions for each trial and as the coefficient of variation of these variables from three trials (SI.Med.CV and AP.Med.CV, SI.Range.CV and AP.Range.CV) at C3-4 through C6-7 levels for each subject. Differences were analyzed using mixed model ANOVA. AP.Range and AP.Med.CV were greater (P < 0.0001) while AP.Min and AP.Range.CV were smaller (P < 0.0006 and P < 0.0005) during neck extension than rotation. SI.Range and SI.Med.CV were greater for extension than rotation at C5-6 (P < 0.002 and P < 0.03), whereas SI.Med.CV was greater for rotation than extension at C3-4 (P < 0.03). AP.Range (P < 0.02), AP.Med.CV (P < 0.05), SI.Range (P < 0.0004), and SI.Med.CV (P < 0.02) were different between cervical levels, the latter two being during extension only. Patterns of FH and FW during normal motion are different between tasks and cervical levels. These findings are expected to provide a basis for future studies of spinal degeneration and surgical efficacy.

  15. The Language, Tone and Prosody of Emotions: Neural Substrates and Dynamics of Spoken-Word Emotion Perception.

    Science.gov (United States)

    Liebenthal, Einat; Silbersweig, David A; Stern, Emily

    2016-01-01

    Rapid assessment of emotions is important for detecting and prioritizing salient input. Emotions are conveyed in spoken words via verbal and non-verbal channels that are mutually informative and unveil in parallel over time, but the neural dynamics and interactions of these processes are not well understood. In this paper, we review the literature on emotion perception in faces, written words, and voices, as a basis for understanding the functional organization of emotion perception in spoken words. The characteristics of visual and auditory routes to the amygdala-a subcortical center for emotion perception-are compared across these stimulus classes in terms of neural dynamics, hemispheric lateralization, and functionality. Converging results from neuroimaging, electrophysiological, and lesion studies suggest the existence of an afferent route to the amygdala and primary visual cortex for fast and subliminal processing of coarse emotional face cues. We suggest that a fast route to the amygdala may also function for brief non-verbal vocalizations (e.g., laugh, cry), in which emotional category is conveyed effectively by voice tone and intensity. However, emotional prosody which evolves on longer time scales and is conveyed by fine-grained spectral cues appears to be processed via a slower, indirect cortical route. For verbal emotional content, the bulk of current evidence, indicating predominant left lateralization of the amygdala response and timing of emotional effects attributable to speeded lexical access, is more consistent with an indirect cortical route to the amygdala. Top-down linguistic modulation may play an important role for prioritized perception of emotions in words. Understanding the neural dynamics and interactions of emotion and language perception is important for selecting potent stimuli and devising effective training and/or treatment approaches for the alleviation of emotional dysfunction across a range of neuropsychiatric states.

  16. The Path Planning of AUV Based on D-S Information Fusion Map Building and Bio-Inspired Neural Network in Unknown Dynamic Environment

    Directory of Open Access Journals (Sweden)

    Daqi Zhu

    2014-03-01

    Full Text Available In this paper a biologically inspired neural dynamics and map planning based approach are simultaneously proposed for AUV (Autonomous Underwater Vehicle path planning and obstacle avoidance in an unknown dynamic environment. Firstly the readings of an ultrasonic sensor are fused into the map using the D-S (Dempster-Shafer inference rule and a two-dimensional occupancy grid map is built. Secondly the dynamics of each neuron in the topologically organized neural network is characterized by a shunting equation. The AUV path is autonomously generated from the dynamic activity landscape of the neural network and previous AUV location. Finally, simulation results show high quality path optimization and obstacle avoidance behaviour for the AUV.

  17. Junctional neurulation: a unique developmental program shaping a discrete region of the spinal cord highly susceptible to neural tube defects.

    Science.gov (United States)

    Dady, Alwyn; Havis, Emmanuelle; Escriou, Virginie; Catala, Martin; Duband, Jean-Loup

    2014-09-24

    In higher vertebrates, the primordium of the nervous system, the neural tube, is shaped along the rostrocaudal axis through two consecutive, radically different processes referred to as primary and secondary neurulation. Failures in neurulation lead to severe anomalies of the nervous system, called neural tube defects (NTDs), which are among the most common congenital malformations in humans. Mechanisms causing NTDs in humans remain ill-defined. Of particular interest, the thoracolumbar region, which encompasses many NTD cases in the spine, corresponds to the junction between primary and secondary neurulations. Elucidating which developmental processes operate during neurulation in this region is therefore pivotal to unraveling the etiology of NTDs. Here, using the chick embryo as a model, we show that, at the junction, the neural tube is elaborated by a unique developmental program involving concerted movements of elevation and folding combined with local cell ingression and accretion. This process ensures the topological continuity between the primary and secondary neural tubes while supplying all neural progenitors of both the junctional and secondary neural tubes. Because it is distinct from the other neurulation events, we term this phenomenon junctional neurulation. Moreover, the planar-cell-polarity member, Prickle-1, is recruited specifically during junctional neurulation and its misexpression within a limited time period suffices to cause anomalies that phenocopy lower spine NTDs in human. Our study thus provides a molecular and cellular basis for understanding the causality of NTD prevalence in humans and ascribes to Prickle-1 a critical role in lower spinal cord formation. Copyright © 2014 the authors 0270-6474/14/3413208-14$15.00/0.

  18. Comparison of strategies for combining dynamic linear models with artificial neural networks for detecting diarrhea in slaughter pigs

    DEFF Research Database (Denmark)

    Jensen, Dan Børge; Kristensen, Anders Ringgaard

    2016-01-01

    , can provide early and automatic detection of diarrhea. To determine the best approach to achieve this goal, we compared 36 different strategies for combining a multivariate dynamic linear model (DLM) with an artificial neural network (ANN). We used data collected in 16 pens between November 2013...... (SP), and the sensitivity (SE). The best performance was seen when using a training window with a total of 42 hours for the numerical forecast errors, which produced an error rate=0.16, a specificity=0.88, and a sensitivity=0.80. For the other tested strategies, the ranges of error rates...

  19. Distinct intracellular Ca(2+) dynamics regulate apical constriction and differentially contribute to neural tube closure.

    Science.gov (United States)

    Suzuki, Makoto; Sato, Masanao; Koyama, Hiroshi; Hara, Yusuke; Hayashi, Kentaro; Yasue, Naoko; Imamura, Hiromi; Fujimori, Toshihiko; Nagai, Takeharu; Campbell, Robert E; Ueno, Naoto

    2017-04-01

    Early in the development of the central nervous system, progenitor cells undergo a shape change, called apical constriction, that triggers the neural plate to form a tubular structure. How apical constriction in the neural plate is controlled and how it contributes to tissue morphogenesis are not fully understood. In this study, we show that intracellular calcium ions (Ca(2+)) are required for Xenopus neural tube formation and that there are two types of Ca(2+)-concentration changes, a single-cell and a multicellular wave-like fluctuation, in the developing neural plate. Quantitative imaging analyses revealed that transient increases in Ca(2+) concentration induced cortical F-actin remodeling, apical constriction and accelerations of the closing movement of the neural plate. We also show that extracellular ATP and N-cadherin (cdh2) participate in the Ca(2+)-induced apical constriction. Furthermore, our mathematical model suggests that the effect of Ca(2+) fluctuations on tissue morphogenesis is independent of fluctuation frequency and that fluctuations affecting individual cells are more efficient than those at the multicellular level. We propose that distinct Ca(2+) signaling patterns differentially modulate apical constriction for efficient epithelial folding and that this mechanism has a broad range of physiological outcomes. © 2017. Published by The Company of Biologists Ltd.

  20. Dynamically weighted evolutionary ordinal neural network for solving an imbalanced liver transplantation problem.

    Science.gov (United States)

    Dorado-Moreno, Manuel; Pérez-Ortiz, María; Gutiérrez, Pedro A; Ciria, Rubén; Briceño, Javier; Hervás-Martínez, César

    2017-03-01

    Create an efficient decision-support model to assist medical experts in the process of organ allocation in liver transplantation. The mathematical model proposed here uses different sources of information to predict the probability of organ survival at different thresholds for each donor-recipient pair considered. Currently, this decision is mainly based on the Model for End-stage Liver Disease, which depends only on the severity of the recipient and obviates donor-recipient compatibility. We therefore propose to use information concerning the donor, the recipient and the surgery, with the objective of allocating the organ correctly. The database consists of information concerning transplants conducted in 7 different Spanish hospitals and the King's College Hospital (United Kingdom). The state of the patients is followed up for 12 months. We propose to treat the problem as an ordinal classification one, where we predict the organ survival at different thresholds: less than 15 days, between 15 and 90 days, between 90 and 365 days and more than 365 days. This discretization is intended to produce finer-grain survival information (compared with the common binary approach). However, it results in a highly imbalanced dataset in which more than 85% of cases belong to the last class. To solve this, we combine two approaches, a cost-sensitive evolutionary ordinal artificial neural network (ANN) (in which we propose to incorporate dynamic weights to make more emphasis on the worst classified classes) and an ordinal over-sampling technique (which adds virtual patterns to the minority classes and thus alleviates the imbalanced nature of the dataset). The results obtained by our proposal are promising and satisfactory, considering the overall accuracy, the ordering of the classes and the sensitivity of minority classes. In this sense, both the dynamic costs and the over-sampling technique improve the base results of the considered ANN-based method. Comparing our model with

  1. The Effect of an Enrichment Reading Program on the Cognitive Processes and Neural Structures of Children Having Reading Difficulties

    Directory of Open Access Journals (Sweden)

    Hayriye Gül KURUYER

    2017-06-01

    Full Text Available The main purpose of the current study is to explain the effect of an enrichment reading program on the cognitive processes and neural structures of children experiencing reading difficulties. The current study was carried out in line with a single-subject research method and the between-subjects multiple probe design belonging to this method. This research focuses on a group of eight students with reading difficulties. Within the context of the study, memory capacities, attention spans, reading-related activation and white matter pathways of the students were determined before and after the application of the enrichment reading program. This determination process was carried out in two stages. Neuro-imaging was performed in the first stage and in the second stage the students’ cognitive processes and neural structures were investigated in terms of focusing attention and memory capacities by using the following tools: Stroop Test TBAG Form, Auditory Verbal Digit Span Test-Form B, Cancellation Test and Number Order Learning Test. The results obtained show that the enrichment reading program resulted in an improvement in the reading profiles of the students having reading difficulties in terms of their cognitive processes and neural structures.

  2. Dynamic Neural Network of Insight: A Functional Magnetic Resonance Imaging Study on Solving Chinese ‘Chengyu’ Riddles

    Science.gov (United States)

    Zhao, Qingbai; Zhou, Zhijin; Xu, Haibo; Chen, Shi; Xu, Fang; Fan, Wenliang; Han, Lei

    2013-01-01

    The key components of insight include breaking mental sets and forming the novel, task-related associations. The majority of researchers have agreed that the anterior cingulate cortex may mediate processes of breaking one’s mental set, while the exact neural correlates of forming novel associations are still debatable. In the present study, we used a paradigm of answer selection to explore brain activations of insight by using event-related functional magnetic resonance imaging during solving Chinese ‘chengyu’ (in Chinese pinyin) riddles. Based on the participant’s choice, the trials were classified into the insight and non-insight conditions. Both stimulus-locked and response-locked analyses are conducted to detect the neural activity corresponding to the early and late periods of insight solution, respectively. Our data indicate that the early period of insight solution shows more activation in the middle temporal gyrus, the middle frontal gyrus and the anterior cingulate cortex. These activities might be associated to the extensive semantic processing, as well as detecting and resolving cognitive conflicts. In contrast, the late period of insight solution produced increased activities in the hippocampus and the amygdala, possibly reflecting the forming of novel association and the concomitant “Aha” feeling. Our study supports the key role of hippocampus in forming novel associations, and indicates a dynamic neural network during insight solution. PMID:23555020

  3. Serotonin 2A Receptor Signaling Underlies LSD-induced Alteration of the Neural Response to Dynamic Changes in Music.

    Science.gov (United States)

    Barrett, Frederick S; Preller, Katrin H; Herdener, Marcus; Janata, Petr; Vollenweider, Franz X

    2017-09-28

    Classic psychedelic drugs (serotonin 2A, or 5HT2A, receptor agonists) have notable effects on music listening. In the current report, blood oxygen level-dependent (BOLD) signal was collected during music listening in 25 healthy adults after administration of placebo, lysergic acid diethylamide (LSD), and LSD pretreated with the 5HT2A antagonist ketanserin, to investigate the role of 5HT2A receptor signaling in the neural response to the time-varying tonal structure of music. Tonality-tracking analysis of BOLD data revealed that 5HT2A receptor signaling alters the neural response to music in brain regions supporting basic and higher-level musical and auditory processing, and areas involved in memory, emotion, and self-referential processing. This suggests a critical role of 5HT2A receptor signaling in supporting the neural tracking of dynamic tonal structure in music, as well as in supporting the associated increases in emotionality, connectedness, and meaningfulness in response to music that are commonly observed after the administration of LSD and other psychedelics. Together, these findings inform the neuropsychopharmacology of music perception and cognition, meaningful music listening experiences, and altered perception of music during psychedelic experiences. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Complex Rotation Quantum Dynamic Neural Networks (CRQDNN) using Complex Quantum Neuron (CQN): Applications to time series prediction.

    Science.gov (United States)

    Cui, Yiqian; Shi, Junyou; Wang, Zili

    2015-11-01

    Quantum Neural Networks (QNN) models have attracted great attention since it innovates a new neural computing manner based on quantum entanglement. However, the existing QNN models are mainly based on the real quantum operations, and the potential of quantum entanglement is not fully exploited. In this paper, we proposes a novel quantum neuron model called Complex Quantum Neuron (CQN) that realizes a deep quantum entanglement. Also, a novel hybrid networks model Complex Rotation Quantum Dynamic Neural Networks (CRQDNN) is proposed based on Complex Quantum Neuron (CQN). CRQDNN is a three layer model with both CQN and classical neurons. An infinite impulse response (IIR) filter is embedded in the Networks model to enable the memory function to process time series inputs. The Levenberg-Marquardt (LM) algorithm is used for fast parameter learning. The networks model is developed to conduct time series predictions. Two application studies are done in this paper, including the chaotic time series prediction and electronic remaining useful life (RUL) prediction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Almost Periodic Dynamics for Memristor-Based Shunting Inhibitory Cellular Neural Networks with Leakage Delays

    Directory of Open Access Journals (Sweden)

    Lin Lu

    2016-01-01

    Full Text Available We investigate a class of memristor-based shunting inhibitory cellular neural networks with leakage delays. By applying a new Lyapunov function method, we prove that the neural network which has a unique almost periodic solution is globally exponentially stable. Moreover, the theoretical findings of this paper on the almost periodic solution are applied to prove the existence and stability of periodic solution for memristor-based shunting inhibitory cellular neural networks with leakage delays and periodic coefficients. An example is given to illustrate the effectiveness of the theoretical results. The results obtained in this paper are completely new and complement the previously known studies of Wu (2011 and Chen and Cao (2002.

  6. Elman neural network for modeling and predictive control of delayed dynamic systems

    Directory of Open Access Journals (Sweden)

    Wysocki Antoni

    2016-03-01

    Full Text Available The objective of this paper is to present a modified structure and a training algorithm of the recurrent Elman neural network which makes it possible to explicitly take into account the time-delay of the process and a Model Predictive Control (MPC algorithm for such a network. In MPC the predicted output trajectory is repeatedly linearized on-line along the future input trajectory, which leads to a quadratic optimization problem, nonlinear optimization is not necessary. A strongly nonlinear benchmark process (a simulated neutralization reactor is considered to show advantages of the modified Elman neural network and the discussed MPC algorithm. The modified neural model is more precise and has a lower number of parameters in comparison with the classical Elman structure. The discussed MPC algorithm with on-line linearization gives similar trajectories as MPC with nonlinear optimization repeated at each sampling instant.

  7. A Case Study on Neural Inspired Dynamic Memory Management Strategies for High Performance Computing.

    Energy Technology Data Exchange (ETDEWEB)

    Vineyard, Craig Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Verzi, Stephen Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    As high performance computing architectures pursue more computational power there is a need for increased memory capacity and bandwidth as well. A multi-level memory (MLM) architecture addresses this need by combining multiple memory types with different characteristics as varying levels of the same architecture. How to efficiently utilize this memory infrastructure is an unknown challenge, and in this research we sought to investigate whether neural inspired approaches can meaningfully help with memory management. In particular we explored neurogenesis inspired re- source allocation, and were able to show a neural inspired mixed controller policy can beneficially impact how MLM architectures utilize memory.

  8. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule.

    Science.gov (United States)

    Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin

    2015-11-01

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.

  9. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin, E-mail: xmli@cqu.edu.cn [Key Laboratory of Dependable Service Computing in Cyber Physical Society of Ministry of Education, Chongqing University, Chongqing 400044 (China); College of Automation, Chongqing University, Chongqing 400044 (China)

    2015-11-15

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.

  10. Dynamic programming algorithms as quantum circuits: symmetric function realization

    Science.gov (United States)

    Maslov, Dmitri A.

    2004-08-01

    The work starts with a general idea of how to realize a dynamic programming algorithm as a quantum circuit. This realization is not tied to a specific design model, technology or a class of dynamic algorithms, it shows an approach for such synthesis. As an illustration of the efficiency of this approach, the class of all multiple-output symmetric functions is realized in a dynamic programming algorithm manner as a reversible circuit of Toffoli type elements (NOT, CNOT, and Toffoli gates). The garbage and quantum cost (found based on Barenco et al. paper) of the presented implementation are calculated and compared to the costs of previously described reversible synthesis methods. The summary of results of this comparison is as follows. The quantum cost of the proposed method is less than the quantum cost of any other reported systematic approach. The garbage is usually lower, except for comparison with the synthesis methods, whose primary goal is synthesis with theoretically minimal garbage. The presented algorithm application to the symmetric function synthesis results in circuits suitable for quantum technology realizations.

  11. Supplier selection and order lot sizing using dynamic programming

    Directory of Open Access Journals (Sweden)

    M. M. Moqri

    2011-04-01

    Full Text Available In this paper, we consider a multi-period integrated supplier selection and order lot sizing problem where a single buyer plans to purchase a single product in multiple periods from several qualified suppliers who are able to provide the required product with the needed quality in a timely manner. Product price and order cost differs among different suppliers. Buyer’s demand for the product is deterministic and varies for different time periods. The problem is to determine how much product from which supplier must be ordered in each period such that buyer’s demand is satisfied without violating some side constraints. We have developed a mathematical programming model to deal with this problem, and proposed a forward dynamic programming approach to obtain optimal solutions in reasonable amount of time even for large scale problems. Finally, a numerical example is conducted in which solutions obtained from the proposed dynamic programming algorithm is compared with solutions from the branch-and-bound algorithm. Through the numerical example we have shown the efficiency of our algorithm.

  12. Stochastic Optimal Regulation of Nonlinear Networked Control Systems by Using Event-Driven Adaptive Dynamic Programming.

    Science.gov (United States)

    Sahoo, Avimanyu; Jagannathan, Sarangapani

    2017-02-01

    In this paper, an event-driven stochastic adaptive dynamic programming (ADP)-based technique is introduced for nonlinear systems with a communication network within its feedback loop. A near optimal control policy is designed using an actor-critic framework and ADP with event sampled state vector. First, the system dynamics are approximated by using a novel neural network (NN) identifier with event sampled state vector. The optimal control policy is generated via an actor NN by using the NN identifier and value function approximated by a critic NN through ADP. The stochastic NN identifier, actor, and critic NN weights are tuned at the event sampled instants leading to aperiodic weight tuning laws. Above all, an adaptive event sampling condition based on estimated NN weights is designed by using the Lyapunov technique to ensure ultimate boundedness of all the closed-loop signals along with the approximation accuracy. The net result is event-driven stochastic ADP technique that can significantly reduce the computation and network transmissions. Finally, the analytical design is substantiated with simulation results.

  13. Neural Network Based Reactive Navigation for Mobile Robot in Dynamic Environment

    Czech Academy of Sciences Publication Activity Database

    Krejsa, Jiří; Věchet, S.; Ripel, T.

    2013-01-01

    Roč. 198, č. 2013 (2013), s. 108-113 ISSN 1012-0394 Institutional research plan: CEZ:AV0Z20760514 Institutional support: RVO:61388998 Keywords : mobile robot * reactive navigation * artificial neural networks Subject RIV: JD - Computer Applications, Robot ics

  14. Neural estimation of kinetic rate constants from dynamic PET-scans

    DEFF Research Database (Denmark)

    Fog, Torben L.; Nielsen, Lars Hupfeldt; Hansen, Lars Kai

    1994-01-01

    A feedforward neural net is trained to invert a simple three compartment model describing the tracer kinetics involved in the metabolism of [18F]fluorodeoxyglucose in the human brain. The network can estimate rate constants from positron emission tomography sequences and is about 50 times faster...... than direct fitting of rate constants using the parametrized transients of the compartment model...

  15. An Event-Driven Classifier for Spiking Neural Networks Fed with Synthetic or Dynamic Vision Sensor Data

    Directory of Open Access Journals (Sweden)

    Evangelos Stromatias

    2017-06-01

    Full Text Available This paper introduces a novel methodology for training an event-driven classifier within a Spiking Neural Network (SNN System capable of yielding good classification results when using both synthetic input data and real data captured from Dynamic Vision Sensor (DVS chips. The proposed supervised method uses the spiking activity provided by an arbitrary topology of prior SNN layers to build histograms and train the classifier in the frame domain using the stochastic gradient descent algorithm. In addition, this approach can cope with leaky integrate-and-fire neuron models within the SNN, a desirable feature for real-world SNN applications, where neural activation must fade away after some time in the absence of inputs. Consequently, this way of building histograms captures the dynamics of spikes immediately before the classifier. We tested our method on the MNIST data set using different synthetic encodings and real DVS sensory data sets such as N-MNIST, MNIST-DVS, and Poker-DVS using the same network topology and feature maps. We demonstrate the effectiveness of our approach by achieving the highest classification accuracy reported on the N-MNIST (97.77% and Poker-DVS (100% real DVS data sets to date with a spiking convolutional network. Moreover, by using the proposed method we were able to retrain the output layer of a previously reported spiking neural network and increase its performance by 2%, suggesting that the proposed classifier can be used as the output layer in works where features are extracted using unsupervised spike-based learning methods. In addition, we also analyze SNN performance figures such as total event activity and network latencies, which are relevant for eventual hardware implementations. In summary, the paper aggregates unsupervised-trained SNNs with a supervised-trained SNN classifier, combining and applying them to heterogeneous sets of benchmarks, both synthetic and from real DVS chips.

  16. An Event-Driven Classifier for Spiking Neural Networks Fed with Synthetic or Dynamic Vision Sensor Data.

    Science.gov (United States)

    Stromatias, Evangelos; Soto, Miguel; Serrano-Gotarredona, Teresa; Linares-Barranco, Bernabé

    2017-01-01

    This paper introduces a novel methodology for training an event-driven classifier within a Spiking Neural Network (SNN) System capable of yielding good classification results when using both synthetic input data and real data captured from Dynamic Vision Sensor (DVS) chips. The proposed supervised method uses the spiking activity provided by an arbitrary topology of prior SNN layers to build histograms and train the classifier in the frame domain using the stochastic gradient descent algorithm. In addition, this approach can cope with leaky integrate-and-fire neuron models within the SNN, a desirable feature for real-world SNN applications, where neural activation must fade away after some time in the absence of inputs. Consequently, this way of building histograms captures the dynamics of spikes immediately before the classifier. We tested our method on the MNIST data set using different synthetic encodings and real DVS sensory data sets such as N-MNIST, MNIST-DVS, and Poker-DVS using the same network topology and feature maps. We demonstrate the effectiveness of our approach by achieving the highest classification accuracy reported on the N-MNIST (97.77%) and Poker-DVS (100%) real DVS data sets to date with a spiking convolutional network. Moreover, by using the proposed method we were able to retrain the output layer of a previously reported spiking neural network and increase its performance by 2%, suggesting that the proposed classifier can be used as the output layer in works where features are extracted using unsupervised spike-based learning methods. In addition, we also analyze SNN performance figures such as total event activity and network latencies, which are relevant for eventual hardware implementations. In summary, the paper aggregates unsupervised-trained SNNs with a supervised-trained SNN classifier, combining and applying them to heterogeneous sets of benchmarks, both synthetic and from real DVS chips.

  17. Adaptive neural network output feedback control for stochastic nonlinear systems with unknown dead-zone and unmodeled dynamics.

    Science.gov (United States)

    Tong, Shaocheng; Wang, Tong; Li, Yongming; Zhang, Huaguang

    2014-06-01

    This paper discusses the problem of adaptive neural network output feedback control for a class of stochastic nonlinear strict-feedback systems. The concerned systems have certain characteristics, such as unknown nonlinear uncertainties, unknown dead-zones, unmodeled dynamics and without the direct measurements of state variables. In this paper, the neural networks (NNs) are employed to approximate the unknown nonlinear uncertainties, and then by representing the dead-zone as a time-varying system with a bounded disturbance. An NN state observer is designed to estimate the unmeasured states. Based on both backstepping design technique and a stochastic small-gain theorem, a robust adaptive NN output feedback control scheme is developed. It is proved that all the variables involved in the closed-loop system are input-state-practically stable in probability, and also have robustness to the unmodeled dynamics. Meanwhile, the observer errors and the output of the system can be regulated to a small neighborhood of the origin by selecting appropriate design parameters. Simulation examples are also provided to illustrate the effectiveness of the proposed approach.

  18. Tracking control of air-breathing hypersonic vehicles with non-affine dynamics via improved neural back-stepping design.

    Science.gov (United States)

    Bu, Xiangwei; He, Guangjun; Wang, Ke

    2018-02-16

    This study considers the design of a new back-stepping control approach for air-breathing hypersonic vehicle (AHV) non-affine models via neural approximation. The AHV's non-affine dynamics is decomposed into velocity subsystem and altitude subsystem to be controlled separately, and robust adaptive tracking control laws are developed using improved back-stepping designs. Neural networks are applied to estimate the unknown non-affine dynamics, which guarantees the addressed controllers with satisfactory robustness against uncertainties. In comparison with the existing control methodologies, the special contributions are that the non-affine issue is handled by constructing two low-pass filters based on model transformations, and virtual controllers are treated as intermediate variables such that they aren't needed for back-stepping designs any more. Lyapunov techniques are employed to show the uniformly ultimately boundedness of all closed-loop signals. Finally, simulation results are presented to verify the tracking performance and superiorities of the investigated control strategy. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Heuristic reusable dynamic programming: efficient updates of local sequence alignment.

    Science.gov (United States)

    Hong, Changjin; Tewfik, Ahmed H

    2009-01-01

    Recomputation of the previously evaluated similarity results between biological sequences becomes inevitable when researchers realize errors in their sequenced data or when the researchers have to compare nearly similar sequences, e.g., in a family of proteins. We present an efficient scheme for updating local sequence alignments with an affine gap model. In principle, using the previous matching result between two amino acid sequences, we perform a forward-backward alignment to generate heuristic searching bands which are bounded by a set of suboptimal paths. Given a correctly updated sequence, we initially predict a new score of the alignment path for each contour to select the best candidates among them. Then, we run the Smith-Waterman algorithm in this confined space. Furthermore, our heuristic alignment for an updated sequence shows that it can be further accelerated by using reusable dynamic programming (rDP), our prior work. In this study, we successfully validate "relative node tolerance bound" (RNTB) in the pruned searching space. Furthermore, we improve the computational performance by quantifying the successful RNTB tolerance probability and switch to rDP on perturbation-resilient columns only. In our searching space derived by a threshold value of 90 percent of the optimal alignment score, we find that 98.3 percent of contours contain correctly updated paths. We also find that our method consumes only 25.36 percent of the runtime cost of sparse dynamic programming (sDP) method, and to only 2.55 percent of that of a normal dynamic programming with the Smith-Waterman algorithm.

  20. A mathematical analysis of the effects of Hebbian learning rules on the dynamics and structure of discrete-time random recurrent neural networks.

    Science.gov (United States)

    Siri, Benoît; Berry, Hugues; Cessac, Bruno; Delord, Bruno; Quoy, Mathias

    2008-12-01

    We present a mathematical analysis of the effects of Hebbian learning in random recurrent neural networks, with a generic Hebbian learning rule, including passive forgetting and different timescales, for neuronal activity and learning dynamics. Previous numerical work has reported that Hebbian learning drives the system from chaos to a steady state through a sequence of bifurcations. Here, we interpret these results mathematically and show that these effects, involving a complex coupling between neuronal dynamics and synaptic graph structure, can be analyzed using Jacobian matrices, which introduce both a structural and a dynamical point of view on neural network evolution. Furthermore, we show that sensitivity to a learned pattern is maximal when the largest Lyapunov exponent is close to 0. We discuss how neural networks may take advantage of this regime of high functional interest.

  1. Optimization of Algorithms Using Extensions of Dynamic Programming

    KAUST Repository

    AbouEisha, Hassan M.

    2017-04-09

    We study and answer questions related to the complexity of various important problems such as: multi-frontal solvers of hp-adaptive finite element method, sorting and majority. We advocate the use of dynamic programming as a viable tool to study optimal algorithms for these problems. The main approach used to attack these problems is modeling classes of algorithms that may solve this problem using a discrete model of computation then defining cost functions on this discrete structure that reflect different complexity measures of the represented algorithms. As a last step, dynamic programming algorithms are designed and used to optimize those models (algorithms) and to obtain exact results on the complexity of the studied problems. The first part of the thesis presents a novel model of computation (element partition tree) that represents a class of algorithms for multi-frontal solvers along with cost functions reflecting various complexity measures such as: time and space. It then introduces dynamic programming algorithms for multi-stage and bi-criteria optimization of element partition trees. In addition, it presents results based on optimal element partition trees for famous benchmark meshes such as: meshes with point and edge singularities. New improved heuristics for those benchmark meshes were ob- tained based on insights of the optimal results found by our algorithms. The second part of the thesis starts by introducing a general problem where different problems can be reduced to and show how to use a decision table to model such problem. We describe how decision trees and decision tests for this table correspond to adaptive and non-adaptive algorithms for the original problem. We present exact bounds on the average time complexity of adaptive algorithms for the eight elements sorting problem. Then bounds on adaptive and non-adaptive algorithms for a variant of the majority problem are introduced. Adaptive algorithms are modeled as decision trees whose depth

  2. Dynamic Programming and Graph Algorithms in Computer Vision*

    Science.gov (United States)

    Felzenszwalb, Pedro F.; Zabih, Ramin

    2013-01-01

    Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting, since by carefully exploiting problem structure they often provide non-trivial guarantees concerning solution quality. In this paper we briefly review dynamic programming and graph algorithms, and discuss representative examples of how these discrete optimization techniques have been applied to some classical vision problems. We focus on the low-level vision problem of stereo; the mid-level problem of interactive object segmentation; and the high-level problem of model-based recognition. PMID:20660950

  3. A multi supplier lot sizing strategy using dynamic programming

    Directory of Open Access Journals (Sweden)

    Mohammad Mahdavi Mazdeh

    2013-01-01

    Full Text Available In this paper, the problem of lot sizing for the case of a single item is considered along with supplier selection in a two-stage supply chain. The suppliers are able to offer quantity discounts, which can be either all-unit or incremental discount policies. A mathematical modeling formulation for the proposed problem is presented and a dynamic programming methodology is provided to solve it. Computational experiments are performed in order to examine the accuracy and the performance of the proposed method in terms of running time. The preliminary results indicate that the proposed algorithm is capable of providing optimal solutions within low computational times, high accuracy solutions.

  4. The Inverse Optimal Problem: A Dynamic Programming Approach.

    OpenAIRE

    Chang, Fwu-Ranq

    1988-01-01

    This paper solves the stochastic inverse optimal problem. Dynamic programming is used to transform the origina l problem into a differential equation. A solution exists for any pro duction function with a finite slope at the origin provided the savin gs function, starting from the origin, is steep initially and flat ev entually. Three consumption functions-linear, Keynes-ian, and Cantabr igian-are also studied with a Cobb-Douglas production technology. A w ell-known result in discrete time mo...

  5. Which neural mechanisms mediate the effects of a parenting intervention program on parenting behavior: design of a randomized controlled trial.

    Science.gov (United States)

    Kolijn, Laura; Euser, Saskia; van den Bulk, Bianca G; Huffmeijer, Renske; van IJzendoorn, Marinus H; Bakermans-Kranenburg, Marian J

    2017-03-21

    The Video-feedback Intervention to promote Positive Parenting and Sensitive Discipline (VIPP-SD) has proven effective in increasing parental sensitivity. However, the mechanisms involved are largely unknown. In a randomized controlled trial we examine parental neurocognitive factors that may mediate the intervention effects on parenting behavior. Our aims are to (1) examine whether the intervention influences parents' neural processing of children's emotional expressions and the neural precursors of response inhibition and to (2) test whether neural changes mediate intervention effects on parenting behavior. We will test 100 mothers of 4-6 year old same-sex twins. A random half of the mothers will receive the VIPP-SD Twins (i.e. VIPP-SD adapted for twin families), consisting of 5 home visits in a 3-months period; the other half will receive a dummy intervention. Neurocognitive measures are acquired approximately 2 weeks before and 2 weeks after the intervention. Mothers' electroencephalographic (EEG) activity is measured while performing a stop signal task and in response to children's facial expressions. To obtain a complementary behavioral measure, mothers also perform an emotion recognition task. Parenting behavior will be assessed during parent-child interactions at pre and post intervention lab visits. Our results will shed light on the neurocognitive factors underlying changes in parenting behavior after a parenting support program, which may benefit the development of such programs. Dutch Trial Register: NTR5312 ; Date registered: January 3, 2017.

  6. Frequency Domain Computer Programs for Prediction and Analysis of Rail Vehicle Dynamics : Volume 2. Appendixes

    Science.gov (United States)

    1975-12-01

    Frequency domain computer programs developed or acquired by TSC for the analysis of rail vehicle dynamics are described in two volumes. Volume 2 contains program listings including subroutines for the four TSC frequency domain programs described in V...

  7. A Projection Neural Network for Constrained Quadratic Minimax Optimization.

    Science.gov (United States)

    Liu, Qingshan; Wang, Jun

    2015-11-01

    This paper presents a projection neural network described by a dynamic system for solving constrained quadratic minimax programming problems. Sufficient conditions based on a linear matrix inequality are provided for global convergence of the proposed neural network. Compared with some of the existing neural networks for quadratic minimax optimization, the proposed neural network in this paper is capable of solving more general constrained quadratic minimax optimization problems, and the designed neural network does not include any parameter. Moreover, the neural network has lower model complexities, the number of state variables of which is equal to that of the dimension of the optimization problems. The simulation results on numerical examples are discussed to demonstrate the effectiveness and characteristics of the proposed neural network.

  8. Dynamics of the public concern and risk communication program implementation.

    Science.gov (United States)

    Zaryabova, Victoria; Israel, Michel

    2015-09-01

    The public concern about electromagnetic field (EMF) exposure varies due to different reasons. A part of them are connected with the better and higher quality of information that people receive from science, media, Internet, social networks, industry, but others are based on good communication programs performed by the responsible institutions, administration and persons. Especially, in Bulgaria, public concern follows interesting changes, some of them in correlation with the European processes of concern, but others following the economic and political processes in the country. Here, we analyze the dynamics of the public concern over the last 10 years. Our explanation of the decrease of the people's complaints against EMF exposure from base stations for mobile communication is as a result of our risk communication program that is in implementation for >10 years.

  9. Resonant Dynamics of Grounded Cognition: Explanation of Behavioral and Neuroimaging Data Using the ART Neural Network

    OpenAIRE

    Domijan, Dražen; Šetić, Mia

    2016-01-01

    Research on grounded cognition suggests that the processing of a word or concept reactivates the perceptual representations that are associated with the referent object. The objective of this work is to demonstrate how behavioral and functional neuroimaging data on grounded cognition can be understood as different manifestations of the same cortical circuit designed to achieve stable category learning, as proposed by the adaptive resonance theory (ART). We showed that the ART neural network p...

  10. Effects of Spike Anticipation on the Spiking Dynamics of Neural Networks

    Directory of Open Access Journals (Sweden)

    Daniel ede Santos-Sierra

    2015-11-01

    Full Text Available Synchronization is one of the central phenomena involved in information processing in living systems. It is known that the nervous system requires the coordinated activity of both local and distant neural populations. Such an interplay allows to merge different information modalities in a whole processing supporting high-level mental skills as understanding, memory, abstraction, etc. Though the biological processes underlying synchronization in the brain are not fully understood there have been reported a variety of mechanisms supporting different types of synchronization both at theoretical and experimental level. One of the more intriguing of these phenomena is the anticipating synchronization, which has been recently reported in a pair of unidirectionally coupled artificial neurons under simple conditions cite{Pyragas}, where the slave neuron is able to anticipate in time the behaviour of the master one. In this paper we explore the effect of spike anticipation over the information processing performed by a neural network at functional and structural level. We show that the introduction of intermediary neurons in the network enhances spike anticipation and analyse how these variations in spike anticipation can significantly change the firing regime of the neural network according to its functional and structural properties. In addition we show that the interspike interval (ISI, one of the main features of the neural response associated to the information coding, can be closely related to spike anticipation by each spike, and how synaptic plasticity can be modulated through that relationship. This study has been performed through numerical simulation of a coupled system of Hindmarsh-Rose neurons.

  11. Dynamics in a Delayed Neural Network Model of Two Neurons with Inertial Coupling

    Directory of Open Access Journals (Sweden)

    Changjin Xu

    2012-01-01

    Full Text Available A delayed neural network model of two neurons with inertial coupling is dealt with in this paper. The stability is investigated and Hopf bifurcation is demonstrated. Applying the normal form theory and the center manifold argument, we derive the explicit formulas for determining the properties of the bifurcating periodic solutions. An illustrative example is given to demonstrate the effectiveness of the obtained results.

  12. Evaluation of Electric Power Procurement Strategies by Stochastic Dynamic Programming

    Science.gov (United States)

    Saisho, Yuichi; Hayashi, Taketo; Fujii, Yasumasa; Yamaji, Kenji

    In deregulated electricity markets, the role of a distribution company is to purchase electricity from the wholesale electricity market at randomly fluctuating prices and to provide it to its customers at a given fixed price. Therefore the company has to take risk stemming from the uncertainties of electricity prices and/or demand fluctuation instead of the customers. The way to avoid the risk is to make a bilateral contact with generating companies or install its own power generation facility. This entails the necessity to develop a certain method to make an optimal strategy for electric power procurement. In such a circumstance, this research has the purpose for proposing a mathematical method based on stochastic dynamic programming and additionally considering the characteristics of the start-up cost of electric power generation facility to evaluate strategies of combination of the bilateral contract and power auto-generation with its own facility for procuring electric power in deregulated electricity market. In the beginning we proposed two approaches to solve the stochastic dynamic programming, and they are a Monte Carlo simulation method and a finite difference method to derive the solution of a partial differential equation of the total procurement cost of electric power. Finally we discussed the influences of the price uncertainty on optimal strategies of power procurement.

  13. Altered Dynamics Between Neural Systems Sub-serving Decisions for Unhealthy Food

    Directory of Open Access Journals (Sweden)

    Qinghua eHe

    2014-11-01

    Full Text Available Using BOLD functional magnetic resonance imaging (fMRI techniques, we examined the relationships between activities in the neural systems elicited by the decision stage of the Iowa Gambling Task (IGT, and food choices of either vegetables or snacks high in fat and sugar. Twenty-three healthy normal weight adolescents and young adults, ranging in age from 14-21, were studied. Neural systems implicated in decision-making and inhibitory control were engaged by having participants perform the IGT during fMRI scanning. The Youth/Adolescent Questionnaire, a food frequency questionnaire, was used to obtain daily food choices. Higher consumption of vegetables correlated with higher activity in prefrontal cortical regions, namely the left superior frontal gyrus (SFG, and lower activity in sub-cortical regions, namely the right insular cortex. In contrast, higher consumption of fatty and sugary snacks correlated with lower activity in the prefrontal regions, combined with higher activity in the sub-cortical, insular cortex.These results provide preliminary support for our hypotheses that unhealthy food choices in real life are reflected by neuronal changes in key neural systems involved in habits, decision-making and self-control processes. These findings have implications for the creation of decision-making based intervention strategies that promote healthier eating.

  14. Dynamics of modularity of neural activity in the brain during development

    Science.gov (United States)

    Deem, Michael; Chen, Man

    2014-03-01

    Theory suggests that more modular systems can have better response functions at short times. This theory suggests that greater cognitive performance may be achieved for more modular neural activity, and that modularity of neural activity may, therefore, likely increase with development in children. We study the relationship between age and modularity of brain neural activity in developing children. The value of modularity calculated from fMRI data is observed to increase during childhood development and peak in young adulthood. We interpret these results as evidence of selection for plasticity in the cognitive function of the human brain. We present a model to illustrate how modularity can provide greater cognitive performance at short times and enhance fast, low-level, automatic cognitive processes. Conversely, high-level, effortful, conscious cognitive processes may not benefit from modularity. We use quasispecies theory to predict how the average modularity evolves with age, given a fitness function extracted from the model. We suggest further experiments exploring the effect of modularity on cognitive performance and suggest that modularity may be a potential biomarker for injury, rehabilitation, or disease.

  15. Three-dimensional interactive Molecular Dynamics program for the study of defect dynamics in crystals

    Science.gov (United States)

    Patriarca, M.; Kuronen, A.; Robles, M.; Kaski, K.

    2007-01-01

    The study of crystal defects and the complex processes underlying their formation and time evolution has motivated the development of the program ALINE for interactive molecular dynamics experiments. This program couples a molecular dynamics code to a Graphical User Interface and runs on a UNIX-X11 Window System platform with the MOTIF library, which is contained in many standard Linux releases. ALINE is written in C, thus giving the user the possibility to modify the source code, and, at the same time, provides an effective and user-friendly framework for numerical experiments, in which the main parameters can be interactively varied and the system visualized in various ways. We illustrate the main features of the program through some examples of detection and dynamical tracking of point-defects, linear defects, and planar defects, such as stacking faults in lattice-mismatched heterostructures. Program summaryTitle of program:ALINE Catalogue identifier:ADYJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYJ_v1_0 Program obtainable from: CPC Program Library, Queen University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: Computers:DEC ALPHA 300, Intel i386 compatible computers, G4 Apple Computers Installations:Laboratory of Computational Engineering, Helsinki University of Technology, Helsinki, Finland Operating systems under which the program has been tested:True64 UNIX, Linux-i386, Mac OS X 10.3 and 10.4 Programming language used:Standard C and MOTIF libraries Memory required to execute with typical data:6 Mbytes but may be larger depending on the system size No. of lines in distributed program, including test data, etc.:16 901 No. of bytes in distributed program, including test data, etc.:449 559 Distribution format:tar.gz Nature of physical problem:Some phenomena involving defects take place inside three-dimensional crystals at times which can be hardly predicted. For this reason they are

  16. Context and hand posture modulate the neural dynamics of tool-object perception.

    Science.gov (United States)

    Natraj, Nikhilesh; Poole, Victoria; Mizelle, J C; Flumini, Andrea; Borghi, Anna M; Wheaton, Lewis A

    2013-02-01

    Prior research has linked visual perception of tools with plausible motor strategies. Thus, observing a tool activates the putative action-stream, including the left posterior parietal cortex. Observing a hand functionally grasping a tool involves the inferior frontal cortex. However, tool-use movements are performed in a contextual and grasp specific manner, rather than relative isolation. Our prior behavioral data has demonstrated that the context of tool-use (by pairing the tool with different objects) and varying hand grasp postures of the tool can interact to modulate subjects' reaction times while evaluating tool-object content. Specifically, perceptual judgment was delayed in the evaluation of functional tool-object pairings (Correct context) when the tool was non-functionally (Manipulative) grasped. Here, we hypothesized that this behavioral interference seen with the Manipulative posture would be due to increased and extended left parietofrontal activity possibly underlying motor simulations when resolving action conflict due to this particular grasp at time scales relevant to the behavioral data. Further, we hypothesized that this neural effect will be restricted to the Correct tool-object context wherein action affordances are at a maximum. 64-channel electroencephalography (EEG) was recorded from 16 right-handed subjects while viewing images depicting three classes of tool-object contexts: functionally Correct (e.g. coffee pot-coffee mug), functionally Incorrect (e.g. coffee pot-marker) and Spatial (coffee pot-milk). The Spatial context pairs a tool and object that would not functionally match, but may commonly appear in the same scene. These three contexts were modified by hand interaction: No Hand, Static Hand near the tool, Functional Hand posture and Manipulative Hand posture. The Manipulative posture is convenient for relocating a tool but does not afford a functional engagement of the tool on the target object. Subjects were instructed to visually

  17. A Combination of Central Pattern Generator-based and Reflex-based Neural Networks for Dynamic, Adaptive, Robust Bipedal Locomotion

    DEFF Research Database (Denmark)

    Di Canio, Giuliano; Larsen, Jørgen Christian; Wörgötter, Florentin

    2016-01-01

    Robotic systems inspired from humans have always been lightening up the curiosity of engineers and scientists. Of many challenges, human locomotion is a very difficult one where a number of different systems needs to interact in order to generate a correct and balanced pattern. To simulate the in...... network to generate basic walking patterns of a dynamic bipedal walking robot (DACBOT) and then a CPG-based neural network to ensure robust walking behavior......Robotic systems inspired from humans have always been lightening up the curiosity of engineers and scientists. Of many challenges, human locomotion is a very difficult one where a number of different systems needs to interact in order to generate a correct and balanced pattern. To simulate...... the interaction of these systems, implementations with reflexbased or central pattern generator (CPG)-based controllers have been tested on bipedal robot systems. In this paper we will combine the two controller types, into a controller that works with both reflex and CPG signals. We use a reflex-based neural...

  18. The neural dynamics of speech perception: Dissociable networks for processing linguistic content and monitoring speaker turn-taking.

    Science.gov (United States)

    Foti, Dan; Roberts, Felicia

    2016-01-01

    The neural circuitry for speech perception is well-characterized, yet the temporal dynamics therein are largely unknown. This timing information is critical in that spoken language almost always occurs in the context of joint speech (i.e., conversations) where effective communication requires the precise timing of speaker turn-taking-a core aspect of prosody. Here, we used event-related potentials to characterize neural activity elicited by conversation stimuli within a large, unselected adult sample (N=115). We focused on two stages of speech perception: inter-speaker gaps and speaker responses. We found activation in two known speech perception networks, with functional and neuroanatomical specificity: silence during inter-speaker gaps primarily activated the posterior pathway involving the supramarginal gyrus and premotor cortex, whereas hearing speaker responses primarily activated the anterior pathway involving the superior temporal gyrus. These data provide the first direct evidence that the posterior pathway is uniquely involved in monitoring speaker turn-taking. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Dynamic assignment and maintenance of positional identity in the ventral neural tube by the morphogen sonic hedgehog.

    Directory of Open Access Journals (Sweden)

    Eric Dessaud

    Full Text Available Morphogens are secreted signalling molecules that act in a graded manner to control the pattern of cellular differentiation in developing tissues. An example is Sonic hedgehog (Shh, which acts in several developing vertebrate tissues, including the central nervous system, to provide positional information during embryonic patterning. Here we address how Shh signalling assigns the positional identities of distinct neuronal subtype progenitors throughout the ventral neural tube. Assays of intracellular signal transduction and gene expression indicate that the duration as well as level of signalling is critical for morphogen interpretation. Progenitors of the ventral neuronal subtypes are established sequentially, with progressively more ventral identities requiring correspondingly higher levels and longer periods of Shh signalling. Moreover, cells remain sensitive to changes in Shh signalling for an extended time, reverting to antecedent identities if signalling levels fall below a threshold. Thus, the duration of signalling is important not only for the assignment but also for the refinement and maintenance of positional identity. Together the data suggest a dynamic model for ventral neural tube patterning in which positional information corresponds to the time integral of Shh signalling. This suggests an alternative to conventional models of morphogen action that rely solely on the level of signalling.

  20. Transplantation dose alters the dynamics of human neural stem cell engraftment, proliferation and migration after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Katja M. Piltti

    2015-09-01

    Full Text Available The effect of transplantation dose on the spatiotemporal dynamics of human neural stem cell (hNSC engraftment has not been quantitatively evaluated in the central nervous system. We investigated changes over time in engraftment/survival, proliferation, and migration of multipotent human central nervous system-derived neural stem cells (hCNS-SCns transplanted at doses ranging from 10,000 to 500,000 cells in spinal cord injured immunodeficient mice. Transplant dose was inversely correlated with measures of donor cell proliferation at 2 weeks post-transplant (WPT and dose-normalized engraftment at 16 WPT. Critically, mice receiving the highest cell dose exhibited an engraftment plateau, in which the total number of engrafted human cells never exceeded the initial dose. These data suggest that donor cell expansion was inversely regulated by target niche parameters and/or transplantation density. Investigation of the response of donor cells to the host microenvironment should be a key variable in defining target cell dose in pre-clinical models of CNS disease and injury.

  1. Transplantation dose alters the dynamics of human neural stem cell engraftment, proliferation and migration after spinal cord injury.

    Science.gov (United States)

    Piltti, Katja M; Avakian, Sabrina N; Funes, Gabriella M; Hu, Antoinette; Uchida, Nobuko; Anderson, Aileen J; Cummings, Brian J

    2015-09-01

    The effect of transplantation dose on the spatiotemporal dynamics of human neural stem cell (hNSC) engraftment has not been quantitatively evaluated in the central nervous system. We investigated changes over time in engraftment/survival, proliferation, and migration of multipotent human central nervous system-derived neural stem cells (hCNS-SCns) transplanted at doses ranging from 10,000 to 500,000 cells in spinal cord injured immunodeficient mice. Transplant dose was inversely correlated with measures of donor cell proliferation at 2 weeks post-transplant (WPT) and dose-normalized engraftment at 16 WPT. Critically, mice receiving the highest cell dose exhibited an engraftment plateau, in which the total number of engrafted human cells never exceeded the initial dose. These data suggest that donor cell expansion was inversely regulated by target niche parameters and/or transplantation density. Investigation of the response of donor cells to the host microenvironment should be a key variable in defining target cell dose in pre-clinical models of CNS disease and injury. Published by Elsevier B.V.

  2. Spatiotemporal dynamics of similarity-based neural representations of facial identity.

    Science.gov (United States)

    Vida, Mark D; Nestor, Adrian; Plaut, David C; Behrmann, Marlene

    2017-01-10

    Humans' remarkable ability to quickly and accurately discriminate among thousands of highly similar complex objects demands rapid and precise neural computations. To elucidate the process by which this is achieved, we used magnetoencephalography to measure spatiotemporal patterns of neural activity with high temporal resolution during visual discrimination among a large and carefully controlled set of faces. We also compared these neural data to lower level "image-based" and higher level "identity-based" model-based representations of our stimuli and to behavioral similarity judgments of our stimuli. Between ∼50 and 400 ms after stimulus onset, face-selective sources in right lateral occipital cortex and right fusiform gyrus and sources in a control region (left V1) yielded successful classification of facial identity. In all regions, early responses were more similar to the image-based representation than to the identity-based representation. In the face-selective regions only, responses were more similar to the identity-based representation at several time points after 200 ms. Behavioral responses were more similar to the identity-based representation than to the image-based representation, and their structure was predicted by responses in the face-selective regions. These results provide a temporally precise description of the transformation from low- to high-level representations of facial identity in human face-selective cortex and demonstrate that face-selective cortical regions represent multiple distinct types of information about face identity at different times over the first 500 ms after stimulus onset. These results have important implications for understanding the rapid emergence of fine-grained, high-level representations of object identity, a computation essential to human visual expertise.

  3. Neural temporal dynamics of stress in comorbid major depressive disorder and social anxiety disorder.

    Science.gov (United States)

    Waugh, Christian E; Hamilton, J Paul; Chen, Michael C; Joormann, Jutta; Gotlib, Ian H

    2012-06-22

    Despite advances in neurobiological research on Major Depressive Disorder and Social Anxiety Disorder, little is known about the neural functioning of individuals with comorbid depression/social anxiety. We examined the timing of neural responses to social stress in individuals with major depression and/or social anxiety. We hypothesized that having social anxiety would be associated with earlier responses to stress, having major depression would be associated with sustained responses to stress, and that comorbid participants would exhibit both of these response patterns. Participants were females diagnosed with pure depression (n = 12), pure social anxiety (n = 16), comorbid depression/social anxiety (n = 17), or as never having had any Axis-I disorder (control; n = 17). Blood oxygenation-level dependent activity (BOLD) was assessed with functional magnetic resonance imaging (fMRI). To induce social stress, participants prepared a speech that was ostensibly to be evaluated by a third party. Whereas being diagnosed with depression was associated with a resurgence of activation in the medial frontal cortex late in the stressor, having social anxiety was associated with a vigilance-avoidance activation pattern in the occipital cortex and insula. Comorbid participants exhibited activation patterns that generally overlapped with the non-comorbid groups, with the exception of an intermediate level of activation, between the level of activation of the pure depression and social anxiety groups, in the middle and posterior cingulate cortex. These findings advance our understanding of the neural underpinnings of major depression and social anxiety, and of their comorbidity. Future research should elucidate more precisely the behavioral correlates of these patterns of brain activation.

  4. Temporal and spatial neural dynamics in the perception of basic emotions from complex scenes

    NARCIS (Netherlands)

    Costa, T.; Cauda, F.; Crini, M.; Tatu, M.K.; Celeghin, A.; de Gelder, B.; Tamietto, M.

    2014-01-01

    The different temporal dynamics of emotions are critical to understand their evolutionary role in the regulation of interactions with the surrounding environment. Here, we investigated the temporal dynamics underlying the perception of four basic emotions from complex scenes varying in valence and

  5. Chaos control of the brushless direct current motor using adaptive dynamic surface control based on neural network with the minimum weights.

    Science.gov (United States)

    Luo, Shaohua; Wu, Songli; Gao, Ruizhen

    2015-07-01

    This paper investigates chaos control for the brushless DC motor (BLDCM) system by adaptive dynamic surface approach based on neural network with the minimum weights. The BLDCM system contains parameter perturbation, chaotic behavior, and uncertainty. With the help of radial basis function (RBF) neural network to approximate the unknown nonlinear functions, the adaptive law is established to overcome uncertainty of the control gain. By introducing the RBF neural network and adaptive technology into the dynamic surface control design, a robust chaos control scheme is developed. It is proved that the proposed control approach can guarantee that all signals in the closed-loop system are globally uniformly bounded, and the tracking error converges to a small neighborhood of the origin. Simulation results are provided to show that the proposed approach works well in suppressing chaos and parameter perturbation.

  6. Chaos control of the brushless direct current motor using adaptive dynamic surface control based on neural network with the minimum weights

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shaohua [School of Automation, Chongqing University, Chongqing 400044 (China); Department of Mechanical Engineering, Chongqing Aerospace Polytechnic, Chongqing, 400021 (China); Wu, Songli [Department of Mechanical Engineering, Chongqing Aerospace Polytechnic, Chongqing, 400021 (China); Gao, Ruizhen [School of Automation, Chongqing University, Chongqing 400044 (China)

    2015-07-15

    This paper investigates chaos control for the brushless DC motor (BLDCM) system by adaptive dynamic surface approach based on neural network with the minimum weights. The BLDCM system contains parameter perturbation, chaotic behavior, and uncertainty. With the help of radial basis function (RBF) neural network to approximate the unknown nonlinear functions, the adaptive law is established to overcome uncertainty of the control gain. By introducing the RBF neural network and adaptive technology into the dynamic surface control design, a robust chaos control scheme is developed. It is proved that the proposed control approach can guarantee that all signals in the closed-loop system are globally uniformly bounded, and the tracking error converges to a small neighborhood of the origin. Simulation results are provided to show that the proposed approach works well in suppressing chaos and parameter perturbation.

  7. A Comparative Study of Neural Networks and Fuzzy Systems in Modeling of a Nonlinear Dynamic System

    Directory of Open Access Journals (Sweden)

    Metin Demirtas

    2011-07-01

    Full Text Available The aim of this paper is to compare the neural networks and fuzzy modeling approaches on a nonlinear system. We have taken Permanent Magnet Brushless Direct Current (PMBDC motor data and have generated models using both approaches. The predictive performance of both methods was compared on the data set for model configurations. The paper describes the results of these tests and discusses the effects of changing model parameters on predictive and practical performance. Modeling sensitivity was used to compare for two methods.

  8. Dynamic Power Management for Portable Hybrid Power-Supply Systems Utilizing Approximate Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Jooyoung Park

    2015-05-01

    Full Text Available Recently, the optimization of power flows in portable hybrid power-supply systems (HPSSs has become an important issue with the advent of a variety of mobile systems and hybrid energy technologies. In this paper, a control strategy is considered for dynamically managing power flows in portable HPSSs employing batteries and supercapacitors. Our dynamic power management strategy utilizes the concept of approximate dynamic programming (ADP. ADP methods are important tools in the fields of stochastic control and machine learning, and the utilization of these tools for practical engineering problems is now an active and promising research field. We propose an ADP-based procedure based on optimization under constraints including the iterated Bellman inequalities, which can be solved by convex optimization carried out offline, to find the optimal power management rules for portable HPSSs. The effectiveness of the proposed procedure is tested through dynamic simulations for smartphone workload scenarios, and simulation results show that the proposed strategy can successfully cope with uncertain workload demands.

  9. Event-Based Impulsive Control of Continuous-Time Dynamic Systems and Its Application to Synchronization of Memristive Neural Networks.

    Science.gov (United States)

    Zhu, Wei; Wang, Dandan; Liu, Lu; Feng, Gang

    2017-08-18

    This paper investigates exponential stabilization of continuous-time dynamic systems (CDSs) via event-based impulsive control (EIC) approaches, where the impulsive instants are determined by certain state-dependent triggering condition. The global exponential stability criteria via EIC are derived for nonlinear and linear CDSs, respectively. It is also shown that there is no Zeno-behavior for the concerned closed loop control system. In addition, the developed event-based impulsive scheme is applied to the synchronization problem of master and slave memristive neural networks. Furthermore, a self-triggered impulsive control scheme is developed to avoid continuous communication between the master system and slave system. Finally, two numerical simulation examples are presented to illustrate the effectiveness of the proposed event-based impulsive controllers.

  10. Impact of Noise on a Dynamical System: Prediction and Uncertainties from a Swarm-Optimized Neural Network

    Directory of Open Access Journals (Sweden)

    C. H. López-Caraballo

    2015-01-01

    Full Text Available An artificial neural network (ANN based on particle swarm optimization (PSO was developed for the time series prediction. The hybrid ANN+PSO algorithm was applied on Mackey-Glass chaotic time series in the short-term xt+6. The performance prediction was evaluated and compared with other studies available in the literature. Also, we presented properties of the dynamical system via the study of chaotic behaviour obtained from the predicted time series. Next, the hybrid ANN+PSO algorithm was complemented with a Gaussian stochastic procedure (called stochastic hybrid ANN+PSO in order to obtain a new estimator of the predictions, which also allowed us to compute the uncertainties of predictions for noisy Mackey-Glass chaotic time series. Thus, we studied the impact of noise for several cases with a white noise level σN from 0.01 to 0.1.

  11. Dynamic Neural Network-Based Pulsed Plasma Thruster (PPT) Fault Detection and Isolation for Formation Flying of Satellites

    Science.gov (United States)

    Valdes, A.; Khorasani, K.

    The main objective of this paper is to develop a dynamic neural network-based fault detection and isolation (FDI) scheme for the Pulsed Plasma Thrusters (PPTs) that are used in the Attitude Control Subsystem (ACS) of satellites that are tasked to perform a formation flying mission. By using data collected from the relative attitudes of the formation flying satellites our proposed "High Level" FDI scheme can detect the pair of thrusters which is faulty, however fault isolation cannot be accomplished. Based on the "High Level" FDI scheme and the DNN-based "Low Level" FDI scheme developed earlier by the authors, an "Integrated" DNN-based FDI scheme is then proposed. To demonstrate the FDI capabilities of the proposed schemes various fault scenarios are simulated.

  12. Sensory neural pathways revisited to unravel the temporal dynamics of the Simon effect: A model-based cognitive neuroscience approach.

    Science.gov (United States)

    Salzer, Yael; de Hollander, Gilles; Forstmann, Birte U

    2017-06-01

    The Simon task is one of the most prominent interference tasks and has been extensively studied in experimental psychology and cognitive neuroscience. Despite years of research, the underlying mechanism driving the phenomenon and its temporal dynamics are still disputed. Within the framework of the review, we adopt a model-based cognitive neuroscience approach. We first go over key findings in the literature of the Simon task, discuss competing qualitative cognitive theories and the difficulty of testing them empirically. We then introduce sequential sampling models, a particular class of mathematical cognitive process models. Finally, we argue that the brain architecture accountable for the processing of spatial ('where') and non-spatial ('what') information, could constrain these models. We conclude that there is a clear need to bridge neural and behavioral measures, and that mathematical cognitive models may facilitate the construction of this bridge and work towards revealing the underlying mechanisms of the Simon effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Cooperation of deterministic dynamics and random noise in production of complex syntactical avian song sequences: a neural network model

    Directory of Open Access Journals (Sweden)

    Yuichi eYamashita

    2011-04-01

    Full Text Available How the brain learns and generates temporal sequences is a fundamental issue in neuroscience. The production of birdsongs, a process which involves complex learned sequences, provides researchers with an excellent biological model for this topic. The Bengalese finch in particular learns a highly complex song with syntactical structure. The nucleus HVC (HVC, a premotor nucleus within the avian song system, plays a key role in generating the temporal structures of their songs. From lesion studies, the nucleus interfacialis (NIf projecting to the HVC is considered one of the essential regions that contribute to the complexity of their songs. However, the types of interaction between the HVC and the NIf that can produce complex syntactical songs remain unclear. In order to investigate the function of interactions between the HVC and NIf, we have proposed a neural network model based on previous biological evidence. The HVC is modeled by a recurrent neural network (RNN that learns to generate temporal patterns of songs. The NIf is modeled as a mechanism that provides auditory feedback to the HVC and generates random noise that feeds into the HVC. The model showed that complex syntactical songs can be replicated by simple interactions between deterministic dynamics of the RNN and random noise. In the current study, the plausibility of the model is tested by the comparison between the changes in the songs of actual birds induced by pharmacological inhibition of the NIf and the changes in the songs produced by the model resulting from modification of parameters representing NIf functions. The efficacy of the model demonstrates that the changes of songs induced by pharmacological inhibition of the NIf can be interpreted as a trade-off between the effects of noise and the effects of feedback on the dynamics of the RNN of the HVC. These facts suggest that the current model provides a convincing hypothesis for the functional role of NIf-HVC interaction.

  14. Xenopus laevis: an ideal experimental model for studying the developmental dynamics of neural network assembly and sensory-motor computations.

    Science.gov (United States)

    Straka, Hans; Simmers, John

    2012-04-01

    The amphibian Xenopus laevis represents a highly amenable model system for exploring the ontogeny of central neural networks, the functional establishment of sensory-motor transformations, and the generation of effective motor commands for complex behaviors. Specifically, the ability to employ a range of semi-intact and isolated preparations for in vitro morphophysiological experimentation has provided new insights into the developmental and integrative processes associated with the generation of locomotory behavior during changing life styles. In vitro electrophysiological studies have begun to explore the functional assembly, disassembly and dynamic plasticity of spinal pattern generating circuits as Xenopus undergoes the developmental switch from larval tail-based swimming to adult limb-based locomotion. Major advances have also been made in understanding the developmental onset of multisensory signal processing for reactive gaze and posture stabilizing reflexes during self-motion. Additionally, recent evidence from semi-intact animal and isolated CNS experiments has provided compelling evidence that in Xenopus tadpoles, predictive feed-forward signaling from the spinal locomotor pattern generator are engaged in minimizing visual disturbances during tail-based swimming. This new concept questions the traditional view of retinal image stabilization that in vertebrates has been exclusively attributed to sensory-motor transformations of body/head motion-detecting signals. Moreover, changes in visuomotor demands associated with the developmental transition in propulsive strategy from tail- to limb-based locomotion during metamorphosis presumably necessitates corresponding adaptive alterations in the intrinsic spinoextraocular coupling mechanism. Consequently, Xenopus provides a unique opportunity to address basic questions on the developmental dynamics of neural network assembly and sensory-motor computations for vertebrate motor behavior in general. Copyright

  15. Optimization of decision rules based on dynamic programming approach

    KAUST Repository

    Zielosko, Beata

    2014-01-14

    This chapter is devoted to the study of an extension of dynamic programming approach which allows optimization of approximate decision rules relative to the length and coverage. We introduce an uncertainty measure that is the difference between number of rows in a given decision table and the number of rows labeled with the most common decision for this table divided by the number of rows in the decision table. We fix a threshold γ, such that 0 ≤ γ < 1, and study so-called γ-decision rules (approximate decision rules) that localize rows in subtables which uncertainty is at most γ. Presented algorithm constructs a directed acyclic graph Δ γ T which nodes are subtables of the decision table T given by pairs "attribute = value". The algorithm finishes the partitioning of a subtable when its uncertainty is at most γ. The chapter contains also results of experiments with decision tables from UCI Machine Learning Repository. © 2014 Springer International Publishing Switzerland.

  16. Reversible circuit synthesis by genetic programming using dynamic gate libraries

    Science.gov (United States)

    Abubakar, Mustapha Y.; Jung, Low Tang; Zakaria, Nordin; Younes, Ahmed; Abdel-Aty, Abdel-Haleem

    2017-06-01

    We have defined a new method for automatic construction of reversible logic circuits by using the genetic programming approach. The choice of the gate library is 100% dynamic. The algorithm is capable of accepting all possible combinations of the following gate types: NOT TOFFOLI, NOT PERES, NOT CNOT TOFFOLI, NOT CNOT SWAP FREDKIN, NOT CNOT TOFFOLI SWAP FREDKIN, NOT CNOT PERES, NOT CNOT SWAP FREDKIN PERES, NOT CNOT TOFFOLI PERES and NOT CNOT TOFFOLI SWAP FREDKIN PERES. Our method produced near optimum circuits in some cases when a particular subset of gate types was used in the library. Meanwhile, in some cases, optimal circuits were produced due to the heuristic nature of the algorithm. We compared the outcomes of our method with several existing synthesis methods, and it was shown that our algorithm performed relatively well compared to the previous synthesis methods in terms of the output efficiency of the algorithm and execution time as well.

  17. Survey of Dynamic Simulation Programs for Nuclear Fuel Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Troy J. Tranter; Daryl R. Haefner

    2008-06-01

    The absence of any industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other industries. Modeling programs to simulate the dynamic behavior of nuclear fuel separations and processing were originally developed to support the US government’s mission of weapons production and defense fuel recovery. Consequently there has been little effort is the US devoted towards improving this specific process simulation capability during the last two or three decades. More recent work has been focused on elucidating chemical thermodynamics and developing better models of predicting equilibrium in actinide solvent extraction systems. These equilibrium models have been used to augment flowsheet development and testing primarily at laboratory scales. The development of more robust and complete process models has not kept pace with the vast improvements in computational power and user interface and is significantly behind simulation capability in other chemical processing and separation fields.

  18. PACE: A dynamic programming algorithm for hardware/software partitioning

    DEFF Research Database (Denmark)

    Knudsen, Peter Voigt; Madsen, Jan

    1996-01-01

    This paper presents the PACE partitioning algorithm which is used in the LYCOS co-synthesis system for partitioning control/dataflow graphs into hardware and software parts. The algorithm is a dynamic programming algorithm which solves both the problem of minimizing system execution time...... communication model and thus attempts to minimize communication overhead. The time-complexity of the algorithm is O(n2·𝒜) and the space-complexity is O(n·𝒜) where 𝒜 is the total area of the hardware chip and n the number of code fragments which may be placed in either hardware or software...... with a hardware area constraint and the problem of minimizing hardware area with a system execution time constraint. The target architecture consists of a single microprocessor and a single hardware chip (ASIC, FPGA, etc.) which are connected by a communication channel. The algorithm incorporates a realistic...

  19. Dispersion analysis techniques within the space vehicle dynamics simulation program

    Science.gov (United States)

    Snow, L. S.; Kuhn, A. E.

    1975-01-01

    The Space Vehicle Dynamics Simulation (SVDS) program was evaluated as a dispersion analysis tool. The Linear Error Analysis (LEA) post processor was examined in detail and simulation techniques relative to conducting a dispersion analysis using the SVDS were considered. The LEA processor is a tool for correlating trajectory dispersion data developed by simulating 3 sigma uncertainties as single error source cases. The processor combines trajectory and performance deviations by a root-sum-square (RSS process) and develops a covariance matrix for the deviations. Results are used in dispersion analyses for the baseline reference and orbiter flight test missions. As a part of this study, LEA results were verified as follows: (A) Hand calculating the RSS data and the elements of the covariance matrix for comparison with the LEA processor computed data. (B) Comparing results with previous error analyses. The LEA comparisons and verification are made at main engine cutoff (MECO).

  20. Condition-dependent mate choice: A stochastic dynamic programming approach.

    Science.gov (United States)

    Frame, Alicia M; Mills, Alex F

    2014-09-01

    We study how changing female condition during the mating season and condition-dependent search costs impact female mate choice, and what strategies a female could employ in choosing mates to maximize her own fitness. We address this problem via a stochastic dynamic programming model of mate choice. In the model, a female encounters males sequentially and must choose whether to mate or continue searching. As the female searches, her own condition changes stochastically, and she incurs condition-dependent search costs. The female attempts to maximize the quality of the offspring, which is a function of the female's condition at mating and the quality of the male with whom she mates. The mating strategy that maximizes the female's net expected reward is a quality threshold. We compare the optimal policy with other well-known mate choice strategies, and we use simulations to examine how well the optimal policy fares under imperfect information. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Optimization of a pump-pipe system by dynamic programming

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui; Ferreira, Jose S.

    1984-01-01

    In this paper the problem of minimizing the total cost of a pump-pipe system in series is considered. The route of the pipeline and the number of pumping stations are known. The optimization will then consist in determining the control variables, diameter and thickness of the pipe and the size of...... of the pumps. A general mathematical model is formulated and Dynamic Programming is used to find an optimal solution.......In this paper the problem of minimizing the total cost of a pump-pipe system in series is considered. The route of the pipeline and the number of pumping stations are known. The optimization will then consist in determining the control variables, diameter and thickness of the pipe and the size...

  2. Resonant Dynamics of Grounded Cognition: Explanation of Behavioral and Neuroimaging Data Using the ART Neural Network.

    Science.gov (United States)

    Domijan, Dražen; Šetić, Mia

    2016-01-01

    Research on grounded cognition suggests that the processing of a word or concept reactivates the perceptual representations that are associated with the referent object. The objective of this work is to demonstrate how behavioral and functional neuroimaging data on grounded cognition can be understood as different manifestations of the same cortical circuit designed to achieve stable category learning, as proposed by the adaptive resonance theory (ART). We showed that the ART neural network provides a mechanistic explanation of why reaction times in behavioral studies depend on the expectation or attentional priming created by the word meaning (Richter and Zwaan, 2009). A mismatch between top-down expectation and bottom-up sensory data activates an orienting subsystem that slows execution of the current task. Furthermore, we simulated the data from functional neuroimaging studies of color knowledge retrieval that showed anterior shift (Chao and Martin, 1999; Thompson-Schill, 2003) and an overlap effect (Simmons et al., 2007; Hsu et al., 2011) in the left fusiform gyrus. We explain the anterior effect as a result of the partial activation of different components of the same ART circuit in the condition of passive viewing. Conversely, a demanding perceptual task requires activation of the whole ART circuit. This condition is reflected in the fMRI image as an overlap between cortical activation during perceptual and conceptual processing. We conclude that the ART neural network is able to explain how the brain grounds symbols in perception via perceptual simulation.

  3. Resonant Dynamics of Grounded Cognition: Explanation of Behavioral and Neuroimaging Data Using the ART Neural Network

    Directory of Open Access Journals (Sweden)

    Dražen eDomijan

    2016-02-01

    Full Text Available Research on grounded cognition suggests that the processing of a word or concept reactivates the perceptual representations that are associated with the referent object. The objective of this work is to demonstrate how behavioral and functional neuroimaging data on grounded cognition can be understood as different manifestations of the same cortical circuit designed to achieve stable category learning, as proposed by the adaptive resonance theory (ART. We showed that the ART neural network provides a mechanistic explanation of why reaction times in behavioral studies depend on the expectation or attentional priming created by the word meaning (Richter & Zwaan, 2009. A mismatch between top-down expectation and bottom-up sensory data activates an orienting subsystem that slows execution of the current task. Furthermore, we simulated the data from functional neuroimaging studies of color knowledge retrieval that showed anterior shift (Chao & Martin, 1999; Thompson-Schill, 2003 and an overlap effect (Hsu et al., 2011; Simmons et al., 2007 in the left fusiform gyrus. We explain the anterior effect as a result of the partial activation of different components of the same ART circuit in the condition of passive viewing. Conversely, a demanding perceptual task requires activation of the whole ART circuit. This condition is reflected in the fMRI image as an overlap between cortical activation during perceptual and conceptual processing. We conclude that the ART neural network is able to explain how the brain grounds symbols in perception via perceptual simulation.

  4. Dynamic neural network reorganization associated with second language vocabulary acquisition: a multimodal imaging study.

    Science.gov (United States)

    Hosoda, Chihiro; Tanaka, Kanji; Nariai, Tadashi; Honda, Manabu; Hanakawa, Takashi

    2013-08-21

    It remains unsettled whether human language relies exclusively on innately privileged brain structure in the left hemisphere or is more flexibly shaped through experiences, which induce neuroplastic changes in potentially relevant neural circuits. Here we show that learning of second language (L2) vocabulary and its cessation can induce bidirectional changes in the mirror-reverse of the traditional language areas. A cross-sectional study identified that gray matter volume in the inferior frontal gyrus pars opercularis (IFGop) and connectivity of the IFGop with the caudate nucleus and the superior temporal gyrus/supramarginal (STG/SMG), predominantly in the right hemisphere, were positively correlated with L2 vocabulary competence. We then implemented a cohort study involving 16 weeks of L2 training in university students. Brain structure before training did not predict the later gain in L2 ability. However, training intervention did increase IFGop volume and reorganization of white matter including the IFGop-caudate and IFGop-STG/SMG pathways in the right hemisphere. These "positive" plastic changes were correlated with the gain in L2 ability in the trained group but were not observed in the control group. We propose that the right hemispheric network can be reorganized into language-related areas through use-dependent plasticity in young adults, reflecting a repertoire of flexible reorganization of the neural substrates responding to linguistic experiences.

  5. Neural circuit dynamics underlying accumulation of time-varying evidence during perceptual decision making

    Directory of Open Access Journals (Sweden)

    Kong-Fatt Wong

    2007-11-01

    Full Text Available How do neurons in a decision circuit integrate time-varying signals, in favor of or against alternative choice options? To address this question, we used a recurrent neural circuit model to simulate an experiment in which monkeys performed a direction-discrimination task on a visual motion stimulus. In a recent study, it was found that brief pulses of motion perturbed neural activity in the lateral intraparietal area (LIP, and exerted corresponding effects on the monkey's choices and response times. Our model reproduces the behavioral observations and replicates LIP activity which, depending on whether the direction of the pulse is the same or opposite to that of a preferred motion stimulus, increases or decreases persistently over a few hundred milliseconds. Furthermore, our model accounts for the observation that the pulse exerts a weaker influence on LIP neuronal responses when the pulse is late relative to motion stimulus onset. We show that this violation of time-shift invariance (TSI is consistent with a recurrent circuit mechanism of time integration. We further examine time integration using two consecutive pulses of the same or opposite motion directions. The induced changes in the performance are not additive, and the second of the paired pulses is less effective than its standalone impact, a prediction that is experimentally testable. Taken together, these findings lend further support for an attractor network model of time integration in perceptual decision making.

  6. High-frequency oscillations in distributed neural networks reveal the dynamics of human decision making

    Directory of Open Access Journals (Sweden)

    Adrian G Guggisberg

    2008-03-01

    Full Text Available We examine the relative timing of numerous brain regions involved in human decisions that are based on external criteria, learned information, personal preferences, or unconstrained internal considerations. Using magnetoencephalography (MEG and advanced signal analysis techniques, we were able to non-invasively reconstruct oscillations of distributed neural networks in the high-gamma frequency band (60–150 Hz. The time course of the observed neural activity suggested that two-alternative forced choice tasks are processed in four overlapping stages: processing of sensory input, option evaluation, intention formation, and action execution. Visual areas are activated fi rst, and show recurring activations throughout the entire decision process. The temporo-occipital junction and the intraparietal sulcus are active during evaluation of external values of the options, 250–500 ms after stimulus presentation. Simultaneously, personal preference is mediated by cortical midline structures. Subsequently, the posterior parietal and superior occipital cortices appear to encode intention, with different subregions being responsible for different types of choice. The cerebellum and inferior parietal cortex are recruited for internal generation of decisions and actions, when all options have the same value. Action execution was accompanied by activation peaks in the contralateral motor cortex. These results suggest that high-gamma oscillations as recorded by MEG allow a reliable reconstruction of decision processes with excellent spatiotemporal resolution.

  7. Evaluating management regimes for European beech forests using dynamic programming

    Directory of Open Access Journals (Sweden)

    Juan Torres Rojo

    2014-12-01

    Full Text Available Aim of study: This contribution describes a systematic search method for identifying optimum thinning regimes for beech forests (Fagus sylvatica L. by using a combination of optimization heuristics and a simple whole stand growth prediction model. Area of study: Data to build the model come from standard and management forest inventories as well as yield tables from the Northern and Western part of Germany and from southern and central Denmark.Material and Methods: Growth projections are made from equations to project basal area and top height.  The remaining stand variables are recovered from additional equations fitted from forest inventory data or acquired from other authors.  Mortality is estimated through an algorithm based on the maximum density line. The optimization routine uses a two-state dynamic programming model. Thinning type is defined by the NG index, which describes the ratio of the proportion of removed trees and basal area with respect to the same proportion  before thinning. Main results: Growth equations fitted from inventory data show high goodness of fit with R2 values larger than 0.85 and high significance levels for the parameter estimates. The mortality algorithm converges quickly providing mortality estimates within the expected range.Research Highlights: The combination of a simple growth and yield model within a Dynamic Programming framework in conjunction with NG values as indicators of thinning type yield good estimates of practical thinning schedules compared to thinning recommendations provided by diverse authors.Keywords: beech (Fagus sylvatica L.; NG ratio; thinning optimization; growth and yield simulation; mortality.

  8. Design and Analysis of Decision Rules via Dynamic Programming

    KAUST Repository

    Amin, Talha M.

    2017-04-24

    The areas of machine learning, data mining, and knowledge representation have many different formats used to represent information. Decision rules, amongst these formats, are the most expressive and easily-understood by humans. In this thesis, we use dynamic programming to design decision rules and analyze them. The use of dynamic programming allows us to work with decision rules in ways that were previously only possible for brute force methods. Our algorithms allow us to describe the set of all rules for a given decision table. Further, we can perform multi-stage optimization by repeatedly reducing this set to only contain rules that are optimal with respect to selected criteria. One way that we apply this study is to generate small systems with short rules by simulating a greedy algorithm for the set cover problem. We also compare maximum path lengths (depth) of deterministic and non-deterministic decision trees (a non-deterministic decision tree is effectively a complete system of decision rules) with regards to Boolean functions. Another area of advancement is the presentation of algorithms for constructing Pareto optimal points for rules and rule systems. This allows us to study the existence of “totally optimal” decision rules (rules that are simultaneously optimal with regards to multiple criteria). We also utilize Pareto optimal points to compare and rate greedy heuristics with regards to two criteria at once. Another application of Pareto optimal points is the study of trade-offs between cost and uncertainty which allows us to find reasonable systems of decision rules that strike a balance between length and accuracy.

  9. Predictive Event Triggered Control based on Heuristic Dynamic Programming for Nonlinear Continuous Time Systems

    Science.gov (United States)

    2015-08-17

    Control based on Heuristic Dynamic Programming for Nonlinear Continuous-Time Systems In this paper, a novel predictive event-triggered control...method based on heuristic dynamic programming (HDP) algorithm is developed for nonlinear continuous-time systems. A model network is used to estimate...College Road, Suite II Kingston, RI 02881 -1967 ABSTRACT Predictive Event-Triggered Control based on Heuristic Dynamic Programming for Nonlinear

  10. Dynamic Line Rating Oncor Electric Delivery Smart Grid Program

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Justin; Smith, Cale; Young, Mike; Donohoo, Ken; Owen, Ross; Clark, Eddit; Espejo, Raul; Aivaliotis, Sandy; Stelmak, Ron; Mohr, Ron; Barba, Cristian; Gonzalez, Guillermo; Malkin, Stuart; Dimitrova, Vessela; Ragsdale, Gary; Mitchem, Sean; Jeirath, Nakul; Loomis, Joe; Trevino, Gerardo; Syracuse, Steve; Hurst, Neil; Mereness, Matt; Johnson, Chad; Bivens, Carrie

    2013-05-04

    Electric transmission lines are the lifeline of the electric utility industry, delivering its product from source to consumer. This critical infrastructure is often constrained such that there is inadequate capacity on existing transmission lines to efficiently deliver the power to meet demand in certain areas or to transport energy from high-generation areas to high-consumption regions. When this happens, the cost of the energy rises; more costly sources of power are used to meet the demand or the system operates less reliably. These economic impacts are known as congestion, and they can amount to substantial dollars for any time frame of reference: hour, day or year. There are several solutions to the transmission constraint problem, including: construction of new generation, construction of new transmission facilities, rebuilding and reconductoring of existing transmission assets, and Dynamic Line Rating (DLR). All of these options except DLR are capital intensive, have long lead times and often experience strong public and regulatory opposition. The Smart Grid Demonstration Program (SGDP) project co-funded by the Department of Energy (DOE) and Oncor Electric Delivery Company developed and deployed the most extensive and advanced DLR installation to demonstrate that DLR technology is capable of resolving many transmission capacity constraint problems with a system that is reliable, safe and very cost competitive. The SGDP DLR deployment is the first application of DLR technology to feed transmission line real-time dynamic ratings directly into the system operation’s State Estimator and load dispatch program, which optimizes the matching of generation with load demand on a security, reliability and economic basis. The integrated Dynamic Line Rating (iDLR)1 collects transmission line parameters at remote locations on the lines, calculates the real-time line rating based on the equivalent conductor temperature, ambient temperature and influence of wind and solar

  11. Dynamical Behavior of Delayed Reaction-Diffusion Hopfield Neural Networks Driven by Infinite Dimensional Wiener Processes.

    Science.gov (United States)

    Liang, Xiao; Wang, Linshan; Wang, Yangfan; Wang, Ruili

    2016-09-01

    In this paper, we focus on the long time behavior of the mild solution to delayed reaction-diffusion Hopfield neural networks (DRDHNNs) driven by infinite dimensional Wiener processes. We analyze the existence, uniqueness, and stability of this system under the local Lipschitz function by constructing an appropriate Lyapunov-Krasovskii function and utilizing the semigroup theory. Some easy-to-test criteria affecting the well-posedness and stability of the networks, such as infinite dimensional noise and diffusion effect, are obtained. The criteria can be used as theoretic guidance to stabilize DRDHNNs in practical applications when infinite dimensional noise is taken into consideration. Meanwhile, considering the fact that the standard Brownian motion is a special case of infinite dimensional Wiener process, we undertake an analysis of the local Lipschitz condition, which has a wider range than the global Lipschitz condition. Two samples are given to examine the availability of the results in this paper. Simulations are also given using the MATLAB.

  12. Sox-2 Positive Neural Progenitors in the Primate Striatum Undergo Dynamic Changes after Dopamine Denervation.

    Science.gov (United States)

    Ordoñez, Cristina; Moreno-Murciano, Paz; Hernandez, Maria; Di Caudo, Carla; Mundiñano, Iñaki-Carril; Carril-Mundiñano, Iñaki; Vazquez, Nerea; Garcia-Verdugo, Jose Manuel; Sanchez-Pernaute, Rosario; Luquin, Maria-Rosario

    2013-01-01

    The existence of endogenous neural progenitors in the nigrostriatal system could represent a powerful tool for restorative therapies in Parkinson's disease. Sox-2 is a transcription factor expressed in pluripotent and adult stem cells, including neural progenitors. In the adult brain Sox-2 is expressed in the neurogenic niches. There is also widespread expression of Sox-2 in other brain regions, although the neurogenic potential outside the niches is uncertain. Here, we analyzed the presence of Sox-2(+) cells in the adult primate (Macaca fascicularis) brain in naïve animals (N = 3) and in animals exposed to systemic administration of 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine to render them parkinsonian (N = 8). Animals received bromodeoxyuridine (100 mg/kg once a day during five consecutive days) to label proliferating cells and their progeny. Using confocal and electron microscopy we analyzed the Sox-2(+) cell population in the nigrostriatal system and investigated changes in the number, proliferation and neurogenic potential of Sox-2(+) cells, in control conditions and at two time points after MPTP administration. We found Sox-2(+) cells with self-renewal capacity in both the striatum and the substantia nigra. Importantly, only in the striatum Sox-2(+) was expressed in some calretinin(+) neurons. MPTP administration led to an increase in the proliferation of striatal Sox-2(+) cells and to an acute, concomitant decrease in the percentage of Sox-2(+)/calretinin(+) neurons, which recovered by 18 months. Given their potential capacity to differentiate into neurons and their responsiveness to dopamine neurotoxic insults, striatal Sox-2(+) cells represent good candidates to harness endogenous repair mechanisms for regenerative approaches in Parkinson's disease.

  13. Frequency Domain Computer Programs for Prediction and Analysis of Rail Vehicle Dynamics : Volume 1. Technical Report

    Science.gov (United States)

    1975-12-01

    Frequency domain computer programs developed or acquired by TSC for the analysis of rail vehicle dynamics are described in two volumes. Volume I defines the general analytical capabilities required for computer programs applicable to single rail vehi...

  14. Use of genetic programming, logistic regression, and artificial neural nets to predict readmission after coronary artery bypass surgery.

    Science.gov (United States)

    Engoren, Milo; Habib, Robert H; Dooner, John J; Schwann, Thomas A

    2013-08-01

    As many as 14 % of patients undergoing coronary artery bypass surgery are readmitted within 30 days. Readmission is usually the result of morbidity and may lead to death. The purpose of this study is to develop and compare statistical and genetic programming models to predict readmission. Patients were divided into separate Construction and Validation populations. Using 88 variables, logistic regression, genetic programs, and artificial neural nets were used to develop predictive models. Models were first constructed and tested on the Construction populations, then validated on the Validation population. Areas under the receiver operator characteristic curves (AU ROC) were used to compare the models. Two hundred and two patients (7.6 %) in the 2,644 patient Construction group and 216 (8.0 %) of the 2,711 patient Validation group were re-admitted within 30 days of CABG surgery. Logistic regression predicted readmission with AU ROC = .675 ± .021 in the Construction group. Genetic programs significantly improved the accuracy, AU ROC = .767 ± .001, p genetic programming (AU ROC = .654 ± .001) was still trivially but statistically non-significantly better than that of the logistic regression (AU ROC = .644 ± .020, p = .61). Genetic programming and logistic regression provide alternative methods to predict readmission that are similarly accurate.

  15. Neural nets with varying topology for high-energy particle recognition: an outlook of computational dynamics

    Science.gov (United States)

    Perrone, Antonio L.; Messi, Roberto; Pasqualucci, Enrico; Basti, Gianfranco

    1993-09-01

    With respect to Rosenblatt linear perceptron, a classical limitation theorem demonstrated by M. Minsky and S. Papert is discussed. This theorem, '$PSIOne-in-a-box', ultimately concern the intrinsic limitations of parallel calculations in pattern calculations in pattern recognition problems. We demonstrate a possible solution of this limitation problem by substituting the static definition of characteristic functions and of their domains in the 'geometrical' perceptron, with their dynamic definition. This dynamics consists in the mutual redefinition of the characteristic function and of its domain depending on the matching with the input. We show an application of this 'dynamic' perceptron scheme in particle tracks recognition in high energy physics. Actually, this algorithm is being used for real time automatic triggering of ADONE e+e- storage ring (Frascati, Rome) to evaluate the neutron time-like electromagnetic form factor in the context of 'Fenice' collaboration by Italian Institute of Nuclear Physics (INFN).

  16. Dynamics of a modified Hindmarsh-Rose neural model with random perturbations: Moment analysis and firing activities

    Science.gov (United States)

    Mondal, Argha; Upadhyay, Ranjit Kumar

    2017-11-01

    In this paper, an attempt has been made to understand the activity of mean membrane voltage and subsidiary system variables with moment equations (i.e., mean, variance and covariance's) under noisy environment. We consider a biophysically plausible modified Hindmarsh-Rose (H-R) neural system injected by an applied current exhibiting spiking-bursting phenomenon. The effects of predominant parameters on the dynamical behavior of a modified H-R system are investigated. Numerically, it exhibits period-doubling, period halving bifurcation and chaos phenomena. Further, a nonlinear system has been analyzed for the first and second order moments with additive stochastic perturbations. It has been solved using fourth order Runge-Kutta method and noisy systems by Euler's scheme. It has been demonstrated that the firing properties of neurons to evoke an action potential in a certain parameter space of the large exact systems can be estimated using an approximated model. Strong stimulation can cause a change in increase or decrease of the firing patterns. Corresponding to a fixed set of parameter values, the firing behavior and dynamical differences of the collective variables of a large, exact and approximated systems are investigated.

  17. Wearable Device-Based Gait Recognition Using Angle Embedded Gait Dynamic Images and a Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Yongjia Zhao

    2017-02-01

    Full Text Available The widespread installation of inertial sensors in smartphones and other wearable devices provides a valuable opportunity to identify people by analyzing their gait patterns, for either cooperative or non-cooperative circumstances. However, it is still a challenging task to reliably extract discriminative features for gait recognition with noisy and complex data sequences collected from casually worn wearable devices like smartphones. To cope with this problem, we propose a novel image-based gait recognition approach using the Convolutional Neural Network (CNN without the need to manually extract discriminative features. The CNN’s input image, which is encoded straightforwardly from the inertial sensor data sequences, is called Angle Embedded Gait Dynamic Image (AE-GDI. AE-GDI is a new two-dimensional representation of gait dynamics, which is invariant to rotation and translation. The performance of the proposed approach in gait authentication and gait labeling is evaluated using two datasets: (1 the McGill University dataset, which is collected under realistic conditions; and (2 the Osaka University dataset with the largest number of subjects. Experimental results show that the proposed approach achieves competitive recognition accuracy over existing approaches and provides an effective parametric solution for identification among a large number of subjects by gait patterns.

  18. Wearable Device-Based Gait Recognition Using Angle Embedded Gait Dynamic Images and a Convolutional Neural Network.

    Science.gov (United States)

    Zhao, Yongjia; Zhou, Suiping

    2017-02-28

    The widespread installation of inertial sensors in smartphones and other wearable devices provides a valuable opportunity to identify people by analyzing their gait patterns, for either cooperative or non-cooperative circumstances. However, it is still a challenging task to reliably extract discriminative features for gait recognition with noisy and complex data sequences collected from casually worn wearable devices like smartphones. To cope with this problem, we propose a novel image-based gait recognition approach using the Convolutional Neural Network (CNN) without the need to manually extract discriminative features. The CNN's input image, which is encoded straightforwardly from the inertial sensor data sequences, is called Angle Embedded Gait Dynamic Image (AE-GDI). AE-GDI is a new two-dimensional representation of gait dynamics, which is invariant to rotation and translation. The performance of the proposed approach in gait authentication and gait labeling is evaluated using two datasets: (1) the McGill University dataset, which is collected under realistic conditions; and (2) the Osaka University dataset with the largest number of subjects. Experimental results show that the proposed approach achieves competitive recognition accuracy over existing approaches and provides an effective parametric solution for identification among a large number of subjects by gait patterns.

  19. Critical thresholds and dynamical network states in a neural architecture for cognitive tasks

    NARCIS (Netherlands)

    de Vries, Pieter

    2017-01-01

    Cognitive tasks are represented in a network, in which: - Nodes correspond to cell-assemblies with a critical threshold, which enables explanation of various psychological phenomena, like priming. - Dynamical network states (excitation loops) can propagate in specific, task-dependent ways ranging

  20. Using motor imagery to study the neural substrates of dynamic balance

    NARCIS (Netherlands)

    Ferraye, M.U.; Debû, B.H.G.; Heil, L.; Carpenter, M.; Bloem, B.R.; Toni, I.

    2014-01-01

    This study examines the cerebral structures involved in dynamic balance using a motor imagery (MI) protocol. We recorded cerebral activity with functional magnetic resonance imaging while subjects imagined swaying on a balance board along the sagittal plane to point a laser at target pairs of

  1. Discrete-Time Nonzero-Sum Games for Multiplayer Using Policy-Iteration-Based Adaptive Dynamic Programming Algorithms.

    Science.gov (United States)

    Zhang, Huaguang; Jiang, He; Luo, Chaomin; Xiao, Geyang

    2017-10-01

    In this paper, we investigate the nonzero-sum games for a class of discrete-time (DT) nonlinear systems by using a novel policy iteration (PI) adaptive dynamic programming (ADP) method. The main idea of our proposed PI scheme is to utilize the iterative ADP algorithm to obtain the iterative control policies, which not only ensure the system to achieve stability but also minimize the performance index function for each player. This paper integrates game theory, optimal control theory, and reinforcement learning technique to formulate and handle the DT nonzero-sum games for multiplayer. First, we design three actor-critic algorithms, an offline one and two online ones, for the PI scheme. Subsequently, neural networks are employed to implement these algorithms and the corresponding stability analysis is also provided via the Lyapunov theory. Finally, a numerical simulation example is presented to demonstrate the effectiveness of our proposed approach.

  2. Measurement correction method for force sensor used in dynamic pressure calibration based on artificial neural network optimized by genetic algorithm

    Science.gov (United States)

    Gu, Tingwei; Kong, Deren; Shang, Fei; Chen, Jing

    2017-12-01

    We present an optimization algorithm to obtain low-uncertainty dynamic pressure measurements from a force-transducer-based device. In this paper, the advantages and disadvantages of the methods that are commonly used to measure the propellant powder gas pressure, the applicable scope of dynamic pressure calibration devices, and the shortcomings of the traditional comparison calibration method based on the drop-weight device are firstly analysed in detail. Then, a dynamic calibration method for measuring pressure using a force sensor based on a drop-weight device is introduced. This method can effectively save time when many pressure sensors are calibrated simultaneously and extend the life of expensive reference sensors. However, the force sensor is installed between the drop-weight and the hammerhead by transition pieces through the connection mode of bolt fastening, which causes adverse effects such as additional pretightening and inertia forces. To solve these effects, the influence mechanisms of the pretightening force, the inertia force and other influence factors on the force measurement are theoretically analysed. Then a measurement correction method for the force measurement is proposed based on an artificial neural network optimized by a genetic algorithm. The training and testing data sets are obtained from calibration tests, and the selection criteria for the key parameters of the correction model is discussed. The evaluation results for the test data show that the correction model can effectively improve the force measurement accuracy of the force sensor. Compared with the traditional high-accuracy comparison calibration method, the percentage difference of the impact-force-based measurement is less than 0.6% and the relative uncertainty of the corrected force value is 1.95%, which can meet the requirements of engineering applications.

  3. Review of neural rehabilitation programs for dyslexia: How can an allophonic system be changed into a phonemic one?

    Directory of Open Access Journals (Sweden)

    Willy eSerniclaes

    2015-02-01

    Full Text Available Neural investigations suggest that there are three possible core deficits in dyslexia: phonemic, grapho-phonemic, and graphemic. These investigations also suggest that the phonemic deficit resides in a different mode of speech perception which is based on allophonic (subphonemic units rather than phonemic units. Here we review the results of remediation methods that tap into each of these core deficits, and examine how the methods that tap into the phonemic deficit might contribute to the remediation of allophonic perception. Remediation of grapho-phonemic deficiencies with a new computerized phonics training program (GraphoGame might be able to surpass the limits of classical phonics training programs, particularly with regard to reading fluency. Remediation of visuo-graphemic deficiencies through exposure to enhanced letter spacing is also promising, although children with dyslexia continued to read more slowly than typical readers after this type of training. Remediation of phonemic deficiencies in dyslexia with programs based solely on phonemic awareness has a limited impact on reading. This might be due to the persistence of a covert deficit in phonemic perception. Methods based on slowed speech enhance the perception not only of phonemic features but also of allophonic features, and this is probably why they have not been found to be effective in meta-analyses. Training of phonemic perception with a perceptual fading paradigm, a method that improves precision in identification and discrimination around phonemic boundaries, has yielded promising results. However, studies with children at risk for dyslexia and dyslexic adults have found that even when behavioral data do not reflect allophonic perception, it can nevertheless be present in neural recordings. Further investigations should seek to confirm that the perceptual fading paradigm is beneficial for reading, and that it renders perception truly phonemic.

  4. A novel neural network-based technique for smart gas sensors operating in a dynamic environment.

    Science.gov (United States)

    Baha, Hakim; Dibi, Zohir

    2009-01-01

    Thanks to their high sensitivity and low-cost, metal oxide gas sensors (MOX) are widely used in gas detection, although they present well-known problems (lack of selectivity and environmental effects…). We present in this paper a novel neural network- based technique to remedy these problems. The idea is to create intelligent models; the first one, called corrector, can automatically linearize a sensor's response characteristics and eliminate its dependency on the environmental parameters. The corrector's responses are processed with the second intelligent model which has the role of discriminating exactly the detected gas (nature and concentration). The gas sensors used are industrial resistive kind (TGS8xx, by Figaro Engineering). The MATLAB environment is used during the design phase and optimization. The sensor models, the corrector, and the selective model were implemented and tested in the PSPICE simulator. The sensor model accurately expresses the nonlinear character of the response and the dependence on temperature and relative humidity in addition to their gas nature dependency. The corrector linearizes and compensates the sensor's responses. The method discriminates qualitatively and quantitatively between seven gases. The advantage of the method is that it uses a small representative database so we can easily implement the model in an electrical simulator. This method can be extended to other sensors.

  5. Neural and computational processes underlying dynamic changes in self-esteem

    Science.gov (United States)

    Rutledge, Robb B; Moutoussis, Michael; Dolan, Raymond J

    2017-01-01

    Self-esteem is shaped by the appraisals we receive from others. Here, we characterize neural and computational mechanisms underlying this form of social influence. We introduce a computational model that captures fluctuations in self-esteem engendered by prediction errors that quantify the difference between expected and received social feedback. Using functional MRI, we show these social prediction errors correlate with activity in ventral striatum/subgenual anterior cingulate cortex, while updates in self-esteem resulting from these errors co-varied with activity in ventromedial prefrontal cortex (vmPFC). We linked computational parameters to psychiatric symptoms using canonical correlation analysis to identify an ‘interpersonal vulnerability’ dimension. Vulnerability modulated the expression of prediction error responses in anterior insula and insula-vmPFC connectivity during self-esteem updates. Our findings indicate that updating of self-evaluative beliefs relies on learning mechanisms akin to those used in learning about others. Enhanced insula-vmPFC connectivity during updating of those beliefs may represent a marker for psychiatric vulnerability. PMID:29061228

  6. Depression and treatment response: dynamic interplay of signaling pathways and altered neural processes.

    Science.gov (United States)

    Duric, Vanja; Duman, Ronald S

    2013-01-01

    Since the 1960s, when the first tricyclic and monoamine oxidase inhibitor antidepressant drugs were introduced, most of the ensuing agents were designed to target similar brain pathways that elevate serotonin and/or norepinephrine signaling. Fifty years later, the main goal of the current depression research is to develop faster-acting, more effective therapeutic agents with fewer side effects, as currently available antidepressants are plagued by delayed therapeutic onset and low response rates. Clinical and basic science research studies have made significant progress towards deciphering the pathophysiological events within the brain involved in development, maintenance, and treatment of major depressive disorder. Imaging and postmortem brain studies in depressed human subjects, in combination with animal behavioral models of depression, have identified a number of different cellular events, intracellular signaling pathways, proteins, and target genes that are modulated by stress and are potentially vital mediators of antidepressant action. In this review, we focus on several neural mechanisms, primarily within the hippocampus and prefrontal cortex, which have recently been implicated in depression and treatment response.

  7. A Novel Neural Network-Based Technique for Smart Gas Sensors Operating in a Dynamic Environment

    Directory of Open Access Journals (Sweden)

    Zohir Dibi

    2009-11-01

    Full Text Available Thanks to their high sensitivity and low-cost, metal oxide gas sensors (MOX are widely used in gas detection, although they present well-known problems (lack of selectivity and environmental effects…. We present in this paper a novel neural network- based technique to remedy these problems. The idea is to create intelligent models; the first one, called corrector, can automatically linearize a sensor’s response characteristics and eliminate its dependency on the environmental parameters. The corrector’s responses are processed with the second intelligent model which has the role of discriminating exactly the detected gas (nature and concentration. The gas sensors used are industrial resistive kind (TGS8xx, by Figaro Engineering. The MATLAB environment is used during the design phase and optimization. The sensor models, the corrector, and the selective model were implemented and tested in the PSPICE simulator. The sensor model accurately expresses the nonlinear character of the response and the dependence on temperature and relative humidity in addition to their gas nature dependency. The corrector linearizes and compensates the sensor’s responses. The method discriminates qualitatively and quantitatively between seven gases. The advantage of the method is that it uses a small representative database so we can easily implement the model in an electrical simulator. This method can be extended to other sensors.

  8. A One-Layer Recurrent Neural Network for Real-Time Portfolio Optimization With Probability Criterion.

    Science.gov (United States)

    Liu, Qingshan; Dang, Chuangyin; Huang, Tingwen

    2013-02-01

    This paper presents a decision-making model described by a recurrent neural network for dynamic portfolio optimization. The portfolio-optimization problem is first converted into a constrained fractional programming problem. Since the objective function in the programming problem is not convex, the traditional optimization techniques are no longer applicable for solving this problem. Fortunately, the objective function in the fractional programming is pseudoconvex on the feasible region. It leads to a one-layer recurrent neural network modeled by means of a discontinuous dynamic system. To ensure the optimal solutions for portfolio optimization, the convergence of the proposed neural network is analyzed and proved. In fact, the neural network guarantees to get the optimal solutions for portfolio-investment advice if some mild conditions are satisfied. A numerical example with simulation results substantiates the effectiveness and illustrates the characteristics of the proposed neural network.

  9. Behavioral and neural Darwinism: selectionist function and mechanism in adaptive behavior dynamics.

    Science.gov (United States)

    McDowell, J J

    2010-05-01

    An evolutionary theory of behavior dynamics and a theory of neuronal group selection share a common selectionist framework. The theory of behavior dynamics instantiates abstractly the idea that behavior is selected by its consequences. It implements Darwinian principles of selection, reproduction, and mutation to generate adaptive behavior in virtual organisms. The behavior generated by the theory has been shown to be quantitatively indistinguishable from that of live organisms. The theory of neuronal group selection suggests a mechanism whereby the abstract principles of the evolutionary theory may be implemented in the nervous systems of biological organisms. According to this theory, groups of neurons subserving behavior may be selected by synaptic modifications that occur when the consequences of behavior activate value systems in the brain. Together, these theories constitute a framework for a comprehensive account of adaptive behavior that extends from brain function to the behavior of whole organisms in quantitative detail. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  10. Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble

    Science.gov (United States)

    Schiff, Steven J.; So, Paul; Chang, Taeun; Burke, Robert E.; Sauer, Tim

    1996-12-01

    A method to characterize dynamical interdependence among nonlinear systems is derived based on mutual nonlinear prediction. Systems with nonlinear correlation will show mutual nonlinear prediction when standard analysis with linear cross correlation might fail. Mutual nonlinear prediction also provides information on the directionality of the coupling between systems. Furthermore, the existence of bidirectional mutual nonlinear prediction in unidirectionally coupled systems implies generalized synchrony. Numerical examples studied include three classes of unidirectionally coupled systems: systems with identical parameters, nonidentical parameters, and stochastic driving of a nonlinear system. This technique is then applied to the activity of motoneurons within a spinal cord motoneuron pool. The interrelationships examined include single neuron unit firing, the total number of neurons discharging at one time as measured by the integrated monosynaptic reflex, and intracellular measurements of integrated excitatory postsynaptic potentials (EPSP's). Dynamical interdependence, perhaps generalized synchrony, was identified in this neuronal network between simultaneous single unit firings, between units and the population, and between units and intracellular EPSP's.

  11. Dynamic programming approach to optimization of approximate decision rules

    KAUST Repository

    Amin, Talha

    2013-02-01

    This paper is devoted to the study of an extension of dynamic programming approach which allows sequential optimization of approximate decision rules relative to the length and coverage. We introduce an uncertainty measure R(T) which is the number of unordered pairs of rows with different decisions in the decision table T. For a nonnegative real number β, we consider β-decision rules that localize rows in subtables of T with uncertainty at most β. Our algorithm constructs a directed acyclic graph Δβ(T) which nodes are subtables of the decision table T given by systems of equations of the kind "attribute = value". This algorithm finishes the partitioning of a subtable when its uncertainty is at most β. The graph Δβ(T) allows us to describe the whole set of so-called irredundant β-decision rules. We can describe all irredundant β-decision rules with minimum length, and after that among these rules describe all rules with maximum coverage. We can also change the order of optimization. The consideration of irredundant rules only does not change the results of optimization. This paper contains also results of experiments with decision tables from UCI Machine Learning Repository. © 2012 Elsevier Inc. All rights reserved.

  12. Dynamic programming approach for partial decision rule optimization

    KAUST Repository

    Amin, Talha

    2012-10-04

    This paper is devoted to the study of an extension of dynamic programming approach which allows optimization of partial decision rules relative to the length or coverage. We introduce an uncertainty measure J(T) which is the difference between number of rows in a decision table T and number of rows with the most common decision for T. For a nonnegative real number γ, we consider γ-decision rules (partial decision rules) that localize rows in subtables of T with uncertainty at most γ. Presented algorithm constructs a directed acyclic graph Δ γ(T) which nodes are subtables of the decision table T given by systems of equations of the kind "attribute = value". This algorithm finishes the partitioning of a subtable when its uncertainty is at most γ. The graph Δ γ(T) allows us to describe the whole set of so-called irredundant γ-decision rules. We can optimize such set of rules according to length or coverage. This paper contains also results of experiments with decision tables from UCI Machine Learning Repository.

  13. Replacement model of city bus: A dynamic programming approach

    Science.gov (United States)

    Arifin, Dadang; Yusuf, Edhi

    2017-06-01

    This paper aims to develop a replacement model of city bus vehicles operated in Bandung City. This study is driven from real cases encountered by the Damri Company in the efforts to improve services to the public. The replacement model propounds two policy alternatives: First, to maintain or keep the vehicles, and second is to replace them with new ones taking into account operating costs, revenue, salvage value, and acquisition cost of a new vehicle. A deterministic dynamic programming approach is used to solve the model. The optimization process was heuristically executed using empirical data of Perum Damri. The output of the model is to determine the replacement schedule and the best policy if the vehicle has passed the economic life. Based on the results, the technical life of the bus is approximately 20 years old, while the economic life is an average of 9 (nine) years. It means that after the bus is operated for 9 (nine) years, managers should consider the policy of rejuvenation.

  14. A digital computer program for the dynamic interaction simulation of controls and structure (DISCOS), volume 1

    Science.gov (United States)

    Bodley, C. S.; Devers, A. D.; Park, A. C.; Frisch, H. P.

    1978-01-01

    A theoretical development and associated digital computer program system for the dynamic simulation and stability analysis of passive and actively controlled spacecraft are presented. The dynamic system (spacecraft) is modeled as an assembly of rigid and/or flexible bodies not necessarily in a topological tree configuration. The computer program system is used to investigate total system dynamic characteristics, including interaction effects between rigid and/or flexible bodies, control systems, and a wide range of environmental loadings. In addition, the program system is used for designing attitude control systems and for evaluating total dynamic system performance, including time domain response and frequency domain stability analyses.

  15. Learning of embodied interaction dynamics with recurrent neural networks: some exploratory experiments

    Science.gov (United States)

    Oubbati, Mohamed; Kord, Bahram; Koprinkova-Hristova, Petia; Palm, Günther

    2014-04-01

    The new tendency of artificial intelligence suggests that intelligence must be seen as a result of the interaction between brains, bodies and environments. This view implies that designing sophisticated behaviour requires a primary focus on how agents are functionally coupled to their environments. Under this perspective, we present early results with the application of reservoir computing as an efficient tool to understand how behaviour emerges from interaction. Specifically, we present reservoir computing models, that are inspired by imitation learning designs, to extract the essential components of behaviour that results from agent-environment interaction dynamics. Experimental results using a mobile robot are reported to validate the learning architectures.

  16. Taylor O(h³) Discretization of ZNN Models for Dynamic Equality-Constrained Quadratic Programming With Application to Manipulators.

    Science.gov (United States)

    Liao, Bolin; Zhang, Yunong; Jin, Long

    2016-02-01

    In this paper, a new Taylor-type numerical differentiation formula is first presented to discretize the continuous-time Zhang neural network (ZNN), and obtain higher computational accuracy. Based on the Taylor-type formula, two Taylor-type discrete-time ZNN models (termed Taylor-type discrete-time ZNNK and Taylor-type discrete-time ZNNU models) are then proposed and discussed to perform online dynamic equality-constrained quadratic programming. For comparison, Euler-type discrete-time ZNN models (called Euler-type discrete-time ZNNK and Euler-type discrete-time ZNNU models) and Newton iteration, with interesting links being found, are also presented. It is proved herein that the steady-state residual errors of the proposed Taylor-type discrete-time ZNN models, Euler-type discrete-time ZNN models, and Newton iteration have the patterns of O(h(3)), O(h(2)), and O(h), respectively, with h denoting the sampling gap. Numerical experiments, including the application examples, are carried out, of which the results further substantiate the theoretical findings and the efficacy of Taylor-type discrete-time ZNN models. Finally, the comparisons with Taylor-type discrete-time derivative model and other Lagrange-type discrete-time ZNN models for dynamic equality-constrained quadratic programming substantiate the superiority of the proposed Taylor-type discrete-time ZNN models once again.

  17. Role of graph architecture in controlling dynamical networks with applications to neural systems

    Science.gov (United States)

    Kim, Jason Z.; Soffer, Jonathan M.; Kahn, Ari E.; Vettel, Jean M.; Pasqualetti, Fabio; Bassett, Danielle S.

    2018-01-01

    Networked systems display complex patterns of interactions between components. In physical networks, these interactions often occur along structural connections that link components in a hard-wired connection topology, supporting a variety of system-wide dynamical behaviours such as synchronization. Although descriptions of these behaviours are important, they are only a first step towards understanding and harnessing the relationship between network topology and system behaviour. Here, we use linear network control theory to derive accurate closed-form expressions that relate the connectivity of a subset of structural connections (those linking driver nodes to non-driver nodes) to the minimum energy required to control networked systems. To illustrate the utility of the mathematics, we apply this approach to high-resolution connectomes recently reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an advantage of the human brain in supporting diverse network dynamics with small energetic costs while remaining robust to perturbations, and to perform clinically accessible targeted manipulation of the brain's control performance by removing single edges in the network. Generally, our results ground the expectation of a control system's behaviour in its network architecture, and directly inspire new directions in network analysis and design via distributed control.

  18. A neural model of the temporal dynamics of figure-ground segregation in motion perception.

    Science.gov (United States)

    Raudies, Florian; Neumann, Heiko

    2010-03-01

    How does the visual system manage to segment a visual scene into surfaces and objects and manage to attend to a target object? Based on psychological and physiological investigations, it has been proposed that the perceptual organization and segmentation of a scene is achieved by the processing at different levels of the visual cortical hierarchy. According to this, motion onset detection, motion-defined shape segregation, and target selection are accomplished by processes which bind together simple features into fragments of increasingly complex configurations at different levels in the processing hierarchy. As an alternative to this hierarchical processing hypothesis, it has been proposed that the processing stages for feature detection and segregation are reflected in different temporal episodes in the response patterns of individual neurons. Such temporal epochs have been observed in the activation pattern of neurons as low as in area V1. Here, we present a neural network model of motion detection, figure-ground segregation and attentive selection which explains these response patterns in an unifying framework. Based on known principles of functional architecture of the visual cortex, we propose that initial motion and motion boundaries are detected at different and hierarchically organized stages in the dorsal pathway. Visual shapes that are defined by boundaries, which were generated from juxtaposed opponent motions, are represented at different stages in the ventral pathway. Model areas in the different pathways interact through feedforward and modulating feedback, while mutual interactions enable the communication between motion and form representations. Selective attention is devoted to shape representations by sending modulating feedback signals from higher levels (working memory) to intermediate levels to enhance their responses. Areas in the motion and form pathway are coupled through top-down feedback with V1 cells at the bottom end of the hierarchy

  19. The NASA Computational Fluid Dynamics (CFD) program - Building technology to solve future challenges

    Science.gov (United States)

    Richardson, Pamela F.; Dwoyer, Douglas L.; Kutler, Paul; Povinelli, Louis A.

    1993-01-01

    This paper presents the NASA Computational Fluid Dynamics program in terms of a strategic vision and goals as well as NASA's financial commitment and personnel levels. The paper also identifies the CFD program customers and the support to those customers. In addition, the paper discusses technical emphasis and direction of the program and some recent achievements. NASA's Ames, Langley, and Lewis Research Centers are the research hubs of the CFD program while the NASA Headquarters Office of Aeronautics represents and advocates the program.

  20. Deep Learning with Convolutional Neural Network for Differentiation of Liver Masses at Dynamic Contrast-enhanced CT: A Preliminary Study.

    Science.gov (United States)

    Yasaka, Koichiro; Akai, Hiroyuki; Abe, Osamu; Kiryu, Shigeru

    2017-10-27

    Purpose To investigate diagnostic performance by using a deep learning method with a convolutional neural network (CNN) for the differentiation of liver masses at dynamic contrast agent-enhanced computed tomography (CT). Materials and Methods This clinical retrospective study used CT image sets of liver masses over three phases (noncontrast-agent enhanced, arterial, and delayed). Masses were diagnosed according to five categories (category A, classic hepatocellular carcinomas [HCCs]; category B, malignant liver tumors other than classic and early HCCs; category C, indeterminate masses or mass-like lesions [including early HCCs and dysplastic nodules] and rare benign liver masses other than hemangiomas and cysts; category D, hemangiomas; and category E, cysts). Supervised training was performed by using 55 536 image sets obtained in 2013 (from 460 patients, 1068 sets were obtained and they were augmented by a factor of 52 [rotated, parallel-shifted, strongly enlarged, and noise-added images were generated from the original images]). The CNN was composed of six convolutional, three maximum pooling, and three fully connected layers. The CNN was tested with 100 liver mass image sets obtained in 2016 (74 men and 26 women; mean age, 66.4 years ± 10.6 [standard deviation]; mean mass size, 26.9 mm ± 25.9; 21, nine, 35, 20, and 15 liver masses for categories A, B, C, D, and E, respectively). Training and testing were performed five times. Accuracy for categorizing liver masses with CNN model and the area under receiver operating characteristic curve for differentiating categories A-B versus categories C-E were calculated. Results Median accuracy of differential diagnosis of liver masses for test data were 0.84. Median area under the receiver operating characteristic curve for differentiating categories A-B from C-E was 0.92. Conclusion Deep learning with CNN showed high diagnostic performance in differentiation of liver masses at dynamic CT. (©) RSNA, 2017 Online

  1. The effects of long-term stress on neural dynamics of working memory processing: An investigation using ERP.

    Science.gov (United States)

    Yuan, Yiran; Leung, Ada W S; Duan, Hongxia; Zhang, Liang; Zhang, Kan; Wu, Jianhui; Qin, Shaozheng

    2016-03-22

    This study examined the neural dynamics of working memory (WM) processing under long-term stress. Forty participants who had been exposed to a long period of major exam preparation (six months) and twenty-one control participants performed a numerical n-back task (n = 1, 2) while electroencephalograms were recorded. Psychological and endocrinal measurements confirmed significantly higher levels of long-term stress for participants in the exam group. The exam group showed significantly increased P2 amplitude in the frontal-central sites in the 1-back and 2-back conditions, whereas other ERP components, including the P1, N1 and P3 and behavioral performance, were unchanged. Notably, the P2 effect was most pronounced in participants in the exam group who reported perceiving high levels of stress. The perceived stress scores positively correlated with the P2 amplitude in the 1-back and 2-back conditions. These results suggest that long-term stress has an impact on attention and the initiation of the updating process in WM.

  2. Neural Substrates of Social Emotion Regulation: A fMRI Study on Imitation and Expressive Suppression to Dynamic Facial Signals

    Directory of Open Access Journals (Sweden)

    Pascal eVrticka

    2013-02-01

    Full Text Available Emotion regulation is crucial for successfully engaging in social interactions. Yet, little is known about the neural mechanisms controlling behavioral responses to emotional expressions perceived in the face of other people, which constitute a key element of interpersonal communication. Here, we investigated brain systems involved in social emotion perception and regulation, using functional magnetic resonance imaging (fMRI in 20 healthy participants who saw dynamic facial expressions of either happiness or sadness, and were asked to either imitate the expression or to suppress any expression on their own face (in addition to a gender judgment control task. fMRI results revealed higher activity in regions associated with emotion (e.g., the insula, motor function (e.g., motor cortex, and theory of mind during imitation. Activity in dorsal cingulate cortex was also increased during imitation, possibly reflecting greater action monitoring or conflict with own feeling states. In addition, premotor regions were more strongly activated during both imitation and suppression, suggesting a recruitment of motor control for both the production and inhibition of emotion expressions. Expressive suppression produced increases in dorsolateral and lateral prefrontal cortex typically related to cognitive control. These results suggest that voluntary imitation and expressive suppression modulate brain responses to emotional signals perceived from faces, by up- and down-regulating activity in distributed subcortical and cortical networks that are particularly involved in emotion, action monitoring, and cognitive control.

  3. Memory consolidation from seconds to weeks: A three-stage neural network model with autonomous reinstatement dynamics

    Directory of Open Access Journals (Sweden)

    Florian eFiebig

    2014-07-01

    Full Text Available Declarative long-term memories are not created at an instant. Gradual stabilization and temporally shifting dependence of acquired declarative memories on different brain regions - called systems consolidation - can be tracked in time by lesion experiments. The observation of temporally graded retrograde amnesia following hippocampal lesions, points to a gradual transfer of memory from hippocampus to neocortical long-term memory. Spontaneous reactivations of hippocampal memories, as observed in place cell reactivations during slow-wave-sleep, are supposed to drive neocortical reinstatements and facilitate this process.We propose a functional neural network implementation of these ideas and furthermore suggest an extended three-stage framework that also includes the prefrontal cortex and bridges the temporal chasm between working memory percepts on the scale of seconds and consolidated long-term memory on the scale of weeks or months.We show that our three-stage model can autonomously produce the necessary stochastic reactivation dynamics for successful episodic memory consolidation. The resulting learning system is shown to exhibit classical memory effects seen in experimental studies, such as retrograde and anterograde amnesia after simulated hippocampal lesioning; furthermore the model reproduces peculiar biological findings on memory modulation, such as retrograde facilitation of memory after suppressed acquisition of new long-term memories - similar to the effects of benzodiazepines on memory.

  4. Detecting tactical patterns in basketball: comparison of merge self-organising maps and dynamic controlled neural networks.

    Science.gov (United States)

    Kempe, Matthias; Grunz, Andreas; Memmert, Daniel

    2015-01-01

    The soaring amount of data, especially spatial-temporal data, recorded in recent years demands for advanced analysis methods. Neural networks derived from self-organizing maps established themselves as a useful tool to analyse static and temporal data. In this study, we applied the merge self-organising map (MSOM) to spatio-temporal data. To do so, we investigated the ability of MSOM's to analyse spatio-temporal data and compared its performance to the common dynamical controlled network (DyCoN) approach to analyse team sport position data. The position data of 10 players were recorded via the Ubisense tracking system during a basketball game. Furthermore, three different pre-selected plays were recorded for classification. Following data preparation, the different nets were trained with the data of the first half. The training success of both networks was evaluated by achieved entropy. The second half of the basketball game was presented to both nets for automatic classification. Both approaches were able to present the trained data extremely well and to detect the pre-selected plays correctly. In conclusion, MSOMs are a useful tool to analyse spatial-temporal data, especially in team sports. By their direct inclusion of different time length of tactical patterns, they open up new opportunities within team sports.

  5. Self-similarity and quasi-idempotence in neural networks and related dynamical systems

    Science.gov (United States)

    Minati, Ludovico; Winkel, Julia; Bifone, Angelo; Oświecimka, Paweł; Jovicich, Jorge

    2017-04-01

    Self-similarity across length scales is pervasively observed in natural systems. Here, we investigate topological self-similarity in complex networks representing diverse forms of connectivity in the brain and some related dynamical systems, by considering the correlation between edges directly connecting any two nodes in a network and indirect connection between the same via all triangles spanning the rest of the network. We note that this aspect of self-similarity, which is distinct from hierarchically nested connectivity (coarse-grain similarity), is closely related to idempotence of the matrix representing the graph. We introduce two measures, ι ( 1 ) and ι ( ∞ ) , which represent the element-wise correlation coefficients between the initial matrix and the ones obtained after squaring it once or infinitely many times, and term the matrices which yield large values of these parameters "quasi-idempotent". These measures delineate qualitatively different forms of "shallow" and "deep" quasi-idempotence, which are influenced by nodal strength heterogeneity. A high degree of quasi-idempotence was observed for partially synchronized mean-field Kuramoto oscillators with noise, electronic chaotic oscillators, and cultures of dissociated neurons, wherein the expression of quasi-idempotence correlated strongly with network maturity. Quasi-idempotence was also detected for macro-scale brain networks representing axonal connectivity, synchronization of slow activity fluctuations during idleness, and co-activation across experimental tasks, and preliminary data indicated that quasi-idempotence of structural connectivity may decrease with ageing. This initial study highlights that the form of network self-similarity indexed by quasi-idempotence is detectable in diverse dynamical systems, and draws attention to it as a possible basis for measures representing network "collectivity" and pattern formation.

  6. Phase 1 user instruction manual. A geological formation - drill string dynamic interaction finite element program (GEODYN)

    Energy Technology Data Exchange (ETDEWEB)

    Tinianow, M.A.; Rotelli, R.L. Jr.; Baird, J.A.

    1984-06-01

    User instructions for the GEODYN Interactive Finite Element Computer Program are presented. The program is capable of performing the analysis of the three-dimensional transient dynamic response of a Polycrystalline Diamond Compact Bit - Bit Sub arising from the intermittent contact of the bit with the downhole rock formations. The program accommodates non-linear, time dependent, loading and boundary conditions.

  7. Geological formation - drill string dynamic interaction finite-element program (GEODYN). Phase 1. Theoretical description

    Energy Technology Data Exchange (ETDEWEB)

    Baird, J.A.; Apostal, M.C.; Rotelli, R.L. Jr.; Tinianow, M.A.; Wormley, D.N.

    1984-06-01

    The Theoretical Description for the GEODYN interactive finite-element computer program is presented. The program is capable of performing the analysis of the three-dimensional transient dynamic response of a Polycrystalline Diamond Compact Bit-Bit Sub arising from the intermittent contact of the bit with the downhole rock formations. The program accommodates nonlinear, time-dependent, loading and boundary conditions.

  8. Dynamic dependence on ATR and ATM for double-strand break repair in human embryonic stem cells and neural descendants.

    Directory of Open Access Journals (Sweden)

    Bret R Adams

    2010-04-01

    Full Text Available The DNA double-strand break (DSB is the most toxic form of DNA damage. Studies aimed at characterizing DNA repair during development suggest that homologous recombination repair (HRR is more critical in pluripotent cells compared to differentiated somatic cells in which nonhomologous end joining (NHEJ is dominant. We have characterized the DNA damage response (DDR and quality of DNA double-strand break (DSB repair in human embryonic stem cells (hESCs, and in vitro-derived neural cells. Resolution of ionizing radiation-induced foci (IRIF was used as a surrogate for DSB repair. The resolution of gamma-H2AX foci occurred at a slower rate in hESCs compared to neural progenitors (NPs and astrocytes perhaps reflective of more complex DSB repair in hESCs. In addition, the resolution of RAD51 foci, indicative of active homologous recombination repair (HRR, showed that hESCs as well as NPs have high capacity for HRR, whereas astrocytes do not. Importantly, the ATM kinase was shown to be critical for foci formation in astrocytes, but not in hESCs, suggesting that the DDR is different in these cells. Blocking the ATM kinase in astrocytes not only prevented the formation but also completely disassembled preformed repair foci. The ability of hESCs to form IRIF was abrogated with caffeine and siRNAs targeted against ATR, implicating that hESCs rely on ATR, rather than ATM for regulating DSB repair. This relationship dynamically changed as cells differentiated. Interestingly, while the inhibition of the DNA-PKcs kinase (and presumably non-homologous endjoining [NHEJ] in astrocytes slowed IRIF resolution it did not in hESCs, suggesting that repair in hESCs does not utilize DNA-PKcs. Altogether, our results show that hESCs have efficient DSB repair that is largely ATR-dependent HRR, whereas astrocytes critically depend on ATM for NHEJ, which, in part, is DNA-PKcs-independent.

  9. Fuzzy and neural control

    Science.gov (United States)

    Berenji, Hamid R.

    1992-01-01

    Fuzzy logic and neural networks provide new methods for designing control systems. Fuzzy logic controllers do not require a complete analytical model of a dynamic system and can provide knowledge-based heuristic controllers for ill-defined and complex systems. Neural networks can be used for learning control. In this chapter, we discuss hybrid methods using fuzzy logic and neural networks which can start with an approximate control knowledge base and refine it through reinforcement learning.

  10. Neural Dynamics of Audiovisual Speech Integration under Variable Listening Conditions: An Individual Participant Analysis

    Directory of Open Access Journals (Sweden)

    Nicholas eAltieri

    2013-09-01

    Full Text Available Speech perception engages both auditory and visual modalities. Limitations of traditional accuracy-only approaches in the investigation of audiovisual speech perception have motivated the use of new methodologies. In an audiovisual speech identification task, we utilized capacity (Townsend & Nozawa, 1995, a dynamic measure of efficiency, to quantify audiovisual integration. Capacity was used to compare RT distributions from audiovisual trials to RT distributions from auditory-only and visual-only trials across three listening conditions: clear auditory signal, S/N ratio of -12 dB, and S/N ratio of -18 dB. The purpose was to obtain EEG recordings in conjunction with capacity to investigate how a late ERP co-varies with integration efficiency. Results showed efficient audiovisual integration for low auditory S/N ratios, but inefficient audiovisual integration when the auditory signal was clear. The ERP analyses showed evidence for greater audiovisual amplitude in lower auditory S/N ratios (higher capacity/efficiency compared to the high S/N ratio (low capacity/inefficient integration. The data are consistent with an interactive framework of integration, where auditory recognition is influenced by speech-reading as a function of signal clarity.

  11. Hopf bifurcation in a nonlocal nonlinear transport equation stemming from stochastic neural dynamics

    Science.gov (United States)

    Drogoul, Audric; Veltz, Romain

    2017-02-01

    In this work, we provide three different numerical evidences for the occurrence of a Hopf bifurcation in a recently derived [De Masi et al., J. Stat. Phys. 158, 866-902 (2015) and Fournier and löcherbach, Ann. Inst. H. Poincaré Probab. Stat. 52, 1844-1876 (2016)] mean field limit of a stochastic network of excitatory spiking neurons. The mean field limit is a challenging nonlocal nonlinear transport equation with boundary conditions. The first evidence relies on the computation of the spectrum of the linearized equation. The second stems from the simulation of the full mean field. Finally, the last evidence comes from the simulation of the network for a large number of neurons. We provide a "recipe" to find such bifurcation which nicely complements the works in De Masi et al. [J. Stat. Phys. 158, 866-902 (2015)] and Fournier and löcherbach [Ann. Inst. H. Poincaré Probab. Stat. 52, 1844-1876 (2016)]. This suggests in return to revisit theoretically these mean field equations from a dynamical point of view. Finally, this work shows how the noise level impacts the transition from asynchronous activity to partial synchronization in excitatory globally pulse-coupled networks.

  12. CONDORR--CONstrained Dynamics of Rigid Residues: a molecular dynamics program for constrained molecules.

    Science.gov (United States)

    York, William S; Yi, Xiaobing

    2004-08-01

    A computer program CONDORR (CONstrained Dynamics of Rigid Residues) was developed for molecular dynamics simulations of large and/or constrained molecular systems, particularly carbohydrates. CONDORR efficiently calculates molecular trajectories on the basis of 2D or 3D potential energy maps, and can generate such maps based on a simple force field. The simulations involve three translational and three rotational degrees of freedom for each rigid, asymmetrical residue in the model. Total energy and angular momentum are conserved when no stochastic or external forces are applied to the model, if the time step is kept sufficiently short. Application of Langevin dynamics allows longer time steps, providing efficient exploration of conformational space. The utility of CONDORR was demonstrated by application to a constrained polysaccharide model and to the calculation of residual dipolar couplings for a disaccharide. [Figure: see text]. Molecular models (bottom) are created by cloning rigid residue archetypes (top) and joining them together. As defined here, the archetypes AX, HM and BG respectively correspond to an alpha-D-Xyl p residue, a hydroxymethyl group, and a beta-D-Glc p residue lacking O6, H6a and H6b. Each archetype contains atoms (indicated by boxes) that can be shared with other archetypes to form a linked structure. For example, the glycosidic link between the two D-Glc p residues is established by specifying that O1 of the nonreducing beta-D-Glc p (BG) residue (2) is identical to O4 of the reducing Glc p (BG) residue (1). The coordinates of the two residues are adjusted so as to superimpose these two (nominally distinct) atoms. Flexible hydroxymethyl (HM) groups (3 and 4) are treated as separate residues, and the torsional angles (normally indicated by the symbol omega) that define their geometric relationships to the pyranosyl rings of the BG residues are specified as psi3 and psi4, respectively. The torsional angles phi3 and phi4, defined solely to

  13. N-Myc and GCN5 regulate significantly overlapping transcriptional programs in neural stem cells.

    Directory of Open Access Journals (Sweden)

    Verónica Martínez-Cerdeño

    Full Text Available Here we examine the functions of the Myc cofactor and histone acetyltransferase, GCN5/KAT2A, in neural stem and precursor cells (NSC using a conditional knockout approach driven by nestin-cre. Mice with GCN5-deficient NSC exhibit a 25% reduction in brain mass with a microcephaly phenotype similar to that observed in nestin-cre driven knockouts of c- or N-myc. In addition, the loss of GCN5 inhibits precursor cell proliferation and reduces their populations in vivo, as does loss of N-myc. Gene expression analysis indicates that about one-sixth of genes whose expression is affected by loss of GCN5 are also affected in the same manner by loss of N-myc. These findings strongly support the notion that GCN5 protein is a key N-Myc transcriptional cofactor in NSC, but are also consistent with recruitment of GCN5 by other transcription factors and the use by N-Myc of other histone acetyltransferases. Putative N-Myc/GCN5 coregulated transcriptional pathways include cell metabolism, cell cycle, chromatin, and neuron projection morphogenesis genes. GCN5 is also required for maintenance of histone acetylation both at its putative specific target genes and at Myc targets. Thus, we have defined an important role for GCN5 in NSC and provided evidence that GCN5 is an important Myc transcriptional cofactor in vivo.

  14. Regionally-specified second trimester fetal neural stem cells reveals differential neurogenic programming.

    Directory of Open Access Journals (Sweden)

    Yiping Fan

    Full Text Available Neural stem/progenitor cells (NSC have the potential for treatment of a wide range of neurological diseases such as Parkinson Disease and multiple sclerosis. Currently, NSC have been isolated only from hippocampus and subventricular zone (SVZ of the adult brain. It is not known whether NSC can be found in all parts of the developing mid-trimester central nervous system (CNS when the brain undergoes massive transformation and growth. Multipotent NSC from the mid-trimester cerebra, thalamus, SVZ, hippocampus, thalamus, cerebellum, brain stem and spinal cord can be derived and propagated as clonal neurospheres with increasing frequencies with increasing gestations. These NSC can undergo multi-lineage differentiation both in vitro and in vivo, and engraft in a developmental murine model. Regionally-derived NSC are phenotypically distinct, with hippocampal NSC having a significantly higher neurogenic potential (53.6% over other sources (range of 0%-27.5%, p<0.004. Whole genome expression analysis showed differential gene expression between these regionally-derived NSC, which involved the Notch, epidermal growth factor as well as interleukin pathways. We have shown the presence of phenotypically-distinct regionally-derived NSC from the mid-trimester CNS, which may reflect the ontological differences occurring within the CNS. Aside from informing on the role of such cells during fetal growth, they may be useful for different cellular therapy applications.

  15. The neural dynamics of face detection in the wild revealed by MVPA.

    Science.gov (United States)

    Cauchoix, Maxime; Barragan-Jason, Gladys; Serre, Thomas; Barbeau, Emmanuel J

    2014-01-15

    Previous magnetoencephalography/electroencephalography (M/EEG) studies have suggested that face processing is extremely rapid, indeed faster than any other object category. Most studies, however, have been performed using centered, cropped stimuli presented on a blank background resulting in artificially low interstimulus variability. In contrast, the aim of the present study was to assess the underlying temporal dynamics of face detection presented in complex natural scenes. We recorded EEG activity while participants performed a rapid go/no-go categorization task in which they had to detect the presence of a human face. Subjects performed at ceiling (94.8% accuracy), and traditional event-related potential analyses revealed only modest modulations of the two main components classically associated with face processing (P100 and N170). A multivariate pattern analysis conducted across all EEG channels revealed that face category could, however, be readout very early, under 100 ms poststimulus onset. Decoding was linked to reaction time as early as 125 ms. Decoding accuracy did not increase monotonically; we report an increase during an initial 95-140 ms period followed by a plateau ∼140-185 ms-perhaps reflecting a transitory stabilization of the face information available-and a strong increase afterward. Further analyses conducted on individual images confirmed these phases, further suggesting that decoding accuracy may be initially driven by low-level stimulus properties. Such latencies appear to be surprisingly short given the complexity of the natural scenes and the large intraclass variability of the face stimuli used, suggesting that the visual system is highly optimized for the processing of natural scenes.

  16. Evolutionary programming for goal-driven dynamic planning

    Science.gov (United States)

    Vaccaro, James M.; Guest, Clark C.; Ross, David O.

    2002-03-01

    Many complex artificial intelligence (IA) problems are goal- driven in nature and the opportunity exists to realize the benefits of a goal-oriented solution. In many cases, such as in command and control, a goal-oriented approach may be the only option. One of many appropriate applications for such an approach is War Gaming. War Gaming is an important tool for command and control because it provides a set of alternative courses of actions so that military leaders can contemplate their next move in the battlefield. For instance, when making decisions that save lives, it is necessary to completely understand the consequences of a given order. A goal-oriented approach provides a slowly evolving tractably reasoned solution that inherently follows one of the principles of war: namely concentration on the objective. Future decision-making will depend not only on the battlefield, but also on a virtual world where military leaders can wage wars and determine their options by playing computer war games much like the real world. The problem with these games is that the built-in AI does not learn nor adapt and many times cheats, because the intelligent player has access to all the information, while the user has access to limited information provided on a display. These games are written for the purpose of entertainment and actions are calculated a priori and off-line, and are made prior or during their development. With these games getting more sophisticated in structure and less domain specific in scope, there needs to be a more general intelligent player that can adapt and learn in case the battlefield situations or the rules of engagement change. One such war game that might be considered is Risk. Risk incorporates the principles of war, is a top-down scalable model, and provides a good application for testing a variety of goal- oriented AI approaches. By integrating a goal-oriented hybrid approach, one can develop a program that plays the Risk game effectively and move

  17. NEURAL NETWORK AND REGRESSION SPLINE VALUE FUNCTION APPROXIMATIONS FOR STOCHASTIC DYNAMIC PROGRAMMING. (R828207)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  18. Program Specificity for Ptf1a in Pancreas versus Neural Tube Development Correlates with Distinct Collaborating Cofactors and Chromatin Accessibility

    Science.gov (United States)

    Meredith, David M.; Borromeo, Mark D.; Deering, Tye G.; Casey, Bradford H.; Savage, Trisha K.; Mayer, Paul R.; Hoang, Chinh; Tung, Kuang-Chi; Kumar, Manonmani; Shen, Chengcheng; Swift, Galvin H.

    2013-01-01

    The lineage-specific basic helix-loop-helix transcription factor Ptf1a is a critical driver for development of both the pancreas and nervous system. How one transcription factor controls diverse programs of gene expression is a fundamental question in developmental biology. To uncover molecular strategies for the program-specific functions of Ptf1a, we identified bound genomic regions in vivo during development of both tissues. Most regions bound by Ptf1a are specific to each tissue, lie near genes needed for proper formation of each tissue, and coincide with regions of open chromatin. The specificity of Ptf1a binding is encoded in the DNA surrounding the Ptf1a-bound sites, because these regions are sufficient to direct tissue-restricted reporter expression in transgenic mice. Fox and Sox factors were identified as potential lineage-specific modifiers of Ptf1a binding, since binding motifs for these factors are enriched in Ptf1a-bound regions in pancreas and neural tube, respectively. Of the Fox factors expressed during pancreatic development, Foxa2 plays a major role. Indeed, Ptf1a and Foxa2 colocalize in embryonic pancreatic chromatin and can act synergistically in cell transfection assays. Together, these findings indicate that lineage-specific chromatin landscapes likely constrain the DNA binding of Ptf1a, and they identify Fox and Sox gene families as part of this process. PMID:23754747

  19. Fully automated segmentation of whole breast using dynamic programming in dynamic contrast enhanced MR images.

    Science.gov (United States)

    Jiang, Luan; Hu, Xiaoxin; Xiao, Qin; Gu, Yajia; Li, Qiang

    2017-06-01

    Amount of fibroglandular tissue (FGT) and level of background parenchymal enhancement (BPE) in breast dynamic contrast enhanced magnetic resonance images (DCE-MRI) are suggested as strong indices for assessing breast cancer risk. Whole breast segmentation is the first important task for quantitative analysis of FGT and BPE in three-dimensional (3-D) DCE-MRI. The purpose of this study is to develop and evaluate a fully automated technique for accurate segmentation of the whole breast in 3-D fat-suppressed DCE-MRI. The whole breast segmentation consisted of two major steps, i.e., the delineation of chest wall line and breast skin line. First, a sectional dynamic programming method was employed to trace the upper and/or lower boundaries of the chest wall by use of the positive and/or negative gradient within a band along the chest wall in each 2-D slice. Second, another dynamic programming was applied to delineate the skin-air boundary slice-by-slice based on the saturated gradient of the enhanced image obtained with the prior statistical distribution of gray levels of the breast skin line. Starting from the central slice, these two steps employed a Gaussian function to limit the search range of boundaries in adjacent slices based on the continuity of chest wall line and breast skin line. Finally, local breast skin line detection was applied around armpit to complete the whole breast segmentation. The method was validated with a representative dataset of 100 3-D breast DCE-MRI scans through objective quantification and subjective evaluation. The MR scans in the dataset were acquired with four MR scanners in five spatial resolutions. The cases were assessed with four breast density ratings by radiologists based on Breast Imaging Reporting and Data System (BI-RADS) of American College of Radiology. Our segmentation algorithm achieved a Dice volume overlap measure of 95.8 ± 1.2% and volume difference measure of 8.4 ± 2.4% between the automatically and manually

  20. Examining neural correlates of skill acquisition in a complex videogame training program

    Directory of Open Access Journals (Sweden)

    Ruchika S Prakash

    2012-05-01

    Full Text Available Acquisition of complex skills is a universal feature of human behavior that has been conceptualized as a process that starts with intense resource dependency, requires effortful cognitive control, and ends in relative automaticity on the multi-faceted task. The present study examined the effects of different theoretically-based training strategies on cortical recruitment during acquisition of complex videogame skills. Seventy-five participants were recruited and assigned to one of three training groups: Fixed Emphasis Training (FET, in which participants practiced the game, Hybrid Variable Priority Training (HVT, in which participants practiced using a combination of part-task training and variable priority training, or a Control group that received limited game play. After 30 hours of training, game data indicated a significant advantage for the two training groups relative to the control group. The HVT group demonstrated enhanced benefits of training, as indexed by an improvement in overall game score and a reduction in cortical recruitment post-training. Specifically, while both groups demonstrated a significant reduction of activation in attentional control areas, namely the right middle frontal gyrus, right superior frontal gyrus, and the ventral medial prefrontal cortex, participants in the control group continued to engage these areas post-training, suggesting a sustained reliance on attentional regions during challenging task demands. The HVT group showed a further reduction in neural resources post-training compared to the FET group in these cognitive control regions, along with reduced activation in the motor and sensory cortices and the posteromedial cortex. Findings suggest that training, specifically one that emphasizes cognitive flexibility can reduce the attentional demands of a complex cognitive task, along with reduced reliance on the motor network.