WorldWideScience

Sample records for neural crest-derived structures

  1. Isolation and characterization of neural crest-derived stem cells from dental pulp of neonatal mice.

    Directory of Open Access Journals (Sweden)

    Kajohnkiart Janebodin

    Full Text Available Dental pulp stem cells (DPSCs are shown to reside within the tooth and play an important role in dentin regeneration. DPSCs were first isolated and characterized from human teeth and most studies have focused on using this adult stem cell for clinical applications. However, mouse DPSCs have not been well characterized and their origin(s have not yet been elucidated. Herein we examined if murine DPSCs are neural crest derived and determined their in vitro and in vivo capacity. DPSCs from neonatal murine tooth pulp expressed embryonic stem cell and neural crest related genes, but lacked expression of mesodermal genes. Cells isolated from the Wnt1-Cre/R26R-LacZ model, a reporter of neural crest-derived tissues, indicated that DPSCs were Wnt1-marked and therefore of neural crest origin. Clonal DPSCs showed multi-differentiation in neural crest lineage for odontoblasts, chondrocytes, adipocytes, neurons, and smooth muscles. Following in vivo subcutaneous transplantation with hydroxyapatite/tricalcium phosphate, based on tissue/cell morphology and specific antibody staining, the clones differentiated into odontoblast-like cells and produced dentin-like structure. Conversely, bone marrow stromal cells (BMSCs gave rise to osteoblast-like cells and generated bone-like structure. Interestingly, the capillary distribution in the DPSC transplants showed close proximity to odontoblasts whereas in the BMSC transplants bone condensations were distant to capillaries resembling dentinogenesis in the former vs. osteogenesis in the latter. Thus we demonstrate the existence of neural crest-derived DPSCs with differentiation capacity into cranial mesenchymal tissues and other neural crest-derived tissues. In turn, DPSCs hold promise as a source for regenerating cranial mesenchyme and other neural crest derived tissues.

  2. Isolation and Characterization of Neural Crest-Derived Stem Cells from Dental Pulp of Neonatal Mice

    Science.gov (United States)

    Janebodin, Kajohnkiart; Horst, Orapin V.; Ieronimakis, Nicholas; Balasundaram, Gayathri; Reesukumal, Kanit; Pratumvinit, Busadee; Reyes, Morayma

    2011-01-01

    Dental pulp stem cells (DPSCs) are shown to reside within the tooth and play an important role in dentin regeneration. DPSCs were first isolated and characterized from human teeth and most studies have focused on using this adult stem cell for clinical applications. However, mouse DPSCs have not been well characterized and their origin(s) have not yet been elucidated. Herein we examined if murine DPSCs are neural crest derived and determined their in vitro and in vivo capacity. DPSCs from neonatal murine tooth pulp expressed embryonic stem cell and neural crest related genes, but lacked expression of mesodermal genes. Cells isolated from the Wnt1-Cre/R26R-LacZ model, a reporter of neural crest-derived tissues, indicated that DPSCs were Wnt1-marked and therefore of neural crest origin. Clonal DPSCs showed multi-differentiation in neural crest lineage for odontoblasts, chondrocytes, adipocytes, neurons, and smooth muscles. Following in vivo subcutaneous transplantation with hydroxyapatite/tricalcium phosphate, based on tissue/cell morphology and specific antibody staining, the clones differentiated into odontoblast-like cells and produced dentin-like structure. Conversely, bone marrow stromal cells (BMSCs) gave rise to osteoblast-like cells and generated bone-like structure. Interestingly, the capillary distribution in the DPSC transplants showed close proximity to odontoblasts whereas in the BMSC transplants bone condensations were distant to capillaries resembling dentinogenesis in the former vs. osteogenesis in the latter. Thus we demonstrate the existence of neural crest-derived DPSCs with differentiation capacity into cranial mesenchymal tissues and other neural crest-derived tissues. In turn, DPSCs hold promise as a source for regenerating cranial mesenchyme and other neural crest derived tissues. PMID:22087335

  3. Regeneration of neural crest derivatives in the Xenopus tadpole tail

    Directory of Open Access Journals (Sweden)

    Slack Jonathan MW

    2007-05-01

    Full Text Available Abstract Background After amputation of the Xenopus tadpole tail, a functionally competent new tail is regenerated. It contains spinal cord, notochord and muscle, each of which has previously been shown to derive from the corresponding tissue in the stump. The regeneration of the neural crest derivatives has not previously been examined and is described in this paper. Results Labelling of the spinal cord by electroporation, or by orthotopic grafting of transgenic tissue expressing GFP, shows that no cells emigrate from the spinal cord in the course of regeneration. There is very limited regeneration of the spinal ganglia, but new neurons as well as fibre tracts do appear in the regenerated spinal cord and the regenerated tail also contains abundant peripheral innervation. The regenerated tail contains a normal density of melanophores. Cell labelling experiments show that melanophores do not arise from the spinal cord during regeneration, nor from the mesenchymal tissues of the skin, but they do arise by activation and proliferation of pre-existing melanophore precursors. If tails are prepared lacking melanophores, then the regenerates also lack them. Conclusion On regeneration there is no induction of a new neural crest similar to that seen in embryonic development. However there is some regeneration of neural crest derivatives. Abundant melanophores are regenerated from unpigmented precursors, and, although spinal ganglia are not regenerated, sufficient sensory systems are produced to enable essential functions to continue.

  4. [Phenotypic plasticity of neural crest-derived melanocytes and Schwann cells].

    Science.gov (United States)

    Dupin, Elisabeth

    2011-01-01

    expression. This review considers the issue of whether neural crest-derived lineages are endowed with some phenotypic plasticity. Emphasis is put on the ability of pigment cells and Schwann cells to dedifferentiate and reprogram their fate in vitro. To address this question, we have studied the clonal progeny of differentiated Schwann cells and melanocytes after their isolation from the sciatic nerve and the back skin of quail embryos, respectively. When stimulated to proliferate in vitro in the presence of endothelin-3, both cell types were able to dedifferentiate and produce alternative neural crest-derived cell lineages. Individual Schwann cells isolated by FACS, using a glial-specific surface marker, gave rise in culture to pigment cells and myofibroblasts/smooth muscle cells. Treatment of the cultures with endothelin-3 was required for Schwann cell conversion into melanocytes, which involved acquisition of multipotency. Moreover, Schwann cell plasticity could also be induced in vivo: following transplantation into the branchial arch of a young chick host embryo, dedifferentiating Schwann cells were able to integrate the forming head structures of the host and, specifically, to contribute smooth muscle cells to the wall of cranial blood vessels. We also analyzed the in vitro behavior of individual pigment cells obtained by microdissection and enzymatic treatment of quail epidermis at embryonic and hatching stages. In single cell cultures treated with endothelin-3, pigment cells strongly proliferated while rapidly dedifferentiating into unpigmented cells, leading to the formation of large colonies that comprised glial cells and myofibroblasts in addition to melanocytes. By serially subcloning these primary colonies, we could efficiently propagate a bipotent glial-melanocytic precursor that is generated in the progeny of the melanocytic founder. These data therefore suggest that pigment cells have the ability to revert back to the state of self-renewing neural crest

  5. Physiological Plasticity of Neural-Crest-Derived Stem Cells in the Adult Mammalian Carotid Body

    Directory of Open Access Journals (Sweden)

    Valentina Annese

    2017-04-01

    Full Text Available Adult stem cell plasticity, or the ability of somatic stem cells to cross boundaries and differentiate into unrelated cell types, has been a matter of debate in the last decade. Neural-crest-derived stem cells (NCSCs display a remarkable plasticity during development. Whether adult populations of NCSCs retain this plasticity is largely unknown. Herein, we describe that neural-crest-derived adult carotid body stem cells (CBSCs are able to undergo endothelial differentiation in addition to their reported role in neurogenesis, contributing to both neurogenic and angiogenic processes taking place in the organ during acclimatization to hypoxia. Moreover, CBSC conversion into vascular cell types is hypoxia inducible factor (HIF dependent and sensitive to hypoxia-released vascular cytokines such as erythropoietin. Our data highlight a remarkable physiological plasticity in an adult population of tissue-specific stem cells and could have impact on the use of these cells for cell therapy.

  6. Neural crest-derived mesenchymal cells require Wnt signaling for their development and drive invagination of the telencephalic midline.

    Directory of Open Access Journals (Sweden)

    Youngshik Choe

    Full Text Available Embryonic neural crest cells contribute to the development of the craniofacial mesenchyme, forebrain meninges and perivascular cells. In this study, we investigated the function of ß-catenin signaling in neural crest cells abutting the dorsal forebrain during development. In the absence of ß-catenin signaling, neural crest cells failed to expand in the interhemispheric region and produced ectopic smooth muscle cells instead of generating dermal and calvarial mesenchyme. In contrast, constitutive expression of stabilized ß-catenin in neural crest cells increased the number of mesenchymal lineage precursors suggesting that ß-catenin signaling is necessary for the expansion of neural crest-derived mesenchymal cells. Interestingly, the loss of neural crest-derived mesenchymal stem cells (MSCs leads to failure of telencephalic midline invagination and causes ventricular system defects. This study shows that ß-catenin signaling is required for the switch of neural crest cells to MSCs and mediates the expansion of MSCs to drive the formation of mesenchymal structures of the head. Furthermore, loss of these structures causes striking defects in forebrain morphogenesis.

  7. Physiological Plasticity of Neural-Crest-Derived Stem Cells in the Adult Mammalian Carotid Body.

    Science.gov (United States)

    Annese, Valentina; Navarro-Guerrero, Elena; Rodríguez-Prieto, Ismael; Pardal, Ricardo

    2017-04-18

    Adult stem cell plasticity, or the ability of somatic stem cells to cross boundaries and differentiate into unrelated cell types, has been a matter of debate in the last decade. Neural-crest-derived stem cells (NCSCs) display a remarkable plasticity during development. Whether adult populations of NCSCs retain this plasticity is largely unknown. Herein, we describe that neural-crest-derived adult carotid body stem cells (CBSCs) are able to undergo endothelial differentiation in addition to their reported role in neurogenesis, contributing to both neurogenic and angiogenic processes taking place in the organ during acclimatization to hypoxia. Moreover, CBSC conversion into vascular cell types is hypoxia inducible factor (HIF) dependent and sensitive to hypoxia-released vascular cytokines such as erythropoietin. Our data highlight a remarkable physiological plasticity in an adult population of tissue-specific stem cells and could have impact on the use of these cells for cell therapy. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Constitutively active Notch1 converts cranial neural crest-derived frontonasal mesenchyme to perivascular cells in vivo

    Directory of Open Access Journals (Sweden)

    Sophie R. Miller

    2017-03-01

    Full Text Available Perivascular/mural cells originate from either the mesoderm or the cranial neural crest. Regardless of their origin, Notch signalling is necessary for their formation. Furthermore, in both chicken and mouse, constitutive Notch1 activation (via expression of the Notch1 intracellular domain is sufficient in vivo to convert trunk mesoderm-derived somite cells to perivascular cells, at the expense of skeletal muscle. In experiments originally designed to investigate the effect of premature Notch1 activation on the development of neural crest-derived olfactory ensheathing glial cells (OECs, we used in ovo electroporation to insert a tetracycline-inducible NotchΔE construct (encoding a constitutively active mutant of mouse Notch1 into the genome of chicken cranial neural crest cell precursors, and activated NotchΔE expression by doxycycline injection at embryonic day 4. NotchΔE-targeted cells formed perivascular cells within the frontonasal mesenchyme, and expressed a perivascular marker on the olfactory nerve. Hence, constitutively activating Notch1 is sufficient in vivo to drive not only somite cells, but also neural crest-derived frontonasal mesenchyme and perhaps developing OECs, to a perivascular cell fate. These results also highlight the plasticity of neural crest-derived mesenchyme and glia.

  9. Distinct functional and temporal requirements for zebrafish Hdac1 during neural crest-derived craniofacial and peripheral neuron development.

    Directory of Open Access Journals (Sweden)

    Myron S Ignatius

    Full Text Available The regulation of gene expression is accomplished by both genetic and epigenetic means and is required for the precise control of the development of the neural crest. In hdac1(b382 mutants, craniofacial cartilage development is defective in two distinct ways. First, fewer hoxb3a, dlx2 and dlx3-expressing posterior branchial arch precursors are specified and many of those that are consequently undergo apoptosis. Second, in contrast, normal numbers of progenitors are present in the anterior mandibular and hyoid arches, but chondrocyte precursors fail to terminally differentiate. In the peripheral nervous system, there is a disruption of enteric, DRG and sympathetic neuron differentiation in hdac1(b382 mutants compared to wildtype embryos. Specifically, enteric and DRG-precursors differentiate into neurons in the anterior gut and trunk respectively, while enteric and DRG neurons are rarely present in the posterior gut and tail. Sympathetic neuron precursors are specified in hdac1(b382 mutants and they undergo generic neuronal differentiation but fail to undergo noradrenergic differentiation. Using the HDAC inhibitor TSA, we isolated enzyme activity and temporal requirements for HDAC function that reproduce hdac1(b382 defects in craniofacial and sympathetic neuron development. Our study reveals distinct functional and temporal requirements for zebrafish hdac1 during neural crest-derived craniofacial and peripheral neuron development.

  10. Intrastriatal transplantation of adult human neural crest-derived stem cells improves functional outcome in parkinsonian rats.

    Science.gov (United States)

    Müller, Janine; Ossig, Christiana; Greiner, Johannes F W; Hauser, Stefan; Fauser, Mareike; Widera, Darius; Kaltschmidt, Christian; Storch, Alexander; Kaltschmidt, Barbara

    2015-01-01

    Parkinson's disease (PD) is considered the second most frequent and one of the most severe neurodegenerative diseases, with dysfunctions of the motor system and with nonmotor symptoms such as depression and dementia. Compensation for the progressive loss of dopaminergic (DA) neurons during PD using current pharmacological treatment strategies is limited and remains challenging. Pluripotent stem cell-based regenerative medicine may offer a promising therapeutic alternative, although the medical application of human embryonic tissue and pluripotent stem cells is still a matter of ethical and practical debate. Addressing these challenges, the present study investigated the potential of adult human neural crest-derived stem cells derived from the inferior turbinate (ITSCs) transplanted into a parkinsonian rat model. Emphasizing their capability to give rise to nervous tissue, ITSCs isolated from the adult human nose efficiently differentiated into functional mature neurons in vitro. Additional successful dopaminergic differentiation of ITSCs was subsequently followed by their transplantation into a unilaterally lesioned 6-hydroxydopamine rat PD model. Transplantation of predifferentiated or undifferentiated ITSCs led to robust restoration of rotational behavior, accompanied by significant recovery of DA neurons within the substantia nigra. ITSCs were further shown to migrate extensively in loose streams primarily toward the posterior direction as far as to the midbrain region, at which point they were able to differentiate into DA neurons within the locus ceruleus. We demonstrate, for the first time, that adult human ITSCs are capable of functionally recovering a PD rat model. ©AlphaMed Press.

  11. Epigenetic marks define the lineage and differentiation potential of two distinct neural crest-derived intermediate odontogenic progenitor populations.

    Science.gov (United States)

    Gopinathan, Gokul; Kolokythas, Antonia; Luan, Xianghong; Diekwisch, Thomas G H

    2013-06-15

    Epigenetic mechanisms, such as histone modifications, play an active role in the differentiation and lineage commitment of mesenchymal stem cells. In the present study, epigenetic states and differentiation profiles of two odontogenic neural crest-derived intermediate progenitor populations were compared: dental pulp (DP) and dental follicle (DF). ChIP on chip assays revealed substantial H3K27me3-mediated repression of odontoblast lineage genes DSPP and dentin matrix protein 1 (DMP1) in DF cells, but not in DP cells. Mineralization inductive conditions caused steep increases of mineralization and patterning gene expression levels in DP cells when compared to DF cells. In contrast, mineralization induction resulted in a highly dynamic histone modification response in DF cells, while there was only a subdued effect in DP cells. Both DF and DP progenitors featured H3K4me3-active marks on the promoters of early mineralization genes RUNX2, MSX2, and DLX5, while OSX, IBSP, and BGLAP promoters were enriched for H3K9me3 or H3K27me3. Compared to DF cells, DP cells expressed higher levels of three pluripotency-associated genes, OCT4, NANOG, and SOX2. Finally, gene ontology comparison of bivalent marks unique for DP and DF cells highlighted cell-cell attachment genes in DP cells and neurogenesis genes in DF cells. In conclusion, the present study indicates that the DF intermediate odontogenic neural crest lineage is distinguished from its DP counterpart by epigenetic repression of DSPP and DMP1 genes and through dynamic histone enrichment responses to mineralization induction. Findings presented here highlight the crucial role of epigenetic regulatory mechanisms in the terminal differentiation of odontogenic neural crest lineages.

  12. Enrichment and Schwann Cell Differentiation of Neural Crest-derived Dental Pulp Stem Cells.

    Science.gov (United States)

    Al-Zer, Heba; Apel, Christian; Heiland, Max; Friedrich, Reinhard E; Jung, Ole; Kroeger, Nadja; Eichhorn, Wolfgang; Smeets, Ralf

    2015-01-01

    As already described in previous studies, neural crest stem cells (NCSCs) can be found in adult human dental pulp. The present study investigated the methodology for enrichment and differentiation-induction of the above mentioned cells. Dental pulp was extracted from human wisdom teeth of four patients and subsequently cultured as explants on fibronectin-coated plates in neurobasal medium supplemented with B27, basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), insulin, l-glutamine and neuregulin-β1. The cells were then characterized by immunofluorescence, while their differentiation-potential was tested by the attempt to induce cells into different lineages, i.e. osteogenic, melanocytic and glial. The enriched cell population expressed nestin, CD271 and SOX10, which are well-known markers for NCSCs. Consequently, the cells were successfully induced to differentiate into osteoblasts, melanocytes and Schwann cells, expressing the corresponding differentiation markers. Human adult dental pulp contains a population of stem cells with neural crest ontogeny, which can thus be recruited for multiple regenerative therapies. Copyright © 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  13. ADAM10 is essential for cranial neural crest-derived maxillofacial bone development

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Yu, E-mail: tanyu2048@163.com; Fu, Runqing, E-mail: furunqing@sjtu.edu.cn; Liu, Jiaqiang, E-mail: liujqmj@163.com; Wu, Yong, E-mail: wyonger@gmail.com; Wang, Bo, E-mail: wb228@126.com; Jiang, Ning, E-mail: 179639060@qq.com; Nie, Ping, E-mail: nieping1011@sina.com; Cao, Haifeng, E-mail: 0412chf@163.com; Yang, Zhi, E-mail: wcums1981@163.com; Fang, Bing, E-mail: fangbing@sjtu.edu.cn

    2016-07-08

    Growth disorders of the craniofacial bones may lead to craniofacial deformities. The majority of maxillofacial bones are derived from cranial neural crest cells via intramembranous bone formation. Any interruption of the craniofacial skeleton development process might lead to craniofacial malformation. A disintegrin and metalloprotease (ADAM)10 plays an essential role in organ development and tissue integrity in different organs. However, little is known about its function in craniofacial bone formation. Therefore, we investigated the role of ADAM10 in the developing craniofacial skeleton, particularly during typical mandibular bone development. First, we showed that ADAM10 was expressed in a specific area of the craniofacial bone and that the expression pattern dynamically changed during normal mouse craniofacial development. Then, we crossed wnt1-cre transgenic mice with adam10-flox mice to generate ADAM10 conditional knockout mice. The stereomicroscopic, radiographic, and von Kossa staining results showed that conditional knockout of ADAM10 in cranial neural crest cells led to embryonic death, craniofacial dysmorphia and bone defects. Furthermore, we demonstrated that impaired mineralization could be triggered by decreased osteoblast differentiation, increased cell death. Overall, these findings show that ADAM10 plays an essential role in craniofacial bone development. -- Highlights: •We firstly reported that ADAM10 was essentially involved in maxillofacial bone development. •ADAM10 cKO mice present craniofacial dysmorphia and bone defects. •Impaired osteoblast differentiation,proliferation and apoptosis underlie the bone deformity.

  14. In vitro cementoblast-like differentiation of postmigratory neural crest-derived p75{sup +} stem cells with dental follicle cell conditioned medium

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Xiujie; Liu, Luchuan; Deng, Manjing; Liu, Rui; Zhang, Li; Nie, Xin, E-mail: dr.xinnie@gmail.com

    2015-09-10

    Cranial neural crest-derived cells (CNCCs) play important role in epithelial–mesenchymal interactions during tooth morphogenesis. However, the heterogeneity of CNCCs and their tendency to spontaneously differentiate along smooth muscle or osteoblast lineages in vitro limit further understanding of their biological properties. We studied the differentiation properties of isolated rat embryonic postmigratory CNCCs, expressing p75 neurotrophin receptor (p75NTR). These p75NTR positive (p75{sup +}) CNCCs, isolated using fluorescence activated cell sorter, exhibited fibroblast-like morphology and characteristics of mesenchymal stem cells. Incubation of p75{sup +} CNCCs in dental follicle cell conditioned medium (DFCCM) combined with dentin non-collagenous proteins (dNCPs), altered their morphological features to cementoblast-like appearance. These cells also showed low proliferative activity, high ALP activity and significantly increased calcified nodule formation. Markers related to mineralization or specific to cementoblast lineage were highly expressed in dNCPs/DFCCM-treated p75{sup +} cells, suggesting their differentiation along cementoblast-like lineage. p75{sup +} stem cells selected from postmigratory CNCCs represent a pure stem cell population and could be used as a stem cell model for in vitro studies due to their intrinsic ability to differentiate to neuronal cells and transform from neuroectoderm to ectomesenchyme. They can provide a potential stem cell resource for tooth engineering studies and help to further investigate mechanisms of epithelial–mesenchymal interactions in tooth morphogenesis. - Highlights: • Cranial neural crest-derived cells (CNCCs) take part in tooth morphogenesis. • positive (p75{sup +}) CNCCs are fibroblast-like and resemble mesenchymal stem cells. • p75{sup +} CNCCs in dental follicle cell medium (DFCCM/dNCP) appear like cementoblasts. • DFCCM/dNCP-treated p75{sup +} cells express cementoblast specific mineralization

  15. Neural crest-derived cells with stem cell features can be traced back to multiple lineages in the adult skin

    NARCIS (Netherlands)

    C.E. Wong (Christine); S. Paratore (Sabrina); M.T. Dours-Zimmermann (María); T. Rochat (Thierry); T. Pietri (Thomas); U. Suter (Ueli); D. Zimmermann (Dieter); S. Dufour (Sylvie); J.P. Thiery (Joachim); D.N. Meijer (Dies); C. Beermann (Christopher); Y. Barrandon (Yann); L. Sommer (Lukas)

    2006-01-01

    textabstractGiven their accessibility, multipotent skin-derived cells might be useful for future cell replacement therapies. We describe the isolation of multipotent stem cell-like cells from the adult trunk skin of mice and humans that express the neural crest stem cell markers p75 and Sox10 and

  16. Decreased proliferative, migrative and neuro-differentiative potential of postnatal rat enteric neural crest-derived cells during culture in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hui [Department of Pediatric Surgery, the Second Affiliated Hospital, Xi’an Jiaotong University, No 157, Xi Wu Road, Xi’an 710004, Shaanxi (China); Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi’an Jiaotong University, No 96, Yan Ta Xi Road, Xi’an 710061, Shaanxi (China); Pan, Wei-Kang; Zheng, Bai-Jun; Wang, Huai-Jie [Department of Pediatric Surgery, the Second Affiliated Hospital, Xi’an Jiaotong University, No 157, Xi Wu Road, Xi’an 710004, Shaanxi (China); Chen, Xin-Lin; Liu, Yong [Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi’an Jiaotong University, No 96, Yan Ta Xi Road, Xi’an 710061, Shaanxi (China); Gao, Ya, E-mail: ygao@mail.xjtu.edu.cn [Department of Pediatric Surgery, the Second Affiliated Hospital, Xi’an Jiaotong University, No 157, Xi Wu Road, Xi’an 710004, Shaanxi (China)

    2016-05-01

    A growing body of evidence supports the potential use of enteric neural crest-derived cells (ENCCs) as a cell replacement therapy for Hirschsprung's disease. Based on previous observations of robust propagation of primary ENCCs, as opposed to their progeny, it is suggested that their therapeutic potential after in vitro expansion may be restricted. We therefore examined the growth and differentiation activities and phenotypic characteristics of continuous ENCC cultures. ENCCs were isolated from the intestines of postnatal rats and were identified using an immunocytochemical approach. During continuous ENCC culture expansion, proliferation, migration, apoptosis, and differentiation potentials were monitored. The Cell Counting Kit-8 was used for assessment of ENCC vitality, Transwell inserts for cell migration, immunocytochemistry for cell counts and identification, and flow cytometry for apoptosis. Over six continuous generations, ENCC proliferation potency was reduced and with prolonged culture, the ratio of migratory ENCCs was decreased. The percentage of apoptosis showed an upward trend with prolonged intragenerational culture, but showed a downward trend with prolonged culture of combined generations. Furthermore, the percentage of peripherin{sup +} cells decreased whilst the percentage of GFAP{sup +} cells increased with age. The results demonstrated that alterations in ENCC growth characteristics occur with increased culture time, which may partially account for the poor results of proposed cell therapies. - Highlights: • Differences were identified between primary and daughter ENCCs. • Daughter ENCCs had reduced proliferation, migration and differentiation. • Daughter ENCCs also had increased apoptosis. • These altered characteristics warrant further investigation.

  17. Differentiation defect in neural crest-derived smooth muscle cells in patients with aortopathy associated with bicuspid aortic valves

    Directory of Open Access Journals (Sweden)

    Jiao Jiao

    2016-08-01

    Full Text Available Individuals with bicuspid aortic valves (BAV are at a higher risk of developing thoracic aortic aneurysms (TAA than patients with trileaflet aortic valves (TAV. The aneurysms associated with BAV most commonly involve the ascending aorta and spare the descending aorta. Smooth muscle cells (SMCs in the ascending and descending aorta arise from neural crest (NC and paraxial mesoderm (PM, respectively. We hypothesized defective differentiation of the neural crest stem cells (NCSCs-derived SMCs but not paraxial mesoderm cells (PMCs-derived SMCs contributes to the aortopathy associated with BAV. When induced pluripotent stem cells (iPSCs from BAV/TAA patients were differentiated into NCSC-derived SMCs, these cells demonstrated significantly decreased expression of marker of SMC differentiation (MYH11 and impaired contraction compared to normal control. In contrast, the PMC-derived SMCs were similar to control cells in these aspects. The NCSC-SMCs from the BAV/TAA also showed decreased TGF-β signaling based on phosphorylation of SMAD2, and increased mTOR signaling. Inhibition of mTOR pathway using rapamycin rescued the aberrant differentiation. Our data demonstrates that decreased differentiation and contraction of patient's NCSC-derived SMCs may contribute to that aortopathy associated with BAV.

  18. Depletion of Neural Crest-Derived Cells Leads to Reduction in Plasma Noradrenaline and Alters B Lymphopoiesis.

    Science.gov (United States)

    Tsunokuma, Naoki; Yamane, Toshiyuki; Matsumoto, Chiaki; Tsuneto, Motokazu; Isono, Kana; Imanaka-Yoshida, Kyoko; Yamazaki, Hidetoshi

    2017-01-01

    Hematopoietic stem cells and their lymphoid progenitors are supported by the bone marrow (BM) microenvironmental niches composed of various stromal cells and Schwann cells and sympathetic nerve fibers. Although neural crest (NC) cells contribute to the development of all the three, their function in BM is not well understood. In this study, NC-derived cells were ablated with diphtheria toxin in double-transgenic mice expressing NC-specific Cre and Cre-driven diphtheria toxin receptor with yellow fluorescent protein reporter. We found that yellow fluorescent protein-expressing, NC-derived nonhematopoietic cells in BM expressed hematopoietic factors Cxcl12 and stem cell factor The ablation of NC-derived cells led to a significant decrease in B cell progenitors but not in hematopoietic stem cells or myeloid lineage cells in BM. Interestingly, plasma noradrenaline was markedly decreased in these mice. The i.p. administration of 6-hydroxydopamine, a known neurotoxin for noradrenergic neurons, led to a similar phenotype, whereas the administration of a noradrenaline precursor in NC-ablated mice partially rescued this phenotype. Additionally, the continuous administration of adrenergic receptor β antagonists partially decreased the number of B cell progenitors while preserving B lymphopoiesis in vitro. Taken together, our results indicate that NC-derived cell depletion leads to abnormal B lymphopoiesis partially through decreased plasma noradrenaline, suggesting this as a novel mechanism regulated by molecules released by the sympathetic neurons. Copyright © 2016 by The American Association of Immunologists, Inc.

  19. Combination of exogenous cell transplantation and 5-HT{sub 4} receptor agonism induce endogenous enteric neural crest-derived cells in a rat hypoganglionosis model

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hui [Department of Pediatric Surgery, the Second Affiliated Hospital, Xi’an Jiaotong University, No 157, Xi Wu Road, Xi’an 710004, Shaanxi (China); Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi’an Jiaotong University, No 96, Yan Ta Xi Road, Xi’an 710061, Shaanxi (China); Zheng, Bai-Jun; Pan, Wei-Kang; Wang, Huai-Jie; Xie, Chong; Zhao, Yu-Ying [Department of Pediatric Surgery, the Second Affiliated Hospital, Xi’an Jiaotong University, No 157, Xi Wu Road, Xi’an 710004, Shaanxi (China); Chen, Xin-Lin; Liu, Yong [Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi’an Jiaotong University, No 96, Yan Ta Xi Road, Xi’an 710061, Shaanxi (China); Gao, Ya, E-mail: ygao@mail.xjtu.edu.cn [Department of Pediatric Surgery, the Second Affiliated Hospital, Xi’an Jiaotong University, No 157, Xi Wu Road, Xi’an 710004, Shaanxi (China)

    2017-02-01

    Enteric neural crest-derived cells (ENCCs) can migrate into endogenous ganglia and differentiate into progeny cells, and have even partially rescued bowel function; however, poor reliability and limited functional recovery after ENCC transplantation have yet to be addressed. Here, we investigated the induction of endogenous ENCCs by combining exogenous ENCC transplantation with a 5-HT{sub 4} receptor agonist mosapride in a rat model of hypoganglionosis, established by benzalkonium chloride treatment. ENCCs, isolated from the gut of newborn rats, were labeled with a lentiviral eGFP reporter. ENCCs and rats were treated with the 5-HT{sub 4} receptor agonist/antagonist. The labeled ENCCs were then transplanted into the muscular layer of benzalkonium chloride-treated colons. At given days post-intervention, colonic tissue samples were removed for histological analysis. ENCCs and neurons were detected by eGFP expression and immunoreactivity to p75{sup NTR} and peripherin, respectively. eGFP-positive ENCCs and neurons could survive and maintain levels of fluorescence after transplantation. With longer times post-intervention, the number of peripherin-positive cells gradually increased in all groups. Significantly more peripherin-positive cells were found following ENCCs plus mosapride treatment, compared with the other groups. These results show that exogenous ENCCs combined with the 5-HT{sub 4} receptor agonist effectively induced endogenous ENCCs proliferation and differentiation in a rat hypoganglionosis model. - Highlights: • Survival and differentiation of exogenous ENCCs in treated colons. • With longer times post-intervention, the number of ENCCs and their progeny cells gradually increased. • Exogenous ENCCs combined with the 5-HT4 receptor agonist ffectively induced ENCCs proliferation and differentiation.

  20. Cranial neural crest-derived mesenchymal proliferation is regulated by Msx1-mediated p19(INK4d) expression during odontogenesis.

    Science.gov (United States)

    Han, Jun; Ito, Yoshihiro; Yeo, Jae Yong; Sucov, Henry M; Maas, Richard; Chai, Yang

    2003-09-01

    Neural crest cells are multipotential progenitors that contribute to various cell and tissue types during embryogenesis. Here, we have investigated the molecular and cellular mechanism by which the fate of neural crest cell is regulated during tooth development. Using a two- component genetic system for indelibly marking the progeny of neural crest cells, we provide in vivo evidence of a deficiency of CNC-derived dental mesenchyme in Msx1 null mutant mouse embryos. The deficiency of the CNC results from an elevated CDK inhibitor p19(INK4d) activity and the disruption of cell proliferation. Interestingly, in the absence of Msx1, the CNC-derived dental mesenchyme misdifferentiates and possesses properties consistent with a neuronal fate, possibly through a default mechanism. Attenuation of p19(INK4d) in Msx1 null mutant mandibular explants restores mitotic activity in the dental mesenchyme, demonstrating the functional significance of Msx1-mediated p19(INK4d) expression in regulating CNC cell proliferation during odontogenesis. Collectively, our results demonstrate that homeobox gene Msx1 regulates the fate of CNC cells by controlling the progression of the cell cycle. Genetic mutation of Msx1 may alternatively instruct the fate of these progenitor cells during craniofacial development.

  1. Stage-specific control of neural crest stem cell proliferation by the small rho GTPases Cdc42 and Rac1

    DEFF Research Database (Denmark)

    Fuchs, Sebastian; Herzog, Dominik; Sumara, Grzegorz

    2009-01-01

    The neural crest (NC) generates a variety of neural and non-neural tissues during vertebrate development. Both migratory NC cells and their target structures contain cells with stem cell features. Here we show that these populations of neural crest-derived stem cells (NCSCs) are differentially re...

  2. Neural crest-derived dental stem cells--where we are and where we are going.

    Science.gov (United States)

    Mayo, Vera; Sawatari, Yoh; Huang, C-Y Charles; Garcia-Godoy, Franklin

    2014-09-01

    There are five types of post-natal human dental stem cells that have been identified, isolated and characterized. Here, we review the information available on dental stem cells as well as their potential applications in dentistry, regenerative medicine and the development of other therapeutic approaches. Data pertinent to dental stem cells and their applications, published in peer-reviewed journals from 1982 to 2013 in English were reviewed. Sources were retrieved from PubMed databases as well as related references that the electronic search yielded. Manuscripts describing the origin, retrieval, characterization and application of dental stem cells were obtained and reviewed. Dental stem cell populations present properties similar to those of mesenchymal stem cells, such as the ability to self-renew and the potential for multilineage differentiation. While they have greater capacity to give rise to odontogenic cells and regenerate dental pulp and periodontal tissue, they have the capacity to differentiate into all three germ line cells, proving that a population of pluripotent stem cells exists in the dental tissues. Dental stem cells have the capacity to differentiate into endoderm, mesoderm and ectoderm tissues. Consequently they do not only have applications in dentistry, but also neurodegenerative and ischemic diseases, diabetes research, bone repair, and other applications in the field of tissue regeneration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Translocation of latex beads after laser ablation of the avian neural crest.

    Science.gov (United States)

    Coulombe, J N; Bronner-Fraser, M

    1984-11-01

    Previous studies from this laboratory (M.E. Bronner-Fraser, 1982, Dev. Biol. 91, 50-63) have demonstrated that latex beads translocate ventrally after injection into avian embryos during the phase of neural crest migration, to settle in the vicinity of neural-crest-derived structures. In order to examine the role of host neural crest cells in the ventral translocation of implanted beads, latex beads have been injected into regions of embryos from which the neural crest cells have been ablated using a laser microbeam. Prior to their migratory phase, neural crest cells reside in the dorsal portion of the neural tube. Laser irradiation of the dorsal neural tube was used to reproducibly achieve either partial or complete ablation of neural crest cells from the irradiated regions. The effectiveness of the ablation was assessed by the degree of reduction in dorsal root ganglia, a neural crest derivative. Because of the rapidity and precision of this technique, it was possible to selectively remove neural crest cells without significantly altering other embryonic structures. The results indicate that, after injection of latex beads into the somites of embryos whose neural crest cells were removed by laser irradiation, the beads translocate ventrally in the absence of the endogenous neural crest.

  4. DNA methyltransferase 3b is dispensable for mouse neural crest development.

    Directory of Open Access Journals (Sweden)

    Bridget T Jacques-Fricke

    Full Text Available The neural crest is a population of multipotent cells that migrates extensively throughout vertebrate embryos to form diverse structures. Mice mutant for the de novo DNA methyltransferase DNMT3b exhibit defects in two neural crest derivatives, the craniofacial skeleton and cardiac ventricular septum, suggesting that DNMT3b activity is necessary for neural crest development. Nevertheless, the requirement for DNMT3b specifically in neural crest cells, as opposed to interacting cell types, has not been determined. Using a conditional DNMT3b allele crossed to the neural crest cre drivers Wnt1-cre and Sox10-cre, neural crest DNMT3b mutants were generated. In both neural crest-specific and fully DNMT3b-mutant embryos, cranial neural crest cells exhibited only subtle migration defects, with increased numbers of dispersed cells trailing organized streams in the head. In spite of this, the resulting cranial ganglia, craniofacial skeleton, and heart developed normally when neural crest cells lacked DNMT3b. This indicates that DNTM3b is not necessary in cranial neural crest cells for their development. We conclude that defects in neural crest derivatives in DNMT3b mutant mice reflect a requirement for DNMT3b in lineages such as the branchial arch mesendoderm or the cardiac mesoderm that interact with neural crest cells during formation of these structures.

  5. Neural Networks for protein Structure Prediction

    DEFF Research Database (Denmark)

    Bohr, Henrik

    1998-01-01

    This is a review about neural network applications in bioinformatics. Especially the applications to protein structure prediction, e.g. prediction of secondary structures, prediction of surface structure, fold class recognition and prediction of the 3-dimensional structure of protein backbones...

  6. Cardiovascular Development and the Colonizing Cardiac Neural Crest Lineage

    Directory of Open Access Journals (Sweden)

    Paige Snider

    2007-01-01

    Full Text Available Although it is well established that transgenic manipulation of mammalian neural crest-related gene expression and microsurgical removal of premigratory chicken and Xenopus embryonic cardiac neural crest progenitors results in a wide spectrum of both structural and functional congenital heart defects, the actual functional mechanism of the cardiac neural crest cells within the heart is poorly understood. Neural crest cell migration and appropriate colonization of the pharyngeal arches and outflow tract septum is thought to be highly dependent on genes that regulate cell-autonomous polarized movement (i.e., gap junctions, cadherins, and noncanonical Wnt1 pathway regulators. Once the migratory cardiac neural crest subpopulation finally reaches the heart, they have traditionally been thought to participate in septation of the common outflow tract into separate aortic and pulmonary arteries. However, several studies have suggested these colonizing neural crest cells may also play additional unexpected roles during cardiovascular development and may even contribute to a crest-derived stem cell population. Studies in both mice and chick suggest they can also enter the heart from the venous inflow as well as the usual arterial outflow region, and may contribute to the adult semilunar and atrioventricular valves as well as part of the cardiac conduction system. Furthermore, although they are not usually thought to give rise to the cardiomyocyte lineage, neural crest cells in the zebrafish (Danio rerio can contribute to the myocardium and may have different functions in a species-dependent context. Intriguingly, both ablation of chick and Xenopus premigratory neural crest cells, and a transgenic deletion of mouse neural crest cell migration or disruption of the normal mammalian neural crest gene expression profiles, disrupts ventral myocardial function and/or cardiomyocyte proliferation. Combined, this suggests that either the cardiac neural crest

  7. A Topological Perspective of Neural Network Structure

    Science.gov (United States)

    Sizemore, Ann; Giusti, Chad; Cieslak, Matthew; Grafton, Scott; Bassett, Danielle

    The wiring patterns of white matter tracts between brain regions inform functional capabilities of the neural network. Indeed, densely connected and cyclically arranged cognitive systems may communicate and thus perform distinctly. However, previously employed graph theoretical statistics are local in nature and thus insensitive to such global structure. Here we present an investigation of the structural neural network in eight healthy individuals using persistent homology. An extension of homology to weighted networks, persistent homology records both circuits and cliques (all-to-all connected subgraphs) through a repetitive thresholding process, thus perceiving structural motifs. We report structural features found across patients and discuss brain regions responsible for these patterns, finally considering the implications of such motifs in relation to cognitive function.

  8. Neural Correlates of Verb Argument Structure Processing

    OpenAIRE

    Thompson, Cynthia K.; Bonakdarpour, Borna; Fix, Stephen C.; Blumenfeld, Henrike K.; Parrish, Todd B.; Gitelman, Darren R.; Mesulam, M.-Marsel

    2007-01-01

    Neuroimaging and lesion studies suggest that processing of word classes, such as verbs and nouns, is associated with distinct neural mechanisms. Such studies also suggest that subcategories within these broad word class categories are differentially processed in the brain. Within the class of verbs, argument structure provides one linguistic dimension that distinguishes among verb exemplars, with some requiring more complex argument structure entries than others. This study examined the neura...

  9. Neural correlates of verb argument structure processing.

    Science.gov (United States)

    Thompson, Cynthia K; Bonakdarpour, Borna; Fix, Stephen C; Blumenfeld, Henrike K; Parrish, Todd B; Gitelman, Darren R; Mesulam, M-Marsel

    2007-11-01

    Neuroimaging and lesion studies suggest that processing of word classes, such as verbs and nouns, is associated with distinct neural mechanisms. Such studies also suggest that subcategories within these broad word class categories are differentially processed in the brain. Within the class of verbs, argument structure provides one linguistic dimension that distinguishes among verb exemplars, with some requiring more complex argument structure entries than others. This study examined the neural instantiation of verbs by argument structure complexity: one-, two-, and three-argument verbs. Stimuli of each type, along with nouns and pseudowords, were presented for lexical decision using an event-related functional magnetic resonance imaging design. Results for 14 young normal participants indicated largely overlapping activation maps for verbs and nouns, with no areas of significant activation for verbs compared to nouns, or vice versa. Pseudowords also engaged neural tissue overlapping with that for both word classes, with more widespread activation noted in visual, motor, and peri-sylvian regions. Examination of verbs by argument structure revealed activation of the supramarginal and angular gyri, limited to the left hemisphere only when verbs with two obligatory arguments were compared to verbs with a single argument. However, bilateral activation was noted when both two- and three-argument verbs were compared to one-argument verbs. These findings suggest that posterior peri-sylvian regions are engaged for processing argument structure information associated with verbs, with increasing neural tissue in the inferior parietal region associated with increasing argument structure complexity. These findings are consistent with processing accounts, which suggest that these regions are crucial for semantic integration.

  10. Hierarchical Neural Network Structures for Phoneme Recognition

    CERN Document Server

    Vasquez, Daniel; Minker, Wolfgang

    2013-01-01

    In this book, hierarchical structures based on neural networks are investigated for automatic speech recognition. These structures are evaluated on the phoneme recognition task where a  Hybrid Hidden Markov Model/Artificial Neural Network paradigm is used. The baseline hierarchical scheme consists of two levels each which is based on a Multilayered Perceptron. Additionally, the output of the first level serves as a second level input. The computational speed of the phoneme recognizer can be substantially increased by removing redundant information still contained at the first level output. Several techniques based on temporal and phonetic criteria have been investigated to remove this redundant information. The computational time could be reduced by 57% whilst keeping the system accuracy comparable to the baseline hierarchical approach.

  11. Adipose stromal cells contain phenotypically distinct adipogenic progenitors derived from neural crest.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Sowa

    Full Text Available Recent studies have shown that adipose-derived stromal/stem cells (ASCs contain phenotypically and functionally heterogeneous subpopulations of cells, but their developmental origin and their relative differentiation potential remain elusive. In the present study, we aimed at investigating how and to what extent the neural crest contributes to ASCs using Cre-loxP-mediated fate mapping. ASCs harvested from subcutaneous fat depots of either adult P0-Cre/or Wnt1-Cre/Floxed-reporter mice contained a few neural crest-derived ASCs (NCDASCs. This subpopulation of cells was successfully expanded in vitro under standard culture conditions and their growth rate was comparable to non-neural crest derivatives. Although NCDASCs were positive for several mesenchymal stem cell markers as non-neural crest derivatives, they exhibited a unique bipolar or multipolar morphology with higher expression of markers for both neural crest progenitors (p75NTR, Nestin, and Sox2 and preadipocytes (CD24, CD34, S100, Pref-1, GATA2, and C/EBP-delta. NCDASCs were able to differentiate into adipocytes with high efficiency but their osteogenic and chondrogenic potential was markedly attenuated, indicating their commitment to adipogenesis. In vivo, a very small proportion of adipocytes were originated from the neural crest. In addition, p75NTR-positive neural crest-derived cells were identified along the vessels within the subcutaneous adipose tissue, but they were negative for mural and endothelial markers. These results demonstrate that ASCs contain neural crest-derived adipocyte-restricted progenitors whose phenotype is distinct from that of non-neural crest derivatives.

  12. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    1995-01-01

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  13. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  14. Aspects of randomness in neural graph structures

    CERN Document Server

    Rudolph-Lilith, Michelle

    2013-01-01

    In the past two decades, significant advances have been made in understanding the structural and functional properties of biological networks, via graph-theoretic analysis. In general, most graph-theoretic studies are conducted in the presence of serious uncertainties, such as major undersampling of the experimental data. In the specific case of neural systems, however, a few moderately robust experimental reconstructions do exist, and these have long served as fundamental prototypes for studying connectivity patterns in the nervous system. In this paper, we provide a comparative analysis of these "historical" graphs, both in (unmodified) directed and (often symmetrized) undirected forms, and focus on simple structural characterizations of their connectivity. We find that in most measures the networks studied are captured by simple random graph models; in a few key measures, however, we observe a marked departure from the random graph prediction. Our results suggest that the mechanism of graph formation in th...

  15. The structural neural substrate of subjective happiness.

    Science.gov (United States)

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Kubota, Yasutaka; Sawada, Reiko; Yoshimura, Sayaka; Toichi, Motomi

    2015-11-20

    Happiness is a subjective experience that is an ultimate goal for humans. Psychological studies have shown that subjective happiness can be measured reliably and consists of emotional and cognitive components. However, the neural substrates of subjective happiness remain unclear. To investigate this issue, we used structural magnetic resonance imaging and questionnaires that assessed subjective happiness, the intensity of positive and negative emotional experiences, and purpose in life. We found a positive relationship between the subjective happiness score and gray matter volume in the right precuneus. Moreover, the same region showed an association with the combined positive and negative emotional intensity and purpose in life scores. Our findings suggest that the precuneus mediates subjective happiness by integrating the emotional and cognitive components of happiness.

  16. The structural neural substrate of subjective happiness

    Science.gov (United States)

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Kubota, Yasutaka; Sawada, Reiko; Yoshimura, Sayaka; Toichi, Motomi

    2015-01-01

    Happiness is a subjective experience that is an ultimate goal for humans. Psychological studies have shown that subjective happiness can be measured reliably and consists of emotional and cognitive components. However, the neural substrates of subjective happiness remain unclear. To investigate this issue, we used structural magnetic resonance imaging and questionnaires that assessed subjective happiness, the intensity of positive and negative emotional experiences, and purpose in life. We found a positive relationship between the subjective happiness score and gray matter volume in the right precuneus. Moreover, the same region showed an association with the combined positive and negative emotional intensity and purpose in life scores. Our findings suggest that the precuneus mediates subjective happiness by integrating the emotional and cognitive components of happiness. PMID:26586449

  17. Neural Schematics as a unified formal graphical representation of large-scale Neural Network Structures

    Directory of Open Access Journals (Sweden)

    Matthias eEhrlich

    2013-10-01

    Full Text Available One of the major outcomes of neuroscientific research are models of Neural Network Structures. Descriptions of these models usually consist of a non-standardized mixture of text, figures, and other means of visual information communication in print media. However, as neuroscience is an interdisciplinary domain by nature, a standardized way of consistently representing models of Neural Network Structures is required. While generic descriptions of such models in textual form have recently been developed, a formalized way of schematically expressing them does not exist to date. Hence, in this paper we present Neural Schematics as a concept inspired by similar approaches from other disciplines for a generic two dimensional representation of said structures. After introducing Neural Network Structures in general, a set of current visualizations of models of Neural Network Structures is reviewed and analyzed for what information they convey and how their elements are rendered. This analysis then allows for the definition of general items and symbols to consistently represent these models as Neural Schematics on a two dimensional plane. We will illustrate the possibilities an agreed upon standard can yield on sampled diagrams transformed into Neural Schematics and an example application for the design and modeling of large-scale Neural Network Structures.

  18. Automated Modeling of Microwave Structures by Enhanced Neural Networks

    Directory of Open Access Journals (Sweden)

    Z. Raida

    2006-12-01

    Full Text Available The paper describes the methodology of the automated creation of neural models of microwave structures. During the creation process, artificial neural networks are trained using the combination of the particle swarm optimization and the quasi-Newton method to avoid critical training problems of the conventional neural nets. In the paper, neural networks are used to approximate the behavior of a planar microwave filter (moment method, Zeland IE3D. In order to evaluate the efficiency of neural modeling, global optimizations are performed using numerical models and neural ones. Both approaches are compared from the viewpoint of CPU-time demands and the accuracy. Considering conclusions, methodological recommendations for including neural networks to the microwave design are formulated.

  19. Combining neural networks for protein secondary structure prediction

    DEFF Research Database (Denmark)

    Riis, Søren Kamaric

    1995-01-01

    In this paper structured neural networks are applied to the problem of predicting the secondary structure of proteins. A hierarchical approach is used where specialized neural networks are designed for each structural class and then combined using another neural network. The submodels are designed...... by using a priori knowledge of the mapping between protein building blocks and the secondary structure and by using weight sharing. Since none of the individual networks have more than 600 adjustable weights over-fitting is avoided. When ensembles of specialized experts are combined the performance...

  20. Modeling Broadband Microwave Structures by Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    V. Otevrel

    2004-06-01

    Full Text Available The paper describes the exploitation of feed-forward neural networksand recurrent neural networks for replacing full-wave numerical modelsof microwave structures in complex microwave design tools. Building aneural model, attention is turned to the modeling accuracy and to theefficiency of building a model. Dealing with the accuracy, we describea method of increasing it by successive completing a training set.Neural models are mutually compared in order to highlight theiradvantages and disadvantages. As a reference model for comparisons,approximations based on standard cubic splines are used. Neural modelsare used to replace both the time-domain numeric models and thefrequency-domain ones.

  1. Neural networks for harmonic structure in music perception and action

    OpenAIRE

    Bianco, R.; Novembre, G.; Keller, P. E.; Kim, S G; Scharf, F.; Friederici, A. D.; Villringer, A; Sammler, D.

    2016-01-01

    The ability to predict upcoming structured events based on long-term knowledge and contextual priors is a fundamental principle of human cognition. Tonal music triggers predictive processes based on structural properties of harmony, i.e., regularities defining the arrangement of chords into well-formed musical sequences. While the neural architecture of structure-based predictions during music perception is well described, little is known about the neural networks for analogous predictions in...

  2. Linking neural and symbolic representation and processing of conceptual structures

    NARCIS (Netherlands)

    van der Velde, Frank; Forth, Jamie; Nazareth, Deniece S.; Wiggins, Geraint A.

    2017-01-01

    We compare and discuss representations in two cognitive architectures aimed at representing and processing complex conceptual (sentence-like) structures. First is the Neural Blackboard Architecture (NBA), which aims to account for representation and processing of complex and combinatorial conceptual

  3. Neural Network Algorithm for Prediction of Secondary Protein Structure

    National Research Council Canada - National Science Library

    Zikrija Avdagic; Elvir Purisevic; Emir Buza; Zlatan Coralic

    2009-01-01

    .... In this paper we describe the method and results of using CB513 as a dataset suitable for development of artificial neural network algorithms for prediction of secondary protein structure with MATLAB...

  4. Neural network definitions of highly predictable protein secondary structure classes

    Energy Technology Data Exchange (ETDEWEB)

    Lapedes, A. [Los Alamos National Lab., NM (United States)]|[Santa Fe Inst., NM (United States); Steeg, E. [Toronto Univ., ON (Canada). Dept. of Computer Science; Farber, R. [Los Alamos National Lab., NM (United States)

    1994-02-01

    We use two co-evolving neural networks to determine new classes of protein secondary structure which are significantly more predictable from local amino sequence than the conventional secondary structure classification. Accurate prediction of the conventional secondary structure classes: alpha helix, beta strand, and coil, from primary sequence has long been an important problem in computational molecular biology. Neural networks have been a popular method to attempt to predict these conventional secondary structure classes. Accuracy has been disappointingly low. The algorithm presented here uses neural networks to similtaneously examine both sequence and structure data, and to evolve new classes of secondary structure that can be predicted from sequence with significantly higher accuracy than the conventional classes. These new classes have both similarities to, and differences with the conventional alpha helix, beta strand and coil.

  5. Linking Neural and Symbolic Representation and Processing of Conceptual Structures

    Directory of Open Access Journals (Sweden)

    Frank van der Velde

    2017-08-01

    Full Text Available We compare and discuss representations in two cognitive architectures aimed at representing and processing complex conceptual (sentence-like structures. First is the Neural Blackboard Architecture (NBA, which aims to account for representation and processing of complex and combinatorial conceptual structures in the brain. Second is IDyOT (Information Dynamics of Thinking, which derives sentence-like structures by learning statistical sequential regularities over a suitable corpus. Although IDyOT is designed at a level more abstract than the neural, so it is a model of cognitive function, rather than neural processing, there are strong similarities between the composite structures developed in IDyOT and the NBA. We hypothesize that these similarities form the basis of a combined architecture in which the individual strengths of each architecture are integrated. We outline and discuss the characteristics of this combined architecture, emphasizing the representation and processing of conceptual structures.

  6. Gene-environment interactions and the enteric nervous system: Neural plasticity and Hirschsprung disease prevention.

    Science.gov (United States)

    Heuckeroth, Robert O; Schäfer, Karl-Herbert

    2016-09-15

    Intestinal function is primarily controlled by an intrinsic nervous system of the bowel called the enteric nervous system (ENS). The cells of the ENS are neural crest derivatives that migrate into and through the bowel during early stages of organogenesis before differentiating into a wide variety of neurons and glia. Although genetic factors critically underlie ENS development, it is now clear that many non-genetic factors may influence the number of enteric neurons, types of enteric neurons, and ratio of neurons to glia. These non-genetic influences include dietary nutrients and medicines that may impact ENS structure and function before or after birth. This review summarizes current data about gene-environment interactions that affect ENS development and suggests that these factors may contribute to human intestinal motility disorders like Hirschsprung disease or irritable bowel syndrome. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Gene-environment interactions and the enteric nervous system: Neural plasticity and Hirschsprung disease prevention

    Science.gov (United States)

    Heuckeroth, Robert O.; Schäfer, Karl-Herbert

    2016-01-01

    Intestinal function is primarily controlled by an intrinsic nervous system of the bowel called the enteric nervous system (ENS). The cells of the ENS are neural crest derivatives that migrate into and through the bowel during early stages of organogenesis before differentiating into a wide variety of neurons and glia. Although genetic factors critically underlie ENS development, it is now clear that many non-genetic factors may influence the number of enteric neurons, types of enteric neurons, and ratio of neurons to glia. These non-genetic influences include dietary nutrients and medicines that may impact ENS structure and function before or after birth. This review summarizes current data about gene-environment interactions that affect ENS development and suggests that these factors may contribute to human intestinal motility disorders like Hirschsprung disease or irritable bowel syndrome. PMID:26997034

  8. Microscopic neural image registration based on the structure of mitochondria

    Science.gov (United States)

    Cao, Huiwen; Han, Hua; Rao, Qiang; Xiao, Chi; Chen, Xi

    2017-02-01

    Microscopic image registration is a key component of the neural structure reconstruction with serial sections of neural tissue. The goal of microscopic neural image registration is to recover the 3D continuity and geometrical properties of specimen. During image registration, various distortions need to be corrected, including image rotation, translation, tissue deformation et.al, which come from the procedure of sample cutting, staining and imaging. Furthermore, there is only certain similarity between adjacent sections, and the degree of similarity depends on local structure of the tissue and the thickness of the sections. These factors make the microscopic neural image registration a challenging problem. To tackle the difficulty of corresponding landmarks extraction, we introduce a novel image registration method for Scanning Electron Microscopy (SEM) images of serial neural tissue sections based on the structure of mitochondria. The ellipsoidal shape of mitochondria ensures that the same mitochondria has similar shape between adjacent sections, and its characteristic of broad distribution in the neural tissue guarantees that landmarks based on the mitochondria distributed widely in the image. The proposed image registration method contains three parts: landmarks extraction between adjacent sections, corresponding landmarks matching and image deformation based on the correspondences. We demonstrate the performance of our method with SEM images of drosophila brain.

  9. Neural entrainment to the rhythmic structure of music.

    Science.gov (United States)

    Tierney, Adam; Kraus, Nina

    2015-02-01

    The neural resonance theory of musical meter explains musical beat tracking as the result of entrainment of neural oscillations to the beat frequency and its higher harmonics. This theory has gained empirical support from experiments using simple, abstract stimuli. However, to date there has been no empirical evidence for a role of neural entrainment in the perception of the beat of ecologically valid music. Here we presented participants with a single pop song with a superimposed bassoon sound. This stimulus was either lined up with the beat of the music or shifted away from the beat by 25% of the average interbeat interval. Both conditions elicited a neural response at the beat frequency. However, although the on-the-beat condition elicited a clear response at the first harmonic of the beat, this frequency was absent in the neural response to the off-the-beat condition. These results support a role for neural entrainment in tracking the metrical structure of real music and show that neural meter tracking can be disrupted by the presentation of contradictory rhythmic cues.

  10. Neural-Fitted TD-Leaf Learning for Playing Othello With Structured Neural Networks

    NARCIS (Netherlands)

    van den Dries, Sjoerd; Wiering, Marco A.

    2012-01-01

    This paper describes a methodology for quickly learning to play games at a strong level. The methodology consists of a novel combination of three techniques, and a variety of experiments on the game of Othello demonstrates their usefulness. First, structures or topologies in neural network

  11. Community structure of complex networks based on continuous neural network

    Science.gov (United States)

    Dai, Ting-ting; Shan, Chang-ji; Dong, Yan-shou

    2017-09-01

    As a new subject, the research of complex networks has attracted the attention of researchers from different disciplines. Community structure is one of the key structures of complex networks, so it is a very important task to analyze the community structure of complex networks accurately. In this paper, we study the problem of extracting the community structure of complex networks, and propose a continuous neural network (CNN) algorithm. It is proved that for any given initial value, the continuous neural network algorithm converges to the eigenvector of the maximum eigenvalue of the network modularity matrix. Therefore, according to the stability of the evolution of the network symbol will be able to get two community structure.

  12. Combinatorial structures and processing in neural blackboard architectures

    NARCIS (Netherlands)

    van der Velde, Frank; van der Velde, Frank; de Kamps, Marc; Besold, Tarek R.; d'Avila Garcez, Artur; Marcus, Gary F.; Miikkulainen, Risto

    2015-01-01

    We discuss and illustrate Neural Blackboard Architectures (NBAs) as the basis for variable binding and combinatorial processing the brain. We focus on the NBA for sentence structure. NBAs are based on the notion that conceptual representations are in situ, hence cannot be copied or transported.

  13. Discriminative training of self-structuring hidden control neural models

    DEFF Research Database (Denmark)

    Sørensen, Helge Bjarup Dissing; Hartmann, Uwe; Hunnerup, Preben

    1995-01-01

    This paper presents a new training algorithm for self-structuring hidden control neural (SHC) models. The SHC models were trained non-discriminatively for speech recognition applications. Better recognition performance can generally be achieved, if discriminative training is applied instead. Thus...

  14. Product Cost Management Structures: a review and neural network modelling

    Directory of Open Access Journals (Sweden)

    P. Jha

    2003-11-01

    Full Text Available This paper reviews the growth of approaches in product costing and draws synergies with information management and resource planning systems, to investigate potential application of state of the art modelling techniques of neural networks. Increasing demands on costing systems to serve multiple decision-making objectives, have made it essential to use better techniques for analysis of available data. This need is highlighted in the paper. The approach of neural networks, which have several analogous facets to complement and aid the information demands of modern product costing, Enterprise Resource Planning (ERP structures and the dominant-computing environment (for information management in the object oriented paradigm form the domain for investigation. Simulated data is used in neural network applications across activities that consume resources and deliver products, to generate information for monitoring and control decisions. The results in application for feature extraction and variation detection and their implications are presented in the paper.

  15. Structured learning via convolutional neural networks for vehicle detection

    Science.gov (United States)

    Maqueda, Ana I.; del Blanco, Carlos R.; Jaureguizar, Fernando; García, Narciso

    2017-05-01

    One of the main tasks in a vision-based traffic monitoring system is the detection of vehicles. Recently, deep neural networks have been successfully applied to this end, outperforming previous approaches. However, most of these works generally rely on complex and high-computational region proposal networks. Others employ deep neural networks as a segmentation strategy to achieve a semantic representation of the object of interest, which has to be up-sampled later. In this paper, a new design for a convolutional neural network is applied to vehicle detection in highways for traffic monitoring. This network generates a spatially structured output that encodes the vehicle locations. Promising results have been obtained in the GRAM-RTM dataset.

  16. Structural and functional neural correlates of music perception.

    Science.gov (United States)

    Limb, Charles J

    2006-04-01

    This review article highlights state-of-the-art functional neuroimaging studies and demonstrates the novel use of music as a tool for the study of human auditory brain structure and function. Music is a unique auditory stimulus with properties that make it a compelling tool with which to study both human behavior and, more specifically, the neural elements involved in the processing of sound. Functional neuroimaging techniques represent a modern and powerful method of investigation into neural structure and functional correlates in the living organism. These methods have demonstrated a close relationship between the neural processing of music and language, both syntactically and semantically. Greater neural activity and increased volume of gray matter in Heschl's gyrus has been associated with musical aptitude. Activation of Broca's area, a region traditionally considered to subserve language, is important in interpreting whether a note is on or off key. The planum temporale shows asymmetries that are associated with the phenomenon of perfect pitch. Functional imaging studies have also demonstrated activation of primitive emotional centers such as ventral striatum, midbrain, amygdala, orbitofrontal cortex, and ventral medial prefrontal cortex in listeners of moving musical passages. In addition, studies of melody and rhythm perception have elucidated mechanisms of hemispheric specialization. These studies show the power of music and functional neuroimaging to provide singularly useful tools for the study of brain structure and function.

  17. Neural correlates of artificial syntactic structure classification.

    NARCIS (Netherlands)

    Forkstam, C.H.; Hagoort, P.; Fernandez, G.S.E.; Ingvar, M.; Petersson, K.M.

    2006-01-01

    The human brain supports acquisition mechanisms that extract structural regularities implicitly from experience without the induction of an explicit model. It has been argued that the capacity to generalize to new input is based on the acquisition of abstract representations, which reflect

  18. Neural correlates of artificial syntactic structure classification

    NARCIS (Netherlands)

    Forkstam, C.H.; Hagoort, P.; Fernandez, G.S.E.; Ingvar, M.; Petersson, K.M.

    2006-01-01

    The human brain supports acquisition mechanisms that extract structural regularities implicitly from experience without the induction of an explicit model. It has been argued that the capacity to generalize to new input is based on the acquisition of abstract representations, which reflect

  19. Supervised neural networks for the classification of structures.

    Science.gov (United States)

    Sperduti, A; Starita, A

    1997-01-01

    Standard neural networks and statistical methods are usually believed to be inadequate when dealing with complex structures because of their feature-based approach. In fact, feature-based approaches usually fail to give satisfactory solutions because of the sensitivity of the approach to the a priori selection of the features, and the incapacity to represent any specific information on the relationships among the components of the structures. However, we show that neural networks can, in fact, represent and classify structured patterns. The key idea underpinning our approach is the use of the so called "generalized recursive neuron", which is essentially a generalization to structures of a recurrent neuron. By using generalized recursive neurons, all the supervised networks developed for the classification of sequences, such as backpropagation through time networks, real-time recurrent networks, simple recurrent networks, recurrent cascade correlation networks, and neural trees can, on the whole, be generalized to structures. The results obtained by some of the above networks (with generalized recursive neurons) on the classification of logic terms are presented.

  20. Multiple cranial organ defects after conditionally knocking out Fgf10 in the neural crest

    Directory of Open Access Journals (Sweden)

    Tathyane H.N. Teshima

    2016-10-01

    Full Text Available Fgf10 is necessary for the development of a number of organs that fail to develop or are reduced in size in the null mutant. Here we have knocked out Fgf10 specifically in the neural crest driven by Wnt1cre. The Wnt1creFgf10fl/fl mouse phenocopies many of the null mutant defects, including cleft palate, loss of salivary glands and ocular glands, highlighting the neural crest origin of the Fgf10 expressing mesenchyme surrounding these organs. In contrast tissues such as the limbs and lungs, where Fgf10 is expressed by the surrounding mesoderm, were unaffected, as was the pituitary gland where Fgf10 is expressed by the neuroepithelium. The circumvallate papilla of the tongue formed but was hypoplastic in the conditional and Fgf10 null embryos, suggesting that other sources of FGF can compensate in development of this structure. The tracheal cartilage rings showed normal patterning in the conditional knockout, indicating that the source of Fgf10 for this tissue is mesodermal, which was confirmed using Wnt1cre-dtTom to lineage trace the boundary of the neural crest in this region. The thyroid, thymus and parathyroid glands surrounding the trachea were present but hypoplastic in the conditional mutant, indicating that a neighbouring source of mesodermal Fgf10 might be able to partially compensate for loss of neural crest derived Fgf10.

  1. CHARGEd with neural crest defects.

    Science.gov (United States)

    Pauli, Silke; Bajpai, Ruchi; Borchers, Annette

    2017-10-30

    Neural crest cells are highly migratory pluripotent cells that give rise to diverse derivatives including cartilage, bone, smooth muscle, pigment, and endocrine cells as well as neurons and glia. Abnormalities in neural crest-derived tissues contribute to the etiology of CHARGE syndrome, a complex malformation disorder that encompasses clinical symptoms like coloboma, heart defects, atresia of the choanae, retarded growth and development, genital hypoplasia, ear anomalies, and deafness. Mutations in the chromodomain helicase DNA-binding protein 7 (CHD7) gene are causative of CHARGE syndrome and loss-of-function data in different model systems have firmly established a role of CHD7 in neural crest development. Here, we will summarize our current understanding of the function of CHD7 in neural crest development and discuss possible links of CHARGE syndrome to other developmental disorders. © 2017 Wiley Periodicals, Inc.

  2. Neural coding of sound envelope structure in songbirds.

    Science.gov (United States)

    Boari, Santiago; Amador, Ana

    2017-12-12

    Songbirds are a well-established animal model to study the neural basis of learning, perception and production of complex vocalizations. In this system, telencephalic neurons in HVC present a state-dependent, highly selective response to auditory presentations of the bird's own song (BOS). This property provides an opportunity to study the neural code behind a complex motor behavior. In this work, we explore whether changes in the temporal structure of the sound envelope can drive changes in the neural responses of highly selective HVC units. We generated an envelope-modified BOS (MOD) by reversing each syllable's envelope but leaving the overall temporal structure of syllable spectra unchanged, which resulted in a subtle modification for each song syllable. We conducted in vivo electrophysiological recordings of HVC neurons in anaesthetized zebra finches (Taeniopygia guttata). Units analyzed presented a high BOS selectivity and lower response to MOD, but preserved the profile response shape. These results show that the temporal evolution of the sound envelope is being sensed by the avian song system and suggest that the biomechanical properties of the vocal apparatus could play a role in enhancing subtle sound differences.

  3. Neural network structure for navigation using potential fields

    Science.gov (United States)

    Plumer, Edward S.

    1992-01-01

    A hybrid-network method for obstacle avoidance in the truck-backing system of D. Nguyen and B. Widrow (1989) is presented. A neural network technique for vehicle navigation and control in the presence of obstacles has been developed. A potential function which peaks at the surface of obstacles and has its minimum at the proper vehicle destination is computed using a network structure. The field is guaranteed not to have spurious local minima and does not have the property of flattening-out far from the goal. A feedforward neural network is used to control the steering of the vehicle using local field information. The network is trained in an obstacle-free space to follow the negative gradient of the field, after which the network is able to control and navigate the truck to its target destination in a space of obstacles which may be stationary or movable.

  4. Structure Learning for Deep Neural Networks Based on Multiobjective Optimization.

    Science.gov (United States)

    Liu, Jia; Gong, Maoguo; Miao, Qiguang; Wang, Xiaogang; Li, Hao

    2017-05-05

    This paper focuses on the connecting structure of deep neural networks and proposes a layerwise structure learning method based on multiobjective optimization. A model with better generalization can be obtained by reducing the connecting parameters in deep networks. The aim is to find the optimal structure with high representation ability and better generalization for each layer. Then, the visible data are modeled with respect to structure based on the products of experts. In order to mitigate the difficulty of estimating the denominator in PoE, the denominator is simplified and taken as another objective, i.e., the connecting sparsity. Moreover, for the consideration of the contradictory nature between the representation ability and the network connecting sparsity, the multiobjective model is established. An improved multiobjective evolutionary algorithm is used to solve this model. Two tricks are designed to decrease the computational cost according to the properties of input data. The experiments on single-layer level, hierarchical level, and application level demonstrate the effectiveness of the proposed algorithm, and the learned structures can improve the performance of deep neural networks.

  5. Neural crest contributions to the lamprey head

    Science.gov (United States)

    McCauley, David W.; Bronner-Fraser, Marianne

    2003-01-01

    The neural crest is a vertebrate-specific cell population that contributes to the facial skeleton and other derivatives. We have performed focal DiI injection into the cranial neural tube of the developing lamprey in order to follow the migratory pathways of discrete groups of cells from origin to destination and to compare neural crest migratory pathways in a basal vertebrate to those of gnathostomes. The results show that the general pathways of cranial neural crest migration are conserved throughout the vertebrates, with cells migrating in streams analogous to the mandibular and hyoid streams. Caudal branchial neural crest cells migrate ventrally as a sheet of cells from the hindbrain and super-pharyngeal region of the neural tube and form a cylinder surrounding a core of mesoderm in each pharyngeal arch, similar to that seen in zebrafish and axolotl. In addition to these similarities, we also uncovered important differences. Migration into the presumptive caudal branchial arches of the lamprey involves both rostral and caudal movements of neural crest cells that have not been described in gnathostomes, suggesting that barriers that constrain rostrocaudal movement of cranial neural crest cells may have arisen after the agnathan/gnathostome split. Accordingly, neural crest cells from a single axial level contributed to multiple arches and there was extensive mixing between populations. There was no apparent filling of neural crest derivatives in a ventral-to-dorsal order, as has been observed in higher vertebrates, nor did we find evidence of a neural crest contribution to cranial sensory ganglia. These results suggest that migratory constraints and additional neural crest derivatives arose later in gnathostome evolution.

  6. Deep Convolutional Neural Networks: Structure, Feature Extraction and Training

    Directory of Open Access Journals (Sweden)

    Namatēvs Ivars

    2017-12-01

    Full Text Available Deep convolutional neural networks (CNNs are aimed at processing data that have a known network like topology. They are widely used to recognise objects in images and diagnose patterns in time series data as well as in sensor data classification. The aim of the paper is to present theoretical and practical aspects of deep CNNs in terms of convolution operation, typical layers and basic methods to be used for training and learning. Some practical applications are included for signal and image classification. Finally, the present paper describes the proposed block structure of CNN for classifying crucial features from 3D sensor data.

  7. Structural neural substrates of reading the mind in the eyes

    Directory of Open Access Journals (Sweden)

    Wataru eSato

    2016-04-01

    Full Text Available The ability to read the minds of others in their eyes plays an important role in human adaptation to social environments. Behavioral studies have resulted in the development of a test to measure this ability (Reading the Mind in the Eyes Test, revised version; Eyes Test, and have demonstrated that this ability is consistent over time. Although functional neuroimaging studies revealed brain activation while performing the Eyes Test, the structural neural substrates supporting consistent performance on the Eyes Test remain unclear. In this study we assessed the Eyes Test and analyzed structural magnetic resonance images using voxel-based morphometry in healthy participants. Test performance was positively associated with the gray matter volumes of the dorsomedial prefrontal cortex, inferior parietal lobule (temporoparietal junction, and precuneus in the left hemisphere. These results suggest that the fronto-temporoparietal network structures support the consistent ability to read the mind in the eyes.

  8. Self-organization in neural networks - Applications in structural optimization

    Science.gov (United States)

    Hajela, Prabhat; Fu, B.; Berke, Laszlo

    1993-01-01

    The present paper discusses the applicability of ART (Adaptive Resonance Theory) networks, and the Hopfield and Elastic networks, in problems of structural analysis and design. A characteristic of these network architectures is the ability to classify patterns presented as inputs into specific categories. The categories may themselves represent distinct procedural solution strategies. The paper shows how this property can be adapted in the structural analysis and design problem. A second application is the use of Hopfield and Elastic networks in optimization problems. Of particular interest are problems characterized by the presence of discrete and integer design variables. The parallel computing architecture that is typical of neural networks is shown to be effective in such problems. Results of preliminary implementations in structural design problems are also included in the paper.

  9. Is Artificial Neural Network Suitable for Damage Level Determination of Rc- Structures?

    OpenAIRE

    Baltacıoğlu, A. K.; Öztürk, B.; Civalek, Ö.; Akgöz, B.

    2010-01-01

    In the present study, an artificial neural network (ANN) application is introduced for estimation of damage level of reinforced concrete structures. Back-propagation learning algorithm is adopted. A typical neural network architecture is proposed and some conclusions are presented. Applicability of artificial neural network (ANN) for the assessment of earthquake related damage is investigated

  10. Some structural determinants of Pavlovian conditioning in artificial neural networks.

    Science.gov (United States)

    Sánchez, José M; Galeazzi, Juan M; Burgos, José E

    2010-05-01

    This paper investigates the possible role of neuroanatomical features in Pavlovian conditioning, via computer simulations with layered, feedforward artificial neural networks. The networks' structure and functioning are described by a strongly bottom-up model that takes into account the roles of hippocampal and dopaminergic systems in conditioning. Neuroanatomical features were simulated as generic structural or architectural features of neural networks. We focused on the number of units per hidden layer and connectivity. The effect of the number of units per hidden layer was investigated through simulations of resistance to extinction in fully connected networks. Large networks were more resistant to extinction than small networks, a stochastic effect of the asynchronous random procedure used in the simulator to update activations and weights. These networks did not simulate second-order conditioning because weight competition prevented conditioning to a stimulus after conditioning to another. Partially connected networks simulated second-order conditioning and devaluation of the second-order stimulus after extinction of a similar first-order stimulus. Similar stimuli were simulated as nonorthogonal input-vectors. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  11. Anatomical study of lumbar vertebral pedicle and adjacent neural structures

    Directory of Open Access Journals (Sweden)

    Matuoka Cláudia Maria

    2002-01-01

    Full Text Available For the evaluation of the Lumbar pedicle morphometry and its relation to the neural structures, 14 male adult cadavers were dissected, and the size of the lumbar pedicle was assessed by measuring its sagittal and transversal diameter. It was found that the size of the pedicle increases from L2 to L5, both in the sagittal and transversal diameter, the first bigger. The relation of the lumbar pedicle to the neural structures was evaluated by measuring the distance between dura-mater and the pedicle medial area, the distance between the most distal area of the pedicle and the nerve root that appears under it, and , to obtain in an indirect way, the distance between the pedicle apex and the nerve root that appears over it. The acquired results showed that the distance between the most distal area of the pedicle and the nerve root that appears under it, and the distance between the pedicle medial area and dura-mater, do not increase from L2 to L5, and they are in average 1,98 and 3,02 respectively. The distance between the pedicle apex and the nerve root that appears over it, increases from L2 to L5, varying from 13,64 in L2 to 21,62 in L5. The location of the spinal ganglion in relation to the pedicle has also been found, and 87% of the spinal ganglions are located in the foraminal zone.

  12. Structures of Neural Correlation and How They Favor Coding

    Science.gov (United States)

    Franke, Felix; Fiscella, Michele; Sevelev, Maksim; Roska, Botond; Hierlemann, Andreas; da Silveira, Rava Azeredo

    2017-01-01

    Summary The neural representation of information suffers from “noise”—the trial-to-trial variability in the response of neurons. The impact of correlated noise upon population coding has been debated, but a direct connection between theory and experiment remains tenuous. Here, we substantiate this connection and propose a refined theoretical picture. Using simultaneous recordings from a population of direction-selective retinal ganglion cells, we demonstrate that coding benefits from noise correlations. The effect is appreciable already in small populations, yet it is a collective phenomenon. Furthermore, the stimulus-dependent structure of correlation is key. We develop simple functional models that capture the stimulus-dependent statistics. We then use them to quantify the performance of population coding, which depends upon interplays of feature sensitivities and noise correlations in the population. Because favorable structures of correlation emerge robustly in circuits with noisy, nonlinear elements, they will arise and benefit coding beyond the confines of retina. PMID:26796692

  13. Crystal Structure Representation for Neural Networks using Topological Approach.

    Science.gov (United States)

    Fedorov, Aleksandr V; Shamanaev, Ivan V

    2017-08-01

    In the present work we describe a new approach, which uses topology of crystals for physicochemical properties prediction using artificial neural networks (ANN). The topologies of 268 crystal structures were determined using ToposPro software. Quotient graphs were used to identify topological centers and their neighbors. The topological approach was illustrated by training ANN to predict molar heat capacity, standard molar entropy and lattice energy of 268 crystals with different compositions and structures (metals, inorganic salts, oxides, etc.). ANN was trained using Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Mean absolute percentage error of predicted properties was ≤8 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Simulation of morphologically structured photo-thermal neural stimulation

    Science.gov (United States)

    Weissler, Y.; Farah, N.; Shoham, S.

    2017-10-01

    Objective. Rational design of next-generation techniques for photo-thermal excitation requires the development of tools capable of modeling the effects of spatially- and temporally-dependent temperature distribution on cellular neuronal structures. Approach. We present a new computer simulation tool for predicting the effects of arbitrary spatiotemporally-structured photo-thermal stimulation on 3D, morphologically realistic neurons. The new simulation tool is based on interfacing two generic platforms, NEURON and MATLAB and is therefore suited for capturing different kinds of stimuli and neural models. Main results. Simulation results are validated using photo-absorber induced neuro-thermal stimulation (PAINTS) empirical results, and advanced features are explored. Significance. The new simulation tool could have an important role in understanding and investigating complex optical stimulation at the single-cell and network levels.

  15. Neural networks for harmonic structure in music perception and action.

    Science.gov (United States)

    Bianco, R; Novembre, G; Keller, P E; Kim, Seung-Goo; Scharf, F; Friederici, A D; Villringer, A; Sammler, D

    2016-11-15

    The ability to predict upcoming structured events based on long-term knowledge and contextual priors is a fundamental principle of human cognition. Tonal music triggers predictive processes based on structural properties of harmony, i.e., regularities defining the arrangement of chords into well-formed musical sequences. While the neural architecture of structure-based predictions during music perception is well described, little is known about the neural networks for analogous predictions in musical actions and how they relate to auditory perception. To fill this gap, expert pianists were presented with harmonically congruent or incongruent chord progressions, either as musical actions (photos of a hand playing chords) that they were required to watch and imitate without sound, or in an auditory format that they listened to without playing. By combining task-based functional magnetic resonance imaging (fMRI) with functional connectivity at rest, we identified distinct sub-regions in right inferior frontal gyrus (rIFG) interconnected with parietal and temporal areas for processing action and audio sequences, respectively. We argue that the differential contribution of parietal and temporal areas is tied to motoric and auditory long-term representations of harmonic regularities that dynamically interact with computations in rIFG. Parsing of the structural dependencies in rIFG is co-determined by both stimulus- or task-demands. In line with contemporary models of prefrontal cortex organization and dual stream models of visual-spatial and auditory processing, we show that the processing of musical harmony is a network capacity with dissociated dorsal and ventral motor and auditory circuits, which both provide the infrastructure for predictive mechanisms optimising action and perception performance. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Neural Network Enhanced Structure Determination of Osteoporosis, Immune System, and Radiation Repair Proteins Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation will utilize self learning neural network technology to determine the structure of osteoporosis, immune system disease, and excess radiation...

  17. Fuzzy stochastic neural network model for structural system identification

    Science.gov (United States)

    Jiang, Xiaomo; Mahadevan, Sankaran; Yuan, Yong

    2017-01-01

    This paper presents a dynamic fuzzy stochastic neural network model for nonparametric system identification using ambient vibration data. The model is developed to handle two types of imprecision in the sensed data: fuzzy information and measurement uncertainties. The dimension of the input vector is determined by using the false nearest neighbor approach. A Bayesian information criterion is applied to obtain the optimum number of stochastic neurons in the model. A fuzzy C-means clustering algorithm is employed as a data mining tool to divide the sensed data into clusters with common features. The fuzzy stochastic model is created by combining the fuzzy clusters of input vectors with the radial basis activation functions in the stochastic neural network. A natural gradient method is developed based on the Kullback-Leibler distance criterion for quick convergence of the model training. The model is validated using a power density pseudospectrum approach and a Bayesian hypothesis testing-based metric. The proposed methodology is investigated with numerically simulated data from a Markov Chain model and a two-story planar frame, and experimentally sensed data from ambient vibration data of a benchmark structure.

  18. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    Science.gov (United States)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  19. Resolution of Singularities Introduced by Hierarchical Structure in Deep Neural Networks.

    Science.gov (United States)

    Nitta, Tohru

    2017-10-01

    We present a theoretical analysis of singular points of artificial deep neural networks, resulting in providing deep neural network models having no critical points introduced by a hierarchical structure. It is considered that such deep neural network models have good nature for gradient-based optimization. First, we show that there exist a large number of critical points introduced by a hierarchical structure in deep neural networks as straight lines, depending on the number of hidden layers and the number of hidden neurons. Second, we derive a sufficient condition for deep neural networks having no critical points introduced by a hierarchical structure, which can be applied to general deep neural networks. It is also shown that the existence of critical points introduced by a hierarchical structure is determined by the rank and the regularity of weight matrices for a specific class of deep neural networks. Finally, two kinds of implementation methods of the sufficient conditions to have no critical points are provided. One is a learning algorithm that can avoid critical points introduced by the hierarchical structure during learning (called avoidant learning algorithm). The other is a neural network that does not have some critical points introduced by the hierarchical structure as an inherent property (called avoidant neural network).

  20. Learning Orthographic Structure With Sequential Generative Neural Networks.

    Science.gov (United States)

    Testolin, Alberto; Stoianov, Ivilin; Sperduti, Alessandro; Zorzi, Marco

    2016-04-01

    Learning the structure of event sequences is a ubiquitous problem in cognition and particularly in language. One possible solution is to learn a probabilistic generative model of sequences that allows making predictions about upcoming events. Though appealing from a neurobiological standpoint, this approach is typically not pursued in connectionist modeling. Here, we investigated a sequential version of the restricted Boltzmann machine (RBM), a stochastic recurrent neural network that extracts high-order structure from sensory data through unsupervised generative learning and can encode contextual information in the form of internal, distributed representations. We assessed whether this type of network can extract the orthographic structure of English monosyllables by learning a generative model of the letter sequences forming a word training corpus. We show that the network learned an accurate probabilistic model of English graphotactics, which can be used to make predictions about the letter following a given context as well as to autonomously generate high-quality pseudowords. The model was compared to an extended version of simple recurrent networks, augmented with a stochastic process that allows autonomous generation of sequences, and to non-connectionist probabilistic models (n-grams and hidden Markov models). We conclude that sequential RBMs and stochastic simple recurrent networks are promising candidates for modeling cognition in the temporal domain. Copyright © 2015 Cognitive Science Society, Inc.

  1. Z(2) gauge neural network and its phase structure

    Science.gov (United States)

    Takafuji, Yusuke; Nakano, Yuki; Matsui, Tetsuo

    2012-11-01

    We study general phase structures of neural-network models that have Z(2) local gauge symmetry. The Z(2) spin variable Si=±1 on the i-th site describes a neuron state as in the Hopfield model, and the Z(2) gauge variable J=±1 describes a state of the synaptic connection between j-th and i-th neurons. The gauge symmetry allows for a self-coupling energy among J’s such as JJJ, which describes reverberation of signals. Explicitly, we consider the three models; (I) an annealed model with full and partial connections of J, (II) a quenched model with full connections where J is treated as a slow quenched variable, and (III) a quenched three-dimensional lattice model with the nearest-neighbor connections. By numerical simulations, we examine their phase structures paying attention to the effect of the reverberation term, and compare them with each other and with the annealed 3D lattice model which has been studied beforehand. By noting the dependence of thermodynamic quantities upon the total number of sites and the connectivity among sites, we obtain a coherent interpretation to understand these results. Among other things, we find that the Higgs phase of the annealed model is separated into two stable spin-glass phases in the quenched models (II) and (III).

  2. The relevance of network micro-structure for neural dynamics

    Directory of Open Access Journals (Sweden)

    Volker ePernice

    2013-06-01

    Full Text Available The activity of cortical neurons is determined by the input they receive from presynaptic neurons. Many previousstudies have investigated how specific aspects of the statistics of the input affect the spike trains of single neurons and neuronsin recurrent networks. However, typically very simple random network models are considered in such studies. Here weuse a recently developed algorithm to construct networks based on a quasi-fractal probability measure which are much morevariable than commonly used network models, and which therefore promise to sample the space of recurrent networks ina more exhaustive fashion than previously possible. We use the generated graphs as the underlying network topology insimulations of networks of integrate-and-fire neurons in an asynchronous and irregular state. Based on an extensive datasetof networks and neuronal simulations we assess statistical relations between features of the network structure and the spikingactivity. Our results highlight the strong influence that some details of the network structure have on the activity dynamics ofboth single neurons and populations, even if some global network parameters are kept fixed. We observe specific and consistentrelations between activity characteristics like spike-train irregularity or correlations and network properties, for example thedistributions of the numbers of in- and outgoing connections or clustering. Exploiting these relations, we demonstrate that itis possible to estimate structural characteristics of the network from activity data. We also assess higher order correlationsof spiking activity in the various networks considered here, and find that their occurrence strongly depends on the networkstructure. These results provide directions for further theoretical studies on recurrent networks, as well as new ways to interpretspike train recordings from neural circuits.

  3. Interactive extraction of neural structures with user-guided morphological diffusion

    KAUST Repository

    Yong Wan,

    2012-10-01

    Extracting neural structures with their fine details from confocal volumes is essential to quantitative analysis in neurobiology research. Despite the abundance of various segmentation methods and tools, for complex neural structures, both manual and semi-automatic methods are ine ective either in full 3D or when user interactions are restricted to 2D slices. Novel interaction techniques and fast algorithms are demanded by neurobiologists to interactively and intuitively extract neural structures from confocal data. In this paper, we present such an algorithm-technique combination, which lets users interactively select desired structures from visualization results instead of 2D slices. By integrating the segmentation functions with a confocal visualization tool neurobiologists can easily extract complex neural structures within their typical visualization workflow.

  4. Structuring a multi-nodal neural network in vitro within a novel design microfluidic chip.

    Science.gov (United States)

    van de Wijdeven, Rosanne; Ramstad, Ola Huse; Bauer, Ulrich Stefan; Halaas, Øyvind; Sandvig, Axel; Sandvig, Ioanna

    2018-01-02

    Neural network formation is a complex process involving axon outgrowth and guidance. Axon guidance is facilitated by structural and molecular cues from the surrounding microenvironment. Micro-fabrication techniques can be employed to produce microfluidic chips with a highly controlled microenvironment for neural cells enabling longitudinal studies of complex processes associated with network formation. In this work, we demonstrate a novel open microfluidic chip design that encompasses a freely variable number of nodes interconnected by axon-permissible tunnels, enabling structuring of multi-nodal neural networks in vitro. The chip employs a partially open design to allow high level of control and reproducibility of cell seeding, while reducing shear stress on the cells. We show that by culturing dorsal root ganglion cells (DRGs) in our microfluidic chip, we were able to structure a neural network in vitro. These neurons were compartmentalized within six nodes interconnected through axon growth tunnels. Furthermore, we demonstrate the additional benefit of open top design by establishing a 3D neural culture in matrigel and a neuronal aggregate 3D culture within the chips. In conclusion, our results demonstrate a novel microfluidic chip design applicable to structuring complex neural networks in vitro, thus providing a versatile, highly relevant platform for the study of neural network dynamics applicable to developmental and regenerative neuroscience.

  5. Ambiguity resolution in a Neural Blackboard Architecture for sentence structure

    NARCIS (Netherlands)

    van der Velde, Frank; van der Velde, Frank; de Kamps, Marc; Besold, Tarek R.; Kühnberger, Kai-Uwe

    2015-01-01

    We simulate two examples of ambiguity resolution found in human language processing in a neural blackboard architecture for sentence representation and processing. The architecture also accounts for a related garden path effect. The architecture represents and processes sentences in terms of

  6. Cognitive Flexibility through Metastable Neural Dynamics Is Disrupted by Damage to the Structural Connectome

    Science.gov (United States)

    Hellyer, Peter J.; Scott, Gregory; Shanahan, Murray; Sharp, David J.

    2015-01-01

    Current theory proposes that healthy neural dynamics operate in a metastable regime, where brain regions interact to simultaneously maximize integration and segregation. Metastability may confer important behavioral properties, such as cognitive flexibility. It is increasingly recognized that neural dynamics are constrained by the underlying structural connections between brain regions. An important challenge is, therefore, to relate structural connectivity, neural dynamics, and behavior. Traumatic brain injury (TBI) is a pre-eminent structural disconnection disorder whereby traumatic axonal injury damages large-scale connectivity, producing characteristic cognitive impairments, including slowed information processing speed and reduced cognitive flexibility, that may be a result of disrupted metastable dynamics. Therefore, TBI provides an experimental and theoretical model to examine how metastable dynamics relate to structural connectivity and cognition. Here, we use complementary empirical and computational approaches to investigate how metastability arises from the healthy structural connectome and relates to cognitive performance. We found reduced metastability in large-scale neural dynamics after TBI, measured with resting-state functional MRI. This reduction in metastability was associated with damage to the connectome, measured using diffusion MRI. Furthermore, decreased metastability was associated with reduced cognitive flexibility and information processing. A computational model, defined by empirically derived connectivity data, demonstrates how behaviorally relevant changes in neural dynamics result from structural disconnection. Our findings suggest how metastable dynamics are important for normal brain function and contingent on the structure of the human connectome. PMID:26085630

  7. Application of structured support vector machine backpropagation to a convolutional neural network for human pose estimation.

    Science.gov (United States)

    Witoonchart, Peerajak; Chongstitvatana, Prabhas

    2017-08-01

    In this study, for the first time, we show how to formulate a structured support vector machine (SSVM) as two layers in a convolutional neural network, where the top layer is a loss augmented inference layer and the bottom layer is the normal convolutional layer. We show that a deformable part model can be learned with the proposed structured SVM neural network by backpropagating the error of the deformable part model to the convolutional neural network. The forward propagation calculates the loss augmented inference and the backpropagation calculates the gradient from the loss augmented inference layer to the convolutional layer. Thus, we obtain a new type of convolutional neural network called an Structured SVM convolutional neural network, which we applied to the human pose estimation problem. This new neural network can be used as the final layers in deep learning. Our method jointly learns the structural model parameters and the appearance model parameters. We implemented our method as a new layer in the existing Caffe library. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Zebrafish Model of NF1 for Structure-Function Analysis, Mechanisms of Glial Tumorigenesis, and Chemical Biology

    Science.gov (United States)

    2014-05-01

    abnormalities and multiple benign and malignant tumors, including tumors of neural crest origin such as glioma and malignant peripheral nerve sheath...grade gliomas and MPNSTs, but not in the non-malignant neural crest -derived tissues, in the nf1a+/-;nf1b-/-;p53-/-;sox10:GFP adult zebrafish. This...ATRX (a-thalassaemia/mental retardation syndrome X-linked) is a chromatin remodeling factor required for H3.3 incorporation at pericentric

  9. An object recognition using structured light and neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byeong Gab; Kim, Dong Gi; Kang, E Sok [Chungnam National Univ., Taejon (Korea, Republic of); Yoon, Ji Sup [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents a 3D image processing which uses neural networks to combine a 2D vision camera and a laser slit beam. A laser slit beam from laser source is slitted by a set of cylindrical lenses and the line image of the networks allow to get the 3D image parameters such as the size, the position and the orientation from the line image without knowing the camera intrinsic parameters. (author). 7 refs., 3 tabs., 5 figs.

  10. Précis of Neural organization: structure, function, and dynamics.

    Science.gov (United States)

    Arbib, M A; Erdi, P

    2000-08-01

    NEURAL ORGANIZATION: Structure, function, and dynamics shows how theory and experiment can supplement each other in an integrated, evolving account of the brain's structure, function, and dynamics. (1) STRUCTURE: Studies of brain function and dynamics build on and contribute to an understanding of many brain regions, the neural circuits that constitute them, and their spatial relations. We emphasize Szentágothai's modular architectonics principle, but also stress the importance of the microcomplexes of cerebellar circuitry and the lamellae of hippocampus. (2) FUNCTION: Control of eye movements, reaching and grasping, cognitive maps, and the roles of vision receive a functional decomposition in terms of schemas. Hypotheses as to how each schema is implemented through the interaction of specific brain regions provide the basis for modeling the overall function by neural networks constrained by neural data. Synthetic PET integrates modeling of primate circuitry with data from human brain imaging. (3) DYNAMICS: Dynamic system theory analyzes spatiotemporal neural phenomena, such as oscillatory and chaotic activity in both single neurons and (often synchronized) neural networks, the self-organizing development and plasticity of ordered neural structures, and learning and memory phenomena associated with synaptic modification. Rhythm generation involves multiple levels of analysis, from intrinsic cellular processes to loops involving multiple brain regions. A variety of rhythms are related to memory functions. The Précis presents a multifaceted case study of the hippocampus. We conclude with the claim that language and other cognitive processes can be fruitfully studied within the framework of neural organization that the authors have charted with John Szentágothai.

  11. A Neural Network Model of the Structure and Dynamics of Human Personality

    Science.gov (United States)

    Read, Stephen J.; Monroe, Brian M.; Brownstein, Aaron L.; Yang, Yu; Chopra, Gurveen; Miller, Lynn C.

    2010-01-01

    We present a neural network model that aims to bridge the historical gap between dynamic and structural approaches to personality. The model integrates work on the structure of the trait lexicon, the neurobiology of personality, temperament, goal-based models of personality, and an evolutionary analysis of motives. It is organized in terms of two…

  12. Puzzle Pieces: Neural Structure and Function in Prader-Willi Syndrome

    Science.gov (United States)

    Manning, Katherine E.; Holland, Anthony J.

    2015-01-01

    Prader-Willi syndrome (PWS) is a neurodevelopmental disorder of genomic imprinting, presenting with a behavioural phenotype encompassing hyperphagia, intellectual disability, social and behavioural difficulties, and propensity to psychiatric illness. Research has tended to focus on the cognitive and behavioural investigation of these features, and, with the exception of eating behaviour, the neural physiology is currently less well understood. A systematic review was undertaken to explore findings relating to neural structure and function in PWS, using search terms designed to encompass all published articles concerning both in vivo and post-mortem studies of neural structure and function in PWS. This supported the general paucity of research in this area, with many articles reporting case studies and qualitative descriptions or focusing solely on the overeating behaviour, although a number of systematic investigations were also identified. Research to date implicates a combination of subcortical and higher order structures in PWS, including those involved in processing reward, motivation, affect and higher order cognitive functions, with both anatomical and functional investigations indicating abnormalities. It appears likely that PWS involves aberrant activity across distributed neural networks. The characterisation of neural structure and function warrants both replication and further systematic study. PMID:28943631

  13. Puzzle Pieces: Neural Structure and Function in Prader-Willi Syndrome

    Directory of Open Access Journals (Sweden)

    Katherine E. Manning

    2015-12-01

    Full Text Available Prader-Willi syndrome (PWS is a neurodevelopmental disorder of genomic imprinting, presenting with a behavioural phenotype encompassing hyperphagia, intellectual disability, social and behavioural difficulties, and propensity to psychiatric illness. Research has tended to focus on the cognitive and behavioural investigation of these features, and, with the exception of eating behaviour, the neural physiology is currently less well understood. A systematic review was undertaken to explore findings relating to neural structure and function in PWS, using search terms designed to encompass all published articles concerning both in vivo and post-mortem studies of neural structure and function in PWS. This supported the general paucity of research in this area, with many articles reporting case studies and qualitative descriptions or focusing solely on the overeating behaviour, although a number of systematic investigations were also identified. Research to date implicates a combination of subcortical and higher order structures in PWS, including those involved in processing reward, motivation, affect and higher order cognitive functions, with both anatomical and functional investigations indicating abnormalities. It appears likely that PWS involves aberrant activity across distributed neural networks. The characterisation of neural structure and function warrants both replication and further systematic study.

  14. Neuromodulatory connectivity defines the structure of a behavioral neural network.

    Science.gov (United States)

    Diao, Feici; Elliott, Amicia D; Diao, Fengqiu; Shah, Sarav; White, Benjamin H

    2017-11-22

    Neural networks are typically defined by their synaptic connectivity, yet synaptic wiring diagrams often provide limited insight into network function. This is due partly to the importance of non-synaptic communication by neuromodulators, which can dynamically reconfigure circuit activity to alter its output. Here, we systematically map the patterns of neuromodulatory connectivity in a network that governs a developmentally critical behavioral sequence in Drosophila. This sequence, which mediates pupal ecdysis, is governed by the serial release of several key factors, which act both somatically as hormones and within the brain as neuromodulators. By identifying and characterizing the functions of the neuronal targets of these factors, we find that they define hierarchically organized layers of the network controlling the pupal ecdysis sequence: a modular input layer, an intermediate central pattern generating layer, and a motor output layer. Mapping neuromodulatory connections in this system thus defines the functional architecture of the network.

  15. Universal transition from unstructured to structured neural maps.

    Science.gov (United States)

    Weigand, Marvin; Sartori, Fabio; Cuntz, Hermann

    2017-05-16

    Neurons sharing similar features are often selectively connected with a higher probability and should be located in close vicinity to save wiring. Selective connectivity has, therefore, been proposed to be the cause for spatial organization in cortical maps. Interestingly, orientation preference (OP) maps in the visual cortex are found in carnivores, ungulates, and primates but are not found in rodents, indicating fundamental differences in selective connectivity that seem unexpected for closely related species. Here, we investigate this finding by using multidimensional scaling to predict the locations of neurons based on minimizing wiring costs for any given connectivity. Our model shows a transition from an unstructured salt-and-pepper organization to a pinwheel arrangement when increasing the number of neurons, even without changing the selectivity of the connections. Increasing neuronal numbers also leads to the emergence of layers, retinotopy, or ocular dominance columns for the selective connectivity corresponding to each arrangement. We further show that neuron numbers impact overall interconnectivity as the primary reason for the appearance of neural maps, which we link to a known phase transition in an Ising-like model from statistical mechanics. Finally, we curated biological data from the literature to show that neural maps appear as the number of neurons in visual cortex increases over a wide range of mammalian species. Our results provide a simple explanation for the existence of salt-and-pepper arrangements in rodents and pinwheel arrangements in the visual cortex of primates, carnivores, and ungulates without assuming differences in the general visual cortex architecture and connectivity.

  16. [Progress in activity-dependent structural plasticity of neural circuits in cortex].

    Science.gov (United States)

    Rao, Xiao-Ping; Xu, Zhi-Xiang; Xu, Fu-Qiang

    2012-10-01

    Neural circuits of mammalian cerebral cortex have exhibited amazing abilities of structural and functional plasticity in development, learning and memory, neurological and psychiatric diseases. With the new imaging techniques and the application of molecular biology methods, observation neural circuits' structural dynamics within the cortex in vivo at the cellular and synaptic level was possible, so there were many great progresses in the field of the activity-dependent structural plasticity over the past decade. This paper reviewed some of the aspects of the experimental results, focused on the characteristics of dendritic structural plasticity in individual growth and development, rich environment, sensory deprivation, and pathological conditions, as well as learning and memory, especially the dynamics of dendritic spines on morphology and quantity; after that, we introduced axonal structural plasticity, the molecular and cellular mechanisms of structural plasticity, and proposed some future problems to be solved at last.

  17. Incorporation of iodine into apatite structure: a crystal chemistry approach using Artificial Neural Network

    OpenAIRE

    Jianwei eWang

    2015-01-01

    Materials with apatite crystal structure have a great potential for incorporating the long-lived radioactive iodine isotope (129I) in the form of iodide (I−) from nuclear waste streams. Because of its durability and potentially high iodine content, the apatite waste form can reduce iodine release rate and minimize the waste volume. Crystal structure and composition of apatite (A5(XO4)3Z) was investigated for iodide incorporation into the channel of the structure using Artificial Neural Networ...

  18. Entropy-based generation of supervised neural networks for classification of structured patterns.

    Science.gov (United States)

    Tsai, Hsien-Leing; Lee, Shie-Jue

    2004-03-01

    Sperduti and Starita proposed a new type of neural network which consists of generalized recursive neurons for classification of structures. In this paper, we propose an entropy-based approach for constructing such neural networks for classification of acyclic structured patterns. Given a classification problem, the architecture, i.e., the number of hidden layers and the number of neurons in each hidden layer, and all the values of the link weights associated with the corresponding neural network are automatically determined. Experimental results have shown that the networks constructed by our method can have a better performance, with respect to network size, learning speed, or recognition accuracy, than the networks obtained by other methods.

  19. Neural bases of recommendations differ according to social network structure.

    Science.gov (United States)

    O'Donnell, Matthew Brook; Bayer, Joseph B; Cascio, Christopher N; Falk, Emily B

    2017-01-01

    Ideas spread across social networks, but not everyone is equally positioned to be a successful recommender. Do individuals with more opportunities to connect otherwise unconnected others-high information brokers-use their brains differently than low information brokers when making recommendations? We test the hypothesis that those with more opportunities for information brokerage may use brain systems implicated in considering the thoughts, perspectives, and mental states of others (i.e. 'mentalizing') more when spreading ideas. We used social network analysis to quantify individuals' opportunities for information brokerage. This served as a predictor of activity within meta-analytically defined neural regions associated with mentalizing (dorsomedial prefrontal cortex, temporal parietal junction, medial prefrontal cortex, /posterior cingulate cortex, middle temporal gyrus) as participants received feedback about peer opinions of mobile game apps. Higher information brokers exhibited more activity in this mentalizing network when receiving divergent peer feedback and updating their recommendation. These data support the idea that those in different network positions may use their brains differently to perform social tasks. Different social network positions might provide more opportunities to engage specific psychological processes. Or those who tend to engage such processes more may place themselves in systematically different network positions. These data highlight the value of integrating levels of analysis, from brain networks to social networks. © The Author (2017). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  20. Classification of crystal structure using a convolutional neural network.

    Science.gov (United States)

    Park, Woon Bae; Chung, Jiyong; Jung, Jaeyoung; Sohn, Keemin; Singh, Satendra Pal; Pyo, Myoungho; Shin, Namsoo; Sohn, Kee-Sun

    2017-07-01

    A deep machine-learning technique based on a convolutional neural network (CNN) is introduced. It has been used for the classification of powder X-ray diffraction (XRD) patterns in terms of crystal system, extinction group and space group. About 150 000 powder XRD patterns were collected and used as input for the CNN with no handcrafted engineering involved, and thereby an appropriate CNN architecture was obtained that allowed determination of the crystal system, extinction group and space group. In sharp contrast with the traditional use of powder XRD pattern analysis, the CNN never treats powder XRD patterns as a deconvoluted and discrete peak position or as intensity data, but instead the XRD patterns are regarded as nothing but a pattern similar to a picture. The CNN interprets features that humans cannot recognize in a powder XRD pattern. As a result, accuracy levels of 81.14, 83.83 and 94.99% were achieved for the space-group, extinction-group and crystal-system classifications, respectively. The well trained CNN was then used for symmetry identification of unknown novel inorganic compounds.

  1. The necessity of connection structures in neural models of variable binding

    NARCIS (Netherlands)

    van der Velde, Frank; van der Velde, Frank; de Kamps, Marc

    2015-01-01

    In his review of neural binding problems, Feldman (Cogn Neurodyn 7:1–11, 2013) addressed two types of models as solutions of (novel) variable binding. The one type uses labels such as phase synchrony of activation. The other (‘connectivity based’) type uses dedicated connections structures to

  2. Vibration Based Damage Assessment of a Civil Engineering Structures using a Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Rytter, A.

    In this paper the possibility of using a Multilayer Perceptron (MLP) network trained with the Backpropagation Algorith as a non-destructive damage assessment technique to locate and quantify a damage in Civil Engineering structures is investigated. Since artificial neural networks are proving...

  3. Delineating Neural Structures of Developmental Human Brains with Diffusion Tensor Imaging

    Directory of Open Access Journals (Sweden)

    Hao Huang

    2010-01-01

    Full Text Available The human brain anatomy is characterized by dramatic structural changes during fetal development. It is extraordinarily complex and yet its origin is a simple tubular structure. Revealing detailed anatomy at different stages of brain development not only aids in understanding this highly ordered process, but also provides clues to detect abnormalities caused by genetic or environmental factors. However, anatomical studies of human brain development during the fetal period are surprisingly scarce and histology-based atlases have become available only recently. Diffusion tensor imaging (DTI measures water diffusion to delineate the underlying neural structures. The high contrasts derived from DTI can be used to establish the brain atlas. With DTI tractography, coherent neural structures, such as white matter tracts, can be three-dimensionally reconstructed. The primary eigenvector of the diffusion tensor can be further explored to characterize microstructures in the cerebral wall of the developmental brains. In this mini-review, the application of DTI in order to reveal the structures of developmental fetal brains has been reviewed in the above-mentioned aspects. The fetal brain DTI provides a unique insight for delineating the neural structures in both macroscopic and microscopic levels. The resultant DTI database will provide structural guidance for the developmental study of human fetal brains in basic neuroscience, and reference standards for diagnostic radiology of premature newborns.

  4. Cranial muscles in amphibians: development, novelties and the role of cranial neural crest cells

    Science.gov (United States)

    Schmidt, Jennifer; Piekarski, Nadine; Olsson, Lennart

    2013-01-01

    Our research on the evolution of the vertebrate head focuses on understanding the developmental origins of morphological novelties. Using a broad comparative approach in amphibians, and comparisons with the well-studied quail-chicken system, we investigate how evolutionarily conserved or variable different aspects of head development are. Here we review research on the often overlooked development of cranial muscles, and on its dependence on cranial cartilage development. In general, cranial muscle cell migration and the spatiotemporal pattern of cranial muscle formation appears to be very conserved among the few species of vertebrates that have been studied. However, fate-mapping of somites in the Mexican axolotl revealed differences in the specific formation of hypobranchial muscles (tongue muscles) in comparison to the chicken. The proper development of cranial muscles has been shown to be strongly dependent on the mostly neural crest-derived cartilage elements in the larval head of amphibians. For example, a morpholino-based knock-down of the transcription factor FoxN3 in Xenopus laevis has drastic indirect effects on cranial muscle patterning, although the direct function of the gene is mostly connected to neural crest development. Furthermore, extirpation of single migratory streams of cranial neural crest cells in combination with fate-mapping in a frog shows that individual cranial muscles and their neural crest-derived connective tissue attachments originate from the same visceral arch, even when the muscles attach to skeletal components that are derived from a different arch. The same pattern has also been found in the chicken embryo, the only other species that has been thoroughly investigated, and thus might be a conserved pattern in vertebrates that reflects the fundamental nature of a mechanism that keeps the segmental order of the head in place despite drastic changes in adult anatomy. There is a need for detailed comparative fate-mapping of pre

  5. Cranial muscles in amphibians: development, novelties and the role of cranial neural crest cells.

    Science.gov (United States)

    Schmidt, Jennifer; Piekarski, Nadine; Olsson, Lennart

    2013-01-01

    Our research on the evolution of the vertebrate head focuses on understanding the developmental origins of morphological novelties. Using a broad comparative approach in amphibians, and comparisons with the well-studied quail-chicken system, we investigate how evolutionarily conserved or variable different aspects of head development are. Here we review research on the often overlooked development of cranial muscles, and on its dependence on cranial cartilage development. In general, cranial muscle cell migration and the spatiotemporal pattern of cranial muscle formation appears to be very conserved among the few species of vertebrates that have been studied. However, fate-mapping of somites in the Mexican axolotl revealed differences in the specific formation of hypobranchial muscles (tongue muscles) in comparison to the chicken. The proper development of cranial muscles has been shown to be strongly dependent on the mostly neural crest-derived cartilage elements in the larval head of amphibians. For example, a morpholino-based knock-down of the transcription factor FoxN3 in Xenopus laevis has drastic indirect effects on cranial muscle patterning, although the direct function of the gene is mostly connected to neural crest development. Furthermore, extirpation of single migratory streams of cranial neural crest cells in combination with fate-mapping in a frog shows that individual cranial muscles and their neural crest-derived connective tissue attachments originate from the same visceral arch, even when the muscles attach to skeletal components that are derived from a different arch. The same pattern has also been found in the chicken embryo, the only other species that has been thoroughly investigated, and thus might be a conserved pattern in vertebrates that reflects the fundamental nature of a mechanism that keeps the segmental order of the head in place despite drastic changes in adult anatomy. There is a need for detailed comparative fate-mapping of pre

  6. Genetic Architect: Discovering Genomic Structure with Learned Neural Architectures

    OpenAIRE

    Deming, Laura; Targ, Sasha; Sauder, Nate; Almeida, Diogo; Ye, Chun Jimmie

    2016-01-01

    Each human genome is a 3 billion base pair set of encoding instructions. Decoding the genome using deep learning fundamentally differs from most tasks, as we do not know the full structure of the data and therefore cannot design architectures to suit it. As such, architectures that fit the structure of genomics should be learned not prescribed. Here, we develop a novel search algorithm, applicable across domains, that discovers an optimal architecture which simultaneously learns general genom...

  7. Accurate and rapid optical characterization of an anisotropic guided structure based on a neural method.

    Science.gov (United States)

    Robert, Stéphane; Battie, Yann; Jamon, Damien; Royer, Francois

    2007-04-10

    Optimal performances of integrated optical devices are obtained by the use of an accurate and reliable characterization method. The parameters of interest, i.e., optical indices and thickness of the waveguide structure, are calculated from effective indices by means of an inversion procedure. We demonstrate how an artificial neural network can achieve such a process. The artificial neural network used is a multilayer perceptron. The first result concerns a simulated anisotropic waveguide. The accuracy in the determination of optical indices and waveguide thickness is 5 x 10(-5) and 4 nm, respectively. Then an experimental application on a silica-titania thin film is performed. In addition, effective indices are measured by m-lines spectroscopy. Finally, a comparison with a classical optimization algorithm demonstrates the robustness of the neural method.

  8. Explicitly integrating parameter, input, and structure uncertainties into Bayesian Neural Networks for probabilistic hydrologic forecasting

    KAUST Repository

    Zhang, Xuesong

    2011-11-01

    Estimating uncertainty of hydrologic forecasting is valuable to water resources and other relevant decision making processes. Recently, Bayesian Neural Networks (BNNs) have been proved powerful tools for quantifying uncertainty of streamflow forecasting. In this study, we propose a Markov Chain Monte Carlo (MCMC) framework (BNN-PIS) to incorporate the uncertainties associated with parameters, inputs, and structures into BNNs. This framework allows the structure of the neural networks to change by removing or adding connections between neurons and enables scaling of input data by using rainfall multipliers. The results show that the new BNNs outperform BNNs that only consider uncertainties associated with parameters and model structures. Critical evaluation of posterior distribution of neural network weights, number of effective connections, rainfall multipliers, and hyper-parameters shows that the assumptions held in our BNNs are not well supported. Further understanding of characteristics of and interactions among different uncertainty sources is expected to enhance the application of neural networks for uncertainty analysis of hydrologic forecasting. © 2011 Elsevier B.V.

  9. Knowledge base and neural network approach for protein secondary structure prediction.

    Science.gov (United States)

    Patel, Maulika S; Mazumdar, Himanshu S

    2014-11-21

    Protein structure prediction is of great relevance given the abundant genomic and proteomic data generated by the genome sequencing projects. Protein secondary structure prediction is addressed as a sub task in determining the protein tertiary structure and function. In this paper, a novel algorithm, KB-PROSSP-NN, which is a combination of knowledge base and modeling of the exceptions in the knowledge base using neural networks for protein secondary structure prediction (PSSP), is proposed. The knowledge base is derived from a proteomic sequence-structure database and consists of the statistics of association between the 5-residue words and corresponding secondary structure. The predicted results obtained using knowledge base are refined with a Backpropogation neural network algorithm. Neural net models the exceptions of the knowledge base. The Q3 accuracy of 90% and 82% is achieved on the RS126 and CB396 test sets respectively which suggest improvement over existing state of art methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Learning Orthographic Structure with Sequential Generative Neural Networks

    Science.gov (United States)

    Testolin, Alberto; Stoianov, Ivilin; Sperduti, Alessandro; Zorzi, Marco

    2016-01-01

    Learning the structure of event sequences is a ubiquitous problem in cognition and particularly in language. One possible solution is to learn a probabilistic generative model of sequences that allows making predictions about upcoming events. Though appealing from a neurobiological standpoint, this approach is typically not pursued in…

  11. Wave transmission at low-crested structures using neural networks

    NARCIS (Netherlands)

    Van Oosten, R.P.; Peixó Marco, J.; Van der Meer, J.W.; Van Gent, M.; Verhagen, H.J.

    2006-01-01

    The European Union funded project DELOS was focused on wave transmission and an extensive database on low-crested rubble mound structures was generated. During DELOS, new empirical wave transmission formulae were derived. These formulae still showed a considerable scatter due to a limited number of

  12. Neural network based semi-active control strategy for structural vibration mitigation with magnetorheological damper

    DEFF Research Database (Denmark)

    Bhowmik, Subrata

    2011-01-01

    This paper presents a neural network based semi-active control method for a rotary type magnetorheological (MR) damper. The characteristics of the MR damper are described by the classic Bouc-Wen model, and the performance of the proposed control method is evaluated in terms of a base exited shear...... frame structure. As demonstrated in the literature effective damping of flexible structures is obtained by a suitable combination of pure friction and negative damper stiffness. This damper model is rate-independent and fully described by the desired shape of the hysteresis loops or force...... mode of the structure. The neural network control is then developed to reproduce the desired force based on damper displacement and velocity as network input, and it is therefore referred to as an amplitude dependent model reference control method. An inverse model of the MR damper is needed...

  13. Neural networkbased semi-active control strategy for structural vibration mitigation with magnetorheological damper

    DEFF Research Database (Denmark)

    Bhowmik, Subrata

    2011-01-01

    This paper presents a neural network based semi-active control method for a rotary type magnetorheological (MR) damper. The characteristics of the MR damper are described by the classic Bouc-Wen model, and the performance of the proposed control method is evaluated in terms of a base exited shear...... frame structure. As demonstrated in the literature effective damping of flexible structures is obtained by a suitable combination of pure friction and negative damper stiffness. This damper model is rate-independent and fully described by the desired shape of the hysteresis loops or force...... mode of the structure. The neural network control is then developed to reproduce the desired force based on damper displacement and velocity as network input, and it is therefore referred to as an amplitude dependent model reference control method. An inverse model of the MR damper is needed...

  14. Training verb argument structure production in agrammatic aphasia: behavioral and neural recovery patterns.

    Science.gov (United States)

    Thompson, Cynthia K; Riley, Ellyn A; den Ouden, Dirk-Bart; Meltzer-Asscher, Aya; Lukic, Sladjana

    2013-10-01

    Neuroimaging and lesion studies indicate a left hemisphere network for verb and verb argument structure processing, involving both frontal and temporoparietal brain regions. Although their verb comprehension is generally unimpaired, it is well known that individuals with agrammatic aphasia often present with verb production deficits, characterized by an argument structure complexity hierarchy, indicating faulty access to argument structure representations for production and integration into syntactic contexts. Recovery of verb processing in agrammatism, however, has received little attention and no studies have examined the neural mechanisms associated with improved verb and argument structure processing. In the present study we trained agrammatic individuals on verbs with complex argument structure in sentence contexts and examined generalization to verbs with less complex argument structure. The neural substrates of improved verb production were examined using functional magnetic resonance imaging (fMRI). Eight individuals with chronic agrammatic aphasia participated in the study (four experimental and four control participants). Production of three-argument verbs in active sentences was trained using a sentence generation task emphasizing the verb's argument structure and the thematic roles of sentential noun phrases. Before and after training, production of trained and untrained verbs was tested in naming and sentence production and fMRI scans were obtained, using an action naming task. Significant pre- to post-training improvement in trained and untrained (one- and two-argument) verbs was found for treated, but not control, participants, with between-group differences found for verb naming, production of verbs in sentences, and production of argument structure. fMRI activation derived from post-treatment compared to pre-treatment scans revealed upregulation in cortical regions implicated for verb and argument structure processing in healthy controls. Training

  15. Verification of the authenticity of handwritten signature using structure neural-network-type OCON

    Science.gov (United States)

    Molina, M. L.; Arias, N. A.; Gualdron, Oscar

    2004-10-01

    A method in order to carry out the verification of handwritten signatures is described. The method keeps in mind global features and local features that encode the shape and the dynamics of the signatures. Signatures are recorded with a digital tablet that can read the position and pressure of the pen. Input patterns are considered time and space dependent. Before extracting the information of the static features such as total length or height/width ratio, and the dynamic features such as speed or acceleration, the signature is normalized for position, size and orientation using its Fourier Descriptors. The comparison stage is carried out for algorithms of neurals networks. For each one of the sets of features a special two stage Perceptron OCON (one-class-one-network) classification structure has been implemented. In the first stage networks multilayer perceptron with few neurons are used. The classifier combines the decision results of the neural networks and the Euclidean distance obtained using the two feature sets. The results of the first-stage classifier feed a second-stage radial basis function (RBF) neural network structure, which makes the final decision. The entire system was extensively tested, 160 neurals networks has been implemented.

  16. Prediction of Henry's law constants by a quantitative structure property relationship and neural networks.

    Science.gov (United States)

    English, N J; Carroll, D G

    2001-01-01

    Multiple linear regression analysis and neural networks were employed to develop predictive models for Henry's law constants (HLCs) for organic compounds of environmental concern in pure water at 25 degrees C, using a set of quantitative structure property relationship (QSPR)-based descriptors to encode various molecular structural features. Two estimation models were developed from a set of 303 compounds using 10 and 12 descriptors, one of these models using two descriptors to account for hydrogen-bonding characteristics explicitly; these were validated subsequently on an external set of 54 compounds. For each model, a linear regression and neural network version was prepared. The standard errors of the linear regression models for the training data set were 0.262 and 0.488 log(H(cc)) units, while those of the neural network analogues were lower at 0.202 and 0.224, respectively; the linear regression models explained 98.3% and 94.3% of the variance in the development data, respectively, the neural network models giving similar quality results of 99% and 98.3%, respectively. The various descriptors used describe connectivity, charge distribution, charged surface area, hydrogen-bonding characteristics, and group influences on HLC values.

  17. Inferring synaptic structure in presence of neural interaction time scales.

    Directory of Open Access Journals (Sweden)

    Cristiano Capone

    Full Text Available Biological networks display a variety of activity patterns reflecting a web of interactions that is complex both in space and time. Yet inference methods have mainly focused on reconstructing, from the network's activity, the spatial structure, by assuming equilibrium conditions or, more recently, a probabilistic dynamics with a single arbitrary time-step. Here we show that, under this latter assumption, the inference procedure fails to reconstruct the synaptic matrix of a network of integrate-and-fire neurons when the chosen time scale of interaction does not closely match the synaptic delay or when no single time scale for the interaction can be identified; such failure, moreover, exposes a distinctive bias of the inference method that can lead to infer as inhibitory the excitatory synapses with interaction time scales longer than the model's time-step. We therefore introduce a new two-step method, that first infers through cross-correlation profiles the delay-structure of the network and then reconstructs the synaptic matrix, and successfully test it on networks with different topologies and in different activity regimes. Although step one is able to accurately recover the delay-structure of the network, thus getting rid of any a priori guess about the time scales of the interaction, the inference method introduces nonetheless an arbitrary time scale, the time-bin dt used to binarize the spike trains. We therefore analytically and numerically study how the choice of dt affects the inference in our network model, finding that the relationship between the inferred couplings and the real synaptic efficacies, albeit being quadratic in both cases, depends critically on dt for the excitatory synapses only, whilst being basically independent of it for the inhibitory ones.

  18. Optimizing the De-Noise Neural Network Model for GPS Time-Series Monitoring of Structures

    Directory of Open Access Journals (Sweden)

    Mosbeh R. Kaloop

    2015-09-01

    Full Text Available The Global Positioning System (GPS is recently used widely in structures and other applications. Notwithstanding, the GPS accuracy still suffers from the errors afflicting the measurements, particularly the short-period displacement of structural components. Previously, the multi filter method is utilized to remove the displacement errors. This paper aims at using a novel application for the neural network prediction models to improve the GPS monitoring time series data. Four prediction models for the learning algorithms are applied and used with neural network solutions: back-propagation, Cascade-forward back-propagation, adaptive filter and extended Kalman filter, to estimate which model can be recommended. The noise simulation and bridge’s short-period GPS of the monitoring displacement component of one Hz sampling frequency are used to validate the four models and the previous method. The results show that the Adaptive neural networks filter is suggested for de-noising the observations, specifically for the GPS displacement components of structures. Also, this model is expected to have significant influence on the design of structures in the low frequency responses and measurements’ contents.

  19. Pax7 lineage contributions to the mammalian neural crest.

    Directory of Open Access Journals (Sweden)

    Barbara Murdoch

    Full Text Available Neural crest cells are vertebrate-specific multipotent cells that contribute to a variety of tissues including the peripheral nervous system, melanocytes, and craniofacial bones and cartilage. Abnormal development of the neural crest is associated with several human maladies including cleft/lip palate, aggressive cancers such as melanoma and neuroblastoma, and rare syndromes, like Waardenburg syndrome, a complex disorder involving hearing loss and pigment defects. We previously identified the transcription factor Pax7 as an early marker, and required component for neural crest development in chick embryos. In mammals, Pax7 is also thought to play a role in neural crest development, yet the precise contribution of Pax7 progenitors to the neural crest lineage has not been determined.Here we use Cre/loxP technology in double transgenic mice to fate map the Pax7 lineage in neural crest derivates. We find that Pax7 descendants contribute to multiple tissues including the cranial, cardiac and trunk neural crest, which in the cranial cartilage form a distinct regional pattern. The Pax7 lineage, like the Pax3 lineage, is additionally detected in some non-neural crest tissues, including a subset of the epithelial cells in specific organs.These results demonstrate a previously unappreciated widespread distribution of Pax7 descendants within and beyond the neural crest. They shed light regarding the regionally distinct phenotypes observed in Pax3 and Pax7 mutants, and provide a unique perspective into the potential roles of Pax7 during disease and development.

  20. Prediction of Optimal Design and Deflection of Space Structures Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Reza Kamyab Moghadas

    2012-01-01

    Full Text Available The main aim of the present work is to determine the optimal design and maximum deflection of double layer grids spending low computational cost using neural networks. The design variables of the optimization problem are cross-sectional area of the elements as well as the length of the span and height of the structures. In this paper, a number of double layer grids with various random values of length and height are selected and optimized by simultaneous perturbation stochastic approximation algorithm. Then, radial basis function (RBF and generalized regression (GR neural networks are trained to predict the optimal design and maximum deflection of the structures. The numerical results demonstrate the efficiency of the proposed methodology.

  1. The neural origins of shell structure and pattern in aquatic mollusks.

    Science.gov (United States)

    Boettiger, Alistair; Ermentrout, Bard; Oster, George

    2009-04-21

    We present a model to explain how the neurosecretory system of aquatic mollusks generates their diversity of shell structures and pigmentation patterns. The anatomical and physiological basis of this model sets it apart from other models used to explain shape and pattern. The model reproduces most known shell shapes and patterns and accurately predicts how the pattern alters in response to environmental disruption and subsequent repair. Finally, we connect the model to a larger class of neural models.

  2. Deep neural nets as a method for quantitative structure-activity relationships.

    Science.gov (United States)

    Ma, Junshui; Sheridan, Robert P; Liaw, Andy; Dahl, George E; Svetnik, Vladimir

    2015-02-23

    Neural networks were widely used for quantitative structure-activity relationships (QSAR) in the 1990s. Because of various practical issues (e.g., slow on large problems, difficult to train, prone to overfitting, etc.), they were superseded by more robust methods like support vector machine (SVM) and random forest (RF), which arose in the early 2000s. The last 10 years has witnessed a revival of neural networks in the machine learning community thanks to new methods for preventing overfitting, more efficient training algorithms, and advancements in computer hardware. In particular, deep neural nets (DNNs), i.e. neural nets with more than one hidden layer, have found great successes in many applications, such as computer vision and natural language processing. Here we show that DNNs can routinely make better prospective predictions than RF on a set of large diverse QSAR data sets that are taken from Merck's drug discovery effort. The number of adjustable parameters needed for DNNs is fairly large, but our results show that it is not necessary to optimize them for individual data sets, and a single set of recommended parameters can achieve better performance than RF for most of the data sets we studied. The usefulness of the parameters is demonstrated on additional data sets not used in the calibration. Although training DNNs is still computationally intensive, using graphical processing units (GPUs) can make this issue manageable.

  3. A New Training Method for Analyzable Structured Neural Network and Application of Daily Peak Load Forecasting

    Science.gov (United States)

    Iizaka, Tatsuya; Matsui, Tetsuro; Fukuyama, Yoshikazu

    This paper presents a daily peak load forecasting method using an analyzable structured neural network (ASNN) in order to explain forecasting reasons. In this paper, we propose a new training method for ASNN in order to explain forecasting reason more properly than the conventional training method. ASNN consists of two types of hidden units. One type of hidden units has connecting weights between the hidden units and only one group of related input units. Another one has connecting weights between the hidden units and all input units. The former type of hidden units allows to explain forecasting reasons. The latter type of hidden units ensures the forecasting performance. The proposed training method make the former type of hidden units train only independent relations between the input factors and output, and make the latter type of hidden units train only complicated interactions between input factors. The effectiveness of the proposed neural network is shown using actual daily peak load. ASNN trained by the proposed method can explain forecasting reasons more properly than ASNN trained by the conventional method. Moreover, the proposed neural network can forecast daily peak load more accurately than conventional neural network trained by the back propagation algorithm.

  4. Flexible deep brain neural probes based on a parylene tube structure

    Science.gov (United States)

    Zhao, Zhiguo; Kim, Eric; Luo, Hao; Zhang, Jinsheng; Xu, Yong

    2018-01-01

    Most microfabricated neural probes have limited shank length, which prevents them from reaching many deep brain structures. This paper reports deep brain neural probes with ultra-long penetrating shanks based on a simple but novel parylene tube structure. The mechanical strength of the parylene tube shank is temporarily enhanced during implantation by inserting a metal wire. The metal wire can be removed after implantation, making the implanted probe very flexible and thus minimizing the stress caused by micromotions of brain tissues. Optogenetic stimulation and chemical delivery capabilities can be potentially integrated by taking advantage of the tube structure. Single-shank prototypes with a shank length of 18.2 mm have been developed. The microfabrication process comprises of deep reactive ion etching (DRIE) of silicon, parylene conformal coating/refilling, and XeF2 isotropic silicon etching. In addition to bench-top insertion characterization, the functionality of developed probes has been preliminarily demonstrated by implanting into the amygdala of a rat and recording neural signals.

  5. Neural circuit remodeling and structural plasticity in the cortex during chronic pain.

    Science.gov (United States)

    Kim, Woojin; Kim, Sun Kwang

    2016-01-01

    Damage in the periphery or spinal cord induces maladaptive plastic changes along the somatosensory nervous system from the periphery to the cortex, often leading to chronic pain. Although the role of neural circuit remodeling and structural synaptic plasticity in the 'pain matrix' cortices in chronic pain has been thought as a secondary epiphenomenon to altered nociceptive signaling in the spinal cord, progress in whole brain imaging studies on human patients and animal models has suggested a possibility that plastic changes in cortical neural circuits may actively contribute to chronic pain symptoms. Furthermore, recent development in two-photon microscopy and fluorescence labeling techniques have enabled us to longitudinally trace the structural and functional changes in local circuits, single neurons and even individual synapses in the brain of living animals. These technical advances has started to reveal that cortical structural remodeling following tissue or nerve damage could rapidly occur within days, which are temporally correlated with functional plasticity of cortical circuits as well as the development and maintenance of chronic pain behavior, thereby modifying the previous concept that it takes much longer periods (e.g. months or years). In this review, we discuss the relation of neural circuit plasticity in the 'pain matrix' cortices, such as the anterior cingulate cortex, prefrontal cortex and primary somatosensory cortex, with chronic pain. We also introduce how to apply long-term in vivo two-photon imaging approaches for the study of pathophysiological mechanisms of chronic pain.

  6. Real-Time Structural Damage Assessment Using Artificial Neural Networks and Antiresonant Frequencies

    Directory of Open Access Journals (Sweden)

    V. Meruane

    2014-01-01

    Full Text Available The main problem in damage assessment is the determination of how to ascertain the presence, location, and severity of structural damage given the structure's dynamic characteristics. The most successful applications of vibration-based damage assessment are model updating methods based on global optimization algorithms. However, these algorithms run quite slowly, and the damage assessment process is achieved via a costly and time-consuming inverse process, which presents an obstacle for real-time health monitoring applications. Artificial neural networks (ANN have recently been introduced as an alternative to model updating methods. Once a neural network has been properly trained, it can potentially detect, locate, and quantify structural damage in a short period of time and can therefore be applied for real-time damage assessment. The primary contribution of this research is the development of a real-time damage assessment algorithm using ANN and antiresonant frequencies. Antiresonant frequencies can be identified more easily and more accurately than mode shapes, and they provide the same information. This research addresses the setup of the neural network parameters and provides guidelines for the selection of these parameters in similar damage assessment problems. Two experimental cases validate this approach: an 8-DOF mass-spring system and a beam with multiple damage scenarios.

  7. Musical intervention enhances infants' neural processing of temporal structure in music and speech.

    Science.gov (United States)

    Zhao, T Christina; Kuhl, Patricia K

    2016-05-10

    Individuals with music training in early childhood show enhanced processing of musical sounds, an effect that generalizes to speech processing. However, the conclusions drawn from previous studies are limited due to the possible confounds of predisposition and other factors affecting musicians and nonmusicians. We used a randomized design to test the effects of a laboratory-controlled music intervention on young infants' neural processing of music and speech. Nine-month-old infants were randomly assigned to music (intervention) or play (control) activities for 12 sessions. The intervention targeted temporal structure learning using triple meter in music (e.g., waltz), which is difficult for infants, and it incorporated key characteristics of typical infant music classes to maximize learning (e.g., multimodal, social, and repetitive experiences). Controls had similar multimodal, social, repetitive play, but without music. Upon completion, infants' neural processing of temporal structure was tested in both music (tones in triple meter) and speech (foreign syllable structure). Infants' neural processing was quantified by the mismatch response (MMR) measured with a traditional oddball paradigm using magnetoencephalography (MEG). The intervention group exhibited significantly larger MMRs in response to music temporal structure violations in both auditory and prefrontal cortical regions. Identical results were obtained for temporal structure changes in speech. The intervention thus enhanced temporal structure processing not only in music, but also in speech, at 9 mo of age. We argue that the intervention enhanced infants' ability to extract temporal structure information and to predict future events in time, a skill affecting both music and speech processing.

  8. Musical intervention enhances infants’ neural processing of temporal structure in music and speech

    Science.gov (United States)

    Zhao, T. Christina; Kuhl, Patricia K.

    2016-01-01

    Individuals with music training in early childhood show enhanced processing of musical sounds, an effect that generalizes to speech processing. However, the conclusions drawn from previous studies are limited due to the possible confounds of predisposition and other factors affecting musicians and nonmusicians. We used a randomized design to test the effects of a laboratory-controlled music intervention on young infants’ neural processing of music and speech. Nine-month-old infants were randomly assigned to music (intervention) or play (control) activities for 12 sessions. The intervention targeted temporal structure learning using triple meter in music (e.g., waltz), which is difficult for infants, and it incorporated key characteristics of typical infant music classes to maximize learning (e.g., multimodal, social, and repetitive experiences). Controls had similar multimodal, social, repetitive play, but without music. Upon completion, infants’ neural processing of temporal structure was tested in both music (tones in triple meter) and speech (foreign syllable structure). Infants’ neural processing was quantified by the mismatch response (MMR) measured with a traditional oddball paradigm using magnetoencephalography (MEG). The intervention group exhibited significantly larger MMRs in response to music temporal structure violations in both auditory and prefrontal cortical regions. Identical results were obtained for temporal structure changes in speech. The intervention thus enhanced temporal structure processing not only in music, but also in speech, at 9 mo of age. We argue that the intervention enhanced infants’ ability to extract temporal structure information and to predict future events in time, a skill affecting both music and speech processing. PMID:27114512

  9. A Feedback Model of Attention Explains the Diverse Effects of Attention on Neural Firing Rates and Receptive Field Structure

    National Research Council Canada - National Science Library

    Miconi, Thomas; VanRullen, Rufin

    2016-01-01

    Visual attention has many effects on neural responses, producing complex changes in firing rates, as well as modifying the structure and size of receptive fields, both in topological and feature space...

  10. Artificial neural networks aided conceptual stage design of water harvesting structures

    Directory of Open Access Journals (Sweden)

    Vinay Chandwani

    2016-09-01

    Full Text Available The paper presents artificial neural networks (ANNs based methodology for ascertaining the structural parameters of water harvesting structures (WHS at the conceptual stage of design. The ANN is trained using exemplar patterns generated using an in-house MSExcel based design program, to draw a functional relationship between the five inputs design parameters namely, peak flood discharge, safe bearing capacity of strata, length of structure, height of structure and silt factor and four outputs namely, top width, bottom width, foundation depth and flood lift representing the structural parameters of WHS. The results of the study show that, the structural parameters of the WHS predicted using ANN model are in close agreement with the actual field parameters. The versatility of ANN to map complex or complex unknown relationships has been proven in the study. A parametric sensitivity study is also performed to assess the most significant design parameter. The study holistically presents a neural network based decision support tool that can be used to accurately estimate the major design parameters of the WHS at the conceptual stage of design in quick time, aiding the engineer-in-charge to conveniently forecast the budget requirements and minimize the labor involved during the subsequent phases of analysis and design.

  11. Structural Damage Identification Based on Rough Sets and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Chengyin Liu

    2014-01-01

    Full Text Available This paper investigates potential applications of the rough sets (RS theory and artificial neural network (ANN method on structural damage detection. An information entropy based discretization algorithm in RS is applied for dimension reduction of the original damage database obtained from finite element analysis (FEA. The proposed approach is tested with a 14-bay steel truss model for structural damage detection. The experimental results show that the damage features can be extracted efficiently from the combined utilization of RS and ANN methods even the volume of measurement data is enormous and with uncertainties.

  12. Elements of an algorithm for optimizing a parameter-structural neural network

    Directory of Open Access Journals (Sweden)

    Mrówczyńska Maria

    2016-06-01

    Full Text Available The field of processing information provided by measurement results is one of the most important components of geodetic technologies. The dynamic development of this field improves classic algorithms for numerical calculations in the aspect of analytical solutions that are difficult to achieve. Algorithms based on artificial intelligence in the form of artificial neural networks, including the topology of connections between neurons have become an important instrument connected to the problem of processing and modelling processes. This concept results from the integration of neural networks and parameter optimization methods and makes it possible to avoid the necessity to arbitrarily define the structure of a network. This kind of extension of the training process is exemplified by the algorithm called the Group Method of Data Handling (GMDH, which belongs to the class of evolutionary algorithms. The article presents a GMDH type network, used for modelling deformations of the geometrical axis of a steel chimney during its operation.

  13. Task-dependent neural and behavioral effects of verb argument structure features.

    Science.gov (United States)

    Malyutina, Svetlana; den Ouden, Dirk-Bart

    2017-05-01

    Understanding which verb argument structure (VAS) features (if any) are part of verbs' lexical entries and under which conditions they are accessed provides information on the nature of lexical representations and sentence construction. We investigated neural and behavioral effects of three understudied VAS characteristics (number of subcategorization options, number of thematic options and overall number of valency frames) in lexical decision and sentence well-formedness judgment in healthy adults. VAS effects showed strong dependency on processing conditions. As reflected by behavioral performance and neural recruitment patterns, increased VAS complexity in terms of subcategorization options and thematic options had a detrimental effect on sentence processing, but facilitated lexical access to single words, possibly by providing more lexico-semantic associations and access routes (facilitation through complexity). Effects of the number of valency frames are equivocal. We suggest that VAS effects may be mediated semantically rather than by a dedicated VAS module in verbs' representations. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Neural systems supporting linguistic structure, linguistic experience, and symbolic communication in sign language and gesture.

    Science.gov (United States)

    Newman, Aaron J; Supalla, Ted; Fernandez, Nina; Newport, Elissa L; Bavelier, Daphne

    2015-09-15

    Sign languages used by deaf communities around the world possess the same structural and organizational properties as spoken languages: In particular, they are richly expressive and also tightly grammatically constrained. They therefore offer the opportunity to investigate the extent to which the neural organization for language is modality independent, as well as to identify ways in which modality influences this organization. The fact that sign languages share the visual-manual modality with a nonlinguistic symbolic communicative system-gesture-further allows us to investigate where the boundaries lie between language and symbolic communication more generally. In the present study, we had three goals: to investigate the neural processing of linguistic structure in American Sign Language (using verbs of motion classifier constructions, which may lie at the boundary between language and gesture); to determine whether we could dissociate the brain systems involved in deriving meaning from symbolic communication (including both language and gesture) from those specifically engaged by linguistically structured content (sign language); and to assess whether sign language experience influences the neural systems used for understanding nonlinguistic gesture. The results demonstrated that even sign language constructions that appear on the surface to be similar to gesture are processed within the left-lateralized frontal-temporal network used for spoken languages-supporting claims that these constructions are linguistically structured. Moreover, although nonsigners engage regions involved in human action perception to process communicative, symbolic gestures, signers instead engage parts of the language-processing network-demonstrating an influence of experience on the perception of nonlinguistic stimuli.

  15. Applications of Artificial Neural Networks in Structural Engineering with Emphasis on Continuum Models

    Science.gov (United States)

    Kapania, Rakesh K.; Liu, Youhua

    1998-01-01

    The use of continuum models for the analysis of discrete built-up complex aerospace structures is an attractive idea especially at the conceptual and preliminary design stages. But the diversity of available continuum models and hard-to-use qualities of these models have prevented them from finding wide applications. In this regard, Artificial Neural Networks (ANN or NN) may have a great potential as these networks are universal approximators that can realize any continuous mapping, and can provide general mechanisms for building models from data whose input-output relationship can be highly nonlinear. The ultimate aim of the present work is to be able to build high fidelity continuum models for complex aerospace structures using the ANN. As a first step, the concepts and features of ANN are familiarized through the MATLAB NN Toolbox by simulating some representative mapping examples, including some problems in structural engineering. Then some further aspects and lessons learned about the NN training are discussed, including the performances of Feed-Forward and Radial Basis Function NN when dealing with noise-polluted data and the technique of cross-validation. Finally, as an example of using NN in continuum models, a lattice structure with repeating cells is represented by a continuum beam whose properties are provided by neural networks.

  16. Hydrogel scaffolds promote neural gene expression and structural reorganization in human astrocyte cultures

    Directory of Open Access Journals (Sweden)

    V. Bleu Knight

    2017-01-01

    Full Text Available Biomaterial scaffolds have the potential to enhance neuronal development and regeneration. Understanding the genetic responses of astrocytes and neurons to biomaterials could facilitate the development of synthetic environments that enable the specification of neural tissue organization with engineered scaffolds. In this study, we used high throughput transcriptomic and imaging methods to determine the impact of a hydrogel, PuraMatrix™, on human glial cells in vitro. Parallel studies were undertaken with cells grown in a monolayer environment on tissue culture polystyrene. When the Normal Human Astrocyte (NHA cell line is grown in a hydrogel matrix environment, the glial cells adopt a structural organization that resembles that of neuronal-glial cocultures, where neurons form clusters that are distinct from the surrounding glia. Statistical analysis of next generation RNA sequencing data uncovered a set of genes that are differentially expressed in the monolayer and matrix hydrogel environments. Functional analysis demonstrated that hydrogel-upregulated genes can be grouped into three broad categories: neuronal differentiation and/or neural plasticity, response to neural insult, and sensory perception. Our results demonstrate that hydrogel biomaterials have the potential to transform human glial cell identity, and may have applications in the repair of damaged brain tissue.

  17. Localization and identification of structural nonlinearities using cascaded optimization and neural networks

    Science.gov (United States)

    Koyuncu, A.; Cigeroglu, E.; Özgüven, H. N.

    2017-10-01

    In this study, a new approach is proposed for identification of structural nonlinearities by employing cascaded optimization and neural networks. Linear finite element model of the system and frequency response functions measured at arbitrary locations of the system are used in this approach. Using the finite element model, a training data set is created, which appropriately spans the possible nonlinear configurations space of the system. A classification neural network trained on these data sets then localizes and determines the types of all nonlinearities associated with the nonlinear degrees of freedom in the system. A new training data set spanning the parametric space associated with the determined nonlinearities is created to facilitate parametric identification. Utilizing this data set, initially, a feed forward regression neural network is trained, which parametrically identifies the classified nonlinearities. Then, the results obtained are further improved by carrying out an optimization which uses network identified values as starting points. Unlike identification methods available in literature, the proposed approach does not require data collection from the degrees of freedoms where nonlinear elements are attached, and furthermore, it is sufficiently accurate even in the presence of measurement noise. The application of the proposed approach is demonstrated on an example system with nonlinear elements and on a real life experimental setup with a local nonlinearity.

  18. Predicting physical-chemical properties of compounds from molecular structures by recursive neural networks.

    Science.gov (United States)

    Bernazzani, Luca; Duce, Celia; Micheli, Alessio; Mollica, Vincenzo; Sperduti, Alessandro; Starita, Antonina; Tiné, Maria Rosaria

    2006-01-01

    In this paper, we report on the potential of a recently developed neural network for structures applied to the prediction of physical chemical properties of compounds. The proposed recursive neural network (RecNN) model is able to directly take as input a structured representation of the molecule and to model a direct and adaptive relationship between the molecular structure and target property. Therefore, it combines in a learning system the flexibility and general advantages of a neural network model with the representational power of a structured domain. As a result, a completely new approach to quantitative structure-activity relationship/quantitative structure-property relationship (QSPR/QSAR) analysis is obtained. An original representation of the molecular structures has been developed accounting for both the occurrence of specific atoms/groups and the topological relationships among them. Gibbs free energy of solvation in water, Delta(solv)G degrees , has been chosen as a benchmark for the model. The different approaches proposed in the literature for the prediction of this property have been reconsidered from a general perspective. The advantages of RecNN as a suitable tool for the automatization of fundamental parts of the QSPR/QSAR analysis have been highlighted. The RecNN model has been applied to the analysis of the Delta(solv)G degrees in water of 138 monofunctional acyclic organic compounds and tested on an external data set of 33 compounds. As a result of the statistical analysis, we obtained, for the predictive accuracy estimated on the test set, correlation coefficient R = 0.9985, standard deviation S = 0.68 kJ mol(-1), and mean absolute error MAE = 0.46 kJ mol(-1). The inherent ability of RecNN to abstract chemical knowledge through the adaptive learning process has been investigated by principal components analysis of the internal representations computed by the network. It has been found that the model recognizes the chemical compounds on the

  19. Tracting the neural basis of music: Deficient structural connectivity underlying acquired amusia.

    Science.gov (United States)

    Sihvonen, Aleksi J; Ripollés, Pablo; Särkämö, Teppo; Leo, Vera; Rodríguez-Fornells, Antoni; Saunavaara, Jani; Parkkola, Riitta; Soinila, Seppo

    2017-12-01

    Acquired amusia provides a unique opportunity to investigate the fundamental neural architectures of musical processing due to the transition from a functioning to defective music processing system. Yet, the white matter (WM) deficits in amusia remain systematically unexplored. To evaluate which WM structures form the neural basis for acquired amusia and its recovery, we studied 42 stroke patients longitudinally at acute, 3-month, and 6-month post-stroke stages using DTI [tract-based spatial statistics (TBSS) and deterministic tractography (DT)] and the Scale and Rhythm subtests of the Montreal Battery of Evaluation of Amusia (MBEA). Non-recovered amusia was associated with structural damage and subsequent degeneration in multiple WM tracts including the right inferior fronto-occipital fasciculus (IFOF), arcuate fasciculus (AF), inferior longitudinal fasciculus (ILF), uncinate fasciculus (UF), and frontal aslant tract (FAT), as well as in the corpus callosum (CC) and its posterior part (tapetum). In a linear regression analysis, the volume of the right IFOF was the main predictor of MBEA performance across time. Overall, our results provide a comprehensive picture of the large-scale deficits in intra- and interhemispheric structural connectivity underlying amusia, and conversely highlight which pathways are crucial for normal music perception. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Prediction of Maximum Story Drift of MDOF Structures under Simulated Wind Loads Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Omar Payán-Serrano

    2017-05-01

    Full Text Available The aim of this paper is to investigate the prediction of maximum story drift of Multi-Degree of Freedom (MDOF structures subjected to dynamics wind load using Artificial Neural Networks (ANNs through the combination of several structural and turbulent wind parameters. The maximum story drift of 1600 MDOF structures under 16 simulated wind conditions are computed with the purpose of generating the data set for the networks training with the Levenberg–Marquardt method. The Shinozuka and Newmark methods are used to simulate the turbulent wind and dynamic response, respectively. In order to optimize the computational time required for the dynamic analyses, an array format based on the Shinozuka method is presented to perform the parallel computing. Finally, it is observed that the already trained ANNs allow for predicting adequately the maximum story drift with a correlation close to 99%.

  1. Neural Crest Stem Cells from Dental Tissues: A New Hope for Dental and Neural Regeneration

    Directory of Open Access Journals (Sweden)

    Gaskon Ibarretxe

    2012-01-01

    Full Text Available Several stem cell sources persist in the adult human body, which opens the doors to both allogeneic and autologous cell therapies. Tooth tissues have proven to be a surprisingly rich and accessible source of neural crest-derived ectomesenchymal stem cells (EMSCs, which may be employed to repair disease-affected oral tissues in advanced regenerative dentistry. Additionally, one area of medicine that demands intensive research on new sources of stem cells is nervous system regeneration, since this constitutes a therapeutic hope for patients affected by highly invalidating conditions such as spinal cord injury, stroke, or neurodegenerative diseases. However, endogenous adult sources of neural stem cells present major drawbacks, such as their scarcity and complicated obtention. In this context, EMSCs from dental tissues emerge as good alternative candidates, since they are preserved in adult human individuals, and retain both high proliferation ability and a neural-like phenotype in vitro. In this paper, we discuss some important aspects of tissue regeneration by cell therapy and point out some advantages that EMSCs provide for dental and neural regeneration. We will finally review some of the latest research featuring experimental approaches and benefits of dental stem cell therapy.

  2. Structural Analysis of Three-dimensional Human Neural Tissue derived from Induced Pluripotent Stem Cells

    DEFF Research Database (Denmark)

    Terrence Brooks, Patrick; Rasmussen, Mikkel Aabech; Hyttel, Poul

    2016-01-01

    Objective: The present study aimed at establishing a method for production of a three-dimensional (3D) human neural tissue derived from induced pluripotent stem cells (iPSCs) and analyzing the outcome by a combination of tissue ultrastructure and expression of neural markers. Methods: A two......-step cell culture procedure was implemented by subjecting human iPSCs to a 3D scaffoldbased neural differentiation protocol. First, neural fate-inducing small molecules were used to create a neuroepithelial monolayer. Second, the monolayer was trypsinized into single cells and seeded into a porous...... polystyrene scaffold and further cultured to produce a 3D neural tissue. The neural tissue was characterized by a combination of immunohistochemistry and transmission electron microscopy (TEM). Results: iPSCs developed into a 3D neural tissue expressing markers for neural progenitor cells, early neural...

  3. Crystal structure of the Ig1 domain of the neural cell adhesion molecule NCAM2 displays domain swapping

    DEFF Research Database (Denmark)

    Rasmussen, Kim Krighaar; Kulahin, Nikolaj; Kristensen, Ole

    2008-01-01

    The crystal structure of the first immunoglobulin (Ig1) domain of neural cell adhesion molecule 2 (NCAM2/OCAM/RNCAM) is presented at a resolution of 2.7 A. NCAM2 is a member of the immunoglobulin superfamily of cell adhesion molecules (IgCAMs). In the structure, two Ig domains interact by domain...

  4. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks

    Science.gov (United States)

    Abdeljaber, Osama; Avci, Onur; Kiranyaz, Serkan; Gabbouj, Moncef; Inman, Daniel J.

    2017-02-01

    Structural health monitoring (SHM) and vibration-based structural damage detection have been a continuous interest for civil, mechanical and aerospace engineers over the decades. Early and meticulous damage detection has always been one of the principal objectives of SHM applications. The performance of a classical damage detection system predominantly depends on the choice of the features and the classifier. While the fixed and hand-crafted features may either be a sub-optimal choice for a particular structure or fail to achieve the same level of performance on another structure, they usually require a large computation power which may hinder their usage for real-time structural damage detection. This paper presents a novel, fast and accurate structural damage detection system using 1D Convolutional Neural Networks (CNNs) that has an inherent adaptive design to fuse both feature extraction and classification blocks into a single and compact learning body. The proposed method performs vibration-based damage detection and localization of the damage in real-time. The advantage of this approach is its ability to extract optimal damage-sensitive features automatically from the raw acceleration signals. Large-scale experiments conducted on a grandstand simulator revealed an outstanding performance and verified the computational efficiency of the proposed real-time damage detection method.

  5. Effect of synapse dilution on the memory retrieval in structured attractor neural networks

    Science.gov (United States)

    Brunel, N.

    1993-08-01

    We investigate a simple model of structured attractor neural network (ANN). In this network a module codes for the category of the stored information, while another group of neurons codes for the remaining information. The probability distribution of stabilities of the patterns and the prototypes of the categories are calculated, for two different synaptic structures. The stability of the prototypes is shown to increase when the fraction of neurons coding for the category goes down. Then the effect of synapse destruction on the retrieval is studied in two opposite situations : first analytically in sparsely connected networks, then numerically in completely connected ones. In both cases the behaviour of the structured network and that of the usual homogeneous networks are compared. When lesions increase, two transitions are shown to appear in the behaviour of the structured network when one of the patterns is presented to the network. After the first transition the network recognizes the category of the pattern but not the individual pattern. After the second transition the network recognizes nothing. These effects are similar to syndromes caused by lesions in the central visual system, namely prosopagnosia and agnosia. In both types of networks (structured or homogeneous) the stability of the prototype is greater than the stability of individual patterns, however the first transition, for completely connected networks, occurs only when the network is structured.

  6. Functional and structural neural network characterization of serotonin transporter knockout rats.

    Directory of Open Access Journals (Sweden)

    Kajo van der Marel

    Full Text Available Brain serotonin homeostasis is crucially maintained by the serotonin transporter (5-HTT, and its down-regulation has been linked to increased vulnerability for anxiety- and depression-related behavior. Studies in 5-HTT knockout (5-HTT(-/- rodents have associated inherited reduced functional expression of 5-HTT with increased sensitivity to adverse as well as rewarding environmental stimuli, and in particular cocaine hyperresponsivity. 5-HTT down-regulation may affect normal neuronal wiring of implicated corticolimbic cerebral structures. To further our understanding of its contribution to potential alterations in basal functional and structural properties of neural network configurations, we applied resting-state functional MRI (fMRI, pharmacological MRI of cocaine-induced activation, and diffusion tensor imaging (DTI in 5-HTT(-/- rats and wild-type controls (5-HTT(+/+. We found that baseline functional connectivity values and cocaine-induced neural activity within the corticolimbic network was not significantly altered in 5-HTT(-/- versus 5-HTT(+/+ rats. Similarly, DTI revealed mostly intact white matter structural integrity, except for a reduced fractional anisotropy in the genu of the corpus callosum of 5-HTT(-/- rats. At the macroscopic level, analyses of complex graphs constructed from either functional connectivity values or structural DTI-based tractography results revealed that key properties of brain network organization were essentially similar between 5-HTT(+/+ and 5-HTT(-/- rats. The individual tests for differences between 5-HTT(+/+ and 5-HTT(-/- rats were capable of detecting significant effects ranging from 5.8% (fractional anisotropy to 26.1% (pharmacological MRI and 29.3% (functional connectivity. Tentatively, lower fractional anisotropy in the genu of the corpus callosum could indicate a reduced capacity for information integration across hemispheres in 5-HTT(-/- rats. Overall, the comparison of 5-HTT(-/- and wild-type rats

  7. Structural neural correlates of multitasking: A voxel-based morphometry study.

    Science.gov (United States)

    Zhang, Rui-Ting; Yang, Tian-Xiao; Wang, Yi; Sui, Yuxiu; Yao, Jingjing; Zhang, Chen-Yuan; Cheung, Eric F C; Chan, Raymond C K

    2016-12-01

    Multitasking refers to the ability to organize assorted tasks efficiently in a short period of time, which plays an important role in daily life. However, the structural neural correlates of multitasking performance remain unclear. The present study aimed at exploring the brain regions associated with multitasking performance using global correlation analysis. Twenty-six healthy participants first underwent structural brain scans and then performed the modified Six Element Test, which required participants to attempt six subtasks in 10 min while obeying a specific rule. Voxel-based morphometry of the whole brain was used to detect the structural correlates of multitasking ability. Grey matter volume of the anterior cingulate cortex (ACC) was positively correlated with the overall performance and time monitoring in multitasking. In addition, white matter volume of the anterior thalamic radiation (ATR) was also positively correlated with time monitoring during multitasking. Other related brain regions associated with multitasking included the superior frontal gyrus, the inferior occipital gyrus, the lingual gyrus, and the inferior longitudinal fasciculus. No significant correlation was found between grey matter volume of the prefrontal cortex (Brodmann Area 10) and multitasking performance. Using a global correlation analysis to examine various aspects of multitasking performance, this study provided new insights into the structural neural correlates of multitasking ability. In particular, the ACC was identified as an important brain region that played both a general and a specific time-monitoring role in multitasking, extending the role of the ACC from lesioned populations to healthy populations. The present findings also support the view that the ATR may influence multitasking performance by affecting time-monitoring abilities. © 2016 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  8. Boundary cap neural crest stem cells homotopically implanted to the injured dorsal root transitional zone give rise to different types of neurons and glia in adult rodents

    OpenAIRE

    Trolle, Carl; Abrahamsson, Ninnie; König, Niclas; Vasylovska, Svitlana; Kozlova, Elena

    2014-01-01

    The boundary cap is a transient group of neural crest-derived cells located at the presumptive dorsal root transitional zone (DRTZ) when sensory axons enter the spinal cord during development. Later, these cells migrate to dorsal root ganglia and differentiate into subtypes of sensory neurons and glia. After birth when the DRTZ is established, sensory axons are no longer able to enter the spinal cord. Here we explored the fate of mouse bNCSCs implanted to the uninjured DRTZ after dorsal root ...

  9. Artificial-neural-network-based classification of mammographic microcalcifications using image structure features

    Science.gov (United States)

    Dhawan, Atam P.; Chitre, Yateen S.; Moskowitz, Myron

    1993-07-01

    Mammography associated with clinical breast examination and self-breast examination is the only effective and viable method for mass breast screening. It is however, difficult to distinguish between benign and malignant microcalcifications associated with breast cancer. Most of the techniques used in the computerized analysis of mammographic microcalcifications segment the digitized gray-level image into regions representing microcalcifications. We present a second-order gray-level histogram based feature extraction approach to extract microcalcification features. These features, called image structure features, are computed from the second-order gray-level histogram statistics, and do not require segmentation of the original image into binary regions. Several image structure features were computed for 100 cases of `difficult to diagnose' microcalcification cases with known biopsy results. These features were analyzed in a correlation study which provided a set of five best image structure features. A feedforward backpropagation neural network was used to classify mammographic microcalcifications using the image structure features. The network was trained on 10 cases of mammographic microcalcifications and tested on additional 85 `difficult-to-diagnose' microcalcifications cases using the selected image structure features. The trained network yielded good results for classification of `difficult-to- diagnose' microcalcifications into benign and malignant categories.

  10. A closer look at the apparent correlation of structural and functional connectivity in excitable neural networks

    Science.gov (United States)

    Messé, Arnaud; Hütt, Marc-Thorsten; König, Peter; Hilgetag, Claus C.

    2015-01-01

    The relationship between the structural connectivity (SC) and functional connectivity (FC) of neural systems is a central focus in brain network science. It is an open question, however, how strongly the SC-FC relationship depends on specific topological features of brain networks or the models used for describing excitable dynamics. Using a basic model of discrete excitable units that follow a susceptible - excited - refractory dynamic cycle (SER model), we here analyze how functional connectivity is shaped by the topological features of a neural network, in particular its modularity. We compared the results obtained by the SER model with corresponding simulations by another well established dynamic mechanism, the Fitzhugh-Nagumo model, in order to explore general features of the SC-FC relationship. We showed that apparent discrepancies between the results produced by the two models can be resolved by adjusting the time window of integration of co-activations from which the FC is derived, providing a clearer distinction between co-activations and sequential activations. Thus, network modularity appears as an important factor shaping the FC-SC relationship across different dynamic models.

  11. CNNdel: Calling Structural Variations on Low Coverage Data Based on Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2017-01-01

    Full Text Available Many structural variations (SVs detection methods have been proposed due to the popularization of next-generation sequencing (NGS. These SV calling methods use different SV-property-dependent features; however, they all suffer from poor accuracy when running on low coverage sequences. The union of results from these tools achieves fairly high sensitivity but still produces low accuracy on low coverage sequence data. That is, these methods contain many false positives. In this paper, we present CNNdel, an approach for calling deletions from paired-end reads. CNNdel gathers SV candidates reported by multiple tools and then extracts features from aligned BAM files at the positions of candidates. With labeled feature-expressed candidates as a training set, CNNdel trains convolutional neural networks (CNNs to distinguish true unlabeled candidates from false ones. Results show that CNNdel works well with NGS reads from 26 low coverage genomes of the 1000 Genomes Project. The paper demonstrates that convolutional neural networks can automatically assign the priority of SV features and reduce the false positives efficaciously.

  12. A hybrid neural network structure for application to nondestructive TRU waste assay

    Energy Technology Data Exchange (ETDEWEB)

    Becker, G. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    The determination of transuranic (TRU) and associated radioactive material quantities entrained in waste forms is a necessary component. of waste characterization. Measurement performance requirements are specified in the National TRU Waste Characterization Program quality assurance plan for which compliance must be demonstrated prior to the transportation and disposition of wastes. With respect to this criterion, the existing TRU nondestructive waste assay (NDA) capability is inadequate for a significant fraction of the US Department of Energy (DOE) complex waste inventory. This is a result of the general application of safeguard-type measurement and calibration schemes to waste form configurations. Incompatibilities between such measurement methods and actual waste form configurations complicate regulation compliance demonstration processes and illustrate the need for an alternate measurement interpretation paradigm. Hence, it appears necessary to supplement or perhaps restructure the perceived solution and approach to the waste NDA problem. The first step is to understand the magnitude of the waste matrix/source attribute space associated with those waste form configurations in inventory and how this creates complexities and unknowns with respect to existing NDA methods. Once defined and/or bounded, a conceptual method must be developed that specifies the necessary tools and the framework in which the tools are used. A promising framework is a hybridized neural network structure. Discussed are some typical complications associated with conventional waste NDA techniques and how improvements can be obtained through the application of neural networks.

  13. Embryonic requirements for ErbB signaling in neural crest development and adult pigment pattern formation

    Science.gov (United States)

    Budi, Erine H.; Patterson, Larissa B.; Parichy, David M.

    2009-01-01

    SUMMARY Vertebrate pigment cells are derived from neural crest cells and are a useful system for studying neural crest-derived traits during post-embryonic development. In zebrafish, neural crest-derived melanophores differentiate during embryogenesis to produce stripes in the early larva. Dramatic changes to the pigment pattern occur subsequently during the larva-to-adult transformation, or metamorphosis. At this time, embryonic melanophores are replaced by newly differentiating metamorphic melanophores that form the adult stripes. Mutants with normal embryonic/early larval pigment patterns but defective adult patterns identify factors required uniquely to establish, maintain, or recruit the latent precursors to metamorphic melanophores. We show that one such mutant, picasso, lacks most metamorphic melanophores and results from mutations in the ErbB gene erbb3b, encoding an EGFR-like receptor tyrosine kinase. To identify critical periods for ErbB activities, we treated fish with pharmacological ErbB inhibitors and also knocked-down erbb3b by morpholino injection. These analyses reveal an embryonic critical period for ErbB signaling in promoting later pigment pattern metamorphosis, despite the normal patterning of embryonic/early larval melanophores. We further demonstrate a peak requirement during neural crest migration that correlates with early defects in neural crest pathfinding and peripheral ganglion formation. Finally, we show that erbb3b activities are both autonomous and non-autonomous to the metamorphic melanophore lineage. These data identify a very early, embryonic, requirement for erbb3b in the development of much later metamorphic melanophores, and suggest complex modes by which ErbB signals promote adult pigment pattern development. PMID:18508863

  14. Incorporation of iodine into apatite structure: a crystal chemistry approach using Artificial Neural Network

    Science.gov (United States)

    Wang, Jianwei

    2015-06-01

    Materials with apatite crystal structure provide a great potential for incorporating the long-lived radioactive iodine isotope (129I) in the form of iodide (I-) from nuclear waste streams. Because of its durability and potentially high iodine content, the apatite waste form can reduce iodine release rate and minimize the waste volume. Crystal structure and composition of apatite was investigated for iodide incorporation into the channel of the structure using Artificial Neural Network. A total of 86 experimentally determined apatite crystal structures of different compositions were compiled from literature, and 46 of them were used to train the networks and 42 were used to test the performance of the trained networks. The results show that the performances of the networks are satisfactory for predictions of unit cell parameters a and c and channel size of the structure. The trained and tested networks were then used to predict unknown compositions of apatite that incorporates iodide. With a crystal chemistry consideration, chemical compositions that lead to matching the size of the structural channel to the size of iodide were then predicted to be able to incorporate iodide in the structural channel. The calculations suggest that combinations of A site cations of Ag+, K+, Sr2+, Pb2+, Ba2+, and Cs+, and X site cations, mostly formed tetrahedron, of Mn5+, As5+, Cr5+, V5+, Mo5+, Si4+, Ge4+, and Re7+ are possible apatite compositions that are able to incorporate iodide. The charge balance of different apatite compositions can be achieved by multiple substitutions at a single site or coupled substitutions at both A and X sites. The results give important clues for designing experiments to synthesize new apatite compositions and also provide a fundamental understanding how iodide is incorporated in the apatite structure. This understanding can provide important insights for apatite waste forms design by optimizing the chemical composition and synthesis procedure.

  15. A simple structure wavelet transform circuit employing function link neural networks and SI filters

    Science.gov (United States)

    Mu, Li; Yigang, He

    2016-12-01

    Signal processing by means of analog circuits offers advantages from a power consumption viewpoint. Implementing wavelet transform (WT) using analog circuits is of great interest when low-power consumption becomes an important issue. In this article, a novel simple structure WT circuit in analog domain is presented by employing functional link neural network (FLNN) and switched-current (SI) filters. First, the wavelet base is approximated using FLNN algorithms for giving a filter transfer function that is suitable for simple structure WT circuit implementation. Next, the WT circuit is constructed with the wavelet filter bank, whose impulse response is the approximated wavelet and its dilations. The filter design that follows is based on a follow-the-leader feedback (FLF) structure with multiple output bilinear SI integrators and current mirrors as the main building blocks. SI filter is well suited for this application since the dilation constant across different scales of the transform can be precisely implemented and controlled by the clock frequency of the circuit with the same system architecture. Finally, to illustrate the design procedure, a seventh-order FLNN-approximated Gaussian wavelet is implemented as an example. Simulations have successfully verified that the designed simple structure WT circuit has low sensitivity, low-power consumption and litter effect to the imperfections.

  16. The necessity of connection structures in neural models of variable binding.

    Science.gov (United States)

    van der Velde, Frank; de Kamps, Marc

    2015-08-01

    In his review of neural binding problems, Feldman (Cogn Neurodyn 7:1-11, 2013) addressed two types of models as solutions of (novel) variable binding. The one type uses labels such as phase synchrony of activation. The other ('connectivity based') type uses dedicated connections structures to achieve novel variable binding. Feldman argued that label (synchrony) based models are the only possible candidates to handle novel variable binding, whereas connectivity based models lack the flexibility required for that. We argue and illustrate that Feldman's analysis is incorrect. Contrary to his conclusion, connectivity based models are the only viable candidates for models of novel variable binding because they are the only type of models that can produce behavior. We will show that the label (synchrony) based models analyzed by Feldman are in fact examples of connectivity based models. Feldman's analysis that novel variable binding can be achieved without existing connection structures seems to result from analyzing the binding problem in a wrong frame of reference, in particular in an outside instead of the required inside frame of reference. Connectivity based models can be models of novel variable binding when they possess a connection structure that resembles a small-world network, as found in the brain. We will illustrate binding with this type of model with episode binding and the binding of words, including novel words, in sentence structures.

  17. Neural-Net Based Optical NDE Method for Structural Health Monitoring

    Science.gov (United States)

    Decker, Arthur J.; Weiland, Kenneth E.

    2003-01-01

    This paper answers some performance and calibration questions about a non-destructive-evaluation (NDE) procedure that uses artificial neural networks to detect structural damage or other changes from sub-sampled characteristic patterns. The method shows increasing sensitivity as the number of sub-samples increases from 108 to 6912. The sensitivity of this robust NDE method is not affected by noisy excitations of the first vibration mode. A calibration procedure is proposed and demonstrated where the output of a trained net can be correlated with the outputs of the point sensors used for vibration testing. The calibration procedure is based on controlled changes of fastener torques. A heterodyne interferometer is used as a displacement sensor for a demonstration of the challenges to be handled in using standard point sensors for calibration.

  18. Nonlinear dynamic systems identification using recurrent interval type-2 TSK fuzzy neural network - A novel structure.

    Science.gov (United States)

    El-Nagar, Ahmad M

    2017-10-31

    In this study, a novel structure of a recurrent interval type-2 Takagi-Sugeno-Kang (TSK) fuzzy neural network (FNN) is introduced for nonlinear dynamic and time-varying systems identification. It combines the type-2 fuzzy sets (T2FSs) and a recurrent FNN to avoid the data uncertainties. The fuzzy firing strengths in the proposed structure are returned to the network input as internal variables. The interval type-2 fuzzy sets (IT2FSs) is used to describe the antecedent part for each rule while the consequent part is a TSK-type, which is a linear function of the internal variables and the external inputs with interval weights. All the type-2 fuzzy rules for the proposed RIT2TSKFNN are learned on-line based on structure and parameter learning, which are performed using the type-2 fuzzy clustering. The antecedent and consequent parameters of the proposed RIT2TSKFNN are updated based on the Lyapunov function to achieve network stability. The obtained results indicate that our proposed network has a small root mean square error (RMSE) and a small integral of square error (ISE) with a small number of rules and a small computation time compared with other type-2 FNNs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Preschool externalizing behavior predicts gender-specific variation in adolescent neural structure.

    Directory of Open Access Journals (Sweden)

    Jessica Z K Caldwell

    Full Text Available Dysfunction in the prefrontal cortex, amygdala, and hippocampus is believed to underlie the development of much psychopathology. However, to date only limited longitudinal data relate early behavior with neural structure later in life. Our objective was to examine the relationship of early life externalizing behavior with adolescent brain structure. We report here the first longitudinal study linking externalizing behavior during preschool to brain structure during adolescence. We examined the relationship of preschool externalizing behavior with amygdala, hippocampus, and prefrontal cortex volumes at age 15 years in a community sample of 76 adolescents followed longitudinally since their mothers' pregnancy. A significant gender by externalizing behavior interaction revealed that males-but not females-with greater early childhood externalizing behavior had smaller amygdala volumes at adolescence (t = 2.33, p = .023. No significant results were found for the hippocampus or the prefrontal cortex. Greater early externalizing behavior also related to smaller volume of a cluster including the angular gyrus and tempoparietal junction across genders. Results were not attributable to the impact of preschool anxiety, preschool maternal stress, school-age internalizing or externalizing behaviors, or adolescent substance use. These findings demonstrate a novel, gender-specific relationship between early-childhood externalizing behavior and adolescent amygdala volume, as well as a cross-gender result for the angular gyrus and tempoparietal junction.

  20. Structural basis for cholinergic regulation of neural circuits in the mouse olfactory bulb.

    Science.gov (United States)

    Hamamoto, Masakazu; Kiyokage, Emi; Sohn, Jaerin; Hioki, Hiroyuki; Harada, Tamotsu; Toida, Kazunori

    2017-02-15

    Odor information is regulated by olfactory inputs, bulbar interneurons, and centrifugal inputs in the olfactory bulb (OB). Cholinergic neurons projecting from the nucleus of the horizontal limb of the diagonal band of Broca and the magnocellular preoptic nucleus are one of the primary centrifugal inputs to the OB. In this study, we focused on cholinergic regulation of the OB and analyzed neural morphology with a particular emphasis on the projection pathways of cholinergic neurons. Single-cell imaging of a specific neuron within dense fibers is critical to evaluate the structure and function of the neural circuits. We labeled cholinergic neurons by infection with virus vector and then reconstructed them three-dimensionally. We also examined the ultramicrostructure of synapses by electron microscopy tomography. To further clarify the function of cholinergic neurons, we performed confocal laser scanning microscopy to investigate whether other neurotransmitters are present within cholinergic axons in the OB. Our results showed the first visualization of complete cholinergic neurons, including axons projecting to the OB, and also revealed frequent axonal branching within the OB where it innervated multiple glomeruli in different areas. Furthermore, electron tomography demonstrated that cholinergic axons formed asymmetrical synapses with a morphological variety of thicknesses of the postsynaptic density. Although we have not yet detected the presence of other neurotransmitters, the range of synaptic morphology suggests multiple modes of transmission. The present study elucidates the ways that cholinergic neurons could contribute to the elaborate mechanisms involved in olfactory processing in the OB. J. Comp. Neurol. 525:574-591, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Sensory-related neural activity regulates the structure of vascular networks in the cerebral cortex

    Science.gov (United States)

    Lacoste, Baptiste; Comin, Cesar H.; Ben-Zvi, Ayal; Kaeser, Pascal S.; Xu, Xiaoyin; Costa, Luciano da F.; Gu, Chenghua

    2014-01-01

    SUMMARY Neurovascular interactions are essential for proper brain function. While the effect of neural activity on cerebral blood flow has been extensively studied, whether neural activity influences vascular patterning remains elusive. Here, we demonstrate that neural activity promotes the formation of vascular networks in the early postnatal mouse barrel cortex. Using a combination of genetics, imaging, and computational tools to allow simultaneous analysis of neuronal and vascular components, we found that vascular density and branching were decreased in the barrel cortex when sensory input was reduced by either a complete deafferentation, a genetic impairment of neurotransmitter release at thalamocortical synapses, or a selective reduction of sensory-related neural activity by whisker plucking. In contrast, enhancement of neural activity by whisker stimulation led to an increase in vascular density and branching. The finding that neural activity is necessary and sufficient to trigger alterations of vascular networks reveals a novel feature of neurovascular interactions. PMID:25155955

  2. Sensory-related neural activity regulates the structure of vascular networks in the cerebral cortex.

    Science.gov (United States)

    Lacoste, Baptiste; Comin, Cesar H; Ben-Zvi, Ayal; Kaeser, Pascal S; Xu, Xiaoyin; Costa, Luciano da F; Gu, Chenghua

    2014-09-03

    Neurovascular interactions are essential for proper brain function. While the effect of neural activity on cerebral blood flow has been extensively studied, whether or not neural activity influences vascular patterning remains elusive. Here, we demonstrate that neural activity promotes the formation of vascular networks in the early postnatal mouse barrel cortex. Using a combination of genetics, imaging, and computational tools to allow simultaneous analysis of neuronal and vascular components, we found that vascular density and branching were decreased in the barrel cortex when sensory input was reduced by either a complete deafferentation, a genetic impairment of neurotransmitter release at thalamocortical synapses, or a selective reduction of sensory-related neural activity by whisker plucking. In contrast, enhancement of neural activity by whisker stimulation led to an increase in vascular density and branching. The finding that neural activity is necessary and sufficient to trigger alterations of vascular networks reveals an important feature of neurovascular interactions. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. A Damage Prognosis Method of Girder Structures Based on Wavelet Neural Networks

    Directory of Open Access Journals (Sweden)

    Rumian Zhong

    2014-01-01

    Full Text Available Based on the basic theory of wavelet neural networks and finite element model updating method, a basic framework of damage prognosis method is proposed in this paper. Firstly, a damaged I-steel beam model testing is used to verify the feasibility and effectiveness of the proposed damage prognosis method. The results show that the predicted results of the damage prognosis method and the measured results are very well consistent, and the maximum error is less than 5%. Furthermore, Xinyihe Bridge in the Beijing-Shanghai Highway is selected as the engineering background, and the damage prognosis is conducted based on the data from the structural health monitoring system. The results show that the traffic volume will increase and seasonal differences will decrease in the next year and a half. The displacement has a slight increase and seasonal characters in the critical section of mid span, but the strain will increase distinctly. The analysis results indicate that the proposed method can be applied to the damage prognosis of girder bridge structures and has the potential for the bridge health monitoring and safety prognosis.

  4. Frontal Structural Neural Correlates of Working Memory Performance in Older Adults

    Science.gov (United States)

    Nissim, Nicole R.; O’Shea, Andrew M.; Bryant, Vaughn; Porges, Eric C.; Cohen, Ronald; Woods, Adam J.

    2017-01-01

    Working memory is an executive memory process that allows transitional information to be held and manipulated temporarily in memory stores before being forgotten or encoded into long-term memory. Working memory is necessary for everyday decision-making and problem solving, making it a fundamental process in the daily lives of older adults. Working memory relies heavily on frontal lobe structures and is known to decline with age. The current study aimed to determine the neural correlates of decreased working memory performance in the frontal lobes by comparing cortical thickness and cortical surface area from two demographically matched groups of healthy older adults, free from cognitive impairment, with high versus low N-Back working memory performance (N = 56; average age = 70.29 ± 10.64). High-resolution structural T1-weighted images (1 mm isotropic voxels) were obtained on a 3T Philips MRI scanner. When compared to high performers, low performers exhibited significantly decreased cortical surface area in three frontal lobe regions lateralized to the right hemisphere: medial orbital frontal gyrus, inferior frontal gyrus, and superior frontal gyrus (FDR p working memory function. PMID:28101053

  5. BrainSegNet: a convolutional neural network architecture for automated segmentation of human brain structures.

    Science.gov (United States)

    Mehta, Raghav; Majumdar, Aabhas; Sivaswamy, Jayanthi

    2017-04-01

    Automated segmentation of cortical and noncortical human brain structures has been hitherto approached using nonrigid registration followed by label fusion. We propose an alternative approach for this using a convolutional neural network (CNN) which classifies a voxel into one of many structures. Four different kinds of two-dimensional and three-dimensional intensity patches are extracted for each voxel, providing local and global (context) information to the CNN. The proposed approach is evaluated on five different publicly available datasets which differ in the number of labels per volume. The obtained mean Dice coefficient varied according to the number of labels, for example, it is [Formula: see text] and [Formula: see text] for datasets with the least (32) and the most (134) number of labels, respectively. These figures are marginally better or on par with those obtained with the current state-of-the-art methods on nearly all datasets, at a reduced computational time. The consistently good performance of the proposed method across datasets and no requirement for registration make it attractive for many applications where reduced computational time is necessary.

  6. Demystifying Multitask Deep Neural Networks for Quantitative Structure-Activity Relationships.

    Science.gov (United States)

    Xu, Yuting; Ma, Junshui; Liaw, Andy; Sheridan, Robert P; Svetnik, Vladimir

    2017-10-23

    Deep neural networks (DNNs) are complex computational models that have found great success in many artificial intelligence applications, such as computer vision1,2 and natural language processing.3,4 In the past four years, DNNs have also generated promising results for quantitative structure-activity relationship (QSAR) tasks.5,6 Previous work showed that DNNs can routinely make better predictions than traditional methods, such as random forests, on a diverse collection of QSAR data sets. It was also found that multitask DNN models-those trained on and predicting multiple QSAR properties simultaneously-outperform DNNs trained separately on the individual data sets in many, but not all, tasks. To date there has been no satisfactory explanation of why the QSAR of one task embedded in a multitask DNN can borrow information from other unrelated QSAR tasks. Thus, using multitask DNNs in a way that consistently provides a predictive advantage becomes a challenge. In this work, we explored why multitask DNNs make a difference in predictive performance. Our results show that during prediction a multitask DNN does borrow "signal" from molecules with similar structures in the training sets of the other tasks. However, whether this borrowing leads to better or worse predictive performance depends on whether the activities are correlated. On the basis of this, we have developed a strategy to use multitask DNNs that incorporate prior domain knowledge to select training sets with correlated activities, and we demonstrate its effectiveness on several examples.

  7. Neural correlates and structural markers of emotion dysregulation in traumatized civilians

    Science.gov (United States)

    Stevens, Jennifer S.; van Rooij, Sanne J.H.; Ely, Timothy D.; Fani, Negar; Jovanovic, Tanja; Ressler, Kerry J.; Bradley, Bekh

    2017-01-01

    Abstract Emotion dysregulation (ED) reflects deficits in understanding and managing negative emotions and may serve as a transdiagnostic mechanism of risk for trauma-related psychiatric disorders. Therefore, understanding neurobiological substrates of ED in traumatized individuals is critical. The present study examined associations between ED and baseline structural differences and patterns of functional activity during an emotional task in a sample of African American women (n = 136) recruited from an urban hospital. Participants engaged in a structural magnetic resonance imaging (MRI) session. A subsample (n = 92) also viewed emotional face stimuli during functional MRI. ED was related to greater dorsal anterior cingulate cortex (dACC) surface area (Pcorr < 0.05) and increased dorsomedial prefrontal cortex (dmPFC) and ventromedial PFC activation to fearful stimuli (Pcorr < 0.05), independent of the trauma and psychiatric symptoms. DMPFC activation was also associated with posttraumatic stress disorder and depression symptoms. Mediation analyses showed a significant mediation effect of ED on the relation between dmPFC activation and psychiatric symptoms. These findings are important since dACC and dmPFC play central roles in fear expression and attention to emotional stimuli. Future longitudinal research is needed to help solidify a model of risk for how such neural substrates may be impacted by traumatic experiences to create ED. PMID:28158800

  8. Inverse analysis of aerodynamic loads from strain information using structural models and neural networks

    Science.gov (United States)

    Wada, Daichi; Sugimoto, Yohei

    2017-04-01

    Aerodynamic loads on aircraft wings are one of the key parameters to be monitored for reliable and effective aircraft operations and management. Flight data of the aerodynamic loads would be used onboard to control the aircraft and accumulated data would be used for the condition-based maintenance and the feedback for the fatigue and critical load modeling. The effective sensing techniques such as fiber optic distributed sensing have been developed and demonstrated promising capability of monitoring structural responses, i.e., strains on the surface of the aircraft wings. By using the developed techniques, load identification methods for structural health monitoring are expected to be established. The typical inverse analysis for load identification using strains calculates the loads in a discrete form of concentrated forces, however, the distributed form of the loads is essential for the accurate and reliable estimation of the critical stress at structural parts. In this study, we demonstrate an inverse analysis to identify the distributed loads from measured strain information. The introduced inverse analysis technique calculates aerodynamic loads not in a discrete but in a distributed manner based on a finite element model. In order to verify the technique through numerical simulations, we apply static aerodynamic loads on a flat panel model, and conduct the inverse identification of the load distributions. We take two approaches to build the inverse system between loads and strains. The first one uses structural models and the second one uses neural networks. We compare the performance of the two approaches, and discuss the effect of the amount of the strain sensing information.

  9. Revisiting the Neural Basis of Acquired Amusia: Lesion Patterns and Structural Changes Underlying Amusia Recovery

    Directory of Open Access Journals (Sweden)

    Aleksi J. Sihvonen

    2017-07-01

    Full Text Available Although, acquired amusia is a common deficit following stroke, relatively little is still known about its precise neural basis, let alone to its recovery. Recently, we performed a voxel-based lesion-symptom mapping (VLSM and morphometry (VBM study which revealed a right lateralized lesion pattern, and longitudinal gray matter volume (GMV and white matter volume (WMV changes that were specifically associated with acquired amusia after stroke. In the present study, using a larger sample of stroke patients (N = 90, we aimed to replicate and extend the previous structural findings as well as to determine the lesion patterns and volumetric changes associated with amusia recovery. Structural MRIs were acquired at acute and 6-month post-stroke stages. Music perception was behaviorally assessed at acute and 3-month post-stroke stages using the Scale and Rhythm subtests of the Montreal Battery of Evaluation of Amusia (MBEA. Using these scores, the patients were classified as non-amusic, recovered amusic, and non-recovered amusic. The results of the acute stage VLSM analyses and the longitudinal VBM analyses converged to show that more severe and persistent (non-recovered amusia was associated with an extensive pattern of lesions and GMV/WMV decrease in right temporal, frontal, parietal, striatal, and limbic areas. In contrast, less severe and transient (recovered amusia was linked to lesions specifically in left inferior frontal gyrus as well as to a GMV decrease in right parietal areas. Separate continuous analyses of MBEA Scale and Rhythm scores showed extensively overlapping lesion pattern in right temporal, frontal, and subcortical structures as well as in the right insula. Interestingly, the recovered pitch amusia was related to smaller GMV decreases in the temporoparietal junction whereas the recovered rhythm amusia was associated to smaller GMV decreases in the inferior temporal pole. Overall, the results provide a more comprehensive picture of

  10. Capturing multidimensionality in stroke aphasia: mapping principal behavioural components to neural structures.

    Science.gov (United States)

    Butler, Rebecca A; Lambon Ralph, Matthew A; Woollams, Anna M

    2014-12-01

    Stroke aphasia is a multidimensional disorder in which patient profiles reflect variation along multiple behavioural continua. We present a novel approach to separating the principal aspects of chronic aphasic performance and isolating their neural bases. Principal components analysis was used to extract core factors underlying performance of 31 participants with chronic stroke aphasia on a large, detailed battery of behavioural assessments. The rotated principle components analysis revealed three key factors, which we labelled as phonology, semantic and executive/cognition on the basis of the common elements in the tests that loaded most strongly on each component. The phonology factor explained the most variance, followed by the semantic factor and then the executive-cognition factor. The use of principle components analysis rendered participants' scores on these three factors orthogonal and therefore ideal for use as simultaneous continuous predictors in a voxel-based correlational methodology analysis of high resolution structural scans. Phonological processing ability was uniquely related to left posterior perisylvian regions including Heschl's gyrus, posterior middle and superior temporal gyri and superior temporal sulcus, as well as the white matter underlying the posterior superior temporal gyrus. The semantic factor was uniquely related to left anterior middle temporal gyrus and the underlying temporal stem. The executive-cognition factor was not correlated selectively with the structural integrity of any particular region, as might be expected in light of the widely-distributed and multi-functional nature of the regions that support executive functions. The identified phonological and semantic areas align well with those highlighted by other methodologies such as functional neuroimaging and neurostimulation. The use of principle components analysis allowed us to characterize the neural bases of participants' behavioural performance more robustly and

  11. Capturing multidimensionality in stroke aphasia: mapping principal behavioural components to neural structures

    Science.gov (United States)

    Butler, Rebecca A.

    2014-01-01

    Stroke aphasia is a multidimensional disorder in which patient profiles reflect variation along multiple behavioural continua. We present a novel approach to separating the principal aspects of chronic aphasic performance and isolating their neural bases. Principal components analysis was used to extract core factors underlying performance of 31 participants with chronic stroke aphasia on a large, detailed battery of behavioural assessments. The rotated principle components analysis revealed three key factors, which we labelled as phonology, semantic and executive/cognition on the basis of the common elements in the tests that loaded most strongly on each component. The phonology factor explained the most variance, followed by the semantic factor and then the executive-cognition factor. The use of principle components analysis rendered participants’ scores on these three factors orthogonal and therefore ideal for use as simultaneous continuous predictors in a voxel-based correlational methodology analysis of high resolution structural scans. Phonological processing ability was uniquely related to left posterior perisylvian regions including Heschl’s gyrus, posterior middle and superior temporal gyri and superior temporal sulcus, as well as the white matter underlying the posterior superior temporal gyrus. The semantic factor was uniquely related to left anterior middle temporal gyrus and the underlying temporal stem. The executive-cognition factor was not correlated selectively with the structural integrity of any particular region, as might be expected in light of the widely-distributed and multi-functional nature of the regions that support executive functions. The identified phonological and semantic areas align well with those highlighted by other methodologies such as functional neuroimaging and neurostimulation. The use of principle components analysis allowed us to characterize the neural bases of participants’ behavioural performance more robustly and

  12. A place for time: the spatiotemporal structure of neural dynamics during natural audition

    NARCIS (Netherlands)

    Stephens, G.J.; Honey, C.J.; Hasson, U.

    2013-01-01

    We use functional magnetic resonance imaging (fMRI) to analyze neural responses to natural auditory stimuli. We characterize the fMRI time series through the shape of the voxel power spectrum and find that the timescales of neural dynamics vary along a spatial gradient, with faster dynamics in early

  13. Aebp2 as an epigenetic regulator for neural crest cells.

    Directory of Open Access Journals (Sweden)

    Hana Kim

    Full Text Available Aebp2 is a potential targeting protein for the mammalian Polycomb Repression Complex 2 (PRC2. We generated a mutant mouse line disrupting the transcription of Aebp2 to investigate its in vivo roles. Aebp2-mutant homozygotes were embryonic lethal while heterozygotes survived to adulthood with fertility. In developing mouse embryos, Aebp2 is expressed mainly within cells of neural crest origin. In addition, many heterozygotes display a set of phenotypes, enlarged colon and hypopigmentation, similar to those observed in human patients with Hirschsprung's disease and Waardenburg syndrome. These phenotypes are usually caused by the absence of the neural crest-derived ganglia in hindguts and melanocytes. ChIP analyses demonstrated that the majority of the genes involved in the migration and development process of neural crest cells are downstream target genes of AEBP2 and PRC2. Furthermore, expression analyses confirmed that some of these genes are indeed affected in the Aebp2 heterozygotes. Taken together, these results suggest that Aebp2 may regulate the migration and development of the neural crest cells through the PRC2-mediated epigenetic mechanism.

  14. Feature Selection Combined with Neural Network Structure Optimization for HIV-1 Protease Cleavage Site Prediction

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2015-01-01

    Full Text Available It is crucial to understand the specificity of HIV-1 protease for designing HIV-1 protease inhibitors. In this paper, a new feature selection method combined with neural network structure optimization is proposed to analyze the specificity of HIV-1 protease and find the important positions in an octapeptide that determined its cleavability. Two kinds of newly proposed features based on Amino Acid Index database plus traditional orthogonal encoding features are used in this paper, taking both physiochemical and sequence information into consideration. Results of feature selection prove that p2, p1, p1′, and p2′ are the most important positions. Two feature fusion methods are used in this paper: combination fusion and decision fusion aiming to get comprehensive feature representation and improve prediction performance. Decision fusion of subsets that getting after feature selection obtains excellent prediction performance, which proves feature selection combined with decision fusion is an effective and useful method for the task of HIV-1 protease cleavage site prediction. The results and analysis in this paper can provide useful instruction and help designing HIV-1 protease inhibitor in the future.

  15. Feature Selection Combined with Neural Network Structure Optimization for HIV-1 Protease Cleavage Site Prediction.

    Science.gov (United States)

    Liu, Hui; Shi, Xiaomiao; Guo, Dongmei; Zhao, Zuowei; Yimin

    2015-01-01

    It is crucial to understand the specificity of HIV-1 protease for designing HIV-1 protease inhibitors. In this paper, a new feature selection method combined with neural network structure optimization is proposed to analyze the specificity of HIV-1 protease and find the important positions in an octapeptide that determined its cleavability. Two kinds of newly proposed features based on Amino Acid Index database plus traditional orthogonal encoding features are used in this paper, taking both physiochemical and sequence information into consideration. Results of feature selection prove that p2, p1, p1', and p2' are the most important positions. Two feature fusion methods are used in this paper: combination fusion and decision fusion aiming to get comprehensive feature representation and improve prediction performance. Decision fusion of subsets that getting after feature selection obtains excellent prediction performance, which proves feature selection combined with decision fusion is an effective and useful method for the task of HIV-1 protease cleavage site prediction. The results and analysis in this paper can provide useful instruction and help designing HIV-1 protease inhibitor in the future.

  16. The neural substrates of complex argument structure representations: Processing 'alternating transitivity' verbs.

    Science.gov (United States)

    Meltzer-Asscher, Aya; Schuchard, Julia; den Ouden, Dirk-Bart; Thompson, Cynthia K

    This study examines the neural correlates of processing verbal entries with multiple argument structures using fMRI. We compared brain activation in response to 'alternating transitivity' verbs, corresponding to two different verbal alternates - one transitive and one intransitive - and simple verbs, with only one, intransitive, thematic grid. Fourteen young healthy participants performed a lexical decision task with the two verb types. Results showed significantly greater activation in the angular and supramarginal gyri (BAs 39 and 40) extending to the posterior superior and middle temporal gyri bilaterally, for alternating compared to simple verbs. Additional activation was detected in bilateral middle and superior frontal gyri (BAs 8 and 9). The opposite contrast, simple compared to alternating verbs, showed no significant differential activation in any regions of the brain. These findings are consistent with previous studies implicating a posterior network including the superior temporal, supramarginal and angular gyri for processing verbs with multiple thematic roles, as well as with those suggesting involvement of the middle and superior frontal gyri in lexical ambiguity processing. However, because 'alternating transitivity' verbs differ from simple intransitives with regard to both the number of thematic grids (two vs. one) and the number of thematic roles (two vs. one), our findings do not distinguish between activations associated with these two differences.

  17. The neural substrates of complex argument structure representations: Processing ‘alternating transitivity’ verbs

    Science.gov (United States)

    Meltzer-Asscher, Aya; Schuchard, Julia; den Ouden, Dirk-Bart; Thompson, Cynthia K.

    2015-01-01

    This study examines the neural correlates of processing verbal entries with multiple argument structures using fMRI. We compared brain activation in response to ‘alternating transitivity’ verbs, corresponding to two different verbal alternates – one transitive and one intransitive - and simple verbs, with only one, intransitive, thematic grid. Fourteen young healthy participants performed a lexical decision task with the two verb types. Results showed significantly greater activation in the angular and supramarginal gyri (BAs 39 and 40) extending to the posterior superior and middle temporal gyri bilaterally, for alternating compared to simple verbs. Additional activation was detected in bilateral middle and superior frontal gyri (BAs 8 and 9). The opposite contrast, simple compared to alternating verbs, showed no significant differential activation in any regions of the brain. These findings are consistent with previous studies implicating a posterior network including the superior temporal, supramarginal and angular gyri for processing verbs with multiple thematic roles, as well as with those suggesting involvement of the middle and superior frontal gyri in lexical ambiguity processing. However, because ‘alternating transitivity’ verbs differ from simple intransitives with regard to both the number of thematic grids (two vs. one) and the number of thematic roles (two vs. one), our findings do not distinguish between activations associated with these two differences. PMID:26139954

  18. Artificial neural network prediction of quantitative structure - retention relationships of polycyclic aromatic hydocarbons in gas chromatography

    Directory of Open Access Journals (Sweden)

    SNEZANA SREMAC

    2005-11-01

    Full Text Available A feed-forward artificial neural network (ANN model was used to link molecular structures (boiling points, connectivity indices and molecular weights and retention indices of polycyclic aromatic hydrocarbons (PAHs in linear temperature-programmed gas chromatography. A randomly taken subset of PAH retention data reported by Lee et al. [Anal. Chem. 51 (1979 768], containing retention index data for 30 PAHs, was used to make the ANN model. The prediction ability of the trained ANN was tested on unseen data for 18 PAHs from the same article, as well as on the retention data for 7 PAHs experimentally obtained in this work. In addition, two different data sets with known retention indices taken from the literature were analyzed by the same ANN model. It has been shown that the relative accuracy as the degree of agreement between the measured and the predicted retention indices in all testing sets, for most of the studied PAHs, were within the experimental error margins (±3%.

  19. A phenotypic structure and neural correlates of compulsive behaviors in adolescents.

    Directory of Open Access Journals (Sweden)

    Chantale Montigny

    Full Text Available A compulsivity spectrum has been hypothesized to exist across Obsessive-Compulsive disorder (OCD, Eating Disorders (ED, substance abuse (SA and binge-drinking (BD. The objective was to examine the validity of this compulsivity spectrum, and differentiate it from an externalizing behaviors dimension, but also to look at hypothesized personality and neural correlates.A community-sample of adolescents (N=1938; mean age 14.5 years, and their parents were recruited via high-schools in 8 European study sites. Data on adolescents' psychiatric symptoms, DSM diagnoses (DAWBA and substance use behaviors (AUDIT and ESPAD were collected through adolescent- and parent-reported questionnaires and interviews. The phenotypic structure of compulsive behaviors was then tested using structural equation modeling. The model was validated using personality variables (NEO-FFI and TCI, and Voxel-Based Morphometry (VBM analysis.Compulsivity symptoms best fit a higher-order two factor model, with ED and OCD loading onto a compulsivity factor, and BD and SA loading onto an externalizing factor, composed also of ADHD and conduct disorder symptoms. The compulsivity construct correlated with neuroticism (r=0.638; p ≤ 0.001, conscientiousness (r=0.171; p ≤ 0.001, and brain gray matter volume in left and right orbitofrontal cortex, right ventral striatum and right dorsolateral prefrontal cortex. The externalizing factor correlated with extraversion (r=0.201; p ≤ 0.001, novelty-seeking (r=0.451; p ≤ 0.001, and negatively with gray matter volume in the left inferior and middle frontal gyri.Results suggest that a compulsivity spectrum exists in an adolescent, preclinical sample and accounts for variance in both OCD and ED, but not substance-related behaviors, and can be differentiated from an externalizing spectrum.

  20. Modular Adaptive System Based on a Multi-Stage Neural Structure for Recognition of 2D Objects of Discontinuous Production

    Directory of Open Access Journals (Sweden)

    I. Topalova

    2005-03-01

    Full Text Available This is a presentation of a new system for invariant recognition of 2D objects with overlapping classes, that can not be effectively recognized with the traditional methods. The translation, scale and partial rotation invariant contour object description is transformed in a DCT spectrum space. The obtained frequency spectrums are decomposed into frequency bands in order to feed different BPG neural nets (NNs. The NNs are structured in three stages - filtering and full rotation invariance; partial recognition; general classification. The designed multi-stage BPG Neural Structure shows very good accuracy and flexibility when tested with 2D objects used in the discontinuous production. The reached speed and the opportunuty for an easy restructuring and reprogramming of the system makes it suitable for application in different applied systems for real time work.

  1. Self-awareness in neurodegenerative disease relies on neural structures mediating reward-driven attention

    Science.gov (United States)

    Shany-Ur, Tal; Lin, Nancy; Rosen, Howard J.; Sollberger, Marc; Miller, Bruce L.

    2014-01-01

    Accurate self-awareness is essential for adapting one’s tasks and goals to one’s actual abilities. Patients with neurodegenerative diseases, particularly those with right frontal involvement, often present with poor self-awareness of their functional limitations that may exacerbate their already jeopardized decision-making and behaviour. We studied the structural neuroanatomical basis for impaired self-awareness among patients with neurodegenerative disease and healthy older adults. One hundred and twenty-four participants (78 patients with neurodegenerative diseases including Alzheimer’s disease, behavioural variant frontotemporal dementia, right-temporal frontotemporal dementia, semantic variant and non-fluent variant primary progressive aphasia, and 46 healthy controls) described themselves on the Patient Competency Rating Scale, rating observable functioning across four domains (daily living activities, cognitive, emotional control, interpersonal). All participants underwent structural magnetic resonance imaging. Informants also described subjects’ functioning on the same scale. Self-awareness was measured by comparing self and informant ratings. Group differences in discrepancy scores were analysed using general linear models, controlling for age, sex and disease severity. Compared with controls, patients with behavioural variant frontotemporal dementia overestimated their functioning in all domains, patients with Alzheimer’s disease overestimated cognitive and emotional functioning, patients with right-temporal frontotemporal dementia overestimated interpersonal functioning, and patients with non-fluent aphasia overestimated emotional and interpersonal functioning. Patients with semantic variant aphasia did not overestimate functioning on any domain. To examine the neuroanatomic correlates of impaired self-awareness, discrepancy scores were correlated with brain volume using voxel-based morphometry. To identify the unique neural correlates of

  2. Analysis of the internal representations developed by neural networks for structures applied to quantitative structure--activity relationship studies of benzodiazepines.

    Science.gov (United States)

    Micheli, A; Sperduti, A; Starita, A; Bianucci, A M

    2001-01-01

    An application of recursive cascade correlation (CC) neural networks to quantitative structure-activity relationship (QSAR) studies is presented, with emphasis on the study of the internal representations developed by the neural networks. Recursive CC is a neural network model recently proposed for the processing of structured data. It allows the direct handling of chemical compounds as labeled ordered directed graphs, and constitutes a novel approach to QSAR. The adopted representation of molecular structure captures, in a quite general and flexible way, significant topological aspects and chemical functionalities for each specific class of molecules showing a particular chemical reactivity or biological activity. A class of 1,4-benzodiazepin-2-ones is analyzed by the proposed approach. It compares favorably versus the traditional QSAR treatment based on equations. To show the ability of the model in capturing most of the structural features that account for the biological activity, the internal representations developed by the networks are analyzed by principal component analysis. This analysis shows that the networks are able to discover relevant structural features just on the basis of the association between the molecular morphology and the target property (affinity).

  3. The Effect of an Enrichment Reading Program on the Cognitive Processes and Neural Structures of Children Having Reading Difficulties

    Directory of Open Access Journals (Sweden)

    Hayriye Gül KURUYER

    2017-06-01

    Full Text Available The main purpose of the current study is to explain the effect of an enrichment reading program on the cognitive processes and neural structures of children experiencing reading difficulties. The current study was carried out in line with a single-subject research method and the between-subjects multiple probe design belonging to this method. This research focuses on a group of eight students with reading difficulties. Within the context of the study, memory capacities, attention spans, reading-related activation and white matter pathways of the students were determined before and after the application of the enrichment reading program. This determination process was carried out in two stages. Neuro-imaging was performed in the first stage and in the second stage the students’ cognitive processes and neural structures were investigated in terms of focusing attention and memory capacities by using the following tools: Stroop Test TBAG Form, Auditory Verbal Digit Span Test-Form B, Cancellation Test and Number Order Learning Test. The results obtained show that the enrichment reading program resulted in an improvement in the reading profiles of the students having reading difficulties in terms of their cognitive processes and neural structures.

  4. The Burden of Binge and Heavy Drinking on the Brain: Effects on Adolescent and Young Adult Neural Structure and Function

    Directory of Open Access Journals (Sweden)

    Anita Cservenka

    2017-06-01

    Full Text Available Introduction: Adolescence and young adulthood are periods of continued biological and psychosocial maturation. Thus, there may be deleterious effects of consuming large quantities of alcohol on neural development and associated cognition during this time. The purpose of this mini review is to highlight neuroimaging research that has specifically examined the effects of binge and heavy drinking on adolescent and young adult brain structure and function.Methods: We review cross-sectional and longitudinal studies of young binge and heavy drinkers that have examined brain structure (e.g., gray and white matter volume, cortical thickness, white matter microstructure and investigated brain response using functional magnetic resonance imaging (fMRI.Results: Binge and heavy-drinking adolescents and young adults have systematically thinner and lower volume in prefrontal cortex and cerebellar regions, and attenuated white matter development. They also show elevated brain activity in fronto-parietal regions during working memory, verbal learning, and inhibitory control tasks. In response to alcohol cues, relative to controls or light-drinking individuals, binge and heavy drinkers show increased neural response mainly in mesocorticolimbic regions, including the striatum, anterior cingulate cortex (ACC, hippocampus, and amygdala. Mixed findings are present in risky decision-making tasks, which could be due to large variation in task design and analysis.Conclusions: These findings suggest altered neural structure and activity in binge and heavy-drinking youth may be related to the neurotoxic effects of consuming alcohol in large quantities during a highly plastic neurodevelopmental period, which could result in neural reorganization, and increased risk for developing an alcohol use disorder (AUD.

  5. A Feedback Model of Attention Explains the Diverse Effects of Attention on Neural Firing Rates and Receptive Field Structure: e1004770

    National Research Council Canada - National Science Library

    Thomas Miconi; Rufin VanRullen

    2016-01-01

      Visual attention has many effects on neural responses, producing complex changes in firing rates, as well as modifying the structure and size of receptive fields, both in topological and feature space...

  6. The in vivo developmental potential of porcine skin-derived progenitors and neural stem cells.

    Science.gov (United States)

    Zhao, Ming-Tao; Yang, Xiaoyu; Lee, Kiho; Mao, Jiude; Teson, Jennifer M; Whitworth, Kristin M; Samuel, Melissa S; Spate, Lee D; Murphy, Clifton N; Prather, Randall S

    2012-09-20

    Multipotent skin-derived progenitors (SKPs) can be traced back to embryonic neural crest cells and are able to differentiate into both neural and mesodermal progeny in vitro. Neural stem cells (NSCs) are capable of self-renewing and can contribute to neuron and glia in the nervous system. Recently, we derived porcine SKPs and NSCs from the same enhanced green fluorescent protein (EGFP) transgenic fetuses and demonstrated that SKPs could contribute to neural and mesodermal lineages in vivo. However, it remains unclear whether porcine SKPs and NSCs can generate ectoderm and mesoderm lineages or other germ layers in vivo. Embryonic chimeras are a well-established tool for investigating cell lineage determination and cell potency through normal embryonic development. Thus, the purpose of this study was to investigate the in vivo developmental potential of porcine SKPs and fetal brain-derived NSCs by chimera production. Porcine SKPs, NSCs, and fibroblasts were injected into precompact in vitro fertilized embryos (IVF) and then transferred into corresponding surrogates 24 h postinjection. We found that porcine SKPs could incorporate into the early embryos and contribute to various somatic tissues of the 3 germ layers in postnatal chimera, and especially have an endodermal potency. However, this developmental potential is compromised when they differentiate into fibroblasts. In addition, porcine NSCs fail to incorporate into host embryos and contribute to chimeric piglets. Therefore, neural crest-derived SKPs may represent a more primitive state than their counterpart neural stem cells in terms of their contributions to multiple cell lineages.

  7. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule.

    Science.gov (United States)

    Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin

    2015-11-01

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.

  8. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin, E-mail: xmli@cqu.edu.cn [Key Laboratory of Dependable Service Computing in Cyber Physical Society of Ministry of Education, Chongqing University, Chongqing 400044 (China); College of Automation, Chongqing University, Chongqing 400044 (China)

    2015-11-15

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.

  9. An application of neural network for Structural Health Monitoring of an adaptive wing with an array of FBG sensors

    Energy Technology Data Exchange (ETDEWEB)

    Mieloszyk, Magdalena; Skarbek, Lukasz; Ostachowicz, Wieslaw [IFFM PASci, Fiszera14, 80-952 Gdansk (Poland); Krawczuk, Marek, E-mail: mmieloszyk@imp.gda.pl [IFFM PASci, Fiszera 14, 80-952 Gdansk and Technical University of Gdansk, Wlasna Strzecha 18a Street, 80-233, Gdansk (Poland)

    2011-07-19

    This paper presents an application of neural networks to determinate the level of activation of shape memory alloy actuators of an adaptive wing. In this concept the shape of the wing can be controlled and altered thanks to the wing design and the use of integrated shape memory alloy actuators. The wing is assumed as assembled from a number of wing sections that relative positions can be controlled independently by thermal activation of shape memory actuators. The investigated wing is employed with an array of Fibre Bragg Grating sensors. The Fibre Bragg Grating sensors with combination of a neural network have been used to Structural Health Monitoring of the wing condition. The FBG sensors are a great tool to control the condition of composite structures due to their immunity to electromagnetic fields as well as their small size and weight. They can be mounted onto the surface or embedded into the wing composite material without any significant influence on the wing strength. The paper concentrates on analysis of the determination of the twisting moment produced by an activated shape memory alloy actuator. This has been analysed both numerically using the finite element method by a commercial code ABAQUS (registered) and experimentally using Fibre Bragg Grating sensor measurements. The results of the analysis have been then used by a neural network to determine twisting moments produced by each shape memory alloy actuator.

  10. Neural-network-based depth-resolved multiscale structural optimization using density functional theory and electron diffraction data

    Science.gov (United States)

    Pennington, Robert S.; Coll, Catalina; Estradé, Sònia; Peiró, Francesca; Koch, Christoph T.

    2018-01-01

    Iterative neural-network-based three-dimensional structural optimization of atomic positions over tens of nanometers is performed using transmission electron microscope (TEM) diffraction data simulated from density functional theory (DFT) all-electron densities, thus retrieving parameter variations along the beam direction. We first use experimental data to show that the GPAW DFT code's all-electron densities are considerably more accurate for electron diffraction calculations compared to conventional isolated-atom scattering factors, and they also compare well to Wien2K DFT simulations. This DFT-TEM combination is then integrated into an iterative neural-network-optimization-based algorithm (PRIMES, parameter retrieval and inversion from multiple electron scattering) to retrieve nanometer-scale ferroelectric polarization domains and strain in theoretical bulklike specimens from TEM data. DFT and isolated-atom methods produce substantially different diffraction patterns and retrieved polarization domain parameters, and DFT is sufficient to retrieve strain properties from a silicon specimen simulated using experimentally derived structure factors. Thus, we show that the improved accuracy, fast computation, and intuitive integration make the GPAW DFT code well suited for three-dimensional materials characterization and demonstrate this using an iterative neural-network algorithm that is verifiable on the mesoscale and, with DFT integration, self-consistent on the nanoscale.

  11. Comparison of Neural Network Error Measures for Simulation of Slender Marine Structures

    DEFF Research Database (Denmark)

    Christiansen, Niels H.; Voie, Per Erlend Torbergsen; Winther, Ole

    2014-01-01

    platform is designed and tested. The purpose of setting up the network is to reduce calculation time in a fatigue life analysis. Therefore, the networks trained on different error functions are compared with respect to accuracy of rain flow counts of stress cycles over a number of time series simulations......Training of an artificial neural network (ANN) adjusts the internal weights of the network in order to minimize a predefined error measure. This error measure is given by an error function. Several different error functions are suggested in the literature. However, the far most common measure...... for regression is the mean square error. This paper looks into the possibility of improving the performance of neural networks by selecting or defining error functions that are tailor-made for a specific objective. A neural network trained to simulate tension forces in an anchor chain on a floating offshore...

  12. The artist emerges: visual art learning alters neural structure and function.

    Science.gov (United States)

    Schlegel, Alexander; Alexander, Prescott; Fogelson, Sergey V; Li, Xueting; Lu, Zhengang; Kohler, Peter J; Riley, Enrico; Tse, Peter U; Meng, Ming

    2015-01-15

    How does the brain mediate visual artistic creativity? Here we studied behavioral and neural changes in drawing and painting students compared to students who did not study art. We investigated three aspects of cognition vital to many visual artists: creative cognition, perception, and perception-to-action. We found that the art students became more creative via the reorganization of prefrontal white matter but did not find any significant changes in perceptual ability or related neural activity in the art students relative to the control group. Moreover, the art students improved in their ability to sketch human figures from observation, and multivariate patterns of cortical and cerebellar activity evoked by this drawing task became increasingly separable between art and non-art students. Our findings suggest that the emergence of visual artistic skills is supported by plasticity in neural pathways that enable creative cognition and mediate perceptuomotor integration. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Sequence and structural features of carbohydrate binding in proteins and assessment of predictability using a neural network

    Directory of Open Access Journals (Sweden)

    Ahmad Shandar

    2007-01-01

    Full Text Available Abstract Background Protein-Carbohydrate interactions are crucial in many biological processes with implications to drug targeting and gene expression. Nature of protein-carbohydrate interactions may be studied at individual residue level by analyzing local sequence and structure environments in binding regions in comparison to non-binding regions, which provide an inherent control for such analyses. With an ultimate aim of predicting binding sites from sequence and structure, overall statistics of binding regions needs to be compiled. Sequence-based predictions of binding sites have been successfully applied to DNA-binding proteins in our earlier works. We aim to apply similar analysis to carbohydrate binding proteins. However, due to a relatively much smaller region of proteins taking part in such interactions, the methodology and results are significantly different. A comparison of protein-carbohydrate complexes has also been made with other protein-ligand complexes. Results We have compiled statistics of amino acid compositions in binding versus non-binding regions- general as well as in each different secondary structure conformation. Binding propensities of each of the 20 residue types and their structure features such as solvent accessibility, packing density and secondary structure have been calculated to assess their predisposition to carbohydrate interactions. Finally, evolutionary profiles of amino acid sequences have been used to predict binding sites using a neural network. Another set of neural networks was trained using information from single sequences and the prediction performance from the evolutionary profiles and single sequences were compared. Best of the neural network based prediction could achieve an 87% sensitivity of prediction at 23% specificity for all carbohydrate-binding sites, using evolutionary information. Single sequences gave 68% sensitivity and 55% specificity for the same data set. Sensitivity and specificity

  14. Power prediction in mobile communication systems using an optimal neural-network structure.

    Science.gov (United States)

    Gao, X M; Gao, X Z; Tanskanen, J A; Ovaska, S J

    1997-01-01

    Presents a novel neural-network-based predictor for received power level prediction in direct sequence code division multiple access (DS/CDMA) systems. The predictor consists of an adaptive linear element (Adaline) followed by a multilayer perceptron (MLP). An important but difficult problem in designing such a cascade predictor is to determine the complexity of the networks. We solve this problem by using the predictive minimum description length (PMDL) principle to select the optimal numbers of input and hidden nodes. This approach results in a predictor with both good noise attenuation and excellent generalization capability. The optimized neural networks are used for predictive filtering of very noisy Rayleigh fading signals with 1.8 GHz carrier frequency. Our results show that the optimal neural predictor can provide smoothed in-phase and quadrature signals with signal-to-noise ratio (SNR) gains of about 12 and 7 dB at the urban mobile speeds of 5 and 50 km/h, respectively. The corresponding power signal SNR gains are about 11 and 5 dB. Therefore, the neural predictor is well suitable for power control applications where ldquodelaylessrdquo noise attenuation and efficient reduction of fast fading are required.

  15. Travelling waves in models of neural tissue: from localised structures to periodic waves

    NARCIS (Netherlands)

    Meijer, Hil Gaétan Ellart; Coombes, Stephen

    2014-01-01

    We consider travelling waves (fronts, pulses and periodics) in spatially extended one dimensional neural field models. We demonstrate for an excitatory field with linear adaptation that, in addition to an expected stable pulse solution, a stable anti-pulse can exist. Varying the adaptation strength

  16. Neural signature of developmental coordination disorder in the structural connectome independent of comorbid autism.

    Science.gov (United States)

    Caeyenberghs, Karen; Taymans, Tom; Wilson, Peter H; Vanderstraeten, Guy; Hosseini, Hadi; van Waelvelde, Hilde

    2016-07-01

    Children with autism spectrum disorders (ASD) often exhibit motor clumsiness (Developmental Coordination Disorder, DCD), i.e. they struggle with everyday tasks that require motor coordination like dressing, self-care, and participating in sport and leisure activities. Previous studies in these neurodevelopmental disorders have demonstrated functional abnormalities and alterations of white matter microstructural integrity in specific brain regions. These findings suggest that the global organization of brain networks is affected in DCD and ASD and support the hypothesis of a 'dys-connectivity syndrome' from a network perspective. No studies have compared the structural covariance networks between ASD and DCD in order to look for the signature of DCD independent of comorbid autism. Here, we aimed to address the question of whether abnormal connectivity in DCD overlaps that seen in autism or comorbid DCD-autism. Using graph theoretical analysis, we investigated differences in global and regional topological properties of structural brain networks in 53 children: 8 ASD children with DCD (DCD+ASD), 15 ASD children without DCD (ASD), 11 with DCD only, and 19 typically developing (TD) children. We constructed separate structural correlation networks based on cortical thickness derived from Freesurfer. The children were assessed on the Movement-ABC and the Beery Test of Visual Motor Integration. Behavioral results demonstrated that the DCD group and DCD+ASD group scored on average poorer than the TD and ASD groups on various motor measures. Furthermore, although the brain networks of all groups exhibited small-world properties, the topological architecture of the networks was significantly altered in children with ASD compared with DCD and TD. ASD children showed increased normalized path length and higher values of clustering coefficient. Also, paralimbic regions exhibited nodal clustering coefficient alterations in singular disorders. These changes were disorder

  17. Sphere-Derived Multipotent Progenitor Cells Obtained From Human Oral Mucosa Are Enriched in Neural Crest Cells.

    Science.gov (United States)

    Abe, Shigehiro; Yamaguchi, Satoshi; Sato, Yutaka; Harada, Kiyoshi

    2016-01-01

    : Although isolation of oral mucosal stromal stem cells has been previously reported, complex isolation methods are not suitable for clinical application. The neurosphere culture technique is a convenient method for the isolation of neural stem cells and neural crest stem cells (NCSCs); neurosphere generation is a phenotype of NCSCs. However, the molecular details underlying the isolation and characterization of human oral mucosa stromal cells (OMSCs) by neurosphere culture are not understood. The purpose of the present study was to isolate NCSCs from oral mucosa using the neurosphere technique and to establish effective in vivo bone tissue regeneration methods. Human OMSCs were isolated from excised human oral mucosa; these cells formed spheres in neurosphere culture conditions. Oral mucosa sphere-forming cells (OMSFCs) were characterized by biological analyses of stem cells. Additionally, composites of OMSFCs and multiporous polylactic acid scaffolds were implanted subcutaneously into immunocompromised mice. OMSFCs had the capacity for self-renewal and expressed neural crest-related markers (e.g., nestin, CD44, slug, snail, and MSX1). Furthermore, upregulated expression of neural crest-related genes (EDNRA, Hes1, and Sox9) was observed in OMSFCs, which are thought to contain an enriched population of neural crest-derived cells. The expression pattern of α2-integrin (CD49b) in OMSFCs also differed from that in OMSCs. Finally, OMSFCs were capable of differentiating into neural crest lineages in vitro and generating ectopic bone tissues even in the subcutaneous region. The results of the present study suggest that OMSFCs are an ideal source of cells for the neural crest lineage and hard tissue regeneration. The sphere culture technique is a convenient method for isolating stem cells. However, the isolation and characterization of human oral mucosa stromal cells (OMSCs) using the sphere culture system are not fully understood. The present study describes the

  18. Genetic neural networks for quantitative structure-activity relationships: improvements and application of benzodiazepine affinity for benzodiazepine/GABAA receptors.

    Science.gov (United States)

    So, S S; Karplus, M

    1996-12-20

    A novel tool, called a genetic neural network (GNN), has been developed for obtaining quantitative structure-activity relationships (QSAR) for high-dimensional data sets (J. Med. Chem. 1996, 39, 1521-1530). The GNN method uses a neural network to correlate activity with descriptors that are preselected by a genetic algorithm. To provide an extended test of the GNN method, the data on 57 benzodiazepines given by Maddalena and Johnston (MJ; J. Med. Chem. 1995, 38, 715-724) have been examined with an enhanced version of GNN, and the results are compared with the excellent QSAR of MJ. The problematic steepest descent training has been replaced by the scaled conjugate gradient algorithm. This leads to a substantial gain in performance in both robustness of prediction and speed of computation. The cross-validation GNN simulation and the subsequent run based on an unbiased and more efficient protocol led to the discovery of other 10-descriptor QSARs that are superior to the best model of MJ based on backward elimination selection and neural network training. Results from a series of GNNs with a different number of inputs showed that a neural network with fewer inputs can produce QSARs as good as or even better than those with higher dimensions. The top-ranking models from a GNN simulation using only six input descriptors are presented, and the chemical significance of the chosen descriptors is discussed. The statistical significance of these GNN QSARs is validated. The best QSARs are used to provide a graphical tool that aids the design of new drug analogues. By replacing functional groups at the 7- and 2'-positions with ones that have optimal substituent parameters, a number of new benzodiazepines with high potency are predicted.

  19. Involvement of Neptune in induction of the hatching gland and neural crest in the Xenopus embryo.

    Science.gov (United States)

    Kurauchi, Takayuki; Izutsu, Yumi; Maéno, Mitsugu

    2010-01-01

    Neptune, a Krüppel-like transcription factor, is expressed in various regions of the developing Xenopus embryo and it has multiple functions in the process of development in various organs. In situ hybridization analysis showed that Neptune is expressed in the boundary region between neural and non-neural tissues at the neurula stage, but little is known about the function of Neptune in this region. Here, we examined the expression and function of Neptune in the neural plate border (NPB) in the Xenopus embryo. Depletion of Neptune protein in developing embryos by using antisense MO caused loss of the hatching gland and otic vesicle as well as malformation of neural crest-derived cranial cartilages and melanocytes. Neptune MO also suppressed the expression of hatching gland and neural crest markers such as he, snail2, sox9 and msx1 at the neurula stage. Subsequent experiments showed that Neptune is necessary and sufficient for the differentiation of hatching gland cells and that it is located downstream of pax3 in the signal regulating the differentiation of these cells. Thus, Neptune is a new member of hatching gland specifier and plays a physiological role in determination and specification of multiple lineages derived from the NPB region.

  20. Optics-Only Calibration of a Neural-Net Based Optical NDE Method for Structural Health Monitoring

    Science.gov (United States)

    Decker, Arthur J.

    2004-01-01

    A calibration process is presented that uses optical measurements alone to calibrate a neural-net based NDE method. The method itself detects small changes in the vibration mode shapes of structures. The optics-only calibration process confirms previous work that the sensitivity to vibration-amplitude changes can be as small as 10 nanometers. A more practical value in an NDE service laboratory is shown to be 50 nanometers. Both model-generated and experimental calibrations are demonstrated using two implementations of the calibration technique. The implementations are based on previously published demonstrations of the NDE method and an alternative calibration procedure that depends on comparing neural-net and point sensor measurements. The optics-only calibration method, unlike the alternative method, does not require modifications of the structure being tested or the creation of calibration objects. The calibration process can be used to test improvements in the NDE process and to develop a vibration-mode-independence of damagedetection sensitivity. The calibration effort was intended to support NASA s objective to promote safety in the operations of ground test facilities or aviation safety, in general, by allowing the detection of the gradual onset of structural changes and damage.

  1. Measurement of weld penetration depths in thin structures using transmission coefficients of laser-generated Lamb waves and neural network.

    Science.gov (United States)

    Yang, Lei; Ume, I Charles

    2017-07-01

    The Laser/EMAT ultrasonic (LEU) technique has shown the capability to measure weld penetration depths in thick structures based on ray-tracing of laser-generated bulk and surface waves. The ray-tracing method is not applicable to laser-generated Lamb waves when the LEU technique is used to measure weld penetration depths in thin structures. In this work, transmission coefficients of Lamb waves present in the LEU signals are investigated against varying weld penetration depths. An artificial neural network is developed to use transmission coefficients of sensitive Lamb waves and LEU signal energy to predict weld penetration depths accurately. The developed method is very attractive because it allows a quick inspection of weld penetration depths in thin structures. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Modeling Distillation Column Using ARX Model Structure and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Reza Pirmoradi

    2012-04-01

    Full Text Available Distillation is a complex and highly nonlinear industrial process. In general it is not always possible to obtain accurate first principles models for high-purity distillation columns. On the other hand the development of first principles models is usually time consuming and expensive. To overcome these problems, empirical models such as neural networks can be used. One major drawback of empirical models is that the prediction is valid only inside the data domain that is sufficiently covered by measurement data. Modeling distillation columns by means of neural networks is reported in literature by using recursive networks. The recursive networks are proper for modeling purpose, but such models have the problems of high complexity and high computational cost. The objective of this paper is to propose a simple and reliable model for distillation column. The proposed model uses feed forward neural networks which results in a simple model with less parameters and faster training time. Simulation results demonstrate that predictions of the proposed model in all regions are close to outputs of the dynamic model and the error in negligible. This implies that the model is reliable in all regions.

  3. Quantitative Live Imaging of Human Embryonic Stem Cell Derived Neural Rosettes Reveals Structure-Function Dynamics Coupled to Cortical Development.

    Science.gov (United States)

    Ziv, Omer; Zaritsky, Assaf; Yaffe, Yakey; Mutukula, Naresh; Edri, Reuven; Elkabetz, Yechiel

    2015-10-01

    Neural stem cells (NSCs) are progenitor cells for brain development, where cellular spatial composition (cytoarchitecture) and dynamics are hypothesized to be linked to critical NSC capabilities. However, understanding cytoarchitectural dynamics of this process has been limited by the difficulty to quantitatively image brain development in vivo. Here, we study NSC dynamics within Neural Rosettes--highly organized multicellular structures derived from human pluripotent stem cells. Neural rosettes contain NSCs with strong epithelial polarity and are expected to perform apical-basal interkinetic nuclear migration (INM)--a hallmark of cortical radial glial cell development. We developed a quantitative live imaging framework to characterize INM dynamics within rosettes. We first show that the tendency of cells to follow the INM orientation--a phenomenon we referred to as radial organization, is associated with rosette size, presumably via mechanical constraints of the confining structure. Second, early forming rosettes, which are abundant with founder NSCs and correspond to the early proliferative developing cortex, show fast motions and enhanced radial organization. In contrast, later derived rosettes, which are characterized by reduced NSC capacity and elevated numbers of differentiated neurons, and thus correspond to neurogenesis mode in the developing cortex, exhibit slower motions and decreased radial organization. Third, later derived rosettes are characterized by temporal instability in INM measures, in agreement with progressive loss in rosette integrity at later developmental stages. Finally, molecular perturbations of INM by inhibition of actin or non-muscle myosin-II (NMII) reduced INM measures. Our framework enables quantification of cytoarchitecture NSC dynamics and may have implications in functional molecular studies, drug screening, and iPS cell-based platforms for disease modeling.

  4. A Feedback Model of Attention Explains the Diverse Effects of Attention on Neural Firing Rates and Receptive Field Structure.

    Science.gov (United States)

    Miconi, Thomas; VanRullen, Rufin

    2016-02-01

    Visual attention has many effects on neural responses, producing complex changes in firing rates, as well as modifying the structure and size of receptive fields, both in topological and feature space. Several existing models of attention suggest that these effects arise from selective modulation of neural inputs. However, anatomical and physiological observations suggest that attentional modulation targets higher levels of the visual system (such as V4 or MT) rather than input areas (such as V1). Here we propose a simple mechanism that explains how a top-down attentional modulation, falling on higher visual areas, can produce the observed effects of attention on neural responses. Our model requires only the existence of modulatory feedback connections between areas, and short-range lateral inhibition within each area. Feedback connections redistribute the top-down modulation to lower areas, which in turn alters the inputs of other higher-area cells, including those that did not receive the initial modulation. This produces firing rate modulations and receptive field shifts. Simultaneously, short-range lateral inhibition between neighboring cells produce competitive effects that are automatically scaled to receptive field size in any given area. Our model reproduces the observed attentional effects on response rates (response gain, input gain, biased competition automatically scaled to receptive field size) and receptive field structure (shifts and resizing of receptive fields both spatially and in complex feature space), without modifying model parameters. Our model also makes the novel prediction that attentional effects on response curves should shift from response gain to contrast gain as the spatial focus of attention drifts away from the studied cell.

  5. Quantitative Live Imaging of Human Embryonic Stem Cell Derived Neural Rosettes Reveals Structure-Function Dynamics Coupled to Cortical Development.

    Directory of Open Access Journals (Sweden)

    Omer Ziv

    2015-10-01

    Full Text Available Neural stem cells (NSCs are progenitor cells for brain development, where cellular spatial composition (cytoarchitecture and dynamics are hypothesized to be linked to critical NSC capabilities. However, understanding cytoarchitectural dynamics of this process has been limited by the difficulty to quantitatively image brain development in vivo. Here, we study NSC dynamics within Neural Rosettes--highly organized multicellular structures derived from human pluripotent stem cells. Neural rosettes contain NSCs with strong epithelial polarity and are expected to perform apical-basal interkinetic nuclear migration (INM--a hallmark of cortical radial glial cell development. We developed a quantitative live imaging framework to characterize INM dynamics within rosettes. We first show that the tendency of cells to follow the INM orientation--a phenomenon we referred to as radial organization, is associated with rosette size, presumably via mechanical constraints of the confining structure. Second, early forming rosettes, which are abundant with founder NSCs and correspond to the early proliferative developing cortex, show fast motions and enhanced radial organization. In contrast, later derived rosettes, which are characterized by reduced NSC capacity and elevated numbers of differentiated neurons, and thus correspond to neurogenesis mode in the developing cortex, exhibit slower motions and decreased radial organization. Third, later derived rosettes are characterized by temporal instability in INM measures, in agreement with progressive loss in rosette integrity at later developmental stages. Finally, molecular perturbations of INM by inhibition of actin or non-muscle myosin-II (NMII reduced INM measures. Our framework enables quantification of cytoarchitecture NSC dynamics and may have implications in functional molecular studies, drug screening, and iPS cell-based platforms for disease modeling.

  6. Consciousness and neural plasticity

    DEFF Research Database (Denmark)

    In contemporary consciousness studies the phenomenon of neural plasticity has received little attention despite the fact that neural plasticity is of still increased interest in neuroscience. We will, however, argue that neural plasticity could be of great importance to consciousness studies....... If consciousness is related to neural processes it seems, at least prima facie, that the ability of the neural structures to change should be reflected in a theory of this relationship "Neural plasticity" refers to the fact that the brain can change due to its own activity. The brain is not static but rather...... a dynamic entity, which physical structure changes according to its use and environment. This change may take the form of growth of new neurons, the creation of new networks and structures, and change within network structures, that is, changes in synaptic strengths. Plasticity raises questions about...

  7. Neural plasticity expressed in central auditory structures with and without tinnitus

    Directory of Open Access Journals (Sweden)

    Larry E Roberts

    2012-05-01

    Full Text Available Sensory training therapies for tinnitus are based on the assumption that, notwithstanding neural changes related to tinnitus, auditory training can alter the response properties of neurons in auditory pathways. To address this question, we investigated whether brain changes induced by sensory training in tinnitus sufferers and measured by EEG are similar to those induced in age and hearing loss matched individuals without tinnitus trained on the same auditory task. Auditory training was given using a 5 kHz 40-Hz amplitude-modulated sound that was in the tinnitus frequency region of the tinnitus subjects and enabled extraction of the 40-Hz auditory steady-state response (ASSR and P2 transient response known to localize to primary and nonprimary auditory cortex, respectively. P2 amplitude increased with training equally in participants with tinnitus and in control subjects, suggesting normal remodeling of nonprimary auditory regions in tinnitus. However, training-induced changes in the ASSR differed between the tinnitus and control groups. In controls ASSR phase advanced toward the stimulus waveform by about ten degrees over training, in agreement with previous results obtained in young normal hearing individuals. However, ASSR phase did not change significantly with training in the tinnitus group, although some participants showed phase shifts resembling controls. On the other hand, ASSR amplitude increased with training in the tinnitus group, whereas in controls this response (which is difficult to remodel in young normal hearing subjects did not change with training. These results suggest that neural changes related to tinnitus altered how neural plasticity was expressed in the region of primary but not nonprimary auditory cortex. Auditory training did not reduce tinnitus loudness although a small effect on the tinnitus spectrum was detected.

  8. Weighted spiking neural P systems with structural plasticity working in sequential mode based on maximum spike number

    Science.gov (United States)

    Sun, Mingming; Qu, Jianhua

    2017-10-01

    Spiking neural P systems (SNP systems, in short) are a group of parallel and distributed computing devices inspired by the function and structure of spiking neurons. Recently, a new variant of SNP systems, called SNP systems with structural plasticity (SNPSP systems, in short) was proposed. In SNPSP systems, neuron can use plasticity ru les to create and delete synapses. In this work, we consider many restrictions sequentiality on SNPSP systems: (1) neuron with the maximum number of spikes is chosen to fire; (2) we use the weighted synapses. Specifically, we investigate the computational power of weighted SNPSP systems working in the sequential mode based on maximum spike number (WSNPSPM systems, in short) and we proved that SNPSP systems with these new restrictions are universal as generating devices.

  9. Crystal structure of the Ig1 domain of the neural cell adhesion molecule NCAM2 displays domain swapping.

    Science.gov (United States)

    Rasmussen, Kim K; Kulahin, Nikolaj; Kristensen, Ole; Poulsen, Jens-Christian N; Sigurskjold, Bent W; Kastrup, Jette S; Berezin, Vladimir; Bock, Elisabeth; Walmod, Peter S; Gajhede, Michael

    2008-10-24

    The crystal structure of the first immunoglobulin (Ig1) domain of neural cell adhesion molecule 2 (NCAM2/OCAM/RNCAM) is presented at a resolution of 2.7 A. NCAM2 is a member of the immunoglobulin superfamily of cell adhesion molecules (IgCAMs). In the structure, two Ig domains interact by domain swapping, as the two N-terminal beta-strands are interchanged. beta-Strand swapping at the terminal domain is the accepted mechanism of homophilic interactions amongst the cadherins, another class of CAMs, but it has not been observed within the IgCAM superfamily. Gel-filtration chromatography demonstrated the ability of NCAM2 Ig1 to form dimers in solution. Taken together, these observations suggest that beta-strand swapping could have a role in the molecular mechanism of homophilic binding for NCAM2.

  10. Classification of Forest Vertical Structure in South Korea from Aerial Orthophoto and Lidar Data Using an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Soo-Kyung Kwon

    2017-10-01

    Full Text Available Every vegetation colony has its own vertical structure. Forest vertical structure is considered as an important indicator of a forest’s diversity and vitality. The vertical structure of a forest has typically been investigated by field survey, which is the traditional method of forest inventory. However, this method is very time- and cost-consuming due to poor accessibility. Remote sensing data such as satellite imagery, aerial photography, and lidar data can be a viable alternative to the traditional field-based forestry survey. In this study, we classified forest vertical structures from red-green-blue (RGB aerial orthophotos and lidar data using an artificial neural network (ANN, which is a powerful machine learning technique. The test site was Gongju province in South Korea, which contains single-, double-, and triple-layered forest structures. The performance of the proposed method was evaluated by comparing the results with field survey data. The overall accuracy achieved was about 70%. It means that the proposed approach can classify the forest vertical structures from the aerial orthophotos and lidar data.

  11. Segmentation of Bone Structure in X-ray Images using Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    CERNAZANU-GLAVAN, C.

    2013-02-01

    Full Text Available The segmentation process represents a first step necessary for any automatic method of extracting information from an image. In the case of X-ray images, through segmentation we can differentiate the bone tissue from the rest of the image. There are nowadays several segmentation techniques, but in general, they all require the human intervention in the segmentation process. Consequently, this article proposes a new segmentation method for the X-ray images using a Convolutional Neural Network (CNN. In present, the convolutional networks are the best techniques for image segmentation. This fact is demonstrated by their wide usage in all the fields, including the medical one. As the X-ray images have large dimensions, for reducing the training time, the method proposed by the present article selects only certain areas (maximum interest areas from the entire image. The neural network is used as pixel classifier thus causing the label of each pixel (bone or none-bone from a raw pixel values in a square area. We will also present the method through which the network final configuration was chosen and we will make a comparative analysis with other 3 CNN configurations. The network chosen by us obtained the best results for all the evaluation metrics used, i.e. warping error, rand error and pixel error.

  12. Structural Health Monitoring and Impact Detection Using Neural Networks for Damage Characterization

    Science.gov (United States)

    Ross, Richard W.

    2006-01-01

    Detection of damage due to foreign object impact is an important factor in the development of new aerospace vehicles. Acoustic waves generated on impact can be detected using a set of piezoelectric transducers, and the location of impact can be determined by triangulation based on the differences in the arrival time of the waves at each of the sensors. These sensors generate electrical signals in response to mechanical motion resulting from the impact as well as from natural vibrations. Due to electrical noise and mechanical vibration, accurately determining these time differentials can be challenging, and even small measurement inaccuracies can lead to significant errors in the computed damage location. Wavelet transforms are used to analyze the signals at multiple levels of detail, allowing the signals resulting from the impact to be isolated from ambient electromechanical noise. Data extracted from these transformed signals are input to an artificial neural network to aid in identifying the moment of impact from the transformed signals. By distinguishing which of the signal components are resultant from the impact and which are characteristic of noise and normal aerodynamic loads, the time differentials as well as the location of damage can be accurately assessed. The combination of wavelet transformations and neural network processing results in an efficient and accurate approach for passive in-flight detection of foreign object damage.

  13. Effects of multitasking-training on gray matter structure and resting state neural mechanisms.

    Science.gov (United States)

    Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Hashizume, Hiroshi; Sekiguchi, Atsushi; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Sassa, Yuko; Kawashima, Ryuta

    2014-08-01

    Multitasking (MT) constitutes engaging in two or more cognitive activities at the same time. MT-training improves performance on untrained MT tasks and alters the functional activity of the brain during MT. However, the effects of MT-training on neural mechanisms beyond MT-related functions are not known. We investigated the effects of 4 weeks of MT-training on regional gray matter volume (rGMV) and functional connectivity during rest (resting-FC) in young human adults. MT-training was associated with increased rGMV in three prefrontal cortical regions (left lateral rostral prefrontal cortex (PFC), dorsolateral PFC (DLPFC), and left inferior frontal junction), the left posterior parietal cortex, and the left temporal and lateral occipital areas as well as decreased resting-FC between the right DLPFC and an anatomical cluster around the ventral anterior cingulate cortex (ACC). Our findings suggest that participation in MT-training is as a whole associated with task-irrelevant plasticity (i.e., neural changes are not limited to certain specific task conditions) in regions and the network that are assumed to play roles in MT as well as diverse higher-order cognitive functions. We could not dissociate the effects of each task component and the diverse cognitive processes involved in MT because of the nature of the study, and these remain to be investigated. © 2013 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.

  14. Structured chaos shapes spike-response noise entropy in balanced neural networks

    Directory of Open Access Journals (Sweden)

    Guillaume eLajoie

    2014-10-01

    Full Text Available Large networks of sparsely coupled, excitatory and inhibitory cells occur throughout the brain. For many models of these networks, a striking feature is that their dynamics are chaotic and thus, are sensitive to small perturbations. How does this chaos manifest in the neural code? Specifically, how variable are the spike patterns that such a network produces in response to an input signal? To answer this, we derive a bound for a general measure of variability -- spike-train entropy. This leads to important insights on the variability of multi-cell spike pattern distributions in large recurrent networks of spiking neurons responding to fluctuating inputs. The analysis is based on results from random dynamical systems theory and is complemented by detailed numerical simulations. We find that the spike pattern entropy is an order of magnitude lower than what would be extrapolated from single cells. This holds despite the fact that network coupling becomes vanishingly sparse as network size grows -- a phenomenon that depends on ``extensive chaos, as previously discovered for balanced networks without stimulus drive. Moreover, we show how spike pattern entropy is controlled by temporal features of the inputs. Our findings provide insight into how neural networks may encode stimuli in the presence of inherently chaotic dynamics.

  15. Reprogramming fibroblasts to neural-precursor-like cells by structured overexpression of pallial patterning genes.

    Science.gov (United States)

    Raciti, Marilena; Granzotto, Marilena; Duc, Minh Do; Fimiani, Cristina; Cellot, Giada; Cherubini, Enrico; Mallamaci, Antonello

    2013-11-01

    In this study, we assayed the capability of four genes implicated in embryonic specification of the cortico-cerebral field, Foxg1, Pax6, Emx2 and Lhx2, to reprogramme mouse embryonic fibroblasts towards neural identities. Lentivirus-mediated, TetON-dependent overexpression of Pax6 and Foxg1 transgenes specifically activated the neural stem cell (NSC) reporter Sox1-EGFP in a substantial fraction of engineered cells. The efficiency of this process was enhanced up to ten times by simultaneous inactivation of Trp53 and co-administration of a specific drug mix inhibiting HDACs, H3K27-HMTase and H3K4m2-demethylase. Remarkably, a fraction of the reprogrammed population expressed other NSC markers and retained its new identity, even after switching off the reprogramming transgenes. When transferred into a pro-differentiative environment, Pax6/Foxg1-overexpressing cells activated the neuronal marker Tau-EGFP. Frequency of Tau-EGFP positive cells was almost doubled upon delayed delivery of Emx2 and Lhx2 transgenes. A further improvement of the neuron-like cell output was achieved by inhibition of the BMP and TGFβ pathways. Tau-EGFP positive cells were able to generate action potentials upon injection of depolarizing current pulses, further indicating their neuron-like phenotype. © 2013.

  16. Applications of Mesenchymal Stem Cells and Neural Crest Cells in Craniofacial Skeletal Research

    Directory of Open Access Journals (Sweden)

    Satoru Morikawa

    2016-01-01

    Full Text Available Craniofacial skeletal tissues are composed of tooth and bone, together with nerves and blood vessels. This composite material is mainly derived from neural crest cells (NCCs. The neural crest is transient embryonic tissue present during neural tube formation whose cells have high potential for migration and differentiation. Thus, NCCs are promising candidates for craniofacial tissue regeneration; however, the clinical application of NCCs is hindered by their limited accessibility. In contrast, mesenchymal stem cells (MSCs are easily accessible in adults, have similar potential for self-renewal, and can differentiate into skeletal tissues, including bones and cartilage. Therefore, MSCs may represent good sources of stem cells for clinical use. MSCs are classically identified under adherent culture conditions, leading to contamination with other cell lineages. Previous studies have identified mouse- and human-specific MSC subsets using cell surface markers. Additionally, some studies have shown that a subset of MSCs is closely related to neural crest derivatives and endothelial cells. These MSCs may be promising candidates for regeneration of craniofacial tissues from the perspective of developmental fate. Here, we review the fundamental biology of MSCs in craniofacial research.

  17. Eigenspectrum bounds for semirandom matrices with modular and spatial structure for neural networks.

    Science.gov (United States)

    Muir, Dylan R; Mrsic-Flogel, Thomas

    2015-04-01

    The eigenvalue spectrum of the matrix of directed weights defining a neural network model is informative of several stability and dynamical properties of network activity. Existing results for eigenspectra of sparse asymmetric random matrices neglect spatial or other constraints in determining entries in these matrices, and so are of partial applicability to cortical-like architectures. Here we examine a parameterized class of networks that are defined by sparse connectivity, with connection weighting modulated by physical proximity (i.e., asymmetric Euclidean random matrices), modular network partitioning, and functional specificity within the excitatory population. We present a set of analytical constraints that apply to the eigenvalue spectra of associated weight matrices, highlighting the relationship between connectivity rules and classes of network dynamics.

  18. Evaluation of hierarchical structured representations for QSPR studies of small molecules and polymers by recursive neural networks.

    Science.gov (United States)

    Bertinetto, Carlo; Duce, Celia; Micheli, Alessio; Solaro, Roberto; Starita, Antonina; Tiné, Maria Rosaria

    2009-04-01

    This paper reports some recent results from the empirical evaluation of different types of structured molecular representations used in QSPR analysis through a recursive neural network (RNN) model, which allows for their direct use without the need for measuring or computing molecular descriptors. This RNN methodology has been applied to the prediction of the properties of small molecules and polymers. In particular, three different descriptions of cyclic moieties, namely group, template and cyclebreak have been proposed. The effectiveness of the proposed method in dealing with different representations of chemical structures, either specifically designed or of more general use, has been demonstrated by its application to data sets encompassing various types of cyclic structures. For each class of experiments a test set with data that were not used for the development of the model was used for validation, and the comparisons have been based on the test results. The reported results highlight the flexibility of the RNN in directly treating different classes of structured input data without using input descriptors.

  19. A mathematical analysis of the effects of Hebbian learning rules on the dynamics and structure of discrete-time random recurrent neural networks.

    Science.gov (United States)

    Siri, Benoît; Berry, Hugues; Cessac, Bruno; Delord, Bruno; Quoy, Mathias

    2008-12-01

    We present a mathematical analysis of the effects of Hebbian learning in random recurrent neural networks, with a generic Hebbian learning rule, including passive forgetting and different timescales, for neuronal activity and learning dynamics. Previous numerical work has reported that Hebbian learning drives the system from chaos to a steady state through a sequence of bifurcations. Here, we interpret these results mathematically and show that these effects, involving a complex coupling between neuronal dynamics and synaptic graph structure, can be analyzed using Jacobian matrices, which introduce both a structural and a dynamical point of view on neural network evolution. Furthermore, we show that sensitivity to a learned pattern is maximal when the largest Lyapunov exponent is close to 0. We discuss how neural networks may take advantage of this regime of high functional interest.

  20. Oxytocin receptor polymorphism and childhood social experiences shape adult personality, brain structure and neural correlates of mentalizing.

    Science.gov (United States)

    Schneider-Hassloff, H; Straube, B; Jansen, A; Nuscheler, B; Wemken, G; Witt, S H; Rietschel, M; Kircher, T

    2016-07-01

    The oxytocin system is involved in human social behavior and social cognition such as attachment, emotion recognition and mentalizing (i.e. the ability to represent mental states of oneself and others). It is shaped by social experiences in early life, especially by parent-infant interactions. The single nucleotid polymorphism rs53576 in the oxytocin receptor (OXTR) gene has been linked to social behavioral phenotypes. In 195 adult healthy subjects we investigated the interaction of OXTR rs53576 and childhood attachment security (CAS) on the personality traits "adult attachment style" and "alexithymia" (i.e. emotional self-awareness), on brain structure (voxel-based morphometry) and neural activation (fMRI) during an interactive mentalizing paradigm (prisoner's dilemma game; subgroup: n=163). We found that in GG-homozygotes, but not in A-allele carriers, insecure childhood attachment is - in adulthood - associated with a) higher attachment-related anxiety and alexithymia, b) higher brain gray matter volume of left amygdala and lower volumes in right superior parietal lobule (SPL), left temporal pole (TP), and bilateral frontal regions, and c) higher mentalizing-related neural activity in bilateral TP and precunei, and right middle and superior frontal gyri. Interaction effects of genotype and CAS on brain volume and/or function were associated with individual differences in alexithymia and attachment-related anxiety. Interactive effects were in part sexually dimorphic. The interaction of OXTR genotype and CAS modulates adult personality as well as brain structure and function of areas implicated in salience processing and mentalizing. Rs53576 GG-homozygotes are partially more susceptible to childhood attachment experiences than A-allele carriers. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Neural Network Enhanced Structure Determination of Osteoporosis, Immune System, and Radiation Repair Proteins Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a dual objective innovation that has valuable NASA applicability and tremendous commercial potential. The first innovation is the structure determination...

  2. Systematic analysis of non-structural protein features for the prediction of PTM function potential by artificial neural networks.

    Science.gov (United States)

    Dewhurst, Henry M; Torres, Matthew P

    2017-01-01

    Post-translational modifications (PTMs) provide an extensible framework for regulation of protein behavior beyond the diversity represented within the genome alone. While the rate of identification of PTMs has rapidly increased in recent years, our knowledge of PTM functionality encompasses less than 5% of this data. We previously developed SAPH-ire (Structural Analysis of PTM Hotspots) for the prioritization of eukaryotic PTMs based on function potential of discrete modified alignment positions (MAPs) in a set of 8 protein families. A proteome-wide expansion of the dataset to all families of PTM-bearing, eukaryotic proteins with a representational crystal structure and the application of artificial neural network (ANN) models demonstrated the broader applicability of this approach. Although structural features of proteins have been repeatedly demonstrated to be predictive of PTM functionality, the availability of adequately resolved 3D structures in the Protein Data Bank (PDB) limits the scope of these methods. In order to bridge this gap and capture the larger set of PTM-bearing proteins without an available, homologous structure, we explored all available MAP features as ANN inputs to identify predictive models that do not rely on 3D protein structural data. This systematic, algorithmic approach explores 8 available input features in exhaustive combinations (247 models; size 2-8). To control for potential bias in random sampling for holdback in training sets, we iterated each model across 100 randomized, sample training and testing sets-yielding 24,700 individual ANNs. The size of the analyzed dataset and iterative generation of ANNs represents the largest and most thorough investigation of predictive models for PTM functionality to date. Comparison of input layer combinations allows us to quantify ANN performance with a high degree of confidence and subsequently select a top-ranked, robust fit model which highlights 3,687 MAPs, including 10,933 PTMs with a high

  3. Spherical harmonics based descriptor for neural network potentials: Structure and dynamics of Au147 nanocluster

    Science.gov (United States)

    Jindal, Shweta; Chiriki, Siva; Bulusu, Satya S.

    2017-05-01

    We propose a highly efficient method for fitting the potential energy surface of a nanocluster using a spherical harmonics based descriptor integrated with an artificial neural network. Our method achieves the accuracy of quantum mechanics and speed of empirical potentials. For large sized gold clusters (Au147), the computational time for accurate calculation of energy and forces is about 1.7 s, which is faster by several orders of magnitude compared to density functional theory (DFT). This method is used to perform the global minimum optimizations and molecular dynamics simulations for Au147, and it is found that its global minimum is not an icosahedron. The isomer that can be regarded as the global minimum is found to be 4 eV lower in energy than the icosahedron and is confirmed from DFT. The geometry of the obtained global minimum contains 105 atoms on the surface and 42 atoms in the core. A brief study on the fluxionality in Au147 is performed, and it is concluded that Au147 has a dynamic surface, thus opening a new window for studying its reaction dynamics.

  4. Neural Mechanisms of Verb Argument Structure Processing in Agrammatic Aphasic and Healthy Age-Matched Listeners

    Science.gov (United States)

    Thompson, Cynthia K.; Bonakdarpour, Borna; Fix, Stephen F.

    2010-01-01

    Processing of lexical verbs involves automatic access to argument structure entries entailed within the verb's representation. Recent neuroimaging studies with young normal listeners suggest that this involves bilateral posterior peri-sylvian tissue, with graded activation in these regions on the basis of argument structure complexity. The aim of…

  5. Human neural progenitor cells decrease photoreceptor degeneration, normalize opsin distribution and support synapse structure in cultured porcine retina.

    Science.gov (United States)

    Mollick, Tanzina; Mohlin, Camilla; Johansson, Kjell

    2016-09-01

    Retinal neurodegenerative disorders like retinitis pigmentosa, age-related macular degeneration, diabetic retinopathy and retinal detachment decrease retinal functionality leading to visual impairment. The pathological events are characterized by photoreceptor degeneration, synaptic disassembly, remodeling of postsynaptic neurons and activation of glial cells. Despite intense research, no effective treatment has been found for these disorders. The current study explores the potential of human neural progenitor cell (hNPC) derived factors to slow the degenerative processes in adult porcine retinal explants. Retinas were cultured for 3 days with or without hNPCs as a feeder layer and investigated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), immunohistochemical, western blot and quantitative real time-polymerase chain reaction (qRT-PCR) techniques. TUNEL showed that hNPCs had the capacity to limit photoreceptor cell death. Among cone photoreceptors, hNPC coculture resulted in better maintenance of cone outer segments and reduced opsin mislocalization. Additionally, maintained synaptic structural integrity and preservation of second order calbindin positive horizontal cells was also observed. However, Müller cell gliosis only seemed to be alleviated in terms of reduced Müller cell density. Our observations indicate that at 3 days of coculture, hNPC derived factors had the capacity to protect photoreceptors, maintain synaptic integrity and support horizontal cell survival. Human neural progenitor cell applied treatment modalities may be an effective strategy to help maintain retinal functionality in neurodegenerative pathologies. Whether hNPCs can independently hinder Müller cell gliosis by utilizing higher concentrations or by combination with other pharmacological agents still needs to be determined. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. What Is Neural Plasticity?

    Science.gov (United States)

    von Bernhardi, Rommy; Bernhardi, Laura Eugenín-von; Eugenín, Jaime

    2017-01-01

    "Neural plasticity" refers to the capacity of the nervous system to modify itself, functionally and structurally, in response to experience and injury. As the various chapters in this volume show, plasticity is a key component of neural development and normal functioning of the nervous system, as well as a response to the changing environment, aging, or pathological insult. This chapter discusses how plasticity is necessary not only for neural networks to acquire new functional properties, but also for them to remain robust and stable. The article also reviews the seminal proposals developed over the years that have driven experiments and strongly influenced concepts of neural plasticity.

  7. Learning the Relationship between the Primary Structure of HIV Envelope Glycoproteins and Neutralization Activity of Particular Antibodies by Using Artificial Neural Networks

    Science.gov (United States)

    Buiu, Cătălin; Putz, Mihai V.; Avram, Speranta

    2016-01-01

    The dependency between the primary structure of HIV envelope glycoproteins (ENV) and the neutralization data for given antibodies is very complicated and depends on a large number of factors, such as the binding affinity of a given antibody for a given ENV protein, and the intrinsic infection kinetics of the viral strain. This paper presents a first approach to learning these dependencies using an artificial feedforward neural network which is trained to learn from experimental data. The results presented here demonstrate that the trained neural network is able to generalize on new viral strains and to predict reliable values of neutralizing activities of given antibodies against HIV-1. PMID:27727189

  8. Musical intervention enhances infants' neural processing of temporal structure in music and speech

    National Research Council Canada - National Science Library

    Zhao, T Christina; Kuhl, Patricia K

    2016-01-01

    .... The intervention targeted temporal structure learning using triple meter in music (e.g., waltz), which is difficult for infants, and it incorporated key characteristics of typical infant music classes to maximize...

  9. Musical intervention enhances infants' neural processing of temporal structure in music and speech

    National Research Council Canada - National Science Library

    Zhao, T Christina; Kuhl, Patricia K

    2016-01-01

    .... The intervention targeted temporal structure learning using triple meter in music (e.g., waltz), which is difficult for infants, and it incorporated key characteristics of typical infant music classes to maximize learning (e.g...

  10. GIAO C-H COSY Simulations Merged with Artificial Neural Networks Pattern Recognition Analysis. Pushing the Structural Validation a Step Forward.

    Science.gov (United States)

    Zanardi, María M; Sarotti, Ariel M

    2015-10-02

    The structural validation problem using quantum chemistry approaches (confirm or reject a candidate structure) has been tackled with artificial neural network (ANN) mediated multidimensional pattern recognition from experimental and calculated 2D C-H COSY. In order to identify subtle errors (such as regio- or stereochemical), more than 400 ANNs have been built and trained, and the most efficient in terms of classification ability were successfully validated in challenging real examples of natural product misassignments.

  11. Structure Crack Identification Based on Surface-mounted Active Sensor Network with Time-Domain Feature Extraction and Neural Network

    Directory of Open Access Journals (Sweden)

    Chunling DU

    2012-03-01

    Full Text Available In this work the condition of metallic structures are classified based on the acquired sensor data from a surface-mounted piezoelectric sensor/actuator network. The structures are aluminum plates with riveted holes and possible crack damage at these holes. A 400 kHz sine wave burst is used as diagnostic signals. The combination of time-domain S0 waves from received sensor signals is directly used as features and preprocessing is not needed for the dam age detection. Since the time sequence of the extracted S0 has a high dimension, principal component estimation is applied to reduce its dimension before entering NN (neural network training for classification. An LVQ (learning vector quantization NN is used to classify the conditions as healthy or damaged. A number of FEM (finite element modeling results are taken as inputs to the NN for training, since the simulated S0 waves agree well with the experimental results on real plates. The performance of the classification is then validated by using these testing results.

  12. Structural Basis for Partial Redundancy in a Class of Transcription Factors, the LIM Homeodomain Proteins, in Neural Cell Type Specification*

    Science.gov (United States)

    Gadd, Morgan S.; Bhati, Mugdha; Jeffries, Cy M.; Langley, David B.; Trewhella, Jill; Guss, J. Mitchell; Matthews, Jacqueline M.

    2011-01-01

    Combinations of LIM homeodomain proteins form a transcriptional “LIM code” to direct the specification of neural cell types. Two paralogous pairs of LIM homeodomain proteins, LIM homeobox protein 3/4 (Lhx3/Lhx4) and Islet-1/2 (Isl1/Isl2), are expressed in developing ventral motor neurons. Lhx3 and Isl1 interact within a well characterized transcriptional complex that triggers motor neuron development, but it was not known whether Lhx4 and Isl2 could participate in equivalent complexes. We have identified an Lhx3-binding domain (LBD) in Isl2 based on sequence homology with the Isl1LBD and show that both Isl2LBD and Isl1LBD can bind each of Lhx3 and Lhx4. X-ray crystal- and small-angle x-ray scattering-derived solution structures of an Lhx4·Isl2 complex exhibit many similarities with that of Lhx3·Isl1; however, structural differences supported by mutagenic studies reveal differences in the mechanisms of binding. Differences in binding have implications for the mode of exchange of protein partners in transcriptional complexes and indicate a divergence in functions of Lhx3/4 and Isl1/2. The formation of weaker Lhx·Isl complexes would likely be masked by the availability of the other Lhx·Isl complexes in postmitotic motor neurons. PMID:22025611

  13. Structure and Mutagenesis of Neural Cell Adhesion Molecule Domains Evidence for Flexibility in the Placement of Polysialic Acid Attachment Sites

    Energy Technology Data Exchange (ETDEWEB)

    Foley, Deirdre A.; Swartzentruber, Kristin G.; Lavie, Arnon; Colley, Karen J. (UICM)

    2010-11-09

    The addition of {alpha}2,8-polysialic acid to the N-glycans of the neural cell adhesion molecule, NCAM, is critical for brain development and plays roles in synaptic plasticity, learning and memory, neuronal regeneration, and the growth and invasiveness of cancer cells. Our previous work indicates that the polysialylation of two N-glycans located on the fifth immunoglobulin domain (Ig5) of NCAM requires the presence of specific sequences in the adjacent fibronectin type III repeat (FN1). To understand the relationship of these two domains, we have solved the crystal structure of the NCAM Ig5-FN1 tandem. Unexpectedly, the structure reveals that the sites of Ig5 polysialylation are on the opposite face from the FN1 residues previously found to be critical for N-glycan polysialylation, suggesting that the Ig5-FN1 domain relationship may be flexible and/or that there is flexibility in the placement of Ig5 glycosylation sites for polysialylation. To test the latter possibility, new Ig5 glycosylation sites were engineered and their polysialylation tested. We observed some flexibility in glycosylation site location for polysialylation and demonstrate that the lack of polysialylation of a glycan attached to Asn-423 may be in part related to a lack of terminal processing. The data also suggest that, although the polysialyltransferases do not require the Ig5 domain for NCAM recognition, their ability to engage with this domain is necessary for polysialylation to occur on Ig5 N-glycans.

  14. Evolvable Neural Software System

    Science.gov (United States)

    Curtis, Steven A.

    2009-01-01

    The Evolvable Neural Software System (ENSS) is composed of sets of Neural Basis Functions (NBFs), which can be totally autonomously created and removed according to the changing needs and requirements of the software system. The resulting structure is both hierarchical and self-similar in that a given set of NBFs may have a ruler NBF, which in turn communicates with other sets of NBFs. These sets of NBFs may function as nodes to a ruler node, which are also NBF constructs. In this manner, the synthetic neural system can exhibit the complexity, three-dimensional connectivity, and adaptability of biological neural systems. An added advantage of ENSS over a natural neural system is its ability to modify its core genetic code in response to environmental changes as reflected in needs and requirements. The neural system is fully adaptive and evolvable and is trainable before release. It continues to rewire itself while on the job. The NBF is a unique, bilevel intelligence neural system composed of a higher-level heuristic neural system (HNS) and a lower-level, autonomic neural system (ANS). Taken together, the HNS and the ANS give each NBF the complete capabilities of a biological neural system to match sensory inputs to actions. Another feature of the NBF is the Evolvable Neural Interface (ENI), which links the HNS and ANS. The ENI solves the interface problem between these two systems by actively adapting and evolving from a primitive initial state (a Neural Thread) to a complicated, operational ENI and successfully adapting to a training sequence of sensory input. This simulates the adaptation of a biological neural system in a developmental phase. Within the greater multi-NBF and multi-node ENSS, self-similar ENI s provide the basis for inter-NBF and inter-node connectivity.

  15. Functional and structural aging of the speech sensorimotor neural system: fMRI evidence

    Science.gov (United States)

    Tremblay, Pascale; Dick, Anthony Steven; Small, Steven L.

    2013-01-01

    The ability to perceive and produce speech undergoes important changes in late adulthood. The goal of the present study was to characterize functional and structural age-related differences in the cortical network supporting speech perception and production using magnetic resonance imaging, as well as the relationship between functional and structural age-related changes occurring in this network. We asked young and older adults to (1) observe videos of a speaker producing single words (perception), and (B) observe and repeat the words produced (production). Results show a widespread bilateral network of brain activation for Perception and Production that was uncorrelated with age. In addition, several regions did show age-related change (auditory cortex, planum temporale, superior temporal sulcus, premotor cortices, SMA-proper). Examination of the relationship between brain signal and regional and global gray matter volume and cortical thickness revealed a complex set of relationships between structure and function, with some regions showing a relationship between structure and function and not. The present results provide novel findings about the neurobiology of aging and verbal communication. PMID:23523270

  16. Prediction of protein structural features by use of artificial neural networks

    DEFF Research Database (Denmark)

    Petersen, Bent

    . There is a huge over-representation of DNA sequences when comparing the amount of experimentally verified proteins with the amount of DNA sequences. The academic and industrial research community therefore has to rely on structure predictions instead of waiting for the time consuming experimentally determined...

  17. Learning to Perceive Structure from Motion and Neural Plasticity in Patients with Alzheimer's Disease

    Science.gov (United States)

    Kim, Nam-Gyoon; Park, Jong-Hee

    2010-01-01

    Recent research has demonstrated that Alzheimer's disease (AD) affects the visual sensory pathways, producing a variety of visual deficits, including the capacity to perceive structure-from-motion (SFM). Because the sensory areas of the adult brain are known to retain a large degree of plasticity, the present study was conducted to explore whether…

  18. Bayesian inference of Earth's radial seismic structure from body-wave traveltimes using neural networks

    NARCIS (Netherlands)

    de Wit, R.W.L.; Valentine, A.P.; Trampert, J.

    2013-01-01

    How do body-wave traveltimes constrain the Earth's radial (1-D) seismic structure? Existing 1-D seismological models underpin 3-D seismic tomography and earthquake location algorithms. It is therefore crucial to assess the quality of such 1-D models, yet quantifying uncertainties in seismological

  19. Revisiting Earth's radial seismic structure using a Bayesian neural network approach

    NARCIS (Netherlands)

    de Wit, R.W.L.

    2015-01-01

    The gross features of seismic observations can be explained by relatively simple spherically symmetric (1-D) models of wave velocities, density and attenuation, which describe the Earth's average(radial) structure. 1-D earth models are often used as a reference for studies on Earth's thermo-chemical

  20. Functional and structural aging of the speech sensorimotor neural system: functional magnetic resonance imaging evidence.

    Science.gov (United States)

    Tremblay, Pascale; Dick, Anthony S; Small, Steven L

    2013-08-01

    The ability to perceive and produce speech undergoes important changes in late adulthood. The goal of the present study was to characterize functional and structural age-related differences in the cortical network that support speech perception and production, using magnetic resonance imaging, as well as the relationship between functional and structural age-related changes occurring in this network. We asked young and older adults to observe videos of a speaker producing single words (perception), and to observe and repeat the words produced (production). Results show a widespread bilateral network of brain activation for Perception and Production that was not correlated with age. In addition, several regions did show age-related change (auditory cortex, planum temporale, superior temporal sulcus, premotor cortices, SMA-proper). Examination of the relationship between brain signal and regional and global gray matter volume and cortical thickness revealed a complex set of relationships between structure and function, with some regions showing a relationship between structure and function and some not. The present results provide novel findings about the neurobiology of aging and verbal communication. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Neural correlates of emotional personality: a structural and functional magnetic resonance imaging study.

    Directory of Open Access Journals (Sweden)

    Stefan Koelsch

    Full Text Available Studies addressing brain correlates of emotional personality have remained sparse, despite the involvement of emotional personality in health and well-being. This study investigates structural and functional brain correlates of psychological and physiological measures related to emotional personality. Psychological measures included neuroticism, extraversion, and agreeableness scores, as assessed using a standard personality questionnaire. As a physiological measure we used a cardiac amplitude signature, the so-called E κ value (computed from the electrocardiogram which has previously been related to tender emotionality. Questionnaire scores and E κ values were related to both functional (eigenvector centrality mapping, ECM and structural (voxel-based morphometry, VBM neuroimaging data. Functional magnetic resonance imaging (fMRI data were obtained from 22 individuals (12 females while listening to music (joy, fear, or neutral music. ECM results showed that agreeableness scores correlated with centrality values in the dorsolateral prefrontal cortex, the anterior cingulate cortex, and the ventral striatum (nucleus accumbens. Individuals with higher E κ values (indexing higher tender emotionality showed higher centrality values in the subiculum of the right hippocampal formation. Structural MRI data from an independent sample of 59 individuals (34 females showed that neuroticism scores correlated with volume of the left amygdaloid complex. In addition, individuals with higher E κ showed larger gray matter volume in the same portion of the subiculum in which individuals with higher E κ showed higher centrality values. Our results highlight a role of the amygdala in neuroticism. Moreover, they indicate that a cardiac signature related to emotionality (E κ correlates with both function (increased network centrality and structure (grey matter volume of the subiculum of the hippocampal formation, suggesting a role of the hippocampal formation for

  2. The neural processing of hierarchical structure in music and speech at different timescales.

    Science.gov (United States)

    Farbood, Morwaread M; Heeger, David J; Marcus, Gary; Hasson, Uri; Lerner, Yulia

    2015-01-01

    Music, like speech, is a complex auditory signal that contains structures at multiple timescales, and as such is a potentially powerful entry point into the question of how the brain integrates complex streams of information. Using an experimental design modeled after previous studies that used scrambled versions of a spoken story (Lerner et al., 2011) and a silent movie (Hasson et al., 2008), we investigate whether listeners perceive hierarchical structure in music beyond short (~6 s) time windows and whether there is cortical overlap between music and language processing at multiple timescales. Experienced pianists were presented with an extended musical excerpt scrambled at multiple timescales-by measure, phrase, and section-while measuring brain activity with functional magnetic resonance imaging (fMRI). The reliability of evoked activity, as quantified by inter-subject correlation of the fMRI responses, was measured. We found that response reliability depended systematically on musical structure coherence, revealing a topographically organized hierarchy of processing timescales. Early auditory areas (at the bottom of the hierarchy) responded reliably in all conditions. For brain areas at the top of the hierarchy, the original (unscrambled) excerpt evoked more reliable responses than any of the scrambled excerpts, indicating that these brain areas process long-timescale musical structures, on the order of minutes. The topography of processing timescales was analogous with that reported previously for speech, but the timescale gradients for music and speech overlapped with one another only partially, suggesting that temporally analogous structures-words/measures, sentences/musical phrases, paragraph/sections-are processed separately.

  3. Neural Correlates of Emotional Personality: A Structural and Functional Magnetic Resonance Imaging Study

    Science.gov (United States)

    Koelsch, Stefan; Skouras, Stavros; Jentschke, Sebastian

    2013-01-01

    Studies addressing brain correlates of emotional personality have remained sparse, despite the involvement of emotional personality in health and well-being. This study investigates structural and functional brain correlates of psychological and physiological measures related to emotional personality. Psychological measures included neuroticism, extraversion, and agreeableness scores, as assessed using a standard personality questionnaire. As a physiological measure we used a cardiac amplitude signature, the so-called Eκ value (computed from the electrocardiogram) which has previously been related to tender emotionality. Questionnaire scores and Eκ values were related to both functional (eigenvector centrality mapping, ECM) and structural (voxel-based morphometry, VBM) neuroimaging data. Functional magnetic resonance imaging (fMRI) data were obtained from 22 individuals (12 females) while listening to music (joy, fear, or neutral music). ECM results showed that agreeableness scores correlated with centrality values in the dorsolateral prefrontal cortex, the anterior cingulate cortex, and the ventral striatum (nucleus accumbens). Individuals with higher Eκ values (indexing higher tender emotionality) showed higher centrality values in the subiculum of the right hippocampal formation. Structural MRI data from an independent sample of 59 individuals (34 females) showed that neuroticism scores correlated with volume of the left amygdaloid complex. In addition, individuals with higher Eκ showed larger gray matter volume in the same portion of the subiculum in which individuals with higher Eκ showed higher centrality values. Our results highlight a role of the amygdala in neuroticism. Moreover, they indicate that a cardiac signature related to emotionality (Eκ) correlates with both function (increased network centrality) and structure (grey matter volume) of the subiculum of the hippocampal formation, suggesting a role of the hippocampal formation for emotional

  4. Neural correlates of emotional personality: a structural and functional magnetic resonance imaging study.

    Science.gov (United States)

    Koelsch, Stefan; Skouras, Stavros; Jentschke, Sebastian

    2013-01-01

    Studies addressing brain correlates of emotional personality have remained sparse, despite the involvement of emotional personality in health and well-being. This study investigates structural and functional brain correlates of psychological and physiological measures related to emotional personality. Psychological measures included neuroticism, extraversion, and agreeableness scores, as assessed using a standard personality questionnaire. As a physiological measure we used a cardiac amplitude signature, the so-called E κ value (computed from the electrocardiogram) which has previously been related to tender emotionality. Questionnaire scores and E κ values were related to both functional (eigenvector centrality mapping, ECM) and structural (voxel-based morphometry, VBM) neuroimaging data. Functional magnetic resonance imaging (fMRI) data were obtained from 22 individuals (12 females) while listening to music (joy, fear, or neutral music). ECM results showed that agreeableness scores correlated with centrality values in the dorsolateral prefrontal cortex, the anterior cingulate cortex, and the ventral striatum (nucleus accumbens). Individuals with higher E κ values (indexing higher tender emotionality) showed higher centrality values in the subiculum of the right hippocampal formation. Structural MRI data from an independent sample of 59 individuals (34 females) showed that neuroticism scores correlated with volume of the left amygdaloid complex. In addition, individuals with higher E κ showed larger gray matter volume in the same portion of the subiculum in which individuals with higher E κ showed higher centrality values. Our results highlight a role of the amygdala in neuroticism. Moreover, they indicate that a cardiac signature related to emotionality (E κ) correlates with both function (increased network centrality) and structure (grey matter volume) of the subiculum of the hippocampal formation, suggesting a role of the hippocampal formation for

  5. The neural processing of hierarchical structure in music and speech at different timescales

    Directory of Open Access Journals (Sweden)

    Morwaread Mary Farbood

    2015-05-01

    Full Text Available Music, like speech, is a complex auditory signal that contains structures at multiple timescales, and as such a potentially powerful entry point into the question of how the brain integrates complex streams of information. Using an experimental design modeled after previous studies that used scrambled versions of a spoken story (Lerner, Honey, Silbert, & Hasson, 2011 and a silent movie (Hasson, Yang, Vallines, Heeger, & Rubin, 2008, we investigate whether listeners perceive hierarchical structure in music beyond short (~6 sec time windows and whether there is cortical overlap between music and language processing at multiple timescales. Experienced pianists were presented with an extended musical excerpt scrambled at multiple timescales––by measure, phrase, and section––while measuring brain activity with functional magnetic resonance imaging (fMRI. The reliability of evoked activity, as quantified by inter-subject correlation of the fMRI responses was measured. We found that response reliability depended systematically on musical structural coherence, revealing a topographically organized hierarchy of processing timescales. Early auditory areas (at the bottom of the hierarchy responded reliably in all conditions. For brain areas at the top of the hierarchy, the original (unscrambled excerpt evoked more reliable responses than any of the scrambled excerpts, indicating that these brain areas process long-timescale musical structures, on the order of minutes. The topography of processing timescales was analogous with that reported previously for speech, but the timescale gradients for music and speech overlapped with one another only partially, suggesting that temporally analogous structures––words/measures, sentences/musical phrases, paragraph/sections––are processed separately.

  6. The neural processing of hierarchical structure in music and speech at different timescales

    Science.gov (United States)

    Farbood, Morwaread M.; Heeger, David J.; Marcus, Gary; Hasson, Uri; Lerner, Yulia

    2015-01-01

    Music, like speech, is a complex auditory signal that contains structures at multiple timescales, and as such is a potentially powerful entry point into the question of how the brain integrates complex streams of information. Using an experimental design modeled after previous studies that used scrambled versions of a spoken story (Lerner et al., 2011) and a silent movie (Hasson et al., 2008), we investigate whether listeners perceive hierarchical structure in music beyond short (~6 s) time windows and whether there is cortical overlap between music and language processing at multiple timescales. Experienced pianists were presented with an extended musical excerpt scrambled at multiple timescales—by measure, phrase, and section—while measuring brain activity with functional magnetic resonance imaging (fMRI). The reliability of evoked activity, as quantified by inter-subject correlation of the fMRI responses, was measured. We found that response reliability depended systematically on musical structure coherence, revealing a topographically organized hierarchy of processing timescales. Early auditory areas (at the bottom of the hierarchy) responded reliably in all conditions. For brain areas at the top of the hierarchy, the original (unscrambled) excerpt evoked more reliable responses than any of the scrambled excerpts, indicating that these brain areas process long-timescale musical structures, on the order of minutes. The topography of processing timescales was analogous with that reported previously for speech, but the timescale gradients for music and speech overlapped with one another only partially, suggesting that temporally analogous structures—words/measures, sentences/musical phrases, paragraph/sections—are processed separately. PMID:26029037

  7. Impaired Neural Structure and Function Contributing to Autonomic Symptoms in Congenital Central Hypoventilation Syndrome

    Directory of Open Access Journals (Sweden)

    Ronald M Harper

    2015-10-01

    Full Text Available Congenital central hypoventilation syndrome (CCHS patients show major autonomic alterations in addition to their better-known breathing deficiencies. The processes underlying CCHS, mutations in the PHOX2B gene, target autonomic neuronal development, with frame shift extent contributing to symptom severity. Many autonomic characteristics, such as impaired pupillary constriction and poor temperature regulation, reflect parasympathetic alterations, and can include disturbed alimentary processes, with malabsorption and intestinal motility dyscontrol. The sympathetic nervous system changes can exert life-threatening outcomes, with dysregulation of sympathetic outflow leading to high blood pressure, time-altered and dampened heart rate and breathing responses to challenges, cardiac arrhythmia, profuse sweating, and poor fluid regulation. The central mechanisms contributing to failed autonomic processes are readily apparent from structural and functional magnetic resonance imaging studies, which reveal substantial cortical thinning, tissue injury, and disrupted functional responses in hypothalamic, hippocampal, posterior thalamic, and basal ganglia sites and their descending projections, as well as insular, cingulate, and medial frontal cortices, which influence subcortical autonomic structures. Midbrain structures are also compromised, including the raphe system and its projections to cerebellar and medullary sites, the locus coeruleus, and medullary reflex integrating sites, including the dorsal and ventrolateral medullary nuclei. The damage to rostral autonomic sites overlaps metabolic, affective and cognitive regulatory regions, leading to hormonal disruption, anxiety, depression, behavioral control, and sudden death concerns. The injuries suggest that interventions for mitigating hypoxic exposure and nutrient loss may provide cellular protection, in the same fashion as interventions in other conditions with similar malabsorption, fluid turnover

  8. Neural responses to nostalgia-evoking music modeled by elements of dynamic musical structure and individual differences in affective traits.

    Science.gov (United States)

    Barrett, Frederick S; Janata, Petr

    2016-10-01

    Nostalgia is an emotion that is most commonly associated with personally and socially relevant memories. It is primarily positive in valence and is readily evoked by music. It is also an idiosyncratic experience that varies between individuals based on affective traits. We identified frontal, limbic, paralimbic, and midbrain brain regions in which the strength of the relationship between ratings of nostalgia evoked by music and blood-oxygen-level-dependent (BOLD) signal was predicted by affective personality measures (nostalgia proneness and the sadness scale of the Affective Neuroscience Personality Scales) that are known to modulate the strength of nostalgic experiences. We also identified brain areas including the inferior frontal gyrus, substantia nigra, cerebellum, and insula in which time-varying BOLD activity correlated more strongly with the time-varying tonal structure of nostalgia-evoking music than with music that evoked no or little nostalgia. These findings illustrate one way in which the reward and emotion regulation networks of the brain are recruited during the experiencing of complex emotional experiences triggered by music. These findings also highlight the importance of considering individual differences when examining the neural responses to strong and idiosyncratic emotional experiences. Finally, these findings provide a further demonstration of the use of time-varying stimulus-specific information in the investigation of music-evoked experiences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Neural structure and social dysfunction in individuals at clinical high risk for psychosis.

    Science.gov (United States)

    Lincoln, Sarah Hope; Hooker, Christine I'Lee

    2014-12-30

    Individuals at a clinical high risk (CHR) for psychosis have gray matter volume (GMV) abnormalities that are similar to, though less severe than, those in individuals with schizophrenia. Less GMV in schizophrenia is related to worse social cognition and social functioning, but the relationship between GMV and social functioning in CHR individuals has yet to be investigated. The aim of this study was to (1) investigate differences in GMV between healthy controls (HC) and CHR individuals, and (2) evaluate the relationship between GMV and social functioning in these two groups. Participants comprised 22 CHR and 21 HC individuals who completed a structural magnetic resonance imaging (MRI) scan as well as self-reported and interviewer-rated measures of social functioning. Processing and analysis of structural images were completed using voxel based morphometry (VBM). Results showed that the CHR group had less GMV in the left postcentral gyrus, bilateral parahippocampual gyri, and left anterior cingulate cortex. Reduced GMV in the postcentral gyrus and the anterior cingulate was related to self-reported social impairment across the whole group. This study has implications for the neurobiological basis of social dysfunction present before the onset of psychosis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Tinnitus Neural Mechanisms and Structural Changes in the Brain: The Contribution of Neuroimaging Research

    Directory of Open Access Journals (Sweden)

    Simonetti, Patricia

    2015-03-01

    Full Text Available Introduction Tinnitus is an abnormal perception of sound in the absence of an external stimulus. Chronic tinnitus usually has a high impact in many aspects of patients' lives, such as emotional stress, sleep disturbance, concentration difficulties, and so on. These strong reactions are usually attributed to central nervous system involvement. Neuroimaging has revealed the implication of brain structures in the auditory system. Objective This systematic review points out neuroimaging studies that contribute to identifying the structures involved in the pathophysiological mechanism of generation and persistence of various forms of tinnitus. Data Synthesis Functional imaging research reveals that tinnitus perception is associated with the involvement of the nonauditory brain areas, including the front parietal area; the limbic system, which consists of the anterior cingulate cortex, anterior insula, and amygdala; and the hippocampal and parahippocampal area. Conclusion The neuroimaging research confirms the involvement of the mechanisms of memory and cognition in the persistence of perception, anxiety, distress, and suffering associated with tinnitus.

  11. Common neural structures activated by epidural and transcutaneous lumbar spinal cord stimulation: Elicitation of posterior root-muscle reflexes.

    Science.gov (United States)

    Hofstoetter, Ursula S; Freundl, Brigitta; Binder, Heinrich; Minassian, Karen

    2018-01-01

    Epidural electrical stimulation of the lumbar spinal cord is currently regaining momentum as a neuromodulation intervention in spinal cord injury (SCI) to modify dysregulated sensorimotor functions and augment residual motor capacity. There is ample evidence that it engages spinal circuits through the electrical stimulation of large-to-medium diameter afferent fibers within lumbar and upper sacral posterior roots. Recent pilot studies suggested that the surface electrode-based method of transcutaneous spinal cord stimulation (SCS) may produce similar neuromodulatory effects as caused by epidural SCS. Neurophysiological and computer modeling studies proposed that this noninvasive technique stimulates posterior-root fibers as well, likely activating similar input structures to the spinal cord as epidural stimulation. Here, we add a yet missing piece of evidence substantiating this assumption. We conducted in-depth analyses and direct comparisons of the electromyographic (EMG) characteristics of short-latency responses in multiple leg muscles to both stimulation techniques derived from ten individuals with SCI each. Post-activation depression of responses evoked by paired pulses applied either epidurally or transcutaneously confirmed the reflex nature of the responses. The muscle responses to both techniques had the same latencies, EMG peak-to-peak amplitudes, and waveforms, except for smaller responses with shorter onset latencies in the triceps surae muscle group and shorter offsets of the responses in the biceps femoris muscle during epidural stimulation. Responses obtained in three subjects tested with both methods at different time points had near-identical waveforms per muscle group as well as same onset latencies. The present results strongly corroborate the activation of common neural input structures to the lumbar spinal cord-predominantly primary afferent fibers within multiple posterior roots-by both techniques and add to unraveling the basic mechanisms

  12. Modified feed-forward neural network structures and combined-function-derivative approximations incorporating exchange symmetry for potential energy surface fitting.

    Science.gov (United States)

    Nguyen, Hieu T T; Le, Hung M

    2012-05-10

    The classical interchange (permutation) of atoms of similar identity does not have an effect on the overall potential energy. In this study, we present feed-forward neural network structures that provide permutation symmetry to the potential energy surfaces of molecules. The new feed-forward neural network structures are employed to fit the potential energy surfaces for two illustrative molecules, which are H(2)O and ClOOCl. Modifications are made to describe the symmetric interchange (permutation) of atoms of similar identity (or mathematically, the permutation of symmetric input parameters). The combined-function-derivative approximation algorithm (J. Chem. Phys. 2009, 130, 134101) is also implemented to fit the neural-network potential energy surfaces accurately. The combination of our symmetric neural networks and the function-derivative fitting effectively produces PES fits using fewer numbers of training data points. For H(2)O, only 282 configurations are employed as the training set; the testing root-mean-squared and mean-absolute energy errors are respectively reported as 0.0103 eV (0.236 kcal/mol) and 0.0078 eV (0.179 kcal/mol). In the ClOOCl case, 1693 configurations are required to construct the training set; the root-mean-squared and mean-absolute energy errors for the ClOOCl testing set are 0.0409 eV (0.943 kcal/mol) and 0.0269 eV (0.620 kcal/mol), respectively. Overall, we find good agreements between ab initio and NN prediction in term of energy and gradient errors, and conclude that the new feed-forward neural-network models advantageously describe the molecules with excellent accuracy.

  13. Error and attack tolerance of synchronization in Hindmarsh–Rose neural networks with community structure

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chun-Hsien, E-mail: chli@nknucc.nknu.edu.tw [Department of Mathematics, National Kaohsiung Normal University, Yanchao District, Kaohsiung City 82444, Taiwan (China); Yang, Suh-Yuh, E-mail: syyang@math.ncu.edu.tw [Department of Mathematics, National Central University, Jhongli City, Taoyuan County 32001, Taiwan (China)

    2014-03-01

    Synchronization is one of the most important features observed in large-scale complex networks of interacting dynamical systems. As is well known, there is a close relation between the network topology and the network synchronizability. Using the coupled Hindmarsh–Rose neurons with community structure as a model network, in this paper we explore how failures of the nodes due to random errors or intentional attacks affect the synchronizability of community networks. The intentional attacks are realized by removing a fraction of the nodes with high values in some centrality measure such as the centralities of degree, eigenvector, betweenness and closeness. According to the master stability function method, we employ the algebraic connectivity of the considered community network as an indicator to examine the network synchronizability. Numerical evidences show that the node failure strategy based on the betweenness centrality has the most influence on the synchronizability of community networks. With this node failure strategy for a given network with a fixed number of communities, we find that the larger the degree of communities, the worse the network synchronizability; however, for a given network with a fixed degree of communities, we observe that the more the number of communities, the better the network synchronizability.

  14. Error and attack tolerance of synchronization in Hindmarsh-Rose neural networks with community structure

    Science.gov (United States)

    Li, Chun-Hsien; Yang, Suh-Yuh

    2014-03-01

    Synchronization is one of the most important features observed in large-scale complex networks of interacting dynamical systems. As is well known, there is a close relation between the network topology and the network synchronizability. Using the coupled Hindmarsh-Rose neurons with community structure as a model network, in this paper we explore how failures of the nodes due to random errors or intentional attacks affect the synchronizability of community networks. The intentional attacks are realized by removing a fraction of the nodes with high values in some centrality measure such as the centralities of degree, eigenvector, betweenness and closeness. According to the master stability function method, we employ the algebraic connectivity of the considered community network as an indicator to examine the network synchronizability. Numerical evidences show that the node failure strategy based on the betweenness centrality has the most influence on the synchronizability of community networks. With this node failure strategy for a given network with a fixed number of communities, we find that the larger the degree of communities, the worse the network synchronizability; however, for a given network with a fixed degree of communities, we observe that the more the number of communities, the better the network synchronizability.

  15. Conserved structural domains in FoxD4L1, a neural forkhead box transcription factor, are required to repress or activate target genes.

    Directory of Open Access Journals (Sweden)

    Steven L Klein

    Full Text Available FoxD4L1 is a forkhead transcription factor that expands the neural ectoderm by down-regulating genes that promote the onset of neural differentiation and up-regulating genes that maintain proliferative neural precursors in an immature state. We previously demonstrated that binding of Grg4 to an Eh-1 motif enhances the ability of FoxD4L1 to down-regulate target neural genes but does not account for all of its repressive activity. Herein we analyzed the protein sequence for additional interaction motifs and secondary structure. Eight conserved motifs were identified in the C-terminal region of fish and frog proteins. Extending the analysis to mammals identified a high scoring motif downstream of the Eh-1 domain that contains a tryptophan residue implicated in protein-protein interactions. In addition, secondary structure prediction programs predicted an α-helical structure overlapping with amphibian-specific Motif 6 in Xenopus, and similarly located α-helical structures in other vertebrate FoxD proteins. We tested functionality of this site by inducing a glutamine-to-proline substitution expected to break the predicted α-helical structure; this significantly reduced FoxD4L1's ability to repress zic3 and irx1. Because this mutation does not interfere with Grg4 binding, these results demonstrate that at least two regions, the Eh-1 motif and a more C-terminal predicted α-helical/Motif 6 site, additively contribute to repression. In the N-terminal region we previously identified a 14 amino acid motif that is required for the up-regulation of target genes. Secondary structure prediction programs predicted a short β-strand separating two acidic domains. Mutant constructs show that the β-strand itself is not required for transcriptional activation. Instead, activation depends upon a glycine residue that is predicted to provide sufficient flexibility to bring the two acidic domains into close proximity. These results identify conserved predicted

  16. Zebrafish zic2 controls formation of periocular neural crest and choroid fissure morphogenesis.

    Science.gov (United States)

    Sedykh, Irina; Yoon, Baul; Roberson, Laura; Moskvin, Oleg; Dewey, Colin N; Grinblat, Yevgenya

    2017-09-01

    The vertebrate retina develops in close proximity to the forebrain and neural crest-derived cartilages of the face and jaw. Coloboma, a congenital eye malformation, is associated with aberrant forebrain development (holoprosencephaly) and with craniofacial defects (frontonasal dysplasia) in humans, suggesting a critical role for cross-lineage interactions during retinal morphogenesis. ZIC2, a zinc-finger transcription factor, is linked to human holoprosencephaly. We have previously used morpholino assays to show zebrafish zic2 functions in the developing forebrain, retina and craniofacial cartilage. We now report that zebrafish with genetic lesions in zebrafish zic2 orthologs, zic2a and zic2b, develop with retinal coloboma and craniofacial anomalies. We demonstrate a requirement for zic2 in restricting pax2a expression and show evidence that zic2 function limits Hh signaling. RNA-seq transcriptome analysis identified an early requirement for zic2 in periocular neural crest as an activator of alx1, a transcription factor with essential roles in craniofacial and ocular morphogenesis in human and zebrafish. Collectively, these data establish zic2 mutant zebrafish as a powerful new genetic model for in-depth dissection of cell interactions and genetic controls during craniofacial complex development. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. ANT Advanced Neural Tool

    Energy Technology Data Exchange (ETDEWEB)

    Labrador, I.; Carrasco, R.; Martinez, L.

    1996-07-01

    This paper describes a practical introduction to the use of Artificial Neural Networks. Artificial Neural Nets are often used as an alternative to the traditional symbolic manipulation and first order logic used in Artificial Intelligence, due the high degree of difficulty to solve problems that can not be handled by programmers using algorithmic strategies. As a particular case of Neural Net a Multilayer Perception developed by programming in C language on OS9 real time operating system is presented. A detailed description about the program structure and practical use are included. Finally, several application examples that have been treated with the tool are presented, and some suggestions about hardware implementations. (Author) 15 refs.

  18. Genetic algorithm based on optimization of neural network structure for fault diagnosis of the clutch retainer mechanism of MF 285 tractor

    Directory of Open Access Journals (Sweden)

    S. F Mousavi

    2016-09-01

    Full Text Available Introduction The diagnosis of agricultural machinery faults must be performed at an opportune time, in order to fulfill the agricultural operations in a timely manner and to optimize the accuracy and the integrity of a system, proper monitoring and fault diagnosis of the rotating parts is required. With development of fault diagnosis methods of rotating equipment, especially bearing failure, the security, performance and availability of machines has been increasing. In general, fault detection is conducted through a specific procedure which starts with data acquisition and continues with features extraction, and subsequently failure of the machine would be detected. Several practical methods have been introduced for fault detection in rotating parts of machineries. The review of the literature shows that both Artificial Neural Networks (ANN and Support Vector Machines (SVM have been used for this purpose. However, the results show that SVM is more effective than Artificial Neural Networks in fault detection of such machineries. In some smart detection systems, incorporating an optimized method such as Genetic Algorithm in the Neural Network model, could improve the fault detection procedure. Consequently, the fault detection performance of neural networks may also be improved by combining with the Genetic Algorithm and hence will be comparable with the performance of the Support Vector Machine. In this study, the so called Genetic Algorithm (GA method was used to optimize the structure of the Artificial Neural Networks (ANN for fault detection of the clutch retainer mechanism of Massey Ferguson 285 tractor. Materials and Methods The test rig consists of some electro mechanical parts including the clutch retainer mechanism of Massey Ferguson 285 tractor, a supporting shaft, a single-phase electric motor, a loading mechanism to model the load of the tractor clutch and the corresponding power train gears. The data acquisition section consists of a

  19. Modeling a Neural Network as a Teaching Tool for the Learning of the Structure-Function Relationship

    Science.gov (United States)

    Salinas, Dino G.; Acevedo, Cristian; Gomez, Christian R.

    2010-01-01

    The authors describe an activity they have created in which students can visualize a theoretical neural network whose states evolve according to a well-known simple law. This activity provided an uncomplicated approach to a paradigm commonly represented through complex mathematical formulation. From their observations, students learned many basic…

  20. Optical imaging of neuronal activity and visualization of fine neural structures in non-desheathed nervous systems.

    Directory of Open Access Journals (Sweden)

    Christopher John Goldsmith

    Full Text Available Locating circuit neurons and recording from them with single-cell resolution is a prerequisite for studying neural circuits. Determining neuron location can be challenging even in small nervous systems because neurons are densely packed, found in different layers, and are often covered by ganglion and nerve sheaths that impede access for recording electrodes and neuronal markers. We revisited the voltage-sensitive dye RH795 for its ability to stain and record neurons through the ganglion sheath. Bath-application of RH795 stained neuronal membranes in cricket, earthworm and crab ganglia without removing the ganglion sheath, revealing neuron cell body locations in different ganglion layers. Using the pyloric and gastric mill central pattern generating neurons in the stomatogastric ganglion (STG of the crab, Cancer borealis, we found that RH795 permeated the ganglion without major residue in the sheath and brightly stained somatic, axonal and dendritic membranes. Visibility improved significantly in comparison to unstained ganglia, allowing the identification of somata location and number of most STG neurons. RH795 also stained axons and varicosities in non-desheathed nerves, and it revealed the location of sensory cell bodies in peripheral nerves. Importantly, the spike activity of the sensory neuron AGR, which influences the STG motor patterns, remained unaffected by RH795, while desheathing caused significant changes in AGR activity. With respect to recording neural activity, RH795 allowed us to optically record membrane potential changes of sub-sheath neuronal membranes without impairing sensory activity. The signal-to-noise ratio was comparable with that previously observed in desheathed preparations and sufficiently high to identify neurons in single-sweep recordings and synaptic events after spike-triggered averaging. In conclusion, RH795 enabled staining and optical recording of neurons through the ganglion sheath and is therefore both a

  1. Structural alterations in rat liver proteins due to streptozotocin-induced diabetes and the recovery effect of selenium: Fourier transform infrared microspectroscopy and neural network study

    Science.gov (United States)

    Bozkurt, Ozlem; Haman Bayari, Sevgi; Severcan, Mete; Krafft, Christoph; Popp, Jürgen; Severcan, Feride

    2012-07-01

    The relation between protein structural alterations and tissue dysfunction is a major concern as protein fibrillation and/or aggregation due to structural alterations has been reported in many disease states. In the current study, Fourier transform infrared microspectroscopic imaging has been used to investigate diabetes-induced changes on protein secondary structure and macromolecular content in streptozotocin-induced diabetic rat liver. Protein secondary structural alterations were predicted using neural network approach utilizing the amide I region. Moreover, the role of selenium in the recovery of diabetes-induced alterations on macromolecular content and protein secondary structure was also studied. The results revealed that diabetes induced a decrease in lipid to protein and glycogen to protein ratios in diabetic livers. Significant alterations in protein secondary structure were observed with a decrease in α-helical and an increase in β-sheet content. Both doses of selenium restored diabetes-induced changes in lipid to protein and glycogen to protein ratios. However, low-dose selenium supplementation was not sufficient to recover the effects of diabetes on protein secondary structure, while a higher dose of selenium fully restored diabetes-induced alterations in protein structure.

  2. Deletion of integrin-linked kinase from neural crest cells in mice results in aortic aneurysms and embryonic lethality

    Directory of Open Access Journals (Sweden)

    Thomas D. Arnold

    2013-09-01

    Neural crest cells (NCCs participate in the remodeling of the cardiac outflow tract and pharyngeal arch arteries during cardiovascular development. Integrin-linked kinase (ILK is a serine/threonine kinase and a major regulator of integrin signaling. It links integrins to the actin cytoskeleton and recruits other adaptor molecules into a large complex to regulate actin dynamics and integrin function. Using the Cre-lox system, we deleted Ilk from NCCs of mice to investigate its role in NCC morphogenesis. The resulting mutants developed a severe aneurysmal arterial trunk that resulted in embryonic lethality during late gestation. Ilk mutants showed normal cardiac NCC migration but reduced differentiation into smooth muscle within the aortic arch arteries and the outflow tract. Within the conotruncal cushions, Ilk-deficient NCCs exhibited disorganization of F-actin stress fibers and a significantly rounder morphology, with shorter cellular projections. Additionally, absence of ILK resulted in reduced in vivo phosphorylation of Smad3 in NCCs, which correlated with reduced αSMA levels. Our findings resemble those seen in Pinch1 and β1 integrin conditional mutant mice, and therefore support that, in neural crest-derived cells, ILK and Pinch1 act as cytoplasmic effectors of β1 integrin in a pathway that protects against aneurysms. In addition, our conditional Ilk mutant mice might prove useful as a model to study aortic aneurysms caused by reduced Smad3 signaling, as occurs in the newly described aneurysms-osteoarthritis syndrome, for example.

  3. Neural stem cells and neuro/gliogenesis in the central nervous system: understanding the structural and functional plasticity of the developing, mature, and diseased brain.

    Science.gov (United States)

    Yamaguchi, Masahiro; Seki, Tatsunori; Imayoshi, Itaru; Tamamaki, Nobuaki; Hayashi, Yoshitaka; Tatebayashi, Yoshitaka; Hitoshi, Seiji

    2016-05-01

    Neurons and glia in the central nervous system (CNS) originate from neural stem cells (NSCs). Knowledge of the mechanisms of neuro/gliogenesis from NSCs is fundamental to our understanding of how complex brain architecture and function develop. NSCs are present not only in the developing brain but also in the mature brain in adults. Adult neurogenesis likely provides remarkable plasticity to the mature brain. In addition, recent progress in basic research in mental disorders suggests an etiological link with impaired neuro/gliogenesis in particular brain regions. Here, we review the recent progress and discuss future directions in stem cell and neuro/gliogenesis biology by introducing several topics presented at a joint meeting of the Japanese Association of Anatomists and the Physiological Society of Japan in 2015. Collectively, these topics indicated that neuro/gliogenesis from NSCs is a common event occurring in many brain regions at various ages in animals. Given that significant structural and functional changes in cells and neural networks are accompanied by neuro/gliogenesis from NSCs and the integration of newly generated cells into the network, stem cell and neuro/gliogenesis biology provides a good platform from which to develop an integrated understanding of the structural and functional plasticity that underlies the development of the CNS, its remodeling in adulthood, and the recovery from diseases that affect it.

  4. Are neural crest stem cells the missing link between hematopoietic and neurogenic niches?

    Directory of Open Access Journals (Sweden)

    Cécile eCoste

    2015-06-01

    Full Text Available Hematopoietic niches are defined as cellular and molecular microenvironments that regulate hematopoietic stem cell (HSC function together with stem cell autonomous mechanisms. Many different cell types have been characterized as contributors to the formation of HSC niches, such as osteoblasts, endothelial cells, Schwann cells, and mesenchymal progenitors. These mesenchymal progenitors have themselves been classified as CXC chemokine ligand (CXCL12-abundant reticular (CAR cells, stem cell factor expressing cells, or nestin-positive mesenchymal stem cells (MSCs, which have been recently identified as neural crest-derived cells (NCSCs. Together, these cells are spatially associated with HSCs and believed to provide appropriate microenvironments for HSC self-renewal, differentiation, mobilization and hibernation both by cell-to-cell contact and soluble factors. Interestingly, it appears that regulatory pathways governing the hematopoietic niche homeostasis are operating in the neurogenic niche as well. Therefore, this review paper aims to compare both the regulation of hematopoietic and neurogenic niches, in order to highlight the role of NCSCs and nervous system components in the development and the regulation of the hematopoietic system.

  5. Novel quantum inspired binary neural network algorithm

    Indian Academy of Sciences (India)

    In this paper, a quantum based binary neural network algorithm is proposed, named as novel quantum binary neural network algorithm (NQ-BNN). It forms a neural network structure by deciding weights and separability parameter in quantum based manner. Quantum computing concept represents solution probabilistically ...

  6. Adaptive neural control of MIMO nonlinear systems with a block-triangular pure-feedback control structure.

    Science.gov (United States)

    Chen, Zhenfeng; Ge, Shuzhi Sam; Zhang, Yun; Li, Yanan

    2014-11-01

    This paper presents adaptive neural tracking control for a class of uncertain multiinput-multioutput (MIMO) nonlinear systems in block-triangular form. All subsystems within these MIMO nonlinear systems are of completely nonaffine pure-feedback form and allowed to have different orders. To deal with the nonaffine appearance of the control variables, the mean value theorem is employed to transform the systems into a block-triangular strict-feedback form with control coefficients being couplings among various inputs and outputs. A systematic procedure is proposed for the design of a new singularity-free adaptive neural tracking control strategy. Such a design procedure can remove the couplings among subsystems and hence avoids the possible circular control construction problem. As a consequence, all the signals in the closed-loop system are guaranteed to be semiglobally uniformly ultimately bounded. Moreover, the outputs of the systems are ensured to converge to a small neighborhood of the desired trajectories. Simulation studies verify the theoretical findings revealed in this paper.

  7. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  8. Methodology of Neural Design: Applications in Microwave Engineering

    OpenAIRE

    Z. Raida; P. Pomenka

    2006-01-01

    In the paper, an original methodology for the automatic creation of neural models of microwave structures is proposed and verified. Following the methodology, neural models of the prescribed accuracy are built within the minimum CPU time. Validity of the proposed methodology is verified by developing neural models of selected microwave structures. Functionality of neural models is verified in a design - a neural model is joined with a genetic algorithm to find a global minimum of a formulat...

  9. What are artificial neural networks?

    DEFF Research Database (Denmark)

    Krogh, Anders

    2008-01-01

    Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb......Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb...

  10. Application of the artificial neural network for reconstructing the internal-structure image of a random medium by spatial characteristics of backscattered optical radiation

    Science.gov (United States)

    Veksler, B. A.; Meglinskii, I. V.

    2008-06-01

    The feasibility of using an artificial neural network (ANN), which is the standard Matlab tool, for non-invasive (based on the data of backscattering) diagnostics of macro-inhomogeneities, localised at subsurface layers of the turbid strongly scattering medium was shown. The spatial and angle distribution of the backscattered optical radiation was calculated by using the Monte-Carlo method combining the modelling of effective optical paths and the use of statistical weights. It was shown that application of the backscattering method together with the ANN allows solving inverse problems for determining the average radius of the scattering particles and for reconstructing the images of structural elements within the medium with a high accuracy.

  11. Quantitative Structure-Activity Relationships of Noncompetitive Antagonists of the NMDA Receptor: A Study of a Series of MK801 Derivative Molecules Using Statistical Methods and Neural Network

    Directory of Open Access Journals (Sweden)

    T. Lakhlifi

    2003-04-01

    Full Text Available Abstract: From a series of 50 MK801 derivative molecules, a selected set of 44 compounds was submitted to a principal components analysis (PCA, a multiple regression analysis (MRA, and a neural network (NN. This study shows that the compounds' activity correlates reasonably well with the selected descriptors encoding the chemical structures. The correlation coefficients calculated by MRA and there after by NN, r = 0.986 and r = 0.974 respectively, are fairly good to evaluate a quantitative model, and to predict activity for MK801 derivatives. To test the performance of this model, the activities of the remained set of 6 compounds are deduced from the proposed quantitative model, by NN. This study proved that the predictive power of this model is relevant.

  12. Optimizing finite element predictions of local subchondral bone structural stiffness using neural network-derived density-modulus relationships for proximal tibial subchondral cortical and trabecular bone.

    Science.gov (United States)

    Nazemi, S Majid; Amini, Morteza; Kontulainen, Saija A; Milner, Jaques S; Holdsworth, David W; Masri, Bassam A; Wilson, David R; Johnston, James D

    2017-01-01

    Quantitative computed tomography based subject-specific finite element modeling has potential to clarify the role of subchondral bone alterations in knee osteoarthritis initiation, progression, and pain. However, it is unclear what density-modulus equation(s) should be applied with subchondral cortical and subchondral trabecular bone when constructing finite element models of the tibia. Using a novel approach applying neural networks, optimization, and back-calculation against in situ experimental testing results, the objective of this study was to identify subchondral-specific equations that optimized finite element predictions of local structural stiffness at the proximal tibial subchondral surface. Thirteen proximal tibial compartments were imaged via quantitative computed tomography. Imaged bone mineral density was converted to elastic moduli using multiple density-modulus equations (93 total variations) then mapped to corresponding finite element models. For each variation, root mean squared error was calculated between finite element prediction and in situ measured stiffness at 47 indentation sites. Resulting errors were used to train an artificial neural network, which provided an unlimited number of model variations, with corresponding error, for predicting stiffness at the subchondral bone surface. Nelder-Mead optimization was used to identify optimum density-modulus equations for predicting stiffness. Finite element modeling predicted 81% of experimental stiffness variance (with 10.5% error) using optimized equations for subchondral cortical and trabecular bone differentiated with a 0.5g/cm(3) density. In comparison with published density-modulus relationships, optimized equations offered improved predictions of local subchondral structural stiffness. Further research is needed with anisotropy inclusion, a smaller voxel size and de-blurring algorithms to improve predictions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The Neural Correlates of Race

    Science.gov (United States)

    Ito, Tiffany A.; Bartholow, Bruce D.

    2009-01-01

    Behavioral analyses are a natural choice for understanding the wide-ranging behavioral consequences of racial stereotyping and prejudice. However, neuroimaging and electrophysiological research has recently considered the neural mechanisms that underlie racial categorization and the activation and application of racial stereotypes and prejudice, revealing exciting new insights. Work reviewed here points to the importance of neural structures previously associated with face processing, semantic knowledge activation, evaluation, and self-regulatory behavioral control, allowing for the specification of a neural model of race processing. We show how research on the neural correlates of race can serve to link otherwise disparate lines of evidence on the neural underpinnings of a broad array of social-cognitive phenomena, and consider implications for effecting change in race relations. PMID:19896410

  14. Neural-like growing networks

    Science.gov (United States)

    Yashchenko, Vitaliy A.

    2000-03-01

    On the basis of the analysis of scientific ideas reflecting the law in the structure and functioning the biological structures of a brain, and analysis and synthesis of knowledge, developed by various directions in Computer Science, also there were developed the bases of the theory of a new class neural-like growing networks, not having the analogue in world practice. In a base of neural-like growing networks the synthesis of knowledge developed by classical theories - semantic and neural of networks is. The first of them enable to form sense, as objects and connections between them in accordance with construction of the network. With thus each sense gets a separate a component of a network as top, connected to other tops. In common it quite corresponds to structure reflected in a brain, where each obvious concept is presented by certain structure and has designating symbol. Secondly, this network gets increased semantic clearness at the expense owing to formation not only connections between neural by elements, but also themselves of elements as such, i.e. here has a place not simply construction of a network by accommodation sense structures in environment neural of elements, and purely creation of most this environment, as of an equivalent of environment of memory. Thus neural-like growing networks are represented by the convenient apparatus for modeling of mechanisms of teleological thinking, as a fulfillment of certain psychophysiological of functions.

  15. Application of electrical capacitance tomography and artificial neural networks to rapid estimation of cylindrical shape parameters of industrial flow structure

    Directory of Open Access Journals (Sweden)

    Garbaa Hela

    2016-12-01

    Full Text Available A new approach to solve the inverse problem in electrical capacitance tomography is presented. The proposed method is based on an artificial neural network to estimate three different parameters of a circular object present inside a pipeline, i.e. radius and 2D position coordinates. This information allows the estimation of the distribution of material inside a pipe and determination of the characteristic parameters of a range of flows, which are characterised by a circular objects emerging within a cross section such as funnel flow in a silo gravitational discharging process. The main advantages of the proposed approach are explicitly: the desired characteristic flow parameters are estimated directly from the measured capacitances and rapidity, which in turn is crucial for online flow monitoring. In a classic approach in order to obtain these parameters in the first step the image is reconstructed and then the parameters are estimated with the use of image processing methods. The obtained results showed significant reduction of computations time in comparison to the iterative LBP or Levenberg-Marquard algorithms.

  16. Adult bone marrow neural crest stem cells and mesenchymal stem cells are not able to replace lost neurons in acute MPTP-lesioned mice.

    Directory of Open Access Journals (Sweden)

    Virginie Neirinckx

    Full Text Available Adult bone marrow stroma contains multipotent stem cells (BMSC that are a mixed population of mesenchymal and neural-crest derived stem cells. Both cells are endowed with in vitro multi-lineage differentiation abilities, then constituting an attractive and easy-available source of material for cell therapy in neurological disorders. Whereas the in vivo integration and differentiation of BMSC in neurons into the central nervous system is currently matter of debate, we report here that once injected into the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP-treated mice, pure populations of either bone marrow neural crest stem cells (NCSC or mesenchymal stem cells (MSC survived only transiently into the lesioned brain. Moreover, they do not migrate through the brain tissue, neither modify their initial phenotype, while no recovery of the dopaminergic system integrity was observed. Consequently, we tend to conclude that MSC/NCSC are not able to replace lost neurons in acute MPTP-lesioned dopaminergic system through a suitable integration and/or differentiation process. Altogether with recent data, it appears that neuroprotective, neurotrophic and anti-inflammatory features characterizing BMSC are of greater interest as regards CNS lesions management.

  17. Neural Crest Cells Isolated from the Bone Marrow of Transgenic Mice Express JCV T-Antigen.

    Directory of Open Access Journals (Sweden)

    Jennifer Gordon

    Full Text Available JC virus (JCV, a common human polyomavirus, is the etiological agent of the demyelinating disease, progressive multifocal leukoencephalopathy (PML. In addition to its role in PML, studies have demonstrated the transforming ability of the JCV early protein, T-antigen, and its association with some human cancers. JCV infection occurs in childhood and latent virus is thought to be maintained within the bone marrow, which harbors cells of hematopoietic and non-hematopoietic lineages. Here we show that non-hematopoietic mesenchymal stem cells (MSCs isolated from the bone marrow of JCV T-antigen transgenic mice give rise to JCV T-antigen positive cells when cultured under neural conditions. JCV T-antigen positive cells exhibited neural crest characteristics and demonstrated p75, SOX-10 and nestin positivity. When cultured in conditions typical for mesenchymal cells, a population of T-antigen negative cells, which did not express neural crest markers arose from the MSCs. JCV T-antigen positive cells could be cultured long-term while maintaining their neural crest characteristics. When these cells were induced to differentiate into neural crest derivatives, JCV T-antigen was downregulated in cells differentiating into bone and maintained in glial cells expressing GFAP and S100. We conclude that JCV T-antigen can be stably expressed within a fraction of bone marrow cells differentiating along the neural crest/glial lineage when cultured in vitro. These findings identify a cell population within the bone marrow permissible for JCV early gene expression suggesting the possibility that these cells could support persistent viral infection and thus provide clues toward understanding the role of the bone marrow in JCV latency and reactivation. Further, our data provides an excellent experimental model system for studying the cell-type specificity of JCV T-antigen expression, the role of bone marrow-derived stem cells in the pathogenesis of JCV-related diseases

  18. Expression of sympathetic nervous system genes in Lamprey suggests their recruitment for specification of a new vertebrate feature.

    Directory of Open Access Journals (Sweden)

    Daniela Häming

    Full Text Available The sea lamprey is a basal, jawless vertebrate that possesses many neural crest derivatives, but lacks jaws and sympathetic ganglia. This raises the possibility that the factors involved in sympathetic neuron differentiation were either a gnathostome innovation or already present in lamprey, but serving different purposes. To distinguish between these possibilities, we isolated lamprey homologues of transcription factors associated with peripheral ganglion formation and examined their deployment in lamprey embryos. We further performed DiI labeling of the neural tube combined with neuronal markers to test if neural crest-derived cells migrate to and differentiate in sites colonized by sympathetic ganglia in jawed vertebrates. Consistent with previous anatomical data in adults, our results in lamprey embryos reveal that neural crest cells fail to migrate ventrally to form sympathetic ganglia, though they do form dorsal root ganglia adjacent to the neural tube. Interestingly, however, paralogs of the battery of transcription factors that mediate sympathetic neuron differentiation (dHand, Ascl1 and Phox2b are present in the lamprey genome and expressed in various sites in the embryo, but fail to overlap in any ganglionic structures. This raises the intriguing possibility that they may have been recruited during gnathostome evolution to a new function in a neural crest derivative.

  19. Expression of Sympathetic Nervous System Genes in Lamprey Suggests Their Recruitment for Specification of a New Vertebrate Feature

    Science.gov (United States)

    Uy, Benjamin; Valencia, Jonathan; Sauka-Spengler, Tatjana; Bronner-Fraser, Marianne

    2011-01-01

    The sea lamprey is a basal, jawless vertebrate that possesses many neural crest derivatives, but lacks jaws and sympathetic ganglia. This raises the possibility that the factors involved in sympathetic neuron differentiation were either a gnathostome innovation or already present in lamprey, but serving different purposes. To distinguish between these possibilities, we isolated lamprey homologues of transcription factors associated with peripheral ganglion formation and examined their deployment in lamprey embryos. We further performed DiI labeling of the neural tube combined with neuronal markers to test if neural crest-derived cells migrate to and differentiate in sites colonized by sympathetic ganglia in jawed vertebrates. Consistent with previous anatomical data in adults, our results in lamprey embryos reveal that neural crest cells fail to migrate ventrally to form sympathetic ganglia, though they do form dorsal root ganglia adjacent to the neural tube. Interestingly, however, paralogs of the battery of transcription factors that mediate sympathetic neuron differentiation (dHand, Ascl1 and Phox2b) are present in the lamprey genome and expressed in various sites in the embryo, but fail to overlap in any ganglionic structures. This raises the intriguing possibility that they may have been recruited during gnathostome evolution to a new function in a neural crest derivative. PMID:22046306

  20. Neural network approach to parton distributions fitting

    CERN Document Server

    Piccione, Andrea; Forte, Stefano; Latorre, Jose I.; Rojo, Joan; Piccione, Andrea; Rojo, Joan

    2006-01-01

    We will show an application of neural networks to extract information on the structure of hadrons. A Monte Carlo over experimental data is performed to correctly reproduce data errors and correlations. A neural network is then trained on each Monte Carlo replica via a genetic algorithm. Results on the proton and deuteron structure functions, and on the nonsinglet parton distribution will be shown.

  1. Neural Networks for Non-linear Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1994-01-01

    This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....

  2. A Fuzzy Neural Tree for Possibilistic Reliability

    NARCIS (Netherlands)

    Ciftcioglu, O.

    2008-01-01

    An innovative neural fuzzy system is considered for possibilistic reliability using a neural tree structure with nodes of neuronal type. The total tree structure works effectively as a fuzzy logic system where the possibility theory plays important role with Gaussian possibility distribution at the

  3. Biologically Inspired Modular Neural Networks

    OpenAIRE

    Azam, Farooq

    2000-01-01

    This dissertation explores the modular learning in artificial neural networks that mainly driven by the inspiration from the neurobiological basis of the human learning. The presented modularization approaches to the neural network design and learning are inspired by the engineering, complexity, psychological and neurobiological aspects. The main theme of this dissertation is to explore the organization and functioning of the brain to discover new structural and learning ...

  4. Musical experts recruit action-related neural structures in harmonic anomaly detection: evidence for embodied cognition in expertise.

    Science.gov (United States)

    Sherwin, Jason; Sajda, Paul

    2013-11-01

    Humans are extremely good at detecting anomalies in sensory input. For example, while listening to a piece of Western-style music, an anomalous key change or an out-of-key pitch is readily apparent, even to the non-musician. In this paper we investigate differences between musical experts and non-experts during musical anomaly detection. Specifically, we analyzed the electroencephalograms (EEG) of five expert cello players and five non-musicians while they listened to excerpts of J.S. Bach's Prelude from Cello Suite No. 1. All subjects were familiar with the piece, though experts also had extensive experience playing the piece. Subjects were told that anomalous musical events (AMEs) could occur at random within the excerpts of the piece and were told to report the number of AMEs after each excerpt. Furthermore, subjects were instructed to remain still while listening to the excerpts and their lack of movement was verified via visual and EEG monitoring. Experts had significantly better behavioral performance (i.e. correctly reporting AME counts) than non-experts, though both groups had mean accuracies greater than 80%. These group differences were also reflected in the EEG correlates of key-change detection post-stimulus, with experts showing more significant, greater magnitude, longer periods of, and earlier peaks in condition-discriminating EEG activity than novices. Using the timing of the maximum discriminating neural correlates, we performed source reconstruction and compared significant differences between cellists and non-musicians. We found significant differences that included a slightly right lateralized motor and frontal source distribution. The right lateralized motor activation is consistent with the cortical representation of the left hand - i.e. the hand a cellist would use, while playing, to generate the anomalous key-changes. In general, these results suggest that sensory anomalies detected by experts may in fact be partially a result of an embodied

  5. Developing a Graphical User Interface to Automate the Estimation and Prediction of Risk Values for Flood Protective Structures using Artificial Neural Network

    Science.gov (United States)

    Hasan, M.; Helal, A.; Gabr, M.

    2014-12-01

    In this project, we focus on providing a computer-automated platform for a better assessment of the potential failures and retrofit measures of flood-protecting earth structures, e.g., dams and levees. Such structures play an important role during extreme flooding events as well as during normal operating conditions. Furthermore, they are part of other civil infrastructures such as water storage and hydropower generation. Hence, there is a clear need for accurate evaluation of stability and functionality levels during their service lifetime so that the rehabilitation and maintenance costs are effectively guided. Among condition assessment approaches based on the factor of safety, the limit states (LS) approach utilizes numerical modeling to quantify the probability of potential failures. The parameters for LS numerical modeling include i) geometry and side slopes of the embankment, ii) loading conditions in terms of rate of rising and duration of high water levels in the reservoir, and iii) cycles of rising and falling water levels simulating the effect of consecutive storms throughout the service life of the structure. Sample data regarding the correlations of these parameters are available through previous research studies. We have unified these criteria and extended the risk assessment in term of loss of life through the implementation of a graphical user interface to automate input parameters that divides data into training and testing sets, and then feeds them into Artificial Neural Network (ANN) tool through MATLAB programming. The ANN modeling allows us to predict risk values of flood protective structures based on user feedback quickly and easily. In future, we expect to fine-tune the software by adding extensive data on variations of parameters.

  6. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  7. Modeling and possible implementation of self-learning equivalence-convolutional neural structures for auto-encoding-decoding and clusterization of images

    Science.gov (United States)

    Krasilenko, Vladimir G.; Lazarev, Alexander A.; Nikitovich, Diana V.

    2017-08-01

    Self-learning equivalent-convolutional neural structures (SLECNS) for auto-coding-decoding and image clustering are discussed. The SLECNS architectures and their spatially invariant equivalent models (SI EMs) using the corresponding matrix-matrix procedures with basic operations of continuous logic and non-linear processing are proposed. These SI EMs have several advantages, such as the ability to recognize image fragments with better efficiency and strong cross correlation. The proposed clustering method of fragments with regard to their structural features is suitable not only for binary, but also color images and combines self-learning and the formation of weight clustered matrix-patterns. Its model is constructed and designed on the basis of recursively processing algorithms and to k-average method. The experimental results confirmed that larger images and 2D binary fragments with a large numbers of elements may be clustered. For the first time the possibility of generalization of these models for space invariant case is shown. The experiment for an image with dimension of 256x256 (a reference array) and fragments with dimensions of 7x7 and 21x21 for clustering is carried out. The experiments, using the software environment Mathcad, showed that the proposed method is universal, has a significant convergence, the small number of iterations is easily, displayed on the matrix structure, and confirmed its prospects. Thus, to understand the mechanisms of self-learning equivalence-convolutional clustering, accompanying her to the competitive processes in neurons, and the neural auto-encoding-decoding and recognition principles with the use of self-learning cluster patterns is very important which used the algorithm and the principles of non-linear processing of two-dimensional spatial functions of images comparison. These SIEMs can simply describe the signals processing during the all training and recognition stages and they are suitable for unipolar

  8. Neural Networks

    Directory of Open Access Journals (Sweden)

    Schwindling Jerome

    2010-04-01

    Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  9. Principal Component Analysis Coupled with Artificial Neural Networks—A Combined Technique Classifying Small Molecular Structures Using a Concatenated Spectral Database

    Directory of Open Access Journals (Sweden)

    Mihail Lucian Birsa

    2011-10-01

    Full Text Available In this paper we present several expert systems that predict the class identity of the modeled compounds, based on a preprocessed spectral database. The expert systems were built using Artificial Neural Networks (ANN and are designed to predict if an unknown compound has the toxicological activity of amphetamines (stimulant and hallucinogen, or whether it is a nonamphetamine. In attempts to circumvent the laws controlling drugs of abuse, new chemical structures are very frequently introduced on the black market. They are obtained by slightly modifying the controlled molecular structures by adding or changing substituents at various positions on the banned molecules. As a result, no substance similar to those forming a prohibited class may be used nowadays, even if it has not been specifically listed. Therefore, reliable, fast and accessible systems capable of modeling and then identifying similarities at molecular level, are highly needed for epidemiological, clinical, and forensic purposes. In order to obtain the expert systems, we have preprocessed a concatenated spectral database, representing the GC-FTIR (gas chromatography-Fourier transform infrared spectrometry and GC-MS (gas chromatography-mass spectrometry spectra of 103 forensic compounds. The database was used as input for a Principal Component Analysis (PCA. The scores of the forensic compounds on the main principal components (PCs were then used as inputs for the ANN systems. We have built eight PC-ANN systems (principal component analysis coupled with artificial neural network with a different number of input variables: 15 PCs, 16 PCs, 17 PCs, 18 PCs, 19 PCs, 20 PCs, 21 PCs and 22 PCs. The best expert system was found to be the ANN network built with 18 PCs, which accounts for an explained variance of 77%. This expert system has the best sensitivity (a rate of classification C = 100% and a rate of true positives TP = 100%, as well as a good selectivity (a rate of true negatives TN

  10. The neural cell adhesion molecule

    DEFF Research Database (Denmark)

    Berezin, V; Bock, E; Poulsen, F M

    2000-01-01

    During the past year, the understanding of the structure and function of neural cell adhesion has advanced considerably. The three-dimensional structures of several of the individual modules of the neural cell adhesion molecule (NCAM) have been determined, as well as the structure of the complex...... between two identical fragments of the NCAM. Also during the past year, a link between homophilic cell adhesion and several signal transduction pathways has been proposed, connecting the event of cell surface adhesion to cellular responses such as neurite outgrowth. Finally, the stimulation of neurite...

  11. High serotonin levels during brain development alter the structural input-output connectivity of neural networks in the rat somatosensory layer IV

    Directory of Open Access Journals (Sweden)

    Stéphanie eMiceli

    2013-06-01

    Full Text Available Homeostatic regulation of serotonin (5-HT concentration is critical for normal topographical organization and development of thalamocortical (TC afferent circuits. Down-regulation of the serotonin transporter (SERT and the consequent impaired reuptake of 5-HT at the synapse, results in a reduced terminal branching of developing TC afferents within the primary somatosensory cortex (S1. Despite the presence of multiple genetic models, the effect of high extracellular 5-HT levels on the structure and function of developing intracortical neural networks is far from being understood. Here, using juvenile SERT knockout (SERT-/- rats we investigated, in vitro, the effect of increased 5-HT levels on the structural organization of (i the thalamocortical projections of the ventroposteromedial thalamic nucleus towards S1, (ii the general barrel-field pattern and (iii the electrophysiological and morphological properties of the excitatory cell population in layer IV of S1 (spiny stellate and pyramidal cells. Our results confirmed previous findings that high levels of 5-HT during development lead to a reduction of the topographical precision of TCA projections towards the barrel cortex. Also, the barrel pattern was altered but not abolished in SERT-/- rats. In layer IV, both excitatory spiny stellate and pyramidal cells showed a significantly reduced intracolumnar organization of their axonal projections. In addition, the layer IV spiny stellate cells gave rise to a prominent projection towards the infragranular layer Vb. Our findings point to a structural and functional reorganization, of TCAs, as well as early stage intracortical microcircuitry, following the disruption of 5-HT reuptake during critical developmental periods. The increased projection pattern of the layer IV neurons suggests that the intracortical network changes are not limited to the main entry layer IV but may also affect the subsequent stages of the canonical circuits of the barrel

  12. A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells.

    Science.gov (United States)

    Boland, M V; Murphy, R F

    2001-12-01

    Assessment of protein subcellular location is crucial to proteomics efforts since localization information provides a context for a protein's sequence, structure, and function. The work described below is the first to address the subcellular localization of proteins in a quantitative, comprehensive manner. Images for ten different subcellular patterns (including all major organelles) were collected using fluorescence microscopy. The patterns were described using a variety of numeric features, including Zernike moments, Haralick texture features, and a set of new features developed specifically for this purpose. To test the usefulness of these features, they were used to train a neural network classifier. The classifier was able to correctly recognize an average of 83% of previously unseen cells showing one of the ten patterns. The same classifier was then used to recognize previously unseen sets of homogeneously prepared cells with 98% accuracy. Algorithms were implemented using the commercial products Matlab, S-Plus, and SAS, as well as some functions written in C. The scripts and source code generated for this work are available at http://murphylab.web.cmu.edu/software. murphy@cmu.edu

  13. Improved predictions of nonlinear support vector regression and artificial neural network models via preprocessing of data with orthogonal projection to latent structures: A case study

    Directory of Open Access Journals (Sweden)

    Ibrahim A. Naguib

    2017-12-01

    Full Text Available In the presented study, orthogonal projection to latent structures (OPLS is introduced as a data preprocessing method that handles nonlinear data prior to modelling with two well established nonlinear multivariate models; namely support vector regression (SVR and artificial neural networks (ANN. The proposed preprocessing proved to significantly improve prediction abilities through removal of uncorrelated data.The study was established based on a case study nonlinear spectrofluorimetric data of agomelatine (AGM and its hydrolysis degradation products (Deg I and Deg II, where a 3 factor 4 level experimental design was used to provide a training set of 16 mixtures with different proportions of studied components. An independent test set which consisted of 9 mixtures was established to confirm the prediction ability of the introduced models. Excitation wavelength was 227 nm, and working range for emission spectra was 320–440 nm.The couplings of OPLS-SVR and OPLS-ANN provided better accuracy for prediction of independent nonlinear test set. The root mean square error of prediction RMSEP for the test set mixtures was used as a major comparison parameter, where RMSEP results for OPLS-SVR and OPLS-ANN are 2.19 and 1.50 respectively. Keywords: Agomelatine, SVR, ANN, OPLS, Spectrofluorimetry, Nonlinear

  14. Resistance of subventricular neural stem cells to chronic hypoxemia despite structural disorganization of the germinal center and impairment of neuronal and oligodendrocyte survival

    Science.gov (United States)

    d’Anglemont de Tassigny, Xavier; Sirerol-Piquer, M Salomé; Gómez-Pinedo, Ulises; Pardal, Ricardo; Bonilla, Sonia; Capilla-Gonzalez, Vivian; López-López, Ivette; De la Torre-Laviana, Francisco Javier; García-Verdugo, José Manuel; López-Barneo, José

    2015-01-01

    Chronic hypoxemia, as evidenced in de-acclimatized high-altitude residents or in patients with chronic obstructive respiratory disorders, is a common medical condition that can produce serious neurological alterations. However, the pathogenesis of this phenomenon is unknown. We have found that adult rodents exposed for several days/weeks to hypoxia, with an arterial oxygen tension similar to that of chronically hypoxemic patients, manifest a partially irreversible structural disarrangement of the subventricular neurogenic niche (subventricular zone) characterized by displacement of neurons and myelinated axons, flattening of the ependymal cell layer, and thinning of capillary walls. Despite these abnormalities, the number of neuronal and oligodendrocyte progenitors, neuroblasts, and neurosphere-forming cells as well as the proliferative activity in subventricular zone was unchanged. These results suggest that neural stem cells and their undifferentiated progeny are resistant to hypoxia. However, in vivo and in vitro experiments indicate that severe chronic hypoxia decreases the survival of newly generated neurons and oligodendrocytes, with damage of myelin sheaths. These findings help explain the effects of hypoxia on adult neurogenesis and provide new perspectives on brain responsiveness to persistent hypoxemia. PMID:27774479

  15. Delta-catenin is required for the maintenance of neural structure and function in mature cortex in vivo

    Science.gov (United States)

    Matter, Cheryl; Pribadi, Mochtar; Liu, Xin; Trachtenberg, Joshua T.

    2009-01-01

    Delta (™)-catenin is a brain specific member of the adherens junction complex that localizes to the post-synaptic and dendritic compartments. This protein is likely critical for normal cognitive function; its hemizygous loss is linked to the severe mental retardation syndrome, Cri-du-Chat, and it directly interacts with Presenilin-1 (PS1), the protein most frequently mutated in familial Alzheimer's disease. Mice lacking normal ™-catenin display severe impairments in learning and memory tasks and synaptic plasticity. Here we examine dendritic structure and cortical function in vivo in mice lacking ™-catenin. We find that in cerebral cortex of 5-week-old mice dendritic complexity, spine density, and cortical responsiveness are similar between mutant and littermate controls; thereafter, mutant mice experience progressive dendritic retraction, a reduction in spine density and stability, and concomitant reductions in cortical responsiveness. Our results indicate that ™-catenin regulates the maintenance of dendrites and dendritic spines in mature cortex but does not appear to be necessary for the initial establishment of these structures during development. PMID:19914181

  16. Neural Networks in Control Applications

    DEFF Research Database (Denmark)

    Sørensen, O.

    The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... study of the networks themselves. With this end in view the following restrictions have been made: - Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. - Amongst numerous training algorithms, only four algorithms are examined, all...... in a recursive form (sample updating). The simplest is the Back Probagation Error Algorithm, and the most complex is the recursive Prediction Error Method using a Gauss-Newton search direction. - Over-fitting is often considered to be a serious problem when training neural networks. This problem is specifically...

  17. Neural Networks in Control Applications

    DEFF Research Database (Denmark)

    Sørensen, O.

    simulated process and compared. The closing chapter describes some practical experiments, where the different control concepts and training methods are tested on the same practical process operating in very noisy environments. All tests confirm that neural networks also have the potential to be trained......The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... study of the networks themselves. With this end in view the following restrictions have been made: - Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. - Amongst numerous training algorithms, only four algorithms are examined, all...

  18. Resistance of subventricular neural stem cells to chronic hypoxemia despite structural disorganization of the germinal center and impairment of neuronal and oligodendrocyte survival

    Directory of Open Access Journals (Sweden)

    d’Anglemont de Tassigny X

    2015-06-01

    Full Text Available Xavier d'Anglemont de Tassigny,1,* M Salomé Sirerol-Piquer,2,3,* Ulises Gómez-Pinedo,4 Ricardo Pardal,1 Sonia Bonilla,1 Vivian Capilla-Gonzalez,2 Ivette López-López,1 Francisco Javier De la Torre-Laviana,1 José Manuel García-Verdugo,2,3 José López-Barneo1,3 1Medical Physiology and Biophysics Department, Institute of Biomedicine of Seville (IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain; 2Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain; 3Network Center of Biomedical Research on Neurodegenerative Diseases (CIBERNED, Spain; 4Laboratory of Regenerative Medicine, San Carlos Institute of Health Investigation, Madrid, Spain *These authors contributed equally to this work Abstract: Chronic hypoxemia, as evidenced in de-acclimatized high-altitude residents or in patients with chronic obstructive respiratory disorders, is a common medical condition that can produce serious neurological alterations. However, the pathogenesis of this phenomenon is unknown. We have found that adult rodents exposed for several days/weeks to hypoxia, with an arterial oxygen tension similar to that of chronically hypoxemic patients, manifest a partially irreversible structural disarrangement of the subventricular neurogenic niche (subventricular zone characterized by displacement of neurons and myelinated axons, flattening of the ependymal cell layer, and thinning of capillary walls. Despite these abnormalities, the number of neuronal and oligodendrocyte progenitors, neuroblasts, and neurosphere-forming cells as well as the proliferative activity in subventricular zone was unchanged. These results suggest that neural stem cells and their undifferentiated progeny are resistant to hypoxia. However, in vivo and in vitro experiments indicate that severe chronic hypoxia decreases the survival of newly generated neurons and oligodendrocytes, with damage of myelin sheaths. These

  19. Embryonic neural inducing factor churchill is not a DNA-binding zinc finger protein: solution structure reveals a solvent-exposed beta-sheet and zinc binuclear cluster.

    Science.gov (United States)

    Lee, Brian M; Buck-Koehntop, Bethany A; Martinez-Yamout, Maria A; Dyson, H Jane; Wright, Peter E

    2007-08-31

    Churchill is a zinc-containing protein that is involved in neural induction during embryogenesis. At the time of its discovery, it was thought on the basis of sequence alignment to contain two zinc fingers of the C4 type. Further, binding of an N-terminal GST-Churchill fusion protein to a particular DNA sequence was demonstrated by immunoprecipitation selection assay, suggesting that Churchill may function as a transcriptional regulator by sequence-specific DNA binding. We show by NMR solution structure determination that, far from containing canonical C4 zinc fingers, the protein contains three bound zinc ions in novel coordination sites, including an unusual binuclear zinc cluster. The secondary structure of Churchill is also unusual, consisting of a highly solvent-exposed single-layer beta-sheet. Hydrogen-deuterium exchange and backbone relaxation measurements reveal that Churchill is unusually dynamic on a number of time scales, with the exception of regions surrounding the zinc coordinating sites, which serve to stabilize the otherwise unstructured N terminus and the single-layer beta-sheet. No binding of Churchill to the previously identified DNA sequence could be detected, and extensive searches using DNA sequence selection techniques could find no other DNA sequence that was bound by Churchill. Since the N-terminal amino acids of Churchill form part of the zinc-binding motif, the addition of a fusion protein at the N terminus causes loss of zinc and unfolding of Churchill. This observation most likely explains the published DNA-binding results, which would arise due to non-specific interaction of the unfolded protein in the immunoprecipitation selection assay. Since Churchill does not appear to bind DNA, we suggest that it may function in embryogenesis as a protein-interaction factor.

  20. Neural Tube Defects

    Science.gov (United States)

    ... vitamin, before and during pregnancy prevents most neural tube defects. Neural tube defects are usually diagnosed before the infant is ... or imaging tests. There is no cure for neural tube defects. The nerve damage and loss of function ...

  1. In vitro verification of a 3-D regenerative neural interface design: examination of neurite growth and electrical properties within a bifurcating microchannel structure

    NARCIS (Netherlands)

    Wieringa, P.A.; Wiertz, Remy; de Weerd, Eddy L; Rutten, Wim

    2010-01-01

    Toward the development of neuroprosthesis, we propose a 3-D regenerative neural interface design for connecting with the peripheral nervous system. This approach relies on bifurcating microstructures to achieve defasciculated ingrowth patterns and, consequently, high selectivity. In vitro studies

  2. Congenital Tonic Pupils Associated With Congenital Central Hypoventilation Syndrome and Hirschsprung Disease.

    Science.gov (United States)

    Mehta, Viraj J; Ling, Joseph J; Martinez, Elizabeth G; Reddy, Anvesh C; Donahue, Sean P

    2016-12-01

    Autonomic dysfunction can be associated with pupillary abnormalities. We describe a rare association of tonic pupils, congenital central hypoventilation syndrome, and Hirschsprung disease in a newborn with a mutation in the PHOX2B gene, a key regulator of neural crest cells. Hirschsprung disease is characterized by the congenital absence of neural crest-derived intrinsic ganglion cells. Tonic pupils may result from an abnormality of the ciliary ganglion, another structure of neural crest origin. The close association of these conditions in this child suggests a common abnormality in neural crest migration and differentiation.

  3. Neural repair in the adult brain

    Science.gov (United States)

    Jessberger, Sebastian

    2016-01-01

    Acute or chronic injury to the adult brain often results in substantial loss of neural tissue and subsequent permanent functional impairment. Over the last two decades, a number of approaches have been developed to harness the regenerative potential of neural stem cells and the existing fate plasticity of neural cells in the nervous system to prevent tissue loss or to enhance structural and functional regeneration upon injury. Here, we review recent advances of stem cell-associated neural repair in the adult brain, discuss current challenges and limitations, and suggest potential directions to foster the translation of experimental stem cell therapies into the clinic. PMID:26918167

  4. Fuzzy neural networks: theory and applications

    Science.gov (United States)

    Gupta, Madan M.

    1994-10-01

    During recent years, significant advances have been made in two distinct technological areas: fuzzy logic and computational neural networks. The theory of fuzzy logic provides a mathematical framework to capture the uncertainties associated with human cognitive processes, such as thinking and reasoning. It also provides a mathematical morphology to emulate certain perceptual and linguistic attributes associated with human cognition. On the other hand, the computational neural network paradigms have evolved in the process of understanding the incredible learning and adaptive features of neuronal mechanisms inherent in certain biological species. Computational neural networks replicate, on a small scale, some of the computational operations observed in biological learning and adaptation. The integration of these two fields, fuzzy logic and neural networks, have given birth to an emerging technological field -- fuzzy neural networks. Fuzzy neural networks, have the potential to capture the benefits of these two fascinating fields, fuzzy logic and neural networks, into a single framework. The intent of this tutorial paper is to describe the basic notions of biological and computational neuronal morphologies, and to describe the principles and architectures of fuzzy neural networks. Towards this goal, we develop a fuzzy neural architecture based upon the notion of T-norm and T-conorm connectives. An error-based learning scheme is described for this neural structure.

  5. Neural plasticity of development and learning.

    Science.gov (United States)

    Galván, Adriana

    2010-06-01

    Development and learning are powerful agents of change across the lifespan that induce robust structural and functional plasticity in neural systems. An unresolved question in developmental cognitive neuroscience is whether development and learning share the same neural mechanisms associated with experience-related neural plasticity. In this article, I outline the conceptual and practical challenges of this question, review insights gleaned from adult studies, and describe recent strides toward examining this topic across development using neuroimaging methods. I suggest that development and learning are not two completely separate constructs and instead, that they exist on a continuum. While progressive and regressive changes are central to both, the behavioral consequences associated with these changes are closely tied to the existing neural architecture of maturity of the system. Eventually, a deeper, more mechanistic understanding of neural plasticity will shed light on behavioral changes across development and, more broadly, about the underlying neural basis of cognition. (c) 2010 Wiley-Liss, Inc.

  6. [Neural repair].

    Science.gov (United States)

    Kitada, Masaaki; Dezawa, Mari

    2008-05-01

    Recent progress of stem cell biology gives us the hope for neural repair. We have established methods to specifically induce functional Schwann cells and neurons from bone marrow stromal cells (MSCs). The effectiveness of these induced cells was evaluated by grafting them either into peripheral nerve injury, spinal cord injury, or Parkinson' s disease animal models. MSCs-derived Schwann cells supported axonal regeneration and re-constructed myelin to facilitate the functional recovery in peripheral and spinal cord injury. MSCs-derived dopaminergic neurons integrated into host striatum and contributed to behavioral repair. In this review, we introduce the differentiation potential of MSCs and finally discuss about their benefits and drawbacks of these induction systems for cell-based therapy in neuro-traumatic and neuro-degenerative diseases.

  7. Neural oscillations and information flow associated with synaptic plasticity.

    Science.gov (United States)

    Zhang, Tao

    2011-10-25

    As a rhythmic neural activity, neural oscillation exists all over the nervous system, in structures as diverse as the cerebral cortex, hippocampus, subcortical nuclei and sense organs. This review firstly presents some evidence that synchronous neural oscillations in theta and gamma bands reveal much about the origin and nature of cognitive processes such as learning and memory. And then it introduces the novel analyzing algorithms of neural oscillations, which is a directionality index of neural information flow (NIF) as a measure of synaptic plasticity. An example of application used such an analyzing algorithms of neural oscillations has been provided.

  8. The neural crest and neural crest cells: discovery and significance ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    such as sea urchins, flies, fish and humans. (ii) Embryos (and so larvae and adults) form by differentiation from these germ layers. (iii) Homologous structures in different animals arise from the same germ layers. The germ-layer theory exerted a profound influence on those claiming a neural crest — that is, an ectodermal.

  9. Neural network topology design for nonlinear control

    Science.gov (United States)

    Haecker, Jens; Rudolph, Stephan

    2001-03-01

    Neural networks, especially in nonlinear system identification and control applications, are typically considered to be black-boxes which are difficult to analyze and understand mathematically. Due to this reason, an in- depth mathematical analysis offering insight into the different neural network transformation layers based on a theoretical transformation scheme is desired, but up to now neither available nor known. In previous works it has been shown how proven engineering methods such as dimensional analysis and the Laplace transform may be used to construct a neural controller topology for time-invariant systems. Using the knowledge of neural correspondences of these two classical methods, the internal nodes of the network could also be successfully interpreted after training. As further extension to these works, the paper describes the latest of a theoretical interpretation framework describing the neural network transformation sequences in nonlinear system identification and control. This can be achieved By incorporation of the method of exact input-output linearization in the above mentioned two transform sequences of dimensional analysis and the Laplace transformation. Based on these three theoretical considerations neural network topologies may be designed in special situations by pure translation in the sense of a structural compilation of the known classical solutions into their correspondent neural topology. Based on known exemplary results, the paper synthesizes the proposed approach into the visionary goals of a structural compiler for neural networks. This structural compiler for neural networks is intended to automatically convert classical control formulations into their equivalent neural network structure based on the principles of equivalence between formula and operator, and operator and structure which are discussed in detail in this work.

  10. Flexible body control using neural networks

    Science.gov (United States)

    Mccullough, Claire L.

    1992-01-01

    Progress is reported on the control of Control Structures Interaction suitcase demonstrator (a flexible structure) using neural networks and fuzzy logic. It is concluded that while control by neural nets alone (i.e., allowing the net to design a controller with no human intervention) has yielded less than optimal results, the neural net trained to emulate the existing fuzzy logic controller does produce acceptible system responses for the initial conditions examined. Also, a neural net was found to be very successful in performing the emulation step necessary for the anticipatory fuzzy controller for the CSI suitcase demonstrator. The fuzzy neural hybrid, which exhibits good robustness and noise rejection properties, shows promise as a controller for practical flexible systems, and should be further evaluated.

  11. Dynamic Object Identification with SOM-based neural networks

    Directory of Open Access Journals (Sweden)

    Aleksey Averkin

    2014-03-01

    Full Text Available In this article a number of neural networks based on self-organizing maps, that can be successfully used for dynamic object identification, is described. Unique SOM-based modular neural networks with vector quantized associative memory and recurrent self-organizing maps as modules are presented. The structured algorithms of learning and operation of such SOM-based neural networks are described in details, also some experimental results and comparison with some other neural networks are given.

  12. Hindcasting of storm waves using neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, S.; Mandal, S.

    of any exogenous input requirement makes the network attractive. A neural network is an information processing system modeled on the structure of the human brain. Its merit is the ability to deal with fuzzy information whose interrelation is ambiguous...

  13. Estimation of Conditional Quantile using Neural Networks

    DEFF Research Database (Denmark)

    Kulczycki, P.; Schiøler, Henrik

    1999-01-01

    The problem of estimating conditional quantiles using neural networks is investigated here. A basic structure is developed using the methodology of kernel estimation, and a theory guaranteeing con-sistency on a mild set of assumptions is provided. The constructed structure constitutes a basis...... for the design of a variety of different neural networks, some of which are considered in detail. The task of estimating conditional quantiles is related to Bayes point estimation whereby a broad range of applications within engineering, economics and management can be suggested. Numerical results illustrating...... the capabilities of the elaborated neural network are also given....

  14. Introduction to neural networks

    CERN Document Server

    James, Frederick E

    1994-02-02

    1. Introduction and overview of Artificial Neural Networks. 2,3. The Feed-forward Network as an inverse Problem, and results on the computational complexity of network training. 4.Physics applications of neural networks.

  15. Morphological neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-31

    The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.

  16. The structural neural substrates of persistent negative symptoms in first-episode of non-affective psychosis: a voxel-based morphometry study.

    Directory of Open Access Journals (Sweden)

    Audrey eBenoit

    2012-05-01

    Full Text Available Objectives: An important subset of patients with schizophrenia present clinically significant persistent negative symptoms (PNS. Identifying the neural substrates of PNS could help improve our understanding and treatment of these symptoms. Methods: This study included 64 non-affective first-episode of psychosis (FEP patients and 60 healthy controls; 16 patients displayed PNS (i.e., at least 1 primary negative symptom at moderate or worse severity sustained for at least 6 consecutive months. Using voxel-based morphometry (VBM, we explored for grey matter differences between PNS and non-PNS patients; patient groups were also compared to controls. All comparisons were performed at p<0.05, corrected for multiple comparisons.Results: PNS patients had smaller grey matter in the right frontal medial-orbital gyrus (extending into the inferior frontal gyrus and right parahippocampal gyrus (extending into the fusiform gyrus compared to non-PNS patients. Compared to controls, PNS patients had smaller grey matter in the right parahippocampal gyrus (extending into the fusiform gyrus and superior temporal gyrus; non-PNS patients showed no significant differences to controls. Conclusions: Neural substrates of persistent negative symptoms are evident in FEP patients. A better understanding of the neural etiology of PNS may encourage the search for new medications and/or alternative treatments to better help those affected.

  17. Medical image analysis with artificial neural networks.

    Science.gov (United States)

    Jiang, J; Trundle, P; Ren, J

    2010-12-01

    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Neural plasticity: the biological substrate for neurorehabilitation.

    Science.gov (United States)

    Warraich, Zuha; Kleim, Jeffrey A

    2010-12-01

    Decades of basic science have clearly demonstrated the capacity of the central nervous system (CNS) to structurally and functionally adapt in response to experience. The field of neurorehabilitation has begun to use this body of work to develop neurobiologically informed therapies that harness the key behavioral and neural signals that drive neural plasticity. The present review describes how neural plasticity supports both learning in the intact CNS and functional improvement in the damaged or diseased CNS. A pragmatic, interdisciplinary definition of neural plasticity is presented that may be used by both clinical and basic scientists studying neurorehabilitation. Furthermore, a description of how neural plasticity may act to drive different neural strategies underlying functional improvement after CNS injury or disease is provided. The understanding of the relationship between these different neural strategies, mechanisms of neural plasticity, and changes in behavior may facilitate the development of novel, more effective rehabilitation interventions. Copyright © 2010 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  19. Methodology of Neural Design: Applications in Microwave Engineering

    Directory of Open Access Journals (Sweden)

    Z. Raida

    2006-06-01

    Full Text Available In the paper, an original methodology for the automatic creation of neural models of microwave structures is proposed and verified. Following the methodology, neural models of the prescribed accuracy are built within the minimum CPU time. Validity of the proposed methodology is verified by developing neural models of selected microwave structures. Functionality of neural models is verified in a design - a neural model is joined with a genetic algorithm to find a global minimum of a formulated objective function. The objective function is minimized using different versions of genetic algorithms, and their mutual combinations. The verified methodology of the automated creation of accurate neural models of microwave structures, and their association with global optimization routines are the most important original features of the paper.

  20. Advanced models of neural networks nonlinear dynamics and stochasticity in biological neurons

    CERN Document Server

    Rigatos, Gerasimos G

    2015-01-01

    This book provides a complete study on neural structures exhibiting nonlinear and stochastic dynamics, elaborating on neural dynamics by introducing advanced models of neural networks. It overviews the main findings in the modelling of neural dynamics in terms of electrical circuits and examines their stability properties with the use of dynamical systems theory. It is suitable for researchers and postgraduate students engaged with neural networks and dynamical systems theory.

  1. Evaluation of SAR for Amphotericin B Derivatives by Artificial Neural ...

    African Journals Online (AJOL)

    Purpose: This study was designed to investigate the role of several descriptive structure-activity features in the antifungal drug, amphotericin B and analyze them by artificial neural networks. Method: Artificial neural networks (ANN) based on the back-propagation algorithm were applied to a structure-activity relationship ...

  2. Neural substrates of decision-making.

    Science.gov (United States)

    Broche-Pérez, Y; Herrera Jiménez, L F; Omar-Martínez, E

    2016-06-01

    Decision-making is the process of selecting a course of action from among 2 or more alternatives by considering the potential outcomes of selecting each option and estimating its consequences in the short, medium and long term. The prefrontal cortex (PFC) has traditionally been considered the key neural structure in decision-making process. However, new studies support the hypothesis that describes a complex neural network including both cortical and subcortical structures. The aim of this review is to summarise evidence on the anatomical structures underlying the decision-making process, considering new findings that support the existence of a complex neural network that gives rise to this complex neuropsychological process. Current evidence shows that the cortical structures involved in decision-making include the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), and dorsolateral prefrontal cortex (DLPFC). This process is assisted by subcortical structures including the amygdala, thalamus, and cerebellum. Findings to date show that both cortical and subcortical brain regions contribute to the decision-making process. The neural basis of decision-making is a complex neural network of cortico-cortical and cortico-subcortical connections which includes subareas of the PFC, limbic structures, and the cerebellum. Copyright © 2014 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  3. Neural networks as models of psychopathology.

    Science.gov (United States)

    Aakerlund, L; Hemmingsen, R

    1998-04-01

    Neural network modeling is situated between neurobiology, cognitive science, and neuropsychology. The structural and functional resemblance with biological computation has made artificial neural networks (ANN) useful for exploring the relationship between neurobiology and computational performance, i.e., cognition and behavior. This review provides an introduction to the theory of ANN and how they have linked theories from neurobiology and psychopathology in schizophrenia, affective disorders, and dementia.

  4. Degenerate coding in neural systems.

    Science.gov (United States)

    Leonardo, Anthony

    2005-11-01

    When the dimensionality of a neural circuit is substantially larger than the dimensionality of the variable it encodes, many different degenerate network states can produce the same output. In this review I will discuss three different neural systems that are linked by this theme. The pyloric network of the lobster, the song control system of the zebra finch, and the odor encoding system of the locust, while different in design, all contain degeneracies between their internal parameters and the outputs they encode. Indeed, although the dynamics of song generation and odor identification are quite different, computationally, odor recognition can be thought of as running the song generation circuitry backwards. In both of these systems, degeneracy plays a vital role in mapping a sparse neural representation devoid of correlations onto external stimuli (odors or song structure) that are strongly correlated. I argue that degeneracy between input and output states is an inherent feature of many neural systems, which can be exploited as a fault-tolerant method of reliably learning, generating, and discriminating closely related patterns.

  5. A Bi-Projection Neural Network for Solving Constrained Quadratic Optimization Problems.

    Science.gov (United States)

    Xia, Youshen; Wang, Jun

    2016-02-01

    In this paper, a bi-projection neural network for solving a class of constrained quadratic optimization problems is proposed. It is proved that the proposed neural network is globally stable in the sense of Lyapunov, and the output trajectory of the proposed neural network will converge globally to an optimal solution. Compared with existing projection neural networks (PNNs), the proposed neural network has a very small model size owing to its bi-projection structure. Furthermore, an application to data fusion shows that the proposed neural network is very effective. Numerical results demonstrate that the proposed neural network is much faster than the existing PNNs.

  6. Neural Correlates of Predictive Saccades.

    Science.gov (United States)

    Lee, Stephen M; Peltsch, Alicia; Kilmade, Maureen; Brien, Donald C; Coe, Brian C; Johnsrude, Ingrid S; Munoz, Douglas P

    2016-08-01

    Every day we generate motor responses that are timed with external cues. This phenomenon of sensorimotor synchronization has been simplified and studied extensively using finger tapping sequences that are executed in synchrony with auditory stimuli. The predictive saccade paradigm closely resembles the finger tapping task. In this paradigm, participants follow a visual target that "steps" between two fixed locations on a visual screen at predictable ISIs. Eventually, the time from target appearance to saccade initiation (i.e., saccadic RT) becomes predictive with values nearing 0 msec. Unlike the finger tapping literature, neural control of predictive behavior described within the eye movement literature has not been well established and is inconsistent, especially between neuroimaging and patient lesion studies. To resolve these discrepancies, we used fMRI to investigate the neural correlates of predictive saccades by contrasting brain areas involved with behavior generated from the predictive saccade task with behavior generated from a reactive saccade task (saccades are generated toward targets that are unpredictably timed). We observed striking differences in neural recruitment between reactive and predictive conditions: Reactive saccades recruited oculomotor structures, as predicted, whereas predictive saccades recruited brain structures that support timing in motor responses, such as the crus I of the cerebellum, and structures commonly associated with the default mode network. Therefore, our results were more consistent with those found in the finger tapping literature.

  7. Fuzzy and neural control

    Science.gov (United States)

    Berenji, Hamid R.

    1992-01-01

    Fuzzy logic and neural networks provide new methods for designing control systems. Fuzzy logic controllers do not require a complete analytical model of a dynamic system and can provide knowledge-based heuristic controllers for ill-defined and complex systems. Neural networks can be used for learning control. In this chapter, we discuss hybrid methods using fuzzy logic and neural networks which can start with an approximate control knowledge base and refine it through reinforcement learning.

  8. In vivo functional brain mapping in a conditional mouse model of human tauopathy (tauP301L) reveals reduced neural activity in memory formation structures.

    Science.gov (United States)

    Perez, Pablo D; Hall, Gabrielle; Kimura, Tetsuya; Ren, Yan; Bailey, Rachel M; Lewis, Jada; Febo, Marcelo; Sahara, Naruhiko

    2013-02-04

    Tauopathies are characterized by intracellular deposition of the microtubule-associated protein tau as filamentous aggregates. The rTg4510 mouse conditionally expresses mutant human tau protein in various forebrain areas under the Tet-off expression system. Mice develop neurofibrillary tangles, with significant neuronal loss and cognitive deficits by 6 months of age. Previous behavioral and biochemical work has linked the expression and aggregates of mutant tau to functional impairments. The present work used manganese-enhanced magnetic resonance imaging (MEMRI) to investigate basal levels of brain activity in the rTg4510 and control mice. Our results show an unmistakable curtailment of neural activity in the amygdala and hippocampus, two regions known for their role in memory formation, but not the cortex, cerebellum, striatum and hypothalamus in tau expressing mice. Behavioral impairments associated with changes in activity in these areas may correspond to age progressive mutant tau(P301L)-induced neurodegeneration.

  9. Modular representation of layered neural networks.

    Science.gov (United States)

    Watanabe, Chihiro; Hiramatsu, Kaoru; Kashino, Kunio

    2018-01-01

    Layered neural networks have greatly improved the performance of various applications including image processing, speech recognition, natural language processing, and bioinformatics. However, it is still difficult to discover or interpret knowledge from the inference provided by a layered neural network, since its internal representation has many nonlinear and complex parameters embedded in hierarchical layers. Therefore, it becomes important to establish a new methodology by which layered neural networks can be understood. In this paper, we propose a new method for extracting a global and simplified structure from a layered neural network. Based on network analysis, the proposed method detects communities or clusters of units with similar connection patterns. We show its effectiveness by applying it to three use cases. (1) Network decomposition: it can decompose a trained neural network into multiple small independent networks thus dividing the problem and reducing the computation time. (2) Training assessment: the appropriateness of a trained result with a given hyperparameter or randomly chosen initial parameters can be evaluated by using a modularity index. And (3) data analysis: in practical data it reveals the community structure in the input, hidden, and output layers, which serves as a clue for discovering knowledge from a trained neural network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The Laplacian spectrum of neural networks

    Science.gov (United States)

    de Lange, Siemon C.; de Reus, Marcel A.; van den Heuvel, Martijn P.

    2014-01-01

    The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these “conventional” graph metrics, the eigenvalue spectrum of the normalized Laplacian describes a network's structure directly at a systems level, without referring to individual nodes or connections. In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of the macaque and cat, and the microscopic network of the Caenorhabditis elegans were examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra revealed an integrative community structure in neural brain networks. Extending previous findings of overlap of network attributes across species, similarity of the Laplacian spectra across the cat, macaque and C. elegans neural networks suggests a certain level of consistency in the overall architecture of the anatomical neural networks of these species. Our results further suggest a specific network class for neural networks, distinct from conceptual small-world and scale-free models as well as several empirical networks. PMID:24454286

  11. Neural Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — As part of the Electrical and Computer Engineering Department and The Institute for System Research, the Neural Systems Laboratory studies the functionality of the...

  12. A neural flow estimator

    DEFF Research Database (Denmark)

    Jørgensen, Ivan Harald Holger; Bogason, Gudmundur; Bruun, Erik

    1995-01-01

    is implemented using switched-current technique and is capable of estimating flow in the μl/s range. The neural estimator is built around a multiplierless neural network, containing 96 synaptic weights which are updated using the LMS1-algorithm. An experimental chip has been designed that operates at 5 V......This paper proposes a new way to estimate the flow in a micromechanical flow channel. A neural network is used to estimate the delay of random temperature fluctuations induced in a fluid. The design and implementation of a hardware efficient neural flow estimator is described. The system...

  13. Three dimensional living neural networks

    Science.gov (United States)

    Linnenberger, Anna; McLeod, Robert R.; Basta, Tamara; Stowell, Michael H. B.

    2015-08-01

    We investigate holographic optical tweezing combined with step-and-repeat maskless projection micro-stereolithography for fine control of 3D positioning of living cells within a 3D microstructured hydrogel grid. Samples were fabricated using three different cell lines; PC12, NT2/D1 and iPSC. PC12 cells are a rat cell line capable of differentiation into neuron-like cells NT2/D1 cells are a human cell line that exhibit biochemical and developmental properties similar to that of an early embryo and when exposed to retinoic acid the cells differentiate into human neurons useful for studies of human neurological disease. Finally induced pluripotent stem cells (iPSC) were utilized with the goal of future studies of neural networks fabricated from human iPSC derived neurons. Cells are positioned in the monomer solution with holographic optical tweezers at 1064 nm and then are encapsulated by photopolymerization of polyethylene glycol (PEG) hydrogels formed by thiol-ene photo-click chemistry via projection of a 512x512 spatial light modulator (SLM) illuminated at 405 nm. Fabricated samples are incubated in differentiation media such that cells cease to divide and begin to form axons or axon-like structures. By controlling the position of the cells within the encapsulating hydrogel structure the formation of the neural circuits is controlled. The samples fabricated with this system are a useful model for future studies of neural circuit formation, neurological disease, cellular communication, plasticity, and repair mechanisms.

  14. [Medical use of artificial neural networks].

    Science.gov (United States)

    Molnár, B; Papik, K; Schaefer, R; Dombóvári, Z; Fehér, J; Tulassay, Z

    1998-01-04

    The main aim of the research in medical diagnostics is to develop more exact, cost-effective and handsome systems, procedures and methods for supporting the clinicians. In their paper the authors introduce a new method that recently came into the focus referred to as artificial neural networks. Based on the literature of the past 5-6 years they give a brief review--highlighting the most important ones--showing the idea behind neural networks, what they are used for in the medical field. The definition, structure and operation of neural networks are discussed. In the application part they collect examples in order to give an insight in the neural network application research. It is emphasised that in the near future basically new diagnostic equipment can be developed based on this new technology in the field of ECG, EEG and macroscopic and microscopic image analysis systems.

  15. Optimal neural computations require analog processors

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1998-12-31

    This paper discusses some of the limitations of hardware implementations of neural networks. The authors start by presenting neural structures and their biological inspirations, while mentioning the simplifications leading to artificial neural networks. Further, the focus will be on hardware imposed constraints. They will present recent results for three different alternatives of parallel implementations of neural networks: digital circuits, threshold gate circuits, and analog circuits. The area and the delay will be related to the neurons` fan-in and to the precision of their synaptic weights. The main conclusion is that hardware-efficient solutions require analog computations, and suggests the following two alternatives: (i) cope with the limitations imposed by silicon, by speeding up the computation of the elementary silicon neurons; (2) investigate solutions which would allow the use of the third dimension (e.g. using optical interconnections).

  16. Neural Networks in Mobile Robot Motion

    Directory of Open Access Journals (Sweden)

    Danica Janglová

    2004-03-01

    Full Text Available This paper deals with a path planning and intelligent control of an autonomous robot which should move safely in partially structured environment. This environment may involve any number of obstacles of arbitrary shape and size; some of them are allowed to move. We describe our approach to solving the motion-planning problem in mobile robot control using neural networks-based technique. Our method of the construction of a collision-free path for moving robot among obstacles is based on two neural networks. The first neural network is used to determine the “free” space using ultrasound range finder data. The second neural network “finds” a safe direction for the next robot section of the path in the workspace while avoiding the nearest obstacles. Simulation examples of generated path with proposed techniques will be presented.

  17. Neural Networks in Mobile Robot Motion

    Directory of Open Access Journals (Sweden)

    Danica Janglova

    2008-11-01

    Full Text Available This paper deals with a path planning and intelligent control of an autonomous robot which should move safely in partially structured environment. This environment may involve any number of obstacles of arbitrary shape and size; some of them are allowed to move. We describe our approach to solving the motion-planning problem in mobile robot control using neural networks-based technique. Our method of the construction of a collision-free path for moving robot among obstacles is based on two neural networks. The first neural network is used to determine the "free" space using ultrasound range finder data. The second neural network "finds" a safe direction for the next robot section of the path in the workspace while avoiding the nearest obstacles. Simulation examples of generated path with proposed techniques will be presented.

  18. Artificial neural networks a practical course

    CERN Document Server

    da Silva, Ivan Nunes; Andrade Flauzino, Rogerio; Liboni, Luisa Helena Bartocci; dos Reis Alves, Silas Franco

    2017-01-01

    This book provides comprehensive coverage of neural networks, their evolution, their structure, the problems they can solve, and their applications. The first half of the book looks at theoretical investigations on artificial neural networks and addresses the key architectures that are capable of implementation in various application scenarios. The second half is designed specifically for the production of solutions using artificial neural networks to solve practical problems arising from different areas of knowledge. It also describes the various implementation details that were taken into account to achieve the reported results. These aspects contribute to the maturation and improvement of experimental techniques to specify the neural network architecture that is most appropriate for a particular application scope. The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals.

  19. Ontogeny of avian thermoregulation from a neural point of view

    OpenAIRE

    Baarendse, P.J.J.; Debonne, M.; Decuypere, M.P.; Kemp, B.; Brand, van den, H.

    2007-01-01

    The ontogeny of thermoregulation differs among (avian) species, but in all species both neural and endocrinological processes are involved. In this review the neural processes in ontogeny of thermoregulation during the prenatal and early postnatal phase are discussed. Only in a few avian species (chicken, ducklings) the ontogeny of some important neural structures are described. In the early post hatching phase, peripheral and deep-body thermoreceptors are present and functional, even in altr...

  20. Computational modeling of neural plasticity for self-organization of neural networks.

    Science.gov (United States)

    Chrol-Cannon, Joseph; Jin, Yaochu

    2014-11-01

    Self-organization in biological nervous systems during the lifetime is known to largely occur through a process of plasticity that is dependent upon the spike-timing activity in connected neurons. In the field of computational neuroscience, much effort has been dedicated to building up computational models of neural plasticity to replicate experimental data. Most recently, increasing attention has been paid to understanding the role of neural plasticity in functional and structural neural self-organization, as well as its influence on the learning performance of neural networks for accomplishing machine learning tasks such as classification and regression. Although many ideas and hypothesis have been suggested, the relationship between the structure, dynamics and learning performance of neural networks remains elusive. The purpose of this article is to review the most important computational models for neural plasticity and discuss various ideas about neural plasticity's role. Finally, we suggest a few promising research directions, in particular those along the line that combines findings in computational neuroscience and systems biology, and their synergetic roles in understanding learning, memory and cognition, thereby bridging the gap between computational neuroscience, systems biology and computational intelligence. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Neural Networks: Implementations and Applications

    NARCIS (Netherlands)

    Vonk, E.; Veelenturf, L.P.J.; Jain, L.C.

    1996-01-01

    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas

  2. Critical Branching Neural Networks

    Science.gov (United States)

    Kello, Christopher T.

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…

  3. Kunstige neurale net

    DEFF Research Database (Denmark)

    Hørning, Annette

    1994-01-01

    Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse.......Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse....

  4. In vivo functional brain mapping in a conditional mouse model of human tauopathy (taup301l reveals reduced neural activity in memory formation structures

    Directory of Open Access Journals (Sweden)

    Perez Pablo D

    2013-02-01

    Full Text Available Abstract Background Tauopathies are characterized by intracellular deposition of the microtubule-associated protein tau as filamentous aggregates. The rTg4510 mouse conditionally expresses mutant human tau protein in various forebrain areas under the Tet-off expression system. Mice develop neurofibrillary tangles, with significant neuronal loss and cognitive deficits by 6 months of age. Previous behavioral and biochemical work has linked the expression and aggregates of mutant tau to functional impairments. The present work used manganese-enhanced magnetic resonance imaging (MEMRI to investigate basal levels of brain activity in the rTg4510 and control mice. Results Our results show an unmistakable curtailment of neural activity in the amygdala and hippocampus, two regions known for their role in memory formation, but not the cortex, cerebellum, striatum and hypothalamus in tau expressing mice. Conclusion Behavioral impairments associated with changes in activity in these areas may correspond to age progressive mutant tauP301L-induced neurodegeneration.

  5. Empirical versus mechanistic modelling: comparison of an artificial neural network to a mechanistically based model for quantitative structure pharmacokinetic relationships of a homologous series of barbiturates.

    Science.gov (United States)

    Nestorov, I S; Hadjitodorov, S T; Petrov, I; Rowland, M

    1999-01-01

    The aim of the current study was to compare the predictive performance of a mechanistically based model and an empirical artificial neural network (ANN) model to describe the relationship between the tissue-to-unbound plasma concentration ratios (Kpu's) of 14 rat tissues and the lipophilicity (LogP) of a series of nine 5-n-alkyl-5-ethyl barbituric acids. The mechanistic model comprised the water content, binding capacity, number of the binding sites, and binding association constant of each tissue. A backpropagation ANN with 2 hidden layers (33 neurons in the first layer, 9 neurons in the second) was used for the comparison. The network was trained by an algorithm with adaptive momentum and learning rate, programmed using the ANN Toolbox of MATLAB. The predictive performance of both models was evaluated using a leave-one-out procedure and computation of both the mean prediction error (ME, showing the prediction bias) and the mean squared prediction error (MSE, showing the prediction accuracy). The ME of the mechanistic model was 18% (range, 20 to 57%), indicating a tendency for overprediction; the MSE is 32% (range, 6 to 104%). The ANN had almost no bias: the ME was 2% (range, 36 to 64%) and had greater precision than the mechanistic model, MSE 18% (range, 4 to 70%). Generally, neither model appeared to be a significantly better predictor of the Kpu's in the rat.

  6. Optimal Brain Surgeon on Artificial Neural Networks in

    DEFF Research Database (Denmark)

    Christiansen, Niels Hørbye; Job, Jonas Hultmann; Klyver, Katrine

    2012-01-01

    It is shown how the procedure know as optimal brain surgeon can be used to trim and optimize artificial neural networks in nonlinear structural dynamics. Beside optimizing the neural network, and thereby minimizing computational cost in simulation, the surgery procedure can also serve as a quick...

  7. The harmonics detection method based on neural network applied ...

    African Journals Online (AJOL)

    user

    Consequently, many structures based on artificial neural network (ANN) have been developed in the literature, The most significant ... Keywords: Artificial Neural Networks (ANN), p-q theory, (SAPF), Harmonics, Total Harmonic Distortion. 1. ..... and pure shunt active fitters, IEEE 38th Conf on Industry Applications, Vol. 2, pp.

  8. Research of The Deeper Neural Networks

    Directory of Open Access Journals (Sweden)

    Xiao You Rong

    2016-01-01

    Full Text Available Neural networks (NNs have powerful computational abilities and could be used in a variety of applications; however, training these networks is still a difficult problem. With different network structures, many neural models have been constructed. In this report, a deeper neural networks (DNNs architecture is proposed. The training algorithm of deeper neural network insides searching the global optimal point in the actual error surface. Before the training algorithm is designed, the error surface of the deeper neural network is analyzed from simple to complicated, and the features of the error surface is obtained. Based on these characters, the initialization method and training algorithm of DNNs is designed. For the initialization, a block-uniform design method is proposed which separates the error surface into some blocks and finds the optimal block using the uniform design method. For the training algorithm, the improved gradient-descent method is proposed which adds a penalty term into the cost function of the old gradient descent method. This algorithm makes the network have a great approximating ability and keeps the network state stable. All of these improve the practicality of the neural network.

  9. Neural Plasticity in the Gustatory System

    OpenAIRE

    Hill, David L.

    2004-01-01

    Sensory systems adapt to changing environmental influences by coordinated alterations in structure and function. These alterations are referred to as plastic changes. The gustatory system displays numerous plastic changes even in receptor cells. This review focuses on the plasticity of gustatory structures through the first synaptic relay in the brain. Unlike other sensory systems, there is a remarkable amount of environmentally induced changes in these peripheral-most neural structures. The ...

  10. A 3.7 kb fragment of the mouse Scn10a gene promoter directs neural crest but not placodal lineage EGFP expression in a transgenic animal.

    Science.gov (United States)

    Lu, Van B; Ikeda, Stephen R; Puhl, Henry L

    2015-05-20

    Under physiological conditions, the voltage-gated sodium channel Nav1.8 is expressed almost exclusively in primary sensory neurons. The mechanism restricting Nav1.8 expression is not entirely clear, but we have previously described a 3.7 kb fragment of the Scn10a promoter capable of recapitulating the tissue-specific expression of Nav1.8 in transfected neurons and cell lines (Puhl and Ikeda, 2008). To validate these studies in vivo, a transgenic mouse encoding EGFP under the control of this putative sensory neuron specific promoter was generated and characterized in this study. Approximately 45% of dorsal root ganglion neurons of transgenic mice were EGFP-positive (mean diameter = 26.5 μm). The majority of EGFP-positive neurons bound isolectin B4, although a small percentage (∼10%) colabeled with markers of A-fiber neurons. EGFP expression correlated well with the presence of Nav1.8 transcript (95%), Nav1.8-immunoreactivity (70%), and TTX-R INa (100%), although not all Nav1.8-expressing neurons expressed EGFP. Several cranial sensory ganglia originating from neurogenic placodes, such as the nodose ganglion, failed to express EGFP, suggesting that additional regulatory elements dictate Scn10a expression in placodal-derived sensory neurons. EGFP was also detected in discrete brain regions of transgenic mice. Quantitative PCR and Nav1.8-immunoreactivity confirmed Nav1.8 expression in the amygdala, brainstem, globus pallidus, lateral and paraventricular hypothalamus, and olfactory tubercle. TTX-R INa recorded from EGFP-positive hypothalamic neurons demonstrate the usefulness of this transgenic line to study novel roles of Nav1.8 beyond sensory neurons. Overall, Scn10a-EGFP transgenic mice recapitulate the majority of the Nav1.8 expression pattern in neural crest-derived sensory neurons. Copyright © 2015 the authors 0270-6474/15/358021-14$15.00/0.

  11. [Mechanism of neural plasticity of acupuncture on chronic migraine].

    Science.gov (United States)

    Xu, Xiaobai; Liu, Lu; Zhao, Luopeng; Qu, Zhengyang; Zhu, Yupu; Zhang, Yajie; Wang, Linpeng

    2017-10-12

    Chronic migraine is one of neurological disorders with high rate of disability, but sufficient attention has not been paid in this field. A large number of clinical studies have shown traditional Chinese acupuncture is a kind of effective treatment with less side effects. Through the analysis of literature regarding acupuncture and migraine published from 1981 to 2017 in CNKI and PubMed databases, the mechanism of neural plasticity of acupuncture on chronic migraine was explored. It was believed the progress of chronic migraine involved the changes of neural plasticity in neural structure and function, and the neural plasticity related with neural sensitization during the process of chronic migraine was discussed from three aspects of electrophysiology, molecular chemistry and radiography. Acupuncture could treat and prevent chronic migraine via the mechanism of neural plasticity, but there was no related literature, hindering the further spreading and development of acupuncture for chronic migraine.

  12. Handbook on neural information processing

    CERN Document Server

    Maggini, Marco; Jain, Lakhmi

    2013-01-01

    This handbook presents some of the most recent topics in neural information processing, covering both theoretical concepts and practical applications. The contributions include:                         Deep architectures                         Recurrent, recursive, and graph neural networks                         Cellular neural networks                         Bayesian networks                         Approximation capabilities of neural networks                         Semi-supervised learning                         Statistical relational learning                         Kernel methods for structured data                         Multiple classifier systems                         Self organisation and modal learning                         Applications to ...

  13. Dynamics of neural cryptography.

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Kanter, Ido

    2007-05-01

    Synchronization of neural networks has been used for public channel protocols in cryptography. In the case of tree parity machines the dynamics of both bidirectional synchronization and unidirectional learning is driven by attractive and repulsive stochastic forces. Thus it can be described well by a random walk model for the overlap between participating neural networks. For that purpose transition probabilities and scaling laws for the step sizes are derived analytically. Both these calculations as well as numerical simulations show that bidirectional interaction leads to full synchronization on average. In contrast, successful learning is only possible by means of fluctuations. Consequently, synchronization is much faster than learning, which is essential for the security of the neural key-exchange protocol. However, this qualitative difference between bidirectional and unidirectional interaction vanishes if tree parity machines with more than three hidden units are used, so that those neural networks are not suitable for neural cryptography. In addition, the effective number of keys which can be generated by the neural key-exchange protocol is calculated using the entropy of the weight distribution. As this quantity increases exponentially with the system size, brute-force attacks on neural cryptography can easily be made unfeasible.

  14. Transplantation of Human Neural Progenitor Cells Reveals Structural and Functional Improvements in the Spastic Han-Wistar Rat Model of Ataxia

    Science.gov (United States)

    Nuryyev, Ruslan L.; Uhlendorf, Toni L.; Tierney, Wesley; Zatikyan, Suren; Kopyov, Oleg; Kopyov, Alex; Ochoa, Jessica; Trigt, William Van; Malone, Cindy S.

    2018-01-01

    The use of regenerative medicine to treat nervous system disorders like ataxia has been proposed to either replace or support degenerating neurons. In this study, we assessed the ability of human neural progenitor cells (hNPCs) to repair and restore the function of dying neurons within the spastic Han-Wistar rat (sHW), a model of ataxia. The sHW rat suffers from neurodegeneration of specific neurons, including cerebellar Purkinje cells and hippocampal CA3 pyramidal cells leading to the observed symptoms of forelimb tremor, hind-leg rigidity, gait abnormality, motor incoordination, and a shortened life span. To alleviate the symptoms of neurodegeneration and to replace or augment dying neurons, neuronal human progenitor cells were implanted into the sHW rats. At 30 d of age, male sHW mutant rats underwent subcutaneous implantation of an Alzet osmotic pump that infused cyclosporine (15 mg/kg/d) used to suppress the rat’s immune system. At 40 d, sHW rats received bilateral injections (500,000 cells in 5 µL media) of live hNPCs, dead hNPCs, live human embryonic kidney cells, or growth media either into the cerebellar cortex or into the hippocampus. To monitor results, motor activity scores (open-field testing) and weights of the animals were recorded weekly. The sHW rats that received hNPC transplantation into the cerebellum, at 60 d of age, displayed significantly higher motor activity scores and sustained greater weights and longevities than control-treated sHW rats or any hippocampal treatment group. In addition, cerebellar histology revealed that the transplanted hNPCs displayed signs of migration and signs of neuronal development in the degenerated Purkinje cell layer. This study revealed that implanted human progenitor cells reduced the ataxic symptoms in the sHW rat, identifying a future clinical use of these progenitor cells against ataxia and associated neurodegenerative diseases. PMID:29338380

  15. Identification and characterization of secondary neural tube-derived embryonic neural stem cells in vitro.

    Science.gov (United States)

    Shaker, Mohammed R; Kim, Joo Yeon; Kim, Hyun; Sun, Woong

    2015-05-15

    Secondary neurulation is an embryonic progress that gives rise to the secondary neural tube, the precursor of the lower spinal cord region. The secondary neural tube is derived from aggregated Sox2-expressing neural cells at the dorsal region of the tail bud, which eventually forms rosette or tube-like structures to give rise to neural tissues in the tail bud. We addressed whether the embryonic tail contains neural stem cells (NSCs), namely secondary NSCs (sNSCs), with the potential for self-renewal in vitro. Using in vitro neurosphere assays, neurospheres readily formed at the rosette and neural-tube levels, but less frequently at the tail bud tip level. Furthermore, we identified that sNSC-generated neurospheres were significantly smaller in size compared with cortical neurospheres. Interestingly, various cell cycle analyses revealed that this difference was not due to a reduction in the proliferation rate of NSCs, but rather the neuronal commitment of sNSCs, as sNSC-derived neurospheres contain more committed neuronal progenitor cells, even in the presence of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). These results suggest that the higher tendency for sNSCs to spontaneously differentiate into progenitor cells may explain the limited expansion of the secondary neural tube during embryonic development.

  16. A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations.

    Science.gov (United States)

    Xia, Youshen; Feng, Gang; Wang, Jun

    2004-09-01

    This paper presents a recurrent neural network for solving strict convex quadratic programming problems and related linear piecewise equations. Compared with the existing neural networks for quadratic program, the proposed neural network has a one-layer structure with a low model complexity. Moreover, the proposed neural network is shown to have a finite-time convergence and exponential convergence. Illustrative examples further show the good performance of the proposed neural network in real-time applications.

  17. Artificial neural networks and support vector mac

    Indian Academy of Sciences (India)

    Quantitative structure-property relationships of electroluminescent materials: Artificial neural networks and support vector machines to predict electroluminescence of organic molecules. ALANA FERNANDES GOLIN and RICARDO STEFANI. ∗. Laboratório de Estudos de Materiais (LEMAT), Instituto de Ciências Exatas e da ...

  18. Estimating Conditional Distributions by Neural Networks

    DEFF Research Database (Denmark)

    Kulczycki, P.; Schiøler, Henrik

    1998-01-01

    Neural Networks for estimating conditionaldistributions and their associated quantiles are investigated in this paper. A basic network structure is developed on the basis of kernel estimation theory, and consistency property is considered from a mild set of assumptions. A number of applications...

  19. Neural Network for Estimating Conditional Distribution

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Kulczycki, P.

    Neural networks for estimating conditional distributions and their associated quantiles are investigated in this paper. A basic network structure is developed on the basis of kernel estimation theory, and consistency is proved from a mild set of assumptions. A number of applications within...... statistcs, decision theory and signal processing are suggested, and a numerical example illustrating the capabilities of the elaborated network is given...

  20. Hidden neural networks

    DEFF Research Database (Denmark)

    Krogh, Anders Stærmose; Riis, Søren Kamaric

    1999-01-01

    A general framework for hybrids of hidden Markov models (HMMs) and neural networks (NNs) called hidden neural networks (HNNs) is described. The article begins by reviewing standard HMMs and estimation by conditional maximum likelihood, which is used by the HNN. In the HNN, the usual HMM probability...... parameters are replaced by the outputs of state-specific neural networks. As opposed to many other hybrids, the HNN is normalized globally and therefore has a valid probabilistic interpretation. All parameters in the HNN are estimated simultaneously according to the discriminative conditional maximum...... likelihood criterion. The HNN can be viewed as an undirected probabilistic independence network (a graphical model), where the neural networks provide a compact representation of the clique functions. An evaluation of the HNN on the task of recognizing broad phoneme classes in the TIMIT database shows clear...

  1. [Neural codes for perception].

    Science.gov (United States)

    Romo, R; Salinas, E; Hernández, A; Zainos, A; Lemus, L; de Lafuente, V; Luna, R

    This article describes experiments designed to show the neural codes associated with the perception and processing of tactile information. The results of these experiments have shown the neural activity correlated with tactile perception. The neurones of the primary somatosensory cortex (S1) represent the physical attributes of tactile perception. We found that these representations correlated with tactile perception. By means of intracortical microstimulation we demonstrated the causal relationship between S1 activity and tactile perception. In the motor areas of the frontal lobe is to be found the connection between sensorial and motor representation whilst decisions are being taken. S1 generates neural representations of the somatosensory stimuli which seen to be sufficient for tactile perception. These neural representations are subsequently processed by central areas to S1 and seem useful in perception, memory and decision making.

  2. Neural Oscillators Programming Simplified

    Directory of Open Access Journals (Sweden)

    Patrick McDowell

    2012-01-01

    Full Text Available The neurological mechanism used for generating rhythmic patterns for functions such as swallowing, walking, and chewing has been modeled computationally by the neural oscillator. It has been widely studied by biologists to model various aspects of organisms and by computer scientists and robotics engineers as a method for controlling and coordinating the gaits of walking robots. Although there has been significant study in this area, it is difficult to find basic guidelines for programming neural oscillators. In this paper, the authors approach neural oscillators from a programmer’s point of view, providing background and examples for developing neural oscillators to generate rhythmic patterns that can be used in biological modeling and robotics applications.

  3. Using Self-Organizing Neural Network Map Combined with Ward's Clustering Algorithm for Visualization of Students' Cognitive Structural Models about Aliveness Concept.

    Science.gov (United States)

    Yorek, Nurettin; Ugulu, Ilker; Aydin, Halil

    2016-01-01

    We propose an approach to clustering and visualization of students' cognitive structural models. We use the self-organizing map (SOM) combined with Ward's clustering to conduct cluster analysis. In the study carried out on 100 subjects, a conceptual understanding test consisting of open-ended questions was used as a data collection tool. The results of analyses indicated that students constructed the aliveness concept by associating it predominantly with human. Motion appeared as the most frequently associated term with the aliveness concept. The results suggest that the aliveness concept has been constructed using anthropocentric and animistic cognitive structures. In the next step, we used the data obtained from the conceptual understanding test for training the SOM. Consequently, we propose a visualization method about cognitive structure of the aliveness concept.

  4. Neural cryptography with feedback.

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Shacham, Lanir; Kanter, Ido

    2004-04-01

    Neural cryptography is based on a competition between attractive and repulsive stochastic forces. A feedback mechanism is added to neural cryptography which increases the repulsive forces. Using numerical simulations and an analytic approach, the probability of a successful attack is calculated for different model parameters. Scaling laws are derived which show that feedback improves the security of the system. In addition, a network with feedback generates a pseudorandom bit sequence which can be used to encrypt and decrypt a secret message.

  5. Neural cryptography with feedback

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Shacham, Lanir; Kanter, Ido

    2004-04-01

    Neural cryptography is based on a competition between attractive and repulsive stochastic forces. A feedback mechanism is added to neural cryptography which increases the repulsive forces. Using numerical simulations and an analytic approach, the probability of a successful attack is calculated for different model parameters. Scaling laws are derived which show that feedback improves the security of the system. In addition, a network with feedback generates a pseudorandom bit sequence which can be used to encrypt and decrypt a secret message.

  6. Neural network applications

    Science.gov (United States)

    Padgett, Mary L.; Desai, Utpal; Roppel, T.A.; White, Charles R.

    1993-01-01

    A design procedure is suggested for neural networks which accommodates the inclusion of such knowledge-based systems techniques as fuzzy logic and pairwise comparisons. The use of these procedures in the design of applications combines qualitative and quantitative factors with empirical data to yield a model with justifiable design and parameter selection procedures. The procedure is especially relevant to areas of back-propagation neural network design which are highly responsive to the use of precisely recorded expert knowledge.

  7. Building Neural Net Software

    OpenAIRE

    Neto, João Pedro; Costa, José Félix

    1999-01-01

    In a recent paper [Neto et al. 97] we showed that programming languages can be translated on recurrent (analog, rational weighted) neural nets. The goal was not efficiency but simplicity. Indeed we used a number-theoretic approach to machine programming, where (integer) numbers were coded in a unary fashion, introducing a exponential slow down in the computations, with respect to a two-symbol tape Turing machine. Implementation of programming languages in neural nets turns to be not only theo...

  8. NEMEFO: NEural MEteorological FOrecast

    Energy Technology Data Exchange (ETDEWEB)

    Pasero, E.; Moniaci, W.; Meindl, T.; Montuori, A. [Polytechnic of Turin (Italy). Dept. of Electronics

    2004-07-01

    Artificial Neural Systems are a well-known technique used to classify and recognize objects. Introducing the time dimension they can be used to forecast numerical series. NEMEFO is a ''nowcasting'' tool, which uses both statistical and neural systems to forecast meteorological data in a restricted area close to a meteorological weather station in a short time range (3 hours). Ice, fog, rain are typical events which can be anticipated by NEMEFO. (orig.)

  9. Neural networks for estimation of ocean wave parameters

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Rao, S.; Raju, D.H.

    Ocean wave parameters play a significant role in the design of all coastal and offshore structures. In the present study, neural networks are used to estimate various ocean wave parameters from theoretical Pierson-Moskowitz spectra as well...

  10. Google matrix analysis of C.elegans neural network

    Science.gov (United States)

    Kandiah, V.; Shepelyansky, D. L.

    2014-05-01

    We study the structural properties of the neural network of the C.elegans (worm) from a directed graph point of view. The Google matrix analysis is used to characterize the neuron connectivity structure and node classifications are discussed and compared with physiological properties of the cells. Our results are obtained by a proper definition of neural directed network and subsequent eigenvector analysis which recovers some results of previous studies. Our analysis highlights particular sets of important neurons constituting the core of the neural system. The applications of PageRank, CheiRank and ImpactRank to characterization of interdependency of neurons are discussed.

  11. Neural Networks in Antennas and Microwaves: A Practical Approach

    Directory of Open Access Journals (Sweden)

    Z. Raida

    2001-12-01

    Full Text Available Neural networks are electronic systems which can be trained toremember behavior of a modeled structure in given operational points,and which can be used to approximate behavior of the structure out ofthe training points. These approximation abilities of neural nets aredemonstrated on modeling a frequency-selective surface, a microstriptransmission line and a microstrip dipole. Attention is turned to theaccuracy and to the efficiency of neural models. The association ofneural models and genetic algorithms, which can provide a global designtool, is discussed.

  12. Psychophysical and neural correlates of noised-induced tinnitus in animals: Intra- and inter-auditory and non-auditory brain structure studies.

    Science.gov (United States)

    Zhang, Jinsheng; Luo, Hao; Pace, Edward; Li, Liang; Liu, Bin

    2016-04-01

    Tinnitus, a ringing in the ear or head without an external sound source, is a prevalent health problem. It is often associated with a number of limbic-associated disorders such as anxiety, sleep disturbance, and emotional distress. Thus, to investigate tinnitus, it is important to consider both auditory and non-auditory brain structures. This paper summarizes the psychophysical, immunocytochemical and electrophysiological evidence found in rats or hamsters with behavioral evidence of tinnitus. Behaviorally, we tested for tinnitus using a conditioned suppression/avoidance paradigm, gap detection acoustic reflex behavioral paradigm, and our newly developed conditioned licking suppression paradigm. Our new tinnitus behavioral paradigm requires relatively short baseline training, examines frequency specification of tinnitus perception, and achieves sensitive tinnitus testing at an individual level. To test for tinnitus-related anxiety and cognitive impairment, we used the elevated plus maze and Morris water maze. Our results showed that not all animals with tinnitus demonstrate anxiety and cognitive impairment. Immunocytochemically, we found that animals with tinnitus manifested increased Fos-like immunoreactivity (FLI) in both auditory and non-auditory structures. The manner in which FLI appeared suggests that lower brainstem structures may be involved in acute tinnitus whereas the midbrain and cortex are involved in more chronic tinnitus. Meanwhile, animals with tinnitus also manifested increased FLI in non-auditory brain structures that are involved in autonomic reactions, stress, arousal and attention. Electrophysiologically, we found that rats with tinnitus developed increased spontaneous firing in the auditory cortex (AC) and amygdala (AMG), as well as intra- and inter-AC and AMG neurosynchrony, which demonstrate that tinnitus may be actively produced and maintained by the interactions between the AC and AMG. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Structural Characterization of the Ectodomain of a Disintegrin and Metalloproteinase-22 (ADAM22), a Neural Adhesion Receptor Instead of Metalloproteinase INSIGHTS ON ADAM FUNCTION

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Heli; Shim, Ann H.R.; He, Xiaolin; (NWU)

    2009-12-01

    ADAMs (adisintegrin and metalloproteinases) are a family of multidomain transmembrane glycoproteins with diverse roles in physiology and diseases, with several members being drug targets for cancer and inflammation therapies. The spatial organization of the ADAM extracellular segment and its influence on the function of ADAMs have been unclear. Although most members of the ADAM family are active zinc metalloproteinases, 8 of 21 ADAMs lack functional metalloproteinase domains and are implicated in protein-protein interactions instead of membrane protein ectodomain shedding. One of such non-proteinase ADAMs, ADAM22, acts as a receptor on the surface of the postsynaptic neuron to regulate synaptic signal transmission. The crystal structure of the full ectodomain of mature human ADAM22 shows that it is a compact four-leaf clover with the metalloproteinase-like domain held in the concave face of a rigid module formed by the disintegrin, cysteine-rich, and epidermal growth factor-like domains. The loss of metalloproteinase activity is ensured by the absence of critical catalytic residues, the filling of the substrate groove, and the steric hindrance by the cysteine-rich domain. The structure, combined with calorimetric experiments, suggests distinct roles of three putative calcium ions bound to ADAM22, with one in the metalloproteinase-like domain being regulatory and two in the disintegrin domain being structural. The metalloproteinase-like domain contacts the rest of ADAM22 with discontinuous, hydrophilic, and poorly complemented interactions, suggesting the possibility of modular movement of ADAM22 and other ADAMs. The ADAM22 structure provides a framework for understanding how different ADAMs exert their adhesive function and shedding activities.

  14. Self-Organisation of Neural Topologies by Evolutionary Reinforcement Learning

    OpenAIRE

    Siebel, Nils T; Krause, Jochen; Sommer, Gerald

    2007-01-01

    In this article we present EANT, "Evolutionary Acquisition of Neural Topologies", a method that creates neural networks (NNs) by evolutionary reinforcement learning. The structure of NNs is developed using mutation operators, starting from a minimal structure. Their parameters are optimised using CMA-ES. EANT can create NNs that are very specialised; they achieve a very good performance while being relatively small. This can be seen in experiments where our method competes with a different on...

  15. Weather forecasting based on hybrid neural model

    Science.gov (United States)

    Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.

    2017-02-01

    Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.

  16. On sparsely connected optimal neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V. [Los Alamos National Lab., NM (United States); Draghici, S. [Wayne State Univ., Detroit, MI (United States)

    1997-10-01

    This paper uses two different approaches to show that VLSI- and size-optimal discrete neural networks are obtained for small fan-in values. These have applications to hardware implementations of neural networks, but also reveal an intrinsic limitation of digital VLSI technology: its inability to cope with highly connected structures. The first approach is based on implementing F{sub n,m} functions. The authors show that this class of functions can be implemented in VLSI-optimal (i.e., minimizing AT{sup 2}) neural networks of small constant fan-ins. In order to estimate the area (A) and the delay (T) of such networks, the following cost functions will be used: (i) the connectivity and the number-of-bits for representing the weights and thresholds--for good estimates of the area; and (ii) the fan-ins and the length of the wires--for good approximates of the delay. The second approach is based on implementing Boolean functions for which the classical Shannon`s decomposition can be used. Such a solution has already been used to prove bounds on the size of fan-in 2 neural networks. They will generalize the result presented there to arbitrary fan-in, and prove that the size is minimized by small fan-in values. Finally, a size-optimal neural network of small constant fan-ins will be suggested for F{sub n,m} functions.

  17. Representations in neural network based empirical potentials

    Science.gov (United States)

    Cubuk, Ekin D.; Malone, Brad D.; Onat, Berk; Waterland, Amos; Kaxiras, Efthimios

    2017-07-01

    Many structural and mechanical properties of crystals, glasses, and biological macromolecules can be modeled from the local interactions between atoms. These interactions ultimately derive from the quantum nature of electrons, which can be prohibitively expensive to simulate. Machine learning has the potential to revolutionize materials modeling due to its ability to efficiently approximate complex functions. For example, neural networks can be trained to reproduce results of density functional theory calculations at a much lower cost. However, how neural networks reach their predictions is not well understood, which has led to them being used as a "black box" tool. This lack of understanding is not desirable especially for applications of neural networks in scientific inquiry. We argue that machine learning models trained on physical systems can be used as more than just approximations since they had to "learn" physical concepts in order to reproduce the labels they were trained on. We use dimensionality reduction techniques to study in detail the representation of silicon atoms at different stages in a neural network, which provides insight into how a neural network learns to model atomic interactions.

  18. Weather forecasting based on hybrid neural model

    Science.gov (United States)

    Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.

    2017-11-01

    Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.

  19. Enhanced expression of FNDC5 in human embryonic stem cell-derived neural cells along with relevant embryonic neural tissues.

    Science.gov (United States)

    Ghahrizjani, Fatemeh Ahmadi; Ghaedi, Kamran; Salamian, Ahmad; Tanhaei, Somayeh; Nejati, Alireza Shoaraye; Salehi, Hossein; Nabiuni, Mohammad; Baharvand, Hossein; Nasr-Esfahani, Mohammad Hossein

    2015-02-25

    Availability of human embryonic stem cells (hESCs) has enhanced the capability of basic and clinical research in the context of human neural differentiation. Derivation of neural progenitor (NP) cells from hESCs facilitates the process of human embryonic development through the generation of neuronal subtypes. We have recently indicated that fibronectin type III domain containing 5 protein (FNDC5) expression is required for appropriate neural differentiation of mouse embryonic stem cells (mESCs). Bioinformatics analyses have shown the presence of three isoforms for human FNDC5 mRNA. To differentiate which isoform of FNDC5 is involved in the process of human neural differentiation, we have used hESCs as an in vitro model for neural differentiation by retinoic acid (RA) induction. The hESC line, Royan H5, was differentiated into a neural lineage in defined adherent culture treated by RA and basic fibroblast growth factor (bFGF). We collected all cell types that included hESCs, rosette structures, and neural cells in an attempt to assess the expression of FNDC5 isoforms. There was a contiguous increase in all three FNDC5 isoforms during the neural differentiation process. Furthermore, the highest level of expression of the isoforms was significantly observed in neural cells compared to hESCs and the rosette structures known as neural precursor cells (NPCs). High expression levels of FNDC5 in human fetal brain and spinal cord tissues have suggested the involvement of this gene in neural tube development. Additional research is necessary to determine the major function of FDNC5 in this process. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Neural correlates of viewing paintings

    DEFF Research Database (Denmark)

    Vartanian, Oshin; Skov, Martin

    2014-01-01

    Many studies involving functional magnetic resonance imaging (fMRI) have exposed participants to paintings under varying task demands. To isolate neural systems that are activated reliably across fMRI studies in response to viewing paintings regardless of variation in task demands, a quantitative...... meta-analysis of fifteen experiments using the activation likelihood estimation (ALE) method was conducted. As predicted, viewing paintings was correlated with activation in a distributed system including the occipital lobes, temporal lobe structures in the ventral stream involved in object (fusiform...... gyrus) and scene (parahippocampal gyrus) perception, and the anterior insula-a key structure in experience of emotion. In addition, we also observed activation in the posterior cingulate cortex bilaterally-part of the brain's default network. These results suggest that viewing paintings engages not only...

  1. Conducting Polymers for Neural Prosthetic and Neural Interface Applications

    Science.gov (United States)

    2015-01-01

    Neural interfacing devices are an artificial mechanism for restoring or supplementing the function of the nervous system lost as a result of injury or disease. Conducting polymers (CPs) are gaining significant attention due to their capacity to meet the performance criteria of a number of neuronal therapies including recording and stimulating neural activity, the regeneration of neural tissue and the delivery of bioactive molecules for mediating device-tissue interactions. CPs form a flexible platform technology that enables the development of tailored materials for a range of neuronal diagnostic and treatment therapies. In this review the application of CPs for neural prostheses and other neural interfacing devices are discussed, with a specific focus on neural recording, neural stimulation, neural regeneration, and therapeutic drug delivery. PMID:26414302

  2. Neural reuse: a fundamental organizational principle of the brain.

    Science.gov (United States)

    Anderson, Michael L

    2010-08-01

    An emerging class of theories concerning the functional structure of the brain takes the reuse of neural circuitry for various cognitive purposes to be a central organizational principle. According to these theories, it is quite common for neural circuits established for one purpose to be exapted (exploited, recycled, redeployed) during evolution or normal development, and be put to different uses, often without losing their original functions. Neural reuse theories thus differ from the usual understanding of the role of neural plasticity (which is, after all, a kind of reuse) in brain organization along the following lines: According to neural reuse, circuits can continue to acquire new uses after an initial or original function is established; the acquisition of new uses need not involve unusual circumstances such as injury or loss of established function; and the acquisition of a new use need not involve (much) local change to circuit structure (e.g., it might involve only the establishment of functional connections to new neural partners). Thus, neural reuse theories offer a distinct perspective on several topics of general interest, such as: the evolution and development of the brain, including (for instance) the evolutionary-developmental pathway supporting primate tool use and human language; the degree of modularity in brain organization; the degree of localization of cognitive function; and the cortical parcellation problem and the prospects (and proper methods to employ) for function to structure mapping. The idea also has some practical implications in the areas of rehabilitative medicine and machine interface design.

  3. Hyperbolic Hopfield neural networks.

    Science.gov (United States)

    Kobayashi, M

    2013-02-01

    In recent years, several neural networks using Clifford algebra have been studied. Clifford algebra is also called geometric algebra. Complex-valued Hopfield neural networks (CHNNs) are the most popular neural networks using Clifford algebra. The aim of this brief is to construct hyperbolic HNNs (HHNNs) as an analog of CHNNs. Hyperbolic algebra is a Clifford algebra based on Lorentzian geometry. In this brief, a hyperbolic neuron is defined in a manner analogous to a phasor neuron, which is a typical complex-valued neuron model. HHNNs share common concepts with CHNNs, such as the angle and energy. However, HHNNs and CHNNs are different in several aspects. The states of hyperbolic neurons do not form a circle, and, therefore, the start and end states are not identical. In the quantized version, unlike complex-valued neurons, hyperbolic neurons have an infinite number of states.

  4. Neural Semantic Encoders.

    Science.gov (United States)

    Munkhdalai, Tsendsuren; Yu, Hong

    2017-04-01

    We present a memory augmented neural network for natural language understanding: Neural Semantic Encoders. NSE is equipped with a novel memory update rule and has a variable sized encoding memory that evolves over time and maintains the understanding of input sequences through read, compose and write operations. NSE can also access multiple and shared memories. In this paper, we demonstrated the effectiveness and the flexibility of NSE on five different natural language tasks: natural language inference, question answering, sentence classification, document sentiment analysis and machine translation where NSE achieved state-of-the-art performance when evaluated on publically available benchmarks. For example, our shared-memory model showed an encouraging result on neural machine translation, improving an attention-based baseline by approximately 1.0 BLEU.

  5. Identifying Emotions on the Basis of Neural Activation.

    Directory of Open Access Journals (Sweden)

    Karim S Kassam

    Full Text Available We attempt to determine the discriminability and organization of neural activation corresponding to the experience of specific emotions. Method actors were asked to self-induce nine emotional states (anger, disgust, envy, fear, happiness, lust, pride, sadness, and shame while in an fMRI scanner. Using a Gaussian Naïve Bayes pooled variance classifier, we demonstrate the ability to identify specific emotions experienced by an individual at well over chance accuracy on the basis of: 1 neural activation of the same individual in other trials, 2 neural activation of other individuals who experienced similar trials, and 3 neural activation of the same individual to a qualitatively different type of emotion induction. Factor analysis identified valence, arousal, sociality, and lust as dimensions underlying the activation patterns. These results suggest a structure for neural representations of emotion and inform theories of emotional processing.

  6. Obstacle avoidance for power wheelchair using bayesian neural network.

    Science.gov (United States)

    Trieu, Hoang T; Nguyen, Hung T; Willey, Keith

    2007-01-01

    In this paper we present a real-time obstacle avoidance algorithm using a Bayesian neural network for a laser based wheelchair system. The raw laser data is modified to accommodate the wheelchair dimensions, allowing the free-space to be determined accurately in real-time. Data acquisition is performed to collect the patterns required for training the neural network. A Bayesian frame work is applied to determine the optimal neural network structure for the training data. This neural network is trained under the supervision of the Bayesian rule and the obstacle avoidance task is then implemented for the wheelchair system. Initial results suggest this approach provides an effective solution for autonomous tasks, suggesting Bayesian neural networks may be useful for wider assistive technology applications.

  7. Activity-dependent neural plasticity from bench to bedside.

    Science.gov (United States)

    Ganguly, Karunesh; Poo, Mu-Ming

    2013-10-30

    Much progress has been made in understanding how behavioral experience and neural activity can modify the structure and function of neural circuits during development and in the adult brain. Studies of physiological and molecular mechanisms underlying activity-dependent plasticity in animal models have suggested potential therapeutic approaches for a wide range of brain disorders in humans. Physiological and electrical stimulations as well as plasticity-modifying molecular agents may facilitate functional recovery by selectively enhancing existing neural circuits or promoting the formation of new functional circuits. Here, we review the advances in basic studies of neural plasticity mechanisms in developing and adult nervous systems and current clinical treatments that harness neural plasticity, and we offer perspectives on future development of plasticity-based therapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Development of an artificial neural network model for risk assessment of skin sensitization using human cell line activation test, direct peptide reactivity assay, KeratinoSens™ and in silico structure alert parameter.

    Science.gov (United States)

    Hirota, Morihiko; Ashikaga, Takao; Kouzuki, Hirokazu

    2017-12-10

    It is important to predict the potential of cosmetic ingredients to cause skin sensitization, and in accordance with the European Union cosmetic directive for the replacement of animal tests, several in vitro tests based on the adverse outcome pathway have been developed for hazard identification, such as the direct peptide reactivity assay, KeratinoSens™ and the human cell line activation test. Here, we describe the development of an artificial neural network (ANN) prediction model for skin sensitization risk assessment based on the integrated testing strategy concept, using direct peptide reactivity assay, KeratinoSens™, human cell line activation test and an in silico or structure alert parameter. We first investigated the relationship between published murine local lymph node assay EC3 values, which represent skin sensitization potency, and in vitro test results using a panel of about 134 chemicals for which all the required data were available. Predictions based on ANN analysis using combinations of parameters from all three in vitro tests showed a good correlation with local lymph node assay EC3 values. However, when the ANN model was applied to a testing set of 28 chemicals that had not been included in the training set, predicted EC3s were overestimated for some chemicals. Incorporation of an additional in silico or structure alert descriptor (obtained with TIMES-M or Toxtree software) in the ANN model improved the results. Our findings suggest that the ANN model based on the integrated testing strategy concept could be useful for evaluating the skin sensitization potential. Copyright © 2017 John Wiley & Sons, Ltd.

  9. The neural crest and neural crest cells: discovery and significance ...

    Indian Academy of Sciences (India)

    In this paper I provide a brief overview of the major phases of investigation into the neural crest and the major players involved, discuss how the origin of the neural crest relates to the origin of the nervous system in vertebrate embryos, discuss the impact on the germ-layer theory of the discovery of the neural crest and of ...

  10. Quantitative structure-retention relationship model for the determination of naratriptan hydrochloride and its impurities based on artificial neural networks coupled with genetic algorithm.

    Science.gov (United States)

    Mizera, Mikołaj; Krause, Anna; Zalewski, Przemysław; Skibiński, Robert; Cielecka-Piontek, Judyta

    2017-03-01

    Mathematical modeling of Quantitative Structure - Property Relationships met great interest in fields of in silico drug design and more recently, pharmaceutical analysis. In our approach we proposed automated method of creation Quantitative Structure-Retention Relationship (QSRR) for analysis of triptans, selective serotonin 5-HT1 receptor agonists used for the treatment of acute headache. The method was created using hybrid machine learning approach, namely Genetic algorithm (GA) coupled with artificial neutral networks (ANN). Performance of proposed hybrid GA-ANN model was evaluated with predicting relative retention times of naratriptan hydrochloride impurities. Several ANN types were coupled with GA and tested: single-layer ANN (SL-ANN), double-layer ANN (D-ANN) and higher order architectures: pi-sigma ANN (PS-ANN) and sigma-pi-sigma ANN (SPS-ANN). Partial Least Squares (PLS) method was used as a reference. The separation of naratriptan hydrochloride and its related products (impurities and degradation products) was obtained by developing a gradient high-performance liquid chromatography method with diode-array detector (HPLC-DAD). Degradation products during acid-basic hydrolysis were identified with an electrospray ionization tandem mass spectrometry (Q-TOF-MS/MS) detector. Independent data for outer validation of QSRR model was obtained from the determination of related products of sumatriptan succinate via an HPLC-DAD method. Accuracy of QSRR was measured by inner-validation on naratriptan data and outer validation on sumatriptan succinate samples. The best performing model were PS-ANN and SPS-ANN with mean errors of 8% (Q2=0.87) and 15% (Q2=0.77) on an inner-validation data set, respectively. Validation on similar samples from an outer validation data set of sumatriptan succinate impurities gave mean errors of 18% (R(2)pred=0.64) and 17% (R(2)pred=0.63) for the PS-ANN and SPS-ANN models, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Neural predictive control for active buffet alleviation

    Science.gov (United States)

    Pado, Lawrence E.; Lichtenwalner, Peter F.; Liguore, Salvatore L.; Drouin, Donald

    1998-06-01

    The adaptive neural control of aeroelastic response (ANCAR) and the affordable loads and dynamics independent research and development (IRAD) programs at the Boeing Company jointly examined using neural network based active control technology for alleviating undesirable vibration and aeroelastic response in a scale model aircraft vertical tail. The potential benefits of adaptive control includes reducing aeroelastic response associated with buffet and atmospheric turbulence, increasing flutter margins, and reducing response associated with nonlinear phenomenon like limit cycle oscillations. By reducing vibration levels and thus loads, aircraft structures can have lower acquisition cost, reduced maintenance, and extended lifetimes. Wind tunnel tests were undertaken on a rigid 15% scale aircraft in Boeing's mini-speed wind tunnel, which is used for testing at very low air speeds up to 80 mph. The model included a dynamically scaled flexible fail consisting of an aluminum spar with balsa wood cross sections with a hydraulically powered rudder. Neural predictive control was used to actuate the vertical tail rudder in response to strain gauge feedback to alleviate buffeting effects. First mode RMS strain reduction of 50% was achieved. The neural predictive control system was developed and implemented by the Boeing Company to provide an intelligent, adaptive control architecture for smart structures applications with automated synthesis, self-optimization, real-time adaptation, nonlinear control, and fault tolerance capabilities. It is designed to solve complex control problems though a process of automated synthesis, eliminating costly control design and surpassing it in many instances by accounting for real world non-linearities.

  12. Introduction to Artificial Neural Networks

    DEFF Research Database (Denmark)

    Larsen, Jan

    1999-01-01

    The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks.......The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks....

  13. Deconvolution using a neural network

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, S.K.

    1990-11-15

    Viewing one dimensional deconvolution as a matrix inversion problem, we compare a neural network backpropagation matrix inverse with LMS, and pseudo-inverse. This is a largely an exercise in understanding how our neural network code works. 1 ref.

  14. Clustering: a neural network approach.

    Science.gov (United States)

    Du, K-L

    2010-01-01

    Clustering is a fundamental data analysis method. It is widely used for pattern recognition, feature extraction, vector quantization (VQ), image segmentation, function approximation, and data mining. As an unsupervised classification technique, clustering identifies some inherent structures present in a set of objects based on a similarity measure. Clustering methods can be based on statistical model identification (McLachlan & Basford, 1988) or competitive learning. In this paper, we give a comprehensive overview of competitive learning based clustering methods. Importance is attached to a number of competitive learning based clustering neural networks such as the self-organizing map (SOM), the learning vector quantization (LVQ), the neural gas, and the ART model, and clustering algorithms such as the C-means, mountain/subtractive clustering, and fuzzy C-means (FCM) algorithms. Associated topics such as the under-utilization problem, fuzzy clustering, robust clustering, clustering based on non-Euclidean distance measures, supervised clustering, hierarchical clustering as well as cluster validity are also described. Two examples are given to demonstrate the use of the clustering methods.

  15. Neural growth into a microchannel network: towards a regenerative neural interface

    NARCIS (Netherlands)

    Wieringa, P.A.; Wiertz, Remy; le Feber, Jakob; Rutten, Wim

    2009-01-01

    We propose and validated a design for a highly selective 'endcap' regenerative neural interface towards a neuroprosthesis. In vitro studies using rat cortical neurons determine if a branching microchannel structure can counter fasciculated growth and cause neurites to separte from one another,

  16. Neural Network Ensembles

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Salamon, Peter

    1990-01-01

    We propose several means for improving the performance an training of neural networks for classification. We use crossvalidation as a tool for optimizing network parameters and architecture. We show further that the remaining generalization error can be reduced by invoking ensembles of similar...... networks....

  17. Neural systems for control

    National Research Council Canada - National Science Library

    Omidvar, Omid; Elliott, David L

    1997-01-01

    ... is reprinted with permission from A. Barto, "Reinforcement Learning," Handbook of Brain Theory and Neural Networks, M.A. Arbib, ed.. The MIT Press, Cambridge, MA, pp. 804-809, 1995. Chapter 4, Figures 4-5 and 7-9 and Tables 2-5, are reprinted with permission, from S. Cho, "Map Formation in Proprioceptive Cortex," International Jour...

  18. Neural Tube Defects

    Science.gov (United States)

    ... pregnancies each year in the United States. A baby’s neural tube normally develops into the brain and spinal cord. ... fluid in the brain. This is called hydrocephalus. Babies with this condition are treated with surgery to insert a tube (called a shunt) into the brain. The shunt ...

  19. Neural Mobilization: Treating Nerve-Related Musculoskeletal Conditions.

    Science.gov (United States)

    2017-09-01

    Physical therapists often assess and treat patients whose pain and disability stem from impaired mobility of the peripheral nervous system. Neural mobilization is a movement-based therapy, applied manually or via exercise. The nerve is mobilized relative to adjacent structures, with the aim of reducing symptoms through mechanisms that may be mechanical or neurophysiologic. A new systematic review published in the September 2017 issue of JOSPT includes 40 studies of neural mobilization in various neuromusculoskeletal conditions. The available evidence suggests that neural mobilization can be considered when treating certain nerve-related musculoskeletal conditions. J Orthop Sports Phys Ther 2017;47(9):616. doi:10.2519/jospt.2017.0509.

  20. Bioprinting for Neural Tissue Engineering.

    Science.gov (United States)

    Knowlton, Stephanie; Anand, Shivesh; Shah, Twisha; Tasoglu, Savas

    2018-01-01

    Bioprinting is a method by which a cell-encapsulating bioink is patterned to create complex tissue architectures. Given the potential impact of this technology on neural research, we review the current state-of-the-art approaches for bioprinting neural tissues. While 2D neural cultures are ubiquitous for studying neural cells, 3D cultures can more accurately replicate the microenvironment of neural tissues. By bioprinting neuronal constructs, one can precisely control the microenvironment by specifically formulating the bioink for neural tissues, and by spatially patterning cell types and scaffold properties in three dimensions. We review a range of bioprinted neural tissue models and discuss how they can be used to observe how neurons behave, understand disease processes, develop new therapies and, ultimately, design replacement tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Neural Networks as a Tool for Georadar Data Processing

    Directory of Open Access Journals (Sweden)

    Szymczyk Piotr

    2015-12-01

    Full Text Available In this article a new neural network based method for automatic classification of ground penetrating radar (GPR traces is proposed. The presented approach is based on a new representation of GPR signals by polynomials approximation. The coefficients of the polynomial (the feature vector are neural network inputs for automatic classification of a special kind of geologic structure—a sinkhole. The analysis and results show that the classifier can effectively distinguish sinkholes from other geologic structures.

  2. Neural networks for relational learning: An experimental comparison

    OpenAIRE

    Uwents, Werner; Monfardini, Gabriele; Blockeel, Hendrik; Gori, Marco De; Scarselli, Franco

    2011-01-01

    In the last decade, connectionist models have been proposed that can process structured information directly. These methods, which are based on the use of graphs for the representation of the data and the relationships within the data, are particularly suitable for handling relational learning tasks. In this paper, two recently proposed architectures of this kind, i.e. Graph Neural Networks (GNNs) and Relational Neural Networks (RelNNs), are compared and discussed, along with their correspond...

  3. Cellular neural networks for the stereo matching problem

    Energy Technology Data Exchange (ETDEWEB)

    Taraglio, S. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione; Zanela, A. [Rome Univ. `La Sapienza` (Italy). Dipt. di Fisica

    1997-03-01

    The applicability of the Cellular Neural Network (CNN) paradigm to the problem of recovering information on the tridimensional structure of the environment is investigated. The approach proposed is the stereo matching of video images. The starting point of this work is the Zhou-Chellappa neural network implementation for the same problem. The CNN based system we present here yields the same results as the previous approach, but without the many existing drawbacks.

  4. Computational capabilities of graph neural networks.

    Science.gov (United States)

    Scarselli, Franco; Gori, Marco; Tsoi, Ah Chung; Hagenbuchner, Markus; Monfardini, Gabriele

    2009-01-01

    In this paper, we will consider the approximation properties of a recently introduced neural network model called graph neural network (GNN), which can be used to process-structured data inputs, e.g., acyclic graphs, cyclic graphs, and directed or undirected graphs. This class of neural networks implements a function tau(G,n) is an element of IR(m) that maps a graph G and one of its nodes n onto an m-dimensional Euclidean space. We characterize the functions that can be approximated by GNNs, in probability, up to any prescribed degree of precision. This set contains the maps that satisfy a property called preservation of the unfolding equivalence, and includes most of the practically useful functions on graphs; the only known exception is when the input graph contains particular patterns of symmetries when unfolding equivalence may not be preserved. The result can be considered an extension of the universal approximation property established for the classic feedforward neural networks (FNNs). Some experimental examples are used to show the computational capabilities of the proposed model.

  5. Localizing Tortoise Nests by Neural Networks.

    Directory of Open Access Journals (Sweden)

    Roberto Barbuti

    Full Text Available The goal of this research is to recognize the nest digging activity of tortoises using a device mounted atop the tortoise carapace. The device classifies tortoise movements in order to discriminate between nest digging, and non-digging activity (specifically walking and eating. Accelerometer data was collected from devices attached to the carapace of a number of tortoises during their two-month nesting period. Our system uses an accelerometer and an activity recognition system (ARS which is modularly structured using an artificial neural network and an output filter. For the purpose of experiment and comparison, and with the aim of minimizing the computational cost, the artificial neural network has been modelled according to three different architectures based on the input delay neural network (IDNN. We show that the ARS can achieve very high accuracy on segments of data sequences, with an extremely small neural network that can be embedded in programmable low power devices. Given that digging is typically a long activity (up to two hours, the application of ARS on data segments can be repeated over time to set up a reliable and efficient system, called Tortoise@, for digging activity recognition.

  6. Neuronal Differentiation in Schwann Cell Lineage Underlies Postnatal Neurogenesis in the Enteric Nervous System.

    Science.gov (United States)

    Uesaka, Toshihiro; Nagashimada, Mayumi; Enomoto, Hideki

    2015-07-08

    Elucidation of the cellular identity of neuronal precursors provides mechanistic insights into the development and pathophysiology of the nervous system. In the enteric nervous system (ENS), neurogenesis persists from midgestation to the postnatal period. Cellular mechanism underlying the long-term neurogenesis in the ENS has remained unclear. Using genetic fate mapping in mice, we show here that a subset of Schwann cell precursors (SCPs), which invades the gut alongside the extrinsic nerves, adopts a neuronal fate in the postnatal period and contributes to the ENS. We found SCP-derived neurogenesis in the submucosal region of the small intestine in the absence of vagal neural crest-derived ENS precursors. Under physiological conditions, SCPs comprised up to 20% of enteric neurons in the large intestine and gave rise mainly to restricted neuronal subtypes, calretinin-expressing neurons. Genetic ablation of Ret, the signaling receptor for glial cell line-derived neurotrophic factor, in SCPs caused colonic oligoganglionosis, indicating that SCP-derived neurogenesis is essential to ENS integrity. Identification of Schwann cells as a physiological neurogenic source provides novel insight into the development and disorders of neural crest-derived tissues. Elucidating the cellular identity of neuronal precursors provides novel insights into development and function of the nervous system. The enteric nervous system (ENS) is innervated richly by extrinsic nerve fibers, but little is known about the significance of extrinsic innervation to the structural integrity of the ENS. This report reveals that a subset of Schwann cell precursors (SCPs), which invades the gut alongside the extrinsic nerves, adopts a neuronal fate and differentiates into specific neuronal subtypes. SCP-specific ablation of the Ret gene leads to colonic oligoganglionosis, demonstrating a crucial role of SCP-derived neurogenesis in ENS development. Cross-lineage differentiation capacity in SCPs suggests

  7. Embedding responses in spontaneous neural activity shaped through sequential learning.

    Science.gov (United States)

    Kurikawa, Tomoki; Kaneko, Kunihiko

    2013-01-01

    Recent experimental measurements have demonstrated that spontaneous neural activity in the absence of explicit external stimuli has remarkable spatiotemporal structure. This spontaneous activity has also been shown to play a key role in the response to external stimuli. To better understand this role, we proposed a viewpoint, "memories-as-bifurcations," that differs from the traditional "memories-as-attractors" viewpoint. Memory recall from the memories-as-bifurcations viewpoint occurs when the spontaneous neural activity is changed to an appropriate output activity upon application of an input, known as a bifurcation in dynamical systems theory, wherein the input modifies the flow structure of the neural dynamics. Learning, then, is a process that helps create neural dynamical systems such that a target output pattern is generated as an attractor upon a given input. Based on this novel viewpoint, we introduce in this paper an associative memory model with a sequential learning process. Using a simple hebbian-type learning, the model is able to memorize a large number of input/output mappings. The neural dynamics shaped through the learning exhibit different bifurcations to make the requested targets stable upon an increase in the input, and the neural activity in the absence of input shows chaotic dynamics with occasional approaches to the memorized target patterns. These results suggest that these dynamics facilitate the bifurcations to each target attractor upon application of the corresponding input, which thus increases the capacity for learning. This theoretical finding about the behavior of the spontaneous neural activity is consistent with recent experimental observations in which the neural activity without stimuli wanders among patterns evoked by previously applied signals. In addition, the neural networks shaped by learning properly reflect the correlations of input and target-output patterns in a similar manner to those designed in our previous study.

  8. Embedding responses in spontaneous neural activity shaped through sequential learning.

    Directory of Open Access Journals (Sweden)

    Tomoki Kurikawa

    Full Text Available Recent experimental measurements have demonstrated that spontaneous neural activity in the absence of explicit external stimuli has remarkable spatiotemporal structure. This spontaneous activity has also been shown to play a key role in the response to external stimuli. To better understand this role, we proposed a viewpoint, "memories-as-bifurcations," that differs from the traditional "memories-as-attractors" viewpoint. Memory recall from the memories-as-bifurcations viewpoint occurs when the spontaneous neural activity is changed to an appropriate output activity upon application of an input, known as a bifurcation in dynamical systems theory, wherein the input modifies the flow structure of the neural dynamics. Learning, then, is a process that helps create neural dynamical systems such that a target output pattern is generated as an attractor upon a given input. Based on this novel viewpoint, we introduce in this paper an associative memory model with a sequential learning process. Using a simple hebbian-type learning, the model is able to memorize a large number of input/output mappings. The neural dynamics shaped through the learning exhibit different bifurcations to make the requested targets stable upon an increase in the input, and the neural activity in the absence of input shows chaotic dynamics with occasional approaches to the memorized target patterns. These results suggest that these dynamics facilitate the bifurcations to each target attractor upon application of the corresponding input, which thus increases the capacity for learning. This theoretical finding about the behavior of the spontaneous neural activity is consistent with recent experimental observations in which the neural activity without stimuli wanders among patterns evoked by previously applied signals. In addition, the neural networks shaped by learning properly reflect the correlations of input and target-output patterns in a similar manner to those designed in

  9. Robust information propagation through noisy neural circuits.

    Science.gov (United States)

    Zylberberg, Joel; Pouget, Alexandre; Latham, Peter E; Shea-Brown, Eric

    2017-04-01

    Sensory neurons give highly variable responses to stimulation, which can limit the amount of stimulus information available to downstream circuits. Much work has investigated the factors that affect the amount of information encoded in these population responses, leading to insights about the role of covariability among neurons, tuning curve shape, etc. However, the informativeness of neural responses is not the only relevant feature of population codes; of potentially equal importance is how robustly that information propagates to downstream structures. For instance, to quantify the retina's performance, one must consider not only the informativeness of the optic nerve responses, but also the amount of information that survives the spike-generating nonlinearity and noise corruption in the next stage of processing, the lateral geniculate nucleus. Our study identifies the set of covariance structures for the upstream cells that optimize the ability of information to propagate through noisy, nonlinear circuits. Within this optimal family are covariances with "differential correlations", which are known to reduce the information encoded in neural population activities. Thus, covariance structures that maximize information in neural population codes, and those that maximize the ability of this information to propagate, can be very different. Moreover, redundancy is neither necessary nor sufficient to make population codes robust against corruption by noise: redundant codes can be very fragile, and synergistic codes can-in some cases-optimize robustness against noise.

  10. Robust information propagation through noisy neural circuits.

    Directory of Open Access Journals (Sweden)

    Joel Zylberberg

    2017-04-01

    Full Text Available Sensory neurons give highly variable responses to stimulation, which can limit the amount of stimulus information available to downstream circuits. Much work has investigated the factors that affect the amount of information encoded in these population responses, leading to insights about the role of covariability among neurons, tuning curve shape, etc. However, the informativeness of neural responses is not the only relevant feature of population codes; of potentially equal importance is how robustly that information propagates to downstream structures. For instance, to quantify the retina's performance, one must consider not only the informativeness of the optic nerve responses, but also the amount of information that survives the spike-generating nonlinearity and noise corruption in the next stage of processing, the lateral geniculate nucleus. Our study identifies the set of covariance structures for the upstream cells that optimize the ability of information to propagate through noisy, nonlinear circuits. Within this optimal family are covariances with "differential correlations", which are known to reduce the information encoded in neural population activities. Thus, covariance structures that maximize information in neural population codes, and those that maximize the ability of this information to propagate, can be very different. Moreover, redundancy is neither necessary nor sufficient to make population codes robust against corruption by noise: redundant codes can be very fragile, and synergistic codes can-in some cases-optimize robustness against noise.

  11. Use of quantitative-structure property relationship (QSPR) and artificial neural network (ANN) based approaches for estimating the octanol-water partition coefficients of the 209 chlorinated trans-azobenzene congeners.

    Science.gov (United States)

    Wilczyńska-Piliszek, Agata J; Piliszek, Sławomir; Falandysz, Jerzy

    2012-01-01

    Polychlorinated azobenzenes (PCABs) can be found as contaminant by products in 3,4-dichloroaniline and its derivatives and in the herbicides Diuron, Linuron, Methazole, Neburon, Propanil and SWEP. Trans congeners of PCABs are physically and chemically more stable and so are environmentally relevant, when compared to unstable cis congeners. In this study, to fulfill gaps on environmentally relevant partitioning properties of PCABs, the values of n-octanol/water partition coefficients (log K(OW)) have been determined for 209 congeners of chloro-trans-azobenzene (Ct-AB) by means of quantitative structure-property relationship (QSPR) approach and artificial neural networks (ANN) predictive ability. The QSPR methods used based on geometry optimalization and quantum-chemical structural descriptors, which were computed on the level of density functional theory (DFT) using B3LYP functional and 6-311++G basis set in Gaussian 03 and of the semi-empirical quantum chemistry method (PM6) of the molecular orbital package (MOPAC). Polychlorinated dibenzo-p-dioxins (PCDDs), -furans (PCDFs) and -biphenyls (PCBs), to which PCABs are related, were reference compounds in this study. An experimentally obtained data on physical and chemical properties of PCDD/Fs and PCBs were reference data for ANN predictions of log K(OW) values of Ct-ABs in this study. Both calculation methods gave similar results in term of absolute log K(OW) values, while the models generated by PM6 are considered highly efficient in time spent, when compared to these by DFT. The estimated log K(OW) values of 209 Ct-ABs varied between 5.22-5.57 and 5.45-5.60 for Mono-, 5.56-6.00 and 5.59-6.07 for Di-, 5.89-6.56 and 5.91-6.46 for Tri-, 6.10-7.05 and 6.13-6.80 for Tetra-, 6.43-7.39 and 6.48-7.14 for Penta-, 6.61-7.78 and 6.98-7.42 for Hexa-, 7.41-7.94 and 7.34-7.86 for Hepta-, 7.99-8.17 and 7.72-8.20 for Octa-, 8.35-8.42 and 8.10-8.62 for NonaCt-ABs, and 8.52-8.60 and 8.81-8.83 for DecaCt-AB. These log K(OW) values

  12. Neural network technologies

    Science.gov (United States)

    Villarreal, James A.

    1991-01-01

    A whole new arena of computer technologies is now beginning to form. Still in its infancy, neural network technology is a biologically inspired methodology which draws on nature's own cognitive processes. The Software Technology Branch has provided a software tool, Neural Execution and Training System (NETS), to industry, government, and academia to facilitate and expedite the use of this technology. NETS is written in the C programming language and can be executed on a variety of machines. Once a network has been debugged, NETS can produce a C source code which implements the network. This code can then be incorporated into other software systems. Described here are various software projects currently under development with NETS and the anticipated future enhancements to NETS and the technology.

  13. Analysis of neural data

    CERN Document Server

    Kass, Robert E; Brown, Emery N

    2014-01-01

    Continual improvements in data collection and processing have had a huge impact on brain research, producing data sets that are often large and complicated. By emphasizing a few fundamental principles, and a handful of ubiquitous techniques, Analysis of Neural Data provides a unified treatment of analytical methods that have become essential for contemporary researchers. Throughout the book ideas are illustrated with more than 100 examples drawn from the literature, ranging from electrophysiology, to neuroimaging, to behavior. By demonstrating the commonality among various statistical approaches the authors provide the crucial tools for gaining knowledge from diverse types of data. Aimed at experimentalists with only high-school level mathematics, as well as computationally-oriented neuroscientists who have limited familiarity with statistics, Analysis of Neural Data serves as both a self-contained introduction and a reference work.

  14. Neural tube defects

    Directory of Open Access Journals (Sweden)

    M.E. Marshall

    1981-09-01

    Full Text Available Neural tube defects refer to any defect in the morphogenesis of the neural tube, the most common types being spina bifida and anencephaly. Spina bifida has been recognised in skeletons found in north-eastern Morocco and estimated to have an age of almost 12 000 years. It was also known to the ancient Greek and Arabian physicians who thought that the bony defect was due to the tumour. The term spina bifida was first used by Professor Nicolai Tulp of Amsterdam in 1652. Many other terms have been used to describe this defect, but spina bifida remains the most useful general term, as it describes the separation of the vertebral elements in the midline.

  15. Neural networks for triggering

    Energy Technology Data Exchange (ETDEWEB)

    Denby, B. (Fermi National Accelerator Lab., Batavia, IL (USA)); Campbell, M. (Michigan Univ., Ann Arbor, MI (USA)); Bedeschi, F. (Istituto Nazionale di Fisica Nucleare, Pisa (Italy)); Chriss, N.; Bowers, C. (Chicago Univ., IL (USA)); Nesti, F. (Scuola Normale Superiore, Pisa (Italy))

    1990-01-01

    Two types of neural network beauty trigger architectures, based on identification of electrons in jets and recognition of secondary vertices, have been simulated in the environment of the Fermilab CDF experiment. The efficiencies for B's and rejection of background obtained are encouraging. If hardware tests are successful, the electron identification architecture will be tested in the 1991 run of CDF. 10 refs., 5 figs., 1 tab.

  16. Neurally-mediated sincope.

    Science.gov (United States)

    Can, I; Cytron, J; Jhanjee, R; Nguyen, J; Benditt, D G

    2009-08-01

    Syncope is a syndrome characterized by a relatively sudden, temporary and self-terminating loss of consciousness; the causes may vary, but they have in common a temporary inadequacy of cerebral nutrient flow, usually due to a fall in systemic arterial pressure. However, while syncope is a common problem, it is only one explanation for episodic transient loss of consciousness (TLOC). Consequently, diagnostic evaluation should start with a broad consideration of real or seemingly real TLOC. Among those patients in whom TLOC is deemed to be due to ''true syncope'', the focus may then reasonably turn to assessing the various possible causes; in this regard, the neurally-mediated syncope syndromes are among the most frequently encountered. There are three common variations: vasovagal syncope (often termed the ''common'' faint), carotid sinus syndrome, and the so-called ''situational faints''. Defining whether the cause is due to a neurally-mediated reflex relies heavily on careful history taking and selected testing (e.g., tilt-test, carotid massage). These steps are important. Despite the fact that neurally-mediated faints are usually relatively benign from a mortality perspective, they are nevertheless only infrequently an isolated event; neurally-mediated syncope tends to recur, and physical injury resulting from falls or accidents, diminished quality-of-life, and possible restriction from employment or avocation are real concerns. Consequently, defining the specific form and developing an effective treatment strategy are crucial. In every case the goal should be to determine the cause of syncope with sufficient confidence to provide patients and family members with a reliable assessment of prognosis, recurrence risk, and treatment options.

  17. The Neural Noisy Channel

    OpenAIRE

    Yu, Lei; Blunsom, Phil; Dyer, Chris; Grefenstette, Edward; Kocisky, Tomas

    2016-01-01

    We formulate sequence to sequence transduction as a noisy channel decoding problem and use recurrent neural networks to parameterise the source and channel models. Unlike direct models which can suffer from explaining-away effects during training, noisy channel models must produce outputs that explain their inputs, and their component models can be trained with not only paired training samples but also unpaired samples from the marginal output distribution. Using a latent variable to control ...

  18. Chaotic Simulated Annealing by A Neural Network Model with Transient Chaos

    CERN Document Server

    Chen, L; Chen, Luonan; Aihara, Kazuyuki

    1997-01-01

    We propose a neural network model with transient chaos, or a transiently chaotic neural network (TCNN) as an approximation method for combinatorial optimization problem, by introducing transiently chaotic dynamics into neural networks. Unlike conventional neural networks only with point attractors, the proposed neural network has richer and more flexible dynamics, so that it can be expected to have higher ability of searching for globally optimal or near-optimal solutions. A significant property of this model is that the chaotic neurodynamics is temporarily generated for searching and self-organizing, and eventually vanishes with autonomous decreasing of a bifurcation parameter corresponding to the "temperature" in usual annealing process. Therefore, the neural network gradually approaches, through the transient chaos, to dynamical structure similar to such conventional models as the Hopfield neural network which converges to a stable equilibrium point. Since the optimization process of the transiently chaoti...

  19. Stability analysis of fractional-order Hopfield neural networks with time delays.

    Science.gov (United States)

    Wang, Hu; Yu, Yongguang; Wen, Guoguang

    2014-07-01

    This paper investigates the stability for fractional-order Hopfield neural networks with time delays. Firstly, the fractional-order Hopfield neural networks with hub structure and time delays are studied. Some sufficient conditions for stability of the systems are obtained. Next, two fractional-order Hopfield neural networks with different ring structures and time delays are developed. By studying the developed neural networks, the corresponding sufficient conditions for stability of the systems are also derived. It is shown that the stability conditions are independent of time delays. Finally, numerical simulations are given to illustrate the effectiveness of the theoretical results obtained in this paper. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. A renaissance of neural networks in drug discovery.

    Science.gov (United States)

    Baskin, Igor I; Winkler, David; Tetko, Igor V

    2016-08-01

    Neural networks are becoming a very popular method for solving machine learning and artificial intelligence problems. The variety of neural network types and their application to drug discovery requires expert knowledge to choose the most appropriate approach. In this review, the authors discuss traditional and newly emerging neural network approaches to drug discovery. Their focus is on backpropagation neural networks and their variants, self-organizing maps and associated methods, and a relatively new technique, deep learning. The most important technical issues are discussed including overfitting and its prevention through regularization, ensemble and multitask modeling, model interpretation, and estimation of applicability domain. Different aspects of using neural networks in drug discovery are considered: building structure-activity models with respect to various targets; predicting drug selectivity, toxicity profiles, ADMET and physicochemical properties; characteristics of drug-delivery systems and virtual screening. Neural networks continue to grow in importance for drug discovery. Recent developments in deep learning suggests further improvements may be gained in the analysis of large chemical data sets. It's anticipated that neural networks will be more widely used in drug discovery in the future, and applied in non-traditional areas such as drug delivery systems, biologically compatible materials, and regenerative medicine.

  1. Neural plasticity and its initiating conditions in tinnitus.

    Science.gov (United States)

    Roberts, L E

    2017-12-12

    Deafferentation caused by cochlear pathology (which can be hidden from the audiogram) activates forms of neural plasticity in auditory pathways, generating tinnitus and its associated conditions including hyperacusis. This article discusses tinnitus mechanisms and suggests how these mechanisms may relate to those involved in normal auditory information processing. Research findings from animal models of tinnitus and from electromagnetic imaging of tinnitus patients are reviewed which pertain to the role of deafferentation and neural plasticity in tinnitus and hyperacusis. Auditory neurons compensate for deafferentation by increasing their input/output functions (gain) at multiple levels of the auditory system. Forms of homeostatic plasticity are believed to be responsible for this neural change, which increases the spontaneous and driven activity of neurons in central auditory structures in animals expressing behavioral evidence of tinnitus. Another tinnitus correlate, increased neural synchrony among the affected neurons, is forged by spike-timing-dependent neural plasticity in auditory pathways. Slow oscillations generated by bursting thalamic neurons verified in tinnitus animals appear to modulate neural plasticity in the cortex, integrating tinnitus neural activity with information in brain regions supporting memory, emotion, and consciousness which exhibit increased metabolic activity in tinnitus patients. The latter process may be induced by transient auditory events in normal processing but it persists in tinnitus, driven by phantom signals from the auditory pathway. Several tinnitus therapies attempt to suppress tinnitus through plasticity, but repeated sessions will likely be needed to prevent tinnitus activity from returning owing to deafferentation as its initiating condition.

  2. Neural Based Orthogonal Data Fitting The EXIN Neural Networks

    CERN Document Server

    Cirrincione, Giansalvo

    2008-01-01

    Written by three leaders in the field of neural based algorithms, Neural Based Orthogonal Data Fitting proposes several neural networks, all endowed with a complete theory which not only explains their behavior, but also compares them with the existing neural and traditional algorithms. The algorithms are studied from different points of view, including: as a differential geometry problem, as a dynamic problem, as a stochastic problem, and as a numerical problem. All algorithms have also been analyzed on real time problems (large dimensional data matrices) and have shown accurate solutions. Wh

  3. Genetics and development of neural tube defects

    Science.gov (United States)

    Copp, Andrew J.; Greene, Nicholas D. E.

    2014-01-01

    Congenital defects of neural tube closure (neural tube defects; NTDs) are among the commonest and most severe disorders of the fetus and newborn. Disturbance of any of the sequential events of embryonic neurulation produce NTDs, with the phenotype (e.g. anencephaly, spina bifida) varying depending on the region of neural tube that remains open. While mutation of more than 200 genes is known to cause NTDs in mice, the pattern of occurrence in humans suggests a multifactorial polygenic or oligogenic aetiology. This emphasises the importance of gene-gene and gene-environment interactions in the origin of these defects. A number of cell biological functions are essential for neural tube closure, with defects of the cytoskeleton, cell cycle and molecular regulation of cell viability prominent among the mouse NTD mutants. Many transcriptional regulators and proteins that affect chromatin structure are also required for neural tube closure, although the downstream molecular pathways regulated by these proteins is unknown. Some key signalling pathways for NTDs have been identified: over-activation of sonic hedgehog signalling and loss of function in the planar cell polarity (non-canonical Wnt) pathway are potent causes of NTD, with requirements also for retinoid and inositol signalling. Folic acid supplementation is an effective method for primary prevention of a proportion of NTDs, in both humans and mice, although the embryonic mechanism of folate action remains unclear. Folic acid-resistant cases can be prevented by inositol supplementation in mice, raising the possibility that this could lead to an additional preventive strategy for human NTDs in future. PMID:19918803

  4. Dynamic Adaptive Neural Network Arrays: A Neuromorphic Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Disney, Adam [University of Tennessee (UT); Reynolds, John [University of Tennessee (UT)

    2015-01-01

    Dynamic Adaptive Neural Network Array (DANNA) is a neuromorphic hardware implementation. It differs from most other neuromorphic projects in that it allows for programmability of structure, and it is trained or designed using evolutionary optimization. This paper describes the DANNA structure, how DANNA is trained using evolutionary optimization, and an application of DANNA to a very simple classification task.

  5. Neural Correlates of Stimulus Reportability

    OpenAIRE

    Hulme, Oliver J.; Friston, Karl F.; Zeki, Semir

    2009-01-01

    Most experiments on the “neural correlates of consciousness” employ stimulus reportability as an operational definition of what is consciously perceived. The interpretation of such experiments therefore depends critically on understanding the neural basis of stimulus reportability. Using a high volume of fMRI data, we investigated the neural correlates of stimulus reportability using a partial report object detection paradigm. Subjects were presented with a random array of circularly arranged...

  6. Symbolic processing in neural networks

    OpenAIRE

    Neto, João Pedro; Hava T Siegelmann; Costa,J.Félix

    2003-01-01

    In this paper we show that programming languages can be translated into recurrent (analog, rational weighted) neural nets. Implementation of programming languages in neural nets turns to be not only theoretical exciting, but has also some practical implications in the recent efforts to merge symbolic and sub symbolic computation. To be of some use, it should be carried in a context of bounded resources. Herein, we show how to use resource bounds to speed up computations over neural nets, thro...

  7. Cell delamination in the mesencephalic neural fold and its implication for the origin of ectomesenchyme

    Science.gov (United States)

    Lee, Raymond Teck Ho; Nagai, Hiroki; Nakaya, Yukiko; Sheng, Guojun; Trainor, Paul A.; Weston, James A.; Thiery, Jean Paul

    2013-01-01

    The neural crest is a transient structure unique to vertebrate embryos that gives rise to multiple lineages along the rostrocaudal axis. In cranial regions, neural crest cells are thought to differentiate into chondrocytes, osteocytes, pericytes and stromal cells, which are collectively termed ectomesenchyme derivatives, as well as pigment and neuronal derivatives. There is still no consensus as to whether the neural crest can be classified as a homogenous multipotent population of cells. This unresolved controversy has important implications for the formation of ectomesenchyme and for confirmation of whether the neural fold is compartmentalized into distinct domains, each with a different repertoire of derivatives. Here we report in mouse and chicken that cells in the neural fold delaminate over an extended period from different regions of the cranial neural fold to give rise to cells with distinct fates. Importantly, cells that give rise to ectomesenchyme undergo epithelial-mesenchymal transition from a lateral neural fold domain that does not express definitive neural markers, such as Sox1 and N-cadherin. Additionally, the inference that cells originating from the cranial neural ectoderm have a common origin and cell fate with trunk neural crest cells prompted us to revisit the issue of what defines the neural crest and the origin of the ectomesenchyme. PMID:24198279

  8. [Artificial neural networks in Neurosciences].

    Science.gov (United States)

    Porras Chavarino, Carmen; Salinas Martínez de Lecea, José María

    2011-11-01

    This article shows that artificial neural networks are used for confirming the relationships between physiological and cognitive changes. Specifically, we explore the influence of a decrease of neurotransmitters on the behaviour of old people in recognition tasks. This artificial neural network recognizes learned patterns. When we change the threshold of activation in some units, the artificial neural network simulates the experimental results of old people in recognition tasks. However, the main contributions of this paper are the design of an artificial neural network and its operation inspired by the nervous system and the way the inputs are coded and the process of orthogonalization of patterns.

  9. Neural Correlates of Face Detection

    National Research Council Canada - National Science Library

    Xu, Xiaokun; Biederman, Irving

    2014-01-01

    Although face detection likely played an essential adaptive role in our evolutionary past and in contemporary social interactions, there have been few rigorous studies investigating its neural correlates...

  10. Neural basis of multisensory looming signals.

    Science.gov (United States)

    Tyll, Sascha; Bonath, Björn; Schoenfeld, Mircea Ariel; Heinze, Hans-Jochen; Ohl, Frank W; Noesselt, Tömme

    2013-01-15

    Approaching or looming signals are often related to extremely relevant environmental events (e.g. threats or collisions) making these signals critical for survival. However, the neural network underlying multisensory looming processing is not yet fully understood. Using functional magnetic resonance imaging (fMRI) we identified the neural correlates of audiovisual looming processing in humans: audiovisual looming (vs. receding) signals enhance fMRI-responses in low-level visual and auditory areas plus multisensory cortex (superior temporal sulcus; plus parietal and frontal structures). When characterizing the fMRI-response profiles for multisensory looming stimuli, we found significant enhancements relative to the mean and maximum of unisensory responses in looming-sensitive visual and auditory cortex plus STS. Superadditive enhancements were observed in visual cortex. Subject-specific region-of-interest analyses further revealed superadditive response profiles within all sensory-specific looming-sensitive structures plus bilateral STS for audiovisual looming vs. summed unisensory looming conditions. Finally, we observed enhanced connectivity of bilateral STS with low-level visual areas in the context of looming processing. This enhanced coupling of STS with unisensory regions might potentially serve to enhance the salience of unisensory stimulus features and is accompanied by superadditive fMRI-responses. We suggest that this preference in neural signaling for looming stimuli effectively informs animals to avoid potential threats or collisions. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Getting symbols out of a neural architecture

    Science.gov (United States)

    Hummel, John E.

    2011-06-01

    Traditional connectionist networks are sharply limited as general accounts of human perception and cognition because they are unable to represent relational ideas such as loves (John, Mary) or bigger-than (Volkswagen, breadbox) in a way that allows them to be manipulated as explicitly relational structures. This paper reviews and critiques the four major responses to this problem in the modelling community: (1) reject connectionism (in any form) in favour of traditional symbolic approaches to modelling the mind; (2) reject the idea that mental representations are symbolic (i.e. reject the idea that we can represent relations); and (3) attempt to represent symbolic structures in a connectionist/neural architecture by finding a way to represent role-filler bindings. Approach (3) is further subdivided into (3a) approaches based on varieties of conjunctive coding and (3b) approaches based on dynamic role-filler binding. I will argue that (3b) is necessary to get symbolic processing out of a neural computing architecture. Specifically, I will argue that vector addition is both the best way to accomplish dynamic binding and an essential part of the proper treatment of symbols in a neural architecture.

  12. Neural network for solving convex quadratic bilevel programming problems.

    Science.gov (United States)

    He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie

    2014-03-01

    In this paper, using the idea of successive approximation, we propose a neural network to solve convex quadratic bilevel programming problems (CQBPPs), which is modeled by a nonautonomous differential inclusion. Different from the existing neural network for CQBPP, the model has the least number of state variables and simple structure. Based on the theory of nonsmooth analysis, differential inclusions and Lyapunov-like method, the limit equilibrium points sequence of the proposed neural networks can approximately converge to an optimal solution of CQBPP under certain conditions. Finally, simulation results on two numerical examples and the portfolio selection problem show the effectiveness and performance of the proposed neural network. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Neural signal registration and analysis of axons grown in microchannels

    Science.gov (United States)

    Pigareva, Y.; Malishev, E.; Gladkov, A.; Kolpakov, V.; Bukatin, A.; Mukhina, I.; Kazantsev, V.; Pimashkin, A.

    2016-08-01

    Registration of neuronal bioelectrical signals remains one of the main physical tools to study fundamental mechanisms of signal processing in the brain. Neurons generate spiking patterns which propagate through complex map of neural network connectivity. Extracellular recording of isolated axons grown in microchannels provides amplification of the signal for detailed study of spike propagation. In this study we used neuronal hippocampal cultures grown in microfluidic devices combined with microelectrode arrays to investigate a changes of electrical activity during neural network development. We found that after 5 days in vitro after culture plating the spiking activity appears first in microchannels and on the next 2-3 days appears on the electrodes of overall neural network. We conclude that such approach provides a convenient method to study neural signal processing and functional structure development on a single cell and network level of the neuronal culture.

  14. Advances in Artificial Neural Networks – Methodological Development and Application

    Directory of Open Access Journals (Sweden)

    Yanbo Huang

    2009-08-01

    Full Text Available Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other networks such as radial basis function, recurrent network, feedback network, and unsupervised Kohonen self-organizing network. These networks, especially the multilayer perceptron network with a backpropagation training algorithm, have gained recognition in research and applications in various scientific and engineering areas. In order to accelerate the training process and overcome data over-fitting, research has been conducted to improve the backpropagation algorithm. Further, artificial neural networks have been integrated with other advanced methods such as fuzzy logic and wavelet analysis, to enhance the ability of data interpretation and modeling and to avoid subjectivity in the operation of the training algorithm. In recent years, support vector machines have emerged as a set of high-performance supervised generalized linear classifiers in parallel with artificial neural networks. A review on development history of artificial neural networks is presented and the standard architectures and algorithms of artificial neural networks are described. Furthermore, advanced artificial neural networks will be introduced with support vector machines, and limitations of ANNs will be identified. The future of artificial neural network development in tandem with support vector machines will be discussed in conjunction with further applications to food science and engineering, soil and water relationship for crop management, and decision support for precision agriculture. Along with the network structures and training algorithms, the applications of artificial neural networks will be reviewed as well, especially in the fields of agricultural and biological

  15. Role of ciliary neurotrophic factor in the proliferation and differentiation of neural stem cells.

    Science.gov (United States)

    Ding, Jun; He, Zhili; Ruan, Juan; Ma, Zilong; Liu, Ying; Gong, Chengxin; Iqbal, Khalid; Sun, Shenggang; Chen, Honghui

    2013-01-01

    Ciliary neurotrophic factor (CNTF) is a pleiotropic cytokine that has been fully studied for its structure, receptor, and signaling pathways and its multiplex effects on neural system, skeletal muscle, and weight control. Recent research demonstrates that CNTF also plays an important role in neurogenesis and the differentiation of neural stem cells. In this article, we summarize the general characteristics of CNTF and its function on neural stem cells, which could be a valuable therapeutic strategy in treating neurological disorders.

  16. Multiagent Intrusion Detection Based on Neural Network Detectors and Artificial Immune System

    OpenAIRE

    Vaitsekhovich, L.; Golovko, V; Rubanau, V.

    2009-01-01

    In this article the artificial immune system and neural network techniques for intrusion detection have been addressed. The AIS allows detecting unknown samples of computer attacks. The integration of AIS and neural networks as detectors permits to increase performance of the system security. The detector structure is based on the integration of the different neural networks namely RNN and MLP. The KDD-99 dataset was used for experiments performing. The experimental results show that such int...

  17. Artificial Neural Network for Displacement Vectors Determination

    Directory of Open Access Journals (Sweden)

    P. Bohmann

    1997-09-01

    Full Text Available An artificial neural network (NN for displacement vectors (DV determination is presented in this paper. DV are computed in areas which are essential for image analysis and computer vision, in areas where are edges, lines, corners etc. These special features are found by edges operators with the following filtration. The filtration is performed by a threshold function. The next step is DV computation by 2D Hamming artificial neural network. A method of DV computation is based on the full search block matching algorithms. The pre-processing (edges finding is the reason why the correlation function is very simple, the process of DV determination needs less computation and the structure of the NN is simpler.

  18. Learning Topologies with the Growing Neural Forest.

    Science.gov (United States)

    Palomo, Esteban José; López-Rubio, Ezequiel

    2016-06-01

    In this work, a novel self-organizing model called growing neural forest (GNF) is presented. It is based on the growing neural gas (GNG), which learns a general graph with no special provisions for datasets with separated clusters. On the contrary, the proposed GNF learns a set of trees so that each tree represents a connected cluster of data. High dimensional datasets often contain large empty regions among clusters, so this proposal is better suited to them than other self-organizing models because it represents these separated clusters as connected components made of neurons. Experimental results are reported which show the self-organization capabilities of the model. Moreover, its suitability for unsupervised clustering and foreground detection applications is demonstrated. In particular, the GNF is shown to correctly discover the connected component structure of some datasets. Moreover, it outperforms some well-known foreground detectors both in quantitative and qualitative terms.

  19. Spatiotemporal canards in neural field equations

    Science.gov (United States)

    Avitabile, D.; Desroches, M.; Knobloch, E.

    2017-04-01

    Canards are special solutions to ordinary differential equations that follow invariant repelling slow manifolds for long time intervals. In realistic biophysical single-cell models, canards are responsible for several complex neural rhythms observed experimentally, but their existence and role in spatially extended systems is largely unexplored. We identify and describe a type of coherent structure in which a spatial pattern displays temporal canard behavior. Using interfacial dynamics and geometric singular perturbation theory, we classify spatiotemporal canards and give conditions for the existence of folded-saddle and folded-node canards. We find that spatiotemporal canards are robust to changes in the synaptic connectivity and firing rate. The theory correctly predicts the existence of spatiotemporal canards with octahedral symmetry in a neural field model posed on the unit sphere.

  20. Supervised Sequence Labelling with Recurrent Neural Networks

    CERN Document Server

    Graves, Alex

    2012-01-01

    Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Recurrent neural networks are powerful sequence learning tools—robust to input noise and distortion, able to exploit long-range contextual information—that would seem ideally suited to such problems. However their role in large-scale sequence labelling systems has so far been auxiliary.    The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal. Firstly, the connectionist temporal classification output layer allows the framework to be trained with unsegmented target sequences, such as phoneme-level speech transcriptions; this is in contrast to previous connectionist approaches, which were dependent on error-prone prior segmentation. Secondly, multidimensional...

  1. Optics in neural computation

    Science.gov (United States)

    Levene, Michael John

    In all attempts to emulate the considerable powers of the brain, one is struck by both its immense size, parallelism, and complexity. While the fields of neural networks, artificial intelligence, and neuromorphic engineering have all attempted oversimplifications on the considerable complexity, all three can benefit from the inherent scalability and parallelism of optics. This thesis looks at specific aspects of three modes in which optics, and particularly volume holography, can play a part in neural computation. First, holography serves as the basis of highly-parallel correlators, which are the foundation of optical neural networks. The huge input capability of optical neural networks make them most useful for image processing and image recognition and tracking. These tasks benefit from the shift invariance of optical correlators. In this thesis, I analyze the capacity of correlators, and then present several techniques for controlling the amount of shift invariance. Of particular interest is the Fresnel correlator, in which the hologram is displaced from the Fourier plane. In this case, the amount of shift invariance is limited not just by the thickness of the hologram, but by the distance of the hologram from the Fourier plane. Second, volume holography can provide the huge storage capacity and high speed, parallel read-out necessary to support large artificial intelligence systems. However, previous methods for storing data in volume holograms have relied on awkward beam-steering or on as-yet non- existent cheap, wide-bandwidth, tunable laser sources. This thesis presents a new technique, shift multiplexing, which is capable of very high densities, but which has the advantage of a very simple implementation. In shift multiplexing, the reference wave consists of a focused spot a few millimeters in front of the hologram. Multiplexing is achieved by simply translating the hologram a few tens of microns or less. This thesis describes the theory for how shift

  2. Neural remodeling in retinal degeneration.

    Science.gov (United States)

    Marc, Robert E; Jones, Bryan W; Watt, Carl B; Strettoi, Enrica

    2003-09-01

    Mammalian retinal degenerations initiated by gene defects in rods, cones or the retinal pigmented epithelium (RPE) often trigger loss of the sensory retina, effectively leaving the neural retina deafferented. The neural retina responds to this challenge by remodeling, first by subtle changes in neuronal structure and later by large-scale reorganization. Retinal degenerations in the mammalian retina generally progress through three phases. Phase 1 initiates with expression of a primary insult, followed by phase 2 photoreceptor death that ablates the sensory retina via initial photoreceptor stress, phenotype deconstruction, irreversible stress and cell death, including bystander effects or loss of trophic support. The loss of cones heralds phase 3: a protracted period of global remodeling of the remnant neural retina. Remodeling resembles the responses of many CNS assemblies to deafferentation or trauma, and includes neuronal cell death, neuronal and glial migration, elaboration of new neurites and synapses, rewiring of retinal circuits, glial hypertrophy and the evolution of a fibrotic glial seal that isolates the remnant neural retina from the surviving RPE and choroid. In early phase 2, stressed photoreceptors sprout anomalous neurites that often reach the inner plexiform and ganglion cell layers. As death of rods and cones progresses, bipolar and horizontal cells are deafferented and retract most of their dendrites. Horizontal cells develop anomalous axonal processes and dendritic stalks that enter the inner plexiform layer. Dendrite truncation in rod bipolar cells is accompanied by revision of their macromolecular phenotype, including the loss of functioning mGluR6 transduction. After ablation of the sensory retina, Müller cells increase intermediate filament synthesis, forming a dense fibrotic layer in the remnant subretinal space. This layer invests the remnant retina and seals it from access via the choroidal route. Evidence of bipolar cell death begins in

  3. Analysis of neural networks

    CERN Document Server

    Heiden, Uwe

    1980-01-01

    The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica­ ted throughout the text. However, they are not explored in de­ tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev­ els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be­ havior of neurons or neuron pools. In this respect the essay is writt...

  4. MODELACIÓN DE LA ESTRUCTURA JERÁRQUICA DE MACROINVERTEBRADOS BENTÓNICOS A TRAVÉS DE REDES NEURONALES ARTIFICIALES Modeling of the Hierarchical Structure of Freshwater Macroinvertebrates Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    CLAUDIA RICO

    ordination or clustering. Currently, analytical tools of bio-inspired computation belonging to the area of artificial intelligence are available to achieve ecological models with desirable characteristics, such as; flexibility, accuracy, robustness and reliability. In this context, this study employed two computational methods useful in ecoinformatics referring to artificial neural networks (RNAR for the modeling of the hierarchical structure of a benthic macroinvertebrate community in self-organization and prediction terms. The first ANN modeling method consisted of a Kohonen self-organization map (SOM, a non-supervised learning tool that classify the species of macroinvertebrates; this SOM in the input layer of gets the abundance of each ‘taxa’ from the data matrix, while in the output layer was visualized the computational results. Thus, in the output layer the species are organized in fifteen units and four hierarchical clusters. The second ANN method applied consisted of a multilayer feed-forward perceptron net with back-propagation algorithm to predict the three major insect orders; this means, Ephemeroptera, Coleoptera and Trichoptera (ECT richness and abundance using a set of nine physical-chemical variables. This ANN architecture included a neuron for each environmental variable, a hidden layer with seven neurons and a neuron in the output layer for ECT prediction. The results suggest that both types of ANN used, SOM and perceptron, were correspondingly related to the hierarchical patterns and with the richness and abundance patterns’ predictions, and gave the data analysis and understanding of the dynamic of the macroinvertebrates community, in a correct way.

  5. Artificial Neural Networks·

    Indian Academy of Sciences (India)

    differences between biological neural networks (BNNs) of the brain and ANN s. A thorough understanding of ... neurons. Artificial neural models are loosely based on biology since a complete understanding of the .... A learning scheme for updating a neuron's connections (weights) was proposed by Donald Hebb in 1949.

  6. Neural Networks for Optimal Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1995-01-01

    Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process.......Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process....

  7. The Neural Support Vector Machine

    NARCIS (Netherlands)

    Wiering, Marco; van der Ree, Michiel; Embrechts, Mark; Stollenga, Marijn; Meijster, Arnold; Nolte, A; Schomaker, Lambertus

    2013-01-01

    This paper describes a new machine learning algorithm for regression and dimensionality reduction tasks. The Neural Support Vector Machine (NSVM) is a hybrid learning algorithm consisting of neural networks and support vector machines (SVMs). The output of the NSVM is given by SVMs that take a

  8. Neural fields theory and applications

    CERN Document Server

    Graben, Peter; Potthast, Roland; Wright, James

    2014-01-01

    With this book, the editors present the first comprehensive collection in neural field studies, authored by leading scientists in the field - among them are two of the founding-fathers of neural field theory. Up to now, research results in the field have been disseminated across a number of distinct journals from mathematics, computational neuroscience, biophysics, cognitive science and others. Starting with a tutorial for novices in neural field studies, the book comprises chapters on emergent patterns, their phase transitions and evolution, on stochastic approaches, cortical development, cognition, robotics and computation, large-scale numerical simulations, the coupling of neural fields to the electroencephalogram and phase transitions in anesthesia. The intended readership are students and scientists in applied mathematics, theoretical physics, theoretical biology, and computational neuroscience. Neural field theory and its applications have a long-standing tradition in the mathematical and computational ...

  9. Neural Networks in Control Applications

    DEFF Research Database (Denmark)

    Sørensen, O.

    The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... examined, and it appears that considering 'normal' neural network models with, say, 500 samples, the problem of over-fitting is neglible, and therefore it is not taken into consideration afterwards. Numerous model types, often met in control applications, are implemented as neural network models...... Kalmann filter) representing state space description. The potentials of neural networks for control of non-linear processes are also examined, focusing on three different groups of control concepts, all considered as generalizations of known linear control concepts to handle also non-linear processes...

  10. Artificial neural networks modeling gene-environment interaction

    Directory of Open Access Journals (Sweden)

    Günther Frauke

    2012-05-01

    Full Text Available Abstract Background Gene-environment interactions play an important role in the etiological pathway of complex diseases. An appropriate statistical method for handling a wide variety of complex situations involving interactions between variables is still lacking, especially when continuous variables are involved. The aim of this paper is to explore the ability of neural networks to model different structures of gene-environment interactions. A simulation study is set up to compare neural networks with standard logistic regression models. Eight different structures of gene-environment interactions are investigated. These structures are characterized by penetrance functions that are based on sigmoid functions or on combinations of linear and non-linear effects of a continuous environmental factor and a genetic factor with main effect or with a masking effect only. Results In our simulation study, neural networks are more successful in modeling gene-environment interactions than logistic regression models. This outperfomance is especially pronounced when modeling sigmoid penetrance functions, when distinguishing between linear and nonlinear components, and when modeling masking effects of the genetic factor. Conclusion Our study shows that neural networks are a promising approach for analyzing gene-environment interactions. Especially, if no prior knowledge of the correct nature of the relationship between co-variables and response variable is present, neural networks provide a valuable alternative to regression methods that are limited to the analysis of linearly separable data.

  11. Natural language acquisition in large scale neural semantic networks

    Science.gov (United States)

    Ealey, Douglas

    This thesis puts forward the view that a purely signal- based approach to natural language processing is both plausible and desirable. By questioning the veracity of symbolic representations of meaning, it argues for a unified, non-symbolic model of knowledge representation that is both biologically plausible and, potentially, highly efficient. Processes to generate a grounded, neural form of this model-dubbed the semantic filter-are discussed. The combined effects of local neural organisation, coincident with perceptual maturation, are used to hypothesise its nature. This theoretical model is then validated in light of a number of fundamental neurological constraints and milestones. The mechanisms of semantic and episodic development that the model predicts are then used to explain linguistic properties, such as propositions and verbs, syntax and scripting. To mimic the growth of locally densely connected structures upon an unbounded neural substrate, a system is developed that can grow arbitrarily large, data- dependant structures composed of individual self- organising neural networks. The maturational nature of the data used results in a structure in which the perception of concepts is refined by the networks, but demarcated by subsequent structure. As a consequence, the overall structure shows significant memory and computational benefits, as predicted by the cognitive and neural models. Furthermore, the localised nature of the neural architecture also avoids the increasing error sensitivity and redundancy of traditional systems as the training domain grows. The semantic and episodic filters have been demonstrated to perform as well, or better, than more specialist networks, whilst using significantly larger vocabularies, more complex sentence forms and more natural corpora.

  12. Real-Time Decentralized Neural Control via Backstepping for a Robotic Arm Powered by Industrial Servomotors.

    Science.gov (United States)

    Vazquez, Luis A; Jurado, Francisco; Castaneda, Carlos E; Santibanez, Victor

    2018-02-01

    This paper presents a continuous-time decentralized neural control scheme for trajectory tracking of a two degrees of freedom direct drive vertical robotic arm. A decentralized recurrent high-order neural network (RHONN) structure is proposed to identify online, in a series-parallel configuration and using the filtered error learning law, the dynamics of the plant. Based on the RHONN subsystems, a local neural controller is derived via backstepping approach. The effectiveness of the decentralized neural controller is validated on a robotic arm platform, of our own design and unknown parameters, which uses industrial servomotors to drive the joints.

  13. Sensory Entrainment Mechanisms in Auditory Perception: Neural Synchronization Cortico-Striatal Activation

    Science.gov (United States)

    Sameiro-Barbosa, Catia M.; Geiser, Eveline

    2016-01-01

    The auditory system displays modulations in sensitivity that can align with the temporal structure of the acoustic environment. This sensory entrainment can facilitate sensory perception and is particularly relevant for audition. Systems neuroscience is slowly uncovering the neural mechanisms underlying the behaviorally observed sensory entrainment effects in the human sensory system. The present article summarizes the prominent behavioral effects of sensory entrainment and reviews our current understanding of the neural basis of sensory entrainment, such as synchronized neural oscillations, and potentially, neural activation in the cortico-striatal system. PMID:27559306

  14. Forecasting macroeconomic variables using neural network models and three automated model selection techniques

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl; Teräsvirta, Timo

    2016-01-01

    When forecasting with neural network models one faces several problems, all of which influence the accuracy of the forecasts. First, neural networks are often hard to estimate due to their highly nonlinear structure. To alleviate the problem, White (2006) presented a solution (QuickNet...

  15. Neural Networks for Beat Perception in Musical Rhythm.

    Science.gov (United States)

    Large, Edward W; Herrera, Jorge A; Velasco, Marc J

    2015-01-01

    Entrainment of cortical rhythms to acoustic rhythms has been hypothesized to be the neural correlate of pulse and meter perception in music. Dynamic attending theory first proposed synchronization of endogenous perceptual rhythms nearly 40 years ago, but only recently has the pivotal role of neural synchrony been demonstrated. Significant progress has since been made in understanding the role of neural oscillations and the neural structures that support synchronized responses to musical rhythm. Synchronized neural activity has been observed in auditory and motor networks, and has been linked with attentional allocation and movement coordination. Here we describe a neurodynamic model that shows how self-organization of oscillations in interacting sensory and motor networks could be responsible for the formation of the pulse percept in complex rhythms. In a pulse synchronization study, we test the model's key prediction that pulse can be perceived at a frequency for which no spectral energy is present in the amplitude envelope of the acoustic rhythm. The result shows that participants perceive the pulse at the theoretically predicted frequency. This model is one of the few consistent with neurophysiological evidence on the role of neural oscillation, and it explains a phenomenon that other computational models fail to explain. Because it is based on a canonical model, the predictions hold for an entire family of dynamical systems, not only a specific one. Thus, this model provides a theoretical link between oscillatory neurodynamics and the induction of pulse and meter in musical rhythm.

  16. Artificial neural networks as quantum associative memory

    Science.gov (United States)

    Hamilton, Kathleen; Schrock, Jonathan; Imam, Neena; Humble, Travis

    We present results related to the recall accuracy and capacity of Hopfield networks implemented on commercially available quantum annealers. The use of Hopfield networks and artificial neural networks as content-addressable memories offer robust storage and retrieval of classical information, however, implementation of these models using currently available quantum annealers faces several challenges: the limits of precision when setting synaptic weights, the effects of spurious spin-glass states and minor embedding of densely connected graphs into fixed-connectivity hardware. We consider neural networks which are less than fully-connected, and also consider neural networks which contain multiple sparsely connected clusters. We discuss the effect of weak edge dilution on the accuracy of memory recall, and discuss how the multiple clique structure affects the storage capacity. Our work focuses on storage of patterns which can be embedded into physical hardware containing n States Department of Defense and used resources of the Computational Research and Development Programs as Oak Ridge National Laboratory under Contract No. DE-AC0500OR22725 with the U. S. Department of Energy.

  17. Identifying Broadband Rotational Spectra with Neural Networks

    Science.gov (United States)

    Zaleski, Daniel P.; Prozument, Kirill

    2017-06-01

    A typical broadband rotational spectrum may contain several thousand observable transitions, spanning many species. Identifying the individual spectra, particularly when the dynamic range reaches 1,000:1 or even 10,000:1, can be challenging. One approach is to apply automated fitting routines. In this approach, combinations of 3 transitions can be created to form a "triple", which allows fitting of the A, B, and C rotational constants in a Watson-type Hamiltonian. On a standard desktop computer, with a target molecule of interest, a typical AUTOFIT routine takes 2-12 hours depending on the spectral density. A new approach is to utilize machine learning to train a computer to recognize the patterns (frequency spacing and relative intensities) inherit in rotational spectra and to identify the individual spectra in a raw broadband rotational spectrum. Here, recurrent neural networks have been trained to identify different types of rotational spectra and classify them accordingly. Furthermore, early results in applying convolutional neural networks for spectral object recognition in broadband rotational spectra appear promising. Perez et al. "Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer." Chem. Phys. Lett., 2013, 571, 1-15. Seifert et al. "AUTOFIT, an Automated Fitting Tool for Broadband Rotational Spectra, and Applications to 1-Hexanal." J. Mol. Spectrosc., 2015, 312, 13-21. Bishop. "Neural networks for pattern recognition." Oxford university press, 1995.

  18. Advances in neurocognitive rehabilitation research from 1992 to 2017: The ascension of neural plasticity.

    Science.gov (United States)

    Crosson, Bruce; Hampstead, Benjamin M; Krishnamurthy, Lisa C; Krishnamurthy, Venkatagiri; McGregor, Keith M; Nocera, Joe R; Roberts, Simone; Rodriguez, Amy D; Tran, Stella M

    2017-11-01

    The last 25 years have seen profound changes in neurocognitive rehabilitation that continue to motivate its evolution. Although the concept of nervous system plasticity was discussed by William James (1890), the foundation for experience-based plasticity had not reached the critical empirical mass to seriously impact rehabilitation research until after 1992. The objective of this review is to describe how the emergence of neural plasticity has changed neurocognitive rehabilitation research. The important developments included (a) introduction of a widely available tool that could measure brain plasticity (i.e., functional MRI); (b) development of new structural imaging techniques that could define limits of and opportunities for neural plasticity; (c) deployment of noninvasive brain stimulation to leverage neural plasticity for rehabilitation; (d) growth of a literature indicating that exercise has positively impacts neural plasticity, especially for older persons; and (e) enhancement of neural plasticity by creating interventions that generalize beyond the boundaries of treatment activities. Given the massive literature, each of these areas is developed by example. The expanding influence of neural plasticity has provided new models and tools for neurocognitive rehabilitation in neural injuries and disorders, as well as methods for measuring neural plasticity and predicting its limits and opportunities. Early clinical trials have provided very encouraging results. Now that neural plasticity has gained a firm foothold, it will continue to influence the evolution of neurocognitive rehabilitation research for the next 25 years and advance rehabilitation for neural injuries and disease. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  19. Synthesis of neural networks for spatio-temporal spike pattern recognition and processing

    Directory of Open Access Journals (Sweden)

    Jonathan C Tapson

    2013-08-01

    Full Text Available The advent of large scale neural computational platforms has highlighted the lack of algorithms for synthesis of neural structures to perform predefined cognitive tasks. The Neural Engineering Framework offers one such synthesis, but it is most effective for a spike rate representation of neural information, and it requires a large number of neurons to implement simple functions. We describe a neural network synthesis method that generates synaptic connectivity for neurons which process time-encoded neural signals, and which makes very sparse use of neurons. The method allows the user to specify – arbitrarily - neuronal characteristics such as axonal and dendritic delays, and synaptic transfer functions, and then solves for the optimal input-output relationship using computed dendritic weights. The method may be used for batch or online learning and has an extremely fast optimization process. We demonstrate its use in generating a network to recognize speech which is sparsely encoded as spike times.

  20. An Adaptive-PSO-Based Self-Organizing RBF Neural Network.

    Science.gov (United States)

    Han, Hong-Gui; Lu, Wei; Hou, Ying; Qiao, Jun-Fei

    2018-01-01

    In this paper, a self-organizing radial basis function (SORBF) neural network is designed to improve both accuracy and parsimony with the aid of adaptive particle swarm optimization (APSO). In the proposed APSO algorithm, to avoid being trapped into local optimal values, a nonlinear regressive function is developed to adjust the inertia weight. Furthermore, the APSO algorithm can optimize both the network size and the parameters of an RBF neural network simultaneously. As a result, the proposed APSO-SORBF neural network can effectively generate a network model with a compact structure and high accuracy. Moreover, the analysis of convergence is given to guarantee the successful application of the APSO-SORBF neural network. Finally, multiple numerical examples are presented to illustrate the effectiveness of the proposed APSO-SORBF neural network. The results demonstrate that the proposed method is more competitive in solving nonlinear problems than some other existing SORBF neural networks.

  1. Neural correlates of rhythmic expectancy

    Directory of Open Access Journals (Sweden)

    Theodore P. Zanto

    2006-01-01

    Full Text Available Temporal expectancy is thought to play a fundamental role in the perception of rhythm. This review summarizes recent studies that investigated rhythmic expectancy by recording neuroelectric activity with high temporal resolution during the presentation of rhythmic patterns. Prior event-related brain potential (ERP studies have uncovered auditory evoked responses that reflect detection of onsets, offsets, sustains,and abrupt changes in acoustic properties such as frequency, intensity, and spectrum, in addition to indexing higher-order processes such as auditory sensory memory and the violation of expectancy. In our studies of rhythmic expectancy, we measured emitted responses - a type of ERP that occurs when an expected event is omitted from a regular series of stimulus events - in simple rhythms with temporal structures typical of music. Our observations suggest that middle-latency gamma band (20-60 Hz activity (GBA plays an essential role in auditory rhythm processing. Evoked (phase-locked GBA occurs in the presence of physically presented auditory events and reflects the degree of accent. Induced (non-phase-locked GBA reflects temporally precise expectancies for strongly and weakly accented events in sound patterns. Thus far, these findings support theories of rhythm perception that posit temporal expectancies generated by active neural processes.

  2. An Optoelectronic Neural Network

    Science.gov (United States)

    Neil, Mark A. A.; White, Ian H.; Carroll, John E.

    1990-02-01

    We describe and present results of an optoelectronic neural network processing system. The system uses an algorithm based on the Hebbian learning rule to memorise a set of associated vector pairs. Recall occurs by the processing of the input vector with these stored associations in an incoherent optical vector multiplier using optical polarisation rotating liquid crystal spatial light modulators to store the vectors and an optical polarisation shadow casting technique to perform multiplications. Results are detected on a photodiode array and thresholded electronically by a controlling microcomputer. The processor is shown to work in autoassociative and heteroassociative modes with up to 10 stored memory vectors of length 64 (equivalent to 64 neurons) and a cycle time of 50ms. We discuss the limiting factors at work in this system, how they affect its scalability and the general applicability of its principles to other systems.

  3. Neural Darwinism and consciousness.

    Science.gov (United States)

    Seth, Anil K; Baars, Bernard J

    2005-03-01

    Neural Darwinism (ND) is a large scale selectionist theory of brain development and function that has been hypothesized to relate to consciousness. According to ND, consciousness is entailed by reentrant interactions among neuronal populations in the thalamocortical system (the 'dynamic core'). These interactions, which permit high-order discriminations among possible core states, confer selective advantages on organisms possessing them by linking current perceptual events to a past history of value-dependent learning. Here, we assess the consistency of ND with 16 widely recognized properties of consciousness, both physiological (for example, consciousness is associated with widespread, relatively fast, low amplitude interactions in the thalamocortical system), and phenomenal (for example, consciousness involves the existence of a private flow of events available only to the experiencing subject). While no theory accounts fully for all of these properties at present, we find that ND and its recent extensions fare well.

  4. Cortical neural prosthetics.

    Science.gov (United States)

    Schwartz, Andrew B

    2004-01-01

    Control of prostheses using cortical signals is based on three elements: chronic microelectrode arrays, extraction algorithms, and prosthetic effectors. Arrays of microelectrodes are permanently implanted in cerebral cortex. These arrays must record populations of single- and multiunit activity indefinitely. Information containing position and velocity correlates of animate movement needs to be extracted continuously in real time from the recorded activity. Prosthetic arms, the current effectors used in this work, need to have the agility and configuration of natural arms. Demonstrations using closed-loop control show that subjects change their neural activity to improve performance with these devices. Adaptive-learning algorithms that capitalize on these improvements show that this technology has the capability of restoring much of the arm movement lost with immobilizing deficits.

  5. Compensatory recruitment of neural resources in chronic alcoholism.

    Science.gov (United States)

    Chanraud, Sandra; Sullivan, Edith V

    2014-01-01

    Functional recovery occurs with sustained sobriety, but the neural mechanisms enabling recovery are only now emerging. Theories about promising mechanisms involve concepts of neuroadaptation, where excessive alcohol consumption results in untoward structural and functional brain changes which are subsequently candidates for reversal with sobriety. Views on functional adaptation in chronic alcoholism have expanded with results from neuroimaging studies. Here, we first describe and define the concept of neuroadaptation according to emerging theories based on the growing literature in aging-related cognitive functioning. Then we describe findings as they apply to chronic alcoholism and factors that could influence compensation, such as functional brain reserve and the integrity of brain structure. Finally, we review brain plasticity based on physiologic mechanisms that could underlie mechanisms of neural compensation. Where possible, we provide operational criteria to define functional and neural compensation. © 2014 Elsevier B.V. All rights reserved.

  6. Using Artificial Neural Networks for ECG Signals Denoising

    Directory of Open Access Journals (Sweden)

    Zoltán Germán-Salló

    2010-12-01

    Full Text Available The authors have investigated some potential applications of artificial neural networks in electrocardiografic (ECG signal prediction. For this, the authors used an adaptive multilayer perceptron structure to predict the signal. The proposed procedure uses an artificial neural network based learning structure to estimate the (n+1th sample from n previous samples To train and adjust the network weights, the backpropagation (BP algorithm was used. In this paper, prediction of ECG signals (as time series using multi-layer feedforward neural networks will be described. The results are evaluated through approximation error which is defined as the difference between the predicted and the original signal.The prediction procedure is carried out (simulated in MATLAB environment, using signals from MIT-BIH arrhythmia database. Preliminary results are encouraging enough to extend the proposed method for other types of data signals.

  7. Evolving neural networks using a genetic algorithm for heartbeat classification.

    Science.gov (United States)

    Sekkal, Mansouria; Chikh, Mohamed Amine; Settouti, Nesma

    2011-07-01

    This study investigates the effectiveness of a genetic algorithm (GA) evolved neural network (NN) classifier and its application to the classification of premature ventricular contraction (PVC) beats. As there is no standard procedure to determine the network structure for complicated cases, generally the design of the NN would be dependent on the user's experience. To prevent this problem, we propose a neural classifier that uses a GA for the determination of optimal connections between neurons for better recognition. The MIT-BIH arrhythmia database is employed to evaluate its accuracy. First, the topology of the NN was determined using the trial and error method. Second, the genetic operators were carefully designed to optimize the neural network structure. Performance and accuracy of the two techniques are presented and compared. Copyright © 2011 Informa UK, Ltd.

  8. Character Recognition Using Genetically Trained Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, C.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1998-10-01

    Computationally intelligent recognition of characters and symbols addresses a wide range of applications including foreign language translation and chemical formula identification. The combination of intelligent learning and optimization algorithms with layered neural structures offers powerful techniques for character recognition. These techniques were originally developed by Sandia National Laboratories for pattern and spectral analysis; however, their ability to optimize vast amounts of data make them ideal for character recognition. An adaptation of the Neural Network Designer soflsvare allows the user to create a neural network (NN_) trained by a genetic algorithm (GA) that correctly identifies multiple distinct characters. The initial successfid recognition of standard capital letters can be expanded to include chemical and mathematical symbols and alphabets of foreign languages, especially Arabic and Chinese. The FIN model constructed for this project uses a three layer feed-forward architecture. To facilitate the input of characters and symbols, a graphic user interface (GUI) has been developed to convert the traditional representation of each character or symbol to a bitmap. The 8 x 8 bitmap representations used for these tests are mapped onto the input nodes of the feed-forward neural network (FFNN) in a one-to-one correspondence. The input nodes feed forward into a hidden layer, and the hidden layer feeds into five output nodes correlated to possible character outcomes. During the training period the GA optimizes the weights of the NN until it can successfully recognize distinct characters. Systematic deviations from the base design test the network's range of applicability. Increasing capacity, the number of letters to be recognized, requires a nonlinear increase in the number of hidden layer neurodes. Optimal character recognition performance necessitates a minimum threshold for the number of cases when genetically training the net. And, the

  9. Neural mechanisms of hypnosis and meditation.

    Science.gov (United States)

    De Benedittis, Giuseppe

    2015-12-01

    Hypnosis has been an elusive concept for science for a long time. However, the explosive advances in neuroscience in the last few decades have provided a "bridge of understanding" between classical neurophysiological studies and psychophysiological studies. These studies have shed new light on the neural basis of the hypnotic experience. Furthermore, an ambitious new area of research is focusing on mapping the core processes of psychotherapy and the neurobiology/underlying them. Hypnosis research offers powerful techniques to isolate psychological processes in ways that allow their neural bases to be mapped. The Hypnotic Brain can serve as a way to tap neurocognitive questions and our cognitive assays can in turn shed new light on the neural bases of hypnosis. This cross-talk should enhance research and clinical applications. An increasing body of evidence provides insight in the neural mechanisms of the Meditative Brain. Discrete meditative styles are likely to target different neurodynamic patterns. Recent findings emphasize increased attentional resources activating the attentional and salience networks with coherent perception. Cognitive and emotional equanimity gives rise to an eudaimonic state, made of calm, resilience and stability, readiness to express compassion and empathy, a main goal of Buddhist practices. Structural changes in gray matter of key areas of the brain involved in learning processes suggest that these skills can be learned through practice. Hypnosis and Meditation represent two important, historical and influential landmarks of Western and Eastern civilization and culture respectively. Neuroscience has beginning to provide a better understanding of the mechanisms of both Hypnotic and Meditative Brain, outlining similarities but also differences between the two states and processes. It is important not to view either the Eastern or the Western system as superior to the other. Cross-fertilization of the ancient Eastern meditation techniques

  10. Mechanical roles of apical constriction, cell elongation, and cell migration during neural tube formation in Xenopus.

    Science.gov (United States)

    Inoue, Yasuhiro; Suzuki, Makoto; Watanabe, Tadashi; Yasue, Naoko; Tateo, Itsuki; Adachi, Taiji; Ueno, Naoto

    2016-12-01

    Neural tube closure is an important and necessary process during the development of the central nervous system. The formation of the neural tube structure from a flat sheet of neural epithelium requires several cell morphogenetic events and tissue dynamics to account for the mechanics of tissue deformation. Cell elongation changes cuboidal cells into columnar cells, and apical constriction then causes them to adopt apically narrow, wedge-like shapes. In addition, the neural plate in Xenopus is stratified, and the non-neural cells in the deep layer (deep cells) pull the overlying superficial cells, eventually bringing the two layers of cells to the midline. Thus, neural tube closure appears to be a complex event in which these three physical events are considered to play key mechanical roles. To test whether these three physical events are mechanically sufficient to drive neural tube formation, we employed a three-dimensional vertex model and used it to simulate the process of neural tube closure. The results suggest that apical constriction cued the bending of the neural plate by pursing the circumference of the apical surface of the neural cells. Neural cell elongation in concert with apical constriction further narrowed the apical surface of the cells and drove the rapid folding of the neural plate, but was insufficient for complete neural tube closure. Migration of the deep cells provided the additional tissue deformation necessary for closure. To validate the model, apical constriction and cell elongation were inhibited in Xenopus laevis embryos. The resulting cell and tissue shapes resembled the corresponding simulation results.

  11. Cooperating attackers in neural cryptography.

    Science.gov (United States)

    Shacham, Lanir N; Klein, Einat; Mislovaty, Rachel; Kanter, Ido; Kinzel, Wolfgang

    2004-06-01

    A successful attack strategy in neural cryptography is presented. The neural cryptosystem, based on synchronization of neural networks by mutual learning, has been recently shown to be secure under different attack strategies. The success of the advanced attacker presented here, called the "majority-flipping attacker," does not decay with the parameters of the model. This attacker's outstanding success is due to its using a group of attackers which cooperate throughout the synchronization process, unlike any other attack strategy known. An analytical description of this attack is also presented, and fits the results of simulations.

  12. Cooperating attackers in neural cryptography

    Science.gov (United States)

    Shacham, Lanir N.; Klein, Einat; Mislovaty, Rachel; Kanter, Ido; Kinzel, Wolfgang

    2004-06-01

    A successful attack strategy in neural cryptography is presented. The neural cryptosystem, based on synchronization of neural networks by mutual learning, has been recently shown to be secure under different attack strategies. The success of the advanced attacker presented here, called the “majority-flipping attacker,” does not decay with the parameters of the model. This attacker’s outstanding success is due to its using a group of attackers which cooperate throughout the synchronization process, unlike any other attack strategy known. An analytical description of this attack is also presented, and fits the results of simulations.

  13. Neural Computations in Binaural Hearing

    Science.gov (United States)

    Wagner, Hermann

    Binaural hearing helps humans and animals to localize and unmask sounds. Here, binaural computations in the barn owl's auditory system are discussed. Barn owls use the interaural time difference (ITD) for azimuthal sound localization, and they use the interaural level difference (ELD) for elevational sound localization. ITD and ILD and their precursors are processed in separate neural pathways, the time pathway and the intensity pathway, respectively. Representation of ITD involves four main computational steps, while the representation of ILD is accomplished in three steps. In the discussion neural processing in the owl's auditory system is compared with neural computations present in mammals.

  14. Hafnium transistor process design for neural interfacing.

    Science.gov (United States)

    Parent, David W; Basham, Eric J

    2009-01-01

    A design methodology is presented that uses 1-D process simulations of Metal Insulator Semiconductor (MIS) structures to design the threshold voltage of hafnium oxide based transistors used for neural recording. The methodology is comprised of 1-D analytical equations for threshold voltage specification, and doping profiles, and 1-D MIS Technical Computer Aided Design (TCAD) to design a process to implement a specific threshold voltage, which minimized simulation time. The process was then verified with a 2-D process/electrical TCAD simulation. Hafnium oxide films (HfO) were grown and characterized for dielectric constant and fixed oxide charge for various annealing temperatures, two important design variables in threshold voltage design.

  15. Event- and Time-Driven Techniques Using Parallel CPU-GPU Co-processing for Spiking Neural Networks.

    Science.gov (United States)

    Naveros, Francisco; Garrido, Jesus A; Carrillo, Richard R; Ros, Eduardo; Luque, Niceto R

    2017-01-01

    Modeling and simulating the neural structures which make up our central neural system is instrumental for deciphering the computational neural cues beneath. Higher levels of biological plausibility usually impose higher levels of complexity in mathematical modeling, from neural to behavioral levels. This paper focuses on overcoming the simulation problems (accuracy and performance) derived from using higher levels of mathematical complexity at a neural level. This study proposes different techniques for simulating neural models that hold incremental levels of mathematical complexity: leaky integrate-and-fire (LIF), adaptive exponential integrate-and-fire (AdEx), and Hodgkin-Huxley (HH) neural models (ranged from low to high neural complexity). The studied techniques are classified into two main families depending on how the neural-model dynamic evaluation is computed: the event-driven or the time-driven families. Whilst event-driven techniques pre-compile and store the neural dynamics within look-up tables, time-driven techniques compute the neural dynamics iteratively during the simulation time. We propose two modifications for the event-driven family: a look-up table recombination to better cope with the incremental neural complexity together with a better handling of the synchronous input activity. Regarding the time-driven family, we propose a modification in computing the neural dynamics: the bi-fixed-step integration method. This method automatically adjusts the simulation step size to better cope with the stiffness of the neural model dynamics running in CPU platforms. One version of this method is also implemented for hybrid CPU-GPU platforms. Finally, we analyze how the performance and accuracy of these modifications evolve with increasing levels of neural complexity. We also demonstrate how the proposed modifications which constitute the main contribution of this study systematically outperform the traditional event- and time-driven techniques under

  16. Event- and Time-Driven Techniques Using Parallel CPU-GPU Co-processing for Spiking Neural Networks

    Science.gov (United States)

    Naveros, Francisco; Garrido, Jesus A.; Carrillo, Richard R.; Ros, Eduardo; Luque, Niceto R.

    2017-01-01

    Modeling and simulating the neural structures which make up our central neural system is instrumental for deciphering the computational neural cues beneath. Higher levels of biological plausibility usually impose higher levels of complexity in mathematical modeling, from neural to behavioral levels. This paper focuses on overcoming the simulation problems (accuracy and performance) derived from using higher levels of mathematical complexity at a neural level. This study proposes different techniques for simulating neural models that hold incremental levels of mathematical complexity: leaky integrate-and-fire (LIF), adaptive exponential integrate-and-fire (AdEx), and Hodgkin-Huxley (HH) neural models (ranged from low to high neural complexity). The studied techniques are classified into two main families depending on how the neural-model dynamic evaluation is computed: the event-driven or the time-driven families. Whilst event-driven techniques pre-compile and store the neural dynamics within look-up tables, time-driven techniques compute the neural dynamics iteratively during the simulation time. We propose two modifications for the event-driven family: a look-up table recombination to better cope with the incremental neural complexity together with a better handling of the synchronous input activity. Regarding the time-driven family, we propose a modification in computing the neural dynamics: the bi-fixed-step integration method. This method automatically adjusts the simulation step size to better cope with the stiffness of the neural model dynamics running in CPU platforms. One version of this method is also implemented for hybrid CPU-GPU platforms. Finally, we analyze how the performance and accuracy of these modifications evolve with increasing levels of neural complexity. We also demonstrate how the proposed modifications which constitute the main contribution of this study systematically outperform the traditional event- and time-driven techniques under

  17. How learning to abstract shapes neural sound representations

    Directory of Open Access Journals (Sweden)

    Anke eLey

    2014-06-01

    Full Text Available The transformation of acoustic signals into abstract perceptual representations is the essence of the efficient and goal-directed neural processing of sounds in complex natural environments. While the human and animal auditory system is perfectly equipped to process the spectrotemporal sound features, adequate sound identification and categorization require neural sound representations that are invariant to irrelevant stimulus parameters. Crucially, what is relevant and irrelevant is not necessarily intrinsic to the physical stimulus structure but needs to be learned over time, often through integration of information from other senses. This review discusses the main principles underlying categorical sound perception with a special focus on the role of learning and neural plasticity. We examine the role of different neural structures along the auditory processing pathway in the formation of abstract sound representations with respect to hierarchical as well as dynamic and distributed processing models. Whereas most fMRI studies on categorical sound processing employed speech sounds, the emphasis of the current review lies on the contribution of empirical studies using natural or artificial sounds that enable separating acoustic and perceptual processing levels and avoid interference with existing category representations. Finally, we discuss the opportunities of modern analyses techniques (such as multivariate pattern analysis in studying categorical sound representations. With their increased sensitivity to distributed activation changes - even in absence of changes in overall signal level - these analyses techniques provide a promising tool to reveal the neural underpinnings of perceptually invariant sound representations.

  18. Perineuronal net, CSPG receptor and their regulation of neural plasticity.

    Science.gov (United States)

    Miao, Qing-Long; Ye, Qian; Zhang, Xiao-Hui

    2014-08-25

    Perineuronal nets (PNNs) are reticular structures resulting from the aggregation of extracellular matrix (ECM) molecules around the cell body and proximal neurite of specific population of neurons in the central nervous system (CNS). Since the first description of PNNs by Camillo Golgi in 1883, the molecular composition, developmental formation and potential functions of these specialized extracellular matrix structures have only been intensively studied over the last few decades. The main components of PNNs are hyaluronan (HA), chondroitin sulfate proteoglycans (CSPGs) of the lectican family, link proteins and tenascin-R. PNNs appear late in neural development, inversely correlating with the level of neural plasticity. PNNs have long been hypothesized to play a role in stabilizing the extracellular milieu, which secures the characteristic features of enveloped neurons and protects them from the influence of malicious agents. Aberrant PNN signaling can lead to CNS dysfunctions like epilepsy, stroke and Alzheimer's disease. On the other hand, PNNs create a barrier which constrains the neural plasticity and counteracts the regeneration after nerve injury. Digestion of PNNs with chondroitinase ABC accelerates functional recovery from the spinal cord injury and restores activity-dependent mechanisms for modifying neuronal connections in the adult animals, indicating that PNN is an important regulator of neural plasticity. Here, we review recent progress in the studies on the formation of PNNs during early development and the identification of CSPG receptor - an essential molecular component of PNN signaling, along with a discussion on their unique regulatory roles in neural plasticity.

  19. Neural Manifolds for the Control of Movement.

    Science.gov (United States)

    Gallego, Juan A; Perich, Matthew G; Miller, Lee E; Solla, Sara A

    2017-06-07

    The analysis of neural dynamics in several brain cortices has consistently uncovered low-dimensional manifolds that capture a significant fraction of neural variability. These neural manifolds are spanned by specific patterns of correlated neural activity, the "neural modes." We discuss a model for neural control of movement in which the time-dependent activation of these neural modes is the generator of motor behavior. This manifold-based view of motor cortex may lead to a better understanding of how the brain controls movement. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. NNSYSID and NNCTRL Tools for system identification and control with neural networks

    DEFF Research Database (Denmark)

    Nørgaard, Magnus; Ravn, Ole; Poulsen, Niels Kjølstad

    2001-01-01

    a number of nonlinear model structures based on neural networks, effective training algorithms and tools for model validation and model structure selection. The NNCTRL toolkit is an add-on to NNSYSID and provides tools for design and simulation of control systems based on neural networks. The user can......Two toolsets for use with MATLAB have been developed: the neural network based system identification toolbox (NNSYSID) and the neural network based control system design toolkit (NNCTRL). The NNSYSID toolbox has been designed to assist identification of nonlinear dynamic systems. It contains...... choose among several designs such as direct inverse control, internal model control, nonlinear feedforward, feedback linearisation, optimal control, gain scheduling based on instantaneous linearisation of neural network models and nonlinear model predictive control. This article gives an overview...

  1. NNSYSID and NNCTRL Tools for system identification and control with neural networks

    DEFF Research Database (Denmark)

    Nørgaard, Magnus; Ravn, Ole; Poulsen, Niels Kjølstad

    2001-01-01

    choose among several designs such as direct inverse control, internal model control, nonlinear feedforward, feedback linearisation, optimal control, gain scheduling based on instantaneous linearisation of neural network models and nonlinear model predictive control. This article gives an overview......Two toolsets for use with MATLAB have been developed: the neural network based system identification toolbox (NNSYSID) and the neural network based control system design toolkit (NNCTRL). The NNSYSID toolbox has been designed to assist identification of nonlinear dynamic systems. It contains...... a number of nonlinear model structures based on neural networks, effective training algorithms and tools for model validation and model structure selection. The NNCTRL toolkit is an add-on to NNSYSID and provides tools for design and simulation of control systems based on neural networks. The user can...

  2. Recognition of sign language gestures using neural networks

    Directory of Open Access Journals (Sweden)

    Simon Vamplew

    2007-04-01

    Full Text Available This paper describes the structure and performance of the SLARTI sign language recognition system developed at the University of Tasmania. SLARTI uses a modular architecture consisting of multiple feature-recognition neural networks and a nearest-neighbour classifier to recognise Australian sign language (Auslan hand gestures.

  3. A hyperstable neural network for the modelling and control of ...

    Indian Academy of Sciences (India)

    A multivariable hyperstable robust adaptive decoupling control algorithm based on a neural network is presented for the control of nonlinear multivariable coupled systems with unknown parameters and structure. The Popov theorem is used in the design of the controller. The modelling errors, coupling action and other ...

  4. Bilingual Lexical Interactions in an Unsupervised Neural Network Model

    Science.gov (United States)

    Zhao, Xiaowei; Li, Ping

    2010-01-01

    In this paper we present an unsupervised neural network model of bilingual lexical development and interaction. We focus on how the representational structures of the bilingual lexicons can emerge, develop, and interact with each other as a function of the learning history. The results show that: (1) distinct representations for the two lexicons…

  5. Classical Conditioning with Pulsed Integrated Neural Networks: Circuits and System

    DEFF Research Database (Denmark)

    Lehmann, Torsten

    1998-01-01

    In this paper we investigate on-chip learning for pulsed, integrated neural networks. We discuss the implementational problems the technology imposes on learning systems and we find that abiologically inspired approach using simple circuit structures is most likely to bring success. We develop a ...... chip to solve simple classical conditioning tasks, thus verifying the design methodologies put forward in the paper....

  6. Neural Correlates of Sublexical Processing in Phonological Working Memory

    Science.gov (United States)

    McGettigan, Carolyn; Warren, Jane E.; Eisner, Frank; Marshall, Chloe R.; Shanmugalingam, Pradheep; Scott, Sophie K.

    2011-01-01

    This study investigated links between working memory and speech processing systems. We used delayed pseudoword repetition in fMRI to investigate the neural correlates of sublexical structure in phonological working memory (pWM). We orthogonally varied the number of syllables and consonant clusters in auditory pseudowords and measured the neural…

  7. Preparing for knowledge extraction in modular neural networks

    NARCIS (Netherlands)

    Spaanenburg, Lambert; Slump, Cornelis H.; Venema, Rienk; van der Zwaag, B.J.

    Neural networks learn knowledge from data. For a monolithic structure, this knowledge can be easily used but not isolated. The many degrees of freedom while learning make knowledge extraction a computationally intensive process as the representation is not unique. Where existing knowledge is

  8. Bach in 2014: Music Composition with Recurrent Neural Network

    OpenAIRE

    Liu, I-Ting; Ramakrishnan, Bhiksha

    2014-01-01

    We propose a framework for computer music composition that uses resilient propagation (RProp) and long short term memory (LSTM) recurrent neural network. In this paper, we show that LSTM network learns the structure and characteristics of music pieces properly by demonstrating its ability to recreate music. We also show that predicting existing music using RProp outperforms Back propagation through time (BPTT).

  9. NNSYSID - toolbox for system identification with neural networks

    DEFF Research Database (Denmark)

    Norgaard, M.; Ravn, Ole; Poulsen, Niels Kjølstad

    2002-01-01

    The NNSYSID toolset for System Identification has been developed as an add on to MATLAB(R). The NNSYSID toolbox has been designed to assist identification of nonlinear dynamic systems. It contains a number of nonlinear model structures based on neural networks, effective training algorithms...

  10. Epidemiology of neural tube defects

    National Research Council Canada - National Science Library

    Seidahmed, Mohammed Z; Abdelbasit, Omar B; Shaheed, Meeralebbae M; Alhussein, Khalid A; Miqdad, Abeer M; Khalil, Mohamed I; Al-Enazy, Naif M; Salih, Mustafa A

    2014-01-01

    To find the prevalence of neural tube defects (NTDs), and compare the findings with local and international data, and highlight the important role of folic acid supplementation and flour fortification with folic acid in preventing NTDs...

  11. Memristor-based neural networks

    Science.gov (United States)

    Thomas, Andy

    2013-03-01

    The synapse is a crucial element in biological neural networks, but a simple electronic equivalent has been absent. This complicates the development of hardware that imitates biological architectures in the nervous system. Now, the recent progress in the experimental realization of memristive devices has renewed interest in artificial neural networks. The resistance of a memristive system depends on its past states and exactly this functionality can be used to mimic the synaptic connections in a (human) brain. After a short introduction to memristors, we present and explain the relevant mechanisms in a biological neural network, such as long-term potentiation and spike time-dependent plasticity, and determine the minimal requirements for an artificial neural network. We review the implementations of these processes using basic electric circuits and more complex mechanisms that either imitate biological systems or could act as a model system for them.

  12. Neural components of altruistic punishment

    Directory of Open Access Journals (Sweden)

    Emily eDu

    2015-02-01

    Full Text Available Altruistic punishment, which occurs when an individual incurs a cost to punish in response to unfairness or a norm violation, may play a role in perpetuating cooperation. The neural correlates underlying costly punishment have only recently begun to be explored. Here we review the current state of research on the neural basis of altruism from the perspectives of costly punishment, emphasizing the importance of characterizing elementary neural processes underlying a decision to punish. In particular, we emphasize three cognitive processes that contribute to the decision to altruistically punish in most scenarios: inequity aversion, cost-benefit calculation, and social reference frame to distinguish self from others. Overall, we argue for the importance of understanding the neural correlates of altruistic punishment with respect to the core computations necessary to achieve a decision to punish.

  13. Complex-Valued Neural Networks

    CERN Document Server

    Hirose, Akira

    2012-01-01

    This book is the second enlarged and revised edition of the first successful monograph on complex-valued neural networks (CVNNs) published in 2006, which lends itself to graduate and undergraduate courses in electrical engineering, informatics, control engineering, mechanics, robotics, bioengineering, and other relevant fields. In the second edition the recent trends in CVNNs research are included, resulting in e.g. almost a doubled number of references. The parametron invented in 1954 is also referred to with discussion on analogy and disparity. Also various additional arguments on the advantages of the complex-valued neural networks enhancing the difference to real-valued neural networks are given in various sections. The book is useful for those beginning their studies, for instance, in adaptive signal processing for highly functional sensing and imaging, control in unknown and changing environment, robotics inspired by human neural systems, and brain-like information processing, as well as interdisciplina...

  14. Neural components of altruistic punishment.

    Science.gov (United States)

    Du, Emily; Chang, Steve W C

    2015-01-01

    Altruistic punishment, which occurs when an individual incurs a cost to punish in response to unfairness or a norm violation, may play a role in perpetuating cooperation. The neural correlates underlying costly punishment have only recently begun to be explored. Here we review the current state of research on the neural basis of altruism from the perspectives of costly punishment, emphasizing the importance of characterizing elementary neural processes underlying a decision to punish. In particular, we emphasize three cognitive processes that contribute to the decision to altruistically punish in most scenarios: inequity aversion, cost-benefit calculation, and social reference frame to distinguish self from others. Overall, we argue for the importance of understanding the neural correlates of altruistic punishment with respect to the core computations necessary to achieve a decision to punish.

  15. Pansharpening by Convolutional Neural Networks

    National Research Council Canada - National Science Library

    Masi, Giuseppe; Cozzolino, Davide; Verdoliva, Luisa; Scarpa, Giuseppe

    2016-01-01

    A new pansharpening method is proposed, based on convolutional neural networks. We adapt a simple and effective three-layer architecture recently proposed for super-resolution to the pansharpening problem...

  16. Indices for Testing Neural Codes

    OpenAIRE

    Jonathan D. Victor; Nirenberg, Sheila

    2008-01-01

    One of the most critical challenges in systems neuroscience is determining the neural code. A principled framework for addressing this can be found in information theory. With this approach, one can determine whether a proposed code can account for the stimulus-response relationship. Specifically, one can compare the transmitted information between the stimulus and the hypothesized neural code with the transmitted information between the stimulus and the behavioral response. If the former is ...

  17. Flexibility of neural stem cells

    Directory of Open Access Journals (Sweden)

    Eumorphia eRemboutsika

    2011-04-01

    Full Text Available Embryonic cortical neural stem cells are self-renewing progenitors that can differentiate into neurons and glia. We generated neurospheres from the developing cerebral cortex using a mouse genetic model that allows for lineage selection and found that the self-renewing neural stem cells are restricted to Sox2 expressing cells. Under normal conditions, embryonic cortical neurospheres are heterogeneous with regard to Sox2 expression and contain astrocytes, neural stem cells and neural progenitor cells sufficiently plastic to give rise to neural crest cells when transplanted into the hindbrain of E1.5 chick and E8 mouse embryos. However, when neurospheres are maintained under lineage selection, such that all cells express Sox2, neural stem cells maintain their Pax6+ cortical radial glia identity and exhibit a more restricted fate in vitro and after transplantation. These data demonstrate that Sox2 preserves the cortical identity and regulates the plasticity of self-renewing Pax6+ radial glia cells.

  18. Nondestructive pavement evaluation using ILLI-PAVE based artificial neural network models.

    Science.gov (United States)

    2008-09-01

    The overall objective in this research project is to develop advanced pavement structural analysis models for more accurate solutions with fast computation schemes. Soft computing and modeling approaches, specifically the Artificial Neural Network (A...

  19. Spiking modular neural networks: A neural network modeling approach for hydrological processes

    National Research Council Canada - National Science Library

    Kamban Parasuraman; Amin Elshorbagy; Sean K. Carey

    2006-01-01

    .... In this study, a novel neural network model called the spiking modular neural networks (SMNNs) is proposed. An SMNN consists of an input layer, a spiking layer, and an associator neural network layer...

  20. Neural Blockade for Persistent Pain After Breast Cancer Surgery

    DEFF Research Database (Denmark)

    Wijayasinghe, Nelun; Andersen, Kenneth Geving; Kehlet, Henrik

    2014-01-01

    involved in neuropathic pain syndromes or to be used as a treatment in its own right. The purpose of this review was to examine the evidence for neural blockade as a potential diagnostic tool or treatment for persistent pain after breast cancer surgery. In this systematic review, we found only 7 studies (n...... = 135) assessing blocks directed at 3 neural structures-stellate ganglion, paravertebral plexus, and intercostal nerves-but none focusing on the intercostobrachial nerve. The quality of the studies was low and efficacy inconclusive, suggesting a need for well-designed, high-quality studies...