WorldWideScience

Sample records for neural crest neurons

  1. Differentiation of neural crest stem cells from nasal mucosa into motor neuron-like cells.

    Science.gov (United States)

    Bagher, Zohreh; Kamrava, Seyed Kamran; Alizadeh, Rafieh; Farhadi, Mohammad; Absalan, Moloud; Falah, Masoumeh; Faghihi, Faezeh; Zare-Sadeghi, Arash; Komeili, Ali

    2018-05-25

    Cell transplantation is a potential therapeutic approach for repairing neuropathological and neurodegenerative disorders of central nervous system by replacing the degenerated cells with new ones. Among a variety of stem cell candidates to provide these new cells, olfactory ectomesenchymal stem cells (OE-MSCs) have attracted a great attention due to their neural crest origin, easy harvest, high proliferation, and autologous transplantation. Since there is no report on differentiation potential of these cells into motor neuron-like cells, we evaluated this potential using Real-time PCR, flowcytometry and immunocytochemistry after the treatment with differentiation cocktail containing retinoic acid and Sonic Hedgehog. Immunocytochemistry staining of the isolated OE-MSCs demonstrated their capability to express nestin and vimentin, as the two markers of primitive neuroectoderm. The motor neuron differentiation of OE-MSCs resulted in changing their morphology into bipolar cells with high expression of motor neuron markers of ChAT, Hb-9 and Islet-1 at the level of mRNA and protein. Consequently, we believe that the OE-MSCs have great potential to differentiate into motor neuron-like cells and can be an ideal stem cell source for the treatment of motor neuron-related disorders of central nervous system. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Distinct functional and temporal requirements for zebrafish Hdac1 during neural crest-derived craniofacial and peripheral neuron development.

    Science.gov (United States)

    Ignatius, Myron S; Unal Eroglu, Arife; Malireddy, Smitha; Gallagher, Glen; Nambiar, Roopa M; Henion, Paul D

    2013-01-01

    The regulation of gene expression is accomplished by both genetic and epigenetic means and is required for the precise control of the development of the neural crest. In hdac1(b382) mutants, craniofacial cartilage development is defective in two distinct ways. First, fewer hoxb3a, dlx2 and dlx3-expressing posterior branchial arch precursors are specified and many of those that are consequently undergo apoptosis. Second, in contrast, normal numbers of progenitors are present in the anterior mandibular and hyoid arches, but chondrocyte precursors fail to terminally differentiate. In the peripheral nervous system, there is a disruption of enteric, DRG and sympathetic neuron differentiation in hdac1(b382) mutants compared to wildtype embryos. Specifically, enteric and DRG-precursors differentiate into neurons in the anterior gut and trunk respectively, while enteric and DRG neurons are rarely present in the posterior gut and tail. Sympathetic neuron precursors are specified in hdac1(b382) mutants and they undergo generic neuronal differentiation but fail to undergo noradrenergic differentiation. Using the HDAC inhibitor TSA, we isolated enzyme activity and temporal requirements for HDAC function that reproduce hdac1(b382) defects in craniofacial and sympathetic neuron development. Our study reveals distinct functional and temporal requirements for zebrafish hdac1 during neural crest-derived craniofacial and peripheral neuron development.

  3. Distinct functional and temporal requirements for zebrafish Hdac1 during neural crest-derived craniofacial and peripheral neuron development.

    Directory of Open Access Journals (Sweden)

    Myron S Ignatius

    Full Text Available The regulation of gene expression is accomplished by both genetic and epigenetic means and is required for the precise control of the development of the neural crest. In hdac1(b382 mutants, craniofacial cartilage development is defective in two distinct ways. First, fewer hoxb3a, dlx2 and dlx3-expressing posterior branchial arch precursors are specified and many of those that are consequently undergo apoptosis. Second, in contrast, normal numbers of progenitors are present in the anterior mandibular and hyoid arches, but chondrocyte precursors fail to terminally differentiate. In the peripheral nervous system, there is a disruption of enteric, DRG and sympathetic neuron differentiation in hdac1(b382 mutants compared to wildtype embryos. Specifically, enteric and DRG-precursors differentiate into neurons in the anterior gut and trunk respectively, while enteric and DRG neurons are rarely present in the posterior gut and tail. Sympathetic neuron precursors are specified in hdac1(b382 mutants and they undergo generic neuronal differentiation but fail to undergo noradrenergic differentiation. Using the HDAC inhibitor TSA, we isolated enzyme activity and temporal requirements for HDAC function that reproduce hdac1(b382 defects in craniofacial and sympathetic neuron development. Our study reveals distinct functional and temporal requirements for zebrafish hdac1 during neural crest-derived craniofacial and peripheral neuron development.

  4. A Human Neural Crest Stem Cell-Derived Dopaminergic Neuronal Model Recapitulates Biochemical Abnormalities in GBA1 Mutation Carriers

    Directory of Open Access Journals (Sweden)

    Shi-Yu Yang

    2017-03-01

    Full Text Available Numerically the most important risk factor for the development of Parkinson's disease (PD is the presence of mutations in the glucocerebrosidase GBA1 gene. In vitro and in vivo studies show that GBA1 mutations reduce glucocerebrosidase (GCase activity and are associated with increased α-synuclein levels, reflecting similar changes seen in idiopathic PD brain. We have developed a neural crest stem cell-derived dopaminergic neuronal model that recapitulates biochemical abnormalities in GBA1 mutation-associated PD. Cells showed reduced GCase protein and activity, impaired macroautophagy, and increased α-synuclein levels. Advantages of this approach include easy access to stem cells, no requirement to reprogram, and retention of the intact host genome. Treatment with a GCase chaperone increased GCase protein levels and activity, rescued the autophagic defects, and decreased α-synuclein levels. These results provide the basis for further investigation of GCase chaperones or similar drugs to slow the progression of PD.

  5. Recycling signals in the neural crest

    OpenAIRE

    Taneyhill, Lisa A.; Bronner-Fraser, Marianne E.

    2006-01-01

    Vertebrate neural crest cells are multipotent and differentiate into structures that include cartilage and the bones of the face, as well as much of the peripheral nervous system. Understanding how different model vertebrates utilize signaling pathways reiteratively during various stages of neural crest formation and differentiation lends insight into human disorders associated with the neural crest.

  6. Recycling signals in the neural crest.

    Science.gov (United States)

    Taneyhill, Lisa A; Bronner-Fraser, Marianne

    2005-01-01

    Vertebrate neural crest cells are multipotent and differentiate into structures that include cartilage and the bones of the face, as well as much of the peripheral nervous system. Understanding how different model vertebrates utilize signaling pathways reiteratively during various stages of neural crest formation and differentiation lends insight into human disorders associated with the neural crest.

  7. EGF–FGF{sub 2} stimulates the proliferation and improves the neuronal commitment of mouse epidermal neural crest stem cells (EPI-NCSCs)

    Energy Technology Data Exchange (ETDEWEB)

    Bressan, Raul Bardini; Melo, Fernanda Rosene; Almeida, Patricia Alves; Bittencourt, Denise Avani; Visoni, Silvia; Jeremias, Talita Silva [Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário – Trindade, 88040-900 Florianópolis SC (Brazil); Costa, Ana Paula; Leal, Rodrigo Bainy [Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário – Trindade, 88040-900 Florianópolis SC (Brazil); Trentin, Andrea Gonçalves, E-mail: andrea.trentin@ufsc.br [Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário – Trindade, 88040-900 Florianópolis SC (Brazil)

    2014-09-10

    Epidermal neural crest stem cells (EPI-NCSCs), which reside in the bulge of hair follicles, are attractive candidates for several applications in cell therapy, drug screening and tissue engineering. As suggested remnants of the embryonic neural crest (NC) in an adult location, EPI-NCSCs are able to generate a wide variety of cell types and are readily accessible by a minimally invasive procedure. Since the combination of epidermal growth factor (EGF) and fibroblast growth factor type 2 (FGF{sub 2}) is mitogenic and promotes the neuronal commitment of various stem cell populations, we examined its effects in the proliferation and neuronal potential of mouse EPI-NCSCs. By using a recognized culture protocol of bulge whiskers follicles, we were able to isolate a population of EPI-NCSCs, characterized by the migratory potential, cell morphology and expression of phenotypic markers of NC cells. EPI-NCSCs expressed neuronal, glial and smooth muscle markers and exhibited the NC-like fibroblastic morphology. The treatment with the combination EGF and FGF{sub 2}, however, increased their proliferation rate and promoted the acquisition of a neuronal-like morphology accompanied by reorganization of neural cytoskeletal proteins βIII-tubulin and nestin, as well as upregulation of the pan neuronal marker βIII-tubulin and down regulation of the undifferentiated NC, glial and smooth muscle cell markers. Moreover, the treatment enhanced the response of EPI-NCSCs to neurogenic stimulation, as evidenced by induction of GAP43, and increased expression of Mash-1 in neuron-like cell, both neuronal-specific proteins. Together, the results suggest that the combination of EGF–FGF2 stimulates the proliferation and improves the neuronal potential of EPI-NCSCs similarly to embryonic NC cells, ES cells and neural progenitor/stem cells of the central nervous system and highlights the advantage of using EGF–FGF{sub 2} in neuronal differentiation protocols. - Highlights: • EPI

  8. EGF–FGF2 stimulates the proliferation and improves the neuronal commitment of mouse epidermal neural crest stem cells (EPI-NCSCs)

    International Nuclear Information System (INIS)

    Bressan, Raul Bardini; Melo, Fernanda Rosene; Almeida, Patricia Alves; Bittencourt, Denise Avani; Visoni, Silvia; Jeremias, Talita Silva; Costa, Ana Paula; Leal, Rodrigo Bainy; Trentin, Andrea Gonçalves

    2014-01-01

    Epidermal neural crest stem cells (EPI-NCSCs), which reside in the bulge of hair follicles, are attractive candidates for several applications in cell therapy, drug screening and tissue engineering. As suggested remnants of the embryonic neural crest (NC) in an adult location, EPI-NCSCs are able to generate a wide variety of cell types and are readily accessible by a minimally invasive procedure. Since the combination of epidermal growth factor (EGF) and fibroblast growth factor type 2 (FGF 2 ) is mitogenic and promotes the neuronal commitment of various stem cell populations, we examined its effects in the proliferation and neuronal potential of mouse EPI-NCSCs. By using a recognized culture protocol of bulge whiskers follicles, we were able to isolate a population of EPI-NCSCs, characterized by the migratory potential, cell morphology and expression of phenotypic markers of NC cells. EPI-NCSCs expressed neuronal, glial and smooth muscle markers and exhibited the NC-like fibroblastic morphology. The treatment with the combination EGF and FGF 2 , however, increased their proliferation rate and promoted the acquisition of a neuronal-like morphology accompanied by reorganization of neural cytoskeletal proteins βIII-tubulin and nestin, as well as upregulation of the pan neuronal marker βIII-tubulin and down regulation of the undifferentiated NC, glial and smooth muscle cell markers. Moreover, the treatment enhanced the response of EPI-NCSCs to neurogenic stimulation, as evidenced by induction of GAP43, and increased expression of Mash-1 in neuron-like cell, both neuronal-specific proteins. Together, the results suggest that the combination of EGF–FGF2 stimulates the proliferation and improves the neuronal potential of EPI-NCSCs similarly to embryonic NC cells, ES cells and neural progenitor/stem cells of the central nervous system and highlights the advantage of using EGF–FGF 2 in neuronal differentiation protocols. - Highlights: • EPI-NCSCs express

  9. Neuronal regeneration in injured rat spinal cord after human dental pulp derived neural crest stem cell transplantation.

    Science.gov (United States)

    Kabatas, S; Demir, C S; Civelek, E; Yilmaz, I; Kircelli, A; Yilmaz, C; Akyuva, Y; Karaoz, E

    2018-01-01

    This study aimed to analyze the effect of human Dental Pulp-Neural Crest Stem Cells (hDP-NCSCs) delivery on lesion site after spinal cord injury (SCI), and to observe the functional recovery after transplantation. Neural Crest Stem Cells (NCSCs) were isolated from human Dental Pulp (hDP). The experimental rat population was divided into four groups (n = 6/24). Their behavioral motility was scored regularly. After 4-weeks, rats were sacrificed, and their spinal cords were examined for Green Fluorescent Protein (GFP) labeled hDP-NCSCs by immunofluorescence (IF) staining. In early post-injury (p.i) period, the ultrastructure of spinal cord tissue was preserved in Group 4. The majority of cells forming the ependymal region around the central canal were found to be hDP-NCSCs. While the grey-and-white-matter around the ependymal region was composed of e.g. GFP cells, with astrocytic-like appearance. The scores showed significant motor recovery in hind limb functions in Group 4. However, no obvious change was observed in other groups. Cells e.g., mesenchymal (Vimentin+) which express GFP+ cells in the gray-and-white-matter around the ependymal region could indicate the potential to self-renewal and plasticity. Thus, transplantation of hDP-NCSCs might be an effective strategy to improve functional recovery following spinal cord trauma (Fig. 10, Ref. 32).

  10. Neural crest contributions to the lamprey head

    Science.gov (United States)

    McCauley, David W.; Bronner-Fraser, Marianne

    2003-01-01

    The neural crest is a vertebrate-specific cell population that contributes to the facial skeleton and other derivatives. We have performed focal DiI injection into the cranial neural tube of the developing lamprey in order to follow the migratory pathways of discrete groups of cells from origin to destination and to compare neural crest migratory pathways in a basal vertebrate to those of gnathostomes. The results show that the general pathways of cranial neural crest migration are conserved throughout the vertebrates, with cells migrating in streams analogous to the mandibular and hyoid streams. Caudal branchial neural crest cells migrate ventrally as a sheet of cells from the hindbrain and super-pharyngeal region of the neural tube and form a cylinder surrounding a core of mesoderm in each pharyngeal arch, similar to that seen in zebrafish and axolotl. In addition to these similarities, we also uncovered important differences. Migration into the presumptive caudal branchial arches of the lamprey involves both rostral and caudal movements of neural crest cells that have not been described in gnathostomes, suggesting that barriers that constrain rostrocaudal movement of cranial neural crest cells may have arisen after the agnathan/gnathostome split. Accordingly, neural crest cells from a single axial level contributed to multiple arches and there was extensive mixing between populations. There was no apparent filling of neural crest derivatives in a ventral-to-dorsal order, as has been observed in higher vertebrates, nor did we find evidence of a neural crest contribution to cranial sensory ganglia. These results suggest that migratory constraints and additional neural crest derivatives arose later in gnathostome evolution.

  11. Robo signaling regulates the production of cranial neural crest cells.

    Science.gov (United States)

    Li, Yan; Zhang, Xiao-Tan; Wang, Xiao-Yu; Wang, Guang; Chuai, Manli; Münsterberg, Andrea; Yang, Xuesong

    2017-12-01

    Slit/Robo signaling plays an important role in the guidance of developing neurons in developing embryos. However, it remains obscure whether and how Slit/Robo signaling is involved in the production of cranial neural crest cells. In this study, we examined Robo1 deficient mice to reveal developmental defects of mouse cranial frontal and parietal bones, which are derivatives of cranial neural crest cells. Therefore, we determined the production of HNK1 + cranial neural crest cells in early chick embryo development after knock-down (KD) of Robo1 expression. Detection of markers for pre-migratory and migratory neural crest cells, PAX7 and AP-2α, showed that production of both was affected by Robo1 KD. In addition, we found that the transcription factor slug is responsible for the aberrant delamination/EMT of cranial neural crest cells induced by Robo1 KD, which also led to elevated expression of E- and N-Cadherin. N-Cadherin expression was enhanced when blocking FGF signaling with dominant-negative FGFR1 in half of the neural tube. Taken together, we show that Slit/Robo signaling influences the delamination/EMT of cranial neural crest cells, which is required for cranial bone development. Copyright © 2017. Published by Elsevier Inc.

  12. Utility of Phox2b immunohistochemical stain in neural crest tumours and non-neural crest tumours in paediatric patients.

    Science.gov (United States)

    Warren, Mikako; Matsuno, Ryosuke; Tran, Henry; Shimada, Hiroyuki

    2018-03-01

    This study evaluated the utility of Phox2b in paediatric tumours. Previously, tyrosine hydroxylase (TH) was the most widely utilised sympathoadrenal marker specific for neural crest tumours with neuronal/neuroendocrine differentiation. However, its sensitivity is insufficient. Recently Phox2b has emerged as another specific marker for this entity. Phox2b immunohistochemistry (IHC) was performed on 159 paediatric tumours, including (group 1) 65 neural crest tumours with neuronal differentiation [peripheral neuroblastic tumours (pNT)]: 15 neuroblastoma undifferentiated (NB-UD), 10 NB poorly differentiated (NB-PD), 10 NB differentiating (NB-D), 10 ganglioneuroblastoma intermixed (GNBi), 10 GNB nodular (GNBn) and 10 ganglioneuroma (GN); (group 2) 23 neural crest tumours with neuroendocrine differentiation [pheochromocytoma/paraganglioma (PCC/PG)]; (group 3) 27 other neural crest tumours including one composite rhabdomyosarcoma/neuroblastoma; and (group 4) 44 non-neural crest tumours. TH IHC was performed on groups 1, 2 and 3. Phox2b was expressed diffusely in pNT (n = 65 of 65), strongly in NB-UD and NB-PD and with less intensity in NB-D, GNB and GN. Diffuse TH was seen in all NB-PD, NB-D, GNB and GN, but nine of 15 NB-UD and a nodule in GNBn did not express TH (n = 55 of 65). PCC/PG expressed diffuse Phox2b (n = 23 of 23) and diffuse TH, except for one tumour (n = 22 of 23). In composite rhabdomyosarcoma, TH was expressed only in neuroblastic cells and Phox2b was diffusely positive in neuroblastic cells and focally in rhabdomyosarcoma. All other tumours were negative for Phox2b (n = none of 44). Phox2b was a specific and sensitive marker for pNT and PCC/PG, especially useful for identifying NB-UD often lacking TH. Our study also presented a composite rhabdomyosarcoma/neuroblastoma of neural crest origin. © 2017 John Wiley & Sons Ltd.

  13. Modelling collective cell migration of neural crest.

    Science.gov (United States)

    Szabó, András; Mayor, Roberto

    2016-10-01

    Collective cell migration has emerged in the recent decade as an important phenomenon in cell and developmental biology and can be defined as the coordinated and cooperative movement of groups of cells. Most studies concentrate on tightly connected epithelial tissues, even though collective migration does not require a constant physical contact. Movement of mesenchymal cells is more independent, making their emergent collective behaviour less intuitive and therefore lending importance to computational modelling. Here we focus on such modelling efforts that aim to understand the collective migration of neural crest cells, a mesenchymal embryonic population that migrates large distances as a group during early vertebrate development. By comparing different models of neural crest migration, we emphasize the similarity and complementary nature of these approaches and suggest a future direction for the field. The principles derived from neural crest modelling could aid understanding the collective migration of other mesenchymal cell types. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Adrenergic innervation of the developing chick heart: neural crest ablations to produce sympathetically aneural hearts

    International Nuclear Information System (INIS)

    Kirby, M.; Stewart, D.

    1984-01-01

    Ablation of various regions of premigratory trunk neural crest which gives rise to the sympathetic trunks was used to remove sympathetic cardiac innervation. Neuronal uptake of [ 3 H]-norepinephrine was used as an index of neuronal development in the chick atrium. Following ablation of neural crest over somites 10-15 or 15-20, uptake was significantly decreased in the atrium at 16 and 17 days of development. Ablation of neural crest over somites 5-10 and 20-25 caused no decrease in [ 3 H]-norepinephrine uptake. Removal of neural crest over somites 5-25 or 10-20 caused approximately equal depletions of [ 3 H]-norepinephrine uptake in the atrium. Cardiac norepinephrine concentration was significantly depressed following ablation of neural crest over somites 5-25 but not over somites 10-20. Light-microscopic and histofluorescent preparations confirmed the absence of sympathetic trunks in the region of the normal origin of the sympathetic cardiac nerves following neural crest ablation over somites 10-20. The neural tube and dorsal root ganglia were damaged in the area of the neural-crest ablation; however, all of these structures were normal cranial and caudal to the lesioned area. Development of most of the embryos as well as the morphology of all of the hearts was normal following the lesion. These results indicate that it is possible to produce sympathetically aneural hearts by neural-crest ablation; however, sympathetic cardiac nerves account for an insignificant amount of cardiac norepinephrine

  15. Insights into neural crest development from studies of avian embryos

    OpenAIRE

    Gandhi, Shashank; Bronner, Marianne E.

    2018-01-01

    The neural crest is a multipotent and highly migratory cell type that contributes to many of the defining features of vertebrates, including the skeleton of the head and most of the peripheral nervous system. 150 years after the discovery of the neural crest, avian embryos remain one of the most important model organisms for studying neural crest development. In this review, we describe aspects of neural crest induction, migration and axial level differences, highlighting what is known about ...

  16. Amphioxus and lamprey AP-2 genes: implications for neural crest evolution and migration patterns

    Science.gov (United States)

    Meulemans, Daniel; Bronner-Fraser, Marianne

    2002-01-01

    The neural crest is a uniquely vertebrate cell type present in the most basal vertebrates, but not in cephalochordates. We have studied differences in regulation of the neural crest marker AP-2 across two evolutionary transitions: invertebrate to vertebrate, and agnathan to gnathostome. Isolation and comparison of amphioxus, lamprey and axolotl AP-2 reveals its extensive expansion in the vertebrate dorsal neural tube and pharyngeal arches, implying co-option of AP-2 genes by neural crest cells early in vertebrate evolution. Expression in non-neural ectoderm is a conserved feature in amphioxus and vertebrates, suggesting an ancient role for AP-2 genes in this tissue. There is also common expression in subsets of ventrolateral neurons in the anterior neural tube, consistent with a primitive role in brain development. Comparison of AP-2 expression in axolotl and lamprey suggests an elaboration of cranial neural crest patterning in gnathostomes. However, migration of AP-2-expressing neural crest cells medial to the pharyngeal arch mesoderm appears to be a primitive feature retained in all vertebrates. Because AP-2 has essential roles in cranial neural crest differentiation and proliferation, the co-option of AP-2 by neural crest cells in the vertebrate lineage was a potentially crucial event in vertebrate evolution.

  17. Neural crest cells: from developmental biology to clinical interventions.

    Science.gov (United States)

    Noisa, Parinya; Raivio, Taneli

    2014-09-01

    Neural crest cells are multipotent cells, which are specified in embryonic ectoderm in the border of neural plate and epiderm during early development by interconnection of extrinsic stimuli and intrinsic factors. Neural crest cells are capable of differentiating into various somatic cell types, including melanocytes, craniofacial cartilage and bone, smooth muscle, and peripheral nervous cells, which supports their promise for cell therapy. In this work, we provide a comprehensive review of wide aspects of neural crest cells from their developmental biology to applicability in medical research. We provide a simplified model of neural crest cell development and highlight the key external stimuli and intrinsic regulators that determine the neural crest cell fate. Defects of neural crest cell development leading to several human disorders are also mentioned, with the emphasis of using human induced pluripotent stem cells to model neurocristopathic syndromes. © 2014 Wiley Periodicals, Inc.

  18. Regeneration of neural crest derivatives in the Xenopus tadpole tail

    Directory of Open Access Journals (Sweden)

    Slack Jonathan MW

    2007-05-01

    Full Text Available Abstract Background After amputation of the Xenopus tadpole tail, a functionally competent new tail is regenerated. It contains spinal cord, notochord and muscle, each of which has previously been shown to derive from the corresponding tissue in the stump. The regeneration of the neural crest derivatives has not previously been examined and is described in this paper. Results Labelling of the spinal cord by electroporation, or by orthotopic grafting of transgenic tissue expressing GFP, shows that no cells emigrate from the spinal cord in the course of regeneration. There is very limited regeneration of the spinal ganglia, but new neurons as well as fibre tracts do appear in the regenerated spinal cord and the regenerated tail also contains abundant peripheral innervation. The regenerated tail contains a normal density of melanophores. Cell labelling experiments show that melanophores do not arise from the spinal cord during regeneration, nor from the mesenchymal tissues of the skin, but they do arise by activation and proliferation of pre-existing melanophore precursors. If tails are prepared lacking melanophores, then the regenerates also lack them. Conclusion On regeneration there is no induction of a new neural crest similar to that seen in embryonic development. However there is some regeneration of neural crest derivatives. Abundant melanophores are regenerated from unpigmented precursors, and, although spinal ganglia are not regenerated, sufficient sensory systems are produced to enable essential functions to continue.

  19. Review: the role of neural crest cells in the endocrine system.

    Science.gov (United States)

    Adams, Meghan Sara; Bronner-Fraser, Marianne

    2009-01-01

    The neural crest is a pluripotent population of cells that arises at the junction of the neural tube and the dorsal ectoderm. These highly migratory cells form diverse derivatives including neurons and glia of the sensory, sympathetic, and enteric nervous systems, melanocytes, and the bones, cartilage, and connective tissues of the face. The neural crest has long been associated with the endocrine system, although not always correctly. According to current understanding, neural crest cells give rise to the chromaffin cells of the adrenal medulla, chief cells of the extra-adrenal paraganglia, and thyroid C cells. The endocrine tumors that correspond to these cell types are pheochromocytomas, extra-adrenal paragangliomas, and medullary thyroid carcinomas. Although controversies concerning embryological origin appear to have mostly been resolved, questions persist concerning the pathobiology of each tumor type and its basis in neural crest embryology. Here we present a brief history of the work on neural crest development, both in general and in application to the endocrine system. In particular, we present findings related to the plasticity and pluripotency of neural crest cells as well as a discussion of several different neural crest tumors in the endocrine system.

  20. Pax7 lineage contributions to the mammalian neural crest.

    Directory of Open Access Journals (Sweden)

    Barbara Murdoch

    Full Text Available Neural crest cells are vertebrate-specific multipotent cells that contribute to a variety of tissues including the peripheral nervous system, melanocytes, and craniofacial bones and cartilage. Abnormal development of the neural crest is associated with several human maladies including cleft/lip palate, aggressive cancers such as melanoma and neuroblastoma, and rare syndromes, like Waardenburg syndrome, a complex disorder involving hearing loss and pigment defects. We previously identified the transcription factor Pax7 as an early marker, and required component for neural crest development in chick embryos. In mammals, Pax7 is also thought to play a role in neural crest development, yet the precise contribution of Pax7 progenitors to the neural crest lineage has not been determined.Here we use Cre/loxP technology in double transgenic mice to fate map the Pax7 lineage in neural crest derivates. We find that Pax7 descendants contribute to multiple tissues including the cranial, cardiac and trunk neural crest, which in the cranial cartilage form a distinct regional pattern. The Pax7 lineage, like the Pax3 lineage, is additionally detected in some non-neural crest tissues, including a subset of the epithelial cells in specific organs.These results demonstrate a previously unappreciated widespread distribution of Pax7 descendants within and beyond the neural crest. They shed light regarding the regionally distinct phenotypes observed in Pax3 and Pax7 mutants, and provide a unique perspective into the potential roles of Pax7 during disease and development.

  1. The neural crest migrating into the 21st century

    Science.gov (United States)

    Bronner, Marianne E.; Simões-Costa, Marcos

    2016-01-01

    From the initial discovery of the neural crest over 150 years ago to the seminal studies of Le Douarin and colleagues in the latter part of the 20th century, understanding of the neural crest has moved from the descriptive to the experimental. Now, in the 21st century, neural crest research has migrated into the genomic age. Here we reflect upon the major advances in neural crest biology and the open questions that will continue to make research on this incredible vertebrate cell type an important subject in developmental biology for the century to come. PMID:26970616

  2. Retinoic acid temporally orchestrates colonization of the gut by vagal neural crest cells.

    Science.gov (United States)

    Uribe, Rosa A; Hong, Stephanie S; Bronner, Marianne E

    2018-01-01

    The enteric nervous system arises from neural crest cells that migrate as chains into and along the primitive gut, subsequently differentiating into enteric neurons and glia. Little is known about the mechanisms governing neural crest migration en route to and along the gut in vivo. Here, we report that Retinoic Acid (RA) temporally controls zebrafish enteric neural crest cell chain migration. In vivo imaging reveals that RA loss severely compromises the integrity and migration of the chain of neural crest cells during the window of time window when they are moving along the foregut. After loss of RA, enteric progenitors accumulate in the foregut and differentiate into enteric neurons, but subsequently undergo apoptosis resulting in a striking neuronal deficit. Moreover, ectopic expression of the transcription factor meis3 and/or the receptor ret, partially rescues enteric neuron colonization after RA attenuation. Collectively, our findings suggest that retinoic acid plays a critical temporal role in promoting enteric neural crest chain migration and neuronal survival upstream of Meis3 and RET in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. AKT signaling displays multifaceted functions in neural crest development.

    Science.gov (United States)

    Sittewelle, Méghane; Monsoro-Burq, Anne H

    2018-05-31

    AKT signaling is an essential intracellular pathway controlling cell homeostasis, cell proliferation and survival, as well as cell migration and differentiation in adults. Alterations impacting the AKT pathway are involved in many pathological conditions in human disease. Similarly, during development, multiple transmembrane molecules, such as FGF receptors, PDGF receptors or integrins, activate AKT to control embryonic cell proliferation, migration, differentiation, and also cell fate decisions. While many studies in mouse embryos have clearly implicated AKT signaling in the differentiation of several neural crest derivatives, information on AKT functions during the earliest steps of neural crest development had remained relatively scarce until recently. However, recent studies on known and novel regulators of AKT signaling demonstrate that this pathway plays critical roles throughout the development of neural crest progenitors. Non-mammalian models such as fish and frog embryos have been instrumental to our understanding of AKT functions in neural crest development, both in neural crest progenitors and in the neighboring tissues. This review combines current knowledge acquired from all these different vertebrate animal models to describe the various roles of AKT signaling related to neural crest development in vivo. We first describe the importance of AKT signaling in patterning the tissues involved in neural crest induction, namely the dorsal mesoderm and the ectoderm. We then focus on AKT signaling functions in neural crest migration and differentiation. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Xenopus reduced folate carrier regulates neural crest development epigenetically.

    Directory of Open Access Journals (Sweden)

    Jiejing Li

    Full Text Available Folic acid deficiency during pregnancy causes birth neurocristopathic malformations resulting from aberrant development of neural crest cells. The Reduced folate carrier (RFC is a membrane-bound receptor for facilitating transfer of reduced folate into the cells. RFC knockout mice are embryonic lethal and develop multiple malformations, including neurocristopathies. Here we show that XRFC is specifically expressed in neural crest tissues in Xenopus embryos and knockdown of XRFC by specific morpholino results in severe neurocristopathies. Inhibition of RFC blocked the expression of a series of neural crest marker genes while overexpression of RFC or injection of 5-methyltetrahydrofolate expanded the neural crest territories. In animal cap assays, knockdown of RFC dramatically reduced the mono- and trimethyl-Histone3-K4 levels and co-injection of the lysine methyltransferase hMLL1 largely rescued the XRFC morpholino phenotype. Our data revealed that the RFC mediated folate metabolic pathway likely potentiates neural crest gene expression through epigenetic modifications.

  5. Evolution of neural crest and placodes: amphioxus as a model for the ancestral vertebrate?

    Science.gov (United States)

    Holland, L. Z.; Holland, N. D.

    2001-01-01

    Recent studies of protochordates (ascidian tunicates and amphioxus) have given insights into possible ancestors of 2 of the characteristic features of the vertebrate head: neural crest and placodes. The neural crest probably evolved from cells on either side of the neural plate-epidermis boundary in a protochordate ancestral to the vertebrates. In amphioxus, homologues of several vertebrate neural crest marker genes (BMP2/4, Pax3/7, Msx, Dll and Snail) are expressed at the edges of the neural plate and/or adjacent nonneural ectoderm. Some of these markers are also similarly expressed in tunicates. In protochordates, however, these cells, unlike vertebrate neural crest, neither migrate as individuals through embryonic tissues nor differentiate into a wide spectrum of cell types. Therefore, while the protochordate ancestor of the vertebrates probably had the beginnings of a genetic programme for neural crest formation, this programme was augmented in the earliest vertebrates to attain definitive neural crest. Clear homologues of vertebrate placodes are lacking in protochordates. However, both amphioxus and tunicates have ectodermal sensory cells. In tunicates these are all primary neurons, sending axons to the central nervous system, while in amphioxus, the ectodermal sensory cells include both primary neurons and secondary neurons lacking axons. Comparisons of developmental gene expression suggest that the anterior ectoderm in amphioxus may be homologous to the vertebrate olfactory placode, the only vertebrate placode with primary, not secondary, neurons. Similarly, biochemical, morphological and gene expression data suggest that amphioxus and tunicates also have homologues of the adenohypophysis, one of the few vertebrate structures derived from nonneurogenic placodes. In contrast, the origin of the other vertebrate placodes is very uncertain.

  6. Twist1 Controls a Cell-Specification Switch Governing Cell Fate Decisions within the Cardiac Neural Crest

    Science.gov (United States)

    Vincentz, Joshua W.; Firulli, Beth A.; Lin, Andrea; Spicer, Douglas B.; Howard, Marthe J.; Firulli, Anthony B.

    2013-01-01

    Neural crest cells are multipotent progenitor cells that can generate both ectodermal cell types, such as neurons, and mesodermal cell types, such as smooth muscle. The mechanisms controlling this cell fate choice are not known. The basic Helix-loop-Helix (bHLH) transcription factor Twist1 is expressed throughout the migratory and post-migratory cardiac neural crest. Twist1 ablation or mutation of the Twist-box causes differentiation of ectopic neuronal cells, which molecularly resemble sympathetic ganglia, in the cardiac outflow tract. Twist1 interacts with the pro-neural factor Sox10 via its Twist-box domain and binds to the Phox2b promoter to repress transcriptional activity. Mesodermal cardiac neural crest trans-differentiation into ectodermal sympathetic ganglia-like neurons is dependent upon Phox2b function. Ectopic Twist1 expression in neural crest precursors disrupts sympathetic neurogenesis. These data demonstrate that Twist1 functions in post-migratory neural crest cells to repress pro-neural factors and thereby regulate cell fate determination between ectodermal and mesodermal lineages. PMID:23555309

  7. Establishing neural crest identity: a gene regulatory recipe

    Science.gov (United States)

    Simões-Costa, Marcos; Bronner, Marianne E.

    2015-01-01

    The neural crest is a stem/progenitor cell population that contributes to a wide variety of derivatives, including sensory and autonomic ganglia, cartilage and bone of the face and pigment cells of the skin. Unique to vertebrate embryos, it has served as an excellent model system for the study of cell behavior and identity owing to its multipotency, motility and ability to form a broad array of cell types. Neural crest development is thought to be controlled by a suite of transcriptional and epigenetic inputs arranged hierarchically in a gene regulatory network. Here, we examine neural crest development from a gene regulatory perspective and discuss how the underlying genetic circuitry results in the features that define this unique cell population. PMID:25564621

  8. The Neural Border: Induction, Specification and Maturation of the territory that generates Neural Crest cells.

    Science.gov (United States)

    Pla, Patrick; Monsoro-Burq, Anne H

    2018-05-28

    The neural crest is induced at the edge between the neural plate and the nonneural ectoderm, in an area called the neural (plate) border, during gastrulation and neurulation. In recent years, many studies have explored how this domain is patterned, and how the neural crest is induced within this territory, that also participates to the prospective dorsal neural tube, the dorsalmost nonneural ectoderm, as well as placode derivatives in the anterior area. This review highlights the tissue interactions, the cell-cell signaling and the molecular mechanisms involved in this dynamic spatiotemporal patterning, resulting in the induction of the premigratory neural crest. Collectively, these studies allow building a complex neural border and early neural crest gene regulatory network, mostly composed by transcriptional regulations but also, more recently, including novel signaling interactions. Copyright © 2018. Published by Elsevier Inc.

  9. Synthesis on accumulation of putative neurotransmitters by cultured neural crest cells

    International Nuclear Information System (INIS)

    Maxwell, G.D.; Sietz, P.D.; Rafford, C.E.

    1982-01-01

    The events mediating the differentiation of embryonic neural crest cells into several types of neurons are incompletely understood. In order to probe one aspect of this differentiation, we have examined the capacity of cultured quail trunk neural crest cells to synthesize, from radioactive precursors, and store several putative neurotransmitter compounds. These neural crest cultures develop the capacity to synthesize and accumulate acetylcholine and the catecholamines norepinephrine and dopamine. In contrast, detectable but relatively little synthesis and accumulation of 5-hydroxytryptamine gamma-aminobutyric acid, or octopamine from the appropriate radiolabeled precursors were observed. The capacity for synthesis and accumulation of radiolabeled acetylcholine and catecholamines is very low or absent at 2 days in vitro. Between 3 and 7 days in vitro, there is a marked rise in both catecholamine and acetylcholine accumulation in the cultures. These findings suggest that, under the particular conditions used in these experiments, the development of neurotransmitter biosynthesis in trunk neural crest cells ijs restricted and resembles, at least partially, the pattern observed in vivo. The development of this capacity to synthesize and store radiolabeled acetylcholine and catecholamines from the appropriate radioactive precursors coincides closely with the development of the activities of the synthetic enzymes choline acetyltransferase and dopamine beta-hydroxylase reported by others

  10. Aebp2 as an epigenetic regulator for neural crest cells.

    Directory of Open Access Journals (Sweden)

    Hana Kim

    Full Text Available Aebp2 is a potential targeting protein for the mammalian Polycomb Repression Complex 2 (PRC2. We generated a mutant mouse line disrupting the transcription of Aebp2 to investigate its in vivo roles. Aebp2-mutant homozygotes were embryonic lethal while heterozygotes survived to adulthood with fertility. In developing mouse embryos, Aebp2 is expressed mainly within cells of neural crest origin. In addition, many heterozygotes display a set of phenotypes, enlarged colon and hypopigmentation, similar to those observed in human patients with Hirschsprung's disease and Waardenburg syndrome. These phenotypes are usually caused by the absence of the neural crest-derived ganglia in hindguts and melanocytes. ChIP analyses demonstrated that the majority of the genes involved in the migration and development process of neural crest cells are downstream target genes of AEBP2 and PRC2. Furthermore, expression analyses confirmed that some of these genes are indeed affected in the Aebp2 heterozygotes. Taken together, these results suggest that Aebp2 may regulate the migration and development of the neural crest cells through the PRC2-mediated epigenetic mechanism.

  11. DNA methyltransferase 3b is dispensable for mouse neural crest development.

    Directory of Open Access Journals (Sweden)

    Bridget T Jacques-Fricke

    Full Text Available The neural crest is a population of multipotent cells that migrates extensively throughout vertebrate embryos to form diverse structures. Mice mutant for the de novo DNA methyltransferase DNMT3b exhibit defects in two neural crest derivatives, the craniofacial skeleton and cardiac ventricular septum, suggesting that DNMT3b activity is necessary for neural crest development. Nevertheless, the requirement for DNMT3b specifically in neural crest cells, as opposed to interacting cell types, has not been determined. Using a conditional DNMT3b allele crossed to the neural crest cre drivers Wnt1-cre and Sox10-cre, neural crest DNMT3b mutants were generated. In both neural crest-specific and fully DNMT3b-mutant embryos, cranial neural crest cells exhibited only subtle migration defects, with increased numbers of dispersed cells trailing organized streams in the head. In spite of this, the resulting cranial ganglia, craniofacial skeleton, and heart developed normally when neural crest cells lacked DNMT3b. This indicates that DNTM3b is not necessary in cranial neural crest cells for their development. We conclude that defects in neural crest derivatives in DNMT3b mutant mice reflect a requirement for DNMT3b in lineages such as the branchial arch mesendoderm or the cardiac mesoderm that interact with neural crest cells during formation of these structures.

  12. Development of teeth in chick embryos after mouse neural crest transplantations

    OpenAIRE

    Mitsiadis, Thimios A.; Chéraud, Yvonnick; Sharpe, Paul; Fontaine-Pérus, Josiane

    2003-01-01

    Teeth were lost in birds 70–80 million years ago. Current thinking holds that it is the avian cranial neural crest-derived mesenchyme that has lost odontogenic capacity, whereas the oral epithelium retains the signaling properties required to induce odontogenesis. To investigate the odontogenic capacity of ectomesenchyme, we have used neural tube transplantations from mice to chick embryos to replace the chick neural crest cell populations with mouse neural crest cells. The mouse/chick ...

  13. Development of teeth in chick embryos after mouse neural crest transplantations.

    Science.gov (United States)

    Mitsiadis, Thimios A; Chéraud, Yvonnick; Sharpe, Paul; Fontaine-Pérus, Josiane

    2003-05-27

    Teeth were lost in birds 70-80 million years ago. Current thinking holds that it is the avian cranial neural crest-derived mesenchyme that has lost odontogenic capacity, whereas the oral epithelium retains the signaling properties required to induce odontogenesis. To investigate the odontogenic capacity of ectomesenchyme, we have used neural tube transplantations from mice to chick embryos to replace the chick neural crest cell populations with mouse neural crest cells. The mouse/chick chimeras obtained show evidence of tooth formation showing that avian oral epithelium is able to induce a nonavian developmental program in mouse neural crest-derived mesenchymal cells.

  14. File list: NoD.PSC.10.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.PSC.10.AllAg.hESC_derived_neural_crests hg19 No description Pluripotent stem cell hESC derived neural... crests http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.PSC.10.AllAg.hESC_derived_neural_crests.bed ...

  15. File list: InP.PSC.05.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.PSC.05.AllAg.hESC_derived_neural_crests hg19 Input control Pluripotent stem cell hESC derived neural... crests SRX1091573,SRX059369,SRX059361 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.PSC.05.AllAg.hESC_derived_neural_crests.bed ...

  16. File list: Pol.PSC.20.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.20.AllAg.hESC_derived_neural_crests hg19 RNA polymerase Pluripotent stem cell hESC derived neural... crests http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.20.AllAg.hESC_derived_neural_crests.bed ...

  17. File list: NoD.PSC.20.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.PSC.20.AllAg.hESC_derived_neural_crests hg19 No description Pluripotent stem cell hESC derived neural... crests http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.PSC.20.AllAg.hESC_derived_neural_crests.bed ...

  18. File list: Unc.PSC.20.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.20.AllAg.hESC_derived_neural_crests hg19 Unclassified Pluripotent stem cell hESC derived neural... crests SRX059366 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.PSC.20.AllAg.hESC_derived_neural_crests.bed ...

  19. File list: Pol.PSC.05.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.05.AllAg.hESC_derived_neural_crests hg19 RNA polymerase Pluripotent stem cell hESC derived neural... crests http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.05.AllAg.hESC_derived_neural_crests.bed ...

  20. File list: Unc.PSC.05.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.05.AllAg.hESC_derived_neural_crests hg19 Unclassified Pluripotent stem cell hESC derived neural... crests SRX059366 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.PSC.05.AllAg.hESC_derived_neural_crests.bed ...

  1. File list: Pol.PSC.10.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.10.AllAg.hESC_derived_neural_crests hg19 RNA polymerase Pluripotent stem cell hESC derived neural... crests http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.10.AllAg.hESC_derived_neural_crests.bed ...

  2. File list: InP.PSC.50.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.PSC.50.AllAg.hESC_derived_neural_crests hg19 Input control Pluripotent stem cell hESC derived neural... crests SRX1091573,SRX059369,SRX059361 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.PSC.50.AllAg.hESC_derived_neural_crests.bed ...

  3. Epithelial–Mesenchymal Transitions during Neural Crest and Somite Development

    Directory of Open Access Journals (Sweden)

    Chaya Kalcheim

    2015-12-01

    Full Text Available Epithelial-to-mesenchymal transition (EMT is a central process during embryonic development that affects selected progenitor cells of all three germ layers. In addition to driving the onset of cellular migrations and subsequent tissue morphogenesis, the dynamic conversions of epithelium into mesenchyme and vice-versa are intimately associated with the segregation of homogeneous precursors into distinct fates. The neural crest and somites, progenitors of the peripheral nervous system and of skeletal tissues, respectively, beautifully illustrate the significance of EMT to the above processes. Ongoing studies progressively elucidate the gene networks underlying EMT in each system, highlighting the similarities and differences between them. Knowledge of the mechanistic logic of this normal ontogenetic process should provide important insights to the understanding of pathological conditions such as cancer metastasis, which shares some common molecular themes.

  4. Isolation and culture of neural crest cells from embryonic murine neural tube.

    Science.gov (United States)

    Pfaltzgraff, Elise R; Mundell, Nathan A; Labosky, Patricia A

    2012-06-02

    The embryonic neural crest (NC) is a multipotent progenitor population that originates at the dorsal aspect of the neural tube, undergoes an epithelial to mesenchymal transition (EMT) and migrates throughout the embryo, giving rise to diverse cell types. NC also has the unique ability to influence the differentiation and maturation of target organs. When explanted in vitro, NC progenitors undergo self-renewal, migrate and differentiate into a variety of tissue types including neurons, glia, smooth muscle cells, cartilage and bone. NC multipotency was first described from explants of the avian neural tube. In vitro isolation of NC cells facilitates the study of NC dynamics including proliferation, migration, and multipotency. Further work in the avian and rat systems demonstrated that explanted NC cells retain their NC potential when transplanted back into the embryo. Because these inherent cellular properties are preserved in explanted NC progenitors, the neural tube explant assay provides an attractive option for studying the NC in vitro. To attain a better understanding of the mammalian NC, many methods have been employed to isolate NC populations. NC-derived progenitors can be cultured from post-migratory locations in both the embryo and adult to study the dynamics of post-migratory NC progenitors, however isolation of NC progenitors as they emigrate from the neural tube provides optimal preservation of NC cell potential and migratory properties. Some protocols employ fluorescence activated cell sorting (FACS) to isolate a NC population enriched for particular progenitors. However, when starting with early stage embryos, cell numbers adequate for analyses are difficult to obtain with FACS, complicating the isolation of early NC populations from individual embryos. Here, we describe an approach that does not rely on FACS and results in an approximately 96% pure NC population based on a Wnt1-Cre activated lineage reporter. The method presented here is adapted from

  5. Gene array analysis of neural crest cells identifies transcription factors necessary for direct conversion of embryonic fibroblasts into neural crest cells

    Directory of Open Access Journals (Sweden)

    Tsutomu Motohashi

    2016-03-01

    Full Text Available Neural crest cells (NC cells are multipotent cells that emerge from the edge of the neural folds and migrate throughout the developing embryo. Although the gene regulatory network for generation of NC cells has been elucidated in detail, it has not been revealed which of the factors in the network are pivotal to directing NC identity. In this study we analyzed the gene expression profile of a pure NC subpopulation isolated from Sox10-IRES-Venus mice and investigated whether these genes played a key role in the direct conversion of Sox10-IRES-Venus mouse embryonic fibroblasts (MEFs into NC cells. The comparative molecular profiles of NC cells and neural tube cells in 9.5-day embryos revealed genes including transcription factors selectively expressed in developing trunk NC cells. Among 25 NC cell-specific transcription factor genes tested, SOX10 and SOX9 were capable of converting MEFs into SOX10-positive (SOX10+ cells. The SOX10+ cells were then shown to differentiate into neurons, glial cells, smooth muscle cells, adipocytes and osteoblasts. These SOX10+ cells also showed limited self-renewal ability, suggesting that SOX10 and SOX9 directly converted MEFs into NC cells. Conversely, the remaining transcription factors, including well-known NC cell specifiers, were unable to convert MEFs into SOX10+ NC cells. These results suggest that SOX10 and SOX9 are the key factors necessary for the direct conversion of MEFs into NC cells.

  6. Changes in cholinergic parameters associated with failure of conotruncal septation in embryonic chick hearts after neural crest ablation

    International Nuclear Information System (INIS)

    Kirby, M.L.; Aronstam, R.S.; Buccafusco, J.J.

    1985-01-01

    Cells from the neural crest over occipital somites migrate to the heart, where they give rise to parasympathetic postganglionic neurons as well as ectomesenchymal elements which contribute to conotruncal septation. With a microcautery needle, the neural crest over occipital somites was ablated bilaterally in chicken embryos at an early stage of development. Histological examination on incubation day 15 revealed conotruncal malformations, involving malformation or absence of the conotruncal septum in all embryos. Two peaks of embryo mortality were observed. One peak (incubation days 6-8) occurred at the same time as conotruncal septal closure; the second peak (incubation days 11-13) was concurrent with the onset of functional parasympathetic innervation. A disruption of parasympathetic innervation was indicated by: (1) a decrease in acetylcholinesterase staining, (2) a decrease (27%) in the number of ganglion cells in the conotruncus, (3) decreases in the acetylcholine content of atrium (31%) and ventricle (39%), and (4) a decrease (21%) in muscarinic acetylcholine receptor density on incubation day 15. Radiolabeled ligand-binding studies revealed no change in the affinity of cardiac muscarinic receptors for [ 3 H]methylscopolamine (K/sub D/ . 0.17-0.21 nM). Agonist-binding affinity and sensitivity to guanine nucleotides were similarly unaffected. The reasons for the limited extent of the parasympathetic lesion are unclear, but may involve recruitment of precursor cells from other regions of the neural crest, partial regeneration of the neural crest following surgical removal, or an alteration in the contribution of incoming sympathetic or preganglionic parasympathetic elements. No such plasticity was associated with neural crest contributions to the structural development of the conotruncus. Malformations were observed in all lesioned embryos

  7. Neural crest does not contribute to the neck and shoulder in the axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Epperlein, Hans-Henning; Khattak, Shahryar; Knapp, Dunja; Tanaka, Elly M; Malashichev, Yegor B

    2012-01-01

    A major step during the evolution of tetrapods was their transition from water to land. This process involved the reduction or complete loss of the dermal bones that made up connections to the skull and a concomitant enlargement of the endochondral shoulder girdle. In the mouse the latter is derived from three separate embryonic sources: lateral plate mesoderm, somites, and neural crest. The neural crest was suggested to sustain the muscle attachments. How this complex composition of the endochondral shoulder girdle arose during evolution and whether it is shared by all tetrapods is unknown. Salamanders that lack dermal bone within their shoulder girdle were of special interest for a possible contribution of the neural crest to the endochondral elements and muscle attachment sites, and we therefore studied them in this context. We grafted neural crest from GFP+ fluorescent transgenic axolotl (Ambystoma mexicanum) donor embryos into white (d/d) axolotl hosts and followed the presence of neural crest cells within the cartilage of the shoulder girdle and the connective tissue of muscle attachment sites of the neck-shoulder region. Strikingly, neural crest cells did not contribute to any part of the endochondral shoulder girdle or to the connective tissue at muscle attachment sites in axolotl. Our results in axolotl suggest that neural crest does not serve a general function in vertebrate shoulder muscle attachment sites as predicted by the "muscle scaffold theory," and that it is not necessary to maintain connectivity of the endochondral shoulder girdle to the skull. Our data support the possibility that the contribution of the neural crest to the endochondral shoulder girdle, which is observed in the mouse, arose de novo in mammals as a developmental basis for their skeletal synapomorphies. This further supports the hypothesis of an increased neural crest diversification during vertebrate evolution.

  8. Neural crest does not contribute to the neck and shoulder in the axolotl (Ambystoma mexicanum.

    Directory of Open Access Journals (Sweden)

    Hans-Henning Epperlein

    Full Text Available BACKGROUND: A major step during the evolution of tetrapods was their transition from water to land. This process involved the reduction or complete loss of the dermal bones that made up connections to the skull and a concomitant enlargement of the endochondral shoulder girdle. In the mouse the latter is derived from three separate embryonic sources: lateral plate mesoderm, somites, and neural crest. The neural crest was suggested to sustain the muscle attachments. How this complex composition of the endochondral shoulder girdle arose during evolution and whether it is shared by all tetrapods is unknown. Salamanders that lack dermal bone within their shoulder girdle were of special interest for a possible contribution of the neural crest to the endochondral elements and muscle attachment sites, and we therefore studied them in this context. RESULTS: We grafted neural crest from GFP+ fluorescent transgenic axolotl (Ambystoma mexicanum donor embryos into white (d/d axolotl hosts and followed the presence of neural crest cells within the cartilage of the shoulder girdle and the connective tissue of muscle attachment sites of the neck-shoulder region. Strikingly, neural crest cells did not contribute to any part of the endochondral shoulder girdle or to the connective tissue at muscle attachment sites in axolotl. CONCLUSIONS: Our results in axolotl suggest that neural crest does not serve a general function in vertebrate shoulder muscle attachment sites as predicted by the "muscle scaffold theory," and that it is not necessary to maintain connectivity of the endochondral shoulder girdle to the skull. Our data support the possibility that the contribution of the neural crest to the endochondral shoulder girdle, which is observed in the mouse, arose de novo in mammals as a developmental basis for their skeletal synapomorphies. This further supports the hypothesis of an increased neural crest diversification during vertebrate evolution.

  9. Adipose stromal cells contain phenotypically distinct adipogenic progenitors derived from neural crest.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Sowa

    Full Text Available Recent studies have shown that adipose-derived stromal/stem cells (ASCs contain phenotypically and functionally heterogeneous subpopulations of cells, but their developmental origin and their relative differentiation potential remain elusive. In the present study, we aimed at investigating how and to what extent the neural crest contributes to ASCs using Cre-loxP-mediated fate mapping. ASCs harvested from subcutaneous fat depots of either adult P0-Cre/or Wnt1-Cre/Floxed-reporter mice contained a few neural crest-derived ASCs (NCDASCs. This subpopulation of cells was successfully expanded in vitro under standard culture conditions and their growth rate was comparable to non-neural crest derivatives. Although NCDASCs were positive for several mesenchymal stem cell markers as non-neural crest derivatives, they exhibited a unique bipolar or multipolar morphology with higher expression of markers for both neural crest progenitors (p75NTR, Nestin, and Sox2 and preadipocytes (CD24, CD34, S100, Pref-1, GATA2, and C/EBP-delta. NCDASCs were able to differentiate into adipocytes with high efficiency but their osteogenic and chondrogenic potential was markedly attenuated, indicating their commitment to adipogenesis. In vivo, a very small proportion of adipocytes were originated from the neural crest. In addition, p75NTR-positive neural crest-derived cells were identified along the vessels within the subcutaneous adipose tissue, but they were negative for mural and endothelial markers. These results demonstrate that ASCs contain neural crest-derived adipocyte-restricted progenitors whose phenotype is distinct from that of non-neural crest derivatives.

  10. The neural crest, a multifaceted structure of the vertebrates.

    Science.gov (United States)

    Dupin, Elisabeth; Le Douarin, Nicole M

    2014-09-01

    In this review, several features of the cells originating from the lateral borders of the primitive neural anlagen, the neural crest (NC) are considered. Among them, their multipotentiality, which together with their migratory properties, leads them to colonize the developing body and to participate in the development of many tissues and organs. The in vitro analysis of the developmental capacities of single NC cells (NCC) showed that they present several analogies with the hematopoietic cells whose differentiation involves the activity of stem cells endowed with different arrays of developmental potentialities. The permanence of such NC stem cells in the adult organism raises the problem of their role at that stage of life. The NC has appeared during evolution in the vertebrate phylum and is absent in their Protocordates ancestors. The major role of the NCC in the development of the vertebrate head points to a critical role for this structure in the remarkable diversification and radiation of this group of animals. © 2014 Wiley Periodicals, Inc.

  11. Animal models for studying neural crest development: is the mouse different?

    Science.gov (United States)

    Barriga, Elias H; Trainor, Paul A; Bronner, Marianne; Mayor, Roberto

    2015-05-01

    The neural crest is a uniquely vertebrate cell type and has been well studied in a number of model systems. Zebrafish, Xenopus and chick embryos largely show consistent requirements for specific genes in early steps of neural crest development. By contrast, knockouts of homologous genes in the mouse often do not exhibit comparable early neural crest phenotypes. In this Spotlight article, we discuss these species-specific differences, suggest possible explanations for the divergent phenotypes in mouse and urge the community to consider these issues and the need for further research in complementary systems. © 2015. Published by The Company of Biologists Ltd.

  12. Germ layers, the neural crest and emergent organization in development and evolution.

    Science.gov (United States)

    Hall, Brian K

    2018-04-10

    Discovered in chick embryos by Wilhelm His in 1868 and named the neural crest by Arthur Milnes Marshall in 1879, the neural crest cells that arise from the neural folds have since been shown to differentiate into almost two dozen vertebrate cell types and to have played major roles in the evolution of such vertebrate features as bone, jaws, teeth, visceral (pharyngeal) arches, and sense organs. I discuss the discovery that ectodermal neural crest gave rise to mesenchyme and the controversy generated by that finding; the germ layer theory maintained that only mesoderm could give rise to mesenchyme. A second topic of discussion is germ layers (including the neural crest) as emergent levels of organization in animal development and evolution that facilitated major developmental and evolutionary change. The third topic is gene networks, gene co-option, and the evolution of gene-signaling pathways as key to developmental and evolutionary transitions associated with the origin and evolution of the neural crest and neural crest cells. © 2018 Wiley Periodicals, Inc.

  13. Fluorescence-Activated Cell Sorting of EGFP-Labeled Neural Crest Cells From Murine Embryonic Craniofacial Tissue

    Directory of Open Access Journals (Sweden)

    Saurabh Singh

    2005-01-01

    Full Text Available During the early stages of embryogenesis, pluripotent neural crest cells (NCC are known to migrate from the neural folds to populate multiple target sites in the embryo where they differentiate into various derivatives, including cartilage, bone, connective tissue, melanocytes, glia, and neurons of the peripheral nervous system. The ability to obtain pure NCC populations is essential to enable molecular analyses of neural crest induction, migration, and/or differentiation. Crossing Wnt1-Cre and Z/EG transgenic mouse lines resulted in offspring in which the Wnt1-Cre transgene activated permanent EGFP expression only in NCC. The present report demonstrates a flow cytometric method to sort and isolate populations of EGFP-labeled NCC. The identity of the sorted neural crest cells was confirmed by assaying expression of known marker genes by TaqMan Quantitative Real-Time Polymerase Chain Reaction (QRT-PCR. The molecular strategy described in this report provides a means to extract intact RNA from a pure population of NCC thus enabling analysis of gene expression in a defined population of embryonic precursor cells critical to development.

  14. Influence and timing of arrival of murine neural crest on pancreatic beta cell development and maturation.

    Science.gov (United States)

    Plank, Jennifer L; Mundell, Nathan A; Frist, Audrey Y; LeGrone, Alison W; Kim, Thomas; Musser, Melissa A; Walter, Teagan J; Labosky, Patricia A

    2011-01-15

    Interactions between cells from the ectoderm and mesoderm influence development of the endodermally-derived pancreas. While much is known about how mesoderm regulates pancreatic development, relatively little is understood about how and when the ectodermally-derived neural crest regulates pancreatic development and specifically, beta cell maturation. A previous study demonstrated that signals from the neural crest regulate beta cell proliferation and ultimately, beta cell mass. Here, we expand on that work to describe timing of neural crest arrival at the developing pancreatic bud and extend our knowledge of the non-cell autonomous role for neural crest derivatives in the process of beta cell maturation. We demonstrated that murine neural crest entered the pancreatic mesenchyme between the 26 and 27 somite stages (approximately 10.0 dpc) and became intermingled with pancreatic progenitors as the epithelium branched into the surrounding mesenchyme. Using a neural crest-specific deletion of the Forkhead transcription factor Foxd3, we ablated neural crest cells that migrate to the pancreatic primordium. Consistent with previous data, in the absence of Foxd3, and therefore the absence of neural crest cells, proliferation of insulin-expressing cells and insulin-positive area are increased. Analysis of endocrine cell gene expression in the absence of neural crest demonstrated that, although the number of insulin-expressing cells was increased, beta cell maturation was significantly impaired. Decreased MafA and Pdx1 expression illustrated the defect in beta cell maturation; we discovered that without neural crest, there was a reduction in the percentage of insulin-positive cells that co-expressed Glut2 and Pdx1 compared to controls. In addition, transmission electron microscopy analyses revealed decreased numbers of characteristic insulin granules and the presence of abnormal granules in insulin-expressing cells from mutant embryos. Together, these data demonstrate that

  15. Lack of beta1 integrins in enteric neural crest cells leads to a Hirschsprung-like phenotype

    DEFF Research Database (Denmark)

    Breau, Marie A; Pietri, Thomas; Eder, Olivier

    2006-01-01

    The enteric nervous system arises mainly from vagal and sacral neural crest cells that colonise the gut between 9.5 and 14 days of development in mice. Using the Cre-LoxP system, we removed beta1 integrins in the neural crest cells when they emerge from the neural tube. beta1-null enteric neural...

  16. Requirement for Foxd3 in the maintenance of neural crest progenitors.

    Science.gov (United States)

    Teng, Lu; Mundell, Nathan A; Frist, Audrey Y; Wang, Qiaohong; Labosky, Patricia A

    2008-05-01

    Understanding the molecular mechanisms of stem cell maintenance is crucial for the ultimate goal of manipulating stem cells for the treatment of disease. Foxd3 is required early in mouse embryogenesis; Foxd3(-/-) embryos fail around the time of implantation, cells of the inner cell mass cannot be maintained in vitro, and blastocyst-derived stem cell lines cannot be established. Here, we report that Foxd3 is required for maintenance of the multipotent mammalian neural crest. Using tissue-specific deletion of Foxd3 in the neural crest, we show that Foxd3(flox/-); Wnt1-Cre mice die perinatally with a catastrophic loss of neural crest-derived structures. Cranial neural crest tissues are either missing or severely reduced in size, the peripheral nervous system consists of reduced dorsal root ganglia and cranial nerves, and the entire gastrointestinal tract is devoid of neural crest derivatives. These results demonstrate a global role for this transcriptional repressor in all aspects of neural crest maintenance along the anterior-posterior axis, and establish an unprecedented molecular link between multiple divergent progenitor lineages of the mammalian embryo.

  17. Anosmin-1 is essential for neural crest and cranial placodes formation in Xenopus.

    Science.gov (United States)

    Bae, Chang-Joon; Hong, Chang-Soo; Saint-Jeannet, Jean-Pierre

    2018-01-15

    During embryogenesis vertebrates develop a complex craniofacial skeleton associated with sensory organs. These structures are primarily derived from two embryonic cell populations the neural crest and cranial placodes, respectively. Neural crest cells and cranial placodes are specified through the integrated action of several families of signaling molecules, and the subsequent activation of a complex network of transcription factors. Here we describe the expression and function of Anosmin-1 (Anos1), an extracellular matrix protein, during neural crest and cranial placodes development in Xenopus laevis. Anos1 was identified as a target of Pax3 and Zic1, two transcription factors necessary and sufficient to generate neural crest and cranial placodes. Anos1 is expressed in cranial neural crest progenitors at early neurula stage and in cranial placode derivatives later in development. We show that Anos1 function is required for neural crest and sensory organs development in Xenopus, consistent with the defects observed in Kallmann syndrome patients carrying a mutation in ANOS1. These findings indicate that anos1 has a conserved function in the development of craniofacial structures, and indicate that anos1-depleted Xenopus embryos represent a useful model to analyze the pathogenesis of Kallmann syndrome. Copyright © 2017. Published by Elsevier Inc.

  18. Enteric neural crest cells regulate vertebrate stomach patterning and differentiation.

    Science.gov (United States)

    Faure, Sandrine; McKey, Jennifer; Sagnol, Sébastien; de Santa Barbara, Pascal

    2015-01-15

    In vertebrates, the digestive tract develops from a uniform structure where reciprocal epithelial-mesenchymal interactions pattern this complex organ into regions with specific morphologies and functions. Concomitant with these early patterning events, the primitive GI tract is colonized by the vagal enteric neural crest cells (vENCCs), a population of cells that will give rise to the enteric nervous system (ENS), the intrinsic innervation of the GI tract. The influence of vENCCs on early patterning and differentiation of the GI tract has never been evaluated. In this study, we report that a crucial number of vENCCs is required for proper chick stomach development, patterning and differentiation. We show that reducing the number of vENCCs by performing vENCC ablations induces sustained activation of the BMP and Notch pathways in the stomach mesenchyme and impairs smooth muscle development. A reduction in vENCCs also leads to the transdifferentiation of the stomach into a stomach-intestinal mixed phenotype. In addition, sustained Notch signaling activity in the stomach mesenchyme phenocopies the defects observed in vENCC-ablated stomachs, indicating that inhibition of the Notch signaling pathway is essential for stomach patterning and differentiation. Finally, we report that a crucial number of vENCCs is also required for maintenance of stomach identity and differentiation through inhibition of the Notch signaling pathway. Altogether, our data reveal that, through the regulation of mesenchyme identity, vENCCs act as a new mediator in the mesenchymal-epithelial interactions that control stomach development. © 2015. Published by The Company of Biologists Ltd.

  19. Modeling initiation of Ewing sarcoma in human neural crest cells.

    Directory of Open Access Journals (Sweden)

    Cornelia von Levetzow

    2011-04-01

    Full Text Available Ewing sarcoma family tumors (ESFT are aggressive bone and soft tissue tumors that express EWS-ETS fusion genes as driver mutations. Although the histogenesis of ESFT is controversial, mesenchymal (MSC and/or neural crest (NCSC stem cells have been implicated as cells of origin. For the current study we evaluated the consequences of EWS-FLI1 expression in human embryonic stem cell-derived NCSC (hNCSC. Ectopic expression of EWS-FLI1 in undifferentiated hNCSC and their neuro-mesenchymal stem cell (hNC-MSC progeny was readily tolerated and led to altered expression of both well established as well as novel EWS-FLI1 target genes. Importantly, whole genome expression profiling studies revealed that the molecular signature of established ESFT is more similar to hNCSC than any other normal tissue, including MSC, indicating that maintenance or reactivation of the NCSC program is a feature of ESFT pathogenesis. Consistent with this hypothesis, EWS-FLI1 induced hNCSC genes as well as the polycomb proteins BMI-1 and EZH2 in hNC-MSC. In addition, up-regulation of BMI-1 was associated with avoidance of cellular senescence and reversible silencing of p16. Together these studies confirm that, unlike terminally differentiated cells but consistent with bone marrow-derived MSC, NCSC tolerate expression of EWS-FLI1 and ectopic expression of the oncogene initiates transition to an ESFT-like state. In addition, to our knowledge this is the first demonstration that EWS-FLI1-mediated induction of BMI-1 and epigenetic silencing of p16 might be critical early initiating events in ESFT tumorigenesis.

  20. Skeletogenic fate of zebrafish cranial and trunk neural crest.

    Directory of Open Access Journals (Sweden)

    Erika Kague

    Full Text Available The neural crest (NC is a major contributor to the vertebrate craniofacial skeleton, detailed in model organisms through embryological and genetic approaches, most notably in chick and mouse. Despite many similarities between these rather distant species, there are also distinct differences in the contribution of the NC, particularly to the calvariae of the skull. Lack of information about other vertebrate groups precludes an understanding of the evolutionary significance of these differences. Study of zebrafish craniofacial development has contributed substantially to understanding of cartilage and bone formation in teleosts, but there is currently little information on NC contribution to the zebrafish skeleton. Here, we employ a two-transgene system based on Cre recombinase to genetically label NC in the zebrafish. We demonstrate NC contribution to cells in the cranial ganglia and peripheral nervous system known to be NC-derived, as well as to a subset of myocardial cells. The indelible labeling also enables us to determine NC contribution to late-forming bones, including the calvariae. We confirm suspected NC origin of cartilage and bones of the viscerocranium, including cartilages such as the hyosymplectic and its replacement bones (hymandibula and symplectic and membranous bones such as the opercle. The cleithrum develops at the border of NC and mesoderm, and as an ancestral component of the pectoral girdle was predicted to be a hybrid bone composed of both NC and mesoderm tissues. However, we find no evidence of a NC contribution to the cleithrum. Similarly, in the vault of the skull, the parietal bones and the caudal portion of the frontal bones show no evidence of NC contribution. We also determine a NC origin for caudal fin lepidotrichia; the presumption is that these are derived from trunk NC, demonstrating that these cells have the ability to form bone during normal vertebrate development.

  1. Role of the extracellular matrix during neural crest cell migration.

    Science.gov (United States)

    Perris, R; Perissinotto, D

    2000-07-01

    Once specified to become neural crest (NC), cells occupying the dorsal portion of the neural tube disrupt their cadherin-mediated cell-cell contacts, acquire motile properties, and embark upon an extensive migration through the embryo to reach their ultimate phenotype-specific sites. The understanding of how this movement is regulated is still rather fragmentary due to the complexity of the cellular and molecular interactions involved. An additional intricate aspect of the regulation of NC cell movement is that the timings, modes and patterns of NC cell migration are intimately associated with the concomitant phenotypic diversification that cells undergo during their migratory phase and the fact that these changes modulate the way that moving cells interact with their microenvironment. To date, two interplaying mechanisms appear central for the guidance of the migrating NC cells through the embryo: one involves secreted signalling molecules acting through their cognate protein kinase/phosphatase-type receptors and the other is contributed by the multivalent interactions of the cells with their surrounding extracellular matrix (ECM). The latter ones seem fundamental in light of the central morphogenetic role played by the intracellular signals transduced through the cytoskeleton upon integrin ligation, and the convergence of these signalling cascades with those triggered by cadherins, survival/growth factor receptors, gap junctional communications, and stretch-activated calcium channels. The elucidation of the importance of the ECM during NC cell movement is presently favoured by the augmenting knowledge about the macromolecular structure of the specific ECM assembled during NC development and the functional assaying of its individual constituents via molecular and genetic manipulations. Collectively, these data propose that NC cell migration may be governed by time- and space-dependent alterations in the expression of inhibitory ECM components; the relative ratio

  2. Regulation of Msx genes by a Bmp gradient is essential for neural crest specification.

    Science.gov (United States)

    Tribulo, Celeste; Aybar, Manuel J; Nguyen, Vu H; Mullins, Mary C; Mayor, Roberto

    2003-12-01

    There is evidence in Xenopus and zebrafish embryos that the neural crest/neural folds are specified at the border of the neural plate by a precise threshold concentration of a Bmp gradient. In order to understand the molecular mechanism by which a gradient of Bmp is able to specify the neural crest, we analyzed how the expression of Bmp targets, the Msx genes, is regulated and the role that Msx genes has in neural crest specification. As Msx genes are directly downstream of Bmp, we analyzed Msx gene expression after experimental modification in the level of Bmp activity by grafting a bead soaked with noggin into Xenopus embryos, by expressing in the ectoderm a dominant-negative Bmp4 or Bmp receptor in Xenopus and zebrafish embryos, and also through Bmp pathway component mutants in the zebrafish. All the results show that a reduction in the level of Bmp activity leads to an increase in the expression of Msx genes in the neural plate border. Interestingly, by reaching different levels of Bmp activity in animal cap ectoderm, we show that a specific concentration of Bmp induces msx1 expression to a level similar to that required to induce neural crest. Our results indicate that an intermediate level of Bmp activity specifies the expression of Msx genes in the neural fold region. In addition, we have analyzed the role that msx1 plays on neural crest specification. As msx1 has a role in dorsoventral pattering, we have carried out conditional gain- and loss-of-function experiments using different msx1 constructs fused to a glucocorticoid receptor element to avoid an early effect of this factor. We show that msx1 expression is able to induce all other early neural crest markers tested (snail, slug, foxd3) at the time of neural crest specification. Furthermore, the expression of a dominant negative of Msx genes leads to the inhibition of all the neural crest markers analyzed. It has been previously shown that snail is one of the earliest genes acting in the neural crest

  3. File list: His.PSC.10.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.10.AllAg.hESC_derived_neural_crests hg19 Histone Pluripotent stem cell hESC derived neural...3,SRX1091531,SRX059364,SRX1091530 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.10.AllAg.hESC_derived_neural_crests.bed ...

  4. File list: ALL.PSC.05.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.05.AllAg.hESC_derived_neural_crests hg19 All antigens Pluripotent stem cell hESC derived neural...RX059366,SRX059364 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.PSC.05.AllAg.hESC_derived_neural_crests.bed ...

  5. File list: His.PSC.20.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.20.AllAg.hESC_derived_neural_crests hg19 Histone Pluripotent stem cell hESC derived neural...30,SRX059362,SRX1091539,SRX059364 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.20.AllAg.hESC_derived_neural_crests.bed ...

  6. File list: His.PSC.50.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.50.AllAg.hESC_derived_neural_crests hg19 Histone Pluripotent stem cell hESC derived neural...30,SRX059362,SRX1091539,SRX059364 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.50.AllAg.hESC_derived_neural_crests.bed ...

  7. File list: Oth.PSC.05.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.05.AllAg.hESC_derived_neural_crests hg19 TFs and others Pluripotent stem cell hESC derived neural...X1091546,SRX1091550,SRX059360,SRX059368,SRX059367 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.PSC.05.AllAg.hESC_derived_neural_crests.bed ...

  8. File list: Oth.PSC.10.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.10.AllAg.hESC_derived_neural_crests hg19 TFs and others Pluripotent stem cell hESC derived neural...X1091546,SRX1091550,SRX059360,SRX059368,SRX059367 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.PSC.10.AllAg.hESC_derived_neural_crests.bed ...

  9. File list: ALL.PSC.50.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.50.AllAg.hESC_derived_neural_crests hg19 All antigens Pluripotent stem cell hESC derived neural...X1091539,SRX059364 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.PSC.50.AllAg.hESC_derived_neural_crests.bed ...

  10. File list: Oth.PSC.50.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.50.AllAg.hESC_derived_neural_crests hg19 TFs and others Pluripotent stem cell hESC derived neural...X1091550,SRX059360,SRX1091547,SRX059367,SRX059368 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.PSC.50.AllAg.hESC_derived_neural_crests.bed ...

  11. Tcf7l1 protects the anterior neural fold from adopting the neural crest fate

    Czech Academy of Sciences Publication Activity Database

    Mašek, Jan; Machoň, Ondřej; Kořínek, Vladimír; Taketo, M.M.; Kozmik, Zbyněk

    2016-01-01

    Roč. 143, č. 12 (2016), s. 2206-2216 ISSN 0950-1991 R&D Projects: GA ČR GAP305/12/2042; GA ČR(CZ) GA14-33952S; GA MŠk(CZ) LK11214; GA MŠk LO1419; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378050 Keywords : Tcf/Lef * Wnt dignaling * neural crest * forebrain * mouse * zebrafish Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.843, year: 2016

  12. SOXE neofunctionalization and elaboration of the neural crest during chordate evolution

    Science.gov (United States)

    Tai, Andrew; Cheung, Martin; Huang, Yong-Heng; Jauch, Ralf; Bronner, Marianne E.; Cheah, Kathryn S. E.

    2016-01-01

    During chordate evolution, two genome-wide duplications facilitated acquisition of vertebrate traits, including emergence of neural crest cells (NCCs), in which neofunctionalization of the duplicated genes are thought to have facilitated development of craniofacial structures and the peripheral nervous system. How these duplicated genes evolve and acquire the ability to specify NC and their derivatives are largely unknown. Vertebrate SoxE paralogues, most notably Sox9/10, are essential for NC induction, delamination and lineage specification. In contrast, the basal chordate, amphioxus, has a single SoxE gene and lacks NC-like cells. Here, we test the hypothesis that duplication and divergence of an ancestral SoxE gene may have facilitated elaboration of NC lineages. By using an in vivo expression assay to compare effects of AmphiSoxE and vertebrate Sox9 on NC development, we demonstrate that all SOXE proteins possess similar DNA binding and homodimerization properties and can induce NCCs. However, AmphiSOXE is less efficient than SOX9 in transactivation activity and in the ability to preferentially promote glial over neuronal fate, a difference that lies within the combined properties of amino terminal and transactivation domains. We propose that acquisition of AmphiSoxE expression in the neural plate border led to NCC emergence while duplication and divergence produced advantageous mutations in vertebrate homologues, promoting elaboration of NC traits. PMID:27734831

  13. Neural crest stem cell population in craniomaxillofacial development and tissue repair

    Directory of Open Access Journals (Sweden)

    M La Noce

    2014-10-01

    Full Text Available Neural crest cells, delaminating from the neural tube during migration, undergo an epithelial-mesenchymal transition and differentiate into several cell types strongly reinforcing the mesoderm of the craniofacial body area – giving rise to bone, cartilage and other tissues and cells of this human body area. Recent studies on craniomaxillofacial neural crest-derived cells have provided evidence for the tremendous plasticity of these cells. Actually, neural crest cells can respond and adapt to the environment in which they migrate and the cranial mesoderm plays an important role toward patterning the identity of the migrating neural crest cells. In our experience, neural crest-derived stem cells, such as dental pulp stem cells, can actively proliferate, repair bone and give rise to other tissues and cytotypes, including blood vessels, smooth muscle, adipocytes and melanocytes, highlighting that their use in tissue engineering is successful. In this review, we provide an overview of the main pathways involved in neural crest formation, delamination, migration and differentiation; and, in particular, we concentrate our attention on the translatability of the latest scientific progress. Here we try to suggest new ideas and strategies that are needed to fully develop the clinical use of these cells. This effort should involve both researchers/clinicians and improvements in good manufacturing practice procedures. It is important to address studies towards clinical application or take into consideration that studies must have an effective therapeutic prospect for humans. New approaches and ideas must be concentrated also toward stem cell recruitment and activation within the human body, overcoming the classical grafting.

  14. Hepatocyte growth factor/scatter factor-MET signaling in neural crest-derived melanocyte development.

    Science.gov (United States)

    Kos, L; Aronzon, A; Takayama, H; Maina, F; Ponzetto, C; Merlino, G; Pavan, W

    1999-02-01

    The mechanisms governing development of neural crest-derived melanocytes, and how alterations in these pathways lead to hypopigmentation disorders, are not completely understood. Hepatocyte growth factor/scatter factor (HGF/SF) signaling through the tyrosine-kinase receptor, MET, is capable of promoting the proliferation, increasing the motility, and maintaining high tyrosinase activity and melanin synthesis of melanocytes in vitro. In addition, transgenic mice that ubiquitously overexpress HGF/SF demonstrate hyperpigmentation in the skin and leptomenigenes and develop melanomas. To investigate whether HGF/ SF-MET signaling is involved in the development of neural crest-derived melanocytes, transgenic embryos, ubiquitously overexpressing HGF/SF, were analyzed. In HGF/SF transgenic embryos, the distribution of melanoblasts along the characteristic migratory pathway was not affected. However, additional ectopically localized melanoblasts were also observed in the dorsal root ganglia and neural tube, as early as 11.5 days post coitus (p.c.). We utilized an in vitro neural crest culture assay to further explore the role of HGF/SF-MET signaling in neural crest development. HGF/SF added to neural crest cultures increased melanoblast number, permitted differentiation into pigmented melanocytes, promoted melanoblast survival, and could replace mast-cell growth factor/Steel factor (MGF) in explant cultures. To examine whether HGF/SF-MET signaling is required for the proper development of melanocytes, embryos with a targeted Met null mutation (Met-/-) were analysed. In Met-/- embryos, melanoblast number and location were not overtly affected up to 14 days p.c. These results demonstrate that HGF/SF-MET signaling influences, but is not required for, the initial development of neural crest-derived melanocytes in vivo and in vitro.

  15. Expression of cardiac neural crest and heart genes isolated by modified differential display.

    Science.gov (United States)

    Martinsen, Brad J; Groebner, Nathan J; Frasier, Allison J; Lohr, Jamie L

    2003-08-01

    The invasion of the cardiac neural crest (CNC) into the outflow tract (OFT) and subsequent outflow tract septation are critical events during vertebrate heart development. We have performed four modified differential display screens in the chick embryo to identify genes that may be involved in CNC, OFT, secondary heart field, and heart development. The screens included differential display of RNA isolated from three different axial segments containing premigratory cranial neural crest cells; of RNA from distal outflow tract, proximal outflow tract, and atrioventricular tissue of embryonic chick hearts; and of RNA isolated from left and right cranial tissues, including the early heart fields. These screens have resulted in the identification of the five cDNA clones presented here, which are expressed in the cardiac neural crest, outflow tract and developing heart in patterns that are unique in heart development.

  16. Apoptosis in neural crest cells by functional loss of APC tumor suppressor gene

    Science.gov (United States)

    Hasegawa, Sumitaka; Sato, Tomoyuki; Akazawa, Hiroshi; Okada, Hitoshi; Maeno, Akiteru; Ito, Masaki; Sugitani, Yoshinobu; Shibata, Hiroyuki; Miyazaki, Jun-ichi; Katsuki, Motoya; Yamauchi, Yasutaka; Yamamura, Ken-ichi; Katamine, Shigeru; Noda, Tetsuo

    2002-01-01

    Apc is a gene associated with familial adenomatous polyposis coli (FAP) and its inactivation is a critical step in colorectal tumor formation. The protein product, adenomatous polyposis coli (APC), acts to down-regulate intracellular levels of β-catenin, a key signal transducer in the Wnt signaling. Conditional targeting of Apc in the neural crest of mice caused massive apoptosis of cephalic and cardiac neural crest cells at about 11.5 days post coitum, resulting in craniofacial and cardiac anomalies at birth. Notably, the apoptotic cells localized in the regions where β-catenin had accumulated. In contrast to its role in colorectal epithelial cells, inactivation of APC leads to dysregulation of β-catenin/Wnt signaling with resultant apoptosis in certain tissues including neural crest cells. PMID:11756652

  17. Effects of epidermal growth factor on neural crest cells in tissue culture

    International Nuclear Information System (INIS)

    Erickson, C.A.; Turley, E.A.

    1987-01-01

    Epidermal growth factor (EGF) stimulates the release of hyaluronic acid (HA) and chondroitin sulfate proteoglycan (CSPG) from quail trunk neural crest cultures in a dose-dependent fashion. It also promotes the expression of cell-associated heparan sulfate proteoglycan (HSPG) as detected by immunofluorescence and immunoprecipitation of the 3 H-labeled proteoglycan. Furthermore, EGF stimulates [ 3 H]thymidine incorporation into total cell DNA. These results raise the possibility that EGF or an analogous growth factor is involved in regulation of neural crest cell morphogenesis

  18. In vivo transplantation of enteric neural crest cells into mouse gut; Engraftment, functional integration and long-term safety

    NARCIS (Netherlands)

    J.E. Cooper (Julie E.); C. Mccann; D. Natarajan (Dipa); S. Choudhury; W. Boesmans (Werend); J.-M. Delalande (Jean-Marie); P.V. Berghe (Pieter Vanden); A.J. Burns (Alan); N. Thapar (Nikhil)

    2016-01-01

    textabstractObjectives: Enteric neuropathies are severe gastrointestinal disorders with unsatisfactory outcomes. We aimed to investigate the potential of enteric neural stem cell therapy approaches for such disorders by transplanting mouse enteric neural crest cells (ENCCs) into ganglionic and

  19. Neural crest stem cell multipotency requires Foxd3 to maintain neural potential and repress mesenchymal fates.

    Science.gov (United States)

    Mundell, Nathan A; Labosky, Patricia A

    2011-02-01

    Neural crest (NC) progenitors generate a wide array of cell types, yet molecules controlling NC multipotency and self-renewal and factors mediating cell-intrinsic distinctions between multipotent versus fate-restricted progenitors are poorly understood. Our earlier work demonstrated that Foxd3 is required for maintenance of NC progenitors in the embryo. Here, we show that Foxd3 mediates a fate restriction choice for multipotent NC progenitors with loss of Foxd3 biasing NC toward a mesenchymal fate. Neural derivatives of NC were lost in Foxd3 mutant mouse embryos, whereas abnormally fated NC-derived vascular smooth muscle cells were ectopically located in the aorta. Cranial NC defects were associated with precocious differentiation towards osteoblast and chondrocyte cell fates, and individual mutant NC from different anteroposterior regions underwent fate changes, losing neural and increasing myofibroblast potential. Our results demonstrate that neural potential can be separated from NC multipotency by the action of a single gene, and establish novel parallels between NC and other progenitor populations that depend on this functionally conserved stem cell protein to regulate self-renewal and multipotency.

  20. Characterization of Pax3 and Sox10 transgenic Xenopus laevis embryos as tools to study neural crest development.

    Science.gov (United States)

    Alkobtawi, Mansour; Ray, Heather; Barriga, Elias H; Moreno, Mauricio; Kerney, Ryan; Monsoro-Burq, Anne-Helene; Saint-Jeannet, Jean-Pierre; Mayor, Roberto

    2018-03-06

    The neural crest is a multipotent population of cells that originates a variety of cell types. Many animal models are used to study neural crest induction, migration and differentiation, with amphibians and birds being the most widely used systems. A major technological advance to study neural crest development in mouse, chick and zebrafish has been the generation of transgenic animals in which neural crest specific enhancers/promoters drive the expression of either fluorescent proteins for use as lineage tracers, or modified genes for use in functional studies. Unfortunately, no such transgenic animals currently exist for the amphibians Xenopus laevis and tropicalis, key model systems for studying neural crest development. Here we describe the generation and characterization of two transgenic Xenopus laevis lines, Pax3-GFP and Sox10-GFP, in which GFP is expressed in the pre-migratory and migratory neural crest, respectively. We show that Pax3-GFP could be a powerful tool to study neural crest induction, whereas Sox10-GFP could be used in the study of neural crest migration in living embryos. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Diprosopia revisited in light of the recognized role of neural crest cells in facial development.

    Science.gov (United States)

    Carles, D; Weichhold, W; Alberti, E M; Léger, F; Pigeau, F; Horovitz, J

    1995-01-01

    The aim of this study is to compare the theory of embryogenesis of the face with human diprosopia. This peculiar form of conjoined twinning is of great interest because 1) only the facial structures are duplicated and 2) almost all cases have a rather monomorphic pattern. The hypothesis is that an initial duplication of the notochord leads to two neural plates and subsequently duplicated neural crests. In those conditions, derivatives of the neural crests will be partially or totally duplicated; therefore, in diprosopia, the duplicated facial structures would be considered to be neural crest derivatives. If these structures are identical to those that are experimentally demonstrated to be neural crest derivatives in animals, these findings are an argument to apply this theory of facial embryogenesis in man. Serial horizontal sections of the face of two diprosopic fetuses (11 and 21 weeks gestation) were studied macro- and microscopically to determine the external and internal structures that are duplicated. Complete postmortem examination was performed in search for additional malformations. The face of both fetuses showed a very similar morphologic pattern with duplication of ocular, nasal, and buccal structures. The nasal fossae and the anterior part of the tongue were also duplicated, albeit the posterior part and the pharyngolaryngeal structures were unique. Additional facial clefts were present in both fetuses. Extrafacial anomalies were represented by a craniorachischisis, two fused vertebral columns and, in the older fetus, by a complex cardiac malformation morphologically identical to malformations induced by removal or grafting of additional cardiac neural crest cells in animals. These pathological findings could identify the facial structures that are neural crest derivatives in man. They are similar to those experimentally demonstrated to be neural crest derivatives in animals. In this respect, diprosopia could be considered as the end of a spectrum

  2. Properties of Neural Crest-Like Cells Differentiated from Human Embryonic Stem Cells

    Czech Academy of Sciences Publication Activity Database

    Křivánek, J.; Švandová, Eva; Králik, J.; Hajda, S.; Fedr, Radek; Vinařský, V.; Jaroš, J.; Souček, Karel

    2014-01-01

    Roč. 60, č. 2014 (2014), s. 30-38 ISSN 0015-5500 R&D Projects: GA ČR(CZ) GAP304/11/1418 Institutional support: RVO:68081707 Keywords : stem cell differentiation * neural crest * odontogenesis Subject RIV: BO - Biophysics; ED - Physiology (UZFG-Y) Impact factor: 1.000, year: 2014

  3. The hypoxia factor Hif-1α controls neural crest chemotaxis and epithelial to mesenchymal transition

    Science.gov (United States)

    Barriga, Elias H.; Maxwell, Patrick H.

    2013-01-01

    One of the most important mechanisms that promotes metastasis is the stabilization of Hif-1 (hypoxia-inducible transcription factor 1). We decided to test whether Hif-1α also was required for early embryonic development. We focused our attention on the development of the neural crest, a highly migratory embryonic cell population whose behavior has been likened to cancer metastasis. Inhibition of Hif-1α by antisense morpholinos in Xenopus laevis or zebrafish embryos led to complete inhibition of neural crest migration. We show that Hif-1α controls the expression of Twist, which in turn represses E-cadherin during epithelial to mesenchymal transition (EMT) of neural crest cells. Thus, Hif-1α allows cells to initiate migration by promoting the release of cell–cell adhesions. Additionally, Hif-1α controls chemotaxis toward the chemokine SDF-1 by regulating expression of its receptor Cxcr4. Our results point to Hif-1α as a novel and key regulator that integrates EMT and chemotaxis during migration of neural crest cells. PMID:23712262

  4. Modeling Cerebrovascular Pathophysiology in Amyloid-β Metabolism using Neural-Crest-Derived Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Christine Cheung

    2014-10-01

    Full Text Available Summary: There is growing recognition of cerebrovascular contributions to neurodegenerative diseases. In the walls of cerebral arteries, amyloid-beta (Aβ accumulation is evident in a majority of aged people and patients with cerebral amyloid angiopathy. Here, we leverage human pluripotent stem cells to generate vascular smooth muscle cells (SMCs from neural crest progenitors, recapitulating brain-vasculature-specific attributes of Aβ metabolism. We confirm that the lipoprotein receptor, LRP1, functions in our neural-crest-derived SMCs to mediate Aβ uptake and intracellular lysosomal degradation. Hypoxia significantly compromises the contribution of SMCs to Aβ clearance by suppressing LRP1 expression. This enabled us to develop an assay of Aβ uptake by using the neural crest-derived SMCs with hypoxia as a stress paradigm. We then tested several vascular protective compounds in a high-throughput format, demonstrating the value of stem-cell-based phenotypic screening for novel therapeutics and drug repurposing, aimed at alleviating amyloid burden. : The contribution of blood vessel pathologies to neurodegenerative disorders is relatively neglected, partly due to inadequate human tissues for research. By using human stem cells, Cheung et al. establish a method of generating vascular smooth muscle cells (SMCs from neural crest progenitors, the primary precursors that give rise to brain blood vessels. These stem-cell-derived SMCs display defective amyloid processing under chronic hypoxia, a phenomenon well documented in the cerebral vasculatures of aged people and patients with Alzheimer’s disease.

  5. Meis2 is essential for cranial and cardiac neural crest development

    Czech Academy of Sciences Publication Activity Database

    Machoň, Ondřej; Mašek, Jan; Machoňová, Olga; Krauss, S.; Kozmik, Zbyněk

    2015-01-01

    Roč. 15, Nov 6 (2015) ISSN 1471-213X R&D Projects: GA ČR GAP305/12/2042; GA MŠk(CZ) LK11214 Institutional support: RVO:68378050 Keywords : Meis2 * Persistent truncus arteriosus * Neural crest * Craniofacial skeleton * Cranial nerves Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.096, year: 2015

  6. Fibronectin promotes differentiation of neural crest progenitors endowed with smooth muscle cell potential

    International Nuclear Information System (INIS)

    Costa-Silva, Bruno; Coelho da Costa, Meline; Melo, Fernanda Rosene; Neves, Cynara Mendes; Alvarez-Silva, Marcio; Calloni, Giordano Wosgrau; Trentin, Andrea Goncalves

    2009-01-01

    The neural crest (NC) is a model system used to investigate multipotency during vertebrate development. Environmental factors control NC cell fate decisions. Despite the well-known influence of extracellular matrix molecules in NC cell migration, the issue of whether they also influence NC cell differentiation has not been addressed at the single cell level. By analyzing mass and clonal cultures of mouse cephalic and quail trunk NC cells, we show for the first time that fibronectin (FN) promotes differentiation into the smooth muscle cell phenotype without affecting differentiation into glia, neurons, and melanocytes. Time course analysis indicated that the FN-induced effect was not related to massive cell death or proliferation of smooth muscle cells. Finally, by comparing clonal cultures of quail trunk NC cells grown on FN and collagen type IV (CLIV), we found that FN strongly increased both NC cell survival and the proportion of unipotent and oligopotent NC progenitors endowed with smooth muscle potential. In contrast, melanocytic progenitors were prominent in clonogenic NC cells grown on CLIV. Taken together, these results show that FN promotes NC cell differentiation along the smooth muscle lineage, and therefore plays an important role in fate decisions of NC progenitor cells

  7. ADAM13 Induces Cranial Neural Crest by Cleaving Class B Ephrins and Regulating Wnt Signaling

    OpenAIRE

    Wei, Shuo; Xu, Guofeng; Bridges, Lance C.; Williams, Phoebe; White, Judith M.; DeSimone, Douglas W.

    2010-01-01

    The cranial neural crest (CNC) are multipotent embryonic cells that contribute to craniofacial structures and other cells and tissues of the vertebrate head. During embryogenesis, CNC is induced at the neural plate boundary through the interplay of several major signaling pathways. Here we report that the metalloproteinase activity of ADAM13 is required for early induction of CNC in Xenopus. In both cultured cells and X. tropicalis embryos, membrane-bound Ephrins (Efns) B1 and B2 were identif...

  8. Histone deacetylase 1 and 2 are essential for murine neural crest proliferation, pharyngeal arch development, and craniofacial morphogenesis.

    Science.gov (United States)

    Milstone, Zachary J; Lawson, Grace; Trivedi, Chinmay M

    2017-12-01

    Craniofacial anomalies involve defective pharyngeal arch development and neural crest function. Copy number variation at 1p35, containing histone deacetylase 1 (Hdac1), or 6q21-22, containing Hdac2, are implicated in patients with craniofacial defects, suggesting an important role in guiding neural crest development. However, the roles of Hdac1 and Hdac2 within neural crest cells remain unknown. The neural crest and its derivatives express both Hdac1 and Hdac2 during early murine development. Ablation of Hdac1 and Hdac2 within murine neural crest progenitor cells cause severe hemorrhage, atrophic pharyngeal arches, defective head morphogenesis, and complete embryonic lethality. Embryos lacking Hdac1 and Hdac2 in the neural crest exhibit decreased proliferation and increased apoptosis in both the neural tube and the first pharyngeal arch. Mechanistically, loss of Hdac1 and Hdac2 upregulates cyclin-dependent kinase inhibitors Cdkn1a, Cdkn1b, Cdkn1c, Cdkn2b, Cdkn2c, and Tp53 within the first pharyngeal arch. Our results show that Hdac1 and Hdac2 function redundantly within the neural crest to regulate proliferation and the development of the pharyngeal arches by means of repression of cyclin-dependent kinase inhibitors. Developmental Dynamics 246:1015-1026, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Role of cranial neural crest cells in visceral arch muscle positioning and morphogenesis in the Mexican axolotl, Ambystoma mexicanum.

    Science.gov (United States)

    Ericsson, Rolf; Cerny, Robert; Falck, Pierre; Olsson, Lennart

    2004-10-01

    The role of cranial neural crest cells in the formation of visceral arch musculature was investigated in the Mexican axolotl, Ambystoma mexicanum. DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine, perchlorate) labeling and green fluorescent protein (GFP) mRNA injections combined with unilateral transplantations of neural folds showed that neural crest cells contribute to the connective tissues but not the myofibers of developing visceral arch muscles in the mandibular, hyoid, and branchial arches. Extirpations of individual cranial neural crest streams demonstrated that neural crest cells are necessary for correct morphogenesis of visceral arch muscles. These do, however, initially develop in their proper positions also in the absence of cranial neural crest. Visceral arch muscles forming in the absence of neural crest cells start to differentiate at their origins but fail to extend toward their insertions and may have a frayed appearance. Our data indicate that visceral arch muscle positioning is controlled by factors that do not have a neural crest origin. We suggest that the cranial neural crest-derived connective tissues provide directional guidance important for the proper extension of the cranial muscles and the subsequent attachment to the insertion on the correct cartilage. In a comparative context, our data from the Mexican axolotl support the view that the cranial neural crest plays a fundamental role in the development of not only the skeleton of the vertebrate head but also in the morphogenesis of the cranial muscles and that this might be a primitive feature of cranial development in vertebrates. 2004 Wiley-Liss, Inc.

  10. Neural Crest-Derived Mesenchymal Cells Require Wnt Signaling for Their Development and Drive Invagination of the Telencephalic Midline

    Science.gov (United States)

    Choe, Youngshik; Zarbalis, Konstantinos S.; Pleasure, Samuel J.

    2014-01-01

    Embryonic neural crest cells contribute to the development of the craniofacial mesenchyme, forebrain meninges and perivascular cells. In this study, we investigated the function of ß-catenin signaling in neural crest cells abutting the dorsal forebrain during development. In the absence of ß-catenin signaling, neural crest cells failed to expand in the interhemispheric region and produced ectopic smooth muscle cells instead of generating dermal and calvarial mesenchyme. In contrast, constitutive expression of stabilized ß-catenin in neural crest cells increased the number of mesenchymal lineage precursors suggesting that ß-catenin signaling is necessary for the expansion of neural crest-derived mesenchymal cells. Interestingly, the loss of neural crest-derived mesenchymal stem cells (MSCs) leads to failure of telencephalic midline invagination and causes ventricular system defects. This study shows that ß-catenin signaling is required for the switch of neural crest cells to MSCs and mediates the expansion of MSCs to drive the formation of mesenchymal structures of the head. Furthermore, loss of these structures causes striking defects in forebrain morphogenesis. PMID:24516524

  11. Neural crest-derived mesenchymal cells require Wnt signaling for their development and drive invagination of the telencephalic midline.

    Directory of Open Access Journals (Sweden)

    Youngshik Choe

    Full Text Available Embryonic neural crest cells contribute to the development of the craniofacial mesenchyme, forebrain meninges and perivascular cells. In this study, we investigated the function of ß-catenin signaling in neural crest cells abutting the dorsal forebrain during development. In the absence of ß-catenin signaling, neural crest cells failed to expand in the interhemispheric region and produced ectopic smooth muscle cells instead of generating dermal and calvarial mesenchyme. In contrast, constitutive expression of stabilized ß-catenin in neural crest cells increased the number of mesenchymal lineage precursors suggesting that ß-catenin signaling is necessary for the expansion of neural crest-derived mesenchymal cells. Interestingly, the loss of neural crest-derived mesenchymal stem cells (MSCs leads to failure of telencephalic midline invagination and causes ventricular system defects. This study shows that ß-catenin signaling is required for the switch of neural crest cells to MSCs and mediates the expansion of MSCs to drive the formation of mesenchymal structures of the head. Furthermore, loss of these structures causes striking defects in forebrain morphogenesis.

  12. Applications of Mesenchymal Stem Cells and Neural Crest Cells in Craniofacial Skeletal Research

    Directory of Open Access Journals (Sweden)

    Satoru Morikawa

    2016-01-01

    Full Text Available Craniofacial skeletal tissues are composed of tooth and bone, together with nerves and blood vessels. This composite material is mainly derived from neural crest cells (NCCs. The neural crest is transient embryonic tissue present during neural tube formation whose cells have high potential for migration and differentiation. Thus, NCCs are promising candidates for craniofacial tissue regeneration; however, the clinical application of NCCs is hindered by their limited accessibility. In contrast, mesenchymal stem cells (MSCs are easily accessible in adults, have similar potential for self-renewal, and can differentiate into skeletal tissues, including bones and cartilage. Therefore, MSCs may represent good sources of stem cells for clinical use. MSCs are classically identified under adherent culture conditions, leading to contamination with other cell lineages. Previous studies have identified mouse- and human-specific MSC subsets using cell surface markers. Additionally, some studies have shown that a subset of MSCs is closely related to neural crest derivatives and endothelial cells. These MSCs may be promising candidates for regeneration of craniofacial tissues from the perspective of developmental fate. Here, we review the fundamental biology of MSCs in craniofacial research.

  13. Cut loose and run: The complex role of ADAM proteases during neural crest cell development.

    Science.gov (United States)

    Alfandari, Dominique; Taneyhill, Lisa A

    2018-02-24

    ADAM metalloproteases have been shown to play critical roles during development. In this review, we will describe functional evidence that implicates ADAM proteins during the genesis, migration and differentiation of neural crest cells. We will restrict our analysis to the transmembrane ADAMs as other reviews have addressed the role of extracellular metalloproteases (Christian et al. [2013] Critical Reviews in Biochemistry and Molecular Biology 48:544-560). This review will describe advances that have been obtained mainly through the use of two vertebrate model systems, the frog, and avian embryos. The role of the principal substrates of ADAMs, the cadherins, has been extensively described in other reviews, most recently in (Cousin [1997] Mechanisms of Development 148:79-88; Taneyhill and Schiffmacher [2017] Genesis, 55). The function of ADAMs in the migration of other cell types, including the immune system, wound healing and cancer has been described previously in (Dreymueller et al. [2017] Mediators of Inflammation 2017: 9621724). Our goal is to illustrate both the importance of ADAMs in controlling neural crest behavior and how neural crest cells have helped us understand the molecular interactions, substrates, and functions of ADAM proteins in vivo. © 2018 Wiley Periodicals, Inc.

  14. Neural Crest Cells Isolated from the Bone Marrow of Transgenic Mice Express JCV T-Antigen.

    Directory of Open Access Journals (Sweden)

    Jennifer Gordon

    Full Text Available JC virus (JCV, a common human polyomavirus, is the etiological agent of the demyelinating disease, progressive multifocal leukoencephalopathy (PML. In addition to its role in PML, studies have demonstrated the transforming ability of the JCV early protein, T-antigen, and its association with some human cancers. JCV infection occurs in childhood and latent virus is thought to be maintained within the bone marrow, which harbors cells of hematopoietic and non-hematopoietic lineages. Here we show that non-hematopoietic mesenchymal stem cells (MSCs isolated from the bone marrow of JCV T-antigen transgenic mice give rise to JCV T-antigen positive cells when cultured under neural conditions. JCV T-antigen positive cells exhibited neural crest characteristics and demonstrated p75, SOX-10 and nestin positivity. When cultured in conditions typical for mesenchymal cells, a population of T-antigen negative cells, which did not express neural crest markers arose from the MSCs. JCV T-antigen positive cells could be cultured long-term while maintaining their neural crest characteristics. When these cells were induced to differentiate into neural crest derivatives, JCV T-antigen was downregulated in cells differentiating into bone and maintained in glial cells expressing GFAP and S100. We conclude that JCV T-antigen can be stably expressed within a fraction of bone marrow cells differentiating along the neural crest/glial lineage when cultured in vitro. These findings identify a cell population within the bone marrow permissible for JCV early gene expression suggesting the possibility that these cells could support persistent viral infection and thus provide clues toward understanding the role of the bone marrow in JCV latency and reactivation. Further, our data provides an excellent experimental model system for studying the cell-type specificity of JCV T-antigen expression, the role of bone marrow-derived stem cells in the pathogenesis of JCV-related diseases

  15. SOX10-Nano-Lantern Reporter Human iPS Cells; A Versatile Tool for Neural Crest Research.

    Directory of Open Access Journals (Sweden)

    Tomoko Horikiri

    Full Text Available The neural crest is a source to produce multipotent neural crest stem cells that have a potential to differentiate into diverse cell types. The transcription factor SOX10 is expressed through early neural crest progenitors and stem cells in vertebrates. Here we report the generation of SOX10-Nano-lantern (NL reporter human induced pluripotent stem cells (hiPS by using CRISPR/Cas9 systems, that are beneficial to investigate the generation and maintenance of neural crest progenitor cells. SOX10-NL positive cells are produced transiently from hiPS cells by treatment with TGFβ inhibitor SB431542 and GSK3 inhibitor CHIR99021. We found that all SOX10-NL-positive cells expressed an early neural crest marker NGFR, however SOX10-NL-positive cells purified from differentiated hiPS cells progressively attenuate their NL-expression under proliferation. We therefore attempted to maintain SOX10-NL-positive cells with additional signaling on the plane and sphere culture conditions. These SOX10-NL cells provide us to investigate mass culture with neural crest cells for stem cell research.

  16. Krox20 defines a subpopulation of cardiac neural crest cells contributing to arterial valves and bicuspid aortic valve.

    Science.gov (United States)

    Odelin, Gaëlle; Faure, Emilie; Coulpier, Fanny; Di Bonito, Maria; Bajolle, Fanny; Studer, Michèle; Avierinos, Jean-François; Charnay, Patrick; Topilko, Piotr; Zaffran, Stéphane

    2018-01-03

    Although cardiac neural crest cells are required at early stages of arterial valve development, their contribution during valvular leaflet maturation remains poorly understood. Here, we show in mouse that neural crest cells from pre-otic and post-otic regions make distinct contributions to the arterial valve leaflets. Genetic fate-mapping analysis of Krox20-expressing neural crest cells shows a large contribution to the borders and the interleaflet triangles of the arterial valves. Loss of Krox20 function results in hyperplastic aortic valve and partially penetrant bicuspid aortic valve formation. Similar defects are observed in neural crest Krox20 -deficient embryos. Genetic lineage tracing in Krox20 -/- mutant mice shows that endothelial-derived cells are normal, whereas neural crest-derived cells are abnormally increased in number and misplaced in the valve leaflets. In contrast, genetic ablation of Krox20 -expressing cells is not sufficient to cause an aortic valve defect, suggesting that adjacent cells can compensate this depletion. Our findings demonstrate a crucial role for Krox20 in arterial valve development and reveal that an excess of neural crest cells may be associated with bicuspid aortic valve. © 2018. Published by The Company of Biologists Ltd.

  17. Stage-specific control of neural crest stem cell proliferation by the small rho GTPases Cdc42 and Rac1

    DEFF Research Database (Denmark)

    Fuchs, Sebastian; Herzog, Dominik; Sumara, Grzegorz

    2009-01-01

    -renewal and proliferation of later stage, but not early migratory NCSCs. This stage-specific requirement for small Rho GTPases is due to changes in NCSCs that, during development, acquire responsiveness to mitogenic EGF acting upstream of both Cdc42 and Rac1. Thus, our data reveal distinct mechanisms for growth control......The neural crest (NC) generates a variety of neural and non-neural tissues during vertebrate development. Both migratory NC cells and their target structures contain cells with stem cell features. Here we show that these populations of neural crest-derived stem cells (NCSCs) are differentially...

  18. The neuro-glial properties of adipose-derived adult stromal (ADAS) cells are not regulated by Notch 1 and are not derived from neural crest lineage.

    Science.gov (United States)

    Wrage, Philip C; Tran, Thi; To, Khai; Keefer, Edward W; Ruhn, Kelly A; Hong, John; Hattangadi, Supriya; Treviño, Isaac; Tansey, Malú G

    2008-01-16

    We investigated whether adipose-derived adult stromal (ADAS) are of neural crest origin and the extent to which Notch 1 regulates their growth and differentiation. Mouse ADAS cells cultured in media formulated for neural stem cells (NSC) displayed limited capacity for self-renewal, clonogenicity, and neurosphere formation compared to NSC from the subventricular zone in the hippocampus. Although ADAS cells expressed Nestin, GFAP, NSE and Tuj1 in vitro, exposure to NSC differentiation supplements did not induce mature neuronal marker expression. In contrast, in mesenchymal stem cell (MSC) media, ADAS cells retained their ability to proliferate and differentiate beyond 20 passages and expressed high levels of Nestin. In neuritizing cocktails, ADAS cells extended processes, downregulated Nestin expression, and displayed depolarization-induced Ca(2+) transients but no spontaneous or evoked neural network activity on Multi-Electrode Arrays. Deletion of Notch 1 in ADAS cell cultures grown in NSC proliferation medium did not significantly alter their proliferative potential in vitro or the differentiation-induced downregulation of Nestin. Co-culture of ADAS cells with fibroblasts that stably expressed the Notch ligand Jagged 1 or overexpression of the Notch intracellular domain (NICD) did not alter ADAS cell growth, morphology, or cellular marker expression. ADAS cells did not display robust expression of neural crest transcription factors or genes (Sox, CRABP2, and TH); and lineage tracing analyses using Wnt1-Cre;Rosa26R-lacZ or -EYFP reporter mice confirmed that fewer than 2% of the ADAS cell population derived from a Wnt1-positive population during development. In summary, although media formulations optimized for MSCs or NSCs enable expansion of mouse ADAS cells in vitro, we find no evidence that these cells are of neural crest origin, that they can undergo robust terminal differentiation into functionally mature neurons, and that Notch 1 is likely to be a key

  19. In Vivo Transplantation of Enteric Neural Crest Cells into Mouse Gut; Engraftment, Functional Integration and Long-Term Safety.

    Directory of Open Access Journals (Sweden)

    Julie E Cooper

    Full Text Available Enteric neuropathies are severe gastrointestinal disorders with unsatisfactory outcomes. We aimed to investigate the potential of enteric neural stem cell therapy approaches for such disorders by transplanting mouse enteric neural crest cells (ENCCs into ganglionic and aganglionic mouse gut in vivo and analysing functional integration and long-term safety.Neurospheres generated from yellow fluorescent protein (YFP expressing ENCCs selected from postnatal Wnt1-cre;R26R-YFP/YFP murine gut were transplanted into ganglionic hindgut of wild-type littermates or aganglionic hindgut of Ednrbtm1Ywa mice (lacking functional endothelin receptor type-B. Intestines were then assessed for ENCC integration and differentiation using immunohistochemistry, cell function using calcium imaging, and long-term safety using PCR to detect off-target YFP expression.YFP+ ENCCs engrafted, proliferated and differentiated into enteric neurons and glia within recipient ganglionic gut. Transplanted cells and their projections spread along the endogenous myenteric plexus to form branching networks. Electrical point stimulation of endogenous nerve fibres resulted in calcium transients (F/F0 = 1.16 ± 0.01;43 cells, n = 6 in YFP+ transplanted ENCCs (abolished with TTX. Long-term follow-up (24 months showed transplanted ENCCs did not give rise to tumours or spread to other organs (PCR negative in extraintestinal sites. In aganglionic gut ENCCs similarly spread and differentiated to form neuronal and glial networks with projections closely associated with endogenous neural networks of the transition zone.Transplanted ENCCs successfully engrafted into recipient ganglionic and aganglionic gut showing appropriate spread, localisation and, importantly, functional integration without any long-term safety issues. This study provides key support for the development and use of enteric neural stem cell therapies.

  20. The F-box protein Cdc4/Fbxw7 is a novel regulator of neural crest development in Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Hartley Rebecca S

    2010-01-01

    Full Text Available Abstract Background The neural crest is a unique population of cells that arise in the vertebrate ectoderm at the neural plate border after which they migrate extensively throughout the embryo, giving rise to a wide range of derivatives. A number of proteins involved in neural crest development have dynamic expression patterns, and it is becoming clear that ubiquitin-mediated protein degradation is partly responsible for this. Results Here we demonstrate a novel role for the F-box protein Cdc4/Fbxw7 in neural crest development. Two isoforms of Xenopus laevis Cdc4 were identified, and designated xCdc4α and xCdc4β. These are highly conserved with vertebrate Cdc4 orthologs, and the Xenopus proteins are functionally equivalent in terms of their ability to degrade Cyclin E, an established vertebrate Cdc4 target. Blocking xCdc4 function specifically inhibited neural crest development at an early stage, prior to expression of c-Myc, Snail2 and Snail. Conclusions We demonstrate that Cdc4, an ubiquitin E3 ligase subunit previously identified as targeting primarily cell cycle regulators for proteolysis, has additional roles in control of formation of the neural crest. Hence, we identify Cdc4 as a protein with separable but complementary functions in control of cell proliferation and differentiation.

  1. Imidacloprid Exposure Suppresses Neural Crest Cells Generation during Early Chick Embryo Development.

    Science.gov (United States)

    Wang, Chao-Jie; Wang, Guang; Wang, Xiao-Yu; Liu, Meng; Chuai, Manli; Lee, Kenneth Ka Ho; He, Xiao-Song; Lu, Da-Xiang; Yang, Xuesong

    2016-06-15

    Imidacloprid is a neonicotinoid pesticide that is widely used in the control pests found on crops and fleas on pets. However, it is still unclear whether imidacloprid exposure could affect early embryo development-despite some studies having been conducted on the gametes. In this study, we demonstrated that imidacloprid exposure could lead to abnormal craniofacial osteogenesis in the developing chick embryo. Cranial neural crest cells (NCCs) are the progenitor cells of the chick cranial skull. We found that the imidacloprid exposure retards the development of gastrulating chick embryos. HNK-1, PAX7, and Ap-2α immunohistological stainings indicated that cranial NCCs generation was inhibited after imidacloprid exposure. Double immunofluorescent staining (Ap-2α and PHIS3 or PAX7 and c-Caspase3) revealed that imidacloprid exposure inhibited both NCC proliferation and apoptosis. In addition, it inhibited NCCs production by repressing Msx1 and BMP4 expression in the developing neural tube and by altering expression of EMT-related adhesion molecules (Cad6B, E-Cadherin, and N-cadherin) in the developing neural crests. We also determined that imidacloprid exposure suppressed cranial NCCs migration and their ability to differentiate. In sum, we have provided experimental evidence that imidacloprid exposure during embryogenesis disrupts NCCs development, which in turn causes defective cranial bone development.

  2. Constitutively active Notch1 converts cranial neural crest-derived frontonasal mesenchyme to perivascular cells in vivo

    Directory of Open Access Journals (Sweden)

    Sophie R. Miller

    2017-03-01

    Full Text Available Perivascular/mural cells originate from either the mesoderm or the cranial neural crest. Regardless of their origin, Notch signalling is necessary for their formation. Furthermore, in both chicken and mouse, constitutive Notch1 activation (via expression of the Notch1 intracellular domain is sufficient in vivo to convert trunk mesoderm-derived somite cells to perivascular cells, at the expense of skeletal muscle. In experiments originally designed to investigate the effect of premature Notch1 activation on the development of neural crest-derived olfactory ensheathing glial cells (OECs, we used in ovo electroporation to insert a tetracycline-inducible NotchΔE construct (encoding a constitutively active mutant of mouse Notch1 into the genome of chicken cranial neural crest cell precursors, and activated NotchΔE expression by doxycycline injection at embryonic day 4. NotchΔE-targeted cells formed perivascular cells within the frontonasal mesenchyme, and expressed a perivascular marker on the olfactory nerve. Hence, constitutively activating Notch1 is sufficient in vivo to drive not only somite cells, but also neural crest-derived frontonasal mesenchyme and perhaps developing OECs, to a perivascular cell fate. These results also highlight the plasticity of neural crest-derived mesenchyme and glia.

  3. ADAM13 Induces Cranial Neural Crest by Cleaving Class B Ephrins and Regulating Wnt Signaling

    Science.gov (United States)

    Wei, Shuo; Xu, Guofeng; Bridges, Lance C.; Williams, Phoebe; White, Judith M.; DeSimone, Douglas W.

    2010-01-01

    SUMMARY The cranial neural crest (CNC) are multipotent embryonic cells that contribute to craniofacial structures and other cells and tissues of the vertebrate head. During embryogenesis, CNC is induced at the neural plate boundary through the interplay of several major signaling pathways. Here we report that the metalloproteinase activity of ADAM13 is required for early induction of CNC in Xenopus. In both cultured cells and X. tropicalis embryos, membrane-bound Ephrins (Efns) B1 and B2 were identified as substrates for ADAM13. ADAM13 upregulates canonical Wnt signaling and early expression of the transcription factor snail2, whereas EfnB1 inhibits the canonical Wnt pathway and snail2 expression. We propose that by cleaving class B Efns, ADAM13 promotes canonical Wnt signaling and early CNC induction. PMID:20708595

  4. Inca: a novel p21-activated kinase-associated protein required for cranial neural crest development.

    Science.gov (United States)

    Luo, Ting; Xu, Yanhua; Hoffman, Trevor L; Zhang, Tailin; Schilling, Thomas; Sargent, Thomas D

    2007-04-01

    Inca (induced in neural crest by AP2) is a novel protein discovered in a microarray screen for genes that are upregulated in Xenopus embryos by the transcriptional activator protein Tfap2a. It has no significant similarity to any known protein, but is conserved among vertebrates. In Xenopus, zebrafish and mouse embryos, Inca is expressed predominantly in the premigratory and migrating neural crest (NC). Knockdown experiments in frog and fish using antisense morpholinos reveal essential functions for Inca in a subset of NC cells that form craniofacial cartilage. Cells lacking Inca migrate successfully but fail to condense into skeletal primordia. Overexpression of Inca disrupts cortical actin and prevents formation of actin "purse strings", which are required for wound healing in Xenopus embryos. We show that Inca physically interacts with p21-activated kinase 5 (PAK5), a known regulator of the actin cytoskeleton that is co-expressed with Inca in embryonic ectoderm, including in the NC. These results suggest that Inca and PAK5 cooperate in restructuring cytoskeletal organization and in the regulation of cell adhesion in the early embryo and in NC cells during craniofacial development.

  5. A role for chemokine signaling in neural crest cell migration and craniofacial development

    Science.gov (United States)

    Killian, Eugenia C. Olesnicky; Birkholz, Denise A.; Artinger, Kristin Bruk

    2009-01-01

    Neural crest cells (NCCs) are a unique population of multipotent cells that migrate along defined pathways throughout the embryo and give rise to many diverse cell types including pigment cells, craniofacial cartilage and the peripheral nervous system (PNS). Aberrant migration of NCCs results in a wide variety of congenital birth defects including craniofacial abnormalities. The chemokine Sdf1 and its receptors, Cxcr4 and Cxcr7, have been identified as key components in the regulation of cell migration in a variety of tissues. Here we describe a novel role for the zebrafish chemokine receptor Cxcr4a in the development and migration of cranial NCCs (CNCCs). We find that loss of Cxcr4a, but not Cxcr7b results in aberrant CNCC migration, defects in the neurocranium, as well as cranial ganglia dismorphogenesis. Moreover, overexpression of either Sdf1b or Cxcr4a causes aberrant CNCC migration and results in ectopic craniofacial cartilages. We propose a model in which Sdf1b signaling from the pharyngeal arch endoderm and optic stalk to Cxcr4a expressing CNCCs is important for both the proper condensation of the CNCCs into pharyngeal arches and the subsequent patterning and morphogenesis of the neural crest derived tissues. PMID:19576198

  6. In vivo impact of Dlx3 conditional inactivation in Neural Crest-Derived Craniofacial Bones

    Science.gov (United States)

    Duverger, Olivier; Isaac, Juliane; Zah, Angela; Hwang, Joonsung; Berdal, Ariane; Lian, Jane B.; Morasso, Maria I.

    2012-01-01

    Mutations in DLX3 in humans lead to defects in craniofacial and appendicular bones, yet the in vivo activity related to Dlx3 function during normal skeletal development have not been fully elucidated. Here we used a conditional knockout approach to analyze the effects of neural crest deletion of Dlx3 on craniofacial bones development. At birth, mutant mice exhibit a normal overall positioning of the skull bones, but a change in the shape of the calvaria was observed. Molecular analysis of the genes affected in the frontal bones and mandibles from these mice identified several bone markers known to affect bone development, with a strong prediction for increased bone formation and mineralization in vivo. Interestingly, while a subset of these genes were similarly affected in frontal bones and mandibles (Sost, Mepe, Bglap, Alp, Ibsp, Agt), several genes, including Lect1 and Calca, were specifically affected in frontal bones. Consistent with these molecular alterations, cells isolated from the frontal bone of mutant mice exhibited increased differentiation and mineralization capacities ex vivo, supporting cell autonomous defects in neural crest cells. However, adult mutant animals exhibited decreased bone mineral density in both mandibles and calvaria, as well as a significant increase in bone porosity. Together, these observations suggest that mature osteoblasts in the adult respond to signals that regulate adult bone mass and remodeling. This study provides new downstream targets for Dlx3 in craniofacial bone, and gives additional evidence of the complex regulation of bone formation and homeostasis in the adult skeleton. PMID:22886599

  7. Embryonic cell-cell adhesion: a key player in collective neural crest migration.

    Science.gov (United States)

    Barriga, Elias H; Mayor, Roberto

    2015-01-01

    Cell migration is essential for morphogenesis, adult tissue remodeling, wound healing, and cancer cell migration. Cells can migrate as individuals or groups. When cells migrate in groups, cell-cell interactions are crucial in order to promote the coordinated behavior, essential for collective migration. Interestingly, recent evidence has shown that cell-cell interactions are also important for establishing and maintaining the directionality of these migratory events. We focus on neural crest cells, as they possess extraordinary migratory capabilities that allow them to migrate and colonize tissues all over the embryo. Neural crest cells undergo an epithelial-to-mesenchymal transition at the same time than perform directional collective migration. Cell-cell adhesion has been shown to be an important source of planar cell polarity and cell coordination during collective movement. We also review molecular mechanisms underlying cadherin turnover, showing how the modulation and dynamics of cell-cell adhesions are crucial in order to maintain tissue integrity and collective migration in vivo. We conclude that cell-cell adhesion during embryo development cannot be considered as simple passive resistance to force, but rather participates in signaling events that determine important cell behaviors required for cell migration. © 2015 Elsevier Inc. All rights reserved.

  8. I131-meta-iodobenzylguanidine in the diagnosis and treatment of neural crest tumours

    International Nuclear Information System (INIS)

    Hoefnagel, C.A.; Hartog Jager, F.C.A. den; Taal, B.G.; Engelsman, E.; Kraker, J. de; Voute, P.A.

    1988-01-01

    Iodine-131-meta-iodobenzylguanidine (I-131-MIBG) was used for scintigraphic detection and therapy of neural crest tumours. The methodology of both techniques is described. Based upon experience with I-131-MIBG-scintigraphy in 170 patients with neural crest tumours, of whom 46 received multiple therapeutic doses of I-131-MIBG, and upon the cumulative reports in the literature, the role of I-131-MIBG in diagnosis and treatment of each of these diseases is indicated. I-131-MIBG-scintigraphy is one of the most sensitive and specific techniques for the diagnosis, staging and follow-up of phaeochromocytoma and neuroblastoma and I-131-MIBG-therapy may induce remission in a number of these patients. In carcinoid and medullary thyroid carcinoma the diagnostic sensitivity is less; however, once the diagnosis has been made, it is useful to establish that the tumour concentrates I-131-MIBG, to see if the patients at some point in time may be amenable to I-131-MIBG-therapy

  9. ADAM10 is essential for cranial neural crest-derived maxillofacial bone development

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Yu, E-mail: tanyu2048@163.com; Fu, Runqing, E-mail: furunqing@sjtu.edu.cn; Liu, Jiaqiang, E-mail: liujqmj@163.com; Wu, Yong, E-mail: wyonger@gmail.com; Wang, Bo, E-mail: wb228@126.com; Jiang, Ning, E-mail: 179639060@qq.com; Nie, Ping, E-mail: nieping1011@sina.com; Cao, Haifeng, E-mail: 0412chf@163.com; Yang, Zhi, E-mail: wcums1981@163.com; Fang, Bing, E-mail: fangbing@sjtu.edu.cn

    2016-07-08

    Growth disorders of the craniofacial bones may lead to craniofacial deformities. The majority of maxillofacial bones are derived from cranial neural crest cells via intramembranous bone formation. Any interruption of the craniofacial skeleton development process might lead to craniofacial malformation. A disintegrin and metalloprotease (ADAM)10 plays an essential role in organ development and tissue integrity in different organs. However, little is known about its function in craniofacial bone formation. Therefore, we investigated the role of ADAM10 in the developing craniofacial skeleton, particularly during typical mandibular bone development. First, we showed that ADAM10 was expressed in a specific area of the craniofacial bone and that the expression pattern dynamically changed during normal mouse craniofacial development. Then, we crossed wnt1-cre transgenic mice with adam10-flox mice to generate ADAM10 conditional knockout mice. The stereomicroscopic, radiographic, and von Kossa staining results showed that conditional knockout of ADAM10 in cranial neural crest cells led to embryonic death, craniofacial dysmorphia and bone defects. Furthermore, we demonstrated that impaired mineralization could be triggered by decreased osteoblast differentiation, increased cell death. Overall, these findings show that ADAM10 plays an essential role in craniofacial bone development. -- Highlights: •We firstly reported that ADAM10 was essentially involved in maxillofacial bone development. •ADAM10 cKO mice present craniofacial dysmorphia and bone defects. •Impaired osteoblast differentiation,proliferation and apoptosis underlie the bone deformity.

  10. ADAM10 is essential for cranial neural crest-derived maxillofacial bone development

    International Nuclear Information System (INIS)

    Tan, Yu; Fu, Runqing; Liu, Jiaqiang; Wu, Yong; Wang, Bo; Jiang, Ning; Nie, Ping; Cao, Haifeng; Yang, Zhi; Fang, Bing

    2016-01-01

    Growth disorders of the craniofacial bones may lead to craniofacial deformities. The majority of maxillofacial bones are derived from cranial neural crest cells via intramembranous bone formation. Any interruption of the craniofacial skeleton development process might lead to craniofacial malformation. A disintegrin and metalloprotease (ADAM)10 plays an essential role in organ development and tissue integrity in different organs. However, little is known about its function in craniofacial bone formation. Therefore, we investigated the role of ADAM10 in the developing craniofacial skeleton, particularly during typical mandibular bone development. First, we showed that ADAM10 was expressed in a specific area of the craniofacial bone and that the expression pattern dynamically changed during normal mouse craniofacial development. Then, we crossed wnt1-cre transgenic mice with adam10-flox mice to generate ADAM10 conditional knockout mice. The stereomicroscopic, radiographic, and von Kossa staining results showed that conditional knockout of ADAM10 in cranial neural crest cells led to embryonic death, craniofacial dysmorphia and bone defects. Furthermore, we demonstrated that impaired mineralization could be triggered by decreased osteoblast differentiation, increased cell death. Overall, these findings show that ADAM10 plays an essential role in craniofacial bone development. -- Highlights: •We firstly reported that ADAM10 was essentially involved in maxillofacial bone development. •ADAM10 cKO mice present craniofacial dysmorphia and bone defects. •Impaired osteoblast differentiation,proliferation and apoptosis underlie the bone deformity.

  11. Expression of the capacity to release [3H]norepinephrine by neural crest cultures

    International Nuclear Information System (INIS)

    Maxwell, G.D.; Sietz, P.D.

    1983-01-01

    Cultures of trunk neural crest cells from quail embryos were tested for their ability to release [ 3 H]norepinephrine [( 3 H]NE) in response to depolarization. After 7 days in vitro, exposure of the cultures to either the alkaloid veratridine or 40 mM K+ results in the evoked release of [ 3 H]NE. The release evoked by veratridine is blocked in the presence of tetrodotoxin. The release evoked by increased K+ is blocked by the calcium antagonist cobalt. Release in response to the nicotinic cholinergic agonist 1,1-dimethyl-4-phenylpiperazine was also observed. The amount of evoked release is highly correlated with the number of histochemically demonstrable catecholamine-containing cells in a given culture. Autoradiography reveals that the radioactivity taken up by these cultures is located in a subpopulation of cells whose morphology resembles that of the histochemically detectable catecholamine-containing cell population. Whereas capacity for the release of [ 3 H] NE is readily detectable after 7 days in vitro, it is detectable only with difficulty after 4 days in vitro. There is a greater than 6-fold increase in uptake capacity over the period of 4 to 7 days in vitro. These results demonstrate that neural crest cultures grown without their normal synaptic inputs or targets can exhibit the capacity for stimulus secretion coupling characteristic of synaptic neurotransmitter release

  12. A negative modulatory role for rho and rho-associated kinase signaling in delamination of neural crest cells

    Directory of Open Access Journals (Sweden)

    Kalcheim Chaya

    2008-10-01

    Full Text Available Abstract Background Neural crest progenitors arise as epithelial cells and then undergo a process of epithelial to mesenchymal transition that precedes the generation of cellular motility and subsequent migration. We aim at understanding the underlying molecular network. Along this line, possible roles of Rho GTPases that act as molecular switches to control a variety of signal transduction pathways remain virtually unexplored, as are putative interactions between Rho proteins and additional known components of this cascade. Results We investigated the role of Rho/Rock signaling in neural crest delamination. Active RhoA and RhoB are expressed in the membrane of epithelial progenitors and are downregulated upon delamination. In vivo loss-of-function of RhoA or RhoB or of overall Rho signaling by C3 transferase enhanced and/or triggered premature crest delamination yet had no effect on cell specification. Consistently, treatment of explanted neural primordia with membrane-permeable C3 or with the Rock inhibitor Y27632 both accelerated and enhanced crest emigration without affecting cell proliferation. These treatments altered neural crest morphology by reducing stress fibers, focal adhesions and downregulating membrane-bound N-cadherin. Reciprocally, activation of endogenous Rho by lysophosphatidic acid inhibited emigration while enhancing the above. Since delamination is triggered by BMP and requires G1/S transition, we examined their relationship with Rho. Blocking Rho/Rock function rescued crest emigration upon treatment with noggin or with the G1/S inhibitor mimosine. In the latter condition, cells emigrated while arrested at G1. Conversely, BMP4 was unable to rescue cell emigration when endogenous Rho activity was enhanced by lysophosphatidic acid. Conclusion Rho-GTPases, through Rock, act downstream of BMP and of G1/S transition to negatively regulate crest delamination by modifying cytoskeleton assembly and intercellular adhesion.

  13. Dental anomalies in different cleft groups related to neural crest developmental fields contributes to the understanding of cleft aetiology

    DEFF Research Database (Denmark)

    Riis, Louise Claudius; Kjær, Inger; Mølsted, Kirsten

    2014-01-01

    OBJECTIVE: To analyze dental deviations in three cleft groups and relate findings to embryological neural crest fields (frontonasal, maxillary, and palatal). The overall purpose was to evaluate how fields are involved in different cleft types. DESIGN: Retrospective audit of clinical photographs...

  14. The lamprey: a jawless vertebrate model system for examining origin of the neural crest and other vertebrate traits.

    Science.gov (United States)

    Green, Stephen A; Bronner, Marianne E

    2014-01-01

    Lampreys are a group of jawless fishes that serve as an important point of comparison for studies of vertebrate evolution. Lampreys and hagfishes are agnathan fishes, the cyclostomes, which sit at a crucial phylogenetic position as the only living sister group of the jawed vertebrates. Comparisons between cyclostomes and jawed vertebrates can help identify shared derived (i.e. synapomorphic) traits that might have been inherited from ancestral early vertebrates, if unlikely to have arisen convergently by chance. One example of a uniquely vertebrate trait is the neural crest, an embryonic tissue that produces many cell types crucial to vertebrate features, such as the craniofacial skeleton, pigmentation of the skin, and much of the peripheral nervous system (Gans and Northcutt, 1983). Invertebrate chordates arguably lack unambiguous neural crest homologs, yet have cells with some similarities, making comparisons with lampreys and jawed vertebrates essential for inferring characteristics of development in early vertebrates, and how they may have evolved from nonvertebrate chordates. Here we review recent research on cyclostome neural crest development, including research on lamprey gene regulatory networks and differentiated neural crest fates. Copyright © 2014 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  15. The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function.

    Science.gov (United States)

    Isern, Joan; García-García, Andrés; Martín, Ana M; Arranz, Lorena; Martín-Pérez, Daniel; Torroja, Carlos; Sánchez-Cabo, Fátima; Méndez-Ferrer, Simón

    2014-09-25

    Mesenchymal stem cells (MSCs) and osteolineage cells contribute to the hematopoietic stem cell (HSC) niche in the bone marrow of long bones. However, their developmental relationships remain unclear. In this study, we demonstrate that different MSC populations in the developing marrow of long bones have distinct functions. Proliferative mesoderm-derived nestin(-) MSCs participate in fetal skeletogenesis and lose MSC activity soon after birth. In contrast, quiescent neural crest-derived nestin(+) cells preserve MSC activity, but do not generate fetal chondrocytes. Instead, they differentiate into HSC niche-forming MSCs, helping to establish the HSC niche by secreting Cxcl12. Perineural migration of these cells to the bone marrow requires the ErbB3 receptor. The neonatal Nestin-GFP(+) Pdgfrα(-) cell population also contains Schwann cell precursors, but does not comprise mature Schwann cells. Thus, in the developing bone marrow HSC niche-forming MSCs share a common origin with sympathetic peripheral neurons and glial cells, and ontogenically distinct MSCs have non-overlapping functions in endochondrogenesis and HSC niche formation.

  16. Dicer activity in neural crest cells is essential for craniofacial organogenesis and pharyngeal arch artery morphogenesis

    Science.gov (United States)

    Nie, Xuguang; Wang, Qin; Jiao, Kai

    2014-01-01

    MicroRNAs (miRNAs) play important roles in regulating gene expression during numerous biological/pathological processes. Dicer encodes an RNase III endonuclease that is essential for generating most, if not all, functional miRNAs. In this work, we applied a conditional gene inactivation approach to examine the function of Dicer during neural crest cell (NCC) development. Mice with NCC-specific inactivation of Dicer died perinatally. Cranial and cardiac NCC migration into target tissues was not affected by Dicer disruption, but their subsequent development was disturbed. NCC derivatives and their associated mesoderm-derived cells displayed massive apoptosis, leading to severe abnormalities during craniofacial morphogenesis and organogenesis. In addition, the 4th pharyngeal arch artery (PAA) remodeling was affected, resulting in interrupted aortic arch artery type B (IAA-B) in mutant animals. Taken together, our results show that Dicer activity in NCCs is essential for craniofacial development and pharyngeal arch artery morphogenesis. PMID:21256960

  17. Leader Cells Define Directionality of Trunk, but Not Cranial, Neural Crest Cell Migration

    Directory of Open Access Journals (Sweden)

    Jo Richardson

    2016-05-01

    Full Text Available Collective cell migration is fundamental for life and a hallmark of cancer. Neural crest (NC cells migrate collectively, but the mechanisms governing this process remain controversial. Previous analyses in Xenopus indicate that cranial NC (CNC cells are a homogeneous population relying on cell-cell interactions for directional migration, while chick embryo analyses suggest a heterogeneous population with leader cells instructing directionality. Our data in chick and zebrafish embryos show that CNC cells do not require leader cells for migration and all cells present similar migratory capacities. In contrast, laser ablation of trunk NC (TNC cells shows that leader cells direct movement and cell-cell contacts are required for migration. Moreover, leader and follower identities are acquired before the initiation of migration and remain fixed thereafter. Thus, two distinct mechanisms establish the directionality of CNC cells and TNC cells. This implies the existence of multiple molecular mechanisms for collective cell migration.

  18. Postotic and preotic cranial neural crest cells differently contribute to thyroid development.

    Science.gov (United States)

    Maeda, Kazuhiro; Asai, Rieko; Maruyama, Kazuaki; Kurihara, Yukiko; Nakanishi, Toshio; Kurihara, Hiroki; Miyagawa-Tomita, Sachiko

    2016-01-01

    Thyroid development and formation vary among species, but in most species the thyroid morphogenesis consists of five stages: specification, budding, descent, bilobation and folliculogenesis. The detailed mechanisms of these stages have not been fully clarified. During early development, the cranial neural crest (CNC) contributes to the thyroid gland. The removal of the postotic CNC (corresponding to rhombomeres 6, 7 and 8, also known as the cardiac neural crest) results in abnormalities of the cardiovascular system, thymus, parathyroid glands, and thyroid gland. To investigate the influence of the CNC on thyroid bilobation process, we divided the CNC into two regions, the postotic CNC and the preotic CNC (from the mesencephalon to rhombomere 5) regions and examined. We found that preotic CNC-ablated embryos had a unilateral thyroid lobe, and confirmed the presence of a single lobe or the absence of lobes in postotic CNC-ablated chick embryos. The thyroid anlage in each region-ablated embryos was of a normal size at the descent stage, but at a later stage, the thyroid in preotic CNC-ablated embryos was of a normal size, conflicting with a previous report in which the thyroid was reduced in size in the postotic CNC-ablated embryos. The postotic CNC cells differentiated into connective tissues of the thyroid in quail-to-chick chimeras. In contrast, the preotic CNC cells did not differentiate into connective tissues of the thyroid. We found that preotic CNC cells encompassed the thyroid anlage from the specification stage to the descent stage. Finally, we found that endothelin-1 and endothelin type A receptor-knockout mice and bosentan (endothelin receptor antagonist)-treated chick embryos showed bilobation anomalies that included single-lobe formation. Therefore, not only the postotic CNC, but also the preotic CNC plays an important role in thyroid morphogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Stephen L. Gans Distinguished Overseas Lecture. The neural crest in pediatric surgery.

    Science.gov (United States)

    Tovar, Juan A

    2007-06-01

    This review highlights the relevance of the neural crest (NC) as a developmental control mechanism involved in several pediatric surgical conditions and the investigative interest of following some of its known signaling pathways. The participation of the NC in facial clefts, ear defects, branchial fistulae and cysts, heart outflow tract and aortic arch anomalies, pigmentary disorders, abnormal enteric innervation, neural tumors, hemangiomas, and vascular anomalies is briefly reviewed. Then, the literature on clinical and experimental esophageal atresia-tracheoesophageal fistula (EA-TEF) and congenital diaphragmatic hernia (CDH) is reviewed for the presence of associated NC defects. Finally, some of the molecular signaling pathways involved in both conditions (sonic hedgehog, Hox genes, and retinoids) are summarized. The association of facial, cardiovascular, thymic, parathyroid, and C-cell defects together with anomalies of extrinsic and intrinsic esophageal innervation in babies and/or animals with both EA-TEF and CDH strongly supports the hypothesis that NC is involved in the pathogenesis of these malformative clusters. On the other hand, both EA-TEF and CDH are observed in mice mutant for genes involved in the previously mentioned signaling pathways. The investigation of NC-related molecular pathogenic pathways involved in malformative associations like EA-TEF and CDH that are induced by chromosomal anomalies, chemical teratogens, and engineered mutations is a promising way of clarifying why and how some pediatric surgical conditions occur. Pediatric surgeons should be actively involved in these investigations.

  20. Enteric neurospheres are not specific to neural crest cultures : Implications for neural stem cell therapies

    NARCIS (Netherlands)

    Binder, E. (Ellen); D. Natarajan (Dipa); J.E. Cooper (Julie E.); Kronfli, R. (Rania); Cananzi, M. (Mara); J.-M. Delalande (Jean-Marie); C. Mccann; A.J. Burns (Alan); N. Thapar (Nikhil)

    2015-01-01

    textabstractObjectives Enteric neural stem cells provide hope of curative treatment for enteric neuropathies. Current protocols for their harvesting from humans focus on the generation of 'neurospheres' from cultures of dissociated gut tissue. The study aims to better understand the derivation,

  1. Dissecting CNBP, a zinc-finger protein required for neural crest development, in its structural and functional domains.

    Science.gov (United States)

    Armas, Pablo; Agüero, Tristán H; Borgognone, Mariana; Aybar, Manuel J; Calcaterra, Nora B

    2008-10-17

    Cellular nucleic-acid-binding protein (CNBP) plays an essential role in forebrain and craniofacial development by controlling cell proliferation and survival to mediate neural crest expansion. CNBP binds to single-stranded nucleic acids and displays nucleic acid chaperone activity in vitro. The CNBP family shows a conserved modular organization of seven Zn knuckles and an arginine-glycine-glycine (RGG) box between the first and second Zn knuckles. The participation of these structural motifs in CNBP biochemical activities has still not been addressed. Here, we describe the generation of CNBP mutants that dissect the protein into regions with structurally and functionally distinct properties. Mutagenesis approaches were followed to generate: (i) an amino acid replacement that disrupted the fifth Zn knuckle; (ii) N-terminal deletions that removed the first Zn knuckle and the RGG box, or the RGG box alone; and (iii) a C-terminal deletion that eliminated the three last Zn knuckles. Mutant proteins were overexpressed in Escherichia coli, purified, and used to analyze their biochemical features in vitro, or overexpressed in Xenopus laevis embryos to study their function in vivo during neural crest cell development. We found that the Zn knuckles are required, but not individually essential, for CNBP biochemical activities, whereas the RGG box is essential for RNA-protein binding and nucleic acid chaperone activity. Removal of the RGG box allowed CNBP to preserve a weak single-stranded-DNA-binding capability. A mutant mimicking the natural N-terminal proteolytic CNBP form behaved as the RGG-deleted mutant. By gain-of-function and loss-of-function experiments in Xenopus embryos, we confirmed the participation of CNBP in neural crest development, and we demonstrated that the CNBP mutants lacking the N-terminal region or the RGG box alone may act as dominant negatives in vivo. Based on these data, we speculate about the existence of a specific proteolytic mechanism for the

  2. Phenothiourea sensitizes zebrafish cranial neural crest and extraocular muscle development to changes in retinoic acid and IGF signaling.

    Directory of Open Access Journals (Sweden)

    Brenda L Bohnsack

    Full Text Available 1-Phenyl 2-thiourea (PTU is a tyrosinase inhibitor commonly used to block pigmentation and aid visualization of zebrafish development. At the standard concentration of 0.003% (200 µM, PTU inhibits melanogenesis and reportedly has minimal other effects on zebrafish embryogenesis. We found that 0.003% PTU altered retinoic acid and insulin-like growth factor (IGF regulation of neural crest and mesodermal components of craniofacial development. Reduction of retinoic acid synthesis by the pan-aldehyde dehydrogenase inhibitor diethylbenzaldehyde, only when combined with 0.003% PTU, resulted in extraocular muscle disorganization. PTU also decreased retinoic acid-induced teratogenic effects on pharyngeal arch and jaw cartilage despite morphologically normal appearing PTU-treated controls. Furthermore, 0.003% PTU in combination with inhibition of IGF signaling through either morpholino knockdown or pharmacologic inhibition of tyrosine kinase receptor phosphorylation, disrupted jaw development and extraocular muscle organization. PTU in and of itself inhibited neural crest development at higher concentrations (0.03% and had the greatest inhibitory effect when added prior to 22 hours post fertilization (hpf. Addition of 0.003% PTU between 4 and 20 hpf decreased thyroxine (T4 in thyroid follicles in the nasopharynx of 96 hpf embryos. Treatment with exogenous triiodothyronine (T3 and T4 improved, but did not completely rescue, PTU-induced neural crest defects. Thus, PTU should be used with caution when studying zebrafish embryogenesis as it alters the threshold of different signaling pathways important during craniofacial development. The effects of PTU on neural crest development are partially caused by thyroid hormone signaling.

  3. The Melanocyte Fate in Neural Crest is Triggered by Myb Proteins through Activation of c-kit

    Czech Academy of Sciences Publication Activity Database

    Karafiát, Vít; Dvořáková, Marta; Pajer, Petr; Čermák, Vladimír; Dvořák, Michal

    2007-01-01

    Roč. 64, č. 21 (2007), s. 2975-2984 ISSN 1420-682X R&D Projects: GA MŠk(CZ) LC06061; GA ČR GA204/06/1728 Institutional research plan: CEZ:AV0Z50520514 Keywords : c-myb proto-oncogene * v-mybAMV oncogene * neural crest * cell fate determination * melanocytes * c-kit signal Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.239, year: 2007

  4. In vitro cementoblast-like differentiation of postmigratory neural crest-derived p75{sup +} stem cells with dental follicle cell conditioned medium

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Xiujie; Liu, Luchuan; Deng, Manjing; Liu, Rui; Zhang, Li; Nie, Xin, E-mail: dr.xinnie@gmail.com

    2015-09-10

    Cranial neural crest-derived cells (CNCCs) play important role in epithelial–mesenchymal interactions during tooth morphogenesis. However, the heterogeneity of CNCCs and their tendency to spontaneously differentiate along smooth muscle or osteoblast lineages in vitro limit further understanding of their biological properties. We studied the differentiation properties of isolated rat embryonic postmigratory CNCCs, expressing p75 neurotrophin receptor (p75NTR). These p75NTR positive (p75{sup +}) CNCCs, isolated using fluorescence activated cell sorter, exhibited fibroblast-like morphology and characteristics of mesenchymal stem cells. Incubation of p75{sup +} CNCCs in dental follicle cell conditioned medium (DFCCM) combined with dentin non-collagenous proteins (dNCPs), altered their morphological features to cementoblast-like appearance. These cells also showed low proliferative activity, high ALP activity and significantly increased calcified nodule formation. Markers related to mineralization or specific to cementoblast lineage were highly expressed in dNCPs/DFCCM-treated p75{sup +} cells, suggesting their differentiation along cementoblast-like lineage. p75{sup +} stem cells selected from postmigratory CNCCs represent a pure stem cell population and could be used as a stem cell model for in vitro studies due to their intrinsic ability to differentiate to neuronal cells and transform from neuroectoderm to ectomesenchyme. They can provide a potential stem cell resource for tooth engineering studies and help to further investigate mechanisms of epithelial–mesenchymal interactions in tooth morphogenesis. - Highlights: • Cranial neural crest-derived cells (CNCCs) take part in tooth morphogenesis. • positive (p75{sup +}) CNCCs are fibroblast-like and resemble mesenchymal stem cells. • p75{sup +} CNCCs in dental follicle cell medium (DFCCM/dNCP) appear like cementoblasts. • DFCCM/dNCP-treated p75{sup +} cells express cementoblast specific mineralization

  5. In vitro cementoblast-like differentiation of postmigratory neural crest-derived p75+ stem cells with dental follicle cell conditioned medium

    International Nuclear Information System (INIS)

    Wen, Xiujie; Liu, Luchuan; Deng, Manjing; Liu, Rui; Zhang, Li; Nie, Xin

    2015-01-01

    Cranial neural crest-derived cells (CNCCs) play important role in epithelial–mesenchymal interactions during tooth morphogenesis. However, the heterogeneity of CNCCs and their tendency to spontaneously differentiate along smooth muscle or osteoblast lineages in vitro limit further understanding of their biological properties. We studied the differentiation properties of isolated rat embryonic postmigratory CNCCs, expressing p75 neurotrophin receptor (p75NTR). These p75NTR positive (p75 + ) CNCCs, isolated using fluorescence activated cell sorter, exhibited fibroblast-like morphology and characteristics of mesenchymal stem cells. Incubation of p75 + CNCCs in dental follicle cell conditioned medium (DFCCM) combined with dentin non-collagenous proteins (dNCPs), altered their morphological features to cementoblast-like appearance. These cells also showed low proliferative activity, high ALP activity and significantly increased calcified nodule formation. Markers related to mineralization or specific to cementoblast lineage were highly expressed in dNCPs/DFCCM-treated p75 + cells, suggesting their differentiation along cementoblast-like lineage. p75 + stem cells selected from postmigratory CNCCs represent a pure stem cell population and could be used as a stem cell model for in vitro studies due to their intrinsic ability to differentiate to neuronal cells and transform from neuroectoderm to ectomesenchyme. They can provide a potential stem cell resource for tooth engineering studies and help to further investigate mechanisms of epithelial–mesenchymal interactions in tooth morphogenesis. - Highlights: • Cranial neural crest-derived cells (CNCCs) take part in tooth morphogenesis. • positive (p75 + ) CNCCs are fibroblast-like and resemble mesenchymal stem cells. • p75 + CNCCs in dental follicle cell medium (DFCCM/dNCP) appear like cementoblasts. • DFCCM/dNCP-treated p75 + cells express cementoblast specific mineralization markers. • p75 + cells are pure stem

  6. Neuropilin-1 interacts with the second branchial arch microenvironment to mediate chick neural crest cell dynamics

    Science.gov (United States)

    McLennan, Rebecca; Kulesa, Paul M.

    2011-01-01

    Cranial neural crest cells (NCCs) require neuropilin signaling to reach and invade the branchial arches. Here, we use an in vivo chick model to investigate whether the neuropilin-1 knockdown phenotype is specific to the second branchial arch (ba2), changes in NCC behaviors and phenotypic consequences, and whether neuropilins work together to facilitate entry into and invasion of ba2. We find that cranial NCCs with reduced neuropilin-1 expression displayed shorter protrusions and decreased cell body and nuclear length-to-width ratios characteristic of a loss in polarity and motility, after specific interaction with ba2. Directed NCC migration was rescued by transplantation of transfected cells into rhombomere 4 of younger hosts. Lastly, reduction of neuropilin-2 expression by shRNA either solely or with reduction of neuropilin-1 expression did not lead to a stronger head phenotype. Thus, NCCs, independent of rhombomere origin, require neuropilin-1, but not neuropilin-2 to maintain polarity and directed migration into ba2. PMID:20503363

  7. Are neural crest stem cells the missing link between hematopoietic and neurogenic niches?

    Directory of Open Access Journals (Sweden)

    Cécile eCoste

    2015-06-01

    Full Text Available Hematopoietic niches are defined as cellular and molecular microenvironments that regulate hematopoietic stem cell (HSC function together with stem cell autonomous mechanisms. Many different cell types have been characterized as contributors to the formation of HSC niches, such as osteoblasts, endothelial cells, Schwann cells, and mesenchymal progenitors. These mesenchymal progenitors have themselves been classified as CXC chemokine ligand (CXCL12-abundant reticular (CAR cells, stem cell factor expressing cells, or nestin-positive mesenchymal stem cells (MSCs, which have been recently identified as neural crest-derived cells (NCSCs. Together, these cells are spatially associated with HSCs and believed to provide appropriate microenvironments for HSC self-renewal, differentiation, mobilization and hibernation both by cell-to-cell contact and soluble factors. Interestingly, it appears that regulatory pathways governing the hematopoietic niche homeostasis are operating in the neurogenic niche as well. Therefore, this review paper aims to compare both the regulation of hematopoietic and neurogenic niches, in order to highlight the role of NCSCs and nervous system components in the development and the regulation of the hematopoietic system.

  8. Are neural crest stem cells the missing link between hematopoietic and neurogenic niches?

    Science.gov (United States)

    Coste, Cécile; Neirinckx, Virginie; Gothot, André; Wislet, Sabine; Rogister, Bernard

    2015-01-01

    Hematopoietic niches are defined as cellular and molecular microenvironments that regulate hematopoietic stem cell (HSC) function together with stem cell autonomous mechanisms. Many different cell types have been characterized as contributors to the formation of HSC niches, such as osteoblasts, endothelial cells, Schwann cells, and mesenchymal progenitors. These mesenchymal progenitors have themselves been classified as CXC chemokine ligand (CXCL) 12-abundant reticular (CAR) cells, stem cell factor expressing cells, or nestin-positive mesenchymal stem cells (MSCs), which have been recently identified as neural crest-derived cells (NCSCs). Together, these cells are spatially associated with HSCs and believed to provide appropriate microenvironments for HSC self-renewal, differentiation, mobilization and hibernation both by cell-cell contact and soluble factors. Interestingly, it appears that regulatory pathways governing the hematopoietic niche homeostasis are operating in the neurogenic niche as well. Therefore, this review paper aims to compare both the regulation of hematopoietic and neurogenic niches, in order to highlight the role of NCSCs and nervous system components in the development and the regulation of the hematopoietic system.

  9. PDGF controls contact inhibition of locomotion by regulating N-cadherin during neural crest migration.

    Science.gov (United States)

    Bahm, Isabel; Barriga, Elias H; Frolov, Antonina; Theveneau, Eric; Frankel, Paul; Mayor, Roberto

    2017-07-01

    A fundamental property of neural crest (NC) migration is contact inhibition of locomotion (CIL), a process by which cells change their direction of migration upon cell contact. CIL has been proven to be essential for NC migration in amphibians and zebrafish by controlling cell polarity in a cell contact-dependent manner. Cell contact during CIL requires the participation of the cell adhesion molecule N-cadherin, which starts to be expressed by NC cells as a consequence of the switch between E- and N-cadherins during epithelial-to-mesenchymal transition (EMT). However, the mechanism that controls the upregulation of N-cadherin remains unknown. Here, we show that platelet-derived growth factor receptor alpha (PDGFRα) and its ligand platelet-derived growth factor A (PDGF-A) are co-expressed in migrating cranial NC. Inhibition of PDGF-A/PDGFRα blocks NC migration by inhibiting N-cadherin and, consequently, impairing CIL. Moreover, we identify phosphatidylinositol-3-kinase (PI3K)/AKT as a downstream effector of the PDGFRα cellular response during CIL. Our results lead us to propose PDGF-A/PDGFRα signalling as a tissue-autonomous regulator of CIL by controlling N-cadherin upregulation during EMT. Finally, we show that once NC cells have undergone EMT, the same PDGF-A/PDGFRα works as an NC chemoattractant, guiding their directional migration. © 2017. Published by The Company of Biologists Ltd.

  10. The SWI/SNF BAF-A complex is essential for neural crest development.

    Science.gov (United States)

    Chandler, Ronald L; Magnuson, Terry

    2016-03-01

    Growing evidence indicates that chromatin remodeler mutations underlie the pathogenesis of human neurocristopathies or disorders that affect neural crest cells (NCCs). However, causal relationships among chromatin remodeler subunit mutations and NCC defects remain poorly understood. Here we show that homozygous loss of ARID1A-containing, SWI/SNF chromatin remodeling complexes (BAF-A) in NCCs results in embryonic lethality in mice, with mutant embryos succumbing to heart defects. Strikingly, monoallelic loss of ARID1A in NCCs led to craniofacial defects in adult mice, including shortened snouts and low set ears, and these defects were more pronounced following homozygous loss of ARID1A, with the ventral cranial bones being greatly reduced in size. Early NCC specification and expression of the BRG1 NCC target gene, PLEXINA2, occurred normally in the absence of ARID1A. Nonetheless, mutant embryos displayed incomplete conotruncal septation of the cardiac outflow tract and defects in the posterior pharyngeal arteries, culminating in persistent truncus arteriosus and agenesis of the ductus arteriosus. Consistent with this, migrating cardiac NCCs underwent apoptosis within the circumpharyngeal ridge. Our data support the notion that multiple, distinct chromatin remodeling complexes govern genetically separable events in NCC development and highlight a potential pathogenic role for NCCs in the human BAF complex disorder, Coffin-Siris Syndrome. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Temporally Regulated Neural Crest Transcription Factors Distinguish Neuroectodermal Tumors of Varying Malignancy and Differentiation

    Directory of Open Access Journals (Sweden)

    Timothy R. Gershon

    2005-06-01

    Full Text Available Neuroectodermal tumor cells, like neural crest (NC cells, are pluripotent, proliferative, and migratory. We tested the hypothesis that genetic programs essential to NC development are activated in neuroectodermal tumors. We examined the expression of transcription factors PAX3, PAX7, AP-2α, and SOX10 in human embryos and neuroectodermal tumors: neurofibroma, schwannoma, neuroblastoma, malignant nerve sheath tumor, melanoma, medulloblastoma, supratentorial primitive neuroectodermal tumor, and Ewing's sarcoma. We also examined the expression of P0, ERBB3, and STX, targets of SOX10, AP-2α, and PAX3, respectively. PAX3, AP-2α, and SOX10 were expressed sequentially in human NC development, whereas PAX7 was restricted to mesoderm. Tumors expressed PAX3, AP-2α, SOX10, and PAX7 in specific combinations. SOX10 and AP-2α were expressed in relatively differentiated neoplasms. The early NC marker, PAX3, and its homologue, PAX7, were detected in poorly differentiated tumors and tumors with malignant potential. Expression of NC transcription factors and target genes correlated. Transcription factors essential to NC development are thus present in neuroectodermal tumors. Correlation of specific NC transcription factors with phenotype, and with expression of specific downstream genes, provides evidence that these transcription factors actively influence gene expression and tumor behavior. These findings suggest that PAX3, PAX7, AP-2α, and SOX10 are potential markers of prognosis and targets for therapeutic intervention.

  12. Neural crest contribution to lingual mesenchyme, epithelium and developing taste papillae and taste buds.

    Science.gov (United States)

    Liu, Hong-Xiang; Komatsu, Yoshihiro; Mishina, Yuji; Mistretta, Charlotte M

    2012-08-15

    The epithelium of mammalian tongue hosts most of the taste buds that transduce gustatory stimuli into neural signals. In the field of taste biology, taste bud cells have been described as arising from "local epithelium", in distinction from many other receptor organs that are derived from neurogenic ectoderm including neural crest (NC). In fact, contribution of NC to both epithelium and mesenchyme in the developing tongue is not fully understood. In the present study we used two independent, well-characterized mouse lines, Wnt1-Cre and P0-Cre that express Cre recombinase in a NC-specific manner, in combination with two Cre reporter mouse lines, R26R and ZEG, and demonstrate a contribution of NC-derived cells to both tongue mesenchyme and epithelium including taste papillae and taste buds. In tongue mesenchyme, distribution of NC-derived cells is in close association with taste papillae. In tongue epithelium, labeled cells are observed in an initial scattered distribution and progress to a clustered pattern between papillae, and within papillae and early taste buds. This provides evidence for a contribution of NC to lingual epithelium. Together with previous reports for the origin of taste bud cells from local epithelium in postnatal mouse, we propose that NC cells migrate into and reside in the epithelium of the tongue primordium at an early embryonic stage, acquire epithelial cell phenotypes, and undergo cell proliferation and differentiation that is involved in the development of taste papillae and taste buds. Our findings lead to a new concept about derivation of taste bud cells that include a NC origin. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Inherently stochastic spiking neurons for probabilistic neural computation

    KAUST Repository

    Al-Shedivat, Maruan; Naous, Rawan; Neftci, Emre; Cauwenberghs, Gert; Salama, Khaled N.

    2015-01-01

    . Our analysis and simulations show that the proposed neuron circuit satisfies a neural computability condition that enables probabilistic neural sampling and spike-based Bayesian learning and inference. Our findings constitute an important step towards

  14. Lack of the central nervous system- and neural crest-expressed forkhead gene Foxs1 affects motor function and body weight.

    Science.gov (United States)

    Heglind, Mikael; Cederberg, Anna; Aquino, Jorge; Lucas, Guilherme; Ernfors, Patrik; Enerbäck, Sven

    2005-07-01

    To gain insight into the expression pattern and functional importance of the forkhead transcription factor Foxs1, we constructed a Foxs1-beta-galactosidase reporter gene "knock-in" (Foxs1beta-gal/beta-gal) mouse, in which the wild-type (wt) Foxs1 allele has been inactivated and replaced by a beta-galactosidase reporter gene. Staining for beta-galactosidase activity reveals an expression pattern encompassing neural crest-derived cells, e.g., cranial and dorsal root ganglia as well as several other cell populations in the central nervous system (CNS), most prominently the internal granule layer of cerebellum. Other sites of expression include the lachrymal gland, outer nuclear layer of retina, enteric ganglion neurons, and a subset of thalamic and hypothalamic nuclei. In the CNS, blood vessel-associated smooth muscle cells and pericytes stain positive for Foxs1. Foxs1beta-gal/beta-gal mice perform significantly better (P fat diet, and we speculate that dorsomedial hypothalamic neurons, expressing Foxs1, could play a role in regulating body weight via regulation of sympathetic outflow. In support of this, we observed increased levels of uncoupling protein 1 mRNA in Foxs1beta-gal/beta-gal mice. This points toward a role for Foxs1 in the integration and processing of neuronal signals of importance for energy turnover and motor function.

  15. E-cadherin is required for cranial neural crest migration in Xenopus laevis.

    Science.gov (United States)

    Huang, Chaolie; Kratzer, Marie-Claire; Wedlich, Doris; Kashef, Jubin

    2016-03-15

    The cranial neural crest (CNC) is a highly motile and multipotent embryonic cell population, which migrates directionally on defined routes throughout the embryo, contributing to facial structures including cartilage, bone and ganglia. Cadherin-mediated cell-cell adhesion is known to play a crucial role in the directional migration of CNC cells. However, migrating CNC co-express different cadherin subtypes, and their individual roles have yet to be fully explored. In previous studies, the expression of individual cadherin subtypes has been analysed using different methods with varying sensitivities, preventing the direct comparison of expression levels. Here, we provide the first comprehensive and comparative analysis of the expression of six cadherin superfamily members during different phases of CNC cell migration in Xenopus. By applying a quantitative RT-qPCR approach, we can determine the copy number and abundance of each expressed cadherin through different phases of CNC migration. Using this approach, we show for the first time expression of E-cadherin and XB/C-cadherin in CNC cells, adding them as two new members of cadherins co-expressed during CNC migration. Cadherin co-expression during CNC migration in Xenopus, in particular the constant expression of E-cadherin, contradicts the classical epithelial-mesenchymal transition (EMT) model postulating a switch in cadherin expression. Loss-of-function experiments further show that E-cadherin is required for proper CNC cell migration in vivo and also for cell protrusion formation in vitro. Knockdown of E-cadherin is not rescued by co-injection of other classical cadherins, pointing to a specific function of E-cadherin in mediating CNC cell migration. Finally, through reconstitution experiments with different E-cadherin deletion mutants in E-cadherin morphant embryos, we demonstrate that the extracellular domain, but not the cytoplasmic domain, of E-cadherin is sufficient to rescue CNC cell migration in vivo

  16. Occipital cephalocele with neural crest remnants? Radiological and pathological findings in a newborn boy.

    Science.gov (United States)

    Arishima, Hidetaka; Neishi, Hiroyuki; Kikuta, Ken-Ichiro

    2016-06-01

    A cephalocele is a congenital anomaly involving the herniation of intracranial tissue from a skull defect. The sac containing the central nervous system (CNS) with the ventricle system is called the encephalocystocele. An atretic cephalocele is thought to be an abortive form of cephalocele, and the essential nature is still controversial. Here, we report the case of a newborn boy with an occipital cephalocele containing a small cystic component which was composed of ependymal cells and the immature CNS tissue. A newborn boy was admitted to our hospital because of an occipital mass, which was about 2.5 cm in diameter, located at the posterior midline, and covered with alopetic skin without CSF leakage. He had a cleft palate. Magnetic resonance imaging (MRI) clearly showed an occipital cephalocele with a tiny cystic component connecting to the subarachnoid space. MRI also showed mild hydrocephalus, hypoplasia of the corpus callosum and tentorium cerebelli, dropping down of the bilateral occipital lobes and vermicular agenesis. We performed the extirpation of the subscalp module under general anesthesia and histologically examined the resected mass. On immunohistopathological examination, most part of the subscalp module was fibrous tissue with numerous vessels and meningeal origin cells. In a small part of the innermost layer, we found a small island consisting of CNS tissue and a tiny cyst lined with a single layer of ependymal cells. Based on radiological and immunohistopathological findings, we speculate that the cystic component at the base of the nodule seems to correspond to neural crest remnants but not to true herniation of the brain and cerebral ventricles.

  17. Derivation of corneal endothelial cell-like cells from rat neural crest cells in vitro.

    Directory of Open Access Journals (Sweden)

    Chengqun Ju

    Full Text Available The aim of this study was to investigate the feasibility of inducing rat neural crest cells (NCC to differentiate to functional corneal endothelial cell (CEC-like cells in vitro. Rat NCC were induced with adult CEC-derived conditioned medium. Immunofluorescence, flow cytometry and real time RT-PCR assay were used to detect expression of the corneal endothelium differentiation marker N-cadherin and transcription factors FoxC1 and Pitx2. CFDA SE-labeled CEC-like cells were transplanted to the corneal endothelium of a rat corneal endothelium deficiency model, and an eye-down position was maintained for 24 hours to allow cell attachment. The animals were observed for as long as 2 months after surgery and underwent clinical and histological examination. Spindle-like NCC turned to polygonal CEC-like after induction and expressed N-cadherin, FoxC1, Pitx2, zonula occludens-1 and sodium-potassium pump Na(+/K(+ ATPase. The corneas of the experimental group were much clearer than those of the control group and the mean corneal thickness in the experimental group was significantly less than in the control group7, 14, 21 and 28 days after surgery. Confocal microscopy through focusing and histological analysis confirmed that green fluorescence-positive CEC-like cells formed a monolayer covering the Descemet's membrane in the experimental group. In conclusion, CEC-like cells derived from NCCs displayed characters of native CEC, and the induction protocol provides guidance for future human CEC induction from NCC.

  18. Implementing Signature Neural Networks with Spiking Neurons.

    Science.gov (United States)

    Carrillo-Medina, José Luis; Latorre, Roberto

    2016-01-01

    Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm-i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data-to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence

  19. Combination of exogenous cell transplantation and 5-HT4 receptor agonism induce endogenous enteric neural crest-derived cells in a rat hypoganglionosis model.

    Science.gov (United States)

    Yu, Hui; Zheng, Bai-Jun; Pan, Wei-Kang; Wang, Huai-Jie; Xie, Chong; Zhao, Yu-Ying; Chen, Xin-Lin; Liu, Yong; Gao, Ya

    2017-02-01

    Enteric neural crest-derived cells (ENCCs) can migrate into endogenous ganglia and differentiate into progeny cells, and have even partially rescued bowel function; however, poor reliability and limited functional recovery after ENCC transplantation have yet to be addressed. Here, we investigated the induction of endogenous ENCCs by combining exogenous ENCC transplantation with a 5-HT 4 receptor agonist mosapride in a rat model of hypoganglionosis, established by benzalkonium chloride treatment. ENCCs, isolated from the gut of newborn rats, were labeled with a lentiviral eGFP reporter. ENCCs and rats were treated with the 5-HT 4 receptor agonist/antagonist. The labeled ENCCs were then transplanted into the muscular layer of benzalkonium chloride-treated colons. At given days post-intervention, colonic tissue samples were removed for histological analysis. ENCCs and neurons were detected by eGFP expression and immunoreactivity to p75 NTR and peripherin, respectively. eGFP-positive ENCCs and neurons could survive and maintain levels of fluorescence after transplantation. With longer times post-intervention, the number of peripherin-positive cells gradually increased in all groups. Significantly more peripherin-positive cells were found following ENCCs plus mosapride treatment, compared with the other groups. These results show that exogenous ENCCs combined with the 5-HT 4 receptor agonist effectively induced endogenous ENCCs proliferation and differentiation in a rat hypoganglionosis model. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Stem cell property of postmigratory cranial neural crest cells and their utility in alveolar bone regeneration and tooth development.

    Science.gov (United States)

    Chung, Il-Hyuk; Yamaza, Takayoshi; Zhao, Hu; Choung, Pill-Hoon; Shi, Songtao; Chai, Yang

    2009-04-01

    The vertebrate neural crest is a multipotent cell population that gives rise to a variety of different cell types. We have discovered that postmigratory cranial neural crest cells (CNCCs) maintain mesenchymal stem cell characteristics and show potential utility for the regeneration of craniofacial structures. We are able to induce the osteogenic differentiation of postmigratory CNCCs, and this differentiation is regulated by bone morphogenetic protein (BMP) and transforming growth factor-beta signaling pathways. After transplantation into a host animal, postmigratory CNCCs form bone matrix. CNCC-formed bones are distinct from bones regenerated by bone marrow mesenchymal stem cells. In addition, CNCCs support tooth germ survival via BMP signaling in our CNCC-tooth germ cotransplantation system. Thus, we conclude that postmigratory CNCCs preserve stem cell features, contribute to craniofacial bone formation, and play a fundamental role in supporting tooth organ development. These findings reveal a novel function for postmigratory CNCCs in organ development, and demonstrate the utility of these CNCCs in regenerating craniofacial structures.

  1. Differentiation defect in neural crest-derived smooth muscle cells in patients with aortopathy associated with bicuspid aortic valves

    Directory of Open Access Journals (Sweden)

    Jiao Jiao

    2016-08-01

    Full Text Available Individuals with bicuspid aortic valves (BAV are at a higher risk of developing thoracic aortic aneurysms (TAA than patients with trileaflet aortic valves (TAV. The aneurysms associated with BAV most commonly involve the ascending aorta and spare the descending aorta. Smooth muscle cells (SMCs in the ascending and descending aorta arise from neural crest (NC and paraxial mesoderm (PM, respectively. We hypothesized defective differentiation of the neural crest stem cells (NCSCs-derived SMCs but not paraxial mesoderm cells (PMCs-derived SMCs contributes to the aortopathy associated with BAV. When induced pluripotent stem cells (iPSCs from BAV/TAA patients were differentiated into NCSC-derived SMCs, these cells demonstrated significantly decreased expression of marker of SMC differentiation (MYH11 and impaired contraction compared to normal control. In contrast, the PMC-derived SMCs were similar to control cells in these aspects. The NCSC-SMCs from the BAV/TAA also showed decreased TGF-β signaling based on phosphorylation of SMAD2, and increased mTOR signaling. Inhibition of mTOR pathway using rapamycin rescued the aberrant differentiation. Our data demonstrates that decreased differentiation and contraction of patient's NCSC-derived SMCs may contribute to that aortopathy associated with BAV.

  2. Bmps and id2a act upstream of Twist1 to restrict ectomesenchyme potential of the cranial neural crest.

    Directory of Open Access Journals (Sweden)

    Ankita Das

    Full Text Available Cranial neural crest cells (CNCCs have the remarkable capacity to generate both the non-ectomesenchyme derivatives of the peripheral nervous system and the ectomesenchyme precursors of the vertebrate head skeleton, yet how these divergent lineages are specified is not well understood. Whereas studies in mouse have indicated that the Twist1 transcription factor is important for ectomesenchyme development, its role and regulation during CNCC lineage decisions have remained unclear. Here we show that two Twist1 genes play an essential role in promoting ectomesenchyme at the expense of non-ectomesenchyme gene expression in zebrafish. Twist1 does so by promoting Fgf signaling, as well as potentially directly activating fli1a expression through a conserved ectomesenchyme-specific enhancer. We also show that Id2a restricts Twist1 activity to the ectomesenchyme lineage, with Bmp activity preferentially inducing id2a expression in non-ectomesenchyme precursors. We therefore propose that the ventral migration of CNCCs away from a source of Bmps in the dorsal ectoderm promotes ectomesenchyme development by relieving Id2a-dependent repression of Twist1 function. Together our model shows how the integration of Bmp inhibition at its origin and Fgf activation along its migratory route would confer temporal and spatial specificity to the generation of ectomesenchyme from the neural crest.

  3. Zebrafish msxB, msxC and msxE function together to refine the neural-nonneural border and regulate cranial placodes and neural crest development.

    Science.gov (United States)

    Phillips, Bryan T; Kwon, Hye-Joo; Melton, Colt; Houghtaling, Paul; Fritz, Andreas; Riley, Bruce B

    2006-06-15

    The zebrafish muscle segment homeobox genes msxB, msxC and msxE are expressed in partially overlapping domains in the neural crest and preplacodal ectoderm. We examined the roles of these msx genes in early development. Disrupting individual msx genes causes modest variable defects, whereas disrupting all three produces a reproducible severe phenotype, suggesting functional redundancy. Neural crest differentiation is blocked at an early stage. Preplacodal development begins normally, but placodes arising from the msx expression domain later show elevated apoptosis and are reduced in size. Cell proliferation is normal in these tissues. Unexpectedly, Msx-deficient embryos become ventralized by late gastrulation whereas misexpression of msxB dorsalizes the embryo. These effects appear to involve Distal-less (Dlx) protein activity, as loss of dlx3b and dlx4b suppresses ventralization in Msx-depleted embryos. At the same time, Msx-depletion restores normal preplacodal gene expression to dlx3b-dlx4b mutants. These data suggest that mutual antagonism between Msx and Dlx proteins achieves a balance of function required for normal preplacodal differentiation and placement of the neural-nonneural border.

  4. Memristor-based neural networks: Synaptic versus neuronal stochasticity

    KAUST Repository

    Naous, Rawan; Alshedivat, Maruan; Neftci, Emre; Cauwenberghs, Gert; Salama, Khaled N.

    2016-01-01

    In neuromorphic circuits, stochasticity in the cortex can be mapped into the synaptic or neuronal components. The hardware emulation of these stochastic neural networks are currently being extensively studied using resistive memories or memristors

  5. Gene expression profiling analysis of the effects of low-intensity pulsed ultrasound on induced pluripotent stem cell-derived neural crest stem cells.

    Science.gov (United States)

    Xia, Bin; Zou, Yang; Xu, Zhiling; Lv, Yonggang

    2017-11-01

    Low-intensity pulsed ultrasound (LIPUS) is a noninvasive technique that has been shown to affect cell proliferation, migration, and differentiation and promote the regeneration of damaged peripheral nerve. Our previous studies had proved that LIPUS can significantly promote the neural differentiation of induced pluripotent stem cell-derived neural crest stem cells (iPSCs-NCSCs) and enhance the repair of rat-transected sciatic nerve. To further explore the underlying mechanisms of LIPUS treatment of iPSCs-NCSCs, this study reported the gene expression profiling analysis of iPSCs-NCSCs before and after LIPUS treatment using the RNA-sequencing (RNA-Seq) method. It was found that expression of 76 genes of iPSCs-NCSCs cultured in a serum-free neural induction medium and expression of 21 genes of iPSCs-NCSCs cultured in a neuronal differentiation medium were significantly changed by LIPUS treatment. The differentially expressed genes are related to angiogenesis, nervous system activity and functions, cell activities, and so on. The RNA-seq results were further verified by a quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). High correlation was observed between the results obtained from qRT-PCR and RNA-Seq. This study presented new information on the global gene expression patterns of iPSCs-NCSCs after LIPUS treatment and may expand the understanding of the complex molecular mechanism of LIPUS treatment of iPSCs-NCSCs. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  6. A Neuron- and a Synapse Chip for Artificial Neural Networks

    DEFF Research Database (Denmark)

    Lansner, John; Lehmann, Torsten

    1992-01-01

    A cascadable, analog, CMOS chip set has been developed for hardware implementations of artificial neural networks (ANN's):I) a neuron chip containing an array of neurons with hyperbolic tangent activation functions and adjustable gains, and II) a synapse chip (or a matrix-vector multiplier) where...

  7. Search for the Missing lncs: Gene Regulatory Networks in Neural Crest Development and Long Non-coding RNA Biomarkers of Hirschsprung's Disease

    Science.gov (United States)

    Hirschsprung’s disease (HSCR), a birth defect characterized by variable aganglionosis of the gut, affects about 1 in 5000 births, and is a consequence of abnormal development of neural crest cells, from which enteric ganglia derive. In the companion article in this issue (Shen et...

  8. E-cigarette aerosol exposure can cause craniofacial defects in Xenopus laevis embryos and mammalian neural crest cells.

    Directory of Open Access Journals (Sweden)

    Allyson E Kennedy

    Full Text Available Since electronic cigarette (ECIG introduction to American markets in 2007, vaping has surged in popularity. Many, including women of reproductive age, also believe that ECIG use is safer than traditional tobacco cigarettes and is not hazardous when pregnant. However, there are few studies investigating the effects of ECIG exposure on the developing embryo and nothing is known about potential effects on craniofacial development. Therefore, we have tested the effects of several aerosolized e-cigarette liquids (e-cigAM in an in vivo craniofacial model, Xenopus laevis, as well as a mammalian neural crest cell line. Results demonstrate that e-cigAM exposure during embryonic development induces a variety of defects, including median facial clefts and midface hypoplasia in two of e-cigAMs tested e-cigAMs. Detailed quantitative analyses of the facial morphology revealed that nicotine is not the main factor in inducing craniofacial defects, but can exacerbate the effects of the other e-liquid components. Additionally, while two different e-cigAMs can have very similar consequences on facial appearances, there are subtle differences that could be due to the differences in e-cigAM components. Further assessment of embryos exposed to these particular e-cigAMs revealed cranial cartilage and muscle defects and a reduction in the blood supply to the face. Finally, the expression of markers for vascular and cartilage differentiation was reduced in a mammalian neural crest cell line corroborating the in vivo effects. Our work is the first to show that ECIG use could pose a potential hazard to the developing embryo and cause craniofacial birth defects. This emphasizes the need for more testing and regulation of this new popular product.

  9. E-cigarette aerosol exposure can cause craniofacial defects in Xenopus laevis embryos and mammalian neural crest cells.

    Science.gov (United States)

    Kennedy, Allyson E; Kandalam, Suraj; Olivares-Navarrete, Rene; Dickinson, Amanda J G

    2017-01-01

    Since electronic cigarette (ECIG) introduction to American markets in 2007, vaping has surged in popularity. Many, including women of reproductive age, also believe that ECIG use is safer than traditional tobacco cigarettes and is not hazardous when pregnant. However, there are few studies investigating the effects of ECIG exposure on the developing embryo and nothing is known about potential effects on craniofacial development. Therefore, we have tested the effects of several aerosolized e-cigarette liquids (e-cigAM) in an in vivo craniofacial model, Xenopus laevis, as well as a mammalian neural crest cell line. Results demonstrate that e-cigAM exposure during embryonic development induces a variety of defects, including median facial clefts and midface hypoplasia in two of e-cigAMs tested e-cigAMs. Detailed quantitative analyses of the facial morphology revealed that nicotine is not the main factor in inducing craniofacial defects, but can exacerbate the effects of the other e-liquid components. Additionally, while two different e-cigAMs can have very similar consequences on facial appearances, there are subtle differences that could be due to the differences in e-cigAM components. Further assessment of embryos exposed to these particular e-cigAMs revealed cranial cartilage and muscle defects and a reduction in the blood supply to the face. Finally, the expression of markers for vascular and cartilage differentiation was reduced in a mammalian neural crest cell line corroborating the in vivo effects. Our work is the first to show that ECIG use could pose a potential hazard to the developing embryo and cause craniofacial birth defects. This emphasizes the need for more testing and regulation of this new popular product.

  10. Inherently stochastic spiking neurons for probabilistic neural computation

    KAUST Repository

    Al-Shedivat, Maruan

    2015-04-01

    Neuromorphic engineering aims to design hardware that efficiently mimics neural circuitry and provides the means for emulating and studying neural systems. In this paper, we propose a new memristor-based neuron circuit that uniquely complements the scope of neuron implementations and follows the stochastic spike response model (SRM), which plays a cornerstone role in spike-based probabilistic algorithms. We demonstrate that the switching of the memristor is akin to the stochastic firing of the SRM. Our analysis and simulations show that the proposed neuron circuit satisfies a neural computability condition that enables probabilistic neural sampling and spike-based Bayesian learning and inference. Our findings constitute an important step towards memristive, scalable and efficient stochastic neuromorphic platforms. © 2015 IEEE.

  11. Zebrafish Adar2 Edits the Q/R site of AMPA receptor Subunit gria2α transcript to ensure normal development of nervous system and cranial neural crest cells.

    Directory of Open Access Journals (Sweden)

    I-Chen Li

    Full Text Available BACKGROUND: Adar2 deaminates selective adenosines to inosines (A-to-I RNA editing in the double-stranded region of nuclear transcripts. Although the functions of mouse Adar2 and its biologically most important substrate gria2, encoding the GluA2 subunit of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor, have been extensively studied, the substrates and functions of zebrafish Adar2 remain elusive. METHODS/PRINCIPAL FINDINGS: Expression of Adar2 was perturbed in the adar2 morphant (adar2MO, generated by antisense morpholio oligonucleotides. The Q/R editing of gria2α was reduced in the adar2MO and was enhanced by overexpression of Adar2, demonstrating an evolutionarily conserved activity between zebrafish and mammalian Adar2 in editing the Q/R site of gria2. To delineate the role of Q/R editing of gria2α in the developmental defects observed in the adar2MO, the Q/R editing of gria2α was specifically perturbed in the gria2αQRMO, generated by a morpholio oligonucleotide complementary to the exon complementary sequence (ECS required for the Q/R editing. Analogous to the adar2-deficient and Q/R-editing deficient mice displaying identical neurological defects, the gria2αQRMO and adar2MO displayed identical developmental defects in the nervous system and cranial cartilages. Knockdown p53 abolished apoptosis and partially suppressed the loss of spinal cord motor neurons in these morphants. However, reducing p53 activity neither replenished the brain neuronal populations nor rescued the developmental defects. The expressions of crestin and sox9b in the neural crest cells were reduced in the adar2MO and gria2αQRMO. Overexpressing the edited GluA2αR in the adar2MO restored normal expressions of cresting and sox9b. Moreover, overexpressing the unedited GluA2αQ in the wild type embryos resulted in reduction of crestin and sox9b expressions. These results argue that an elevated GluA2αQ level is sufficient for generating the

  12. Combination of exogenous cell transplantation and 5-HT{sub 4} receptor agonism induce endogenous enteric neural crest-derived cells in a rat hypoganglionosis model

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hui [Department of Pediatric Surgery, the Second Affiliated Hospital, Xi’an Jiaotong University, No 157, Xi Wu Road, Xi’an 710004, Shaanxi (China); Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi’an Jiaotong University, No 96, Yan Ta Xi Road, Xi’an 710061, Shaanxi (China); Zheng, Bai-Jun; Pan, Wei-Kang; Wang, Huai-Jie; Xie, Chong; Zhao, Yu-Ying [Department of Pediatric Surgery, the Second Affiliated Hospital, Xi’an Jiaotong University, No 157, Xi Wu Road, Xi’an 710004, Shaanxi (China); Chen, Xin-Lin; Liu, Yong [Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi’an Jiaotong University, No 96, Yan Ta Xi Road, Xi’an 710061, Shaanxi (China); Gao, Ya, E-mail: ygao@mail.xjtu.edu.cn [Department of Pediatric Surgery, the Second Affiliated Hospital, Xi’an Jiaotong University, No 157, Xi Wu Road, Xi’an 710004, Shaanxi (China)

    2017-02-01

    Enteric neural crest-derived cells (ENCCs) can migrate into endogenous ganglia and differentiate into progeny cells, and have even partially rescued bowel function; however, poor reliability and limited functional recovery after ENCC transplantation have yet to be addressed. Here, we investigated the induction of endogenous ENCCs by combining exogenous ENCC transplantation with a 5-HT{sub 4} receptor agonist mosapride in a rat model of hypoganglionosis, established by benzalkonium chloride treatment. ENCCs, isolated from the gut of newborn rats, were labeled with a lentiviral eGFP reporter. ENCCs and rats were treated with the 5-HT{sub 4} receptor agonist/antagonist. The labeled ENCCs were then transplanted into the muscular layer of benzalkonium chloride-treated colons. At given days post-intervention, colonic tissue samples were removed for histological analysis. ENCCs and neurons were detected by eGFP expression and immunoreactivity to p75{sup NTR} and peripherin, respectively. eGFP-positive ENCCs and neurons could survive and maintain levels of fluorescence after transplantation. With longer times post-intervention, the number of peripherin-positive cells gradually increased in all groups. Significantly more peripherin-positive cells were found following ENCCs plus mosapride treatment, compared with the other groups. These results show that exogenous ENCCs combined with the 5-HT{sub 4} receptor agonist effectively induced endogenous ENCCs proliferation and differentiation in a rat hypoganglionosis model. - Highlights: • Survival and differentiation of exogenous ENCCs in treated colons. • With longer times post-intervention, the number of ENCCs and their progeny cells gradually increased. • Exogenous ENCCs combined with the 5-HT4 receptor agonist ffectively induced ENCCs proliferation and differentiation.

  13. Combination of exogenous cell transplantation and 5-HT4 receptor agonism induce endogenous enteric neural crest-derived cells in a rat hypoganglionosis model

    International Nuclear Information System (INIS)

    Yu, Hui; Zheng, Bai-Jun; Pan, Wei-Kang; Wang, Huai-Jie; Xie, Chong; Zhao, Yu-Ying; Chen, Xin-Lin; Liu, Yong; Gao, Ya

    2017-01-01

    Enteric neural crest-derived cells (ENCCs) can migrate into endogenous ganglia and differentiate into progeny cells, and have even partially rescued bowel function; however, poor reliability and limited functional recovery after ENCC transplantation have yet to be addressed. Here, we investigated the induction of endogenous ENCCs by combining exogenous ENCC transplantation with a 5-HT 4 receptor agonist mosapride in a rat model of hypoganglionosis, established by benzalkonium chloride treatment. ENCCs, isolated from the gut of newborn rats, were labeled with a lentiviral eGFP reporter. ENCCs and rats were treated with the 5-HT 4 receptor agonist/antagonist. The labeled ENCCs were then transplanted into the muscular layer of benzalkonium chloride-treated colons. At given days post-intervention, colonic tissue samples were removed for histological analysis. ENCCs and neurons were detected by eGFP expression and immunoreactivity to p75 NTR and peripherin, respectively. eGFP-positive ENCCs and neurons could survive and maintain levels of fluorescence after transplantation. With longer times post-intervention, the number of peripherin-positive cells gradually increased in all groups. Significantly more peripherin-positive cells were found following ENCCs plus mosapride treatment, compared with the other groups. These results show that exogenous ENCCs combined with the 5-HT 4 receptor agonist effectively induced endogenous ENCCs proliferation and differentiation in a rat hypoganglionosis model. - Highlights: • Survival and differentiation of exogenous ENCCs in treated colons. • With longer times post-intervention, the number of ENCCs and their progeny cells gradually increased. • Exogenous ENCCs combined with the 5-HT4 receptor agonist ffectively induced ENCCs proliferation and differentiation.

  14. Neurons from the adult human dentate nucleus: neural networks in the neuron classification.

    Science.gov (United States)

    Grbatinić, Ivan; Marić, Dušica L; Milošević, Nebojša T

    2015-04-07

    Topological (central vs. border neuron type) and morphological classification of adult human dentate nucleus neurons according to their quantified histomorphological properties using neural networks on real and virtual neuron samples. In the real sample 53.1% and 14.1% of central and border neurons, respectively, are classified correctly with total of 32.8% of misclassified neurons. The most important result present 62.2% of misclassified neurons in border neurons group which is even greater than number of correctly classified neurons (37.8%) in that group, showing obvious failure of network to classify neurons correctly based on computational parameters used in our study. On the virtual sample 97.3% of misclassified neurons in border neurons group which is much greater than number of correctly classified neurons (2.7%) in that group, again confirms obvious failure of network to classify neurons correctly. Statistical analysis shows that there is no statistically significant difference in between central and border neurons for each measured parameter (p>0.05). Total of 96.74% neurons are morphologically classified correctly by neural networks and each one belongs to one of the four histomorphological types: (a) neurons with small soma and short dendrites, (b) neurons with small soma and long dendrites, (c) neuron with large soma and short dendrites, (d) neurons with large soma and long dendrites. Statistical analysis supports these results (pneurons can be classified in four neuron types according to their quantitative histomorphological properties. These neuron types consist of two neuron sets, small and large ones with respect to their perykarions with subtypes differing in dendrite length i.e. neurons with short vs. long dendrites. Besides confirmation of neuron classification on small and large ones, already shown in literature, we found two new subtypes i.e. neurons with small soma and long dendrites and with large soma and short dendrites. These neurons are

  15. A key role for poly(ADP-ribose polymerase 3 in ectodermal specification and neural crest development.

    Directory of Open Access Journals (Sweden)

    Michèle Rouleau

    2011-01-01

    Full Text Available The PARP family member poly(ADP-ribose polymerase 3 (PARP3 is structurally related to the well characterized PARP1 that orchestrates cellular responses to DNA strand breaks and cell death by the synthesis of poly(ADP-ribose. In contrast to PARP1 and PARP2, the functions of PARP3 are undefined. Here, we reveal critical functions for PARP3 during vertebrate development.We have used several in vitro and in vivo approaches to examine the possible functions of PARP3 as a transcriptional regulator, a function suggested from its previously reported association with several Polycomb group (PcG proteins. We demonstrate that PARP3 gene occupancy in the human neuroblastoma cell line SK-N-SH occurs preferentially with developmental genes regulating cell fate specification, tissue patterning, craniofacial development and neurogenesis. Addressing the significance of this association during zebrafish development, we show that morpholino oligonucleotide-directed inhibition of parp3 expression in zebrafish impairs the expression of the neural crest cell specifier sox9a and of dlx3b/dlx4b, the formation of cranial sensory placodes, inner ears and pectoral fins. It delays pigmentation and severely impedes the development of the median fin fold and tail bud.Our findings demonstrate that Parp3 is crucial in the early stages of zebrafish development, possibly by exerting its transcriptional regulatory functions as early as during the specification of the neural plate border.

  16. The Wnt Co-Receptor Lrp5 Is Required for Cranial Neural Crest Cell Migration in Zebrafish.

    Directory of Open Access Journals (Sweden)

    Bernd Willems

    Full Text Available During vertebrate neurulation, cranial neural crest cells (CNCCs undergo epithelial to mesenchymal transition (EMT, delaminate from the neural plate border, and migrate as separate streams into different cranial regions. There, they differentiate into distinct parts of the craniofacial skeleton. Canonical Wnt signaling has been shown to be essential for this process at different levels but the involved receptors remained unclear. Here we show that the frizzled co-receptor low-density-lipoprotein (LDL receptor-related protein 5 (Lrp5 plays a crucial role in CNCC migration and morphogenesis of the cranial skeleton. Early during induction and migration of CNCCs, lrp5 is expressed ubiquitously but later gets restricted to CNCC derivatives in the ventral head region besides different regions in the CNS. A knock-down of lrp5 does not interfere with induction of CNCCs but leads to reduced proliferation of premigratory CNCCs. In addition, cell migration is disrupted as CNCCs are found in clusters at ectopic positions in the dorsomedial neuroepithelium after lrp5 knock-down and transient CRISPR/Cas9 gene editing. These migratory defects consequently result in malformations of the craniofacial skeleton. To date, Lrp5 has mainly been associated with bone homeostasis in mammals. Here we show that in zebrafish, lrp5 also controls cell migration during early morphogenetic processes and contributes to shaping the craniofacial skeleton.

  17. Energy-efficient neural information processing in individual neurons and neuronal networks.

    Science.gov (United States)

    Yu, Lianchun; Yu, Yuguo

    2017-11-01

    Brains are composed of networks of an enormous number of neurons interconnected with synapses. Neural information is carried by the electrical signals within neurons and the chemical signals among neurons. Generating these electrical and chemical signals is metabolically expensive. The fundamental issue raised here is whether brains have evolved efficient ways of developing an energy-efficient neural code from the molecular level to the circuit level. Here, we summarize the factors and biophysical mechanisms that could contribute to the energy-efficient neural code for processing input signals. The factors range from ion channel kinetics, body temperature, axonal propagation of action potentials, low-probability release of synaptic neurotransmitters, optimal input and noise, the size of neurons and neuronal clusters, excitation/inhibition balance, coding strategy, cortical wiring, and the organization of functional connectivity. Both experimental and computational evidence suggests that neural systems may use these factors to maximize the efficiency of energy consumption in processing neural signals. Studies indicate that efficient energy utilization may be universal in neuronal systems as an evolutionary consequence of the pressure of limited energy. As a result, neuronal connections may be wired in a highly economical manner to lower energy costs and space. Individual neurons within a network may encode independent stimulus components to allow a minimal number of neurons to represent whole stimulus characteristics efficiently. This basic principle may fundamentally change our view of how billions of neurons organize themselves into complex circuits to operate and generate the most powerful intelligent cognition in nature. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. The neural crest and neural crest cells

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    papers and independent studies in the 1920s and '30s by. Landacre ..... Four possibilities, which are not mutually exclusive, could explain evolutionary changes in gene function: .... description of the results of the chief course of events in the.

  19. Sonic Hedgehog promotes the survival of neural crest cells by limiting apoptosis induced by the dependence receptor CDON during branchial arch development.

    Science.gov (United States)

    Delloye-Bourgeois, Céline; Rama, Nicolas; Brito, José; Le Douarin, Nicole; Mehlen, Patrick

    2014-09-26

    Cell-adhesion molecule-related/Downregulated by Oncogenes (CDO or CDON) was identified as a receptor for the classic morphogen Sonic Hedgehog (SHH). It has been shown that, in cell culture, CDO also behaves as a SHH dependence receptor: CDO actively triggers apoptosis in absence of SHH via a proteolytic cleavage in CDO intracellular domain. We present evidence that CDO is also pro-apoptotic in the developing neural tube where SHH is known to act as a survival factor. SHH, produced by the ventral foregut endoderm, was shown to promote survival of facial neural crest cells (NCCs) that colonize the first branchial arch (BA1). We show here that the survival activity of SHH on neural crest cells is due to SHH-mediated inhibition of CDO pro-apoptotic activity. Silencing of CDO rescued NCCs from apoptosis observed upon SHH inhibition in the ventral foregut endoderm. Thus, the pair SHH/dependence receptor CDO may play an important role in neural crest cell survival during the formation of the first branchial arch. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. PSA-NCAM-Negative Neural Crest Cells Emerging during Neural Induction of Pluripotent Stem Cells Cause Mesodermal Tumors and Unwanted Grafts

    Science.gov (United States)

    Lee, Dongjin R.; Yoo, Jeong-Eun; Lee, Jae Souk; Park, Sanghyun; Lee, Junwon; Park, Chul-Yong; Ji, Eunhyun; Kim, Han-Soo; Hwang, Dong-Youn; Kim, Dae-Sung; Kim, Dong-Wook

    2015-01-01

    Summary Tumorigenic potential of human pluripotent stem cells (hPSCs) is an important issue in clinical applications. Despite many efforts, PSC-derived neural precursor cells (NPCs) have repeatedly induced tumors in animal models even though pluripotent cells were not detected. We found that polysialic acid-neural cell adhesion molecule (PSA-NCAM)− cells among the early NPCs caused tumors, whereas PSA-NCAM+ cells were nontumorigenic. Molecular profiling, global gene analysis, and multilineage differentiation of PSA-NCAM− cells confirm that they are multipotent neural crest stem cells (NCSCs) that could differentiate into both ectodermal and mesodermal lineages. Transplantation of PSA-NCAM− cells in a gradient manner mixed with PSA-NCAM+ cells proportionally increased mesodermal tumor formation and unwanted grafts such as PERIPHERIN+ cells or pigmented cells in the rat brain. Therefore, we suggest that NCSCs are a critical target for tumor prevention in hPSC-derived NPCs, and removal of PSA-NCAM− cells eliminates the tumorigenic potential originating from NCSCs after transplantation. PMID:25937368

  1. Impaired Cellular Immunity in the Murine Neural Crest Conditional Deletion of Endothelin Receptor-B Model of Hirschsprung's Disease.

    Directory of Open Access Journals (Sweden)

    Ankush Gosain

    Full Text Available Hirschsprung's disease (HSCR is characterized by aganglionosis from failure of neural crest cell (NCC migration to the distal hindgut. Up to 40% of HSCR patients suffer Hirschsprung's-associated enterocolitis (HAEC, with an incidence that is unchanged from the pre-operative to the post-operative state. Recent reports indicate that signaling pathways involved in NCC migration may also be involved in the development of secondary lymphoid organs. We hypothesize that gastrointestinal (GI mucosal immune defects occur in HSCR that may contribute to enterocolitis. EdnrB was deleted from the neural crest (EdnrBNCC-/- resulting in mutants with defective NCC migration, distal colonic aganglionosis and the development of enterocolitis. The mucosal immune apparatus of these mice was interrogated at post-natal day (P 21-24, prior to histological signs of enterocolitis. We found that EdnrBNCC-/- display lymphopenia of their Peyer's Patches, the major inductive site of GI mucosal immunity. EdnrBNCC-/- Peyer's Patches demonstrate decreased B-lymphocytes, specifically IgM+IgDhi (Mature B-lymphocytes, which are normally activated and produce IgA following antigen presentation. EdnrBNCC-/- animals demonstrate decreased small intestinal secretory IgA, but unchanged nasal and bronchial airway secretory IgA, indicating a gut-specific defect in IgA production or secretion. In the spleen, which is the primary source of IgA-producing Mature B-lymphocytes, EdnrBNCC-/- animals display decreased B-lymphocytes, but an increase in Mature B-lymphocytes. EdnrBNCC-/- spleens are also small and show altered architecture, with decreased red pulp and a paucity of B-lymphocytes in the germinal centers and marginal zone. Taken together, these findings suggest impaired GI mucosal immunity in EdnrBNCC-/- animals, with the spleen as a potential site of the defect. These findings build upon the growing body of literature that suggests that intestinal defects in HSCR are not restricted

  2. Endogenous retinal neural stem cell reprogramming for neuronal regeneration

    Directory of Open Access Journals (Sweden)

    Romain Madelaine

    2017-01-01

    Full Text Available In humans, optic nerve injuries and associated neurodegenerative diseases are often followed by permanent vision loss. Consequently, an important challenge is to develop safe and effective methods to replace retinal neurons and thereby restore neuronal functions and vision. Identifying cellular and molecular mechanisms allowing to replace damaged neurons is a major goal for basic and translational research in regenerative medicine. Contrary to mammals, the zebrafish has the capacity to fully regenerate entire parts of the nervous system, including retina. This regenerative process depends on endogenous retinal neural stem cells, the Müller glial cells. Following injury, zebrafish Müller cells go back into cell cycle to proliferate and generate new neurons, while mammalian Müller cells undergo reactive gliosis. Recently, transcription factors and microRNAs have been identified to control the formation of new neurons derived from zebrafish and mammalian Müller cells, indicating that cellular reprogramming can be an efficient strategy to regenerate human retinal neurons. Here we discuss recent insights into the use of endogenous neural stem cell reprogramming for neuronal regeneration, differences between zebrafish and mammalian Müller cells, and the need to pursue the identification and characterization of new molecular factors with an instructive and potent function in order to develop theurapeutic strategies for eye diseases.

  3. Transcrition factor c-Myb is involved in the regulation of the epithelial-mesenchymal transition in the avian neural crest

    Czech Academy of Sciences Publication Activity Database

    Karafiát, Vít; Dvořáková, Marta; Krejčí, E.; Králová, Jarmila; Pajer, Petr; Šnajdr, P.; Mandíková, Sonja; Bartůněk, Petr; Grim, M.; Dvořák, Michal

    2005-01-01

    Roč. 62, č. 21 (2005), s. 2516-2525 ISSN 1420-682X R&D Projects: GA ČR GA304/03/0463; GA AV ČR IAA5052309 Institutional research plan: CEZ:AV0Z50520514 Keywords : c-myb gene * epithelial-mesenchymal transition * neural crest Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.582, year: 2005

  4. Derivation of mesenchymal stromal cells from pluripotent stem cells through a neural crest lineage using small molecule compounds with defined media.

    Directory of Open Access Journals (Sweden)

    Makoto Fukuta

    Full Text Available Neural crest cells (NCCs are an embryonic migratory cell population with the ability to differentiate into a wide variety of cell types that contribute to the craniofacial skeleton, cornea, peripheral nervous system, and skin pigmentation. This ability suggests the promising role of NCCs as a source for cell-based therapy. Although several methods have been used to induce human NCCs (hNCCs from human pluripotent stem cells (hPSCs, such as embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs, further modifications are required to improve the robustness, efficacy, and simplicity of these methods. Chemically defined medium (CDM was used as the basal medium in the induction and maintenance steps. By optimizing the culture conditions, the combination of the GSK3β inhibitor and TGFβ inhibitor with a minimum growth factor (insulin very efficiently induced hNCCs (70-80% from hPSCs. The induced hNCCs expressed cranial NCC-related genes and stably proliferated in CDM supplemented with EGF and FGF2 up to at least 10 passages without changes being observed in the major gene expression profiles. Differentiation properties were confirmed for peripheral neurons, glia, melanocytes, and corneal endothelial cells. In addition, cells with differentiation characteristics similar to multipotent mesenchymal stromal cells (MSCs were induced from hNCCs using CDM specific for human MSCs. Our simple and robust induction protocol using small molecule compounds with defined media enabled the generation of hNCCs as an intermediate material producing terminally differentiated cells for cell-based innovative medicine.

  5. Differences in neural crest sensitivity to ethanol account for the infrequency of anterior segment defects in the eye compared with craniofacial anomalies in a zebrafish model of fetal alcohol syndrome.

    Science.gov (United States)

    Eason, Jessica; Williams, Antionette L; Chawla, Bahaar; Apsey, Christian; Bohnsack, Brenda L

    2017-09-01

    Ethanol (ETOH) exposure during pregnancy is associated with craniofacial and neurologic abnormalities, but infrequently disrupts the anterior segment of the eye. In these studies, we used zebrafish to investigate differences in the teratogenic effect of ETOH on craniofacial, periocular, and ocular neural crest. Zebrafish eye and neural crest development was analyzed by means of live imaging, TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay, immunostaining, detection of reactive oxygen species, and in situ hybridization. Our studies demonstrated that foxd3-positive neural crest cells in the periocular mesenchyme and developing eye were less sensitive to ETOH than sox10-positive craniofacial neural crest cells that form the pharyngeal arches and jaw. ETOH increased apoptosis in the retina, but did not affect survival of periocular and ocular neural crest cells. ETOH also did not increase reactive oxygen species within the eye. In contrast, ETOH increased ventral neural crest apoptosis and reactive oxygen species production in the facial mesenchyme. In the eye and craniofacial region, sod2 showed high levels of expression in the anterior segment and in the setting of Sod2 knockdown, low levels of ETOH decreased migration of foxd3-positive neural crest cells into the developing eye. However, ETOH had minimal effect on the periocular and ocular expression of transcription factors (pitx2 and foxc1) that regulate anterior segment development. Neural crest cells contributing to the anterior segment of the eye exhibit increased ability to withstand ETOH-induced oxidative stress and apoptosis. These studies explain the rarity of anterior segment dysgenesis despite the frequent craniofacial abnormalities in fetal alcohol syndrome. Birth Defects Research 109:1212-1227, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Augmented Indian hedgehog signaling in cranial neural crest cells leads to craniofacial abnormalities and dysplastic temporomandibular joint in mice.

    Science.gov (United States)

    Yang, Ling; Gu, Shuping; Ye, Wenduo; Song, Yingnan; Chen, YiPing

    2016-04-01

    Extensive studies have pinpointed the crucial role of Indian hedgehog (Ihh) signaling in the development of the appendicular skeleton and the essential function of Ihh in the formation of the temporomandibular joint (TMJ). In this study, we have investigated the effect of augmented Ihh signaling in TMJ development. We took a transgenic gain-of-function approach by overexpressing Ihh in the cranial neural crest (CNC) cells using a conditional Ihh transgenic allele and the Wnt1-Cre allele. We found that Wnt1-Cre-mediated tissue-specific overexpression of Ihh in the CNC lineage caused severe craniofacial abnormalities, including cleft lip/palate, encephalocele, anophthalmos, micrognathia, and defective TMJ development. In the mutant TMJ, the glenoid fossa was completely absent, whereas the condyle and the articular disc appeared relatively normal with slightly delayed chondrocyte differentiation. Our findings thus demonstrate that augmented Ihh signaling is detrimental to craniofacial development, and that finely tuned Ihh signaling is critical for TMJ formation. Our results also provide additional evidence that the development of the condyle and articular disc is independent of the glenoid fossa.

  7. Multivalent binding of PWWP2A to H2A.Z regulates mitosis and neural crest differentiation.

    Science.gov (United States)

    Pünzeler, Sebastian; Link, Stephanie; Wagner, Gabriele; Keilhauer, Eva C; Kronbeck, Nina; Spitzer, Ramona Mm; Leidescher, Susanne; Markaki, Yolanda; Mentele, Edith; Regnard, Catherine; Schneider, Katrin; Takahashi, Daisuke; Kusakabe, Masayuki; Vardabasso, Chiara; Zink, Lisa M; Straub, Tobias; Bernstein, Emily; Harata, Masahiko; Leonhardt, Heinrich; Mann, Matthias; Rupp, Ralph Aw; Hake, Sandra B

    2017-08-01

    Replacement of canonical histones with specialized histone variants promotes altering of chromatin structure and function. The essential histone variant H2A.Z affects various DNA-based processes via poorly understood mechanisms. Here, we determine the comprehensive interactome of H2A.Z and identify PWWP2A as a novel H2A.Z-nucleosome binder. PWWP2A is a functionally uncharacterized, vertebrate-specific protein that binds very tightly to chromatin through a concerted multivalent binding mode. Two internal protein regions mediate H2A.Z-specificity and nucleosome interaction, whereas the PWWP domain exhibits direct DNA binding. Genome-wide mapping reveals that PWWP2A binds selectively to H2A.Z-containing nucleosomes with strong preference for promoters of highly transcribed genes. In human cells, its depletion affects gene expression and impairs proliferation via a mitotic delay. While PWWP2A does not influence H2A.Z occupancy, the C-terminal tail of H2A.Z is one important mediator to recruit PWWP2A to chromatin. Knockdown of PWWP2A in Xenopus results in severe cranial facial defects, arising from neural crest cell differentiation and migration problems. Thus, PWWP2A is a novel H2A.Z-specific multivalent chromatin binder providing a surprising link between H2A.Z, chromosome segregation, and organ development. © 2017 The Authors.

  8. Augmented BMPRIA-mediated BMP signaling in cranial neural crest lineage leads to cleft palate formation and delayed tooth differentiation.

    Directory of Open Access Journals (Sweden)

    Lu Li

    Full Text Available The importance of BMP receptor Ia (BMPRIa mediated signaling in the development of craniofacial organs, including the tooth and palate, has been well illuminated in several mouse models of loss of function, and by its mutations associated with juvenile polyposis syndrome and facial defects in humans. In this study, we took a gain-of-function approach to further address the role of BMPR-IA-mediated signaling in the mesenchymal compartment during tooth and palate development. We generated transgenic mice expressing a constitutively active form of BmprIa (caBmprIa in cranial neural crest (CNC cells that contributes to the dental and palatal mesenchyme. Mice bearing enhanced BMPRIa-mediated signaling in CNC cells exhibit complete cleft palate and delayed odontogenic differentiation. We showed that the cleft palate defect in the transgenic animals is attributed to an altered cell proliferation rate in the anterior palatal mesenchyme and to the delayed palatal elevation in the posterior portion associated with ectopic cartilage formation. Despite enhanced activity of BMP signaling in the dental mesenchyme, tooth development and patterning in transgenic mice appeared normal except delayed odontogenic differentiation. These data support the hypothesis that a finely tuned level of BMPRIa-mediated signaling is essential for normal palate and tooth development.

  9. Delamination of neural crest cells requires transient and reversible Wnt inhibition mediated by Dact1/2.

    Science.gov (United States)

    Rabadán, M Angeles; Herrera, Antonio; Fanlo, Lucia; Usieto, Susana; Carmona-Fontaine, Carlos; Barriga, Elias H; Mayor, Roberto; Pons, Sebastián; Martí, Elisa

    2016-06-15

    Delamination of neural crest (NC) cells is a bona fide physiological model of epithelial-to-mesenchymal transition (EMT), a process that is influenced by Wnt/β-catenin signalling. Using two in vivo models, we show that Wnt/β-catenin signalling is transiently inhibited at the time of NC delamination. In attempting to define the mechanism underlying this inhibition, we found that the scaffold proteins Dact1 and Dact2, which are expressed in pre-migratory NC cells, are required for NC delamination in Xenopus and chick embryos, whereas they do not affect the motile properties of migratory NC cells. Dact1/2 inhibit Wnt/β-catenin signalling upstream of the transcriptional activity of T cell factor (TCF), which is required for EMT to proceed. Dact1/2 regulate the subcellular distribution of β-catenin, preventing β-catenin from acting as a transcriptional co-activator to TCF, yet without affecting its stability. Together, these data identify a novel yet important regulatory element that inhibits β-catenin signalling, which then affects NC delamination. © 2016. Published by The Company of Biologists Ltd.

  10. Interaction of adult human neural crest-derived stem cells with a nanoporous titanium surface is sufficient to induce their osteogenic differentiation

    Directory of Open Access Journals (Sweden)

    Matthias Schürmann

    2014-07-01

    Full Text Available Osteogenic differentiation of various adult stem cell populations such as neural crest-derived stem cells is of great interest in the context of bone regeneration. Ideally, exogenous differentiation should mimic an endogenous differentiation process, which is partly mediated by topological cues. To elucidate the osteoinductive potential of porous substrates with different pore diameters (30 nm, 100 nm, human neural crest-derived stem cells isolated from the inferior nasal turbinate were cultivated on the surface of nanoporous titanium covered membranes without additional chemical or biological osteoinductive cues. As controls, flat titanium without any topological features and osteogenic medium was used. Cultivation of human neural crest-derived stem cells on 30 nm pores resulted in osteogenic differentiation as demonstrated by alkaline phosphatase activity after seven days as well as by calcium deposition after 3 weeks of cultivation. In contrast, cultivation on flat titanium and on membranes equipped with 100 nm pores was not sufficient to induce osteogenic differentiation. Moreover, we demonstrate an increase of osteogenic transcripts including Osterix, Osteocalcin and up-regulation of Integrin β1 and α2 in the 30 nm pore approach only. Thus, transplantation of stem cells pre-cultivated on nanostructured implants might improve the clinical outcome by support of the graft adherence and acceleration of the regeneration process.

  11. ETHANOL EXPOSURE DISRUPTS CRANIAL NEURAL CREST MIGRATION AND PRIMARY CILIA IN DEVELOPING ZEBRAFISH EMBRYOS

    OpenAIRE

    BORIC BRENET, KATICA ANDREA; BORIC BRENET, KATICA ANDREA

    2012-01-01

    Durante el desarrollo temprano la exposición a etanol (EtOH) puede causar el Síndrome de Alcohol Fetal (SAF), el cual afecta estructuras craneofaciales (CF) y partes del sistema nervioso (SN), ambos derivados de las células de la cresta neural craneal (CCNC). Por lo tanto, proponemos que la migración de las CCNC se ve afectada por la exposición a EtOH. Para determinar si la exposición a EtOH altera la migración celular, incubamos embriones de pez cebra durante 20 horas usando conc...

  12. Pa2G4 is a novel Six1 co-factor that is required for neural crest and otic development☆

    Science.gov (United States)

    Neilson, Karen M.; Abbruzzesse, Genevieve; Kenyon, Kristy; Bartolo, Vanessa; Krohn, Patrick; Alfandari, Dominique; Moody, Sally A.

    2016-01-01

    Mutations in SIX1 and in its co-factor, EYA1, underlie Branchiootorenal Spectrum disorder (BOS), which is characterized by variable branchial arch, otic and kidney malformations. However, mutations in these two genes are identified in only half of patients. We screened for other potential co-factors, and herein characterize one of them, Pa2G4 (aka Ebp1/Plfap). In human embryonic kidney cells, Pa2G4 binds to Six1 and interferes with the Six1-Eya1 complex. In Xenopus embryos, knock-down of Pa2G4 leads to down-regulation of neural border zone, neural crest and cranial placode genes, and concomitant expansion of neural plate genes. Gain-of-function leads to a broader neural border zone, expanded neural crest and altered cranial placode domains. In loss-of-function assays, the later developing otocyst is reduced in size, which impacts gene expression. In contrast, the size of the otocyst in gain-of-function assays is not changed but the expression domains of several otocyst genes are reduced. Together these findings establish an interaction between Pa2G4 and Six1, and demonstrate that it has an important role in the development of tissues affected in BOS. Thereby, we suggest that pa2g4 is a potential candidate gene for BOS. PMID:27940157

  13. CREST Revealed

    DEFF Research Database (Denmark)

    Rapp, Hermann; Parisi, Cristiana; Bridgeman, Alfia

    This report covers the period from 1993 when the CREST project was initiated, to its launch in 1996, and considers the environment that prompted its instigation. The report looks at the massive cooperation of Government, industry and a range of different service providers that all came together......, under the central control of the CREST project team. It proposes five reasons why the CREST project was successful and examines why the CREST system continues to be at the heart of UK settlement, 20 years on....

  14. The Effects of Epidermal Neural Crest Stem Cells on Local Inflammation Microenvironment in the Defected Sciatic Nerve of Rats

    Directory of Open Access Journals (Sweden)

    Yue Li

    2017-05-01

    Full Text Available Cell-based therapy is a promising strategy for the repair of peripheral nerve injuries (PNIs. epidermal neural crest stems cells (EPI-NCSCs are thought to be important donor cells for repairing PNI in different animal models. Following PNI, inflammatory response is important to regulate the repair process. However, the effects of EPI-NCSCs on regulation of local inflammation microenviroment have not been investigated extensively. In the present study, these effects were studied by using 10 mm defected sciatic nerve, which was bridged with 15 mm artificial nerve composed of EPI-NCSCs, extracellular matrix (ECM and poly (lactide-co-glycolide (PLGA. Then the expression of pro- and anti-inflammatory cytokines, polarization of macrophages, regulation of fibroblasts and shwann cells (SCs were assessed by western blot, immunohistochemistry, immunofluorescence staining at 1, 3, 7 and 21 days after bridging. The structure and the function of the bridged nerve were determined by observation under light microscope and by examination of right lateral foot retraction time (LFRT, sciatic function index (SFI, gastrocnemius wet weight and electrophysiology at 9 weeks. After bridging with EPI-NCSCs, the expression of anti-inflammatory cytokines (IL-4 and IL-13 was increased, but decreased for pro-inflammatory cytokines (IL-6 and TNF-α compared to the control bridging, which was consistent with increase of M2 macrophages and decrease of M1 macrophages at 7 days after transplantation. Likewise, myelin-formed SCs were significantly increased, but decreased for the activated fibroblasts in their number at 21 days. The recovery of structure and function of nerve bridged with EPI-NCSCs was significantly superior to that of DMEM. These results indicated that EPI-NCSCs could be able to regulate and provide more suitable inflammation microenvironment for the repair of defected sciatic nerve.

  15. Specific and spatial labeling of P0-Cre versus Wnt1-Cre in cranial neural crest in early mouse embryos.

    Science.gov (United States)

    Chen, Guiqian; Ishan, Mohamed; Yang, Jingwen; Kishigami, Satoshi; Fukuda, Tomokazu; Scott, Greg; Ray, Manas K; Sun, Chenming; Chen, Shi-You; Komatsu, Yoshihiro; Mishina, Yuji; Liu, Hong-Xiang

    2017-06-01

    P0-Cre and Wnt1-Cre mouse lines have been widely used in combination with loxP-flanked mice to label and genetically modify neural crest (NC) cells and their derivatives. Wnt1-Cre has been regarded as the gold standard and there have been concerns about the specificity of P0-Cre because it is not clear about the timing and spatial distribution of the P0-Cre transgene in labeling NC cells at early embryonic stages. We re-visited P0-Cre and Wnt1-Cre models in the labeling of NC cells in early mouse embryos with a focus on cranial NC. We found that R26-lacZ Cre reporter responded to Cre activity more reliably than CAAG-lacZ Cre reporter during early embryogenesis. Cre immunosignals in P0-Cre and reporter (lacZ and RFP) activity in P0-Cre/R26-lacZ and P0-Cre/R26-RFP embryos was detected in the cranial NC and notochord regions in E8.0-9.5 (4-19 somites) embryos. P0-Cre transgene expression was observed in migrating NC cells and was more extensive in the forebrain and hindbrain but not apparent in the midbrain. Differences in the Cre distribution patterns of P0-Cre and Wnt1-Cre were profound in the midbrain and hindbrain regions, that is, extensive in the midbrain of Wnt1-Cre and in the hindbrain of P0-Cre embryos. The difference between P0-Cre and Wnt1-Cre in labeling cranial NC may provide a better explanation of the differential distributions of their NC derivatives and of the phenotypes caused by Cre-driven genetic modifications. © 2017 Wiley Periodicals, Inc.

  16. Novel migrating mouse neural crest cell assay system utilizing P0-Cre/EGFP fluorescent time-lapse imaging

    Directory of Open Access Journals (Sweden)

    Kawakami Minoru

    2011-11-01

    Full Text Available Abstract Background Neural crest cells (NCCs are embryonic, multipotent stem cells. Their long-range and precision-guided migration is one of their most striking characteristics. We previously reported that P0-Cre/CAG-CAT-lacZ double-transgenic mice showed significant lacZ expression in tissues derived from NCCs. Results In this study, by embedding a P0-Cre/CAG-CAT-EGFP embryo at E9.5 in collagen gel inside a culture glass slide, we were able to keep the embryo developing ex vivo for more than 24 hours; this development was with enough NCC fluorescent signal intensity to enable single-cell resolution analysis, with the accompanying NCC migration potential intact and with the appropriate NCC response to the extracellular signal maintained. By implantation of beads with absorbed platelet-derived growth factor-AA (PDGF-AA, we demonstrated that PDGF-AA acts as an NCC-attractant in embryos. We also performed assays with NCCs isolated from P0-Cre/CAG-CAT-EGFP embryos on culture plates. The neuromediator 5-hydroxytryptamine (5-HT has been known to regulate NCC migration. We newly demonstrated that dopamine, in addition to 5-HT, stimulated NCC migration in vitro. Two NCC populations, with different axial levels of origins, showed unique distribution patterns regarding migration velocity and different dose-response patterns to both 5-HT and dopamine. Conclusions Although avian species predominated over the other species in the NCC study, our novel system should enable us to use mice to assay many different aspects of NCCs in embryos or on culture plates, such as migration, division, differentiation, and apoptosis.

  17. Connexin 43-mediated modulation of polarized cell movement and the directional migration of cardiac neural crest cells.

    Science.gov (United States)

    Xu, Xin; Francis, Richard; Wei, Chih Jen; Linask, Kaari L; Lo, Cecilia W

    2006-09-01

    Connexin 43 knockout (Cx43alpha1KO) mice have conotruncal heart defects that are associated with a reduction in the abundance of cardiac neural crest cells (CNCs) targeted to the heart. In this study, we show CNCs can respond to changing fibronectin matrix density by adjusting their migratory behavior, with directionality increasing and speed decreasing with increasing fibronectin density. However, compared with wild-type CNCs, Cx43alpha1KO CNCs show reduced directionality and speed, while CNCs overexpressing Cx43alpha1 from the CMV43 transgenic mice show increased directionality and speed. Altered integrin signaling was indicated by changes in the distribution of vinculin containing focal contacts, and altered temporal response of Cx43alpha1KO and CMV43 CNCs to beta1 integrin function blocking antibody treatment. High resolution motion analysis showed Cx43alpha1KO CNCs have increased cell protrusive activity accompanied by the loss of polarized cell movement. They exhibited an unusual polygonal arrangement of actin stress fibers that indicated a profound change in cytoskeletal organization. Semaphorin 3A, a chemorepellent known to inhibit integrin activation, was found to inhibit CNC motility, but in the Cx43alpha1KO and CMV43 CNCs, cell processes failed to retract with semaphorin 3A treatment. Immunohistochemical and biochemical analyses suggested close interactions between Cx43alpha1, vinculin and other actin-binding proteins. However, dye coupling analysis showed no correlation between gap junction communication level and fibronectin plating density. Overall, these findings indicate Cx43alpha1 may have a novel function in mediating crosstalk with cell signaling pathways that regulate polarized cell movement essential for the directional migration of CNCs.

  18. Memristor-based neural networks: Synaptic versus neuronal stochasticity

    KAUST Repository

    Naous, Rawan

    2016-11-02

    In neuromorphic circuits, stochasticity in the cortex can be mapped into the synaptic or neuronal components. The hardware emulation of these stochastic neural networks are currently being extensively studied using resistive memories or memristors. The ionic process involved in the underlying switching behavior of the memristive elements is considered as the main source of stochasticity of its operation. Building on its inherent variability, the memristor is incorporated into abstract models of stochastic neurons and synapses. Two approaches of stochastic neural networks are investigated. Aside from the size and area perspective, the impact on the system performance, in terms of accuracy, recognition rates, and learning, among these two approaches and where the memristor would fall into place are the main comparison points to be considered.

  19. Direct reprogramming of somatic cells into neural stem cells or neurons for neurological disorders.

    Science.gov (United States)

    Hou, Shaoping; Lu, Paul

    2016-01-01

    Direct reprogramming of somatic cells into neurons or neural stem cells is one of the most important frontier fields in current neuroscience research. Without undergoing the pluripotency stage, induced neurons or induced neural stem cells are a safer and timelier manner resource in comparison to those derived from induced pluripotent stem cells. In this prospective, we review the recent advances in generation of induced neurons and induced neural stem cells in vitro and in vivo and their potential treatments of neurological disorders.

  20. Pulsed neural networks consisting of single-flux-quantum spiking neurons

    International Nuclear Information System (INIS)

    Hirose, T.; Asai, T.; Amemiya, Y.

    2007-01-01

    An inhibitory pulsed neural network was developed for brain-like information processing, by using single-flux-quantum (SFQ) circuits. It consists of spiking neuron devices that are coupled to each other through all-to-all inhibitory connections. The network selects neural activity. The operation of the neural network was confirmed by computer simulation. SFQ neuron devices can imitate the operation of the inhibition phenomenon of neural networks

  1. Neuronal spike sorting based on radial basis function neural networks

    Directory of Open Access Journals (Sweden)

    Taghavi Kani M

    2011-02-01

    Full Text Available "nBackground: Studying the behavior of a society of neurons, extracting the communication mechanisms of brain with other tissues, finding treatment for some nervous system diseases and designing neuroprosthetic devices, require an algorithm to sort neuralspikes automatically. However, sorting neural spikes is a challenging task because of the low signal to noise ratio (SNR of the spikes. The main purpose of this study was to design an automatic algorithm for classifying neuronal spikes that are emitted from a specific region of the nervous system."n "nMethods: The spike sorting process usually consists of three stages: detection, feature extraction and sorting. We initially used signal statistics to detect neural spikes. Then, we chose a limited number of typical spikes as features and finally used them to train a radial basis function (RBF neural network to sort the spikes. In most spike sorting devices, these signals are not linearly discriminative. In order to solve this problem, the aforesaid RBF neural network was used."n "nResults: After the learning process, our proposed algorithm classified any arbitrary spike. The obtained results showed that even though the proposed Radial Basis Spike Sorter (RBSS reached to the same error as the previous methods, however, the computational costs were much lower compared to other algorithms. Moreover, the competitive points of the proposed algorithm were its good speed and low computational complexity."n "nConclusion: Regarding the results of this study, the proposed algorithm seems to serve the purpose of procedures that require real-time processing and spike sorting.

  2. Mef2c-F10N enhancer driven β-galactosidase (LacZ) and Cre recombinase mice facilitate analyses of gene function and lineage fate in neural crest cells.

    Science.gov (United States)

    Aoto, Kazushi; Sandell, Lisa L; Butler Tjaden, Naomi E; Yuen, Kobe C; Watt, Kristin E Noack; Black, Brian L; Durnin, Michael; Trainor, Paul A

    2015-06-01

    Neural crest cells (NCC) comprise a multipotent, migratory stem cell and progenitor population that gives rise to numerous cell and tissue types within a developing embryo, including craniofacial bone and cartilage, neurons and glia of the peripheral nervous system, and melanocytes within the skin. Here we describe two novel stable transgenic mouse lines suitable for lineage tracing and analysis of gene function in NCC. Firstly, using the F10N enhancer of the Mef2c gene (Mef2c-F10N) linked to LacZ, we generated transgenic mice (Mef2c-F10N-LacZ) that express LacZ in the majority, if not all migrating NCC that delaminate from the neural tube. Mef2c-F10N-LacZ then continues to be expressed primarily in neurogenic, gliogenic and melanocytic NCC and their derivatives, but not in ectomesenchymal derivatives. Secondly, we used the same Mef2c-F10N enhancer together with Cre recombinase to generate transgenic mice (Mef2c-F10N-Cre) that can be used to indelibly label, or alter gene function in, migrating NCC and their derivatives. At early stages of development, Mef2c-F10N-LacZ and Mef2c-F10N-Cre label NCC in a pattern similar to Wnt1-Cre mice, with the exception that Mef2c-F10N-LacZ and Mef2c-F10N-Cre specifically label NCC that have delaminated from the neural plate, while premigratory NCC are not labeled. Thus, our Mef2c-F10N-LacZ and Mef2c-F10N-Cre transgenic mice provide new resources for tracing migratory NCC and analyzing gene function in migrating and differentiating NCC independently of NCC formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Crest syndrome

    International Nuclear Information System (INIS)

    Koch, B.; Roedl, W.

    1988-01-01

    If a patient has peri- and intra-articular calcinosis, as well as acro-osteolysis and esophageal hypomotility, and rheumatic symptoms, Crest syndrome should be considered as a manifestation of progressive systemic sclerosis. In connection with relevant symptoms on the skin and visceral involvement, radiological studies offer the possibility of classifying progressive systemic sclerosis more accurately. (orig.) [de

  4. Dataset of TWIST1-regulated genes in the cranial mesoderm and a transcriptome comparison of cranial mesoderm and cranial neural crest

    Directory of Open Access Journals (Sweden)

    Heidi Bildsoe

    2016-12-01

    Full Text Available This article contains data related to the research article entitled “Transcriptional targets of TWIST1 in the cranial mesoderm regulate cell-matrix interactions and mesenchyme maintenance” by Bildsoe et al. (2016 [1]. The data presented here are derived from: (1 a microarray-based comparison of sorted cranial mesoderm (CM and cranial neural crest (CNC cells from E9.5 mouse embryos; (2 comparisons of transcription profiles of head tissues from mouse embryos with a CM-specific loss-of-function of Twist1 and control mouse embryos collected at E8.5 and E9.5; (3 ChIP-seq using a TWIST1-specific monoclonal antibody with chromatin extracts from TWIST1-expressing MDCK cells, a model for a TWIST1-dependent mesenchymal state.

  5. Sequentially firing neurons confer flexible timing in neural pattern generators

    International Nuclear Information System (INIS)

    Urban, Alexander; Ermentrout, Bard

    2011-01-01

    Neuronal networks exhibit a variety of complex spatiotemporal patterns that include sequential activity, synchrony, and wavelike dynamics. Inhibition is the primary means through which such patterns are implemented. This behavior is dependent on both the intrinsic dynamics of the individual neurons as well as the connectivity patterns. Many neural circuits consist of networks of smaller subcircuits (motifs) that are coupled together to form the larger system. In this paper, we consider a particularly simple motif, comprising purely inhibitory interactions, which generates sequential periodic dynamics. We first describe the dynamics of the single motif both for general balanced coupling (all cells receive the same number and strength of inputs) and then for a specific class of balanced networks: circulant systems. We couple these motifs together to form larger networks. We use the theory of weak coupling to derive phase models which, themselves, have a certain structure and symmetry. We show that this structure endows the coupled system with the ability to produce arbitrary timing relationships between symmetrically coupled motifs and that the phase relationships are robust over a wide range of frequencies. The theory is applicable to many other systems in biology and physics.

  6. Expression of polysialylated neural cell adhesion molecules on adult stem cells after neuronal differentiation of inner ear spiral ganglion neurons

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyoung Ho [Department of Otolaryngology Head and Neck Surgery, College of Medicine, Catholic University, Seoul (Korea, Republic of); Yeo, Sang Won, E-mail: swyeo@catholic.ac.kr [Department of Otolaryngology Head and Neck Surgery, College of Medicine, Catholic University, Seoul (Korea, Republic of); Troy, Frederic A., E-mail: fatroy@ucdavis.edu [Department of Biochemistry and Molecular Medicine, University of California, School of Medicine, Davis, CA 95616 (United States); Xiamen University, School of Medicine, Xiamen City (China)

    2014-10-17

    Highlights: • PolySia expressed on neurons primarily during early stages of neuronal development. • PolySia–NCAM is expressed on neural stem cells from adult guinea pig spiral ganglion. • PolySia is a biomarker that modulates neuronal differentiation in inner ear stem cells. - Abstract: During brain development, polysialylated (polySia) neural cell adhesion molecules (polySia–NCAMs) modulate cell–cell adhesive interactions involved in synaptogenesis, neural plasticity, myelination, and neural stem cell (NSC) proliferation and differentiation. Our findings show that polySia–NCAM is expressed on NSC isolated from adult guinea pig spiral ganglion (GPSG), and in neurons and Schwann cells after differentiation of the NSC with epidermal, glia, fibroblast growth factors (GFs) and neurotrophins. These differentiated cells were immunoreactive with mAb’s to polySia, NCAM, β-III tubulin, nestin, S-100 and stained with BrdU. NSC could regenerate and be differentiated into neurons and Schwann cells. We conclude: (1) polySia is expressed on NSC isolated from adult GPSG and on neurons and Schwann cells differentiated from these NSC; (2) polySia is expressed on neurons primarily during the early stage of neuronal development and is expressed on Schwann cells at points of cell–cell contact; (3) polySia is a functional biomarker that modulates neuronal differentiation in inner ear stem cells. These new findings suggest that replacement of defective cells in the inner ear of hearing impaired patients using adult spiral ganglion neurons may offer potential hope to improve the quality of life for patients with auditory dysfunction and impaired hearing disorders.

  7. Expression of polysialylated neural cell adhesion molecules on adult stem cells after neuronal differentiation of inner ear spiral ganglion neurons

    International Nuclear Information System (INIS)

    Park, Kyoung Ho; Yeo, Sang Won; Troy, Frederic A.

    2014-01-01

    Highlights: • PolySia expressed on neurons primarily during early stages of neuronal development. • PolySia–NCAM is expressed on neural stem cells from adult guinea pig spiral ganglion. • PolySia is a biomarker that modulates neuronal differentiation in inner ear stem cells. - Abstract: During brain development, polysialylated (polySia) neural cell adhesion molecules (polySia–NCAMs) modulate cell–cell adhesive interactions involved in synaptogenesis, neural plasticity, myelination, and neural stem cell (NSC) proliferation and differentiation. Our findings show that polySia–NCAM is expressed on NSC isolated from adult guinea pig spiral ganglion (GPSG), and in neurons and Schwann cells after differentiation of the NSC with epidermal, glia, fibroblast growth factors (GFs) and neurotrophins. These differentiated cells were immunoreactive with mAb’s to polySia, NCAM, β-III tubulin, nestin, S-100 and stained with BrdU. NSC could regenerate and be differentiated into neurons and Schwann cells. We conclude: (1) polySia is expressed on NSC isolated from adult GPSG and on neurons and Schwann cells differentiated from these NSC; (2) polySia is expressed on neurons primarily during the early stage of neuronal development and is expressed on Schwann cells at points of cell–cell contact; (3) polySia is a functional biomarker that modulates neuronal differentiation in inner ear stem cells. These new findings suggest that replacement of defective cells in the inner ear of hearing impaired patients using adult spiral ganglion neurons may offer potential hope to improve the quality of life for patients with auditory dysfunction and impaired hearing disorders

  8. Niche-dependent development of functional neuronal networks from embryonic stem cell-derived neural populations

    Directory of Open Access Journals (Sweden)

    Siebler Mario

    2009-08-01

    Full Text Available Abstract Background The present work was performed to investigate the ability of two different embryonic stem (ES cell-derived neural precursor populations to generate functional neuronal networks in vitro. The first ES cell-derived neural precursor population was cultivated as free-floating neural aggregates which are known to form a developmental niche comprising different types of neural cells, including neural precursor cells (NPCs, progenitor cells and even further matured cells. This niche provides by itself a variety of different growth factors and extracellular matrix proteins that influence the proliferation and differentiation of neural precursor and progenitor cells. The second population was cultivated adherently in monolayer cultures to control most stringently the extracellular environment. This population comprises highly homogeneous NPCs which are supposed to represent an attractive way to provide well-defined neuronal progeny. However, the ability of these different ES cell-derived immature neural cell populations to generate functional neuronal networks has not been assessed so far. Results While both precursor populations were shown to differentiate into sufficient quantities of mature NeuN+ neurons that also express GABA or vesicular-glutamate-transporter-2 (vGlut2, only aggregate-derived neuronal populations exhibited a synchronously oscillating network activity 2–4 weeks after initiating the differentiation as detected by the microelectrode array technology. Neurons derived from homogeneous NPCs within monolayer cultures did merely show uncorrelated spiking activity even when differentiated for up to 12 weeks. We demonstrated that these neurons exhibited sparsely ramified neurites and an embryonic vGlut2 distribution suggesting an inhibited terminal neuronal maturation. In comparison, neurons derived from heterogeneous populations within neural aggregates appeared as fully mature with a dense neurite network and punctuated

  9. Modification of surface/neuron interfaces for neural cell-type specific responses: a review

    International Nuclear Information System (INIS)

    Chen, Cen; Kong, Xiangdong; Lee, In-Seop

    2016-01-01

    Surface/neuron interfaces have played an important role in neural repair including neural prostheses and tissue engineered scaffolds. This comprehensive literature review covers recent studies on the modification of surface/neuron interfaces. These interfaces are identified in cases both where the surfaces of substrates or scaffolds were in direct contact with cells and where the surfaces were modified to facilitate cell adhesion and controlling cell-type specific responses. Different sources of cells for neural repair are described, such as pheochromocytoma neuronal-like cell, neural stem cell (NSC), embryonic stem cell (ESC), mesenchymal stem cell (MSC) and induced pluripotent stem cell (iPS). Commonly modified methods are discussed including patterned surfaces at micro- or nano-scale, surface modification with conducting coatings, and functionalized surfaces with immobilized bioactive molecules. These approaches to control cell-type specific responses have enormous potential implications in neural repair. (paper)

  10. Effect of low dose 131I-MIBG therapy in metastatic neural crest tumors: Evaluation by RECIST and quality of life questionnaire

    International Nuclear Information System (INIS)

    Basu, S.; Joseph, J.K.

    2004-01-01

    Full text: The primary aim of 131I-MIBG therapy in advanced metastatic or recurrent neural crest tumors is palliation i.e. disease control and improvement of health related quality of life. No clear guidelines regarding the dosage and schedule of 131I-MIBG therapy in neural crest tumors exist at present. In general, a fixed dose of 100-300 mCi has been suggested for each therapy. We share our experience of 131I-MIBG therapy in various subgroups of neural crest tumors and discuss the response assessed by the RECIST and the quality of life questionnaire. A total number of 14 patients were treated with indigenously produced 131I-MIBG, which was administered as continuous intravenous infusion over a period of 2-4 hours. Patient isolation according to guidelines set by the national regulatory authority and thyroid blockade with Lugol's iodide were strictly adhered to. Antihypertensive measures were undertaken in case of pheochromocytoma and paraganglioma to prevent effects of catecholamine release during or following 131I-MIBG infusion. The primaries included neuroblastoma (n=7), pheochromocytoma (n=5) and paraganglioma (n=2). The cases of neuroblastoma included patients with progressive disease where the conventional chemotherapy had failed, while those of pheochromocytoma and paraganglioma were cases with recurrent / metastatic disease following surgery. In cases of multiple therapies, the minimum interval between two consecutive therapies was 12 weeks. Regular renal and haematological profiles were monitored in all the cases. Response to therapy was assessed by RECIST. The findings of 131I-MIBG scintigraphy were incorporated with CT scan in assessing the target lesions. Biochemical response was evaluated by 24 hours urinary VMA estimation. The quality of life status was evaluated by the conventional questionnaire. A total of 27 therapies were administered in 14 patients. In five treated cases of pheochromocytoma, three received multiple therapies. Follow up results

  11. Targeted deletion of Sox10 by Wnt1-cre defects neuronal migration and projection in the mouse inner ear.

    Directory of Open Access Journals (Sweden)

    YanYan Mao

    Full Text Available Sensory nerves of the brainstem are mostly composed of placode-derived neurons, neural crest-derived neurons and neural crest-derived Schwann cells. This mixed origin of cells has made it difficult to dissect interdependence for fiber guidance. Inner ear-derived neurons are known to connect to the brain after delayed loss of Schwann cells in ErbB2 mutants. However, the ErbB2 mutant related alterations in the ear and the brain compound interpretation of the data. We present here a new model to evaluate exclusively the effect of Schwann cell loss on inner ear innervation. Conditional deletion of the neural crest specific transcription factor, Sox10, using the rhombic lip/neural crest specific Wnt1-cre driver spares Sox10 expression in the ear. We confirm that neural crest-derived cells provide a stop signal for migrating spiral ganglion neurons. In the absence of Schwann cells, spiral ganglion neurons migrate into the center of the cochlea and even out of the ear toward the brain. Spiral ganglion neuron afferent processes reach the organ of Corti, but many afferent fibers bypass the organ of Corti to enter the lateral wall of the cochlea. In contrast to this peripheral disorganization, the central projection to cochlear nuclei is normal. Compared to ErbB2 mutants, conditional Sox10 mutants have limited cell death in spiral ganglion neurons, indicating that the absence of Schwann cells alone contributes little to the embryonic survival of neurons. These data suggest that neural crest-derived cells are dispensable for all central and some peripheral targeting of inner ear neurons. However, Schwann cells provide a stop signal for migratory spiral ganglion neurons and facilitate proper targeting of the organ of Corti by spiral ganglion afferents.

  12. Targeted Deletion of Sox10 by Wnt1-cre Defects Neuronal Migration and Projection in the Mouse Inner Ear

    Science.gov (United States)

    Mao, YanYan; Reiprich, Simone; Wegner, Michael; Fritzsch, Bernd

    2014-01-01

    Sensory nerves of the brainstem are mostly composed of placode-derived neurons, neural crest-derived neurons and neural crest-derived Schwann cells. This mixed origin of cells has made it difficult to dissect interdependence for fiber guidance. Inner ear-derived neurons are known to connect to the brain after delayed loss of Schwann cells in ErbB2 mutants. However, the ErbB2 mutant related alterations in the ear and the brain compound interpretation of the data. We present here a new model to evaluate exclusively the effect of Schwann cell loss on inner ear innervation. Conditional deletion of the neural crest specific transcription factor, Sox10, using the rhombic lip/neural crest specific Wnt1-cre driver spares Sox10 expression in the ear. We confirm that neural crest-derived cells provide a stop signal for migrating spiral ganglion neurons. In the absence of Schwann cells, spiral ganglion neurons migrate into the center of the cochlea and even out of the ear toward the brain. Spiral ganglion neuron afferent processes reach the organ of Corti, but many afferent fibers bypass the organ of Corti to enter the lateral wall of the cochlea. In contrast to this peripheral disorganization, the central projection to cochlear nuclei is normal. Compared to ErbB2 mutants, conditional Sox10 mutants have limited cell death in spiral ganglion neurons, indicating that the absence of Schwann cells alone contributes little to the embryonic survival of neurons. These data suggest that neural crest-derived cells are dispensable for all central and some peripheral targeting of inner ear neurons. However, Schwann cells provide a stop signal for migratory spiral ganglion neurons and facilitate proper targeting of the organ of Corti by spiral ganglion afferents. PMID:24718611

  13. Differentiation of neurons from neural precursors generated in floating spheres from embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Forrester Jeff

    2009-09-01

    Full Text Available Abstract Background Neural differentiation of embryonic stem (ES cells is usually achieved by induction of ectoderm in embryoid bodies followed by the enrichment of neuronal progenitors using a variety of factors. Obtaining reproducible percentages of neural cells is difficult and the methods are time consuming. Results Neural progenitors were produced from murine ES cells by a combination of nonadherent conditions and serum starvation. Conversion to neural progenitors was accompanied by downregulation of Oct4 and NANOG and increased expression of nestin. ES cells containing a GFP gene under the control of the Sox1 regulatory regions became fluorescent upon differentiation to neural progenitors, and ES cells with a tau-GFP fusion protein became fluorescent upon further differentiation to neurons. Neurons produced from these cells upregulated mature neuronal markers, or differentiated to glial and oligodendrocyte fates. The neurons gave rise to action potentials that could be recorded after application of fixed currents. Conclusion Neural progenitors were produced from murine ES cells by a novel method that induced neuroectoderm cells by a combination of nonadherent conditions and serum starvation, in contrast to the embryoid body method in which neuroectoderm cells must be selected after formation of all three germ layers.

  14. Disruption of Smad4 in neural crest cells leads to mid-gestation death with pharyngeal arch, craniofacial and cardiac defects

    Science.gov (United States)

    Nie, Xuguang; Deng, Chu-xia; Wang, Qin; Jiao, Kai

    2008-01-01

    TGFβ/BMP signaling pathways are essential for normal development of neural crest cells (NCCs). Smad4 encodes the only common Smad protein in mammals, which is a critical nuclear mediator of TGFβ/BMP signaling. In this work, we sought to investigate the roles of Smad4 for development of NCCs. To overcome the early embryonic lethality of Smad4 null mice, we specifically disrupted Smad4 in NCCs using a Cre/loxP system. The mutant mice died at mid-gestation with defects in facial primordia, pharyngeal arches, outflow tract and cardiac ventricles. Further examination revealed that mutant embryos displayed severe molecular defects starting from E9.5. Expression of multiple genes, including Msx1, 2, Ap-2α, Pax3, and Sox9, which play critical roles for NCC development, was downregulated by NCC disruption of Smad4. Moreover, increased cell death was observed in pharyngeal arches from E10.5. However, the cell proliferation rate in these areas was not substantially altered. Taken together, these findings provide compelling genetic evidence that Smad4-mediated activities of TGFβ/BMP signals are essential for appropriate NCC development. PMID:18334251

  15. FGF8 signaling sustains progenitor status and multipotency of cranial neural crest-derived mesenchymal cells in vivo and in vitro

    Science.gov (United States)

    Shao, Meiying; Liu, Chao; Song, Yingnan; Ye, Wenduo; He, Wei; Yuan, Guohua; Gu, Shuping; Lin, Congxin; Ma, Liang; Zhang, Yanding; Tian, Weidong; Hu, Tao; Chen, YiPing

    2015-01-01

    The cranial neural crest (CNC) cells play a vital role in craniofacial development and regeneration. They are multi-potent progenitors, being able to differentiate into various types of tissues. Both pre-migratory and post-migratory CNC cells are plastic, taking on diverse fates by responding to different inductive signals. However, what sustains the multipotency of CNC cells and derivatives remains largely unknown. In this study, we present evidence that FGF8 signaling is able to sustain progenitor status and multipotency of CNC-derived mesenchymal cells both in vivo and in vitro. We show that augmented FGF8 signaling in pre-migratory CNC cells prevents cell differentiation and organogenesis in the craniofacial region by maintaining their progenitor status. CNC-derived mesenchymal cells with Fgf8 overexpression or control cells in the presence of exogenous FGF8 exhibit prolonged survival, proliferation, and multi-potent differentiation capability in cell cultures. Remarkably, exogenous FGF8 also sustains the capability of CNC-derived mesenchymal cells to participate in organogenesis such as odontogenesis. Furthermore, FGF8-mediated signaling strongly promotes adipogenesis but inhibits osteogenesis of CNC-derived mesenchymal cells in vitro. Our results reveal a specific role for FGF8 in the maintenance of progenitor status and in fate determination of CNC cells, implicating a potential application in expansion and fate manipulation of CNC-derived cells in stem cell-based craniofacial regeneration. PMID:26243590

  16. Prediction and characterisation of a highly conserved, remote and cAMP responsive enhancer that regulates Msx1 gene expression in cardiac neural crest and outflow tract.

    Science.gov (United States)

    Miller, Kerry Ann; Davidson, Scott; Liaros, Angela; Barrow, John; Lear, Marissa; Heine, Danielle; Hoppler, Stefan; MacKenzie, Alasdair

    2008-05-15

    Double knockouts of the Msx1 and Msx2 genes in the mouse result in severe cardiac outflow tract malformations similar to those frequently found in newborn infants. Despite the known role of the Msx genes in cardiac formation little is known of the regulatory systems (ligand receptor, signal transduction and protein-DNA interactions) that regulate the tissue-specific expression of the Msx genes in mammals during the formation of the outflow tract. In the present study we have used a combination of multi-species comparative genomics, mouse transgenic analysis and in-situ hybridisation to predict and validate the existence of a remote ultra-conserved enhancer that supports the expression of the Msx1 gene in migrating mouse cardiac neural crest and the outflow tract primordia. Furthermore, culturing of embryonic explants derived from transgenic lines with agonists of the PKC and PKA signal transduction systems demonstrates that this remote enhancer is influenced by PKA but not PKC dependent gene regulatory systems. These studies demonstrate the efficacy of combining comparative genomics and transgenic analyses and provide a platform for the study of the possible roles of Msx gene mis-regulation in the aetiology of congenital heart malformation.

  17. Decreased proliferative, migrative and neuro-differentiative potential of postnatal rat enteric neural crest-derived cells during culture in vitro

    International Nuclear Information System (INIS)

    Yu, Hui; Pan, Wei-Kang; Zheng, Bai-Jun; Wang, Huai-Jie; Chen, Xin-Lin; Liu, Yong; Gao, Ya

    2016-01-01

    A growing body of evidence supports the potential use of enteric neural crest-derived cells (ENCCs) as a cell replacement therapy for Hirschsprung's disease. Based on previous observations of robust propagation of primary ENCCs, as opposed to their progeny, it is suggested that their therapeutic potential after in vitro expansion may be restricted. We therefore examined the growth and differentiation activities and phenotypic characteristics of continuous ENCC cultures. ENCCs were isolated from the intestines of postnatal rats and were identified using an immunocytochemical approach. During continuous ENCC culture expansion, proliferation, migration, apoptosis, and differentiation potentials were monitored. The Cell Counting Kit-8 was used for assessment of ENCC vitality, Transwell inserts for cell migration, immunocytochemistry for cell counts and identification, and flow cytometry for apoptosis. Over six continuous generations, ENCC proliferation potency was reduced and with prolonged culture, the ratio of migratory ENCCs was decreased. The percentage of apoptosis showed an upward trend with prolonged intragenerational culture, but showed a downward trend with prolonged culture of combined generations. Furthermore, the percentage of peripherin"+ cells decreased whilst the percentage of GFAP"+ cells increased with age. The results demonstrated that alterations in ENCC growth characteristics occur with increased culture time, which may partially account for the poor results of proposed cell therapies. - Highlights: • Differences were identified between primary and daughter ENCCs. • Daughter ENCCs had reduced proliferation, migration and differentiation. • Daughter ENCCs also had increased apoptosis. • These altered characteristics warrant further investigation.

  18. Renal excretion of iodine-131 labelled meta-iodobenzylguanidine and metabolites after therapeutic doses in patients suffering from different neural crest-derived tumours

    International Nuclear Information System (INIS)

    Wafelman, A.R.; Hoefnagel, C.A.; Maessen, H.J.M.; Maes, R.A.A.; Beijnen, J.H.

    1997-01-01

    Iodine-131 labelled meta-iodobenzylguanidine ([ 131 I[MIBG) is used for diagnostic scintigraphy and radionuclide therapy of neural crest-derived tumours. After administration of therapeutic doses of [ 131 I[MIBG (3.1-7.5 GBq) to 17 patients (n=32 courses), aged 2-73 years, 56%±10%, 73%±11%, 80%±10% and 83%±10% of the dose was cumulatively excreted as total radioactivity in urine at t=24 h, 48 h, 72 h and 96 h, respectively. Except for two adult patients, who showed excretion of 14%-18% of [ 131 I[meta-iodohippuric acid ([ 131 I[MIHA), the cumulatively excreted radioactivity consisted of >85% [ 131 I[MIBG, with 6% of the dose excreted as free [ 131 I[iodide, 4% as [ 131 I[MIHA and 2.5% as an unknown iodine-131 labelled metabolite. Cumulative renal excretion rates of total radioactivity and of [ 131 I[MIBG appeared to be higher in neuroblastoma and phaeochromocytoma patients than in carcinoid patients. Based on the excretion of small amounts of [ 131 I[meta-iodobenzoic acid in two patients, a possible metabolic pathway for [ 131 I[MIBG is suggested. The degree of metabolism was not related to the extent of liver uptake of radioactivity. (orig.). With 2 figs., 5 tabs

  19. Decreased proliferative, migrative and neuro-differentiative potential of postnatal rat enteric neural crest-derived cells during culture in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hui [Department of Pediatric Surgery, the Second Affiliated Hospital, Xi’an Jiaotong University, No 157, Xi Wu Road, Xi’an 710004, Shaanxi (China); Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi’an Jiaotong University, No 96, Yan Ta Xi Road, Xi’an 710061, Shaanxi (China); Pan, Wei-Kang; Zheng, Bai-Jun; Wang, Huai-Jie [Department of Pediatric Surgery, the Second Affiliated Hospital, Xi’an Jiaotong University, No 157, Xi Wu Road, Xi’an 710004, Shaanxi (China); Chen, Xin-Lin; Liu, Yong [Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi’an Jiaotong University, No 96, Yan Ta Xi Road, Xi’an 710061, Shaanxi (China); Gao, Ya, E-mail: ygao@mail.xjtu.edu.cn [Department of Pediatric Surgery, the Second Affiliated Hospital, Xi’an Jiaotong University, No 157, Xi Wu Road, Xi’an 710004, Shaanxi (China)

    2016-05-01

    A growing body of evidence supports the potential use of enteric neural crest-derived cells (ENCCs) as a cell replacement therapy for Hirschsprung's disease. Based on previous observations of robust propagation of primary ENCCs, as opposed to their progeny, it is suggested that their therapeutic potential after in vitro expansion may be restricted. We therefore examined the growth and differentiation activities and phenotypic characteristics of continuous ENCC cultures. ENCCs were isolated from the intestines of postnatal rats and were identified using an immunocytochemical approach. During continuous ENCC culture expansion, proliferation, migration, apoptosis, and differentiation potentials were monitored. The Cell Counting Kit-8 was used for assessment of ENCC vitality, Transwell inserts for cell migration, immunocytochemistry for cell counts and identification, and flow cytometry for apoptosis. Over six continuous generations, ENCC proliferation potency was reduced and with prolonged culture, the ratio of migratory ENCCs was decreased. The percentage of apoptosis showed an upward trend with prolonged intragenerational culture, but showed a downward trend with prolonged culture of combined generations. Furthermore, the percentage of peripherin{sup +} cells decreased whilst the percentage of GFAP{sup +} cells increased with age. The results demonstrated that alterations in ENCC growth characteristics occur with increased culture time, which may partially account for the poor results of proposed cell therapies. - Highlights: • Differences were identified between primary and daughter ENCCs. • Daughter ENCCs had reduced proliferation, migration and differentiation. • Daughter ENCCs also had increased apoptosis. • These altered characteristics warrant further investigation.

  20. ADAM13 function is required in the 3 dimensional context of the embryo during cranial neural crest cell migration in Xenopus laevis

    Science.gov (United States)

    Cousin, Hélène; Abbruzzese, Genevieve; McCusker, Catherine; Alfandari, Dominique

    2012-01-01

    The cranial neural crest (CNC) is a population of cells that arises from the lateral part of the developing brain, migrates ventrally and coordinates the entire craniofacial development of vertebrates. Many molecules are involved in CNC migration including the transmembrane metalloproteases ADAM13 and 19. We have previously shown that these ADAMs cleave a number of extracellular proteins and modify the transcription of a number of genes, and that both of these activities are important for cell migration. Here we show that the knock down of ADAM13 inhibits CNC migration in vivo but not in vitro, indicating that ADAM13 function is required in the 3-dimentional context of the embryo. We further show that the migration of CNC that do not express ADAM13 and ADAM19 can be rescued in vivo by co-grafting wild type CNC. Furthermore, the migration of CNC lacking ADAM13 can be rescued by mechanically separating the CNC from the surrounding ectoderm and mesoderm. Finally, we show that ADAM13 function is autonomous to CNC tissue, as the migration of morphant CNC can only be rescued by ADAM13 expression in the CNC and not the surrounding tissues. Together our results suggest that ADAM13 changes CNC interaction with the extracellular environment and that this change is necessary for their migration in vivo. PMID:22683825

  1. Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size

    Science.gov (United States)

    Gerstner, Wulfram

    2017-01-01

    Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50–2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations. PMID:28422957

  2. Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size.

    Science.gov (United States)

    Schwalger, Tilo; Deger, Moritz; Gerstner, Wulfram

    2017-04-01

    Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50-2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations.

  3. Arctigenin protects against neuronal hearing loss by promoting neural stem cell survival and differentiation.

    Science.gov (United States)

    Huang, Xinghua; Chen, Mo; Ding, Yan; Wang, Qin

    2017-03-01

    Neuronal hearing loss has become a prevalent health problem. This study focused on the function of arctigenin (ARC) in promoting survival and neuronal differentiation of mouse cochlear neural stem cells (NSCs), and its protection against gentamicin (GMC) induced neuronal hearing loss. Mouse cochlea was used to isolate NSCs, which were subsequently cultured in vitro. The effects of ARC on NSC survival, neurosphere formation, differentiation of NSCs, neurite outgrowth, and neural excitability in neuronal network in vitro were examined. Mechanotransduction ability demonstrated by intact cochlea, auditory brainstem response (ABR), and distortion product optoacoustic emissions (DPOAE) amplitude in mice were measured to evaluate effects of ARC on GMC-induced neuronal hearing loss. ARC increased survival, neurosphere formation, neuron differentiation of NSCs in mouse cochlear in vitro. ARC also promoted the outgrowth of neurites, as well as neural excitability of the NSC-differentiated neuron culture. Additionally, ARC rescued mechanotransduction capacity, restored the threshold shifts of ABR and DPOAE in our GMC ototoxicity murine model. This study supports the potential therapeutic role of ARC in promoting both NSCs proliferation and differentiation in vitro to functional neurons, thus supporting its protective function in the therapeutic treatment of neuropathic hearing loss in vivo. © 2017 Wiley Periodicals, Inc.

  4. Determination of relevant neuron-neuron connections for neural prosthetics using time-delayed mutual information: tutorial and preliminary results.

    Science.gov (United States)

    Taghva, Alexander; Song, Dong; Hampson, Robert E; Deadwyler, Sam A; Berger, Theodore W

    2012-12-01

    Identification of functional dependence among neurons is a necessary component in both the rational design of neural prostheses as well as in the characterization of network physiology. The objective of this article is to provide a tutorial for neurosurgeons regarding information theory, specifically time-delayed mutual information, and to compare time-delayed mutual information, an information theoretic quantity based on statistical dependence, with cross-correlation, a commonly used metric for this task in a preliminary analysis of rat hippocampal neurons. Spike trains were recorded from rats performing delayed nonmatch-to-sample task using an array of electrodes surgically implanted into the hippocampus of each hemisphere of the brain. In addition, spike train simulations of positively correlated neurons, negatively correlated neurons, and neurons correlated by nonlinear functions were generated. These were evaluated by time-delayed mutual information (MI) and cross-correlation. Application of time-delayed MI to experimental data indicated the optimal bin size for information capture in the CA3-CA1 system was 40 ms, which may provide some insight into the spatiotemporal nature of encoding in the rat hippocampus. On simulated data, time-delayed MI showed peak values at appropriate time lags in positively correlated, negatively correlated, and complexly correlated data. Cross-correlation showed peak and troughs with positively correlated and negatively correlated data, but failed to capture some higher order correlations. Comparison of time-delayed MI to cross-correlation in identification of functionally dependent neurons indicates that the methods are not equivalent. Time-delayed MI appeared to capture some interactions between CA3-CA1 neurons at physiologically plausible time delays missed by cross-correlation. It should be considered as a method for identification of functional dependence between neurons and may be useful in the development of neural

  5. Hopf bifurcation of an (n + 1) -neuron bidirectional associative memory neural network model with delays.

    Science.gov (United States)

    Xiao, Min; Zheng, Wei Xing; Cao, Jinde

    2013-01-01

    Recent studies on Hopf bifurcations of neural networks with delays are confined to simplified neural network models consisting of only two, three, four, five, or six neurons. It is well known that neural networks are complex and large-scale nonlinear dynamical systems, so the dynamics of the delayed neural networks are very rich and complicated. Although discussing the dynamics of networks with a few neurons may help us to understand large-scale networks, there are inevitably some complicated problems that may be overlooked if simplified networks are carried over to large-scale networks. In this paper, a general delayed bidirectional associative memory neural network model with n + 1 neurons is considered. By analyzing the associated characteristic equation, the local stability of the trivial steady state is examined, and then the existence of the Hopf bifurcation at the trivial steady state is established. By applying the normal form theory and the center manifold reduction, explicit formulae are derived to determine the direction and stability of the bifurcating periodic solution. Furthermore, the paper highlights situations where the Hopf bifurcations are particularly critical, in the sense that the amplitude and the period of oscillations are very sensitive to errors due to tolerances in the implementation of neuron interconnections. It is shown that the sensitivity is crucially dependent on the delay and also significantly influenced by the feature of the number of neurons. Numerical simulations are carried out to illustrate the main results.

  6. Vagal stimulation targets select populations of intrinsic cardiac neurons to control neurally induced atrial fibrillation.

    Science.gov (United States)

    Salavatian, Siamak; Beaumont, Eric; Longpré, Jean-Philippe; Armour, J Andrew; Vinet, Alain; Jacquemet, Vincent; Shivkumar, Kalyanam; Ardell, Jeffrey L

    2016-11-01

    Mediastinal nerve stimulation (MNS) reproducibly evokes atrial fibrillation (AF) by excessive and heterogeneous activation of intrinsic cardiac (IC) neurons. This study evaluated whether preemptive vagus nerve stimulation (VNS) impacts MNS-induced evoked changes in IC neural network activity to thereby alter susceptibility to AF. IC neuronal activity in the right atrial ganglionated plexus was directly recorded in anesthetized canines (n = 8) using a linear microelectrode array concomitant with right atrial electrical activity in response to: 1) epicardial touch or great vessel occlusion vs. 2) stellate or vagal stimulation. From these stressors, post hoc analysis (based on the Skellam distribution) defined IC neurons so recorded as afferent, efferent, or convergent (afferent and efferent inputs) local circuit neurons (LCN). The capacity of right-sided MNS to modify IC activity in the induction of AF was determined before and after preemptive right (RCV)- vs. left (LCV)-sided VNS (15 Hz, 500 μs; 1.2× bradycardia threshold). Neuronal (n = 89) activity at baseline (0.11 ± 0.29 Hz) increased during MNS-induced AF (0.51 ± 1.30 Hz; P neuronal synchrony increased during neurally induced AF, a local neural network response mitigated by preemptive VNS. These antiarrhythmic effects persisted post-VNS for, on average, 26 min. In conclusion, VNS preferentially targets convergent LCNs and their interactive coherence to mitigate the potential for neurally induced AF. The antiarrhythmic properties imposed by VNS exhibit memory. Copyright © 2016 the American Physiological Society.

  7. Nigral dopaminergic neuron replenishment in adult mice through VE-cadherin-expressing neural progenitor cells

    Directory of Open Access Journals (Sweden)

    Abir A Rahman

    2017-01-01

    Full Text Available The function of dopaminergic neurons in the substantia nigra is of central importance to the coordination of movement by the brain's basal ganglia circuitry. This is evidenced by the loss of these neurons, resulting in the cardinal motor deficits associated with Parkinson's disease. In order to fully understand the physiology of these key neurons and develop potential therapies for their loss, it is essential to determine if and how dopaminergic neurons are replenished in the adult brain. Recent work has presented evidence for adult neurogenesis of these neurons by Nestin+/Sox2– neural progenitor cells. We sought to further validate this finding and explore a potential atypical origin for these progenitor cells. Since neural progenitor cells have a proximal association with the vasculature of the brain and subsets of endothelial cells are Nestin+, we hypothesized that dopaminergic neural progenitors might share a common cell lineage. Therefore, we employed a VE-cadherin promoter-driven CREERT2:THlox/THlox transgenic mouse line to ablate the tyrosine hydroxylase gene from endothelial cells in adult animals. After 26 weeks, but not 13 weeks, following the genetic blockade of tyrosine hydroxylase expression in VE-cadherin+ cells, we observed a significant reduction in tyrosine hydroxylase+ neurons in the substantia nigra. The results from this genetic lineage tracing study suggest that dopaminergic neurons are replenished in adult mice by a VE-cadherin+ progenitor cell population potentially arising from an endothelial lineage.

  8. Conditional deletion of AP-2β in mouse cranial neural crest results in anterior segment dysgenesis and early-onset glaucoma

    Directory of Open Access Journals (Sweden)

    Vanessa B. Martino

    2016-08-01

    Full Text Available Anterior segment dysgenesis (ASD encompasses a group of developmental disorders in which a closed angle phenotype in the anterior chamber of the eye can occur and 50% of patients develop glaucoma. Many ASDs are thought to involve an inappropriate patterning and migration of the periocular mesenchyme (POM, which is derived from cranial neural crest cells (NCCs and mesoderm. Although, the mechanism of this disruption is not well understood, a number of transcriptional regulatory molecules have previously been implicated in ASDs. Here, we investigate the function of the transcription factor AP-2β, encoded by Tfap2b, which is expressed in NCCs and their derivatives. Wnt1-Cre-mediated conditional deletion of Tfap2b in NCCs resulted in post-natal ocular defects typified by opacity. Histological data revealed that the conditional AP-2β NCC knockout (KO mutants exhibited dysgenesis of multiple structures in the anterior segment of the eye including defects in the corneal endothelium, corneal stroma, ciliary body and disruption in the iridocorneal angle with adherence of the iris to the cornea. We further show that this phenotype leads to a significant increase in intraocular pressure and a subsequent loss of retinal ganglion cells and optic nerve degeneration, features indicative of glaucoma. Overall, our findings demonstrate that AP-2β is required in the POM for normal development of the anterior segment of the eye and that the AP-2β NCC KO mice might serve as a new and exciting model of ASD and glaucoma that is fully penetrant and with early post-natal onset.

  9. The ectodomain of cadherin-11 binds to erbB2 and stimulates Akt phosphorylation to promote cranial neural crest cell migration.

    Directory of Open Access Journals (Sweden)

    Ketan Mathavan

    Full Text Available During development, a multi-potent group of cells known as the cranial neural crest (CNC migrate to form craniofacial structures. Proper migration of these cells requires proteolysis of cell adhesion molecules, such as cadherins. In Xenopus laevis, preventing extracellular cleavage of cadherin-11 impairs CNC migration. However, overexpression of the soluble cleavage product (EC1-3 is capable of rescuing this phenotype. The mechanism by which EC1-3 promotes CNC migration has not been investigated until now. Here we show that EC1-3 stimulates phosphorylation of Akt, a target of PI3K, in X.laevis CNC. Through immunoprecipitation experiments, we determined that EC1-3 interacts with all ErbB receptors, PDGFRα, and FGFR1. Of these receptors, only ErbB2 was able to produce an increase in Akt phosphorylation upon treatment with a recombinant EC1-3. This increase was abrogated by mubritinib, an inhibitor of ErbB2. We were able to recapitulate this decrease in Akt phosphorylation in vivo by knocking down ErbB2 in CNC cells. Knockdown of the receptor also significantly reduced CNC migration in vivo. We confirmed the importance of ErbB2 and ErbB receptor signaling in CNC migration using mubritinib and canertinib, respectively. Mubritinib and the PI3K inhibitor LY294002 significantly decreased cell migration while canertinib nearly prevented it altogether. These data show that ErbB2 and Akt are important for CNC migration and implicate other ErbB receptors and Akt-independent signaling pathways. Our findings provide the first example of a functional interaction between the extracellular domain of a type II classical cadherin and growth factor receptors.

  10. Musculocontractural Ehlers–Danlos syndrome and neurocristopathies: dermatan sulfate is required for Xenopus neural crest cells to migrate and adhere to fibronectin

    Directory of Open Access Journals (Sweden)

    Nadège Gouignard

    2016-06-01

    Full Text Available Of all live births with congenital anomalies, approximately one-third exhibit deformities of the head and face. Most craniofacial disorders are associated with defects in a migratory stem and progenitor cell population, which is designated the neural crest (NC. Musculocontractural Ehlers–Danlos syndrome (MCEDS is a heritable connective tissue disorder with distinct craniofacial features; this syndrome comprises multiple congenital malformations that are caused by dysfunction of dermatan sulfate (DS biosynthetic enzymes, including DS epimerase-1 (DS-epi1; also known as DSE. Studies in mice have extended our understanding of DS-epi1 in connective tissue maintenance; however, its role in fetal development is not understood. We demonstrate that DS-epi1 is important for the generation of isolated iduronic acid residues in chondroitin sulfate (CS/DS proteoglycans in early Xenopus embryos. The knockdown of DS-epi1 does not affect the formation of early NC progenitors; however, it impairs the correct activation of transcription factors involved in the epithelial–mesenchymal transition (EMT and reduces the extent of NC cell migration, which leads to a decrease in NC-derived craniofacial skeleton, melanocytes and dorsal fin structures. Transplantation experiments demonstrate a tissue-autonomous role for DS-epi1 in cranial NC cell migration in vivo. Cranial NC explant and single-cell cultures indicate a requirement of DS-epi1 in cell adhesion, spreading and extension of polarized cell processes on fibronectin. Thus, our work indicates a functional link between DS and NC cell migration. We conclude that NC defects in the EMT and cell migration might account for the craniofacial anomalies and other congenital malformations in MCEDS, which might facilitate the diagnosis and development of therapies for this distressing condition. Moreover, the presented correlations between human DS-epi1 expression and gene sets of mesenchymal character, invasion and

  11. Neural regeneration protein is a novel chemoattractive and neuronal survival-promoting factor

    International Nuclear Information System (INIS)

    Gorba, Thorsten; Bradoo, Privahini; Antonic, Ana; Marvin, Keith; Liu, Dong-Xu; Lobie, Peter E.; Reymann, Klaus G.; Gluckman, Peter D.; Sieg, Frank

    2006-01-01

    Neurogenesis and neuronal migration are the prerequisites for the development of the central nervous system. We have identified a novel rodent gene encoding for a neural regeneration protein (NRP) with an activity spectrum similar to the chemokine stromal-derived factor (SDF)-1, but with much greater potency. The Nrp gene is encoded as a forward frameshift to the hypothetical alkylated DNA repair protein AlkB. The predicted protein sequence of NRP contains domains with homology to survival-promoting peptide (SPP) and the trefoil protein TFF-1. The Nrp gene is first expressed in neural stem cells and expression continues in glial lineages. Recombinant NRP and NRP-derived peptides possess biological activities including induction of neural migration and proliferation, promotion of neuronal survival, enhancement of neurite outgrowth and promotion of neuronal differentiation from neural stem cells. NRP exerts its effect on neuronal survival by phosphorylation of the ERK1/2 and Akt kinases, whereas NRP stimulation of neural migration depends solely on p44/42 MAP kinase activity. Taken together, the expression profile of Nrp, the existence in its predicted protein structure of domains with similarities to known neuroprotective and migration-inducing factors and the high potency of NRP-derived synthetic peptides acting in femtomolar concentrations suggest it to be a novel gene of relevance in cellular and developmental neurobiology

  12. Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons.

    Science.gov (United States)

    Buesing, Lars; Bill, Johannes; Nessler, Bernhard; Maass, Wolfgang

    2011-11-01

    The organization of computations in networks of spiking neurons in the brain is still largely unknown, in particular in view of the inherently stochastic features of their firing activity and the experimentally observed trial-to-trial variability of neural systems in the brain. In principle there exists a powerful computational framework for stochastic computations, probabilistic inference by sampling, which can explain a large number of macroscopic experimental data in neuroscience and cognitive science. But it has turned out to be surprisingly difficult to create a link between these abstract models for stochastic computations and more detailed models of the dynamics of networks of spiking neurons. Here we create such a link and show that under some conditions the stochastic firing activity of networks of spiking neurons can be interpreted as probabilistic inference via Markov chain Monte Carlo (MCMC) sampling. Since common methods for MCMC sampling in distributed systems, such as Gibbs sampling, are inconsistent with the dynamics of spiking neurons, we introduce a different approach based on non-reversible Markov chains that is able to reflect inherent temporal processes of spiking neuronal activity through a suitable choice of random variables. We propose a neural network model and show by a rigorous theoretical analysis that its neural activity implements MCMC sampling of a given distribution, both for the case of discrete and continuous time. This provides a step towards closing the gap between abstract functional models of cortical computation and more detailed models of networks of spiking neurons.

  13. Stochastic Nonlinear Evolutional Model of the Large-Scaled Neuronal Population and Dynamic Neural Coding Subject to Stimulation

    International Nuclear Information System (INIS)

    Wang Rubin; Yu Wei

    2005-01-01

    In this paper, we investigate how the population of neuronal oscillators deals with information and the dynamic evolution of neural coding when the external stimulation acts on it. Numerically computing method is used to describe the evolution process of neural coding in three-dimensioned space. The numerical result proves that only the suitable stimulation can change the coupling structure and plasticity of neurons

  14. Neuron's eye view: Inferring features of complex stimuli from neural responses.

    Directory of Open Access Journals (Sweden)

    Xin Chen

    2017-08-01

    Full Text Available Experiments that study neural encoding of stimuli at the level of individual neurons typically choose a small set of features present in the world-contrast and luminance for vision, pitch and intensity for sound-and assemble a stimulus set that systematically varies along these dimensions. Subsequent analysis of neural responses to these stimuli typically focuses on regression models, with experimenter-controlled features as predictors and spike counts or firing rates as responses. Unfortunately, this approach requires knowledge in advance about the relevant features coded by a given population of neurons. For domains as complex as social interaction or natural movement, however, the relevant feature space is poorly understood, and an arbitrary a priori choice of features may give rise to confirmation bias. Here, we present a Bayesian model for exploratory data analysis that is capable of automatically identifying the features present in unstructured stimuli based solely on neuronal responses. Our approach is unique within the class of latent state space models of neural activity in that it assumes that firing rates of neurons are sensitive to multiple discrete time-varying features tied to the stimulus, each of which has Markov (or semi-Markov dynamics. That is, we are modeling neural activity as driven by multiple simultaneous stimulus features rather than intrinsic neural dynamics. We derive a fast variational Bayesian inference algorithm and show that it correctly recovers hidden features in synthetic data, as well as ground-truth stimulus features in a prototypical neural dataset. To demonstrate the utility of the algorithm, we also apply it to cluster neural responses and demonstrate successful recovery of features corresponding to monkeys and faces in the image set.

  15. Human embryonic stem cell-derived neurons adopt and regulate the activity of an established neural network

    Science.gov (United States)

    Weick, Jason P.; Liu, Yan; Zhang, Su-Chun

    2011-01-01

    Whether hESC-derived neurons can fully integrate with and functionally regulate an existing neural network remains unknown. Here, we demonstrate that hESC-derived neurons receive unitary postsynaptic currents both in vitro and in vivo and adopt the rhythmic firing behavior of mouse cortical networks via synaptic integration. Optical stimulation of hESC-derived neurons expressing Channelrhodopsin-2 elicited both inhibitory and excitatory postsynaptic currents and triggered network bursting in mouse neurons. Furthermore, light stimulation of hESC-derived neurons transplanted to the hippocampus of adult mice triggered postsynaptic currents in host pyramidal neurons in acute slice preparations. Thus, hESC-derived neurons can participate in and modulate neural network activity through functional synaptic integration, suggesting they are capable of contributing to neural network information processing both in vitro and in vivo. PMID:22106298

  16. Network bursts in cortical neuronal cultures: 'noise - versus pacemaker'- driven neural network simulations

    NARCIS (Netherlands)

    Gritsun, T.; Stegenga, J.; le Feber, Jakob; Rutten, Wim

    2009-01-01

    In this paper we address the issue of spontaneous bursting activity in cortical neuronal cultures and explain what might cause this collective behavior using computer simulations of two different neural network models. While the common approach to acivate a passive network is done by introducing

  17. Neural stem cells improve neuronal survival in cultured postmortem brain tissue from aged and Alzheimer patients

    NARCIS (Netherlands)

    Wu, L.; Sluiter, A.A.; Guo, Ho Fu; Balesar, R. A.; Swaab, D. F.; Zhou, Jiang Ning; Verwer, R. W H

    Neurodegenerative diseases are progressive and incurable and are becoming ever more prevalent. To study whether neural stem cell can reactivate or rescue functions of impaired neurons in the human aging and neurodegenerating brain, we co-cultured postmortem slices from Alzheimer patients and control

  18. The transcription factor Nerfin-1 prevents reversion of neurons into neural stem cells.

    Science.gov (United States)

    Froldi, Francesca; Szuperak, Milan; Weng, Chen-Fang; Shi, Wei; Papenfuss, Anthony T; Cheng, Louise Y

    2015-01-15

    Cellular dedifferentiation is the regression of a cell from a specialized state to a more multipotent state and is implicated in cancer. However, the transcriptional network that prevents differentiated cells from reacquiring stem cell fate is so far unclear. Neuroblasts (NBs), the Drosophila neural stem cells, are a model for the regulation of stem cell self-renewal and differentiation. Here we show that the Drosophila zinc finger transcription factor Nervous fingers 1 (Nerfin-1) locks neurons into differentiation, preventing their reversion into NBs. Following Prospero-dependent neuronal specification in the ganglion mother cell (GMC), a Nerfin-1-specific transcriptional program maintains differentiation in the post-mitotic neurons. The loss of Nerfin-1 causes reversion to multipotency and results in tumors in several neural lineages. Both the onset and rate of neuronal dedifferentiation in nerfin-1 mutant lineages are dependent on Myc- and target of rapamycin (Tor)-mediated cellular growth. In addition, Nerfin-1 is required for NB differentiation at the end of neurogenesis. RNA sequencing (RNA-seq) and chromatin immunoprecipitation (ChIP) analysis show that Nerfin-1 administers its function by repression of self-renewing-specific and activation of differentiation-specific genes. Our findings support the model of bidirectional interconvertibility between neural stem cells and their post-mitotic progeny and highlight the importance of the Nerfin-1-regulated transcriptional program in neuronal maintenance. © 2015 Froldi et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Correction of Hirschsprung-Associated Mutations in Human Induced Pluripotent Stem Cells Via Clustered Regularly Interspaced Short Palindromic Repeats/Cas9, Restores Neural Crest Cell Function.

    Science.gov (United States)

    Lai, Frank Pui-Ling; Lau, Sin-Ting; Wong, John Kwong-Leong; Gui, Hongsheng; Wang, Reeson Xu; Zhou, Tingwen; Lai, Wing Hon; Tse, Hung-Fat; Tam, Paul Kwong-Hang; Garcia-Barcelo, Maria-Mercedes; Ngan, Elly Sau-Wai

    2017-07-01

    Hirschsprung disease is caused by failure of enteric neural crest cells (ENCCs) to fully colonize the bowel, leading to bowel obstruction and megacolon. Heterozygous mutations in the coding region of the RET gene cause a severe form of Hirschsprung disease (total colonic aganglionosis). However, 80% of HSCR patients have short-segment Hirschsprung disease (S-HSCR), which has not been associated with genetic factors. We sought to identify mutations associated with S-HSCR, and used the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing system to determine how mutations affect ENCC function. We created induced pluripotent stem cell (iPSC) lines from 1 patient with total colonic aganglionosis (with the G731del mutation in RET) and from 2 patients with S-HSCR (without a RET mutation), as well as RET +/- and RET -/- iPSCs. IMR90-iPSC cells were used as the control cell line. Migration and differentiation capacities of iPSC-derived ENCCs were analyzed in differentiation and migration assays. We searched for mutation(s) associated with S-HSCR by combining genetic and transcriptome data from patient blood- and iPSC-derived ENCCs, respectively. Mutations in the iPSCs were corrected using the CRISPR/Cas9 system. ENCCs derived from all iPSC lines, but not control iPSCs, had defects in migration and neuronal lineage differentiation. RET mutations were associated with differentiation and migration defects of ENCCs in vitro. Genetic and transcriptome analyses associated a mutation in the vinculin gene (VCL M209L) with S-HSCR. CRISPR/Cas9 correction of the RET G731del and VCL M209L mutations in iPSCs restored the differentiation and migration capacities of ENCCs. We identified mutations in VCL associated with S-HSCR. Correction of this mutation in iPSC using CRISPR/Cas9 editing, as well as the RET G731del mutation that causes Hirschsprung disease with total colonic aganglionosis, restored ENCC function. Our study demonstrates how human iPSCs can

  20. Mirror neurons and the social nature of language: the neural exploitation hypothesis.

    Science.gov (United States)

    Gallese, Vittorio

    2008-01-01

    This paper discusses the relevance of the discovery of mirror neurons in monkeys and of the mirror neuron system in humans to a neuroscientific account of primates' social cognition and its evolution. It is proposed that mirror neurons and the functional mechanism they underpin, embodied simulation, can ground within a unitary neurophysiological explanatory framework important aspects of human social cognition. In particular, the main focus is on language, here conceived according to a neurophenomenological perspective, grounding meaning on the social experience of action. A neurophysiological hypothesis--the "neural exploitation hypothesis"--is introduced to explain how key aspects of human social cognition are underpinned by brain mechanisms originally evolved for sensorimotor integration. It is proposed that these mechanisms were later on adapted as new neurofunctional architecture for thought and language, while retaining their original functions as well. By neural exploitation, social cognition and language can be linked to the experiential domain of action.

  1. Musculocontractural Ehlers-Danlos syndrome and neurocristopathies: dermatan sulfate is required for Xenopus neural crest cells to migrate and adhere to fibronectin.

    Science.gov (United States)

    Gouignard, Nadège; Maccarana, Marco; Strate, Ina; von Stedingk, Kristoffer; Malmström, Anders; Pera, Edgar M

    2016-06-01

    Of all live births with congenital anomalies, approximately one-third exhibit deformities of the head and face. Most craniofacial disorders are associated with defects in a migratory stem and progenitor cell population, which is designated the neural crest (NC). Musculocontractural Ehlers-Danlos syndrome (MCEDS) is a heritable connective tissue disorder with distinct craniofacial features; this syndrome comprises multiple congenital malformations that are caused by dysfunction of dermatan sulfate (DS) biosynthetic enzymes, including DS epimerase-1 (DS-epi1; also known as DSE). Studies in mice have extended our understanding of DS-epi1 in connective tissue maintenance; however, its role in fetal development is not understood. We demonstrate that DS-epi1 is important for the generation of isolated iduronic acid residues in chondroitin sulfate (CS)/DS proteoglycans in early Xenopus embryos. The knockdown of DS-epi1 does not affect the formation of early NC progenitors; however, it impairs the correct activation of transcription factors involved in the epithelial-mesenchymal transition (EMT) and reduces the extent of NC cell migration, which leads to a decrease in NC-derived craniofacial skeleton, melanocytes and dorsal fin structures. Transplantation experiments demonstrate a tissue-autonomous role for DS-epi1 in cranial NC cell migration in vivo Cranial NC explant and single-cell cultures indicate a requirement of DS-epi1 in cell adhesion, spreading and extension of polarized cell processes on fibronectin. Thus, our work indicates a functional link between DS and NC cell migration. We conclude that NC defects in the EMT and cell migration might account for the craniofacial anomalies and other congenital malformations in MCEDS, which might facilitate the diagnosis and development of therapies for this distressing condition. Moreover, the presented correlations between human DS-epi1 expression and gene sets of mesenchymal character, invasion and metastasis in

  2. Vagal stimulation targets select populations of intrinsic cardiac neurons to control neurally induced atrial fibrillation

    Science.gov (United States)

    Salavatian, Siamak; Beaumont, Eric; Longpré, Jean-Philippe; Armour, J. Andrew; Vinet, Alain; Jacquemet, Vincent; Shivkumar, Kalyanam

    2016-01-01

    Mediastinal nerve stimulation (MNS) reproducibly evokes atrial fibrillation (AF) by excessive and heterogeneous activation of intrinsic cardiac (IC) neurons. This study evaluated whether preemptive vagus nerve stimulation (VNS) impacts MNS-induced evoked changes in IC neural network activity to thereby alter susceptibility to AF. IC neuronal activity in the right atrial ganglionated plexus was directly recorded in anesthetized canines (n = 8) using a linear microelectrode array concomitant with right atrial electrical activity in response to: 1) epicardial touch or great vessel occlusion vs. 2) stellate or vagal stimulation. From these stressors, post hoc analysis (based on the Skellam distribution) defined IC neurons so recorded as afferent, efferent, or convergent (afferent and efferent inputs) local circuit neurons (LCN). The capacity of right-sided MNS to modify IC activity in the induction of AF was determined before and after preemptive right (RCV)- vs. left (LCV)-sided VNS (15 Hz, 500 μs; 1.2× bradycardia threshold). Neuronal (n = 89) activity at baseline (0.11 ± 0.29 Hz) increased during MNS-induced AF (0.51 ± 1.30 Hz; P < 0.001). Convergent LCNs were preferentially activated by MNS. Preemptive RCV reduced MNS-induced changes in LCN activity (by 70%) while mitigating MNS-induced AF (by 75%). Preemptive LCV reduced LCN activity by 60% while mitigating AF potential by 40%. IC neuronal synchrony increased during neurally induced AF, a local neural network response mitigated by preemptive VNS. These antiarrhythmic effects persisted post-VNS for, on average, 26 min. In conclusion, VNS preferentially targets convergent LCNs and their interactive coherence to mitigate the potential for neurally induced AF. The antiarrhythmic properties imposed by VNS exhibit memory. PMID:27591222

  3. Selective neuronal differentiation of neural stem cells induced by nanosecond microplasma agitation.

    Science.gov (United States)

    Xiong, Z; Zhao, S; Mao, X; Lu, X; He, G; Yang, G; Chen, M; Ishaq, M; Ostrikov, K

    2014-03-01

    An essential step for therapeutic and research applications of stem cells is their ability to differentiate into specific cell types. Neuronal cells are of great interest for medical treatment of neurodegenerative diseases and traumatic injuries of central nervous system (CNS), but efforts to produce these cells have been met with only modest success. In an attempt of finding new approaches, atmospheric-pressure room-temperature microplasma jets (MPJs) are shown to effectively direct in vitro differentiation of neural stem cells (NSCs) predominantly into neuronal lineage. Murine neural stem cells (C17.2-NSCs) treated with MPJs exhibit rapid proliferation and differentiation with longer neurites and cell bodies eventually forming neuronal networks. MPJs regulate ~75% of NSCs to differentiate into neurons, which is a higher efficiency compared to common protein- and growth factors-based differentiation. NSCs exposure to quantized and transient (~150 ns) micro-plasma bullets up-regulates expression of different cell lineage markers as β-Tubulin III (for neurons) and O4 (for oligodendrocytes), while the expression of GFAP (for astrocytes) remains unchanged, as evidenced by quantitative PCR, immunofluorescence microscopy and Western Blot assay. It is shown that the plasma-increased nitric oxide (NO) production is a factor in the fate choice and differentiation of NSCs followed by axonal growth. The differentiated NSC cells matured and produced mostly cholinergic and motor neuronal progeny. It is also demonstrated that exposure of primary rat NSCs to the microplasma leads to quite similar differentiation effects. This suggests that the observed effect may potentially be generic and applicable to other types of neural progenitor cells. The application of this new in vitro strategy to selectively differentiate NSCs into neurons represents a step towards reproducible and efficient production of the desired NSC derivatives. Published by Elsevier B.V.

  4. Selective neuronal differentiation of neural stem cells induced by nanosecond microplasma agitation

    Directory of Open Access Journals (Sweden)

    Z. Xiong

    2014-03-01

    Full Text Available An essential step for therapeutic and research applications of stem cells is their ability to differentiate into specific cell types. Neuronal cells are of great interest for medical treatment of neurodegenerative diseases and traumatic injuries of central nervous system (CNS, but efforts to produce these cells have been met with only modest success. In an attempt of finding new approaches, atmospheric-pressure room-temperature microplasma jets (MPJs are shown to effectively direct in vitro differentiation of neural stem cells (NSCs predominantly into neuronal lineage. Murine neural stem cells (C17.2-NSCs treated with MPJs exhibit rapid proliferation and differentiation with longer neurites and cell bodies eventually forming neuronal networks. MPJs regulate ~75% of NSCs to differentiate into neurons, which is a higher efficiency compared to common protein- and growth factors-based differentiation. NSCs exposure to quantized and transient (~150 ns micro-plasma bullets up-regulates expression of different cell lineage markers as β-Tubulin III (for neurons and O4 (for oligodendrocytes, while the expression of GFAP (for astrocytes remains unchanged, as evidenced by quantitative PCR, immunofluorescence microscopy and Western Blot assay. It is shown that the plasma-increased nitric oxide (NO production is a factor in the fate choice and differentiation of NSCs followed by axonal growth. The differentiated NSC cells matured and produced mostly cholinergic and motor neuronal progeny. It is also demonstrated that exposure of primary rat NSCs to the microplasma leads to quite similar differentiation effects. This suggests that the observed effect may potentially be generic and applicable to other types of neural progenitor cells. The application of this new in vitro strategy to selectively differentiate NSCs into neurons represents a step towards reproducible and efficient production of the desired NSC derivatives.

  5. Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons

    Science.gov (United States)

    Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Portes, Jacob P.; Timerman, Dmitriy

    2016-01-01

    Brain hemodynamics serve as a proxy for neural activity in a range of noninvasive neuroimaging techniques including functional magnetic resonance imaging (fMRI). In resting-state fMRI, hemodynamic fluctuations have been found to exhibit patterns of bilateral synchrony, with correlated regions inferred to have functional connectivity. However, the relationship between resting-state hemodynamics and underlying neural activity has not been well established, making the neural underpinnings of functional connectivity networks unclear. In this study, neural activity and hemodynamics were recorded simultaneously over the bilateral cortex of awake and anesthetized Thy1-GCaMP mice using wide-field optical mapping. Neural activity was visualized via selective expression of the calcium-sensitive fluorophore GCaMP in layer 2/3 and 5 excitatory neurons. Characteristic patterns of resting-state hemodynamics were accompanied by more rapidly changing bilateral patterns of resting-state neural activity. Spatiotemporal hemodynamics could be modeled by convolving this neural activity with hemodynamic response functions derived through both deconvolution and gamma-variate fitting. Simultaneous imaging and electrophysiology confirmed that Thy1-GCaMP signals are well-predicted by multiunit activity. Neurovascular coupling between resting-state neural activity and hemodynamics was robust and fast in awake animals, whereas coupling in urethane-anesthetized animals was slower, and in some cases included lower-frequency (resting-state hemodynamics in the awake and anesthetized brain are coupled to underlying patterns of excitatory neural activity. The patterns of bilaterally-symmetric spontaneous neural activity revealed by wide-field Thy1-GCaMP imaging may depict the neural foundation of functional connectivity networks detected in resting-state fMRI. PMID:27974609

  6. Lateral Information Processing by Spiking Neurons: A Theoretical Model of the Neural Correlate of Consciousness

    Directory of Open Access Journals (Sweden)

    Marc Ebner

    2011-01-01

    Full Text Available Cognitive brain functions, for example, sensory perception, motor control and learning, are understood as computation by axonal-dendritic chemical synapses in networks of integrate-and-fire neurons. Cognitive brain functions may occur either consciously or nonconsciously (on “autopilot”. Conscious cognition is marked by gamma synchrony EEG, mediated largely by dendritic-dendritic gap junctions, sideways connections in input/integration layers. Gap-junction-connected neurons define a sub-network within a larger neural network. A theoretical model (the “conscious pilot” suggests that as gap junctions open and close, a gamma-synchronized subnetwork, or zone moves through the brain as an executive agent, converting nonconscious “auto-pilot” cognition to consciousness, and enhancing computation by coherent processing and collective integration. In this study we implemented sideways “gap junctions” in a single-layer artificial neural network to perform figure/ground separation. The set of neurons connected through gap junctions form a reconfigurable resistive grid or sub-network zone. In the model, outgoing spikes are temporally integrated and spatially averaged using the fixed resistive grid set up by neurons of similar function which are connected through gap-junctions. This spatial average, essentially a feedback signal from the neuron's output, determines whether particular gap junctions between neurons will open or close. Neurons connected through open gap junctions synchronize their output spikes. We have tested our gap-junction-defined sub-network in a one-layer neural network on artificial retinal inputs using real-world images. Our system is able to perform figure/ground separation where the laterally connected sub-network of neurons represents a perceived object. Even though we only show results for visual stimuli, our approach should generalize to other modalities. The system demonstrates a moving sub-network zone of

  7. A Model to Explain the Emergence of Reward Expectancy neurons using Reinforcement Learning and Neural Network

    OpenAIRE

    Shinya, Ishii; Munetaka, Shidara; Katsunari, Shibata

    2006-01-01

    In an experiment of multi-trial task to obtain a reward, reward expectancy neurons,###which responded only in the non-reward trials that are necessary to advance###toward the reward, have been observed in the anterior cingulate cortex of monkeys.###In this paper, to explain the emergence of the reward expectancy neuron in###terms of reinforcement learning theory, a model that consists of a recurrent neural###network trained based on reinforcement learning is proposed. The analysis of the###hi...

  8. Dynamics in a Delayed Neural Network Model of Two Neurons with Inertial Coupling

    Directory of Open Access Journals (Sweden)

    Changjin Xu

    2012-01-01

    Full Text Available A delayed neural network model of two neurons with inertial coupling is dealt with in this paper. The stability is investigated and Hopf bifurcation is demonstrated. Applying the normal form theory and the center manifold argument, we derive the explicit formulas for determining the properties of the bifurcating periodic solutions. An illustrative example is given to demonstrate the effectiveness of the obtained results.

  9. Impaired neuronal maturation of hippocampal neural progenitor cells in mice lacking CRAF.

    Science.gov (United States)

    Pfeiffer, Verena; Götz, Rudolf; Camarero, Guadelupe; Heinsen, Helmut; Blum, Robert; Rapp, Ulf Rüdiger

    2018-01-01

    RAF kinases are major constituents of the mitogen activated signaling pathway, regulating cell proliferation, differentiation and cell survival of many cell types, including neurons. In mammals, the family of RAF proteins consists of three members, ARAF, BRAF, and CRAF. Ablation of CRAF kinase in inbred mouse strains causes major developmental defects during fetal growth and embryonic or perinatal lethality. Heterozygous germline mutations in CRAF result in Noonan syndrome, which is characterized by neurocognitive impairment that may involve hippocampal physiology. The role of CRAF signaling during hippocampal development and generation of new postnatal hippocampal granule neurons has not been examined and may provide novel insight into the cause of hippocampal dysfunction in Noonan syndrome. In this study, by crossing CRAF-deficiency to CD-1 outbred mice, a CRAF mouse model was established which enabled us to investigate the interplay of neural progenitor proliferation and postmitotic differentiation during adult neurogenesis in the hippocampus. Albeit the general morphology of the hippocampus was unchanged, CRAF-deficient mice displayed smaller granule cell layer (GCL) volume at postnatal day 30 (P30). In CRAF-deficient mice a substantial number of abnormal, chromophilic, fast dividing cells were found in the subgranular zone (SGZ) and hilus of the dentate gyrus (DG), indicating that CRAF signaling contributes to hippocampal neural progenitor proliferation. CRAF-deficient neural progenitor cells showed an increased cell death rate and reduced neuronal maturation. These results indicate that CRAF function affects postmitotic neural cell differentiation and points to a critical role of CRAF-dependent growth factor signaling pathway in the postmitotic development of adult-born neurons.

  10. SuperNeurons: Dynamic GPU Memory Management for Training Deep Neural Networks

    OpenAIRE

    Wang, Linnan; Ye, Jinmian; Zhao, Yiyang; Wu, Wei; Li, Ang; Song, Shuaiwen Leon; Xu, Zenglin; Kraska, Tim

    2018-01-01

    Going deeper and wider in neural architectures improves the accuracy, while the limited GPU DRAM places an undesired restriction on the network design domain. Deep Learning (DL) practitioners either need change to less desired network architectures, or nontrivially dissect a network across multiGPUs. These distract DL practitioners from concentrating on their original machine learning tasks. We present SuperNeurons: a dynamic GPU memory scheduling runtime to enable the network training far be...

  11. Neuron selection based on deflection coefficient maximization for the neural decoding of dexterous finger movements.

    Science.gov (United States)

    Kim, Yong-Hee; Thakor, Nitish V; Schieber, Marc H; Kim, Hyoung-Nam

    2015-05-01

    Future generations of brain-machine interface (BMI) will require more dexterous motion control such as hand and finger movements. Since a population of neurons in the primary motor cortex (M1) area is correlated with finger movements, neural activities recorded in M1 area are used to reconstruct an intended finger movement. In a BMI system, decoding discrete finger movements from a large number of input neurons does not guarantee a higher decoding accuracy in spite of the increase in computational burden. Hence, we hypothesize that selecting neurons important for coding dexterous flexion/extension of finger movements would improve the BMI performance. In this paper, two metrics are presented to quantitatively measure the importance of each neuron based on Bayes risk minimization and deflection coefficient maximization in a statistical decision problem. Since motor cortical neurons are active with movements of several different fingers, the proposed method is more suitable for a discrete decoding of flexion-extension finger movements than the previous methods for decoding reaching movements. In particular, the proposed metrics yielded high decoding accuracies across all subjects and also in the case of including six combined two-finger movements. While our data acquisition and analysis was done off-line and post processing, our results point to the significance of highly coding neurons in improving BMI performance.

  12. Omega-3 Polyunsaturated Fatty Acids Enhance Neuronal Differentiation in Cultured Rat Neural Stem Cells

    Directory of Open Access Journals (Sweden)

    Masanori Katakura

    2013-01-01

    Full Text Available Polyunsaturated fatty acids (PUFAs can induce neurogenesis and recovery from brain diseases. However, the exact mechanisms of the beneficial effects of PUFAs have not been conclusively described. We recently reported that docosahexaenoic acid (DHA induced neuronal differentiation by decreasing Hes1 expression and increasing p27kip1 expression, which causes cell cycle arrest in neural stem cells (NSCs. In the present study, we examined the effect of eicosapentaenoic acid (EPA and arachidonic acid (AA on differentiation, expression of basic helix-loop-helix transcription factors (Hes1, Hes6, and NeuroD, and the cell cycle of cultured NSCs. EPA also increased mRNA levels of Hes1, an inhibitor of neuronal differentiation, Hes6, an inhibitor of Hes1, NeuroD, and Map2 mRNA and Tuj-1-positive cells (a neuronal marker, indicating that EPA induced neuronal differentiation. EPA increased the mRNA levels of p21cip1 and p27kip1, a cyclin-dependent kinase inhibitor, which indicated that EPA induced cell cycle arrest. Treatment with AA decreased Hes1 mRNA but did not affect NeuroD and Map2 mRNA levels. Furthermore, AA did not affect the number of Tuj-1-positive cells or cell cycle progression. These results indicated that EPA could be involved in neuronal differentiation by mechanisms alternative to those of DHA, whereas AA did not affect neuronal differentiation in NSCs.

  13. Synergic Functions of miRNAs Determine Neuronal Fate of Adult Neural Stem Cells

    Directory of Open Access Journals (Sweden)

    Meritxell Pons-Espinal

    2017-04-01

    Full Text Available Summary: Adult neurogenesis requires the precise control of neuronal versus astrocyte lineage determination in neural stem cells. While microRNAs (miRNAs are critically involved in this step during development, their actions in adult hippocampal neural stem cells (aNSCs has been unclear. As entry point to address that question we chose DICER, an endoribonuclease essential for miRNA biogenesis and other RNAi-related processes. By specific ablation of Dicer in aNSCs in vivo and in vitro, we demonstrate that miRNAs are required for the generation of new neurons, but not astrocytes, in the adult murine hippocampus. Moreover, we identify 11 miRNAs, of which 9 have not been previously characterized in neurogenesis, that determine neurogenic lineage fate choice of aNSCs at the expense of astrogliogenesis. Finally, we propose that the 11 miRNAs sustain adult hippocampal neurogenesis through synergistic modulation of 26 putative targets from different pathways. : In this article, the authors demonstrate that Dicer-dependent miRNAs are required for the generation of new neurons, but not astrocytes, in the adult hippocampus in vivo and in vitro. The authors identify a new set of 11 miRNAs that synergistically converge on multiple targets in different pathways to sustain neurogenic lineage fate commitment in aNSCs. Keywords: mouse, hippocampus, neural stem cells, fate choice, adult neurogenesis, astrogliogenesis, DICER, microRNAs, synergy

  14. Optical imaging of neuronal activity and visualization of fine neural structures in non-desheathed nervous systems.

    Directory of Open Access Journals (Sweden)

    Christopher John Goldsmith

    Full Text Available Locating circuit neurons and recording from them with single-cell resolution is a prerequisite for studying neural circuits. Determining neuron location can be challenging even in small nervous systems because neurons are densely packed, found in different layers, and are often covered by ganglion and nerve sheaths that impede access for recording electrodes and neuronal markers. We revisited the voltage-sensitive dye RH795 for its ability to stain and record neurons through the ganglion sheath. Bath-application of RH795 stained neuronal membranes in cricket, earthworm and crab ganglia without removing the ganglion sheath, revealing neuron cell body locations in different ganglion layers. Using the pyloric and gastric mill central pattern generating neurons in the stomatogastric ganglion (STG of the crab, Cancer borealis, we found that RH795 permeated the ganglion without major residue in the sheath and brightly stained somatic, axonal and dendritic membranes. Visibility improved significantly in comparison to unstained ganglia, allowing the identification of somata location and number of most STG neurons. RH795 also stained axons and varicosities in non-desheathed nerves, and it revealed the location of sensory cell bodies in peripheral nerves. Importantly, the spike activity of the sensory neuron AGR, which influences the STG motor patterns, remained unaffected by RH795, while desheathing caused significant changes in AGR activity. With respect to recording neural activity, RH795 allowed us to optically record membrane potential changes of sub-sheath neuronal membranes without impairing sensory activity. The signal-to-noise ratio was comparable with that previously observed in desheathed preparations and sufficiently high to identify neurons in single-sweep recordings and synaptic events after spike-triggered averaging. In conclusion, RH795 enabled staining and optical recording of neurons through the ganglion sheath and is therefore both a

  15. Effects of neuronal loss in the dynamic model of neural networks

    International Nuclear Information System (INIS)

    Yoon, B-G; Choi, J; Choi, M Y

    2008-01-01

    We study the phase transitions and dynamic behavior of the dynamic model of neural networks, with an emphasis on the effects of neuronal loss due to external stress. In the absence of loss the overall results obtained numerically are found to agree excellently with the theoretical ones. When the external stress is turned on, some neurons may deteriorate and die; such loss of neurons, in general, weakens the memory in the system. As the loss increases beyond a critical value, the order parameter measuring the strength of memory decreases to zero either continuously or discontinuously, namely, the system loses its memory via a second- or a first-order transition, depending on the ratio of the refractory period to the duration of action potential

  16. Histone Deacetylase (HDAC) Inhibitors - emerging roles in neuronal memory, learning, synaptic plasticity and neural regeneration.

    Science.gov (United States)

    Ganai, Shabir Ahmad; Ramadoss, Mahalakshmi; Mahadevan, Vijayalakshmi

    2016-01-01

    Epigenetic regulation of neuronal signalling through histone acetylation dictates transcription programs that govern neuronal memory, plasticity and learning paradigms. Histone Acetyl Transferases (HATs) and Histone Deacetylases (HDACs) are antagonistic enzymes that regulate gene expression through acetylation and deacetylation of histone proteins around which DNA is wrapped inside a eukaryotic cell nucleus. The epigenetic control of HDACs and the cellular imbalance between HATs and HDACs dictate disease states and have been implicated in muscular dystrophy, loss of memory, neurodegeneration and autistic disorders. Altering gene expression profiles through inhibition of HDACs is now emerging as a powerful technique in therapy. This review presents evolving applications of HDAC inhibitors as potential drugs in neurological research and therapy. Mechanisms that govern their expression profiles in neuronal signalling, plasticity and learning will be covered. Promising and exciting possibilities of HDAC inhibitors in memory formation, fear conditioning, ischemic stroke and neural regeneration have been detailed.

  17. Optimization behavior of brainstem respiratory neurons. A cerebral neural network model.

    Science.gov (United States)

    Poon, C S

    1991-01-01

    A recent model of respiratory control suggested that the steady-state respiratory responses to CO2 and exercise may be governed by an optimal control law in the brainstem respiratory neurons. It was not certain, however, whether such complex optimization behavior could be accomplished by a realistic biological neural network. To test this hypothesis, we developed a hybrid computer-neural model in which the dynamics of the lung, brain and other tissue compartments were simulated on a digital computer. Mimicking the "controller" was a human subject who pedalled on a bicycle with varying speed (analog of ventilatory output) with a view to minimize an analog signal of the total cost of breathing (chemical and mechanical) which was computed interactively and displayed on an oscilloscope. In this manner, the visuomotor cortex served as a proxy (homolog) of the brainstem respiratory neurons in the model. Results in 4 subjects showed a linear steady-state ventilatory CO2 response to arterial PCO2 during simulated CO2 inhalation and a nearly isocapnic steady-state response during simulated exercise. Thus, neural optimization is a plausible mechanism for respiratory control during exercise and can be achieved by a neural network with cognitive computational ability without the need for an exercise stimulus.

  18. Cognitive phase transitions in the cerebral cortex enhancing the neuron doctrine by modeling neural fields

    CERN Document Server

    Kozma, Robert

    2016-01-01

    This intriguing book was born out of the many discussions the authors had in the past 10 years about the role of scale-free structure and dynamics in producing intelligent behavior in brains. The microscopic dynamics of neural networks is well described by the prevailing paradigm based in a narrow interpretation of the neuron doctrine. This book broadens the doctrine by incorporating the dynamics of neural fields, as first revealed by modeling with differential equations (K-sets).  The book broadens that approach by application of random graph theory (neuropercolation). The book concludes with diverse commentaries that exemplify the wide range of mathematical/conceptual approaches to neural fields. This book is intended for researchers, postdocs, and graduate students, who see the limitations of network theory and seek a beachhead from which to embark on mesoscopic and macroscopic neurodynamics.

  19. Electronic bypass of spinal lesions: activation of lower motor neurons directly driven by cortical neural signals.

    Science.gov (United States)

    Li, Yan; Alam, Monzurul; Guo, Shanshan; Ting, K H; He, Jufang

    2014-07-03

    Lower motor neurons in the spinal cord lose supraspinal inputs after complete spinal cord injury, leading to a loss of volitional control below the injury site. Extensive locomotor training with spinal cord stimulation can restore locomotion function after spinal cord injury in humans and animals. However, this locomotion is non-voluntary, meaning that subjects cannot control stimulation via their natural "intent". A recent study demonstrated an advanced system that triggers a stimulator using forelimb stepping electromyographic patterns to restore quadrupedal walking in rats with spinal cord transection. However, this indirect source of "intent" may mean that other non-stepping forelimb activities may false-trigger the spinal stimulator and thus produce unwanted hindlimb movements. We hypothesized that there are distinguishable neural activities in the primary motor cortex during treadmill walking, even after low-thoracic spinal transection in adult guinea pigs. We developed an electronic spinal bridge, called "Motolink", which detects these neural patterns and triggers a "spinal" stimulator for hindlimb movement. This hardware can be head-mounted or carried in a backpack. Neural data were processed in real-time and transmitted to a computer for analysis by an embedded processor. Off-line neural spike analysis was conducted to calculate and preset the spike threshold for "Motolink" hardware. We identified correlated activities of primary motor cortex neurons during treadmill walking of guinea pigs with spinal cord transection. These neural activities were used to predict the kinematic states of the animals. The appropriate selection of spike threshold value enabled the "Motolink" system to detect the neural "intent" of walking, which triggered electrical stimulation of the spinal cord and induced stepping-like hindlimb movements. We present a direct cortical "intent"-driven electronic spinal bridge to restore hindlimb locomotion after complete spinal cord injury.

  20. Computational Models of Neuron-Astrocyte Interactions Lead to Improved Efficacy in the Performance of Neural Networks

    Science.gov (United States)

    Alvarellos-González, Alberto; Pazos, Alejandro; Porto-Pazos, Ana B.

    2012-01-01

    The importance of astrocytes, one part of the glial system, for information processing in the brain has recently been demonstrated. Regarding information processing in multilayer connectionist systems, it has been shown that systems which include artificial neurons and astrocytes (Artificial Neuron-Glia Networks) have well-known advantages over identical systems including only artificial neurons. Since the actual impact of astrocytes in neural network function is unknown, we have investigated, using computational models, different astrocyte-neuron interactions for information processing; different neuron-glia algorithms have been implemented for training and validation of multilayer Artificial Neuron-Glia Networks oriented toward classification problem resolution. The results of the tests performed suggest that all the algorithms modelling astrocyte-induced synaptic potentiation improved artificial neural network performance, but their efficacy depended on the complexity of the problem. PMID:22649480

  1. Study of GABAergic extra-synaptic tonic inhibition in single neurons and neural populations by traversing neural scales: application to propofol-induced anaesthesia.

    Science.gov (United States)

    Hutt, Axel; Buhry, Laure

    2014-12-01

    Anaesthetic agents are known to affect extra-synaptic GABAergic receptors, which induce tonic inhibitory currents. Since these receptors are very sensitive to small concentrations of agents, they are supposed to play an important role in the underlying neural mechanism of general anaesthesia. Moreover anaesthetic agents modulate the encephalographic activity (EEG) of subjects and hence show an effect on neural populations. To understand better the tonic inhibition effect in single neurons on neural populations and hence how it affects the EEG, the work considers single neurons and neural populations in a steady-state and studies numerically and analytically the modulation of their firing rate and nonlinear gain with respect to different levels of tonic inhibition. We consider populations of both type-I (Leaky Integrate-and-Fire model) and type-II (Morris-Lecar model) neurons. To bridge the single neuron description to the population description analytically, a recently proposed statistical approach is employed which allows to derive new analytical expressions for the population firing rate for type-I neurons. In addition, the work shows the derivation of a novel transfer function for type-I neurons as considered in neural mass models and studies briefly the interaction of synaptic and extra-synaptic inhibition. We reveal a strong subtractive and divisive effect of tonic inhibition in type-I neurons, i.e. a shift of the firing rate to higher excitation levels accompanied by a change of the nonlinear gain. Tonic inhibition shortens the excitation window of type-II neurons and their populations while maintaining the nonlinear gain. The gained results are interpreted in the context of recent experimental findings under propofol-induced anaesthesia.

  2. Silicon nanowires enhanced proliferation and neuronal differentiation of neural stem cell with vertically surface microenvironment.

    Science.gov (United States)

    Yan, Qiuting; Fang, Lipao; Wei, Jiyu; Xiao, Guipeng; Lv, Meihong; Ma, Quanhong; Liu, Chunfeng; Wang, Wang

    2017-09-01

    Owing to its biocompatibility, noncytotoxicity, biodegradability and three-dimensional structure, vertically silicon nanowires (SiNWs) arrays are a promising scaffold material for tissue engineering, regenerative medicine and relevant medical applications. Recently, its osteogenic differentiation effects, reorganization of cytoskeleton and regulation of the fate on stem cells have been demonstrated. However, it still remains unknown whether SiNWs arrays could affect the proliferation and neuronal differentiation of neural stem cells (NSCs) or not. In the present study, we have employed vertically aligned SiNWs arrays as culture systems for NSCs and proved that the scaffold material could promote the proliferation and neuronal differentiation of NSCs while maintaining excellent cell viability and stemness. Immunofluorescence imaging analysis, Western blot and RT-PCR results reveal that NSCs proliferation and neuronal differentiation efficiency on SiNWs arrays are significant greater than that on silicon wafers. These results implicate SiNWs arrays could offer a powerful platform for NSCs research and NSCs-based therapy in the field of neural tissue engineering.

  3. Neural androgen receptors affect the number of surviving new neurones in the adult dentate gyrus of male mice.

    Science.gov (United States)

    Swift-Gallant, A; Duarte-Guterman, P; Hamson, D K; Ibrahim, M; Monks, D A; Galea, L A M

    2018-04-01

    Adult hippocampal neurogenesis occurs in many mammalian species. In rats, the survival of new neurones within the hippocampus is modulated by the action of androgen via the androgen receptor (AR); however, it is not known whether this holds true in mice. Furthermore, the evidence is mixed regarding whether androgens act in neural tissue or via peripheral non-neural targets to promote new neurone survival in the hippocampus. We evaluated whether the action of androgen via AR underlies the survival of new neurones in mice, and investigated whether increasing AR selectively in neural tissue would increase new neurone survival in the hippocampus. We used the cre-loxP system to overexpress AR only in neural tissues (Nestin-AR). These males were compared with wild-type males, as well as control males with 1 of the 2 mutations required for overexpression. Mice were gonadectomised and injected with the DNA synthesis marker, bromodeoxyuridine (BrdU) and for 37 days (following BrdU injection), mice were treated with oil or dihydrotestosterone (DHT). Using immunohistochemistry, proliferation (Ki67) and survival (BrdU) of new neurones were both evaluated in the dorsal and ventral dentate gyrus. Dihydrotestosterone treatment increased the survival of new neurones in the entire hippocampus in wild-type mice and control mice that only have 1 of 2 necessary mutations for transgenic expression. However, DHT treatment did not increase the survival of new neurones in mice that overexpressed AR in neural tissue. Cell proliferation (Ki67) and cell death (pyknotic cells) were not affected by DHT treatment in wild-type or transgenic males. These results suggest that androgens act via neural AR to affect hippocampal neurogenesis by promoting cell survival; however, the relationship between androgen dose and new neurone survival is nonlinear. © 2018 British Society for Neuroendocrinology.

  4. Bifurcation analysis on a generalized recurrent neural network with two interconnected three-neuron components

    International Nuclear Information System (INIS)

    Hajihosseini, Amirhossein; Maleki, Farzaneh; Rokni Lamooki, Gholam Reza

    2011-01-01

    Highlights: → We construct a recurrent neural network by generalizing a specific n-neuron network. → Several codimension 1 and 2 bifurcations take place in the newly constructed network. → The newly constructed network has higher capabilities to learn periodic signals. → The normal form theorem is applied to investigate dynamics of the network. → A series of bifurcation diagrams is given to support theoretical results. - Abstract: A class of recurrent neural networks is constructed by generalizing a specific class of n-neuron networks. It is shown that the newly constructed network experiences generic pitchfork and Hopf codimension one bifurcations. It is also proved that the emergence of generic Bogdanov-Takens, pitchfork-Hopf and Hopf-Hopf codimension two, and the degenerate Bogdanov-Takens bifurcation points in the parameter space is possible due to the intersections of codimension one bifurcation curves. The occurrence of bifurcations of higher codimensions significantly increases the capability of the newly constructed recurrent neural network to learn broader families of periodic signals.

  5. Variability of Neuronal Responses: Types and Functional Significance in Neuroplasticity and Neural Darwinism.

    Science.gov (United States)

    Chervyakov, Alexander V; Sinitsyn, Dmitry O; Piradov, Michael A

    2016-01-01

    HIGHLIGHTS We suggest classifying variability of neuronal responses as follows: false (associated with a lack of knowledge about the influential factors), "genuine harmful" (noise), "genuine neutral" (synonyms, repeats), and "genuine useful" (the basis of neuroplasticity and learning).The genuine neutral variability is considered in terms of the phenomenon of degeneracy.Of particular importance is the genuine useful variability that is considered as a potential basis for neuroplasticity and learning. This type of variability is considered in terms of the neural Darwinism theory. In many cases, neural signals detected under the same external experimental conditions significantly change from trial to trial. The variability phenomenon, which complicates extraction of reproducible results and is ignored in many studies by averaging, has attracted attention of researchers in recent years. In this paper, we classify possible types of variability based on its functional significance and describe features of each type. We describe the key adaptive significance of variability at the neural network level and the degeneracy phenomenon that may be important for learning processes in connection with the principle of neuronal group selection.

  6. Neutralization of LINGO-1 during in vitro differentiation of neural stem cells results in proliferation of immature neurons.

    Directory of Open Access Journals (Sweden)

    Camilla Lööv

    Full Text Available Identifying external factors that can be used to control neural stem cells division and their differentiation to neurons, astrocytes and oligodendrocytes is of high scientific and clinical interest. Here we show that the Nogo-66 receptor interacting protein LINGO-1 is a potent regulator of neural stem cell maturation to neurons. LINGO-1 is expressed by cortical neural stem cells from E14 mouse embryos and inhibition of LINGO-1 during the first days of neural stem cell differentiation results in decreased neuronal maturation. Compared to neurons in control cultures, which after 6 days of differentiation have long extending neurites, neurons in cultures treated with anti-LINGO-1 antibodies retain an immature, round phenotype with only very short processes. Furthermore, neutralization of LINGO-1 results in a threefold increase in βIII tubulin-positive cells compared to untreated control cultures. By using BrdU incorporation assays we show that the immature neurons in LINGO-1 neutralized cultures are dividing neuroblasts. In contrast to control cultures, in which no cells were double positive for βIII tubulin and BrdU, 36% of the neurons in cultures treated with anti-LINGO-1 antibodies were proliferating after three days of differentiation. TUNEL assays revealed that the amount of cells going through apoptosis during the early phase of differentiation was significantly decreased in cultures treated with anti-LINGO-1 antibodies compared to untreated control cultures. Taken together, our results demonstrate a novel role for LINGO-1 in neural stem cell differentiation to neurons and suggest a possibility to use LINGO-1 inhibitors to compensate for neuronal cell loss in the injured brain.

  7. The dynamic brain: from spiking neurons to neural masses and cortical fields.

    Directory of Open Access Journals (Sweden)

    Gustavo Deco

    2008-08-01

    Full Text Available The cortex is a complex system, characterized by its dynamics and architecture, which underlie many functions such as action, perception, learning, language, and cognition. Its structural architecture has been studied for more than a hundred years; however, its dynamics have been addressed much less thoroughly. In this paper, we review and integrate, in a unifying framework, a variety of computational approaches that have been used to characterize the dynamics of the cortex, as evidenced at different levels of measurement. Computational models at different space-time scales help us understand the fundamental mechanisms that underpin neural processes and relate these processes to neuroscience data. Modeling at the single neuron level is necessary because this is the level at which information is exchanged between the computing elements of the brain; the neurons. Mesoscopic models tell us how neural elements interact to yield emergent behavior at the level of microcolumns and cortical columns. Macroscopic models can inform us about whole brain dynamics and interactions between large-scale neural systems such as cortical regions, the thalamus, and brain stem. Each level of description relates uniquely to neuroscience data, from single-unit recordings, through local field potentials to functional magnetic resonance imaging (fMRI, electroencephalogram (EEG, and magnetoencephalogram (MEG. Models of the cortex can establish which types of large-scale neuronal networks can perform computations and characterize their emergent properties. Mean-field and related formulations of dynamics also play an essential and complementary role as forward models that can be inverted given empirical data. This makes dynamic models critical in integrating theory and experiments. We argue that elaborating principled and informed models is a prerequisite for grounding empirical neuroscience in a cogent theoretical framework, commensurate with the achievements in the

  8. Effects of neurotrophin-3 on the differentiation of neural stem cells into neurons and oligodendrocytes

    Science.gov (United States)

    Zhu, Guowei; Sun, Chongran; Liu, Weiguo

    2012-01-01

    In this study, cells from the cerebral cortex of fetal rats at pregnant 16 days were harvested and cultured with 20 μg/L neurotrophin-3. After 7 days of culture, immunocytochemical staining showed that, 22.4% of cells were positive for nestin, 10.5% were positive for β-III tubulin (neuronal marker), and 60.6% were positive for glial fibrillary acidic protein, but no cells were positive for O4 (oligodendrocytic marker). At 14 days, there were 5.6% nestin-, 9.6% β-III tubulin-, 81.1% glial fibrillary acidic protein-, and 2.2% O4-positive cells. In cells not treated with neurotrophin-3, some were nestin-positive, while the majority showed positive staining for glial fibrillary acidic protein. Our experimental findings indicate that neurotrophin-3 is a crucial factor for inducing neural stem cells differentiation into neurons and oligodendrocytes. PMID:25657683

  9. Phospholipase D1 increases Bcl-2 expression during neuronal differentiation of rat neural stem cells.

    Science.gov (United States)

    Park, Shin-Young; Ma, Weina; Yoon, Sung Nyo; Kang, Min Jeong; Han, Joong-Soo

    2015-01-01

    We studied the possible role of phospholipase D1 (PLD1) in the neuronal differentiation, including neurite formation of neural stem cells. PLD1 protein and PLD activity increased during neuronal differentiation. Bcl-2 also increased. Downregulation of PLD1 by transfection with PLD1 siRNA or a dominant-negative form of PLD1 (DN-PLD1) inhibited both neurite outgrowth and Bcl-2 expression. PLD activity was dramatically reduced by a PLCγ (phospholipase Cγ) inhibitor (U73122), a Ca(2+)chelator (BAPTA-AM), and a PKCα (protein kinase Cα) inhibitor (RO320432). Furthermore, treatment with arachidonic acid (AA) which is generated by the action of PLA2 (phospholipase A2) on phosphatidic acid (a PLD1 product), increased the phosphorylation of p38 MAPK and CREB, as well as Bcl-2 expression, indicating that PLA2 is involved in the differentiation process resulting from PLD1 activation. PGE2 (prostaglandin E2), a cyclooxygenase product of AA, also increased during neuronal differentiation. Moreover, treatment with PGE2 increased the phosphorylation of p38 MAPK and CREB, as well as Bcl-2 expression, and this effect was inhibited by a PKA inhibitor (Rp-cAMP). As expected, inhibition of p38 MAPK resulted in loss of CREB activity, and when CREB activity was blocked with CREB siRNA, Bcl-2 production also decreased. We also showed that the EP4 receptor was required for the PKA/p38MAPK/CREB/Bcl-2 pathway. Taken together, these observations indicate that PLD1 is activated by PLCγ/PKCα signaling and stimulate Bcl-2 expression through PLA2/Cox2/EP4/PKA/p38MAPK/CREB during neuronal differentiation of rat neural stem cells.

  10. Upregulation of the Nr2f1-A830082K12Rik gene pair in murine neural crest cells results in a complex phenotype reminiscent of Waardenburg syndrome type 4.

    Science.gov (United States)

    Bergeron, Karl-F; Nguyen, Chloé M A; Cardinal, Tatiana; Charrier, Baptiste; Silversides, David W; Pilon, Nicolas

    2016-11-01

    Waardenburg syndrome is a neurocristopathy characterized by a combination of skin and hair depigmentation, and inner ear defects. In the type 4 form, these defects show comorbidity with Hirschsprung disease, a disorder marked by an absence of neural ganglia in the distal colon, triggering functional intestinal obstruction. Here, we report that the Spot mouse line - obtained through an insertional mutagenesis screen for genes involved in neural crest cell (NCC) development - is a model for Waardenburg syndrome type 4. We found that the Spot insertional mutation causes overexpression of an overlapping gene pair composed of the transcription-factor-encoding Nr2f1 and the antisense long non-coding RNA A830082K12Rik in NCCs through a mechanism involving relief of repression of these genes. Consistent with the previously described role of Nr2f1 in promoting gliogenesis in the central nervous system, we further found that NCC-derived progenitors of the enteric nervous system fail to fully colonize Spot embryonic guts owing to their premature differentiation in glial cells. Taken together, our data thus identify silencer elements of the Nr2f1-A830082K12Rik gene pair as new candidate loci for Waardenburg syndrome type 4. © 2016. Published by The Company of Biologists Ltd.

  11. Upregulation of the Nr2f1-A830082K12Rik gene pair in murine neural crest cells results in a complex phenotype reminiscent of Waardenburg syndrome type 4

    Directory of Open Access Journals (Sweden)

    Karl-F. Bergeron

    2016-11-01

    Full Text Available Waardenburg syndrome is a neurocristopathy characterized by a combination of skin and hair depigmentation, and inner ear defects. In the type 4 form, these defects show comorbidity with Hirschsprung disease, a disorder marked by an absence of neural ganglia in the distal colon, triggering functional intestinal obstruction. Here, we report that the Spot mouse line – obtained through an insertional mutagenesis screen for genes involved in neural crest cell (NCC development – is a model for Waardenburg syndrome type 4. We found that the Spot insertional mutation causes overexpression of an overlapping gene pair composed of the transcription-factor-encoding Nr2f1 and the antisense long non-coding RNA A830082K12Rik in NCCs through a mechanism involving relief of repression of these genes. Consistent with the previously described role of Nr2f1 in promoting gliogenesis in the central nervous system, we further found that NCC-derived progenitors of the enteric nervous system fail to fully colonize Spot embryonic guts owing to their premature differentiation in glial cells. Taken together, our data thus identify silencer elements of the Nr2f1-A830082K12Rik gene pair as new candidate loci for Waardenburg syndrome type 4.

  12. Connecting Neurons to a Mobile Robot: An In Vitro Bidirectional Neural Interface

    Directory of Open Access Journals (Sweden)

    A. Novellino

    2007-01-01

    Full Text Available One of the key properties of intelligent behaviors is the capability to learn and adapt to changing environmental conditions. These features are the result of the continuous and intense interaction of the brain with the external world, mediated by the body. For this reason x201C;embodiment” represents an innovative and very suitable experimental paradigm when studying the neural processes underlying learning new behaviors and adapting to unpredicted situations. To this purpose, we developed a novel bidirectional neural interface. We interconnected in vitro neurons, extracted from rat embryos and plated on a microelectrode array (MEA, to external devices, thus allowing real-time closed-loop interaction. The novelty of this experimental approach entails the necessity to explore different computational schemes and experimental hypotheses. In this paper, we present an open, scalable architecture, which allows fast prototyping of different modules and where coding and decoding schemes and different experimental configurations can be tested. This hybrid system can be used for studying the computational properties and information coding in biological neuronal networks with far-reaching implications for the future development of advanced neuroprostheses.

  13. Connecting Neurons to a Mobile Robot: An In Vitro Bidirectional Neural Interface

    Science.gov (United States)

    Novellino, A.; D'Angelo, P.; Cozzi, L.; Chiappalone, M.; Sanguineti, V.; Martinoia, S.

    2007-01-01

    One of the key properties of intelligent behaviors is the capability to learn and adapt to changing environmental conditions. These features are the result of the continuous and intense interaction of the brain with the external world, mediated by the body. For this reason “embodiment” represents an innovative and very suitable experimental paradigm when studying the neural processes underlying learning new behaviors and adapting to unpredicted situations. To this purpose, we developed a novel bidirectional neural interface. We interconnected in vitro neurons, extracted from rat embryos and plated on a microelectrode array (MEA), to external devices, thus allowing real-time closed-loop interaction. The novelty of this experimental approach entails the necessity to explore different computational schemes and experimental hypotheses. In this paper, we present an open, scalable architecture, which allows fast prototyping of different modules and where coding and decoding schemes and different experimental configurations can be tested. This hybrid system can be used for studying the computational properties and information coding in biological neuronal networks with far-reaching implications for the future development of advanced neuroprostheses. PMID:18350128

  14. Dlx proteins position the neural plate border and determine adjacent cell fates.

    Science.gov (United States)

    Woda, Juliana M; Pastagia, Julie; Mercola, Mark; Artinger, Kristin Bruk

    2003-01-01

    The lateral border of the neural plate is a major source of signals that induce primary neurons, neural crest cells and cranial placodes as well as provide patterning cues to mesodermal structures such as somites and heart. Whereas secreted BMP, FGF and Wnt proteins influence the differentiation of neural and non-neural ectoderm, we show here that members of the Dlx family of transcription factors position the border between neural and non-neural ectoderm and are required for the specification of adjacent cell fates. Inhibition of endogenous Dlx activity in Xenopus embryos with an EnR-Dlx homeodomain fusion protein expands the neural plate into non-neural ectoderm tissue whereas ectopic activation of Dlx target genes inhibits neural plate differentiation. Importantly, the stereotypic pattern of border cell fates in the adjacent ectoderm is re-established only under conditions where the expanded neural plate abuts Dlx-positive non-neural ectoderm. Experiments in which presumptive neural plate was grafted to ventral ectoderm reiterate induction of neural crest and placodal lineages and also demonstrate that Dlx activity is required in non-neural ectoderm for the production of signals needed for induction of these cells. We propose that Dlx proteins regulate intercellular signaling across the interface between neural and non-neural ectoderm that is critical for inducing and patterning adjacent cell fates.

  15. Functional integration of grafted neural stem cell-derived dopaminergic neurons monitored by optogenetics in an in vitro Parkinson model

    DEFF Research Database (Denmark)

    Tønnesen, Jan; Parish, Clare L; Sørensen, Andreas T

    2011-01-01

    Intrastriatal grafts of stem cell-derived dopamine (DA) neurons induce behavioral recovery in animal models of Parkinson's disease (PD), but how they functionally integrate in host neural circuitries is poorly understood. Here, Wnt5a-overexpressing neural stem cells derived from embryonic ventral...... of post-synaptic currents, and functional expression of DA D₂ autoreceptors. These properties resembled those recorded from identical cells in acute slices of intrastriatal grafts in the 6-hydroxy-DA-induced mouse PD model and from DA neurons in intact substantia nigra. Optogenetic activation...... using optogenetics that ectopically grafted stem cell-derived DA neurons become functionally integrated in the DA-denervated striatum. Further optogenetic dissection of the synaptic wiring between grafted and host neurons will be crucial to clarify the cellular and synaptic mechanisms underlying...

  16. Functional integration of grafted neural stem cell-derived dopaminergic neurons monitored by optogenetics in an in vitro Parkinson model.

    Directory of Open Access Journals (Sweden)

    Jan Tønnesen

    Full Text Available Intrastriatal grafts of stem cell-derived dopamine (DA neurons induce behavioral recovery in animal models of Parkinson's disease (PD, but how they functionally integrate in host neural circuitries is poorly understood. Here, Wnt5a-overexpressing neural stem cells derived from embryonic ventral mesencephalon of tyrosine hydroxylase-GFP transgenic mice were expanded as neurospheres and transplanted into organotypic cultures of wild type mouse striatum. Differentiated GFP-labeled DA neurons in the grafts exhibited mature neuronal properties, including spontaneous firing of action potentials, presence of post-synaptic currents, and functional expression of DA D₂ autoreceptors. These properties resembled those recorded from identical cells in acute slices of intrastriatal grafts in the 6-hydroxy-DA-induced mouse PD model and from DA neurons in intact substantia nigra. Optogenetic activation or inhibition of grafted cells and host neurons using channelrhodopsin-2 (ChR2 and halorhodopsin (NpHR, respectively, revealed complex, bi-directional synaptic interactions between grafted cells and host neurons and extensive synaptic connectivity within the graft. Our data demonstrate for the first time using optogenetics that ectopically grafted stem cell-derived DA neurons become functionally integrated in the DA-denervated striatum. Further optogenetic dissection of the synaptic wiring between grafted and host neurons will be crucial to clarify the cellular and synaptic mechanisms underlying behavioral recovery as well as adverse effects following stem cell-based DA cell replacement strategies in PD.

  17. A novel recurrent neural network with one neuron and finite-time convergence for k-winners-take-all operation.

    Science.gov (United States)

    Liu, Qingshan; Dang, Chuangyin; Cao, Jinde

    2010-07-01

    In this paper, based on a one-neuron recurrent neural network, a novel k-winners-take-all ( k -WTA) network is proposed. Finite time convergence of the proposed neural network is proved using the Lyapunov method. The k-WTA operation is first converted equivalently into a linear programming problem. Then, a one-neuron recurrent neural network is proposed to get the kth or (k+1)th largest inputs of the k-WTA problem. Furthermore, a k-WTA network is designed based on the proposed neural network to perform the k-WTA operation. Compared with the existing k-WTA networks, the proposed network has simple structure and finite time convergence. In addition, simulation results on numerical examples show the effectiveness and performance of the proposed k-WTA network.

  18. Modeling the electrode-neuron interface of cochlear implants: effects of neural survival, electrode placement, and the partial tripolar configuration.

    Science.gov (United States)

    Goldwyn, Joshua H; Bierer, Steven M; Bierer, Julie Arenberg

    2010-09-01

    The partial tripolar electrode configuration is a relatively novel stimulation strategy that can generate more spatially focused electric fields than the commonly used monopolar configuration. Focused stimulation strategies should improve spectral resolution in cochlear implant users, but may also be more sensitive to local irregularities in the electrode-neuron interface. In this study, we develop a practical computer model of cochlear implant stimulation that can simulate neural activation in a simplified cochlear geometry and we relate the resulting patterns of neural activity to basic psychophysical measures. We examine how two types of local irregularities in the electrode-neuron interface, variations in spiral ganglion nerve density and electrode position within the scala tympani, affect the simulated neural activation patterns and how these patterns change with electrode configuration. The model shows that higher partial tripolar fractions activate more spatially restricted populations of neurons at all current levels and require higher current levels to excite a given number of neurons. We find that threshold levels are more sensitive at high partial tripolar fractions to both types of irregularities, but these effects are not independent. In particular, at close electrode-neuron distances, activation is typically more spatially localized which leads to a greater influence of neural dead regions. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  19. Amniotic fluid promotes the appearance of neural retinal progenitors and neurons in human RPE cell cultures.

    Science.gov (United States)

    Davari, Maliheh; Soheili, Zahra-Soheila; Ahmadieh, Hamid; Sanie-Jahromi, Fateme; Ghaderi, Shima; Kanavi, Mozhgan Rezaei; Samiei, Shahram; Akrami, Hassan; Haghighi, Massoud; Javidi-Azad, Fahimeh

    2013-01-01

    Retinal pigment epithelial (RPE) cells are capable of differentiating into retinal neurons when induced by the appropriate growth factors. Amniotic fluid contains a variety of growth factors that are crucial for the development of a fetus. In this study, the effects of human amniotic fluid (HAF) on primary RPE cell cultures were evaluated. RPE cells were isolated from the globes of postnatal human cadavers. The isolated cells were plated and grown in DMEM/F12 with 10% fetal bovine serum. To confirm the RPE identity of the cultured cells, they were immunocytochemically examined for the presence of the RPE cell-specific marker RPE65. RPE cultures obtained from passages 2-7 were treated with HAF and examined morphologically for 1 month. To determine whether retinal neurons or progenitors developed in the treated cultures, specific markers for bipolar (protein kinase C isomer α, PKCα), amacrine (cellular retinoic acid-binding protein I, CRABPI), and neural progenitor (NESTIN) cells were sought, and the amount of mRNA was quantified using real-time PCR. Treating RPE cells with HAF led to a significant decrease in the number of RPE65-positive cells, while PKCα- and CRABPI-positive cells were detected in the cultures. Compared with the fetal bovine serum-treated cultures, the levels of mRNAs quantitatively increased by 2-, 20- and 22-fold for NESTIN, PKCα, and CRABPI, respectively. The RPE cultures treated with HAF established spheres containing both pigmented and nonpigmented cells, which expressed neural progenitor markers such as NESTIN. This study showed that HAF can induce RPE cells to transdifferentiate into retinal neurons and progenitor cells, and that it provides a potential source for cell-based therapies to treat retinal diseases.

  20. Linear stability analysis of retrieval state in associative memory neural networks of spiking neurons

    International Nuclear Information System (INIS)

    Yoshioka, Masahiko

    2002-01-01

    We study associative memory neural networks of the Hodgkin-Huxley type of spiking neurons in which multiple periodic spatiotemporal patterns of spike timing are memorized as limit-cycle-type attractors. In encoding the spatiotemporal patterns, we assume the spike-timing-dependent synaptic plasticity with the asymmetric time window. Analysis for periodic solution of retrieval state reveals that if the area of the negative part of the time window is equivalent to the positive part, then crosstalk among encoded patterns vanishes. Phase transition due to the loss of the stability of periodic solution is observed when we assume fast α function for direct interaction among neurons. In order to evaluate the critical point of this phase transition, we employ Floquet theory in which the stability problem of the infinite number of spiking neurons interacting with α function is reduced to the eigenvalue problem with the finite size of matrix. Numerical integration of the single-body dynamics yields the explicit value of the matrix, which enables us to determine the critical point of the phase transition with a high degree of precision

  1. Excitation of lateral habenula neurons as a neural mechanism underlying ethanol‐induced conditioned taste aversion

    Science.gov (United States)

    Keefe, Kristen A.; Taha, Sharif A.

    2016-01-01

    Key points The lateral habenula (LHb) has been implicated in regulation of drug‐seeking behaviours through aversion‐mediated learning.In this study, we recorded neuronal activity in the LHb of rats during an operant task before and after ethanol‐induced conditioned taste aversion (CTA) to saccharin.Ethanol‐induced CTA caused significantly higher baseline firing rates in LHb neurons, as well as elevated firing rates in response to cue presentation, lever press and saccharin taste.In a separate cohort of rats, we found that bilateral LHb lesions blocked ethanol‐induced CTA.Our results strongly suggest that excitation of LHb neurons is required for ethanol‐induced CTA, and point towards a mechanism through which LHb firing may regulate voluntary ethanol consumption. Abstract Ethanol, like other drugs of abuse, has both rewarding and aversive properties. Previous work suggests that sensitivity to ethanol's aversive effects negatively modulates voluntary alcohol intake and thus may be important in vulnerability to developing alcohol use disorders. We previously found that rats with lesions of the lateral habenula (LHb), which is implicated in aversion‐mediated learning, show accelerated escalation of voluntary ethanol consumption. To understand neural encoding in the LHb contributing to ethanol‐induced aversion, we recorded neural firing in the LHb of freely behaving, water‐deprived rats before and after an ethanol‐induced (1.5 g kg−1 20% ethanol, i.p.) conditioned taste aversion (CTA) to saccharin taste. Ethanol‐induced CTA strongly decreased motivation for saccharin in an operant task to obtain the tastant. Comparison of LHb neural firing before and after CTA induction revealed four main differences in firing properties. First, baseline firing after CTA induction was significantly higher. Second, firing evoked by cues signalling saccharin availability shifted from a pattern of primarily inhibition before CTA to primarily excitation after CTA

  2. Excitation of lateral habenula neurons as a neural mechanism underlying ethanol-induced conditioned taste aversion.

    Science.gov (United States)

    Tandon, Shashank; Keefe, Kristen A; Taha, Sharif A

    2017-02-15

    The lateral habenula (LHb) has been implicated in regulation of drug-seeking behaviours through aversion-mediated learning. In this study, we recorded neuronal activity in the LHb of rats during an operant task before and after ethanol-induced conditioned taste aversion (CTA) to saccharin. Ethanol-induced CTA caused significantly higher baseline firing rates in LHb neurons, as well as elevated firing rates in response to cue presentation, lever press and saccharin taste. In a separate cohort of rats, we found that bilateral LHb lesions blocked ethanol-induced CTA. Our results strongly suggest that excitation of LHb neurons is required for ethanol-induced CTA, and point towards a mechanism through which LHb firing may regulate voluntary ethanol consumption. Ethanol, like other drugs of abuse, has both rewarding and aversive properties. Previous work suggests that sensitivity to ethanol's aversive effects negatively modulates voluntary alcohol intake and thus may be important in vulnerability to developing alcohol use disorders. We previously found that rats with lesions of the lateral habenula (LHb), which is implicated in aversion-mediated learning, show accelerated escalation of voluntary ethanol consumption. To understand neural encoding in the LHb contributing to ethanol-induced aversion, we recorded neural firing in the LHb of freely behaving, water-deprived rats before and after an ethanol-induced (1.5 g kg -1 20% ethanol, i.p.) conditioned taste aversion (CTA) to saccharin taste. Ethanol-induced CTA strongly decreased motivation for saccharin in an operant task to obtain the tastant. Comparison of LHb neural firing before and after CTA induction revealed four main differences in firing properties. First, baseline firing after CTA induction was significantly higher. Second, firing evoked by cues signalling saccharin availability shifted from a pattern of primarily inhibition before CTA to primarily excitation after CTA induction. Third, CTA induction reduced

  3. Spiking Neural Networks with Unsupervised Learning Based on STDP Using Resistive Synaptic Devices and Analog CMOS Neuron Circuit.

    Science.gov (United States)

    Kwon, Min-Woo; Baek, Myung-Hyun; Hwang, Sungmin; Kim, Sungjun; Park, Byung-Gook

    2018-09-01

    We designed the CMOS analog integrate and fire (I&F) neuron circuit can drive resistive synaptic device. The neuron circuit consists of a current mirror for spatial integration, a capacitor for temporal integration, asymmetric negative and positive pulse generation part, a refractory part, and finally a back-propagation pulse generation part for learning of the synaptic devices. The resistive synaptic devices were fabricated using HfOx switching layer by atomic layer deposition (ALD). The resistive synaptic device had gradual set and reset characteristics and the conductance was adjusted by spike-timing-dependent-plasticity (STDP) learning rule. We carried out circuit simulation of synaptic device and CMOS neuron circuit. And we have developed an unsupervised spiking neural networks (SNNs) for 5 × 5 pattern recognition and classification using the neuron circuit and synaptic devices. The hardware-based SNNs can autonomously and efficiently control the weight updates of the synapses between neurons, without the aid of software calculations.

  4. Premature Ventricular Contraction Coupling Interval Variability Destabilizes Cardiac Neuronal and Electrophysiological Control: Insights from Simultaneous Cardio-Neural Mapping

    Science.gov (United States)

    Hamon, David; Rajendran, Pradeep S.; Chui, Ray W.; Ajijola, Olujimi A.; Irie, Tadanobu; Talebi, Ramin; Salavatian, Siamak; Vaseghi, Marmar; Bradfield, Jason S.; Armour, J. Andrew; Ardell, Jeffrey L.; Shivkumar, Kalyanam

    2017-01-01

    Background Variability in premature ventricular contraction (PVC) coupling interval (CI) increases the risk of cardiomyopathy and sudden death. The autonomic nervous system regulates cardiac electrical and mechanical indices, and its dysregulation plays an important role in cardiac disease pathogenesis. The impact of PVCs on the intrinsic cardiac nervous system (ICNS), a neural network on the heart, remains unknown. The objective was to determine the effect of PVCs and CI on ICNS function in generating cardiac neuronal and electrical instability using a novel cardio-neural mapping approach. Methods and Results In a porcine model (n=8) neuronal activity was recorded from a ventricular ganglion using a microelectrode array, and cardiac electrophysiological mapping was performed. Neurons were functionally classified based on their response to afferent and efferent cardiovascular stimuli, with neurons that responded to both defined as convergent (local reflex processors). Dynamic changes in neuronal activity were then evaluated in response to right ventricular outflow tract PVCs with fixed short, fixed long, and variable CI. PVC delivery elicited a greater neuronal response than all other stimuli (P<0.001). Compared to fixed short and long CI, PVCs with variable CI had a greater impact on neuronal response (P<0.05 versus short CI), particularly on convergent neurons (P<0.05), as well as neurons receiving sympathetic (P<0.05) and parasympathetic input (P<0.05). The greatest cardiac electrical instability was also observed following variable (short) CI PVCs. Conclusions Variable CI PVCs affect critical populations of ICNS neurons and alter cardiac repolarization. These changes may be critical for arrhythmogenesis and remodeling leading to cardiomyopathy. PMID:28408652

  5. Functional cross-talk between the cellular prion protein and the neural cell adhesion molecule is critical for neuronal differentiation of neural stem/precursor cells.

    Science.gov (United States)

    Prodromidou, Kanella; Papastefanaki, Florentia; Sklaviadis, Theodoros; Matsas, Rebecca

    2014-06-01

    Cellular prion protein (PrP) is prominently expressed in brain, in differentiated neurons but also in neural stem/precursor cells (NPCs). The misfolding of PrP is a central event in prion diseases, yet the physiological function of PrP is insufficiently understood. Although PrP has been reported to associate with the neural cell adhesion molecule (NCAM), the consequences of concerted PrP-NCAM action in NPC physiology are unknown. Here, we generated NPCs from the subventricular zone (SVZ) of postnatal day 5 wild-type and PrP null (-/-) mice and observed that PrP is essential for proper NPC proliferation and neuronal differentiation. Moreover, we found that PrP is required for the NPC response to NCAM-induced neuronal differentiation. In the absence of PrP, NCAM not only fails to promote neuronal differentiation but also induces an accumulation of doublecortin-positive neuronal progenitors at the proliferation stage. In agreement, we noted an increase in cycling neuronal progenitors in the SVZ of PrP-/- mice compared with PrP+/+ mice, as evidenced by double labeling for the proliferation marker Ki67 and doublecortin as well as by 5-bromo-2'-deoxyuridine incorporation experiments. Additionally, fewer newly born neurons were detected in the rostral migratory stream of PrP-/- mice. Analysis of the migration of SVZ cells in microexplant cultures from wild-type and PrP-/- mice revealed no differences between genotypes or a role for NCAM in this process. Our data demonstrate that PrP plays a critical role in neuronal differentiation of NPCs and suggest that this function is, at least in part, NCAM-dependent. © 2014 AlphaMed Press.

  6. Identification of neural transcription factors required for the differentiation of three neuronal subtypes in the sea urchin embryo.

    Science.gov (United States)

    Slota, Leslie A; McClay, David R

    2018-03-15

    Correct patterning of the nervous system is essential for an organism's survival and complex behavior. Embryologists have used the sea urchin as a model for decades, but our understanding of sea urchin nervous system patterning is incomplete. Previous histochemical studies identified multiple neurotransmitters in the pluteus larvae of several sea urchin species. However, little is known about how, where and when neural subtypes are differentially specified during development. Here, we examine the molecular mechanisms of neuronal subtype specification in 3 distinct neural subtypes in the Lytechinus variegatus larva. We show that these subtypes are specified through Delta/Notch signaling and identify a different transcription factor required for the development of each neural subtype. Our results show achaete-scute and neurogenin are proneural for the serotonergic neurons of the apical organ and cholinergic neurons of the ciliary band, respectively. We also show that orthopedia is not proneural but is necessary for the differentiation of the cholinergic/catecholaminergic postoral neurons. Interestingly, these transcription factors are used similarly during vertebrate neurogenesis. We believe this study is a starting point for building a neural gene regulatory network in the sea urchin and for finding conserved deuterostome neurogenic mechanisms. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Creative Copper Crests

    Science.gov (United States)

    Knab, Thomas

    2011-01-01

    In this article, the author discusses how to create an art activity that would link the computer-created business cards of fourth-grade students with an upcoming school-wide medieval event. Creating family crests from copper foil would be a great connection, since they, like business cards, are an individual's way to identify themselves to others.…

  8. Complex dynamics of a delayed discrete neural network of two nonidentical neurons

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuanlong [Mathematics Department, GuangDong University of Finance, Guangzhou 510521 (China); Huang, Tingwen [Mathematics Department, Texas A and M University at Qatar, P. O. Box 23874, Doha (Qatar); Huang, Yu, E-mail: stshyu@mail.sysu.edu.cn [Mathematics Department, Sun Yat-Sen University, Guangzhou 510275, People' s Republic China (China)

    2014-03-15

    In this paper, we discover that a delayed discrete Hopfield neural network of two nonidentical neurons with self-connections and no self-connections can demonstrate chaotic behaviors. To this end, we first transform the model, by a novel way, into an equivalent system which has some interesting properties. Then, we identify the chaotic invariant set for this system and show that the dynamics of this system within this set is topologically conjugate to the dynamics of the full shift map with two symbols. This confirms chaos in the sense of Devaney. Our main results generalize the relevant results of Huang and Zou [J. Nonlinear Sci. 15, 291–303 (2005)], Kaslik and Balint [J. Nonlinear Sci. 18, 415–432 (2008)] and Chen et al. [Sci. China Math. 56(9), 1869–1878 (2013)]. We also give some numeric simulations to verify our theoretical results.

  9. Complex dynamics of a delayed discrete neural network of two nonidentical neurons

    International Nuclear Information System (INIS)

    Chen, Yuanlong; Huang, Tingwen; Huang, Yu

    2014-01-01

    In this paper, we discover that a delayed discrete Hopfield neural network of two nonidentical neurons with self-connections and no self-connections can demonstrate chaotic behaviors. To this end, we first transform the model, by a novel way, into an equivalent system which has some interesting properties. Then, we identify the chaotic invariant set for this system and show that the dynamics of this system within this set is topologically conjugate to the dynamics of the full shift map with two symbols. This confirms chaos in the sense of Devaney. Our main results generalize the relevant results of Huang and Zou [J. Nonlinear Sci. 15, 291–303 (2005)], Kaslik and Balint [J. Nonlinear Sci. 18, 415–432 (2008)] and Chen et al. [Sci. China Math. 56(9), 1869–1878 (2013)]. We also give some numeric simulations to verify our theoretical results

  10. Increasing Human Neural Stem Cell Transplantation Dose Alters Oligodendroglial and Neuronal Differentiation after Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Katja M. Piltti

    2017-06-01

    Full Text Available Multipotent human central nervous system-derived neural stem cells transplanted at doses ranging from 10,000 (low to 500,000 (very high cells differentiated predominantly into the oligodendroglial lineage. However, while the number of engrafted cells increased linearly in relationship to increasing dose, the proportion of oligodendrocytic cells declined. Increasing dose resulted in a plateau of engraftment, enhanced neuronal differentiation, and increased distal migration caudal to the transplantation sites. Dose had no effect on terminal sensory recovery or open-field locomotor scores. However, total human cell number and decreased oligodendroglial proportion were correlated with hindlimb girdle coupling errors. Conversely, greater oligodendroglial proportion was correlated with increased Ab step pattern, decreased swing speed, and increased paw intensity, consistent with improved recovery. These data suggest that transplant dose, and/or target niche parameters can regulate donor cell engraftment, differentiation/maturation, and lineage-specific migration profiles.

  11. Complex dynamics of a delayed discrete neural network of two nonidentical neurons.

    Science.gov (United States)

    Chen, Yuanlong; Huang, Tingwen; Huang, Yu

    2014-03-01

    In this paper, we discover that a delayed discrete Hopfield neural network of two nonidentical neurons with self-connections and no self-connections can demonstrate chaotic behaviors. To this end, we first transform the model, by a novel way, into an equivalent system which has some interesting properties. Then, we identify the chaotic invariant set for this system and show that the dynamics of this system within this set is topologically conjugate to the dynamics of the full shift map with two symbols. This confirms chaos in the sense of Devaney. Our main results generalize the relevant results of Huang and Zou [J. Nonlinear Sci. 15, 291-303 (2005)], Kaslik and Balint [J. Nonlinear Sci. 18, 415-432 (2008)] and Chen et al. [Sci. China Math. 56(9), 1869-1878 (2013)]. We also give some numeric simulations to verify our theoretical results.

  12. The role of shared neural activations, mirror neurons, and morality in empathy--a critical comment.

    Science.gov (United States)

    Lamm, Claus; Majdandžić, Jasminka

    2015-01-01

    In the last decade, the phenomenon of empathy has received widespread attention by the field of social neuroscience. This has provided fresh insights for theoretical models of empathy, and substantially influenced the academic and public conceptions about this complex social skill. The present paper highlights three key issues which are often linked to empathy, but which at the same time might obscure our understanding of it. These issues are: (1) shared neural activations and whether these can be interpreted as evidence for simulation accounts of empathy; (2) the causal link of empathy to our presumed mirror neuron system; and (3) the question whether increasing empathy will result in better moral decisions and behaviors. The aim of our review is to provide the basis for critically evaluating our current understanding of empathy, and its public reception, and to inspire new research directions. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  13. Stability and bifurcation in a simplified four-neuron BAM neural network with multiple delays

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available We first study the distribution of the zeros of a fourth-degree exponential polynomial. Then we apply the obtained results to a simplified bidirectional associated memory (BAM neural network with four neurons and multiple time delays. By taking the sum of the delays as the bifurcation parameter, it is shown that under certain assumptions the steady state is absolutely stable. Under another set of conditions, there are some critical values of the delay, when the delay crosses these critical values, the Hopf bifurcation occurs. Furthermore, some explicit formulae determining the stability and the direction of periodic solutions bifurcating from Hopf bifurcations are obtained by applying the normal form theory and center manifold reduction. Numerical simulations supporting the theoretical analysis are also included.

  14. Generation of Regionally Specified Neural Progenitors and Functional Neurons from Human Embryonic Stem Cells under Defined Conditions

    Directory of Open Access Journals (Sweden)

    Agnete Kirkeby

    2012-06-01

    Full Text Available To model human neural-cell-fate specification and to provide cells for regenerative therapies, we have developed a method to generate human neural progenitors and neurons from human embryonic stem cells, which recapitulates human fetal brain development. Through the addition of a small molecule that activates canonical WNT signaling, we induced rapid and efficient dose-dependent specification of regionally defined neural progenitors ranging from telencephalic forebrain to posterior hindbrain fates. Ten days after initiation of differentiation, the progenitors could be transplanted to the adult rat striatum, where they formed neuron-rich and tumor-free grafts with maintained regional specification. Cells patterned toward a ventral midbrain (VM identity generated a high proportion of authentic dopaminergic neurons after transplantation. The dopamine neurons showed morphology, projection pattern, and protein expression identical to that of human fetal VM cells grafted in parallel. VM-patterned but not forebrain-patterned neurons released dopamine and reversed motor deficits in an animal model of Parkinson's disease.

  15. Generation of human cortical neurons from a new immortal fetal neural stem cell line

    International Nuclear Information System (INIS)

    Cacci, E.; Villa, A.; Parmar, M.; Cavallaro, M.; Mandahl, N.; Lindvall, O.; Martinez-Serrano, A.; Kokaia, Z.

    2007-01-01

    Isolation and expansion of neural stem cells (NSCs) of human origin are crucial for successful development of cell therapy approaches in neurodegenerative diseases. Different epigenetic and genetic immortalization strategies have been established for long-term maintenance and expansion of these cells in vitro. Here we report the generation of a new, clonal NSC (hc-NSC) line, derived from human fetal cortical tissue, based on v-myc immortalization. Using immunocytochemistry, we show that these cells retain the characteristics of NSCs after more than 50 passages. Under proliferation conditions, when supplemented with epidermal and basic fibroblast growth factors, the hc-NSCs expressed neural stem/progenitor cell markers like nestin, vimentin and Sox2. When growth factors were withdrawn, proliferation and expression of v-myc and telomerase were dramatically reduced, and the hc-NSCs differentiated into glia and neurons (mostly glutamatergic and GABAergic, as well as tyrosine hydroxylase-positive, presumably dopaminergic neurons). RT-PCR analysis showed that the hc-NSCs retained expression of Pax6, Emx2 and Neurogenin2, which are genes associated with regionalization and cell commitment in cortical precursors during brain development. Our data indicate that this hc-NSC line could be useful for exploring the potential of human NSCs to replace dead or damaged cortical cells in animal models of acute and chronic neurodegenerative diseases. Taking advantage of its clonality and homogeneity, this cell line will also be a valuable experimental tool to study the regulatory role of intrinsic and extrinsic factors in human NSC biology

  16. Near infrared laser stimulation of human neural stem cells into neurons on graphene nanomesh semiconductors.

    Science.gov (United States)

    Akhavan, Omid; Ghaderi, Elham; Shirazian, Soheil A

    2015-02-01

    Reduced graphene oxide nanomeshes (rGONMs), as p-type semiconductors with band-gap energy of ∼ 1 eV, were developed and applied in near infrared (NIR) laser stimulation of human neural stem cells (hNSCs) into neurons. The biocompatibility of the rGONMs in growth of hNSCs was found similar to that of the graphene oxide (GO) sheets. Proliferation of the hNSCs on the GONMs was assigned to the excess oxygen functional groups formed on edge defects of the GONMs, resulting in superhydrophilicity of the surface. Under NIR laser stimulation, the graphene layers (especially the rGONMs) exhibited significant cell differentiations, including more elongations of the cells and higher differentiation of neurons than glia. The higher hNSC differentiation on the rGONM than the reduced GO (rGO) was assigned to the stimulation effects of the low-energy photoexcited electrons injected from the rGONM semiconductors into the cells, while the high-energy photoelectrons of the rGO (as a zero band-gap semiconductor) could suppress the cell proliferation and/or even cause cell damages. Using conventional heating of the culture media up to ∼ 43 °C (the temperature typically reached under the laser irradiation), no significant differentiation was observed in dark. This further confirmed the role of photoelectrons in the hNSC differentiation. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Higher-order neural processing tunes motion neurons to visual ecology in three species of hawkmoths.

    Science.gov (United States)

    Stöckl, A L; O'Carroll, D; Warrant, E J

    2017-06-28

    To sample information optimally, sensory systems must adapt to the ecological demands of each animal species. These adaptations can occur peripherally, in the anatomical structures of sensory organs and their receptors; and centrally, as higher-order neural processing in the brain. While a rich body of investigations has focused on peripheral adaptations, our understanding is sparse when it comes to central mechanisms. We quantified how peripheral adaptations in the eyes, and central adaptations in the wide-field motion vision system, set the trade-off between resolution and sensitivity in three species of hawkmoths active at very different light levels: nocturnal Deilephila elpenor, crepuscular Manduca sexta , and diurnal Macroglossum stellatarum. Using optical measurements and physiological recordings from the photoreceptors and wide-field motion neurons in the lobula complex, we demonstrate that all three species use spatial and temporal summation to improve visual performance in dim light. The diurnal Macroglossum relies least on summation, but can only see at brighter intensities. Manduca, with large sensitive eyes, relies less on neural summation than the smaller eyed Deilephila , but both species attain similar visual performance at nocturnal light levels. Our results reveal how the visual systems of these three hawkmoth species are intimately matched to their visual ecologies. © 2017 The Author(s).

  18. TAM receptors support neural stem cell survival, proliferation and neuronal differentiation.

    Science.gov (United States)

    Ji, Rui; Meng, Lingbin; Jiang, Xin; Cvm, Naresh Kumar; Ding, Jixiang; Li, Qiutang; Lu, Qingxian

    2014-01-01

    Tyro3, Axl and Mertk (TAM) receptor tyrosine kinases play multiple functional roles by either providing intrinsic trophic support for cell growth or regulating the expression of target genes that are important in the homeostatic regulation of immune responses. TAM receptors have been shown to regulate adult hippocampal neurogenesis by negatively regulation of glial cell activation in central nervous system (CNS). In the present study, we further demonstrated that all three TAM receptors were expressed by cultured primary neural stem cells (NSCs) and played a direct growth trophic role in NSCs proliferation, neuronal differentiation and survival. The cultured primary NSCs lacking TAM receptors exhibited slower growth, reduced proliferation and increased apoptosis as shown by decreased BrdU incorporation and increased TUNEL labeling, than those from the WT NSCs. In addition, the neuronal differentiation and maturation of the mutant NSCs were impeded, as characterized by less neuronal differentiation (β-tubulin III+) and neurite outgrowth than their WT counterparts. To elucidate the underlying mechanism that the TAM receptors play on the differentiating NSCs, we examined the expression profile of neurotrophins and their receptors by real-time qPCR on the total RNAs from hippocampus and primary NSCs; and found that the TKO NSC showed a significant reduction in the expression of both nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), but accompanied by compensational increases in the expression of the TrkA, TrkB, TrkC and p75 receptors. These results suggest that TAM receptors support NSCs survival, proliferation and differentiation by regulating expression of neurotrophins, especially the NGF.

  19. Implications of the dependence of neuronal activity on neural network states for the design of brain-machine interfaces

    Directory of Open Access Journals (Sweden)

    Stefano ePanzeri

    2016-04-01

    Full Text Available Brain-machine interfaces (BMIs can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stimulating electrodes, because trial-to-trial variability of neural activity partly arises from intrinsic factors (collectively known as the network state that include ongoing spontaneous activity and neuromodulation, and so is shared among neurons. Here we review recent progress in characterizing the state dependence of neural responses, and in particular of how neural responses depend on endogenous slow fluctuations of network excitability. We then elaborate on how this knowledge may be used to increase the amount of information that BMIs exchange with brains. Knowledge of network state can be used to fine-tune the stimulation pattern that should reliably elicit a target neural response used to encode information in the brain, and to discount part of the trial-by-trial variability of neural responses, so that they can be decoded more accurately.

  20. Differentiation-Dependent Energy Production and Metabolite Utilization: A Comparative Study on Neural Stem Cells, Neurons, and Astrocytes

    Science.gov (United States)

    Jády, Attila Gy.; Nagy, Ádám M.; Kőhidi, Tímea; Ferenczi, Szilamér; Tretter, László

    2016-01-01

    While it is evident that the metabolic machinery of stem cells should be fairly different from that of differentiated neurons, the basic energy production pathways in neural stem cells (NSCs) or in neurons are far from clear. Using the model of in vitro neuron production by NE-4C NSCs, this study focused on the metabolic changes taking place during the in vitro neuronal differentiation. O2 consumption, H+ production, and metabolic responses to single metabolites were measured in cultures of NSCs and in their neuronal derivatives, as well as in primary neuronal and astroglial cultures. In metabolite-free solutions, NSCs consumed little O2 and displayed a higher level of mitochondrial proton leak than neurons. In stem cells, glycolysis was the main source of energy for the survival of a 2.5-h period of metabolite deprivation. In contrast, stem cell-derived or primary neurons sustained a high-level oxidative phosphorylation during metabolite deprivation, indicating the consumption of own cellular material for energy production. The stem cells increased O2 consumption and mitochondrial ATP production in response to single metabolites (with the exception of glucose), showing rapid adaptation of the metabolic machinery to the available resources. In contrast, single metabolites did not increase the O2 consumption of neurons or astrocytes. In “starving” neurons, neither lactate nor pyruvate was utilized for mitochondrial ATP production. Gene expression studies also suggested that aerobic glycolysis and rapid metabolic adaptation characterize the NE-4C NSCs, while autophagy and alternative glucose utilization play important roles in the metabolism of stem cell-derived neurons. PMID:27116891

  1. Large-scale generation of human iPSC-derived neural stem cells/early neural progenitor cells and their neuronal differentiation.

    Science.gov (United States)

    D'Aiuto, Leonardo; Zhi, Yun; Kumar Das, Dhanjit; Wilcox, Madeleine R; Johnson, Jon W; McClain, Lora; MacDonald, Matthew L; Di Maio, Roberto; Schurdak, Mark E; Piazza, Paolo; Viggiano, Luigi; Sweet, Robert; Kinchington, Paul R; Bhattacharjee, Ayantika G; Yolken, Robert; Nimgaonka, Vishwajit L; Nimgaonkar, Vishwajit L

    2014-01-01

    Induced pluripotent stem cell (iPSC)-based technologies offer an unprecedented opportunity to perform high-throughput screening of novel drugs for neurological and neurodegenerative diseases. Such screenings require a robust and scalable method for generating large numbers of mature, differentiated neuronal cells. Currently available methods based on differentiation of embryoid bodies (EBs) or directed differentiation of adherent culture systems are either expensive or are not scalable. We developed a protocol for large-scale generation of neuronal stem cells (NSCs)/early neural progenitor cells (eNPCs) and their differentiation into neurons. Our scalable protocol allows robust and cost-effective generation of NSCs/eNPCs from iPSCs. Following culture in neurobasal medium supplemented with B27 and BDNF, NSCs/eNPCs differentiate predominantly into vesicular glutamate transporter 1 (VGLUT1) positive neurons. Targeted mass spectrometry analysis demonstrates that iPSC-derived neurons express ligand-gated channels and other synaptic proteins and whole-cell patch-clamp experiments indicate that these channels are functional. The robust and cost-effective differentiation protocol described here for large-scale generation of NSCs/eNPCs and their differentiation into neurons paves the way for automated high-throughput screening of drugs for neurological and neurodegenerative diseases.

  2. Generation of Regionally Specific Neural Progenitor Cells (NPCs) and Neurons from Human Pluripotent Stem Cells (hPSCs).

    Science.gov (United States)

    Cutts, Josh; Brookhouser, Nicholas; Brafman, David A

    2016-01-01

    Neural progenitor cells (NPCs) derived from human pluripotent stem cells (hPSCs) are a multipotent cell population capable of long-term expansion and differentiation into a variety of neuronal subtypes. As such, NPCs have tremendous potential for disease modeling, drug screening, and regenerative medicine. Current methods for the generation of NPCs results in cell populations homogenous for pan-neural markers such as SOX1 and SOX2 but heterogeneous with respect to regional identity. In order to use NPCs and their neuronal derivatives to investigate mechanisms of neurological disorders and develop more physiologically relevant disease models, methods for generation of regionally specific NPCs and neurons are needed. Here, we describe a protocol in which exogenous manipulation of WNT signaling, through either activation or inhibition, during neural differentiation of hPSCs, promotes the formation of regionally homogenous NPCs and neuronal cultures. In addition, we provide methods to monitor and characterize the efficiency of hPSC differentiation to these regionally specific cell identities.

  3. Enhanced differentiation of neural stem cells to neurons and promotion of neurite outgrowth by oxygen-glucose deprivation.

    Science.gov (United States)

    Wang, Qin; Yang, Lin; Wang, Yaping

    2015-06-01

    Stroke has become the leading cause of mortality worldwide. Hypoxic or ischemic insults are crucial factors mediating the neural damage in the brain tissue of stroke patients. Neural stem cells (NSCs) have been recognized as a promising tool for the treatment of ischemic stroke and other neurodegenerative diseases due to their inducible pluripotency. In this study, we aim to mimick the cerebral hypoxic-ischemic injury in vitro using oxygen-glucose deprivation (OGD) strategy, and evaluate the effects of OGD on the NSC's neural differentiation, as well as the differentiated neurite outgrowth. Our data showed that NSCs under the short-term 2h OGD treatment are able to maintain cell viability and the capability to form neurospheres. Importantly, this moderate OGD treatment promotes NSC differentiation to neurons and enhances the performance of the mature neuronal networks, accompanying increased neurite outgrowth of differentiated neurons. However, long-term 6h and 8h OGD exposures in NSCs lead to decreased cell survival, reduced differentiation and diminished NSC-derived neurite outgrowth. The expressions of neuron-specific microtubule-associated protein 2 (MAP-2) and growth associated protein 43 (GAP-43) are increased by short-term OGD treatments but suppressed by long-term OGD. Overall, our results demonstrate that short-term OGD exposure in vitro induces differentiation of NSCs while maintaining their proliferation and survival, providing valuable insights of adopting NSC-based therapy for ischemic stroke and other neurodegenerative disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Possible promotion of neuronal differentiation in fetal rat brain neural progenitor cells after sustained exposure to static magnetism.

    Science.gov (United States)

    Nakamichi, Noritaka; Ishioka, Yukichi; Hirai, Takao; Ozawa, Shusuke; Tachibana, Masaki; Nakamura, Nobuhiro; Takarada, Takeshi; Yoneda, Yukio

    2009-08-15

    We have previously shown significant potentiation of Ca(2+) influx mediated by N-methyl-D-aspartate receptors, along with decreased microtubules-associated protein-2 (MAP2) expression, in hippocampal neurons cultured under static magnetism without cell death. In this study, we investigated the effects of static magnetism on the functionality of neural progenitor cells endowed to proliferate for self-replication and differentiate into neuronal, astroglial, and oligodendroglial lineages. Neural progenitor cells were isolated from embryonic rat neocortex and hippocampus, followed by culture under static magnetism at 100 mT and subsequent determination of the number of cells immunoreactive for a marker protein of particular progeny lineages. Static magnetism not only significantly decreased proliferation of neural progenitor cells without affecting cell viability, but also promoted differentiation into cells immunoreactive for MAP2 with a concomitant decrease in that for an astroglial marker, irrespective of the presence of differentiation inducers. In neural progenitors cultured under static magnetism, a significant increase was seen in mRNA expression of several activator-type proneural genes, such as Mash1, Math1, and Math3, together with decreased mRNA expression of the repressor type Hes5. These results suggest that sustained static magnetism could suppress proliferation for self-renewal and facilitate differentiation into neurons through promoted expression of activator-type proneural genes by progenitor cells in fetal rat brain.

  5. Role of motoneuron-derived neurotrophin 3 in survival and axonal projection of sensory neurons during neural circuit formation.

    Science.gov (United States)

    Usui, Noriyoshi; Watanabe, Keisuke; Ono, Katsuhiko; Tomita, Koichi; Tamamaki, Nobuaki; Ikenaka, Kazuhiro; Takebayashi, Hirohide

    2012-03-01

    Sensory neurons possess the central and peripheral branches and they form unique spinal neural circuits with motoneurons during development. Peripheral branches of sensory axons fasciculate with the motor axons that extend toward the peripheral muscles from the central nervous system (CNS), whereas the central branches of proprioceptive sensory neurons directly innervate motoneurons. Although anatomically well documented, the molecular mechanism underlying sensory-motor interaction during neural circuit formation is not fully understood. To investigate the role of motoneuron on sensory neuron development, we analyzed sensory neuron phenotypes in the dorsal root ganglia (DRG) of Olig2 knockout (KO) mouse embryos, which lack motoneurons. We found an increased number of apoptotic cells in the DRG of Olig2 KO embryos at embryonic day (E) 10.5. Furthermore, abnormal axonal projections of sensory neurons were observed in both the peripheral branches at E10.5 and central branches at E15.5. To understand the motoneuron-derived factor that regulates sensory neuron development, we focused on neurotrophin 3 (Ntf3; NT-3), because Ntf3 and its receptors (Trk) are strongly expressed in motoneurons and sensory neurons, respectively. The significance of motoneuron-derived Ntf3 was analyzed using Ntf3 conditional knockout (cKO) embryos, in which we observed increased apoptosis and abnormal projection of the central branch innervating motoneuron, the phenotypes being apparently comparable with that of Olig2 KO embryos. Taken together, we show that the motoneuron is a functional source of Ntf3 and motoneuron-derived Ntf3 is an essential pre-target neurotrophin for survival and axonal projection of sensory neurons.

  6. Efficient and rapid derivation of primitive neural stem cells and generation of brain subtype neurons from human pluripotent stem cells.

    Science.gov (United States)

    Yan, Yiping; Shin, Soojung; Jha, Balendu Shekhar; Liu, Qiuyue; Sheng, Jianting; Li, Fuhai; Zhan, Ming; Davis, Janine; Bharti, Kapil; Zeng, Xianmin; Rao, Mahendra; Malik, Nasir; Vemuri, Mohan C

    2013-11-01

    Human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, are unique cell sources for disease modeling, drug discovery screens, and cell therapy applications. The first step in producing neural lineages from hPSCs is the generation of neural stem cells (NSCs). Current methods of NSC derivation involve the time-consuming, labor-intensive steps of an embryoid body generation or coculture with stromal cell lines that result in low-efficiency derivation of NSCs. In this study, we report a highly efficient serum-free pluripotent stem cell neural induction medium that can induce hPSCs into primitive NSCs (pNSCs) in 7 days, obviating the need for time-consuming, laborious embryoid body generation or rosette picking. The pNSCs expressed the neural stem cell markers Pax6, Sox1, Sox2, and Nestin; were negative for Oct4; could be expanded for multiple passages; and could be differentiated into neurons, astrocytes, and oligodendrocytes, in addition to the brain region-specific neuronal subtypes GABAergic, dopaminergic, and motor neurons. Global gene expression of the transcripts of pNSCs was comparable to that of rosette-derived and human fetal-derived NSCs. This work demonstrates an efficient method to generate expandable pNSCs, which can be further differentiated into central nervous system neurons and glia with temporal, spatial, and positional cues of brain regional heterogeneity. This method of pNSC derivation sets the stage for the scalable production of clinically relevant neural cells for cell therapy applications in good manufacturing practice conditions.

  7. Inductive differentiation of two neural lineages reconstituted in a microculture system from Xenopus early gastrula cells.

    Science.gov (United States)

    Mitani, S; Okamoto, H

    1991-05-01

    Neural induction of ectoderm cells has been reconstituted and examined in a microculture system derived from dissociated early gastrula cells of Xenopus laevis. We have used monoclonal antibodies as specific markers to monitor cellular differentiation from three distinct ectoderm lineages in culture (N1 for CNS neurons from neural tube, Me1 for melanophores from neural crest and E3 for skin epidermal cells from epidermal lineages). CNS neurons and melanophores differentiate when deep layer cells of the ventral ectoderm (VE, prospective epidermis region; 150 cells/culture) and an appropriate region of the marginal zone (MZ, prospective mesoderm region; 5-150 cells/culture) are co-cultured, but not in cultures of either cell type on their own; VE cells cultured alone yield epidermal cells as we have previously reported. The extent of inductive neural differentiation in the co-culture system strongly depends on the origin and number of MZ cells initially added to culture wells. The potency to induce CNS neurons is highest for dorsal MZ cells and sharply decreases as more ventrally located cells are used. The same dorsoventral distribution of potency is seen in the ability of MZ cells to inhibit epidermal differentiation. In contrast, the ability of MZ cells to induce melanophores shows the reverse polarity, ventral to dorsal. These data indicate that separate developmental mechanisms are used for the induction of neural tube and neural crest lineages. Co-differentiation of CNS neurons or melanophores with epidermal cells can be obtained in a single well of co-cultures of VE cells (150) and a wide range of numbers of MZ cells (5 to 100). Further, reproducible differentiation of both neural lineages requires intimate association between cells from the two gastrula regions; virtually no differentiation is obtained when cells from the VE and MZ are separated in a culture well. These results indicate that the inducing signals from MZ cells for both neural tube and neural

  8. Ferulic acid promotes survival and differentiation of neural stem cells to prevent gentamicin-induced neuronal hearing loss.

    Science.gov (United States)

    Gu, Lintao; Cui, Xinhua; Wei, Wei; Yang, Jia; Li, Xuezhong

    2017-11-15

    Neural stem cells (NSCs) have exhibited promising potential in therapies against neuronal hearing loss. Ferulic acid (FA) has been widely reported to enhance neurogenic differentiation of different stem cells. We investigated the role of FA in promoting NSC transplant therapy to prevent gentamicin-induced neuronal hearing loss. NSCs were isolated from mouse cochlear tissues to establish in vitro culture, which were then treated with FA. The survival and differentiation of NSCs were evaluated. Subsequently, neurite outgrowth and excitability of the in vitro neuronal network were assessed. Gentamicin was used to induce neuronal hearing loss in mice, in the presence and absence of FA, followed by assessments of auditory brainstem response (ABR) and distortion product optoacoustic emissions (DPOAE) amplitude. FA promoted survival, neurosphere formation and differentiation of NSCs, as well as neurite outgrowth and excitability of in vitro neuronal network. Furthermore, FA restored ABR threshold shifts and DPOAE in gentamicin-induced neuronal hearing loss mouse model in vivo. Our data, for the first time, support potential therapeutic efficacy of FA in promoting survival and differentiation of NSCs to prevent gentamicin-induced neuronal hearing loss. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Barrier Function-Based Neural Adaptive Control With Locally Weighted Learning and Finite Neuron Self-Growing Strategy.

    Science.gov (United States)

    Jia, Zi-Jun; Song, Yong-Duan

    2017-06-01

    This paper presents a new approach to construct neural adaptive control for uncertain nonaffine systems. By integrating locally weighted learning with barrier Lyapunov function (BLF), a novel control design method is presented to systematically address the two critical issues in neural network (NN) control field: one is how to fulfill the compact set precondition for NN approximation, and the other is how to use varying rather than a fixed NN structure to improve the functionality of NN control. A BLF is exploited to ensure the NN inputs to remain bounded during the entire system operation. To account for system nonlinearities, a neuron self-growing strategy is proposed to guide the process for adding new neurons to the system, resulting in a self-adjustable NN structure for better learning capabilities. It is shown that the number of neurons needed to accomplish the control task is finite, and better performance can be obtained with less number of neurons as compared with traditional methods. The salient feature of the proposed method also lies in the continuity of the control action everywhere. Furthermore, the resulting control action is smooth almost everywhere except for a few time instants at which new neurons are added. Numerical example illustrates the effectiveness of the proposed approach.

  10. Wnt1 from cochlear schwann cells enhances neuronal differentiation of transplanted neural stem cells in a rat spiral ganglion neuron degeneration model.

    Science.gov (United States)

    He, Ya; Zhang, Peng-Zhi; Sun, Dong; Mi, Wen-Juan; Zhang, Xin-Yi; Cui, Yong; Jiang, Xing-Wang; Mao, Xiao-Bo; Qiu, Jian-Hua

    2014-04-01

    Although neural stem cell (NSC) transplantation is widely expected to become a therapy for nervous system degenerative diseases and injuries, the low neuronal differentiation rate of NSCs transplanted into the inner ear is a major obstacle for the successful treatment of spiral ganglion neuron (SGN) degeneration. In this study, we validated whether the local microenvironment influences the neuronal differentiation of transplanted NSCs in the inner ear. Using a rat SGN degeneration model, we demonstrated that transplanted NSCs were more likely to differentiate into microtubule-associated protein 2 (MAP2)-positive neurons in SGN-degenerated cochleae than in control cochleae. Using real-time quantitative PCR and an immunofluorescence assay, we also proved that the expression of Wnt1 (a ligand of Wnt signaling) increases significantly in Schwann cells in the SGN-degenerated cochlea. We further verified that NSC cultures express receptors and signaling components for Wnts. Based on these expression patterns, we hypothesized that Schwann cell-derived Wnt1 and Wnt signaling might be involved in the regulation of the neuronal differentiation of transplanted NSCs. We verified our hypothesis in vitro using a coculture system. We transduced a lentiviral vector expressing Wnt1 into cochlear Schwann cell cultures and cocultured them with NSC cultures. The coculture with Wnt1-expressing Schwann cells resulted in a significant increase in the percentage of NSCs that differentiated into MAP2-positive neurons, whereas this differentiation-enhancing effect was prevented by Dkk1 (an inhibitor of the Wnt signaling pathway). These results suggested that Wnt1 derived from cochlear Schwann cells enhanced the neuronal differentiation of transplanted NSCs through Wnt signaling pathway activation. Alterations of the microenvironment deserve detailed investigation because they may help us to conceive effective strategies to overcome the barrier of the low differentiation rate of transplanted

  11. Differential neural representation of oral ethanol by central taste-sensitive neurons in ethanol-preferring and genetically heterogeneous rats.

    Science.gov (United States)

    Lemon, Christian H; Wilson, David M; Brasser, Susan M

    2011-12-01

    In randomly bred rats, orally applied ethanol stimulates neural substrates for appetitive sweet taste. To study associations between ethanol's oral sensory characteristics and genetically mediated ethanol preference, we made electrophysiological recordings of oral responses (spike density) by taste-sensitive nucleus tractus solitarii neurons in anesthetized selectively bred ethanol-preferring (P) rats and their genetically heterogeneous Wistar (W) control strain. Stimuli (25 total) included ethanol [3%, 5%, 10%, 15%, 25%, and 40% (vol/vol)], a sucrose series (0.01, 0.03, 0.1, 0.3, 0.5, and 1 M), and other sweet, salt, acidic, and bitter stimuli; 50 P and 39 W neurons were sampled. k-means clustering applied to the sucrose response series identified cells showing high (S(1)) or relatively low (S(0)) sensitivity to sucrose. A three-way factorial analysis revealed that activity to ethanol was influenced by a neuron's sensitivity to sucrose, ethanol concentration, and rat line (P = 0.01). Ethanol produced concentration-dependent responses in S(1) neurons that were larger than those in S(0) cells. Although responses to ethanol by S(1) cells did not differ between lines, neuronal firing rates to ethanol in S(0) cells increased across concentration only in P rats. Correlation and multivariate analyses revealed that ethanol evoked responses in W neurons that were strongly and selectively associated with activity to sweet stimuli, whereas responses to ethanol by P neurons were not easily associated with activity to representative sweet, sodium salt, acidic, or bitter stimuli. These findings show differential central neural representation of oral ethanol between genetically heterogeneous rats and P rats genetically selected to prefer alcohol.

  12. Brain stem slice conditioned medium contains endogenous BDNF and GDNF that affect neural crest boundary cap cells in co-culture.

    Science.gov (United States)

    Kaiser, Andreas; Kale, Ajay; Novozhilova, Ekaterina; Siratirakun, Piyaporn; Aquino, Jorge B; Thonabulsombat, Charoensri; Ernfors, Patrik; Olivius, Petri

    2014-05-30

    Conditioned medium (CM), made by collecting medium after a few days in cell culture and then re-using it to further stimulate other cells, is a known experimental concept since the 1950s. Our group has explored this technique to stimulate the performance of cells in culture in general, and to evaluate stem- and progenitor cell aptitude for auditory nerve repair enhancement in particular. As compared to other mediums, all primary endpoints in our published experimental settings have weighed in favor of conditioned culture medium, where we have shown that conditioned culture medium has a stimulatory effect on cell survival. In order to explore the reasons for this improved survival we set out to analyze the conditioned culture medium. We utilized ELISA kits to investigate whether brain stem (BS) slice CM contains any significant amounts of brain-derived neurotrophic factor (BDNF) and glial cell derived neurotrophic factor (GDNF). We further looked for a donor cell with progenitor characteristics that would be receptive to BDNF and GDNF. We chose the well-documented boundary cap (BC) progenitor cells to be tested in our in vitro co-culture setting together with cochlear nucleus (CN) of the BS. The results show that BS CM contains BDNF and GDNF and that survival of BC cells, as well as BC cell differentiation into neurons, were enhanced when BS CM were used. Altogether, we conclude that BC cells transplanted into a BDNF and GDNF rich environment could be suitable for treatment of a traumatized or degenerated auditory nerve. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. γ-Secretase modulators reduce endogenous amyloid β42 levels in human neural progenitor cells without altering neuronal differentiation

    Science.gov (United States)

    D’Avanzo, Carla; Sliwinski, Christopher; Wagner, Steven L.; Tanzi, Rudolph E.; Kim, Doo Yeon; Kovacs, Dora M.

    2015-01-01

    Soluble γ-secretase modulators (SGSMs) selectively decrease toxic amyloid β (Aβ) peptides (Aβ42). However, their effect on the physiologic functions of γ-secretase has not been tested in human model systems. γ-Secretase regulates fate determination of neural progenitor cells. Thus, we studied the impact of SGSMs on the neuronal differentiation of ReNcell VM (ReN) human neural progenitor cells (hNPCs). Quantitative PCR analysis showed that treatment of neurosphere-like ReN cell aggregate cultures with γ-secretase inhibitors (GSIs), but not SGSMs, induced a 2- to 4-fold increase in the expression of the neuronal markers Tuj1 and doublecortin. GSI treatment also induced neuronal marker protein expression, as shown by Western blot analysis. In the same conditions, SGSM treatment selectively reduced endogenous Aβ42 levels by ∼80%. Mechanistically, we found that Notch target gene expressions were selectively inhibited by a GSI, not by SGSM treatment. We can assert, for the first time, that SGSMs do not affect the neuronal differentiation of hNPCs while selectively decreasing endogenous Aβ42 levels in the same conditions. Our results suggest that our hNPC differentiation system can serve as a useful model to test the impact of GSIs and SGSMs on both endogenous Aβ levels and γ-secretase physiologic functions including endogenous Notch signaling.—D’Avanzo, C., Sliwinski, C., Wagner, S. L., Tanzi, R. E., Kim, D. Y., Kovacs, D. M. γ-Secretase modulators reduce endogenous amyloid β42 levels in human neural progenitor cells without altering neuronal differentiation. PMID:25903103

  14. Neural stem cells was induced to differentiate into cholinergic neurons in vitro

    International Nuclear Information System (INIS)

    Chang Yan; Xu Yilong; Pan Jingkun; Tian Lei; Gao Yuhong; Guo Shuilong

    2004-01-01

    The cholinergic-inducing effect of BMP4 on isolated and cultivated rat's cerebral neural stem cells (NSCs) was examined. NSCs which were isolated from two month's old rat's brain region like hippocampus and striatum were cultivated in a medium containing EGF and bFGF, and were identified with morphological character by microscope and nestin immunocytochemistry test. After 24 hours, half NSCs were cultivated with a BMP4-added medium as a experimental group instead of the primary medium, while the an other half NSCs being cultivated with the primary medium as a control group. After 8 days the expression of choline acetyltransferase (ChAT) of the cultivated cells was observated by indirect immunofluorescence test. Results showed that more positive cells were found in the experimental group, and the fluorescence intensity were stronger; while less positive cells were found in the control group, and the fluorescence intensity was weaker. The differentiational efficiency of the NSCs was examined by FITC-labelled Flow Cytometry. The results showed that about 16% cells of the experimental group appeared ChAT-positive, while that of control group only 7%. So BMP4 may have the function of inducing NSCs to differentiate into neurons with cholinergic characteristic. (authors)

  15. Taurine Protected Against the Impairments of Neural Stem Cell Differentiated Neurons Induced by Oxygen-Glucose Deprivation.

    Science.gov (United States)

    Xiao, Bo; Liu, Huazhen; Gu, Zeyun; Liu, Sining; Ji, Cheng

    2015-11-01

    Cell transplantation of neural stem cells (NSCs) is a promising approach for neurological recovery both structurally and functionally. However, one big obstacle is to promote differentiation of NSCs into neurons and the followed maturation. In the present study, we aimed to investigate the protective effect of taurine on the differentiation of NSCs and subsequent maturation of their neuronal lineage, when exposed to oxygen-glucose deprivation (OGD). The results suggested that taurine (5-20 mM) promoted the viability and proliferation of NSCs, and it protected against 8 h of OGD induced impairments. Furthermore, 20 mM taurine promoted NSCs to differentiate into neurons after 7 days of culture, and it also protected against the suppressive impairments of 8 h of OGD. Consistently, taurine (20 mM) promoted the neurite sprouting and outgrowth of the NSC differentiated neurons after 14 days of differentiation, which were significantly inhibited by OGD (8 h). At D21, the mushroom spines and spine density were promoted or restored by 20 mM taurine. Taken together, the enhanced viability and proliferation of NSCs, more differentiated neurons and the promoted maturation of neurons by 20 mM taurine support its therapeutic application during stem cell therapy to enhance neurological recovery. Moreover, it protected against the impairments induced by OGD, which may highlight its role for a more direct therapeutic application especially in an ischemic stroke environment.

  16. Ablation of cholesterol biosynthesis in neural stem cells increases their VEGF expression and angiogenesis but causes neuron apoptosis.

    Science.gov (United States)

    Saito, Kanako; Dubreuil, Veronique; Arai, Yoko; Wilsch-Bräuninger, Michaela; Schwudke, Dominik; Saher, Gesine; Miyata, Takaki; Breier, Georg; Thiele, Christoph; Shevchenko, Andrej; Nave, Klaus-Armin; Huttner, Wieland B

    2009-05-19

    Although sufficient cholesterol supply is known to be crucial for neurons in the developing mammalian brain, the cholesterol requirement of neural stem and progenitor cells in the embryonic central nervous system has not been addressed. Here we have conditionally ablated the activity of squalene synthase (SQS), a key enzyme for endogenous cholesterol production, in the neural stem and progenitor cells of the ventricular zone (VZ) of the embryonic mouse brain. Mutant embryos exhibited a reduced brain size due to the atrophy of the neuronal layers, and died at birth. Analyses of the E11.5-E15.5 dorsal telencephalon and diencephalon revealed that this atrophy was due to massive apoptosis of newborn neurons, implying that this progeny of the SQS-ablated neural stem and progenitor cells was dependent on endogenous cholesterol biosynthesis for survival. Interestingly, the neural stem and progenitor cells of the VZ, the primary target of SQS inactivation, did not undergo significant apoptosis. Instead, vascular endothelial growth factor (VEGF) expression in these cells was strongly upregulated via a hypoxia-inducible factor-1-independent pathway, and angiogenesis in the VZ was increased. Consistent with an increased supply of lipoproteins to these cells, the level of lipid droplets containing triacylglycerides with unsaturated fatty acyl chains was found to be elevated. Our study establishes a direct link between intracellular cholesterol levels, VEGF expression, and angiogenesis. Moreover, our data reveal a hitherto unknown compensatory process by which the neural stem and progenitor cells of the developing mammalian brain evade the detrimental consequences of impaired endogenous cholesterol biosynthesis.

  17. The role of phosphatidylinositol 3-kinase in neural cell adhesion molecule-mediated neuronal differentiation and survival

    DEFF Research Database (Denmark)

    Ditlevsen, Dorte K; Køhler, Lene B; Pedersen, Martin Volmer

    2003-01-01

    The neural cell adhesion molecule, NCAM, is known to stimulate neurite outgrowth from primary neurones and PC12 cells presumably through signalling pathways involving the fibroblast growth factor receptor (FGFR), protein kinase A (PKA), protein kinase C (PKC), the Ras-mitogen activated protein...... kinase (MAPK) pathway and an increase in intracellular Ca2+ levels. Stimulation of neurones with the synthetic NCAM-ligand, C3, induces neurite outgrowth through signalling pathways similar to the pathways activated through physiological, homophilic NCAM-stimulation. We present here data indicating...... that phosphatidylinositol 3-kinase (PI3K) is required for NCAM-mediated neurite outgrowth from PC12-E2 cells and from cerebellar and dopaminergic neurones in primary culture, and that the thr/ser kinase Akt/protein kinase B (PKB) is phosphorylated downstream of PI3K after stimulation with C3. Moreover, we present data...

  18. Delivery of Brain-Derived Neurotrophic Factor by 3D Biocompatible Polymeric Scaffolds for Neural Tissue Engineering and Neuronal Regeneration

    KAUST Repository

    Limongi, Tania; Rocchi, A.; Cesca, F.; Tan, H.; Miele, E.; Giugni, Andrea; Orlando, M.; Perrone Donnorso, M.; Perozziello, G.; Benfenati, Fabio; Di Fabrizio, Enzo M.

    2018-01-01

    Biopolymers are increasingly employed for neuroscience applications as scaffolds to drive and promote neural regrowth, thanks to their ability to mediate the upload and subsequent release of active molecules and drugs. Synthetic degradable polymers are characterized by different responses ranging from tunable distension or shrinkage to total dissolution, depending on the function they are designed for. In this paper we present a biocompatible microfabricated poly-ε-caprolactone (PCL) scaffold for primary neuron growth and maturation that has been optimized for the in vitro controlled release of brain-derived neurotrophic factor (BDNF). We demonstrate that the designed morphology confers to these devices an enhanced drug delivery capability with respect to monolithic unstructured supports. After incubation with BDNF, micropillared PCL devices progressively release the neurotrophin over 21 days in vitro. Moreover, the bioactivity of released BDNF is confirmed using primary neuronal cultures, where it mediates a consistent activation of BDNF signaling cascades, increased synaptic density, and neuronal survival. These results provide the proof-of-principle on the fabrication process of micropatterned PCL devices, which represent a promising therapeutic option to enhance neuronal regeneration after lesion and for neural tissue engineering and prosthetics.

  19. Delivery of Brain-Derived Neurotrophic Factor by 3D Biocompatible Polymeric Scaffolds for Neural Tissue Engineering and Neuronal Regeneration

    KAUST Repository

    Limongi, Tania

    2018-04-04

    Biopolymers are increasingly employed for neuroscience applications as scaffolds to drive and promote neural regrowth, thanks to their ability to mediate the upload and subsequent release of active molecules and drugs. Synthetic degradable polymers are characterized by different responses ranging from tunable distension or shrinkage to total dissolution, depending on the function they are designed for. In this paper we present a biocompatible microfabricated poly-ε-caprolactone (PCL) scaffold for primary neuron growth and maturation that has been optimized for the in vitro controlled release of brain-derived neurotrophic factor (BDNF). We demonstrate that the designed morphology confers to these devices an enhanced drug delivery capability with respect to monolithic unstructured supports. After incubation with BDNF, micropillared PCL devices progressively release the neurotrophin over 21 days in vitro. Moreover, the bioactivity of released BDNF is confirmed using primary neuronal cultures, where it mediates a consistent activation of BDNF signaling cascades, increased synaptic density, and neuronal survival. These results provide the proof-of-principle on the fabrication process of micropatterned PCL devices, which represent a promising therapeutic option to enhance neuronal regeneration after lesion and for neural tissue engineering and prosthetics.

  20. Advanced models of neural networks nonlinear dynamics and stochasticity in biological neurons

    CERN Document Server

    Rigatos, Gerasimos G

    2015-01-01

    This book provides a complete study on neural structures exhibiting nonlinear and stochastic dynamics, elaborating on neural dynamics by introducing advanced models of neural networks. It overviews the main findings in the modelling of neural dynamics in terms of electrical circuits and examines their stability properties with the use of dynamical systems theory. It is suitable for researchers and postgraduate students engaged with neural networks and dynamical systems theory.

  1. Environmental CO2 inhibits Caenorhabditis elegans egg-laying by modulating olfactory neurons and evokes widespread changes in neural activity

    Science.gov (United States)

    Fenk, Lorenz A.; de Bono, Mario

    2015-01-01

    Carbon dioxide (CO2) gradients are ubiquitous and provide animals with information about their environment, such as the potential presence of prey or predators. The nematode Caenorhabditis elegans avoids elevated CO2, and previous work identified three neuron pairs called “BAG,” “AFD,” and “ASE” that respond to CO2 stimuli. Using in vivo Ca2+ imaging and behavioral analysis, we show that C. elegans can detect CO2 independently of these sensory pathways. Many of the C. elegans sensory neurons we examined, including the AWC olfactory neurons, the ASJ and ASK gustatory neurons, and the ASH and ADL nociceptors, respond to a rise in CO2 with a rise in Ca2+. In contrast, glial sheath cells harboring the sensory endings of C. elegans’ major chemosensory neurons exhibit strong and sustained decreases in Ca2+ in response to high CO2. Some of these CO2 responses appear to be cell intrinsic. Worms therefore may couple detection of CO2 to that of other cues at the earliest stages of sensory processing. We show that C. elegans persistently suppresses oviposition at high CO2. Hermaphrodite-specific neurons (HSNs), the executive neurons driving egg-laying, are tonically inhibited when CO2 is elevated. CO2 modulates the egg-laying system partly through the AWC olfactory neurons: High CO2 tonically activates AWC by a cGMP-dependent mechanism, and AWC output inhibits the HSNs. Our work shows that CO2 is a more complex sensory cue for C. elegans than previously thought, both in terms of behavior and neural circuitry. PMID:26100886

  2. Prion replication occurs in endogenous adult neural stem cells and alters their neuronal fate: involvement of endogenous neural stem cells in prion diseases.

    Directory of Open Access Journals (Sweden)

    Aroa Relaño-Ginès

    Full Text Available Prion diseases are irreversible progressive neurodegenerative diseases, leading to severe incapacity and death. They are characterized in the brain by prion amyloid deposits, vacuolisation, astrocytosis, neuronal degeneration, and by cognitive, behavioural and physical impairments. There is no treatment for these disorders and stem cell therapy therefore represents an interesting new approach. Gains could not only result from the cell transplantation, but also from the stimulation of endogenous neural stem cells (NSC or by the combination of both approaches. However, the development of such strategies requires a detailed knowledge of the pathology, particularly concerning the status of the adult neurogenesis and endogenous NSC during the development of the disease. During the past decade, several studies have consistently shown that NSC reside in the adult mammalian central nervous system (CNS and that adult neurogenesis occurs throughout the adulthood in the subventricular zone of the lateral ventricle or the Dentate Gyrus of the hippocampus. Adult NSC are believed to constitute a reservoir for neuronal replacement during normal cell turnover or after brain injury. However, the activation of this system does not fully compensate the neuronal loss that occurs during neurodegenerative diseases and could even contribute to the disease progression. We investigated here the status of these cells during the development of prion disorders. We were able to show that NSC accumulate and replicate prions. Importantly, this resulted in the alteration of their neuronal fate which then represents a new pathologic event that might underlie the rapid progression of the disease.

  3. Cell death in neural precursor cells and neurons before neurite formation prevents the emergence of abnormal neural structures in the Drosophila optic lobe.

    Science.gov (United States)

    Hara, Yusuke; Sudo, Tatsuya; Togane, Yu; Akagawa, Hiromi; Tsujimura, Hidenobu

    2018-04-01

    Programmed cell death is a conserved strategy for neural development both in vertebrates and invertebrates and is recognized at various developmental stages in the brain from neurogenesis to adulthood. To understand the development of the central nervous system, it is essential to reveal not only molecular mechanisms but also the role of neural cell death (Pinto-Teixeira et al., 2016). To understand the role of cell death in neural development, we investigated the effect of inhibition of cell death on optic lobe development. Our data demonstrate that, in the optic lobe of Drosophila, cell death occurs in neural precursor cells and neurons before neurite formation and functions to prevent various developmental abnormalities. When neuronal cell death was inhibited by an effector caspase inhibitor, p35, multiple abnormal neuropil structures arose during optic lobe development-e.g., enlarged or fused neuropils, misrouted neurons and abnormal neurite lumps. Inhibition of cell death also induced morphogenetic defects in the lamina and medulla development-e.g., failures in the separation of the lamina and medulla cortices and the medulla rotation. These defects were reproduced in the mutant of an initiator caspase, dronc. If cell death was a mechanism for removing the abnormal neuropil structures, we would also expect to observe them in mutants defective for corpse clearance. However, they were not observed in these mutants. When dead cell-membranes were visualized with Apoliner, they were observed only in cortices and not in neuropils. These results suggest that the cell death occurs before mature neurite formation. Moreover, we found that inhibition of cell death induced ectopic neuroepithelial cells, neuroblasts and ganglion mother cells in late pupal stages, at sites where the outer and inner proliferation centers were located at earlier developmental stages. Caspase-3 activation was observed in the neuroepithelial cells and neuroblasts in the proliferation centers

  4. Neural circuits containing olfactory neurons are involved in prepulse inhibition of the startle reflex in rats

    Directory of Open Access Journals (Sweden)

    Haichen eNiu

    2015-03-01

    Full Text Available Many neuropsychiatric disorders, such as schizophrenia, have been associated with abnormalities in the function of the olfactory system and prepulse inhibition (PPI of the startle reflex. However, whether these two abnormalities are related is unclear. The present study was designed to determine whether inhibiting olfactory sensory input via the infusion of zinc sulfate (ZnE, 0.17 M, 0.5 ml into the olfactory naris disrupts PPI. Furthermore, lidocaine/MK801 was bilaterally microinjected into the olfactory bulb (OB to examine whether the blockade of olfactory sensory input impairs PPI. To identify the neural projections that connect the olfaction- and PPI-related areas of the CNS, trans-synaptic retrograde tracing using a recombinant pseudorabies virus (PRV was performed. Our results demonstrated that blocking olfactory sensory input altered olfaction-related behavior. At the functional level, we demonstrated that the inhibition of olfactory sensory input impaired PPI of the startle response subsequent to a decrease in c-fos expression in relevant brain regions. Furthermore, the results of a similar and more robust experiment indicated that blocking olfactory sensory input via the microinjection of lidocaine/MK801 into the OB impaired PPI. At the circuit level, based on trans-synaptic retrograde tracing using PRV, we demonstrated that a large portion of the labeled neurons in several regions of the olfactory cortices connected to the pedunculopontine tegmental nucleus (PPTg. Thus, these data suggest that the olfactory system participates in the regulation of PPI and plays a role in the effect of PPI on the startle response in rats.

  5. Induction of apoptotic death and retardation of neuronal differentiation of human neural stem cells by sodium arsenite treatment

    International Nuclear Information System (INIS)

    Ivanov, Vladimir N.; Hei, Tom K.

    2013-01-01

    Chronic arsenic toxicity is a global health problem that affects more than 100 million people worldwide. Long-term health effects of inorganic sodium arsenite in drinking water may result in skin, lung and liver cancers and in severe neurological abnormalities. We investigated in the present study whether sodium arsenite affects signaling pathways that control cell survival, proliferation and neuronal differentiation of human neural stem cells (NSC). We demonstrated that the critical signaling pathway, which was suppressed by sodium arsenite in NSC, was the protective PI3K–AKT pathway. Sodium arsenite (2–4 μM) also caused down-regulation of Nanog, one of the key transcription factors that control pluripotency and self-renewal of stem cells. Mitochondrial damage and cytochrome-c release induced by sodium arsenite exposure was followed by initiation of the mitochondrial apoptotic pathway in NSC. Beside caspase-9 and caspase-3 inhibitors, suppression of JNK activity decreased levels of arsenite-induced apoptosis in NSC. Neuronal differentiation of NSC was substantially inhibited by sodium arsenite exposure. Overactivation of JNK1 and ERK1/2 and down-regulation of PI3K–AKT activity induced by sodium arsenite were critical factors that strongly affected neuronal differentiation. In conclusion, sodium arsenite exposure of human NSC induces the mitochondrial apoptotic pathway, which is substantially accelerated due to the simultaneous suppression of PI3K–AKT. Sodium arsenite also negatively affects neuronal differentiation of NSC through overactivation of MEK–ERK and suppression of PI3K–AKT. - Highlights: ► Arsenite induces the mitochondrial apoptotic pathway in human neural stem cells. ► Arsenite-induced apoptosis is strongly upregulated by suppression of PI3K–AKT. ► Arsenite-induced apoptosis is strongly down-regulated by inhibition of JNK–cJun. ► Arsenite negatively affects neuronal differentiation by inhibition of PI3K–AKT

  6. Induction of apoptotic death and retardation of neuronal differentiation of human neural stem cells by sodium arsenite treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Vladimir N., E-mail: vni3@columbia.edu [Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, NY 10032 (United States); Hei, Tom K. [Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, NY 10032 (United States)

    2013-04-01

    Chronic arsenic toxicity is a global health problem that affects more than 100 million people worldwide. Long-term health effects of inorganic sodium arsenite in drinking water may result in skin, lung and liver cancers and in severe neurological abnormalities. We investigated in the present study whether sodium arsenite affects signaling pathways that control cell survival, proliferation and neuronal differentiation of human neural stem cells (NSC). We demonstrated that the critical signaling pathway, which was suppressed by sodium arsenite in NSC, was the protective PI3K–AKT pathway. Sodium arsenite (2–4 μM) also caused down-regulation of Nanog, one of the key transcription factors that control pluripotency and self-renewal of stem cells. Mitochondrial damage and cytochrome-c release induced by sodium arsenite exposure was followed by initiation of the mitochondrial apoptotic pathway in NSC. Beside caspase-9 and caspase-3 inhibitors, suppression of JNK activity decreased levels of arsenite-induced apoptosis in NSC. Neuronal differentiation of NSC was substantially inhibited by sodium arsenite exposure. Overactivation of JNK1 and ERK1/2 and down-regulation of PI3K–AKT activity induced by sodium arsenite were critical factors that strongly affected neuronal differentiation. In conclusion, sodium arsenite exposure of human NSC induces the mitochondrial apoptotic pathway, which is substantially accelerated due to the simultaneous suppression of PI3K–AKT. Sodium arsenite also negatively affects neuronal differentiation of NSC through overactivation of MEK–ERK and suppression of PI3K–AKT. - Highlights: ► Arsenite induces the mitochondrial apoptotic pathway in human neural stem cells. ► Arsenite-induced apoptosis is strongly upregulated by suppression of PI3K–AKT. ► Arsenite-induced apoptosis is strongly down-regulated by inhibition of JNK–cJun. ► Arsenite negatively affects neuronal differentiation by inhibition of PI3K–AKT.

  7. Neurotrophin-3 promotes proliferation and cholinergic neuronal differentiation of bone marrow- derived neural stem cells via notch signaling pathway.

    Science.gov (United States)

    Yan, Yu-Hui; Li, Shao-Heng; Gao, Zhong; Zou, Sa-Feng; Li, Hong-Yan; Tao, Zhen-Yu; Song, Jie; Yang, Jing-Xian

    2016-12-01

    Recently, the potential for neural stem cells (NSCs) to be used in the treatment of Alzheimer's disease (AD) has been reported; however, the therapeutic effects are modest by virtue of the low neural differentiation rate. In our study, we transfected bone marrow-derived NSCs (BM-NSCs) with Neurotrophin-3 (NT-3), a superactive neurotrophic factor that promotes neuronal survival, differentiation, and migration of neuronal cells, to investigate the effects of NT-3 gene overexpression on the proliferation and differentiation into cholinergic neuron of BM-NSCs in vitro and its possible molecular mechanism. BM-NSCs were generated from BM mesenchymal cells of adult C57BL/6 mice and cultured in vitro. After transfected with NT-3 gene, immunofluorescence and RT-PCR method were used to determine the ability of BM-NSCs on proliferation and differentiation into cholinergic neuron; Acetylcholine Assay Kit was used for acetylcholine (Ach). RT-PCR and WB analysis were used to characterize mRNA and protein level related to the Notch signaling pathway. We found that NT-3 can promote the proliferation and differentiation of BM-NSCs into cholinergic neurons and elevate the levels of acetylcholine (ACh) in the supernatant. Furthermore, NT-3 gene overexpression increase the expression of Hes1, decreased the expression of Mash1 and Ngn1 during proliferation of BM-NSCs. Whereas, the expression of Hes1 was down-regulated, and Mash1 and Ngn1 expression were up-regulated during differentiation of BM-NSCs. Our findings support the prospect of using NT-3-transduced BM-NSCs in developing therapies for AD due to their equivalent therapeutic potential as subventricular zone-derived NSCs (SVZ-NSCs), greater accessibility, and autogenous attributes. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Promoted neuronal differentiation after activation of alpha4/beta2 nicotinic acetylcholine receptors in undifferentiated neural progenitors.

    Directory of Open Access Journals (Sweden)

    Takeshi Takarada

    Full Text Available BACKGROUND: Neural progenitor is a generic term used for undifferentiated cell populations of neural stem, neuronal progenitor and glial progenitor cells with abilities for proliferation and differentiation. We have shown functional expression of ionotropic N-methyl-D-aspartate (NMDA and gamma-aminobutyrate type-A receptors endowed to positively and negatively regulate subsequent neuronal differentiation in undifferentiated neural progenitors, respectively. In this study, we attempted to evaluate the possible functional expression of nicotinic acetylcholine receptor (nAChR by undifferentiated neural progenitors prepared from neocortex of embryonic rodent brains. METHODOLOGY/PRINCIPAL FINDINGS: Reverse transcription polymerase chain reaction analysis revealed mRNA expression of particular nAChR subunits in undifferentiated rat and mouse progenitors prepared before and after the culture with epidermal growth factor under floating conditions. Sustained exposure to nicotine significantly inhibited the formation of neurospheres composed of clustered proliferating cells and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide reduction activity at a concentration range of 1 µM to 1 mM without affecting cell survival. In these rodent progenitors previously exposed to nicotine, marked promotion was invariably seen for subsequent differentiation into cells immunoreactive for a neuronal marker protein following the culture of dispersed cells under adherent conditions. Both effects of nicotine were significantly prevented by the heteromeric α4β2 nAChR subtype antagonists dihydro-β-erythroidine and 4-(5-ethoxy-3-pyridinyl-N-methyl-(3E-3-buten-1-amine, but not by the homomeric α7 nAChR subtype antagonist methyllycaconitine, in murine progenitors. Sustained exposure to nicotine preferentially increased the expression of Math1 among different basic helix-loop-helix proneural genes examined. In undifferentiated progenitors from embryonic mice

  9. Neural plasticity in hypocretin neurons: the basis of hypocretinergic regulation of physiological and behavioral functions in animals

    Directory of Open Access Journals (Sweden)

    Xiao-Bing eGao

    2015-10-01

    Full Text Available The neuronal system that resides in the perifornical and lateral hypothalamus (Pf/LH and synthesizes the neuropeptide hypocretin/orexin participates in critical brain functions across species from fish to human. The hypocretin system regulates neural activity responsible for daily functions (such as sleep/wake homeostasis, energy balance, appetite, etc and long-term behavioral changes (such as reward seeking and addiction, stress response, etc in animals. The most recent evidence suggests that the hypocretin system undergoes substantial plastic changes in response to both daily fluctuations (such as food intake and sleep-wake regulation and long-term changes (such as cocaine seeking in neuronal activity in the brain. The understanding of these changes in the hypocretin system is essential in addressing the role of the hypocretin system in normal physiological functions and pathological conditions in animals and humans. In this review, the evidence demonstrating that neural plasticity occurs in hypocretin-containing neurons in the Pf/LH will be presented and possible physiological behavioral, and mental health implications of these findings will be discussed.

  10. Neural plasticity in hypocretin neurons: the basis of hypocretinergic regulation of physiological and behavioral functions in animals

    Science.gov (United States)

    Gao, Xiao-Bing; Hermes, Gretchen

    2015-01-01

    The neuronal system that resides in the perifornical and lateral hypothalamus (Pf/LH) and synthesizes the neuropeptide hypocretin/orexin participates in critical brain functions across species from fish to human. The hypocretin system regulates neural activity responsible for daily functions (such as sleep/wake homeostasis, energy balance, appetite, etc.) and long-term behavioral changes (such as reward seeking and addiction, stress response, etc.) in animals. The most recent evidence suggests that the hypocretin system undergoes substantial plastic changes in response to both daily fluctuations (such as food intake and sleep-wake regulation) and long-term changes (such as cocaine seeking) in neuronal activity in the brain. The understanding of these changes in the hypocretin system is essential in addressing the role of the hypocretin system in normal physiological functions and pathological conditions in animals and humans. In this review, the evidence demonstrating that neural plasticity occurs in hypocretin-containing neurons in the Pf/LH will be presented and possible physiological, behavioral, and mental health implications of these findings will be discussed. PMID:26539086

  11. A chemically defined substrate for the expansion and neuronal differentiation of human pluripotent stem cell-derived neural progenitor cells

    Directory of Open Access Journals (Sweden)

    Yihuan Tsai

    2015-07-01

    Full Text Available Due to the limitation of current pharmacological therapeutic strategies, stem cell therapies have emerged as a viable option for treating many incurable neurological disorders. Specifically, human pluripotent stem cell (hPSC-derived neural progenitor cells (hNPCs, a multipotent cell population that is capable of near indefinite expansion and subsequent differentiation into the various cell types that comprise the central nervous system (CNS, could provide an unlimited source of cells for such cell-based therapies. However the clinical application of these cells will require (i defined, xeno-free conditions for their expansion and neuronal differentiation and (ii scalable culture systems that enable their expansion and neuronal differentiation in numbers sufficient for regenerative medicine and drug screening purposes. Current extracellular matrix protein (ECMP-based substrates for the culture of hNPCs are expensive, difficult to isolate, subject to batch-to-batch variations, and, therefore, unsuitable for clinical application of hNPCs. Using a high-throughput array-based screening approach, we identified a synthetic polymer, poly(4-vinyl phenol (P4VP, that supported the long-term proliferation and self-renewal of hNPCs. The hNPCs cultured on P4VP maintained their characteristic morphology, expressed high levels of markers of multipotency, and retained their ability to differentiate into neurons. Such chemically defined substrates will eliminate critical roadblocks for the utilization of hNPCs for human neural regenerative repair, disease modeling, and drug discovery.

  12. A Hybrid Fuzzy Time Series Approach Based on Fuzzy Clustering and Artificial Neural Network with Single Multiplicative Neuron Model

    Directory of Open Access Journals (Sweden)

    Ozge Cagcag Yolcu

    2013-01-01

    Full Text Available Particularly in recent years, artificial intelligence optimization techniques have been used to make fuzzy time series approaches more systematic and improve forecasting performance. Besides, some fuzzy clustering methods and artificial neural networks with different structures are used in the fuzzification of observations and determination of fuzzy relationships, respectively. In approaches considering the membership values, the membership values are determined subjectively or fuzzy outputs of the system are obtained by considering that there is a relation between membership values in identification of relation. This necessitates defuzzification step and increases the model error. In this study, membership values were obtained more systematically by using Gustafson-Kessel fuzzy clustering technique. The use of artificial neural network with single multiplicative neuron model in identification of fuzzy relation eliminated the architecture selection problem as well as the necessity for defuzzification step by constituting target values from real observations of time series. The training of artificial neural network with single multiplicative neuron model which is used for identification of fuzzy relation step is carried out with particle swarm optimization. The proposed method is implemented using various time series and the results are compared with those of previous studies to demonstrate the performance of the proposed method.

  13. Co-culture of neural crest stem cells (NCSC and insulin producing beta-TC6 cells results in cadherin junctions and protection against cytokine-induced beta-cell death.

    Directory of Open Access Journals (Sweden)

    Anongnad Ngamjariyawat

    Full Text Available PURPOSE: Transplantation of pancreatic islets to Type 1 diabetes patients is hampered by inflammatory reactions at the transplantation site leading to dysfunction and death of insulin producing beta-cells. Recently we have shown that co-transplantation of neural crest stem cells (NCSCs together with the islet cells improves transplantation outcome. The aim of the present investigation was to describe in vitro interactions between NCSCs and insulin producing beta-TC6 cells that may mediate protection against cytokine-induced beta-cell death. PROCEDURES: Beta-TC6 and NCSC cells were cultured either alone or together, and either with or without cell culture inserts. The cultures were then exposed to the pro-inflammatory cytokines IL-1β and IFN-γ for 48 hours followed by analysis of cell death rates (flow cytometry, nitrite production (Griess reagent, protein localization (immunofluorescence and protein phosphorylation (flow cytometry. RESULTS: We observed that beta-TC6 cells co-cultured with NCSCs were protected against cytokine-induced cell death, but not when separated by cell culture inserts. This occurred in parallel with (i augmented production of nitrite from beta-TC6 cells, indicating that increased cell survival allows a sustained production of nitric oxide; (ii NCSC-derived laminin production; (iii decreased phospho-FAK staining in beta-TC6 cell focal adhesions, and (iv decreased beta-TC6 cell phosphorylation of ERK(T202/Y204, FAK(Y397 and FAK(Y576. Furthermore, co-culture also resulted in cadherin and beta-catenin accumulations at the NCSC/beta-TC6 cell junctions. Finally, the gap junction inhibitor carbenoxolone did not affect cytokine-induced beta-cell death during co-culture with NCSCs. CONCLUSION: In summary, direct contacts, but not soluble factors, promote improved beta-TC6 viability when co-cultured with NCSCs. We hypothesize that cadherin junctions between NCSC and beta-TC6 cells promote powerful signals that maintain beta

  14. Nanoparticle-mediated transcriptional modification enhances neuronal differentiation of human neural stem cells following transplantation in rat brain.

    Science.gov (United States)

    Li, Xiaowei; Tzeng, Stephany Y; Liu, Xiaoyan; Tammia, Markus; Cheng, Yu-Hao; Rolfe, Andrew; Sun, Dong; Zhang, Ning; Green, Jordan J; Wen, Xuejun; Mao, Hai-Quan

    2016-04-01

    Strategies to enhance survival and direct the differentiation of stem cells in vivo following transplantation in tissue repair site are critical to realizing the potential of stem cell-based therapies. Here we demonstrated an effective approach to promote neuronal differentiation and maturation of human fetal tissue-derived neural stem cells (hNSCs) in a brain lesion site of a rat traumatic brain injury model using biodegradable nanoparticle-mediated transfection method to deliver key transcriptional factor neurogenin-2 to hNSCs when transplanted with a tailored hyaluronic acid (HA) hydrogel, generating larger number of more mature neurons engrafted to the host brain tissue than non-transfected cells. The nanoparticle-mediated transcription activation method together with an HA hydrogel delivery matrix provides a translatable approach for stem cell-based regenerative therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Tumour necrosis factor-alpha impairs neuronal differentiation but not proliferation of hippocampal neural precursor cells: Role of Hes1.

    Science.gov (United States)

    Keohane, Aoife; Ryan, Sinead; Maloney, Eimer; Sullivan, Aideen M; Nolan, Yvonne M

    2010-01-01

    Tumour necrosis factor-alpha (TNFalpha) is a pro-inflammatory cytokine, which influences neuronal survival and function yet there is limited information available on its effects on hippocampal neural precursor cells (NPCs). We show that TNFalpha treatment during proliferation had no effect on the percentage of proliferating cells prepared from embryonic rat hippocampal neurosphere cultures, nor did it affect cell fate towards either an astrocytic or neuronal lineage when cells were then allowed to differentiate. However, when cells were differentiated in the presence of TNFalpha, significantly reduced percentages of newly born and post-mitotic neurons, significantly increased percentages of astrocytes and increased expression of TNFalpha receptors, TNF-R1 and TNF-R2, as well as expression of the anti-neurogenic Hes1 gene, were observed. These data indicate that exposure of hippocampal NPCs to TNFalpha when they are undergoing differentiation but not proliferation has a detrimental effect on their neuronal lineage fate, which may be mediated through increased expression of Hes1. Copyright 2009 Elsevier Inc. All rights reserved.

  16. Global existence of periodic solutions in a simplified four-neuron BAM neural network model with multiple delays

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available We consider a simplified bidirectional associated memory (BAM neural network model with four neurons and multiple time delays. The global existence of periodic solutions bifurcating from Hopf bifurcations is investigated by applying the global Hopf bifurcation theorem due to Wu and Bendixson's criterion for high-dimensional ordinary differential equations due to Li and Muldowney. It is shown that the local Hopf bifurcation implies the global Hopf bifurcation after the second critical value of the sum of two delays. Numerical simulations supporting the theoretical analysis are also included.

  17. Mitochondrial metabolism in early neural fate and its relevance for neuronal disease modeling.

    Science.gov (United States)

    Lorenz, Carmen; Prigione, Alessandro

    2017-12-01

    Modulation of energy metabolism is emerging as a key aspect associated with cell fate transition. The establishment of a correct metabolic program is particularly relevant for neural cells given their high bioenergetic requirements. Accordingly, diseases of the nervous system commonly involve mitochondrial impairment. Recent studies in animals and in neural derivatives of human pluripotent stem cells (PSCs) highlighted the importance of mitochondrial metabolism for neural fate decisions in health and disease. The mitochondria-based metabolic program of early neurogenesis suggests that PSC-derived neural stem cells (NSCs) may be used for modeling neurological disorders. Understanding how metabolic programming is orchestrated during neural commitment may provide important information for the development of therapies against conditions affecting neural functions, including aging and mitochondrial disorders. Copyright © 2017. Published by Elsevier Ltd.

  18. Long-term culture and differentiation of CNS precursors derived from anterior human neural rosettes following exposure to ventralizing factors

    International Nuclear Information System (INIS)

    Colleoni, Silvia; Galli, Cesare; Giannelli, Serena G.; Armentero, Marie-Therese; Blandini, Fabio; Broccoli, Vania; Lazzari, Giovanna

    2010-01-01

    In this study we demonstrated that neural rosettes derived from human ES cells can give rise either to neural crest precursors, following expansion in presence of bFGF and EGF, or to dopaminergic precursors after exposure to ventralizing factors Shh and FGF8. Both regionalised precursors are capable of extensive proliferation and differentiation towards the corresponding terminally differentiated cell types. In particular, peripheral neurons, cartilage, bone, smooth muscle cells and also pigmented cells were obtained from neural crest precursors while tyrosine hydroxylase and Nurr1 positive dopaminergic neurons were derived from FGF8 and Shh primed rosette cells. Gene expression and immunocytochemistry analyses confirmed the expression of dorsal and neural crest genes such as Sox10, Slug, p75, FoxD3, Pax7 in neural precursors from bFGF-EGF exposed rosettes. By contrast, priming of rosettes with FGF8 and Shh induced the expression of dopaminergic markers Engrailed1, Pax2, Pitx3, floor plate marker FoxA2 and radial glia markers Blbp and Glast, the latter in agreement with the origin of dopaminergic precursors from floor plate radial glia. Moreover, in vivo transplant of proliferating Shh/FGF8 primed precursors in parkinsonian rats demonstrated engraftment and terminal dopaminergic differentiation. In conclusion, we demonstrated the derivation of long-term self-renewing precursors of selected regional identity as potential cell reservoirs for cell therapy applications, such as CNS degenerative diseases, or for the development of toxicological tests.

  19. Long-term culture and differentiation of CNS precursors derived from anterior human neural rosettes following exposure to ventralizing factors

    Energy Technology Data Exchange (ETDEWEB)

    Colleoni, Silvia, E-mail: silviacolleoni@avantea.it [Laboratorio di Tecnologie della Riproduzione, Avantea, Via Porcellasco 7/f, 26100 Cremona (Italy); Galli, Cesare [Laboratorio di Tecnologie della Riproduzione, Avantea, Via Porcellasco 7/f, 26100 Cremona (Italy); Dipartimento Clinico Veterinario, Universita di Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia (Italy); Giannelli, Serena G. [Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan (Italy); Armentero, Marie-Therese; Blandini, Fabio [Laboratory of Functional Neurochemistry, Interdepartmental Research Center for Parkinson' s Disease, Neurological Institute C. Mondino, Via Mondino 2, 27100 Pavia (Italy); Broccoli, Vania, E-mail: broccoli.vania@hsr.it [Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan (Italy); Lazzari, Giovanna, E-mail: giovannalazzari@avantea.it [Laboratorio di Tecnologie della Riproduzione, Avantea, Via Porcellasco 7/f, 26100 Cremona (Italy)

    2010-04-15

    In this study we demonstrated that neural rosettes derived from human ES cells can give rise either to neural crest precursors, following expansion in presence of bFGF and EGF, or to dopaminergic precursors after exposure to ventralizing factors Shh and FGF8. Both regionalised precursors are capable of extensive proliferation and differentiation towards the corresponding terminally differentiated cell types. In particular, peripheral neurons, cartilage, bone, smooth muscle cells and also pigmented cells were obtained from neural crest precursors while tyrosine hydroxylase and Nurr1 positive dopaminergic neurons were derived from FGF8 and Shh primed rosette cells. Gene expression and immunocytochemistry analyses confirmed the expression of dorsal and neural crest genes such as Sox10, Slug, p75, FoxD3, Pax7 in neural precursors from bFGF-EGF exposed rosettes. By contrast, priming of rosettes with FGF8 and Shh induced the expression of dopaminergic markers Engrailed1, Pax2, Pitx3, floor plate marker FoxA2 and radial glia markers Blbp and Glast, the latter in agreement with the origin of dopaminergic precursors from floor plate radial glia. Moreover, in vivo transplant of proliferating Shh/FGF8 primed precursors in parkinsonian rats demonstrated engraftment and terminal dopaminergic differentiation. In conclusion, we demonstrated the derivation of long-term self-renewing precursors of selected regional identity as potential cell reservoirs for cell therapy applications, such as CNS degenerative diseases, or for the development of toxicological tests.

  20. The characteristic patterns of neuronal avalanches in mice under anesthesia and at rest: An investigation using constrained artificial neural networks

    Science.gov (United States)

    Knöpfel, Thomas; Leech, Robert

    2018-01-01

    Local perturbations within complex dynamical systems can trigger cascade-like events that spread across significant portions of the system. Cascades of this type have been observed across a broad range of scales in the brain. Studies of these cascades, known as neuronal avalanches, usually report the statistics of large numbers of avalanches, without probing the characteristic patterns produced by the avalanches themselves. This is partly due to limitations in the extent or spatiotemporal resolution of commonly used neuroimaging techniques. In this study, we overcome these limitations by using optical voltage (genetically encoded voltage indicators) imaging. This allows us to record cortical activity in vivo across an entire cortical hemisphere, at both high spatial (~30um) and temporal (~20ms) resolution in mice that are either in an anesthetized or awake state. We then use artificial neural networks to identify the characteristic patterns created by neuronal avalanches in our data. The avalanches in the anesthetized cortex are most accurately classified by an artificial neural network architecture that simultaneously connects spatial and temporal information. This is in contrast with the awake cortex, in which avalanches are most accurately classified by an architecture that treats spatial and temporal information separately, due to the increased levels of spatiotemporal complexity. This is in keeping with reports of higher levels of spatiotemporal complexity in the awake brain coinciding with features of a dynamical system operating close to criticality. PMID:29795654

  1. Towards a general theory of neural computation based on prediction by single neurons.

    Directory of Open Access Journals (Sweden)

    Christopher D Fiorillo

    Full Text Available Although there has been tremendous progress in understanding the mechanics of the nervous system, there has not been a general theory of its computational function. Here I present a theory that relates the established biophysical properties of single generic neurons to principles of Bayesian probability theory, reinforcement learning and efficient coding. I suggest that this theory addresses the general computational problem facing the nervous system. Each neuron is proposed to mirror the function of the whole system in learning to predict aspects of the world related to future reward. According to the model, a typical neuron receives current information about the state of the world from a subset of its excitatory synaptic inputs, and prior information from its other inputs. Prior information would be contributed by synaptic inputs representing distinct regions of space, and by different types of non-synaptic, voltage-regulated channels representing distinct periods of the past. The neuron's membrane voltage is proposed to signal the difference between current and prior information ("prediction error" or "surprise". A neuron would apply a Hebbian plasticity rule to select those excitatory inputs that are the most closely correlated with reward but are the least predictable, since unpredictable inputs provide the neuron with the most "new" information about future reward. To minimize the error in its predictions and to respond only when excitation is "new and surprising," the neuron selects amongst its prior information sources through an anti-Hebbian rule. The unique inputs of a mature neuron would therefore result from learning about spatial and temporal patterns in its local environment, and by extension, the external world. Thus the theory describes how the structure of the mature nervous system could reflect the structure of the external world, and how the complexity and intelligence of the system might develop from a population of

  2. A chemically defined substrate for the expansion and neuronal differentiation of human pluripotent stem cell-derived neural progenitor cells.

    Science.gov (United States)

    Tsai, Yihuan; Cutts, Josh; Kimura, Azuma; Varun, Divya; Brafman, David A

    2015-07-01

    Due to the limitation of current pharmacological therapeutic strategies, stem cell therapies have emerged as a viable option for treating many incurable neurological disorders. Specifically, human pluripotent stem cell (hPSC)-derived neural progenitor cells (hNPCs), a multipotent cell population that is capable of near indefinite expansion and subsequent differentiation into the various cell types that comprise the central nervous system (CNS), could provide an unlimited source of cells for such cell-based therapies. However the clinical application of these cells will require (i) defined, xeno-free conditions for their expansion and neuronal differentiation and (ii) scalable culture systems that enable their expansion and neuronal differentiation in numbers sufficient for regenerative medicine and drug screening purposes. Current extracellular matrix protein (ECMP)-based substrates for the culture of hNPCs are expensive, difficult to isolate, subject to batch-to-batch variations, and, therefore, unsuitable for clinical application of hNPCs. Using a high-throughput array-based screening approach, we identified a synthetic polymer, poly(4-vinyl phenol) (P4VP), that supported the long-term proliferation and self-renewal of hNPCs. The hNPCs cultured on P4VP maintained their characteristic morphology, expressed high levels of markers of multipotency, and retained their ability to differentiate into neurons. Such chemically defined substrates will eliminate critical roadblocks for the utilization of hNPCs for human neural regenerative repair, disease modeling, and drug discovery. Copyright © 2015. Published by Elsevier B.V.

  3. Different requirements of functional telomeres in neural stem cells and terminally differentiated neurons.

    Science.gov (United States)

    Lobanova, Anastasia; She, Robert; Pieraut, Simon; Clapp, Charlie; Maximov, Anton; Denchi, Eros Lazzerini

    2017-04-01

    Telomeres have been studied extensively in peripheral tissues, but their relevance in the nervous system remains poorly understood. Here, we examine the roles of telomeres at distinct stages of murine brain development by using lineage-specific genetic ablation of TRF2, an essential component of the shelterin complex that protects chromosome ends from the DNA damage response machinery. We found that functional telomeres are required for embryonic and adult neurogenesis, but their uncapping has surprisingly no detectable consequences on terminally differentiated neurons. Conditional knockout of TRF2 in post-mitotic immature neurons had virtually no detectable effect on circuit assembly, neuronal gene expression, and the behavior of adult animals despite triggering massive end-to-end chromosome fusions across the brain. These results suggest that telomeres are dispensable in terminally differentiated neurons and provide mechanistic insight into cognitive abnormalities associated with aberrant telomere length in humans. © 2017 Lobanova et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Neural Plasticity: Single Neuron Models for Discrimination and Generalization and AN Experimental Ensemble Approach.

    Science.gov (United States)

    Munro, Paul Wesley

    A special form for modification of neuronal response properties is described in which the change in the synaptic state vector is parallel to the vector of afferent activity. This process is termed "parallel modification" and its theoretical and experimental implications are examined. A theoretical framework has been devised to describe the complementary functions of generalization and discrimination by single neurons. This constitutes a basis for three models each describing processes for the development of maximum selectivity (discrimination) and minimum selectivity (generalization) by neurons. Strengthening and weakening of synapses is expressed as a product of the presynaptic activity and a nonlinear modulatory function of two postsynaptic variables--namely a measure of the spatially integrated activity of the cell and a temporal integration (time-average) of that activity. Some theorems are given for low-dimensional systems and computer simulation results from more complex systems are discussed. Model neurons that achieve high selectivity mimic the development of cat visual cortex neurons in a wide variety of rearing conditions. A role for low-selectivity neurons is proposed in which they provide inhibitory input to neurons of the opposite type, thereby suppressing the common component of a pattern class and enhancing their selective properties. Such contrast-enhancing circuits are analyzed and supported by computer simulation. To enable maximum selectivity, the net inhibition to a cell must become strong enough to offset whatever excitation is produced by the non-preferred patterns. Ramifications of parallel models for certain experimental paradigms are analyzed. A methodology is outlined for testing synaptic modification hypotheses in the laboratory. A plastic projection from one neuronal population to another will attain stable equilibrium under periodic electrical stimulation of constant intensity. The perturbative effect of shifting this intensity level

  5. Homocysteine Aggravates Cortical Neural Cell Injury through Neuronal Autophagy Overactivation following Rat Cerebral Ischemia-Reperfusion

    Directory of Open Access Journals (Sweden)

    Yaqian Zhao

    2016-07-01

    Full Text Available Elevated homocysteine (Hcy levels have been reported to be involved in neurotoxicity after ischemic stroke. However, the underlying mechanisms remain incompletely understood to date. In the current study, we hypothesized that neuronal autophagy activation may be involved in the toxic effect of Hcy on cortical neurons following cerebral ischemia. Brain cell injury was determined by hematoxylin-eosin (HE staining and TdT-mediated dUTP Nick-End Labeling (TUNEL staining. The level and localization of autophagy were detected by transmission electron microscopy, western blot and immunofluorescence double labeling. The oxidative DNA damage was revealed by immunofluorescence of 8-Hydroxy-2′-deoxyguanosine (8-OHdG. Hcy treatment aggravated neuronal cell death, significantly increased the formation of autophagosomes and the expression of LC3B and Beclin-1 in the brain cortex after middle cerebral artery occlusion-reperfusion (MCAO. Immunofluorescence analysis of LC3B and Beclin-1 distribution indicated that their expression occurred mainly in neurons (NeuN-positive and hardly in astrocytes (GFAP-positive. 8-OHdG expression was also increased in the ischemic cortex of Hcy-treated animals. Conversely, LC3B and Beclin-1 overexpression and autophagosome accumulation caused by Hcy were partially blocked by the autophagy inhibitor 3-methyladenine (3-MA. Hcy administration enhanced neuronal autophagy, which contributes to cell death following cerebral ischemia. The oxidative damage-mediated autophagy may be a molecular mechanism underlying neuronal cell toxicity of elevated Hcy level.

  6. Complementary neural correlates of motivation in dopaminergic and noradrenergic neurons of monkeys.

    Directory of Open Access Journals (Sweden)

    Sebastien eBouret

    2012-07-01

    Full Text Available Rewards have many influences on learning, decision-making and performance. All seem to rely on complementary actions of two closely related catecholaminergic neuromodulators, dopamine and noradrenaline. We compared single unit activity of dopaminergic neurons of the substantia nigra pars compacta and noradrenergic neurons of the locus coeruleus in monkeys performing a reward schedule task. Their motivation, indexed using operant performance, increased as they progressed through schedules ending in reward delivery. The responses of dopaminergic and noradrenergic neurons around the time of major task events, visual cues predicting trial outcome and operant action to complete a trial, were similar, in that they occurred at the same time. They were also similar in that they both responded most strongly to the first cues in schedules, which are the most informative cues. The neuronal responses around the time of the monkeys’ actions were different, in that the response intensity profiles changed in opposite directions. Dopaminergic responses were stronger around predictably rewarded correct actions whereas noradrenergic responses were greater around predictably unrewarded correct actions. The complementary response profiles related to the monkeys operant actions suggest that dopamine neurons might relate to the value of the current action whereas the noradrenergic neurons relate to the psychological cost of that action.

  7. Neural coding with spikes and bursts: characterizing neurons and networks with noisy input

    NARCIS (Netherlands)

    Zeldenrust, F.

    2012-01-01

    De hersenen verwerken voortdurend informatie uit hun omgeving. Fleur Zeldenrust onderzocht op het niveau van hersencellen (neuronen) hoe deze informatieverwerking plaatsvindt, ofwel wat de ‘neurale code’ is. Dit onderzocht ze met zowel experimentele waarnemingen als theoretische modellen. Zeldenrust

  8. Neural Damage in Experimental Trypanosoma brucei gambiense Infection: Hypothalamic Peptidergic Sleep and Wake-Regulatory Neurons

    Directory of Open Access Journals (Sweden)

    Claudia Laperchia

    2018-02-01

    Full Text Available Neuron populations of the lateral hypothalamus which synthesize the orexin (OX/hypocretin or melanin-concentrating hormone (MCH peptides play crucial, reciprocal roles in regulating wake stability and sleep. The disease human African trypanosomiasis (HAT, also called sleeping sickness, caused by extracellular Trypanosoma brucei (T. b. parasites, leads to characteristic sleep-wake cycle disruption and narcoleptic-like alterations of the sleep structure. Previous studies have revealed damage of OX and MCH neurons during systemic infection of laboratory rodents with the non-human pathogenic T. b. brucei subspecies. No information is available, however, on these peptidergic neurons after systemic infection with T. b. gambiense, the etiological agent of 97% of HAT cases. The present study was aimed at the investigation of immunohistochemically characterized OX and MCH neurons after T. b. gambiense or T. b. brucei infection of a susceptible rodent, the multimammate mouse, Mastomysnatalensis. Cell counts and evaluation of OX fiber density were performed at 4 and 8 weeks post-infection, when parasites had entered the brain parenchyma from the periphery. A significant decrease of OX neurons (about 44% reduction and MCH neurons (about 54% reduction was found in the lateral hypothalamus and perifornical area at 8 weeks in T. b. gambiense-infected M. natalensis. A moderate decrease (21% and 24% reduction, respectively, which did not reach statistical significance, was found after T. b. brucei infection. In two key targets of diencephalic orexinergic innervation, the peri-suprachiasmatic nucleus (SCN region and the thalamic paraventricular nucleus (PVT, densitometric analyses showed a significant progressive decrease in the density of orexinergic fibers in both infection paradigms, and especially during T. b. gambiense infection. Altogether the findings provide novel information showing that OX and MCH neurons are highly vulnerable to chronic

  9. Leader neurons in population bursts of 2D living neural networks

    International Nuclear Information System (INIS)

    Eckmann, J-P; Zbinden, Cyrille; Jacobi, Shimshon; Moses, Elisha; Marom, Shimon

    2008-01-01

    Eytan and Marom (2006 J. Neurosci. 26 8465-76) recently showed that the spontaneous bursting activity of rat neuron cultures includes 'first-to-fire' cells that consistently fire earlier than others. Here, we analyze the behavior of these neurons in long-term recordings of spontaneous activity of rat hippocampal and rat cortical neuron cultures from three different laboratories. We identify precursor events that may either subside ('aborted bursts') or can lead to a full-blown burst ('pre-bursts'). We find that the activation in the pre-burst typically has a first neuron ('leader'), followed by a localized response in its neighborhood. Locality is diminished in the bursts themselves. The long-term dynamics of the leaders is relatively robust, evolving with a half-life of 23-34 h. Stimulation of the culture alters the leader distribution, but the distribution stabilizes within about 1 h. We show that the leaders carry information about the identity of the burst, as measured by the signature of the number of spikes per neuron in a burst. The number of spikes from leaders in the first few spikes of a precursor event is furthermore shown to be predictive with regard to the transition into a burst (pre-burst versus aborted burst). We conclude that the leaders play a role in the development of the bursts and conjecture that they are part of an underlying sub-network that is excited first and then acts as a nucleation center for the burst

  10. Neural mechanisms of vocal imitation: The role of sleep replay in shaping mirror neurons.

    Science.gov (United States)

    Giret, Nicolas; Edeline, Jean-Marc; Del Negro, Catherine

    2017-06-01

    Learning by imitation involves not only perceiving another individual's action to copy it, but also the formation of a memory trace in order to gradually establish a correspondence between the sensory and motor codes, which represent this action through sensorimotor experience. Memory and sensorimotor processes are closely intertwined. Mirror neurons, which fire both when the same action is performed or perceived, have received considerable attention in the context of imitation. An influential view of memory processes considers that the consolidation of newly acquired information or skills involves an active offline reprocessing of memories during sleep within the neuronal networks that were initially used for encoding. Here, we review the recent advances in the field of mirror neurons and offline processes in the songbird. We further propose a theoretical framework that could establish the neurobiological foundations of sensorimotor learning by imitation. We propose that the reactivation of neuronal assemblies during offline periods contributes to the integration of sensory feedback information and the establishment of sensorimotor mirroring activity at the neuronal level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Repair kinetics of DNA double-strand breaks and incidence of apoptosis in mouse neural stem/progenitor cells and their differentiated neurons exposed to ionizing radiation.

    Science.gov (United States)

    Kashiwagi, Hiroki; Shiraishi, Kazunori; Sakaguchi, Kenta; Nakahama, Tomoya; Kodama, Seiji

    2018-05-01

    Neuronal loss leads to neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease and Huntington's disease. Because of their long lifespans, neurons are assumed to possess highly efficient DNA repair ability and to be able to protect themselves from deleterious DNA damage such as DNA double-strand breaks (DSBs) produced by intrinsic and extrinsic sources. However, it remains largely unknown whether the DSB repair ability of neurons is more efficient compared with that of other cells. Here, we investigated the repair kinetics of X-ray-induced DSBs in mouse neural cells by scoring the number of phosphorylated 53BP1 foci post irradiation. We found that p53-independent apoptosis was induced time dependently during differentiation from neural stem/progenitor cells (NSPCs) into neurons in culture for 48 h. DSB repair in neurons differentiated from NSPCs in culture was faster than that in mouse embryonic fibroblasts (MEFs), possibly due to the higher DNA-dependent protein kinase activity, but it was similar to that in NSPCs. Further, the incidence of p53-dependent apoptosis induced by X-irradiation in neurons was significantly higher than that in NSPCs. This difference in response of X-ray-induced apoptosis between neurons and NSPCs may reflect a difference in the fidelity of non-homologous end joining or a differential sensitivity to DNA damage other than DSBs.

  12. Enteric Neuron Imbalance and Proximal Dysmotility in Ganglionated Intestine of the Sox10Dom/+ Hirschsprung Mouse ModelSummary

    Directory of Open Access Journals (Sweden)

    Melissa A. Musser

    2015-01-01

    Full Text Available Background & Aims: In Hirschsprung disease (HSCR, neural crest-derived progenitors (NCPs fail to completely colonize the intestine so that the enteric nervous system is absent from distal bowel. Despite removal of the aganglionic region, many HSCR patients suffer from residual intestinal dysmotility. To test the hypothesis that inappropriate lineage segregation of NCPs in proximal ganglionated regions of the bowel could contribute to such postoperative disease, we investigated neural crest (NC-derived lineages and motility in ganglionated, postnatal intestine of the Sox10Dom/+ HSCR mouse model. Methods: Cre-mediated fate-mapping was applied to evaluate relative proportions of NC-derived cell types. Motility assays were performed to assess gastric emptying and small intestine motility while colonic inflammation was assessed by histopathology for Sox10Dom/+ mutants relative to wild-type controls. Results: Sox10Dom/+ mice showed regional alterations in neuron and glia proportions as well as calretinin+ and neuronal nitric oxide synthase (nNOS+ neuronal subtypes. In the colon, imbalance of enteric NC derivatives correlated with the extent of aganglionosis. All Sox10Dom/+ mice exhibited reduced small intestinal transit at 4 weeks of age; at 6 weeks of age, Sox10Dom/+ males had increased gastric emptying rates. Sox10Dom/+ mice surviving to 6 weeks of age had little or no colonic inflammation when compared with wild-type littermates, suggesting that these changes in gastrointestinal motility are neurally mediated. Conclusions: The Sox10Dom mutation disrupts the balance of NC-derived lineages and affects gastrointestinal motility in the proximal, ganglionated intestine of adult animals. This is the first report identifying alterations in enteric neuronal classes in Sox10Dom/+ mutants, which suggests a previously unrecognized role for Sox10 in neuronal subtype specification. Keywords: Aganglionosis, Enteric Nervous System, Neural Crest

  13. Bifurcation analysis for a discrete-time Hopfield neural network of two neurons with two delays and self-connections

    International Nuclear Information System (INIS)

    Kaslik, E.; Balint, St.

    2009-01-01

    In this paper, a bifurcation analysis is undertaken for a discrete-time Hopfield neural network of two neurons with two different delays and self-connections. Conditions ensuring the asymptotic stability of the null solution are found, with respect to two characteristic parameters of the system. It is shown that for certain values of these parameters, Fold or Neimark-Sacker bifurcations occur, but Flip and codimension 2 (Fold-Neimark-Sacker, double Neimark-Sacker, resonance 1:1 and Flip-Neimark-Sacker) bifurcations may also be present. The direction and the stability of the Neimark-Sacker bifurcations are investigated by applying the center manifold theorem and the normal form theory

  14. Stability Analysis of Continuous-Time and Discrete-Time Quaternion-Valued Neural Networks With Linear Threshold Neurons.

    Science.gov (United States)

    Chen, Xiaofeng; Song, Qiankun; Li, Zhongshan; Zhao, Zhenjiang; Liu, Yurong

    2018-07-01

    This paper addresses the problem of stability for continuous-time and discrete-time quaternion-valued neural networks (QVNNs) with linear threshold neurons. Applying the semidiscretization technique to the continuous-time QVNNs, the discrete-time analogs are obtained, which preserve the dynamical characteristics of their continuous-time counterparts. Via the plural decomposition method of quaternion, homeomorphic mapping theorem, as well as Lyapunov theorem, some sufficient conditions on the existence, uniqueness, and global asymptotical stability of the equilibrium point are derived for the continuous-time QVNNs and their discrete-time analogs, respectively. Furthermore, a uniform sufficient condition on the existence, uniqueness, and global asymptotical stability of the equilibrium point is obtained for both continuous-time QVNNs and their discrete-time version. Finally, two numerical examples are provided to substantiate the effectiveness of the proposed results.

  15. Superior Generalization Capability of Hardware-Learing Algorithm Developed for Self-Learning Neuron-MOS Neural Networks

    Science.gov (United States)

    Kondo, Shuhei; Shibata, Tadashi; Ohmi, Tadahiro

    1995-02-01

    We have investigated the learning performance of the hardware backpropagation (HBP) algorithm, a hardware-oriented learning algorithm developed for the self-learning architecture of neural networks constructed using neuron MOS (metal-oxide-semiconductor) transistors. The solution to finding a mirror symmetry axis in a 4×4 binary pixel array was tested by computer simulation based on the HBP algorithm. Despite the inherent restrictions imposed on the hardware-learning algorithm, HBP exhibits equivalent learning performance to that of the original backpropagation (BP) algorithm when all the pertinent parameters are optimized. Very importantly, we have found that HBP has a superior generalization capability over BP; namely, HBP exhibits higher performance in solving problems that the network has not yet learnt.

  16. Microendophenotypes of psychiatric disorders: phenotypes of psychiatric disorders at the level of molecular dynamics, synapses, neurons, and neural circuits.

    Science.gov (United States)

    Kida, S; Kato, T

    2015-01-01

    Psychiatric disorders are caused not only by genetic factors but also by complicated factors such as environmental ones. Moreover, environmental factors are rarely quantitated as biological and biochemical indicators, making it extremely difficult to understand the pathological conditions of psychiatric disorders as well as their underlying pathogenic mechanisms. Additionally, we have actually no other option but to perform biological studies on postmortem human brains that display features of psychiatric disorders, thereby resulting in a lack of experimental materials to characterize the basic biology of these disorders. From these backgrounds, animal, tissue, or cell models that can be used in basic research are indispensable to understand biologically the pathogenic mechanisms of psychiatric disorders. In this review, we discuss the importance of microendophenotypes of psychiatric disorders, i.e., phenotypes at the level of molecular dynamics, neurons, synapses, and neural circuits, as targets of basic research on these disorders.

  17. Healthy human CSF promotes glial differentiation of hESC-derived neural cells while retaining spontaneous activity in existing neuronal networks

    Directory of Open Access Journals (Sweden)

    Heikki Kiiski

    2013-05-01

    The possibilities of human pluripotent stem cell-derived neural cells from the basic research tool to a treatment option in regenerative medicine have been well recognized. These cells also offer an interesting tool for in vitro models of neuronal networks to be used for drug screening and neurotoxicological studies and for patient/disease specific in vitro models. Here, as aiming to develop a reductionistic in vitro human neuronal network model, we tested whether human embryonic stem cell (hESC-derived neural cells could be cultured in human cerebrospinal fluid (CSF in order to better mimic the in vivo conditions. Our results showed that CSF altered the differentiation of hESC-derived neural cells towards glial cells at the expense of neuronal differentiation. The proliferation rate was reduced in CSF cultures. However, even though the use of CSF as the culture medium altered the glial vs. neuronal differentiation rate, the pre-existing spontaneous activity of the neuronal networks persisted throughout the study. These results suggest that it is possible to develop fully human cell and culture-based environments that can further be modified for various in vitro modeling purposes.

  18. Impairment of neural coordination in hippocampal neuronal ensembles after a psychotomimetic dose of dizocilpine.

    Czech Academy of Sciences Publication Activity Database

    Szczurowska, E.; Ahuja, Nikhil; Jiruška, Přemysl; Kelemen, E.; Stuchlík, Aleš

    2018-01-01

    Roč. 81, Feb 2 (2018), s. 275-283 ISSN 0278-5846 R&D Projects: GA ČR(CZ) GA17-04047S Institutional support: RVO:67985823 Keywords : psychosis * MK-801 * neuronal discoordination * hippocampus * Theta rhythm Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 4.187, year: 2016

  19. Where the thoughts dwell: The physiology of neuronal-glial "diffuse neural net"

    Czech Academy of Sciences Publication Activity Database

    Verkhratsky, Alexei; Parpura, V.; Rodríguez Arellano, Jose Julio

    2011-01-01

    Roč. 66, 1-2 (2011), s. 133-151 ISSN 0165-0173 R&D Projects: GA ČR GA309/09/1696; GA ČR GA305/08/1384 Institutional research plan: CEZ:AV0Z50390703 Keywords : human brain * glia * neurone Subject RIV: FH - Neurology Impact factor: 10.342, year: 2011

  20. Neuron cell positioning on polystyrene in culture by silver-negative ion implantation and region control of neural outgrowth

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Sato, Hiroko; Baba, Takahiro; Ikemura, Shin'ichi; Gotoh, Yasuhito; Ishikawa, Junzo

    2000-01-01

    A new method to control the position of neuron cell attachment and extension region of neural outgrowth has been developed by using a pattering ion implantation with silver-negative ions into polystyrene dishes. This technique offers a promising method to form an artificially designed neural network in cell culture in vitro. Silver-negative ions were implanted into non-treated polystyrene dishes (NTPS) at conditions of 20 keV and 3x10 15 ions/cm 2 through a pattering mask, which had as many as 67 slits of 60 μm in width and 4 mm in length with a spacing of 60 μm. For cell culture in vitro, nerve cells of PC-12h (rat adrenal phechromocytoma) were used because they respond to a nerve growth factor (NGF). In the first 2 days in culture without NGF, we observed a selective cell attachment only to the ion-implanted region in patterning Ag - implanted polystyrene sample (p-Ag/NTPS). In another 2 days in culture with NGF, the nerve cells expanded neurites only over the ion-implanted region. For collagen-coated p-Ag/NTPS sample of which collagen was coated after the ion implantation (Collagen/p-Ag/NTPS), most nerve cells were also attached on the ion-implanted region. However, neurites expanded in both ion-implanted and unimplanted regions. The contact angle of NTPS decreased after the ion implantation from 86 deg. to 74 deg. . The region selectivity of neuron attachment and neurite extension is considered to be due to contact angle lowering by the ion implantation as radiation effect on the surface

  1. Numerical Simulation of 3-D Wave Crests

    Institute of Scientific and Technical Information of China (English)

    YU Dingyong; ZHANG Hanyuan

    2003-01-01

    A clear definition of 3-D wave crest and a description of the procedures to detect the boundary of wave crest are presented in the paper. By using random wave theory and directional wave spectrum, a MATLAB-platformed program is designed to simulate random wave crests for various directional spectral conditions in deep water. Statistics of wave crests with different directional spreading parameters and different directional functions are obtained and discussed.

  2. Neural Control of Startle-Induced Locomotion by the Mushroom Bodies and Associated Neurons in Drosophila

    Directory of Open Access Journals (Sweden)

    Jun Sun

    2018-03-01

    Full Text Available Startle-induced locomotion is commonly used in Drosophila research to monitor locomotor reactivity and its progressive decline with age or under various neuropathological conditions. A widely used paradigm is startle-induced negative geotaxis (SING, in which flies entrapped in a narrow column react to a gentle mechanical shock by climbing rapidly upwards. Here we combined in vivo manipulation of neuronal activity and splitGFP reconstitution across cells to search for brain neurons and putative circuits that regulate this behavior. We show that the activity of specific clusters of dopaminergic neurons (DANs afferent to the mushroom bodies (MBs modulates SING, and that DAN-mediated SING regulation requires expression of the DA receptor Dop1R1/Dumb, but not Dop1R2/Damb, in intrinsic MB Kenyon cells (KCs. We confirmed our previous observation that activating the MB α'β', but not αβ, KCs decreased the SING response, and we identified further MB neurons implicated in SING control, including KCs of the γ lobe and two subtypes of MB output neurons (MBONs. We also observed that co-activating the αβ KCs antagonizes α'β' and γ KC-mediated SING modulation, suggesting the existence of subtle regulation mechanisms between the different MB lobes in locomotion control. Overall, this study contributes to an emerging picture of the brain circuits modulating locomotor reactivity in Drosophila that appear both to overlap and differ from those underlying associative learning and memory, sleep/wake state and stress-induced hyperactivity.

  3. Directed differentiation of porcine epiblast-derived neural progenitor cells into neurons and glia

    DEFF Research Database (Denmark)

    Rasmussen, Mikkel Aabech; Hall, Vanessa Jane; Carter, T.F.

    2011-01-01

    Neural progenitor cells (NPCs) are promising candidates for cell-based therapy of neurodegenerative diseases; however, safety concerns must be addressed through transplantation studies in large animal models, such as the pig. The aim of this study was to derive NPCs from porcine blastocysts...

  4. Neural networks applied to inverters control; Les reseaux de neurones appliques a la commande des convertisseurs

    Energy Technology Data Exchange (ETDEWEB)

    Jammes, B; Marpinard, J C

    1996-12-31

    Neural networks are scarcely applied to power electronics. This attempt includes two different topics: optimal control and computerized simulation. The learning has been performed through output error feedback. For implementation, a buck converter has been used as a voltage pulse generator. (D.L.) 7 refs.

  5. BDNF Increases Survival and Neuronal Differentiation of Human Neural Precursor Cells Cotransplanted with a Nanofiber Gel to the Auditory Nerve in a Rat Model of Neuronal Damage

    Directory of Open Access Journals (Sweden)

    Yu Jiao

    2014-01-01

    Full Text Available Objectives. To study possible nerve regeneration of a damaged auditory nerve by the use of stem cell transplantation. Methods. We transplanted HNPCs to the rat AN trunk by the internal auditory meatus (IAM. Furthermore, we studied if addition of BDNF affects survival and phenotypic differentiation of the grafted HNPCs. A bioactive nanofiber gel (PA gel, in selected groups mixed with BDNF, was applied close to the implanted cells. Before transplantation, all rats had been deafened by a round window niche application of β-bungarotoxin. This neurotoxin causes a selective toxic destruction of the AN while keeping the hair cells intact. Results. Overall, HNPCs survived well for up to six weeks in all groups. However, transplants receiving the BDNF-containing PA gel demonstrated significantly higher numbers of HNPCs and neuronal differentiation. At six weeks, a majority of the HNPCs had migrated into the brain stem and differentiated. Differentiated human cells as well as neurites were observed in the vicinity of the cochlear nucleus. Conclusion. Our results indicate that human neural precursor cells (HNPC integration with host tissue benefits from additional brain derived neurotrophic factor (BDNF treatment and that these cells appear to be good candidates for further regenerative studies on the auditory nerve (AN.

  6. Neuronal patterning of the tubular collar cord is highly conserved among enteropneusts but dissimilar to the chordate neural tube.

    Science.gov (United States)

    Kaul-Strehlow, Sabrina; Urata, Makoto; Praher, Daniela; Wanninger, Andreas

    2017-08-01

    A tubular nervous system is present in the deuterostome groups Chordata (cephalochordates, tunicates, vertebrates) and in the non-chordate Enteropneusta. However, the worm-shaped enteropneusts possess a less complex nervous system featuring only a short hollow neural tube, whereby homology to its chordate counterpart remains elusive. Since the majority of data on enteropneusts stem from the harrimaniid Saccoglossus kowalevskii, putative interspecific variations remain undetected resulting in an unreliable ground pattern that impedes homology assessments. In order to complement the missing data from another enteropneust family, we investigated expression of key neuronal patterning genes in the ptychoderid Balanoglossus misakiensis. The collar cord of B. misakiensis shows anterior Six3/6 and posterior Otx + Engrailed expression, in a region corresponding to the chordate brain. Neuronal Nk2.1/Nk2.2 expression is absent. Interestingly, we found median Dlx and lateral Pax6 expression domains, i.e., a condition that is reversed compared to chordates. Comparative analyses reveal that adult nervous system patterning is highly conserved among the enteropneust families Harrimaniidae, Spengelidae and Ptychoderidae. BmiDlx and BmiPax6 have no corresponding expression domains in the chordate brain, which may be indicative of independent acquisition of a tubular nervous system in Enteropneusta and Chordata.

  7. Direct and efficient transfection of mouse neural stem cells and mature neurons by in vivo mRNA electroporation.

    Science.gov (United States)

    Bugeon, Stéphane; de Chevigny, Antoine; Boutin, Camille; Coré, Nathalie; Wild, Stefan; Bosio, Andreas; Cremer, Harold; Beclin, Christophe

    2017-11-01

    In vivo brain electroporation of DNA expression vectors is a widely used method for lineage and gene function studies in the developing and postnatal brain. However, transfection efficiency of DNA is limited and adult brain tissue is refractory to electroporation. Here, we present a systematic study of mRNA as a vector for acute genetic manipulation in the developing and adult brain. We demonstrate that mRNA electroporation is far more efficient than DNA electroporation, and leads to faster and more homogeneous protein expression in vivo Importantly, mRNA electroporation allows the manipulation of neural stem cells and postmitotic neurons in the adult brain using minimally invasive procedures. Finally, we show that this approach can be efficiently used for functional studies, as exemplified by transient overexpression of the neurogenic factor Myt1l and by stably inactivating Dicer nuclease in vivo in adult born olfactory bulb interneurons and in fully integrated cortical projection neurons. © 2017. Published by The Company of Biologists Ltd.

  8. An Asynchronous Recurrent Network of Cellular Automaton-Based Neurons and Its Reproduction of Spiking Neural Network Activities.

    Science.gov (United States)

    Matsubara, Takashi; Torikai, Hiroyuki

    2016-04-01

    Modeling and implementation approaches for the reproduction of input-output relationships in biological nervous tissues contribute to the development of engineering and clinical applications. However, because of high nonlinearity, the traditional modeling and implementation approaches encounter difficulties in terms of generalization ability (i.e., performance when reproducing an unknown data set) and computational resources (i.e., computation time and circuit elements). To overcome these difficulties, asynchronous cellular automaton-based neuron (ACAN) models, which are described as special kinds of cellular automata that can be implemented as small asynchronous sequential logic circuits have been proposed. This paper presents a novel type of such ACAN and a theoretical analysis of its excitability. This paper also presents a novel network of such neurons, which can mimic input-output relationships of biological and nonlinear ordinary differential equation model neural networks. Numerical analyses confirm that the presented network has a higher generalization ability than other major modeling and implementation approaches. In addition, Field-Programmable Gate Array-implementations confirm that the presented network requires lower computational resources.

  9. Path integration of head direction: updating a packet of neural activity at the correct speed using neuronal time constants.

    Science.gov (United States)

    Walters, D M; Stringer, S M

    2010-07-01

    A key question in understanding the neural basis of path integration is how individual, spatially responsive, neurons may self-organize into networks that can, through learning, integrate velocity signals to update a continuous representation of location within an environment. It is of vital importance that this internal representation of position is updated at the correct speed, and in real time, to accurately reflect the motion of the animal. In this article, we present a biologically plausible model of velocity path integration of head direction that can solve this problem using neuronal time constants to effect natural time delays, over which associations can be learned through associative Hebbian learning rules. The model comprises a linked continuous attractor network and competitive network. In simulation, we show that the same model is able to learn two different speeds of rotation when implemented with two different values for the time constant, and without the need to alter any other model parameters. The proposed model could be extended to path integration of place in the environment, and path integration of spatial view.

  10. Neural correlates of olfactory learning paradigms in an identified neuron in the honeybee brain.

    Science.gov (United States)

    Mauelshagen, J

    1993-02-01

    1. Sensitization and classical odor conditioning of the proboscis extension reflex were functionally analyzed by repeated intracellular recordings from a single identified neuron (PE1-neuron) in the central bee brain. This neuron belongs to the class of "extrinsic cells" arising from the pedunculus of the mushroom bodies and has extensive arborizations in the median and lateral protocerebrum. The recordings were performed on isolated bee heads. 2. Two different series of physiological experiments were carried out with the use of a similar temporal succession of stimuli as in previous behavioral experiments. In the first series, one group of animals was used for a single conditioning trial [conditioned stimulus (CS), carnation; unconditioned stimulus (US), sucrose solution to the antennae and proboscis), a second group was used for sensitization (sensitizing stimulus, sucrose solution to the antennae and/or proboscis), and the third group served as control (no sucrose stimulation). In the second series, a differential conditioning paradigm (paired odor CS+, carnation; unpaired odor CS-, orange blossom) was applied to test the associative nature of the conditioning effect. 3. The PE1-neuron showed a characteristic burstlike odor response before the training procedures. The treatments resulted in different spike-frequency modulations of this response, which were specific for the nonassociative and associative stimulus paradigms applied. During differential conditioning, there are dynamic up and down modulations of spike frequencies and of the DC potentials underlying the responses to the CS+. Overall, only transient changes in the minute range were observed. 4. The results of the sensitization procedures suggest two qualitatively different US pathways. The comparison between sensitization and one-trial conditioning shows differential effects of nonassociative and associative stimulus paradigms on the response behavior of the PE1-neuron. The results of the differential

  11. Endogenous neural stem cells in central canal of adult rats acquired limited ability to differentiate into neurons following mild spinal cord injury

    Science.gov (United States)

    Liu, Yuan; Tan, Botao; Wang, Li; Long, Zaiyun; Li, Yingyu; Liao, Weihong; Wu, Yamin

    2015-01-01

    Endogenous neural stem cells in central canal of adult mammalian spinal cord exhibit stem cell properties following injury. In the present study, the endogenous neural stem cells were labeled with Dil to track the differentiation of cells after mild spinal cord injury (SCI). Compared with 1 and 14 days post mild injury, the number of endogenous neural stem cells significantly increased at the injured site of spinal cord on 3 and 7 days post-injury. Dil-labeled βIII-tublin and GFAP expressing cells could be detected on 7 days post-injury, which indicated that the endogenous neural stem cells in central canal of spinal cord differentiated into different type of neural cells, but there were more differentiated astrocytes than the neurons after injury. Furthermore, after injury the expression of inhibitory Notch1 and Hes1 mRNA began to increase at 6 hours and was evident at 12 and 24 hours, which maintained high levels up to 7 days post-injury. These results indicated that a mild SCI in rat is sufficient to induce endogenous neural stem cells proliferation and differentiation. However, the ability to differentiate into neurons is limited, which may be, at least in part, due to high expression of inhibitory Notch1 and Hes1 genes after injury. PMID:26097566

  12. Olfactory bulb dysgenesis, mirror neuron system dysfunction, and autonomic dysregulation as the neural basis for autism.

    Science.gov (United States)

    Brang, David; Ramachandran, V S

    2010-05-01

    Autism is a disorder characterized by social withdrawal, impoverished language and empathy, and a profound inability to adopt another's viewpoint - a failure to construct a "theory of mind" for interpreting another person's thoughts and intentions. We previously showed that these symptoms might be explained, in part, by a paucity of mirror neurons. Prompted by an MRI report of an individual with autism, we now suggest that there may be, in addition, a congenital aplasia/dysplasia of the olfactory bulbs with consequent reduction of vasopressin and oxytocin receptor binding. There may also be sub-clinical temporal lobe epilepsy affecting the recently discovered third visual system that is rich in "empathy" related mirror neurons (MNS) and projects (via the TOP junction - just below the inferior parietal lobule) to limbic structures that regulate autonomic outflow. This causes deranged autonomic feedback, resulting in additional deficiencies in MNS with loss of emotional empathy and introspection.

  13. Abnormal neuronal migration: radiologic-clinic study. Alteraciones en la migracion neural: estudio clinico-radiologico

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Fernandez, M.; Menor Serrano, F.; Bordon Ferre, F.; Garcia Tena, J.; Esteban Hernandez, E.; Sanguesa Nebot, C.; Marti Bonnati, L. (Hospital Infantil La Fe, Valencia (Spain))

    1994-01-01

    We present our experience in 18 pediatric patients with abnormal neuronal migration. Seven cases of heterotopia of the gray matter, 7 agyria-pachygyria complexes, 1 case of polymicrogyria, 2 cases of schizencephaly and 1 case of hemimegalencephaly were diagnosed by means of ultrasonography, computed tomography and magnetic resonance. The clinical picture was reviewed in each case, with special attention to the occurrence of convulsions, psycho motor development and visual changes. In general, the greater the morphological change, the greater the neurological involvement in these patients. However, the two cases of schizencephaly presented mild clinical expression. Magnetic resonance increases the diagnostic yield in neuronal migration disorders. Nevertheless, either ultrasonography or, especially, computed tomography is useful as a first diagnostic approach in these malformative disorders. (Author)

  14. Neuroprotective effect of the endogenous neural peptide apelin in cultured mouse cortical neurons

    International Nuclear Information System (INIS)

    Zeng, Xiang Jun; Yu, Shan Ping; Zhang, Like; Wei, Ling

    2010-01-01

    The adipocytokine apelin and its G protein-coupled APJ receptor were initially isolated from a bovine stomach and have been detected in the brain and cardiovascular system. Recent studies suggest that apelin can protect cardiomyocytes from ischemic injury. Here, we investigated the effect of apelin on apoptosis in mouse primary cultures of cortical neurons. Exposure of the cortical cultures to a serum-free medium for 24 h induced nuclear fragmentation and apoptotic death; apelin-13 (1.0-5.0 nM) markedly prevented the neuronal apoptosis. Apelin neuroprotective effects were mediated by multiple mechanisms. Apelin-13 reduced serum deprivation (SD)-induced ROS generation, mitochondria depolarization, cytochrome c release and activation of caspase-3. Apelin-13 prevented SD-induced changes in phosphorylation status of Akt and ERK1/2. In addition, apelin-13 attenuated NMDA-induced intracellular Ca 2+ accumulation. These results indicate that apelin is an endogenous neuroprotective adipocytokine that may block apoptosis and excitotoxic death via cellular and molecular mechanisms. It is suggested that apelins may be further explored as a potential neuroprotective reagent for ischemia-induced brain damage.

  15. Organic cation transporter-mediated ergothioneine uptake in mouse neural progenitor cells suppresses proliferation and promotes differentiation into neurons.

    Directory of Open Access Journals (Sweden)

    Takahiro Ishimoto

    Full Text Available The aim of the present study is to clarify the functional expression and physiological role in neural progenitor cells (NPCs of carnitine/organic cation transporter OCTN1/SLC22A4, which accepts the naturally occurring food-derived antioxidant ergothioneine (ERGO as a substrate in vivo. Real-time PCR analysis revealed that mRNA expression of OCTN1 was much higher than that of other organic cation transporters in mouse cultured cortical NPCs. Immunocytochemical analysis showed colocalization of OCTN1 with the NPC marker nestin in cultured NPCs and mouse embryonic carcinoma P19 cells differentiated into neural progenitor-like cells (P19-NPCs. These cells exhibited time-dependent [(3H]ERGO uptake. These results demonstrate that OCTN1 is functionally expressed in murine NPCs. Cultured NPCs and P19-NPCs formed neurospheres from clusters of proliferating cells in a culture time-dependent manner. Exposure of cultured NPCs to ERGO or other antioxidants (edaravone and ascorbic acid led to a significant decrease in the area of neurospheres with concomitant elimination of intracellular reactive oxygen species. Transfection of P19-NPCs with small interfering RNA for OCTN1 markedly promoted formation of neurospheres with a concomitant decrease of [(3H]ERGO uptake. On the other hand, exposure of cultured NPCs to ERGO markedly increased the number of cells immunoreactive for the neuronal marker βIII-tubulin, but decreased the number immunoreactive for the astroglial marker glial fibrillary acidic protein (GFAP, with concomitant up-regulation of neuronal differentiation activator gene Math1. Interestingly, edaravone and ascorbic acid did not affect such differentiation of NPCs, in contrast to the case of proliferation. Knockdown of OCTN1 increased the number of cells immunoreactive for GFAP, but decreased the number immunoreactive for βIII-tubulin, with concomitant down-regulation of Math1 in P19-NPCs. Thus, OCTN1-mediated uptake of ERGO in NPCs inhibits

  16. Automatic neuron segmentation and neural network analysis method for phase contrast microscopy images.

    Science.gov (United States)

    Pang, Jincheng; Özkucur, Nurdan; Ren, Michael; Kaplan, David L; Levin, Michael; Miller, Eric L

    2015-11-01

    Phase Contrast Microscopy (PCM) is an important tool for the long term study of living cells. Unlike fluorescence methods which suffer from photobleaching of fluorophore or dye molecules, PCM image contrast is generated by the natural variations in optical index of refraction. Unfortunately, the same physical principles which allow for these studies give rise to complex artifacts in the raw PCM imagery. Of particular interest in this paper are neuron images where these image imperfections manifest in very different ways for the two structures of specific interest: cell bodies (somas) and dendrites. To address these challenges, we introduce a novel parametric image model using the level set framework and an associated variational approach which simultaneously restores and segments this class of images. Using this technique as the basis for an automated image analysis pipeline, results for both the synthetic and real images validate and demonstrate the advantages of our approach.

  17. A novel culture method reveals unique neural stem/progenitors in mature porcine iris tissues that differentiate into neuronal and rod photoreceptor-like cells.

    Science.gov (United States)

    Royall, Lars N; Lea, Daniel; Matsushita, Tamami; Takeda, Taka-Aki; Taketani, Shigeru; Araki, Masasuke

    2017-11-15

    Iris neural stem/progenitor cells from mature porcine eyes were investigated using a new protocol for tissue culture, which consists of dispase treatment and Matrigel embedding. We used a number of culture conditions and found an intense differentiation of neuronal cells from both the iris pigmented epithelial (IPE) cells and the stroma tissue cells. Rod photoreceptor-like cells were also observed but mostly in a later stage of culture. Neuronal differentiation does not require any additives such as fetal bovine serum or FGF2, although FGF2 and IGF2 appeared to promote neural differentiation in the IPE cultures. Furthermore, the stroma-derived cells were able to be maintained in vitro indefinitely. The evolutionary similarity between humans and domestic pigs highlight the potential for this methodology in the modeling of human diseases and characterizing human ocular stem cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Integration of silicon-based neural probes and micro-drive arrays for chronic recording of large populations of neurons in behaving animals.

    Science.gov (United States)

    Michon, Frédéric; Aarts, Arno; Holzhammer, Tobias; Ruther, Patrick; Borghs, Gustaaf; McNaughton, Bruce; Kloosterman, Fabian

    2016-08-01

    Understanding how neuronal assemblies underlie cognitive function is a fundamental question in system neuroscience. It poses the technical challenge to monitor the activity of populations of neurons, potentially widely separated, in relation to behaviour. In this paper, we present a new system which aims at simultaneously recording from a large population of neurons from multiple separated brain regions in freely behaving animals. The concept of the new device is to combine the benefits of two existing electrophysiological techniques, i.e. the flexibility and modularity of micro-drive arrays and the high sampling ability of electrode-dense silicon probes. Newly engineered long bendable silicon probes were integrated into a micro-drive array. The resulting device can carry up to 16 independently movable silicon probes, each carrying 16 recording sites. Populations of neurons were recorded simultaneously in multiple cortical and/or hippocampal sites in two freely behaving implanted rats. Current approaches to monitor neuronal activity either allow to flexibly record from multiple widely separated brain regions (micro-drive arrays) but with a limited sampling density or to provide denser sampling at the expense of a flexible placement in multiple brain regions (neural probes). By combining these two approaches and their benefits, we present an alternative solution for flexible and simultaneous recordings from widely distributed populations of neurons in freely behaving rats.

  19. The advantage of flexible neuronal tunings in neural network models for motor learning

    Directory of Open Access Journals (Sweden)

    Ellisha N Marongelli

    2013-07-01

    Full Text Available Human motor adaptation to novel environments is often modeled by a basis function network that transforms desired movement properties into estimated forces. This network employs a layer of nodes that have fixed broad tunings that generalize across the input domain. Learning is achieved by updating the weights of these nodes in response to training experience. This conventional model is unable to account for rapid flexibility observed in human spatial generalization during motor adaptation. However, added plasticity in the breadths of the basis function tunings can achieve this flexibility, and several neurophysiological experiments have revealed flexibility in tunings of sensorimotor neurons. We found a model, Locally Weighted Projection Regression (LWPR, which uniquely possesses the structure of a basis function network in which both the weights and tuning widths of the nodes are updated incrementally during adaptation. We presented this LWPR model with training functions of different spatial complexities and monitored incremental updates to receptive field sizes. An inverse pattern of dependence of receptive field adaptation on experienced error became evident, underlying both a relationship between generalization and complexity, and a unique behavior in which generalization always narrows after a sudden switch in environmental complexity. These results implicate a model with a flexible structure, like LWPR, as a viable alternative model for human motor adaptation that can account for previously observed plasticity in spatial generalization. This theory can be tested by using the behaviors observed in our experiments as novel hypotheses in human studies.

  20. The advantage of flexible neuronal tunings in neural network models for motor learning

    Science.gov (United States)

    Marongelli, Ellisha N.; Thoroughman, Kurt A.

    2013-01-01

    Human motor adaptation to novel environments is often modeled by a basis function network that transforms desired movement properties into estimated forces. This network employs a layer of nodes that have fixed broad tunings that generalize across the input domain. Learning is achieved by updating the weights of these nodes in response to training experience. This conventional model is unable to account for rapid flexibility observed in human spatial generalization during motor adaptation. However, added plasticity in the widths of the basis function tunings can achieve this flexibility, and several neurophysiological experiments have revealed flexibility in tunings of sensorimotor neurons. We found a model, Locally Weighted Projection Regression (LWPR), which uniquely possesses the structure of a basis function network in which both the weights and tuning widths of the nodes are updated incrementally during adaptation. We presented this LWPR model with training functions of different spatial complexities and monitored incremental updates to receptive field widths. An inverse pattern of dependence of receptive field adaptation on experienced error became evident, underlying both a relationship between generalization and complexity, and a unique behavior in which generalization always narrows after a sudden switch in environmental complexity. These results implicate a model that is flexible in both basis function widths and weights, like LWPR, as a viable alternative model for human motor adaptation that can account for previously observed plasticity in spatial generalization. This theory can be tested by using the behaviors observed in our experiments as novel hypotheses in human studies. PMID:23888141

  1. In vitro evaluation of biocompatibility of uncoated thermally reduced graphene and carbon nanotube-loaded PVDF membranes with adult neural stem cell-derived neurons and glia

    Directory of Open Access Journals (Sweden)

    Çagla Defterali

    2016-12-01

    Full Text Available Graphene, graphene-based nanomaterials (GBNs and carbon nanotubes (CNTs are being investigated as potential substrates for the growth of neural cells. However, in most in vitro studies the cells were seeded on these materials coated with various proteins implying that the observed effects on the cells could not solely be attributed to the GBN and CNT properties. Here we studied the biocompatibility of uncoated thermally reduced graphene (TRG and poly-vinylidene fluoride (PVDF membranes loaded with multi walled CNTs (MWCNTs using neural stem cells (NSCs isolated from the adult mouse olfactory bulb (termed aOBSCs. When aOBSCs were induced to differentiate on coverslips treated with TRG or control materials (polyethyleneimine-PEI and polyornithine plus fibronectin-PLO/F in a serum-free medium, neurons, astrocytes, and oligodendrocytes were generated in all conditions, indicating that TRG permits the multi-lineage differentiation of aOBSCs. However, the total number of cells was reduced on both PEI and TRG. In a serum-containing medium, aOBSC-derived neurons and oligodendrocytes grown on TRG were more numerous than in controls; the neurons developed synaptic boutons and oligodendrocytes were more branched. In contrast, neurons growing on PVDF membranes had reduced neurite branching and on MWCNTs-loaded membranes, oligodendrocytes were lower in numbers than in controls. Overall, these findings indicate that uncoated TRG may be biocompatible with the generation, differentiation, and maturation of aOBSC-derived neurons and glial cells, implying a potential use for TRG to study functional neuronal networks.

  2. A voltage-sensitive dye-based assay for the identification of differentiated neurons derived from embryonic neural stem cell cultures.

    Directory of Open Access Journals (Sweden)

    Richardson N Leão

    Full Text Available BACKGROUND: Pluripotent and multipotent stem cells hold great therapeutical promise for the replacement of degenerated tissue in neurological diseases. To fulfill that promise we have to understand the mechanisms underlying the differentiation of multipotent cells into specific types of neurons. Embryonic stem cell (ESC and embryonic neural stem cell (NSC cultures provide a valuable tool to study the processes of neural differentiation, which can be assessed using immunohistochemistry, gene expression, Ca(2+-imaging or electrophysiology. However, indirect methods such as protein and gene analysis cannot provide direct evidence of neuronal functionality. In contrast, direct methods such as electrophysiological techniques are well suited to produce direct evidence of neural functionality but are limited to the study of a few cells on a culture plate. METHODOLOGY/PRINCIPAL FINDINGS: In this study we describe a novel method for the detection of action potential-capable neurons differentiated from embryonic NSC cultures using fast voltage-sensitive dyes (VSD. We found that the use of extracellularly applied VSD resulted in a more detailed labeling of cellular processes compared to calcium indicators. In addition, VSD changes in fluorescence translated precisely to action potential kinetics as assessed by the injection of simulated slow and fast sodium currents using the dynamic clamp technique. We further demonstrate the use of a finite element model of the NSC culture cover slip for optimizing electrical stimulation parameters. CONCLUSIONS/SIGNIFICANCE: Our method allows for a repeatable fast and accurate stimulation of neurons derived from stem cell cultures to assess their differentiation state, which is capable of monitoring large amounts of cells without harming the overall culture.

  3. Integration of donor mesenchymal stem cell-derived neuron-like cells into host neural network after rat spinal cord transection.

    Science.gov (United States)

    Zeng, Xiang; Qiu, Xue-Cheng; Ma, Yuan-Huan; Duan, Jing-Jing; Chen, Yuan-Feng; Gu, Huai-Yu; Wang, Jun-Mei; Ling, Eng-Ang; Wu, Jin-Lang; Wu, Wutian; Zeng, Yuan-Shan

    2015-06-01

    Functional deficits following spinal cord injury (SCI) primarily attribute to loss of neural connectivity. We therefore tested if novel tissue engineering approaches could enable neural network repair that facilitates functional recovery after spinal cord transection (SCT). Rat bone marrow-derived mesenchymal stem cells (MSCs), genetically engineered to overexpress TrkC, receptor of neurotrophin-3 (NT-3), were pre-differentiated into cells carrying neuronal features via co-culture with NT-3 overproducing Schwann cells in 3-dimensional gelatin sponge (GS) scaffold for 14 days in vitro. Intra-GS formation of MSC assemblies emulating neural network (MSC-GS) were verified morphologically via electron microscopy (EM) and functionally by whole-cell patch clamp recording of spontaneous post-synaptic currents. The differentiated MSCs still partially maintained prototypic property with the expression of some mesodermal cytokines. MSC-GS or GS was then grafted acutely into a 2 mm-wide transection gap in the T9-T10 spinal cord segments of adult rats. Eight weeks later, hindlimb function of the MSC-GS-treated SCT rats was significantly improved relative to controls receiving the GS or lesion only as indicated by BBB score. The MSC-GS transplantation also significantly recovered cortical motor evoked potential (CMEP). Histologically, MSC-derived neuron-like cells maintained their synapse-like structures in vivo; they additionally formed similar connections with host neurites (i.e., mostly serotonergic fibers plus a few corticospinal axons; validated by double-labeled immuno-EM). Moreover, motor cortex electrical stimulation triggered c-fos expression in the grafted and lumbar spinal cord cells of the treated rats only. Our data suggest that MSC-derived neuron-like cells resulting from NT-3-TrkC-induced differentiation can partially integrate into transected spinal cord and this strategy should be further investigated for reconstructing disrupted neural circuits. Copyright

  4. The reliability of nonlinear least-squares algorithm for data analysis of neural response activity during sinusoidal rotational stimulation in semicircular canal neurons.

    Science.gov (United States)

    Ren, Pengyu; Li, Bowen; Dong, Shiyao; Chen, Lin; Zhang, Yuelin

    2018-01-01

    Although many mathematical methods were used to analyze the neural activity under sinusoidal stimulation within linear response range in vestibular system, the reliabilities of these methods are still not reported, especially in nonlinear response range. Here we chose nonlinear least-squares algorithm (NLSA) with sinusoidal model to analyze the neural response of semicircular canal neurons (SCNs) during sinusoidal rotational stimulation (SRS) over a nonlinear response range. Our aim was to acquire a reliable mathematical method for data analysis under SRS in vestibular system. Our data indicated that the reliability of this method in an entire SCNs population was quite satisfactory. However, the reliability was strongly negatively depended on the neural discharge regularity. In addition, stimulation parameters were the vital impact factors influencing the reliability. The frequency had a significant negative effect but the amplitude had a conspicuous positive effect on the reliability. Thus, NLSA with sinusoidal model resulted a reliable mathematical tool for data analysis of neural response activity under SRS in vestibular system and more suitable for those under the stimulation with low frequency but high amplitude, suggesting that this method can be used in nonlinear response range. This method broke out of the restriction of neural activity analysis under nonlinear response range and provided a solid foundation for future study in nonlinear response range in vestibular system.

  5. Whistler wave trapping in a density crest

    International Nuclear Information System (INIS)

    Sugai, H.; Niki, H.; Inutake, M.; Takeda, S.

    1979-11-01

    The linear trapping process of whistler waves in a field-aligned density crest is investigated theoretically and experimentally below ω = ωsub(c)/2 (half gyrofrequency). The conditions of the crest trapping are derived in terms of the frequency ω/ωsub(c), the incident wave-normal angle theta sub(i), and the density ratio n sub(i)/n sub(o), where n sub(i) and n sub(o) denote the density at the incident point and that at the ridge, respectively. The oscillation length of the trapped ray path is calculated for a parabolic density profile. The experiment on antenna-excited whistler wave has been performed in a large magnetized plasma with the density crest. The phase and amplitude profile of the whistler wave is measured along and across the crest. The measurement has verified characteristic behaviors of the crest trapping. (author)

  6. Molecular Memory of Morphologies by Septins during Neuron Generation Allows Early Polarity Inheritance.

    Science.gov (United States)

    Boubakar, Leila; Falk, Julien; Ducuing, Hugo; Thoinet, Karine; Reynaud, Florie; Derrington, Edmund; Castellani, Valérie

    2017-08-16

    Transmission of polarity established early during cell lineage history is emerging as a key process guiding cell differentiation. Highly polarized neurons provide a fascinating model to study inheritance of polarity over cell generations and across morphological transitions. Neural crest cells (NCCs) migrate to the dorsal root ganglia to generate neurons directly or after cell divisions in situ. Using live imaging of vertebrate embryo slices, we found that bipolar NCC progenitors lose their polarity, retracting their processes to round for division, but generate neurons with bipolar morphology by emitting processes from the same locations as the progenitor. Monitoring the dynamics of Septins, which play key roles in yeast polarity, indicates that Septin 7 tags process sites for re-initiation of process growth following mitosis. Interfering with Septins blocks this mechanism. Thus, Septins store polarity features during mitotic rounding so that daughters can reconstitute the initial progenitor polarity. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Efficient generation of dopamine neuron-like cells from skin-derived precursors with a synthetic peptide derived from von Hippel-Lindau protein.

    Science.gov (United States)

    Kubo, Atsuhiko; Yoshida, Tetsuhiko; Kobayashi, Nahoko; Yokoyama, Takaakira; Mimura, Toshiro; Nishiguchi, Takao; Higashida, Tetsuhiro; Yamamoto, Isao; Kanno, Hiroshi

    2009-12-01

    Skin-derived precursors (SKPs) from mammalian dermis represent neural crest-related stem cells capable of differentiating into both neural and mesodermal progency. SKPs are of clinical interest because they serve as accessible autologous donor cells for neuronal repair for neuronal intractable diseases. However, little is known about the efficient generation of neurons from SKPs, and phenotypes of neurons generated from SKPs have been restricted. In addition, the neuronal repair using their generated neurons as donor cells has not been achieved. The von Hippel-Lindau protein (pVHL) is one of the proteins that play an important role during neuronal differentiation, and recently neuronal differentiation of neural progenitor cells by intracellular delivery of a synthetic VHL peptide derived from elongin BC-binding site has been demonstrated. In the present study, a synthetic VHL peptide derived from elongin BC-binding site was conjugated to the protein transduction domain (PTD) of HIV-TAT protein (TATVHL peptide) to facilitate entry into cells, and we demonstrate the efficient generation of cells with dopaminergic phenotype from SKPs with the intracellular delivery of TATVHL peptide, and characterized the generated cells. The TATVHL peptide-treated SKPs expressed neuronal marker proteins, particularly dopamine neuron markers, and also up-regulated mRNA levels of proneural basic helix-loop-helix factors. After the TATVHL peptide treatment, transplanted SKPs into Parkinson's disease (PD) model rats sufficiently differentiated into dopamine neuron-like cells in PD model rats, and partially but significantly corrected behavior of PD model rats. The generated dopamine neuron-like cells are expected to serve as donor cells for neuronal repair for PD.

  8. Osthole Stimulated Neural Stem Cells Differentiation into Neurons in an Alzheimer's Disease Cell Model via Upregulation of MicroRNA-9 and Rescued the Functional Impairment of Hippocampal Neurons in APP/PS1 Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Shao-Heng Li

    2017-06-01

    Full Text Available Alzheimer's disease (AD is the most serious neurodegenerative disease worldwide and is characterized by progressive cognitive impairment and multiple neurological changes, including neuronal loss in the brain. However, there are no available drugs to delay or cure this disease. Consequently, neuronal replacement therapy may be a strategy to treat AD. Osthole (Ost, a natural coumarin derivative, crosses the blood-brain barrier and exerts strong neuroprotective effects against AD in vitro and in vivo. Recently, microRNAs (miRNAs have demonstrated a crucial role in pathological processes of AD, implying that targeting miRNAs could be a therapeutic approach to AD. In the present study, we investigated whether Ost could enhance cell viability and prevent cell death in amyloid precursor protein (APP-expressing neural stem cells (NSCs as well as promote APP-expressing NSCs differentiation into more neurons by upregulating microRNA (miR-9 and inhibiting the Notch signaling pathway in vitro. In addition, Ost treatment in APP/PS1 double transgenic (Tg mice markedly restored cognitive functions, reduced Aβ plague production and rescued functional impairment of hippocampal neurons. The results of the present study provides evidence of the neurogenesis effects and neurobiological mechanisms of Ost against AD, suggesting that Ost is a promising drug for treatment of AD or other neurodegenerative diseases.

  9. Rapid generation of sub-type, region-specific neurons and neural networks from human pluripotent stem cell-derived neurospheres

    Directory of Open Access Journals (Sweden)

    Aynun N. Begum

    2015-11-01

    Full Text Available Stem cell-based neuronal differentiation has provided a unique opportunity for disease modeling and regenerative medicine. Neurospheres are the most commonly used neuroprogenitors for neuronal differentiation, but they often clump in culture, which has always represented a challenge for neurodifferentiation. In this study, we report a novel method and defined culture conditions for generating sub-type or region-specific neurons from human embryonic and induced pluripotent stem cells derived neurosphere without any genetic manipulation. Round and bright-edged neurospheres were generated in a supplemented knockout serum replacement medium (SKSRM with 10% CO2, which doubled the expression of the NESTIN, PAX6 and FOXG1 genes compared with those cultured with 5% CO2. Furthermore, an additional step (AdSTEP was introduced to fragment the neurospheres and facilitate the formation of a neuroepithelial-type monolayer that we termed the “neurosphederm”. The large neural tube-type rosette (NTTR structure formed from the neurosphederm, and the NTTR expressed higher levels of the PAX6, SOX2 and NESTIN genes compared with the neuroectoderm-derived neuroprogenitors. Different layers of cortical, pyramidal, GABAergic, glutamatergic, cholinergic neurons appeared within 27 days using the neurosphederm, which is a shorter period than in traditional neurodifferentiation-protocols (42–60 days. With additional supplements and timeline dopaminergic and Purkinje neurons were also generated in culture too. Furthermore, our in vivo results indicated that the fragmented neurospheres facilitated significantly better neurogenesis in severe combined immunodeficiency (SCID mouse brains compared with the non-fragmented neurospheres. Therefore, this neurosphere-based neurodifferentiation protocol is a valuable tool for studies of neurodifferentiation, neuronal transplantation and high throughput screening assays.

  10. Maintenance and neuronal cell differentiation of neural stem cells C17.2 correlated to medium availability sets design criteria in microfluidic systems.

    Directory of Open Access Journals (Sweden)

    Bu Wang

    Full Text Available BACKGROUND: Neural stem cells (NSCs play an important role in developing potential cell-based therapeutics for neurodegenerative disease. Microfluidics has proven a powerful tool in mechanistic studies of NSC differentiation. However, NSCs are prone to differentiate when the nutrients are limited, which occurs unfavorable by fast medium consumption in miniaturized culture environment. For mechanistic studies of NSCs in microfluidics, it is vital that neuronal cell differentiation is triggered by controlled factors only. Thus, we studied the correlation between available cell medium and spontaneous neuronal cell differentiation of C17.2 NSCs in standard culture medium, and proposed the necessary microfluidic design criteria to prevent undesirable cell phenotype changes. METHODOLOGY/PRINCIPAL FINDINGS: A series of microchannels with specific geometric parameters were designed to provide different amount of medium to the cells over time. A medium factor (MF, defined as the volume of stem cell culture medium divided by total number of cells at seeding and number of hours between medium replacement successfully correlated the amount of medium available to each cell averaged over time to neuronal cell differentiation. MF smaller than 8.3×10(4 µm3/cell⋅hour produced significant neuronal cell differentiation marked by cell morphological change and significantly more cells with positive β-tubulin-III and MAP2 staining than the control. When MF was equal or greater than 8.3×10(4 µm3/cell⋅hour, minimal spontaneous neuronal cell differentiation happened relative to the control. MF had minimal relation with the average neurite length. SIGNIFICANCE: MFs can be controlled easily to maintain the stem cell status of C17.2 NSCs or to induce spontaneous neuronal cell differentiation in standard stem cell culture medium. This finding is useful in designing microfluidic culture platforms for controllable NSC maintenance and differentiation. This study also

  11. O(t-α)-synchronization and Mittag-Leffler synchronization for the fractional-order memristive neural networks with delays and discontinuous neuron activations.

    Science.gov (United States)

    Chen, Jiejie; Chen, Boshan; Zeng, Zhigang

    2018-04-01

    This paper investigates O(t -α )-synchronization and adaptive Mittag-Leffler synchronization for the fractional-order memristive neural networks with delays and discontinuous neuron activations. Firstly, based on the framework of Filippov solution and differential inclusion theory, using a Razumikhin-type method, some sufficient conditions ensuring the global O(t -α )-synchronization of considered networks are established via a linear-type discontinuous control. Next, a new fractional differential inequality is established and two new discontinuous adaptive controller is designed to achieve Mittag-Leffler synchronization between the drive system and the response systems using this inequality. Finally, two numerical simulations are given to show the effectiveness of the theoretical results. Our approach and theoretical results have a leading significance in the design of synchronized fractional-order memristive neural networks circuits involving discontinuous activations and time-varying delays. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. The Effect of Agmatine on Expression of IL-1β and TLX Which Promotes Neuronal Differentiation in Lipopolysaccharide-Treated Neural Progenitors.

    Science.gov (United States)

    Song, Juhyun; Kumar, Bokara Kiran; Kang, Somang; Park, Kyung Ah; Lee, Won Taek; Lee, Jong Eun

    2013-12-01

    Differentiation of neural progenitor cells (NPCs) is important for protecting neural cells and brain tissue during inflammation. Interleukin-1 beta (IL-1β) is the most common pro- inflammatory cytokine in brain inflammation, and increased IL-1β levels can decrease the proliferation of NPCs. We aimed to investigate whether agmatine (Agm), a primary polyamine that protects neural cells, could trigger differentiation of NPCs by activating IL-1β in vitro. The cortex of ICR mouse embryos (E14) was dissociated to culture NPCs. NPCs were stimulated by lipopolysaccharide (LPS). After 6 days, protein expression of stem cell markers and differentiation signal factors was confirmed by using western blot analysis. Also, immunocytochemistry was used to confirm the cell fate. Agm treatment activated NPC differentiation significantly more than in the control group, which was evident by the increased expression of a neuronal marker, MAP2, in the LPS-induced, Agm-treated group. Differentiation of LPS-induced, Agm-treated NPCs was regulated by the MAPK pathway and is thought to be related to IL-1β activation and decreased expression of TLX, a transcription factor that regulates NPC differentiation. Our results reveal that Agm can promote NPC differentiation to neural stem cells by modulating IL-1β expression under inflammatory condition, and they suggest that Agm may be a novel therapeutic strategy for neuroinflammatory diseases.

  13. Classical algorithms for automated parameter-search methods in compartmental neural models - A critical survey based on simulations using neuron

    International Nuclear Information System (INIS)

    Mutihac, R.; Mutihac, R.C.; Cicuttin, A.

    2001-09-01

    gradient-descent techniques are adequate if the parameter space is low-dimensional, relatively smooth, and has a few local minima (e.g., parameterizing single-neuron compartmental models). Only the fast algorithms and/or a decent (low) number of model parameters are candidates for automated parameter search because of practical reasons. Eventually, the size of the parameter space may be reduced and/or parallel supercomputers may be used. Data overfitting may negatively affect the generalization ability of the model. Bayesian methods include Occam's factor, which set the preference for simpler models. Proliferation of (neural) models raises the question of rigorous criteria for comparing the overall performance of various models designed to match the same type of data. Bayesian methods provide the best framework to assess the neural models quantitatively. Paradoxically, parameter-search methods may sometimes be more useful when they fail by discarding unrealistic mechanisms used in the model design, rather than fitting experimental data to an alleged model

  14. Efficient and Rapid Derivation of Primitive Neural Stem Cells and Generation of Brain Subtype Neurons From Human Pluripotent Stem Cells

    OpenAIRE

    Yan, Yiping; Shin, Soojung; Jha, Balendu Shekhar; Liu, Qiuyue; Sheng, Jianting; Li, Fuhai; Zhan, Ming; Davis, Janine; Bharti, Kapil; Zeng, Xianmin; Rao, Mahendra; Malik, Nasir; Vemuri, Mohan C.

    2013-01-01

    This study developed a highly efficient serum-free pluripotent stem cell (PSC) neural induction medium that can induce human PSCs into primitive neural stem cells (NSCs) in 7 days, obviating the need for time-consuming, laborious embryoid body generation or rosette picking. This method of primitive NSC derivation sets the stage for the scalable production of clinically relevant neural cells for cell therapy applications in good manufacturing practice conditions.

  15. Extremely Low-Frequency Electromagnetic Fields Promote In Vitro Neuronal Differentiation and Neurite Outgrowth of Embryonic Neural Stem Cells via Up-Regulating TRPC1

    Science.gov (United States)

    Ma, Qinlong; Chen, Chunhai; Deng, Ping; Zhu, Gang; Lin, Min; Zhang, Lei; Xu, Shangcheng; He, Mindi; Lu, Yonghui; Duan, Weixia; Pi, Huifeng; Cao, Zhengwang; Pei, Liping; Li, Min; Liu, Chuan; Zhang, Yanwen; Zhong, Min; Zhou, Zhou; Yu, Zhengping

    2016-01-01

    Exposure to extremely low-frequency electromagnetic fields (ELF-EMFs) can enhance hippocampal neurogenesis in adult mice. However, little is focused on the effects of ELF-EMFs on embryonic neurogenesis. Here, we studied the potential effects of ELF-EMFs on embryonic neural stem cells (eNSCs). We exposed eNSCs to ELF-EMF (50 Hz, 1 mT) for 1, 2, and 3 days with 4 hours per day. We found that eNSC proliferation and maintenance were significantly enhanced after ELF-EMF exposure in proliferation medium. ELF-EMF exposure increased the ratio of differentiated neurons and promoted the neurite outgrowth of eNSC-derived neurons without influencing astrocyes differentiation and the cell apoptosis. In addition, the expression of the proneural genes, NeuroD and Ngn1, which are crucial for neuronal differentiation and neurite outgrowth, was increased after ELF-EMF exposure. Moreover, the expression of transient receptor potential canonical 1 (TRPC1) was significantly up-regulated accompanied by increased the peak amplitude of intracellular calcium level induced by ELF-EMF. Furthermore, silencing TRPC1 expression eliminated the up-regulation of the proneural genes and the promotion of neuronal differentiation and neurite outgrowth induced by ELF-EMF. These results suggest that ELF-EMF exposure promotes the neuronal differentiation and neurite outgrowth of eNSCs via up-regulation the expression of TRPC1 and proneural genes (NeuroD and Ngn1). These findings also provide new insights in understanding the effects of ELF-EMF exposure on embryonic brain development. PMID:26950212

  16. Inhibition of Myeloperoxidase by N-Acetyl Lysyltyrosylcysteine Amide Reduces Oxidative Stress-Mediated Inflammation, Neuronal Damage, and Neural Stem Cell Injury in a Murine Model of Stroke.

    Science.gov (United States)

    Yu, Guoliang; Liang, Ye; Zheng, Shikan; Zhang, Hao

    2018-02-01

    Recent studies suggest that myeloperoxidase (MPO)-dependent oxidative stress plays a significant role in brain injury in stroke patients. We previously showed that N -acetyl lysyltyrosylcysteine amide (KYC), a novel MPO inhibitor, significantly decreased infarct size, blood-brain barrier leakage, infiltration of myeloid cells, loss of neurons, and apoptosis in the brains of middle cerebral artery occlusion (MCAO) mice. Inhibition of MPO also noticeably reduced neurologic severity scores of MCAO mice. Thus, our data support the idea that MPO-dependent oxidative stress plays a detrimental role in tissue injury in ischemic stroke. However, the mechanisms of MPO-induced injury in stroke are still largely unknown. Here, we present new evidence showing that KYC treatment greatly reduced inflammation by decreasing the number of proinflammatory M1 microglial cells and N1 neutrophils in the brains of MCAO mice. KYC also markedly reduced the expression of high-mobility group box 1, receptor for advanced glycation end products, and nuclear factor- κ B in the brains of MCAO mice. Both neurons and neural stem cells (NSCs) were oxidatively injured by MPO-dependent oxidative stress in MCAO mice. Inhibiting MPO-dependent oxidative stress with KYC significantly reduced oxidative injury and apoptosis in neurons and NSCs. KYC treatment also protected transplanted exogenous NSCs in the brains of MCAO mice. Thus, our studies suggest that MPO-dependent oxidative stress directly injures brain tissues by oxidizing neurons and NSCs and increasing inflammation during stroke. Inhibition of MPO activity with KYC preserves neuronal function and helps the brain recover from injury after stroke. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  17. hESC Differentiation toward an Autonomic Neuronal Cell Fate Depends on Distinct Cues from the Co-Patterning Vasculature

    Directory of Open Access Journals (Sweden)

    Lisette M. Acevedo

    2015-06-01

    Full Text Available To gain insight into the cellular and molecular cues that promote neurovascular co-patterning at the earliest stages of human embryogenesis, we developed a human embryonic stem cell model to mimic the developing epiblast. Contact of ectoderm-derived neural cells with mesoderm-derived vasculature is initiated via the neural crest (NC, not the neural tube (NT. Neurovascular co-patterning then ensues with specification of NC toward an autonomic fate requiring vascular endothelial cell (EC-secreted nitric oxide (NO and direct contact with vascular smooth muscle cells (VSMCs via T-cadherin-mediated homotypic interactions. Once a neurovascular template has been established, NT-derived central neurons then align themselves with the vasculature. Our findings reveal that, in early human development, the autonomic nervous system forms in response to distinct molecular cues from VSMCs and ECs, providing a model for how other developing lineages might coordinate their co-patterning.

  18. IGF-1 Promotes Brn-4 Expression and Neuronal Differentiation of Neural Stem Cells via the PI3K/Akt Pathway

    Science.gov (United States)

    Zhang, Xinhua; Zhang, Lei; Cheng, Xiang; Guo, Yuxiu; Sun, Xiaohui; Chen, Geng; Li, Haoming; Li, Pengcheng; Lu, Xiaohui; Tian, Meiling; Qin, Jianbing; Zhou, Hui; Jin, Guohua

    2014-01-01

    Our previous studies indicated that transcription factor Brn-4 is upregulated in the surgically denervated hippocampus in vivo, promoting neuronal differentiation of hippocampal neural stem cells (NSCs) in vitro. The molecules mediating Brn-4 upregulation in the denervated hippocampus remain unknown. In this study we examined the levels of insulin-like growth factor-1 (IGF-1) in hippocampus following denervation. Surgical denervation led to a significant increase in IGF-1 expression in vivo. We also report that IGF-1 treatment on NSCs in vitro led to a marked acceleration of Brn-4 expression and cell differentiation down neuronal pathways. The promotion effects were blocked by PI3K-specific inhibitor (LY294002), but not MAPK inhibitor (PD98059); levels of phospho-Akt were increased by IGF-1 treatment. In addition, inhibition of IGF-1 receptor (AG1024) and mTOR (rapamycin) both attenuated the increased expression of Brn-4 induced by IGF-1. Together, the results demonstrated that upregulation of IGF-1 induced by hippocampal denervation injury leads to activation of the PI3K/Akt signaling pathway, which in turn gives rise to upregulation of the Brn-4 and subsequent stem cell differentiation down neuronal pathways. PMID:25474202

  19. IGF-1 promotes Brn-4 expression and neuronal differentiation of neural stem cells via the PI3K/Akt pathway.

    Directory of Open Access Journals (Sweden)

    Xinhua Zhang

    Full Text Available Our previous studies indicated that transcription factor Brn-4 is upregulated in the surgically denervated hippocampus in vivo, promoting neuronal differentiation of hippocampal neural stem cells (NSCs in vitro. The molecules mediating Brn-4 upregulation in the denervated hippocampus remain unknown. In this study we examined the levels of insulin-like growth factor-1 (IGF-1 in hippocampus following denervation. Surgical denervation led to a significant increase in IGF-1 expression in vivo. We also report that IGF-1 treatment on NSCs in vitro led to a marked acceleration of Brn-4 expression and cell differentiation down neuronal pathways. The promotion effects were blocked by PI3K-specific inhibitor (LY294002, but not MAPK inhibitor (PD98059; levels of phospho-Akt were increased by IGF-1 treatment. In addition, inhibition of IGF-1 receptor (AG1024 and mTOR (rapamycin both attenuated the increased expression of Brn-4 induced by IGF-1. Together, the results demonstrated that upregulation of IGF-1 induced by hippocampal denervation injury leads to activation of the PI3K/Akt signaling pathway, which in turn gives rise to upregulation of the Brn-4 and subsequent stem cell differentiation down neuronal pathways.

  20. SOX1 links the function of neural patterning and Notch signalling in the ventral spinal cord during the neuron-glial fate switch

    Energy Technology Data Exchange (ETDEWEB)

    Genethliou, Nicholas; Panayiotou, Elena [The Cyprus Institute of Neurology and Genetics, Airport Avenue, No. 6, Agios Dometios, 2370 Nicosia (Cyprus); Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 1678 Nicosia (Cyprus); Panayi, Helen; Orford, Michael; Mean, Richard; Lapathitis, George; Gill, Herman; Raoof, Sahir [The Cyprus Institute of Neurology and Genetics, Airport Avenue, No. 6, Agios Dometios, 2370 Nicosia (Cyprus); Gasperi, Rita De; Elder, Gregory [James J. Peters VA Medical Center, Research and Development (3F22), 130 West Kingsbridge Road, Bronx, NY 10468 (United States); Kessaris, Nicoletta; Richardson, William D. [Wolfson Institute for Biomedical Research and Research Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT (United Kingdom); Malas, Stavros, E-mail: smalas@cing.ac.cy [The Cyprus Institute of Neurology and Genetics, Airport Avenue, No. 6, Agios Dometios, 2370 Nicosia (Cyprus); Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 1678 Nicosia (Cyprus)

    2009-12-25

    During neural development the transition from neurogenesis to gliogenesis, known as the neuron-glial ({Nu}/G) fate switch, requires the coordinated function of patterning factors, pro-glial factors and Notch signalling. How this process is coordinated in the embryonic spinal cord is poorly understood. Here, we demonstrate that during the N/G fate switch in the ventral spinal cord (vSC) SOX1 links the function of neural patterning and Notch signalling. We show that, SOX1 expression in the vSC is regulated by PAX6, NKX2.2 and Notch signalling in a domain-specific manner. We further show that SOX1 regulates the expression of Hes1 and that loss of Sox1 leads to enhanced production of oligodendrocyte precursors from the pMN. Finally, we show that Notch signalling functions upstream of SOX1 during this fate switch and is independently required for the acquisition of the glial fate perse by regulating Nuclear Factor I A expression in a PAX6/SOX1/HES1/HES5-independent manner. These data integrate functional roles of neural patterning factors, Notch signalling and SOX1 during gliogenesis.

  1. p75 neurotrophin receptor positive dental pulp stem cells: new hope for patients with neurodegenerative disease and neural injury.

    Science.gov (United States)

    Dai, Jie-wen; Yuan, Hao; Shen, Shun-yao; Lu, Jing-ting; Zhu, Xiao-fang; Yang, Tong; Zhang, Jiang-fei; Shen, Guo-fang

    2013-08-01

    Neurodegenerative diseases and neural injury are 2 of the most feared disorders that afflict humankind by leading to permanent paralysis and loss of sensation. Cell based treatment for these diseases had gained special interest in recent years. Previous studies showed that dental pulp stem cells (DPSCs) could differentiate toward functionally active neurons both in vitro and in vivo, and could promote neuranagenesis through both cell-autonomous and paracrine neuroregenerative activities. Some of these neuroregenerative activities were unique to tooth-derived stem cells and superior to bone marrow stromal cells. However, DPSCs used in most of these studies were mixed and unfractionated dental pulp cells that contain several types of cells, and most were fibroblast cells while just contain a small portion of DPSCs. Thus, there might be weaker ability of neuranagenesis and more side effects from the fibroblast cells that cannot differentiate into neural cells. p75 neurotrophin receptor (p75NTR) positive DPSCs subpopulation was derived from migrating cranial neural crest cells and had been isolated from DPSCs, which had capacity of differentiation into neurons and repairing neural system. In this article, we hypothesize that p75NTR positive DPSCs simultaneously have greater propensity for neuronal differentiation and fewer side effects from fibroblast, and in vivo transptantation of autologous p75NTR positive DPSCs is a novel method for neuranagenesis. This will bring great hope to patients with neurodegenerative disease and neural injury.

  2. Design Guidelines for Low Crested Structures

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Lamberti, Alberto

    2004-01-01

    1998-2002. The Guidelines comprise engineering aspects related to morphological impact and structure stability, biological aspects related to ecological impact, and socio-economical aspects related to the implementation of LCS-schemes. The guidelines are limited to submerged and regularly overtopped......The paper presents an overview of the design guidelines for low crested structures (LCS's) to be applied in coastal protection schemes. The design guidelines are formulated as a part of the research project: Environmental Design of Low Crested Coastal Defence Structures (DELOS) within the EC 5FP...

  3. Specific Intensity Direct Current (DC) Electric Field Improves Neural Stem Cell Migration and Enhances Differentiation towards βIII-Tubulin+ Neurons

    Science.gov (United States)

    Zhao, Huiping; Steiger, Amanda; Nohner, Mitch; Ye, Hui

    2015-01-01

    Control of stem cell migration and differentiation is vital for efficient stem cell therapy. Literature reporting electric field–guided migration and differentiation is emerging. However, it is unknown if a field that causes cell migration is also capable of guiding cell differentiation—and the mechanisms for these processes remain unclear. Here, we report that a 115 V/m direct current (DC) electric field can induce directional migration of neural precursor cells (NPCs). Whole cell patching revealed that the cell membrane depolarized in the electric field, and buffering of extracellular calcium via EGTA prevented cell migration under these conditions. Immunocytochemical staining indicated that the same electric intensity could also be used to enhance differentiation and increase the percentage of cell differentiation into neurons, but not astrocytes and oligodendrocytes. The results indicate that DC electric field of this specific intensity is capable of promoting cell directional migration and orchestrating functional differentiation, suggestively mediated by calcium influx during DC field exposure. PMID:26068466

  4. Activation of different neural precursor populations in the adult hippocampus: does this lead to new neurons with discrete functions?

    Science.gov (United States)

    Jhaveri, Dhanisha J; Taylor, Chanel J; Bartlett, Perry F

    2012-07-01

    Resident populations of stem and precursor cells drive the production of new neurons in the adult hippocampus. Recent discoveries have highlighted that a large proportion of these precursor cells are in fact quiescent and can be activated by distinct neuronal activity under both normal physiological and pathological conditions. As growing evidence indicates that newborn neurons play a critical role in cognitive functions such as learning and memory and in mood regulation, it is paramount that we obtain a better understanding of how the reservoirs of stem and precursor cells are maintained and activated. In this review, we critically examine the roles of key molecular mechanisms that have been shown to regulate hippocampal precursor cells, especially their activation. We believe that understanding the mechanistic details of the activity-driven regulation of precursor cells will equip us with the ability to develop tailored strategies to trigger the generation of new neurons, thereby improving the functional outcomes in various neurological and psychiatric conditions. Copyright © 2012 Wiley Periodicals, Inc.

  5. A neural network for the Bragg synthetic curves recognition.; Una red neuronal para el reconocimiento de curvas de Bragg sinteticas

    Energy Technology Data Exchange (ETDEWEB)

    Reynoso V, M R; Vega C, J J; Fernandez A, J; Belmont M, E; Policroniades R, R; Moreno B, E [Instituto Nacional de Investigaciones Nucleares, Salazar, Edo. de Mexico. (Mexico)

    1997-12-31

    A ionization chamber was employed named Bragg curve spectroscopy. The Bragg peak amplitude is a monotone growing function of Z, which permits to identify elements through their measurement. A better technique for this measurement is to improve the use of neural networks with the purpose of the identification of the Bragg curve. (Author).

  6. Bone Marrow-Derived, Neural-Like Cells Have the Characteristics of Neurons to Protect the Peripheral Nerve in Microenvironment

    Directory of Open Access Journals (Sweden)

    Shi-lei Guo

    2015-01-01

    Full Text Available Effective repair of peripheral nerve defects is difficult because of the slow growth of new axonal growth. We propose that “neural-like cells” may be useful for the protection of peripheral nerve destructions. Such cells should prolong the time for the disintegration of spinal nerves, reduce lesions, and improve recovery. But the mechanism of neural-like cells in the peripheral nerve is still unclear. In this study, bone marrow-derived neural-like cells were used as seed cells. The cells were injected into the distal end of severed rabbit peripheral nerves that were no longer integrated with the central nervous system. Electromyography (EMG, immunohistochemistry, and transmission electron microscopy (TEM were employed to analyze the development of the cells in the peripheral nerve environment. The CMAP amplitude appeared during the 5th week following surgery, at which time morphological characteristics of myelinated nerve fiber formation were observed. Bone marrow-derived neural-like cells could protect the disintegration and destruction of the injured peripheral nerve.

  7. Transplantation of Xenopus laevis tissues to determine the ability of motor neurons to acquire a novel target.

    Directory of Open Access Journals (Sweden)

    Karen L Elliott

    Full Text Available The evolutionary origin of novelties is a central problem in biology. At a cellular level this requires, for example, molecularly resolving how brainstem motor neurons change their innervation target from muscle fibers (branchial motor neurons to neural crest-derived ganglia (visceral motor neurons or ear-derived hair cells (inner ear and lateral line efferent neurons. Transplantation of various tissues into the path of motor neuron axons could determine the ability of any motor neuron to innervate a novel target. Several tissues that receive direct, indirect, or no motor innervation were transplanted into the path of different motor neuron populations in Xenopus laevis embryos. Ears, somites, hearts, and lungs were transplanted to the orbit, replacing the eye. Jaw and eye muscle were transplanted to the trunk, replacing a somite. Applications of lipophilic dyes and immunohistochemistry to reveal motor neuron axon terminals were used. The ear, but not somite-derived muscle, heart, or liver, received motor neuron axons via the oculomotor or trochlear nerves. Somite-derived muscle tissue was innervated, likely by the hypoglossal nerve, when replacing the ear. In contrast to our previous report on ear innervation by spinal motor neurons, none of the tissues (eye or jaw muscle was innervated when transplanted to the trunk. Taken together, these results suggest that there is some plasticity inherent to motor innervation, but not every motor neuron can become an efferent to any target that normally receives motor input. The only tissue among our samples that can be innervated by all motor neurons tested is the ear. We suggest some possible, testable molecular suggestions for this apparent uniqueness.

  8. Sagittal crest formation in great apes and gibbons

    OpenAIRE

    Balolia, K. L.; Soligo, C.; Wood, B.

    2017-01-01

    The frequency of sagittal crest expression and patterns of sagittal crest growth and development have been documented in hominoids, including some extinct hominin taxa, and the more frequent expression of the sagittal crest in males has been traditionally linked with the need for larger-bodied individuals to have enough attachment area for the temporalis muscle. In the present study, we investigate sagittal cresting in a dentally mature sample of four hominoid taxa (Pan troglodytes schweinfur...

  9. Diversification of crested wheatgrass stands in Utah

    Science.gov (United States)

    April Hulet

    2009-01-01

    Agropyron cristatum [L.] Gaertner (crested wheatgrass) continues to be seeded on burned wildlands. Effective control methods need to be developed to convert these seedings to more diverse native plant communities. This research was designed to determine effective ways to control A. cristatum and establish native species while...

  10. Dimethyl Fumarate Protects Neural Stem/Progenitor Cells and Neurons from Oxidative Damage through Nrf2-ERK1/2 MAPK Pathway

    Directory of Open Access Journals (Sweden)

    Qin Wang

    2015-06-01

    Full Text Available Multiple sclerosis (MS is the most common multifocal inflammatory demyelinating disease of the central nervous system (CNS. Due to the progressive neurodegenerative nature of MS, developing treatments that exhibit direct neuroprotective effects are needed. Tecfidera™ (BG-12 is an oral formulation of the fumaric acid esters (FAE, containing the active metabolite dimethyl fumarate (DMF. Although BG-12 showed remarkable efficacy in lowering relapse rates in clinical trials, its mechanism of action in MS is not yet well understood. In this study, we reported the potential neuroprotective effects of dimethyl fumarate (DMF on mouse and rat neural stem/progenitor cells (NPCs and neurons. We found that DMF increased the frequency of the multipotent neurospheres and the survival of NPCs following oxidative stress with hydrogen peroxide (H2O2 treatment. In addition, utilizing the reactive oxygen species (ROS assay, we showed that DMF reduced ROS production induced by H2O2. DMF also decreased oxidative stress-induced apoptosis. Using motor neuron survival assay, DMF significantly promoted survival of motor neurons under oxidative stress. We further analyzed the expression of oxidative stress-induced genes in the NPC cultures and showed that DMF increased the expression of transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2 at both levels of RNA and protein. Furthermore, we demonstrated the involvement of Nrf2-ERK1/2 MAPK pathway in DMF-mediated neuroprotection. Finally, we utilized SuperArray gene screen technology to identify additional anti-oxidative stress genes (Gstp1, Sod2, Nqo1, Srxn1, Fth1. Our data suggests that analysis of anti-oxidative stress mechanisms may yield further insights into new targets for treatment of multiple sclerosis (MS.

  11. MODELADO DEL PRECIO SPOT DE LA ELECTRICIDAD EN BRASIL USANDO UNA RED NEURONAL AUTORREGRESIVA ELECTRICITY SPOT PRICE MODELLING IN BRASIL USING AN AUTOREGRESSIVE NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    Juan D Velásquez

    2008-12-01

    Full Text Available Una red neuronal autorregresiva es estimada para el precio mensual brasileño de corto plazo de la electricidad, la cual describe mejor la dinámica de los precios que un modelo lineal autorregresivo y que un perceptrón multicapa clásico que usan las mismas entradas y neuronas en la capa oculta. El modelo propuesto es especificado usando un procedimiento estadístico basado en el contraste del radio de verosimilitud. El modelo pasa una batería de pruebas de diagnóstico. El procedimiento de especificación propuesto permite seleccionar el número de unidades en la capa oculta y las entradas a la red neuronal, usando pruebas estadísticas que tienen en cuenta la cantidad de los datos y el ajuste del modelo a la serie de precios. La especificación del modelo final demuestra que el precio para el próximo mes es una función no lineal del precio actual, de la energía afluente actual y de la energía almacenada en el embalse equivalente en el mes actual y dos meses atrás.An autoregressive neural network model is estimated for the monthly Brazilian electricity spot price, which describes the prices dynamics better than a linear autoregressive model and a classical multilayer perceptron using the same input and neurons in the hidden layer. The proposed model is specified using a statistical procedure based on a likelihood ratio test. The model passes a battery of diagnostic tests. The proposed specification procedure allows us to select the number of units in hidden layer and the inputs to the neural network based on statistical tests, taking into account the number of data and the model fitting to the price time series. The final model specification demonstrates that the price for the next month is a nonlinear function of the current price, the current energy inflow, and the energy saved in the equivalent reservoir in the current month and two months ago.

  12. Una red neuronal binaria para la identificación de mecanismos isomorfos. // A binary Neural network for identifying isomorphic mechanisms.

    Directory of Open Access Journals (Sweden)

    G. Galán Marín

    2002-05-01

    Full Text Available Un problema de importancia primordial en el diseño mecánico es identificar los mecanismos isomorfos, puesto que los isomorfismos nodetectados generan soluciones duplicadas y por tanto suponen un esfuerzo innecesario en el proceso de diseño. Desde 1960, una grancantidad de métodos han sido propuestos para la detección de mecanismos isomorfos. Sin embargo, diversos trabajos han mostrado queaunque pueden existir algoritmos eficaces para casos particulares, en el caso general los métodos tradicionales para la detección deisomorfismos en cadenas cinemáticas no proporcionan usualmente soluciones eficientes para este problema, que ha sido clasificado comoNP-duro. Un eficaz método alternativo para la resolución de problemas NP-duros ha surgido recientemente con las redes neuronales. Eneste trabajo proponemos un nuevo modelo de red neuronal binaria diseñado para la resolución del problema de detección de mecanismosisomorfos. El modelo propuesto se halla basado en unas dinámicas discretas que garantizan una rápida y correcta convergencia de la redhacia soluciones aceptables. Las simulaciones numéricas muestran en los mecanismos analizados que la red neuronal propuestaproporciona excelentes resultados, mostrándose además muy superior a la red de Hopfield continua tradicional en lo que respecta al tiempode computación y en la facilidad de su implementación.Palabras claves: Mecanismos isomorfos, síntesis de mecanismos, isomorfismo de grafos, red neuronal binaria,redes de Hopfield.____________________________________________________________________________AbstractAn important step in the kinematic mechanism synthesis process is to identify graph isomorphism whilegenerating new mechanisms. Undetected isomorphisms result in duplicate solutions and unnecessary effort.Since 1960, a lot of methods have been proposed for the graph isomorphism identification. Some authors haveconcluded that, in the general case, the traditional methods of

  13. Diversity in the Neural Circuitry of Cold Sensing Revealed by Genetic Axonal Labeling of Transient Receptor Potential Melastatin 8 Neurons

    OpenAIRE

    Takashima, Yoshio; Daniels, Richard L.; Knowlton, Wendy; Teng, James; Liman, Emily R.; McKemy, David D.

    2007-01-01

    Sensory nerves detect an extensive array of somatosensory stimuli, including environmental temperatures. Despite activating only a small cohort of sensory neurons, cold temperatures generate a variety of distinct sensations that range from pleasantly cool to painfully aching, prickling, and burning. Psychophysical and functional data show that cold responses are mediated by both C- and Aδ-fibers with separate peripheral receptive zones, each of which likely provides one or more of these disti...

  14. Expression of neuronal antigens and related ventral and dorsal proteins in the normal spinal cord and a surgically induced open neural tube defect of the spine in chick embryos: an immunohistochemical study.

    Science.gov (United States)

    Lee, Do-Hun; Phi, Ji Hoon; Chung, You-Nam; Lee, Yun-Jin; Kim, Seung-Ki; Cho, Byung-Kyu; Kim, Dong Won; Park, Moon-Sik; Wang, Kyu-Chang

    2010-05-01

    The aims of this study were to elucidate the processes of neuronal differentiation and ventrodorsal patterning in the spinal cord of the chick embryo from embryonic day (E) 3 to E17 and to study the effect of a prenatal spinal open neural tube defect (ONTD) on these processes. Expression patterns of neuronal antigens (neuronal nuclear antigen, neurofilament-associated protein (NAP), and synaptophysin) and related ventral markers [sonic hedgehog, paired box gene (PAX)6, and islet-1], and dorsal markers (bone morphogenetic protein, Notch homolog 1, and PAX7) were investigated in the normal spinal cord and in a surgically induced spinal ONTD in chick embryos. Four normal and ONTD chick embryos were used for each antigen group. There were no differences in the expression of neuronal and ventrodorsal markers between the control and ONTD groups. NAP and synaptophysin were useful for identifying dorsal structures in the distorted anatomy of the ONTD chicks.

  15. Overflow Characteristic of Cylindrical Shape Crest Weirs Over Horizontal Bed

    OpenAIRE

    Emad4 AbdulGabbar

    2013-01-01

    The most common types of weirs are the broad-crested weir, the sharp-crested weir, the circular crested weir and the ogee crested weir. Advantages of the cylindrical weir shape include the stable overflow pattern, the ease to pass floating debris, the simplicity of design compared to ogee crest design and the associated lower costs. In present study, it was investigated the overflow characteristics of circular weirs in laboratory for various cylinder radii of three sizes (11.4, 9.0, 6.3 cm), ...

  16. Potential Roles of Dental Pulp Stem Cells in Neural Regeneration and Repair

    Science.gov (United States)

    Luo, Lihua; Wang, Xiaoyan; Key, Brian; Lee, Bae Hoon

    2018-01-01

    This review summarizes current advances in dental pulp stem cells (DPSCs) and their potential applications in the nervous diseases. Injured adult mammalian nervous system has a limited regenerative capacity due to an insufficient pool of precursor cells in both central and peripheral nervous systems. Nerve growth is also constrained by inhibitory factors (associated with central myelin) and barrier tissues (glial scarring). Stem cells, possessing the capacity of self-renewal and multicellular differentiation, promise new therapeutic strategies for overcoming these impediments to neural regeneration. Dental pulp stem cells (DPSCs) derive from a cranial neural crest lineage, retain a remarkable potential for neuronal differentiation, and additionally express multiple factors that are suitable for neuronal and axonal regeneration. DPSCs can also express immunomodulatory factors that stimulate formation of blood vessels and enhance regeneration and repair of injured nerve. These unique properties together with their ready accessibility make DPSCs an attractive cell source for tissue engineering in injured and diseased nervous systems. In this review, we interrogate the neuronal differentiation potential as well as the neuroprotective, neurotrophic, angiogenic, and immunomodulatory properties of DPSCs and its application in the injured nervous system. Taken together, DPSCs are an ideal stem cell resource for therapeutic approaches to neural repair and regeneration in nerve diseases. PMID:29853908

  17. The effect of magnetic nanoparticles on neuronal differentiation of induced pluripotent stem cell-derived neural precursors

    Czech Academy of Sciences Publication Activity Database

    Jiráková, Klára; Šeneklová, Monika; Jirák, D.; Turnovcová, Karolína; Vosmanská, M.; Babič, Michal; Horák, Daniel; Veverka, Pavel; Jendelová, Pavla

    2016-01-01

    Roč. 11, č. 2016 (2016), s. 6267-6281 E-ISSN 1178-2013 R&D Projects: GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) 7F14057 Institutional support: RVO:68378041 ; RVO:61389013 ; RVO:68378271 Keywords : neural precursors * magnetic resonance imaging * cell differentiation Subject RIV: FH - Neurology; EB - Genetics ; Molecular Biology (FGU-C); CD - Macromolecular Chemistry (UMCH-V) Impact factor: 4.300, year: 2016

  18. Fast calcium transients translate the distribution and conduction of neural activity in different regions of a single sensory neuron.

    Science.gov (United States)

    Purali, Nuhan

    2017-09-01

    In the present study, cytosolic calcium concentration changes were recorded in response to various forms of excitations, using the fluorescent calcium indicator dye OG-BAPTA1 together with the current or voltage clamp methods in stretch receptor neurons of crayfish. A single action potential evoked a rise in the resting calcium level in the axon and axonal hillock, whereas an impulse train or a large saturating current injection would be required to evoke an equivalent response in the dendrite region. Under voltage clamp conditions, amplitude differences between axon and dendrite responses vanished completely. The fast activation time and the modulation of the response by extracellular calcium concentration changes indicated that the evoked calcium transients might be mediated by calcium entry into the cytosol through a voltage-gated calcium channel. The decay of the responses was slow and sensitive to extracellular sodium and calcium concentrations as well as exposure to 1-10 mM NiCl 2 and 10-500 µM lanthanum. Thus, a sodium calcium exchanger and a calcium ATPase might be responsible for calcium extrusion from the cytosol. Present results indicate that the calcium indicator OG-BAPTA1 might be an efficient but indirect way of monitoring regional membrane potential differences in a single neuron.

  19. Neural input is critical for arcuate hypothalamic neurons to mount intracellular signaling responses to systemic insulin and deoxyglucose challenges in male rats: implications for communication within feeding and metabolic control networks.

    Science.gov (United States)

    Khan, Arshad M; Walker, Ellen M; Dominguez, Nicole; Watts, Alan G

    2014-02-01

    The hypothalamic arcuate nucleus (ARH) controls rat feeding behavior in part through peptidergic neurons projecting to the hypothalamic paraventricular nucleus (PVH). Hindbrain catecholaminergic (CA) neurons innervate both the PVH and ARH, and ablation of CA afferents to PVH neuroendocrine neurons prevents them from mounting cellular responses to systemic metabolic challenges such as insulin or 2-deoxy-d-glucose (2-DG). Here, we asked whether ablating CA afferents also limits their ARH responses to the same challenges or alters ARH connectivity with the PVH. We examined ARH neurons for three features: (1) CA afferents, visualized by dopamine-β-hydroxylase (DBH)- immunoreactivity; (2) activation by systemic metabolic challenge, as measured by increased numbers of neurons immunoreactive (ir) for phosphorylated ERK1/2 (pERK1/2); and (3) density of PVH-targeted axons immunoreactive for the feeding control peptides Agouti-related peptide and α-melanocyte-stimulating hormone (αMSH). Loss of PVH DBH immunoreactivity resulted in concomitant ARH reductions of DBH-ir and pERK1/2-ir neurons in the medial ARH, where AgRP neurons are enriched. In contrast, pERK1/2 immunoreactivity after systemic metabolic challenge was absent in αMSH-ir ARH neurons. Yet surprisingly, axonal αMSH immunoreactivity in the PVH was markedly increased in CA-ablated animals. These results indicate that (1) intrinsic ARH activity is insufficient to recruit pERK1/2-ir ARH neurons during systemic metabolic challenges (rather, hindbrain-originating CA neurons are required); and (2) rats may compensate for a loss of CA innervation to the ARH and PVH by increased expression of αMSH. These findings highlight the existence of a hierarchical dependence for ARH responses to neural and humoral signals that influence feeding behavior and metabolism.

  20. Structural Stability Of Detached Low Crested Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Kramer, Morten; Lamberti, Alberto

    2006-01-01

    The aim of the paper is to describe hydraulic stability of rock-armoured low-crested structures on the basis of new experimental tests and prototype observations. Rock armour stability results from earlier model tests under non-depth-limited long-crested head-on waves are reviewed. Results from new...... determining armour stone size in shallow water conditions is given together with a rule of thumb for the required stone size in depth-limited design waves. Rock toe stability is discussed on the basis of prototype experience, hard bottom 2-D tests in depth-limited waves and an existing hydraulic stability...... formula. Toe damage predicted by the formula is in agreement with experimental results. In field sites, damage at the toe induced by scour or by sinking is observed and the volume of the berm is often insufficient to avoid regressive erosion of the armour layer. Stone sinking and settlement in selected...

  1. Perfluorooctane sulfonate induces neuronal and oligodendrocytic differentiation in neural stem cells and alters the expression of PPARγ in vitro and in vivo

    International Nuclear Information System (INIS)

    Wan Ibrahim, Wan Norhamidah; Tofighi, Roshan; Onishchenko, Natalia; Rebellato, Paola; Bose, Raj; Uhlén, Per; Ceccatelli, Sandra

    2013-01-01

    Perfluorinated compounds are ubiquitous chemicals of major concern for their potential adverse effects on the human population. We have used primary rat embryonic neural stem cells (NSCs) to study the effects of perfluorooctane sulfonate (PFOS) on the process of NSC spontaneous differentiation. Upon removal of basic fibroblast growth factor, NSCs were exposed to nanomolar concentrations of PFOS for 48 h, and then allowed to differentiate for additional 5 days. Exposure to 25 or 50 nM concentration resulted in a lower number of proliferating cells and a higher number of neurite-bearing TuJ1-positive cells, indicating an increase in neuronal differentiation. Exposure to 50 nM also significantly increased the number of CNPase-positive cells, pointing to facilitation of oligodendrocytic differentiation. PPAR genes have been shown to be involved in PFOS toxicity. By q-PCR we detected an upregulation of PPARγ with no changes in PPARα or PPARδ genes. One of the downstream targets of PPARs, the mitochondrial uncoupling protein 2 (UCP2) was also upregulated. The number of TuJ1- and CNPase-positive cells increased after exposure to PPARγ agonist rosiglitazone (RGZ, 3 μM) and decreased after pre-incubation with the PPARγ antagonist GW9662 (5 μM). RGZ also upregulated the expression of PPARγ and UCP2 genes. Meanwhile GW9662 abolished the UCP2 upregulation and decreased Ca 2+ activity induced by PFOS. Interestingly, a significantly higher expression of PPARγ and UCP3 genes was also detected in mouse neonatal brain after prenatal exposure to PFOS. These data suggest that PPARγ plays a role in the alteration of spontaneous differentiation of NSCs induced by nanomolar concentrations of PFOS. - Highlights: • PFOS decreases proliferation of neural stem cells (NSCs). • PFOS induces neuronal and oligodendrocytic differentiation in NSCs. • PFOS alters expression of PPARγ and UCP2 in vitro. • PFOS alters expression of PPARγ and UCP3 in vivo. • Block of PPARγ by

  2. Perfluorooctane sulfonate induces neuronal and oligodendrocytic differentiation in neural stem cells and alters the expression of PPARγ in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wan Ibrahim, Wan Norhamidah, E-mail: hamidah@science.upm.edu.my [Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm (Sweden); Tofighi, Roshan, E-mail: Roshan.Tofighi@ki.se [Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm (Sweden); Onishchenko, Natalia, E-mail: Natalia.Onishchenko@ki.se [Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm (Sweden); Rebellato, Paola, E-mail: Paola.Rebellato@ki.se [Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm (Sweden); Bose, Raj, E-mail: Raj.Bose@ki.se [Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm (Sweden); Uhlén, Per, E-mail: Per.Uhlen@ki.se [Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm (Sweden); Ceccatelli, Sandra, E-mail: Sandra.Ceccatelli@ki.se [Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm (Sweden)

    2013-05-15

    Perfluorinated compounds are ubiquitous chemicals of major concern for their potential adverse effects on the human population. We have used primary rat embryonic neural stem cells (NSCs) to study the effects of perfluorooctane sulfonate (PFOS) on the process of NSC spontaneous differentiation. Upon removal of basic fibroblast growth factor, NSCs were exposed to nanomolar concentrations of PFOS for 48 h, and then allowed to differentiate for additional 5 days. Exposure to 25 or 50 nM concentration resulted in a lower number of proliferating cells and a higher number of neurite-bearing TuJ1-positive cells, indicating an increase in neuronal differentiation. Exposure to 50 nM also significantly increased the number of CNPase-positive cells, pointing to facilitation of oligodendrocytic differentiation. PPAR genes have been shown to be involved in PFOS toxicity. By q-PCR we detected an upregulation of PPARγ with no changes in PPARα or PPARδ genes. One of the downstream targets of PPARs, the mitochondrial uncoupling protein 2 (UCP2) was also upregulated. The number of TuJ1- and CNPase-positive cells increased after exposure to PPARγ agonist rosiglitazone (RGZ, 3 μM) and decreased after pre-incubation with the PPARγ antagonist GW9662 (5 μM). RGZ also upregulated the expression of PPARγ and UCP2 genes. Meanwhile GW9662 abolished the UCP2 upregulation and decreased Ca{sup 2+} activity induced by PFOS. Interestingly, a significantly higher expression of PPARγ and UCP3 genes was also detected in mouse neonatal brain after prenatal exposure to PFOS. These data suggest that PPARγ plays a role in the alteration of spontaneous differentiation of NSCs induced by nanomolar concentrations of PFOS. - Highlights: • PFOS decreases proliferation of neural stem cells (NSCs). • PFOS induces neuronal and oligodendrocytic differentiation in NSCs. • PFOS alters expression of PPARγ and UCP2 in vitro. • PFOS alters expression of PPARγ and UCP3 in vivo. • Block of PPAR

  3. Seizure induces activation of multiple subtypes of neural progenitors and growth factors in hippocampus with neuronal maturation confined to dentate gyrus

    Energy Technology Data Exchange (ETDEWEB)

    Indulekha, Chandrasekharan L.; Sanalkumar, Rajendran [Neuro Stem Cell Biology Laboratory, Department of Neurobiology, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, Kerala 695 014 (India); Thekkuveettil, Anoopkumar [Molecular Medicine, Biomedical Technology Wing, Sree Chitra Thirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala (India); James, Jackson, E-mail: jjames@rgcb.res.in [Neuro Stem Cell Biology Laboratory, Department of Neurobiology, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, Kerala 695 014 (India)

    2010-03-19

    Adult hippocampal neurogenesis is altered in response to different physiological and pathological stimuli. GFAP{sup +ve}/nestin{sup +ve} radial glial like Type-1 progenitors are considered to be the resident stem cell population in adult hippocampus. During neurogenesis these Type-1 progenitors matures to GFAP{sup -ve}/nestin{sup +ve} Type-2 progenitors and then to Type-3 neuroblasts and finally differentiates into granule cell neurons. In our study, using pilocarpine-induced seizure model, we showed that seizure initiated activation of multiple progenitors in the entire hippocampal area such as DG, CA1 and CA3. Seizure induction resulted in activation of two subtypes of Type-1 progenitors, Type-1a (GFAP{sup +ve}/nestin{sup +ve}/BrdU{sup +ve}) and Type-1b (GFAP{sup +ve}/nestin{sup +ve}/BrdU{sup -ve}). We showed that majority of Type-1b progenitors were undergoing only a transition from a state of dormancy to activated form immediately after seizures rather than proliferating, whereas Type-1a showed maximum proliferation by 3 days post-seizure induction. Type-2 (GFAP{sup -ve}/nestin{sup +ve}/BrdU{sup +ve}) progenitors were few compared to Type-1. Type-3 (DCX{sup +ve}) progenitors showed increased expression of immature neurons only in DG region by 3 days after seizure induction indicating maturation of progenitors happens only in microenvironment of DG even though progenitors are activated in CA1 and CA3 regions of hippocampus. Also parallel increase in growth factors expression after seizure induction suggests that microenvironmental niche has a profound effect on stimulation of adult neural progenitors.

  4. Curcumin increased the differentiation rate of neurons in neural stem cells via wnt signaling in vitro study.

    Science.gov (United States)

    Chen, Fei; Wang, Haoxiang; Xiang, Xin; Yuan, Jichao; Chu, Weihua; Xue, Xingsen; Zhu, Haitao; Ge, Hongfei; Zou, Mingming; Feng, Hua; Lin, Jiangkai

    2014-12-01

    The objective of the present study was to clarify the relationship between the neuroprotective effects of curcumin and the classical wnt signaling pathway. Using Sprague-Dawley rats at a gestational age of 14.5 d, we isolated neural stem cells from the anterior two-thirds of the fetal rat brain. The neural stem cells were passaged three times using the half media replacement method and identified using cellular immunofluorescence. After passaging for three generations, we cultured cells in media without basic fibroblast growth factor and epidermal growth factor. Then we treated cells in five different ways, including a blank control group, a group treated with IWR1 (10 μmol/L), a group treated with curcumin (500 nmol/L), a group treated with IWR1 + curcumin, and a group treated with dimethyl sulfoxide (10 μmol/L). We then measured the protein and RNA expression levels for wnt3a and β-catenin using Western blotting and Reverse transcription-polymerase chain reaction (RT-PCR). Western-blotting: after the third generation of cells had been treated for 72 h, we observed that wnt3a and β-catenin expression was significantly increased in the group receiving 500 nmol/L curcumin but not in the other groups. Furthermore, cells in the IWR1-treated group showed decreased wnt3a and β-catenin expression, and wnt3a and β-catenin was also decreased in the IWR1 + 500 nmol/L curcumin group. No obvious change was observed in the dimethyl sulfoxide group. RT-PCR showed similar changes to those observed with the Western blotting experiments. Our study suggests that curcumin can activate the wnt signaling pathway, which provides evidence that curcumin exhibits a neuroprotective effect through the classical wnt signaling pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Sagittal crest formation in great apes and gibbons.

    Science.gov (United States)

    Balolia, Katharine L; Soligo, Christophe; Wood, Bernard

    2017-06-01

    The frequency of sagittal crest expression and patterns of sagittal crest growth and development have been documented in hominoids, including some extinct hominin taxa, and the more frequent expression of the sagittal crest in males has been traditionally linked with the need for larger-bodied individuals to have enough attachment area for the temporalis muscle. In the present study, we investigate sagittal cresting in a dentally mature sample of four hominoid taxa (Pan troglodytes schweinfurthii, Gorilla gorilla gorilla, Pongo pygmaeus pygmaeus and Hylobates lar). We investigate whether sagittal crest size increases with age beyond dental maturity in males and females of G. g. gorilla and Po. pyg. pygmaeus, and whether these taxa show sex differences in the timing of sagittal crest development. We evaluate the hypothesis that the larger sagittal crest of males may not be solely due to the requirement for a larger surface area than the un-crested cranial vault can provide for the attachment of the temporalis muscle, and present data on sex differences in temporalis muscle attachment area and sagittal crest size relative to cranial size. Gorilla g. gorilla and Po. pyg. pygmaeus males show significant relationships between tooth wear rank and sagittal crest size, and they show sagittal crest size differences between age groups that are not found in females. The sagittal crest emerges in early adulthood in the majority of G. g. gorilla males, whereas the percentage of G. g. gorilla females possessing a sagittal crest increases more gradually. Pongo pyg. pygmaeus males experience a three-fold increase in the number of specimens exhibiting a sagittal crest in mid-adulthood, consistent with a secondary growth spurt. Gorilla g. gorilla and Po. pyg. pygmaeus show significant sex differences in the size of the temporalis muscle attachment area, relative to cranial size, with males of both taxa showing positive allometry not shown in females. Gorilla g

  6. Gut-derived factors promote neurogenesis of CNS-neural stem cells and nudge their differentiation to an enteric-like neuronal phenotype.

    Science.gov (United States)

    Kulkarni, Subhash; Zou, Bende; Hanson, Jesse; Micci, Maria-Adelaide; Tiwari, Gunjan; Becker, Laren; Kaiser, Martin; Xie, Xinmin Simon; Pasricha, Pankaj Jay

    2011-10-01

    Recent studies have explored the potential of central nervous system-derived neural stem cells (CNS-NSC) to repopulate the enteric nervous system. However, the exact phenotypic fate of gut-transplanted CNS-NSC has not been characterized. The aim of this study was to investigate the effect of the gut microenvironment on phenotypic fate of CNS-NSC in vitro. With the use of Transwell culture, differentiation of mouse embryonic CNS-NSC was studied when cocultured without direct contact with mouse intestinal longitudinal muscle-myenteric plexus preparations (LM-MP) compared with control noncocultured cells, in a differentiating medium. Differentiated cells were analyzed by immunocytochemistry and quantitative RT-PCR to assess the expression of specific markers and by whole cell patch-clamp studies for functional characterization of their phenotype. We found that LM-MP cocultured cells had a significant increase in the numbers of cells that were immune reactive against the panneuronal marker β-tubulin, neurotransmitters neuronal nitric oxide synthase (nNOS), choline acetyltransferase (ChAT), and neuropeptide vasoactive intestinal peptide (VIP) and showed an increase in expression of these genes, compared with control cells. Whole cell patch-clamp analysis showed that coculture with LM-MP decreases cell excitability and reduces voltage-gated Na(+) currents but significantly enhances A-current and late afterhyperpolarization (AHP) and increases the expression of the four AHP-generating Ca(2+)-dependent K(+) channel genes (KCNN), compared with control cells. In a separate experiment, differentiation of LM-MP cocultured CNS-NSC produced a significant increase in the numbers of cells that were immune reactive against the neurotransmitters nNOS, ChAT, and the neuropeptide VIP compared with CNS-NSC differentiated similarly in the presence of neonatal brain tissue. Our results show that the gut microenvironment induces CNS-NSC to produce neurons that share some of the

  7. Inhibition of Notch Signaling in Human Embryonic Stem Cell-Derived Neural Stem Cells Delays G1/S Phase Transition and Accelerates Neuronal Differentiation In Vitro and In Vivo

    Czech Academy of Sciences Publication Activity Database

    Borghese, L.; Doležalová, Dáša; Opitz, T.; Haupt, S.; Leinhaas, A.; Steinfarz, B.; Koch, P.; Edenhofer, F.; Hampl, Aleš; Brüstle, O.

    2010-01-01

    Roč. 28, č. 5 (2010), s. 955-964 ISSN 1066-5099 Grant - others:GA MŠk(CZ) 1M0538; EC FP6 project ESTOOLS(XE) LSHG-CT-2006-018739; EC FP7 project NeuroStemcell(XE) HEALTH-2007-B-22943 Program:1M Institutional research plan: CEZ:AV0Z50390703 Keywords : neural stem cells * notch * neuron Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.871, year: 2010

  8. Neural stem cells for disease modeling and evaluation of therapeutics for infantile (CLN1/PPT1) and late infantile (CLN2/TPP1) neuronal ceroid lipofuscinoses.

    Science.gov (United States)

    Sima, Ni; Li, Rong; Huang, Wei; Xu, Miao; Beers, Jeanette; Zou, Jizhong; Titus, Steven; Ottinger, Elizabeth A; Marugan, Juan J; Xie, Xing; Zheng, Wei

    2018-04-10

    Infantile and late infantile neuronal ceroid lipofuscinoses (NCLs) are lysosomal storage diseases affecting the central nervous system (CNS). The infantile NCL (INCL) is caused by mutations in the PPT1 gene and late-infantile NCL (LINCL) is due to mutations in the TPP1 gene. Deficiency in PPT1 or TPP1 enzyme function results in lysosomal accumulation of pathological lipofuscin-like material in the patient cells. There is currently no small-molecular drug treatment for NCLs. We have generated induced pluripotent stem cells (iPSC) from three patient dermal fibroblast lines and further differentiated them into neural stem cells (NSCs). Using these new disease models, we evaluated the effect of δ-tocopherol (DT) and hydroxypropyl-β-cyclodextrin (HPBCD) with the enzyme replacement therapy as the control. Treatment with the relevant recombinant enzyme or DT significantly ameliorated the lipid accumulation and lysosomal enlargement in the disease cells. A combination therapy of δ-tocopherol and HPBCD further improved the effect compared to that of either drug used as a single therapy. The results demonstrate that these patient iPSC derived NCL NSCs are valid cell- based disease models with characteristic disease phenotypes that can be used for study of disease pathophysiology and drug development.

  9. Laboratory Experiments on Low-crested Breakwaters

    DEFF Research Database (Denmark)

    Kramer, Morten; Zanuttigh, B.; van der Meer, J.W.

    2005-01-01

    New unique laboratory experiments on low-crested structures (LCSs) have been performed within the DELOS project. The experiments were carried out in three European laboratories aiming at extending and completing existing available information with respect to a wide range of engineering design...... in a wave channel at small scale, and scale effects regarding wave transmission and reflection were studied in a wave channel at a large scale facility. The paper describes the experiments and associated databank with respect to objectives, test program, set-ups and measurements. Results, guidelines...... and recommendations elaborated from the tests are included in the other companion papers of the Coastal Engineering Special Issue on DELOS....

  10. Differentiation of Equine Mesenchymal Stromal Cells into Cells of Neural Lineage: Potential for Clinical Applications

    Directory of Open Access Journals (Sweden)

    Claudia Cruz Villagrán

    2014-01-01

    Full Text Available Mesenchymal stromal cells (MSCs are able to differentiate into extramesodermal lineages, including neurons. Positive outcomes were obtained after transplantation of neurally induced MSCs in laboratory animals after nerve injury, but this is unknown in horses. Our objectives were to test the ability of equine MSCs to differentiate into cells of neural lineage in vitro, to assess differences in morphology and lineage-specific protein expression, and to investigate if horse age and cell passage number affected the ability to achieve differentiation. Bone marrow-derived MSCs were obtained from young and adult horses. Following demonstration of stemness, MSCs were neurally induced and microscopically assessed at different time points. Results showed that commercially available nitrogen-coated tissue culture plates supported proliferation and differentiation. Morphological changes were immediate and all the cells displayed a neural crest-like cell phenotype. Expression of neural progenitor proteins, was assessed via western blot or immunofluorescence. In our study, MSCs generated from young and middle-aged horses did not show differences in their ability to undergo differentiation. The effect of cell passage number, however, is inconsistent and further experiments are needed. Ongoing work is aimed at transdifferentiating these cells into Schwann cells for transplantation into a peripheral nerve injury model in horses.

  11. A career at the interface of cell and developmental biology: a view from the crest.

    Science.gov (United States)

    Bronner, Marianne E

    2012-11-01

    Just as neural crest cells migrate great distances through the embryo, my journey has taken me from a childhood in a distant land to a career as a biologist. My mentoring relationships have shaped not only the careers of my trainees, but also the trajectory of my own science. One of the most satisfying aspects of mentoring comes from helping to empower the next generation of scientists to do more tomorrow than is possible today. This, together with a passion for discovery and learning new things, motivates me and makes science such a rewarding career.

  12. Neural electrical activity and neural network growth.

    Science.gov (United States)

    Gafarov, F M

    2018-05-01

    The development of central and peripheral neural system depends in part on the emergence of the correct functional connectivity in its input and output pathways. Now it is generally accepted that molecular factors guide neurons to establish a primary scaffold that undergoes activity-dependent refinement for building a fully functional circuit. However, a number of experimental results obtained recently shows that the neuronal electrical activity plays an important role in the establishing of initial interneuronal connections. Nevertheless, these processes are rather difficult to study experimentally, due to the absence of theoretical description and quantitative parameters for estimation of the neuronal activity influence on growth in neural networks. In this work we propose a general framework for a theoretical description of the activity-dependent neural network growth. The theoretical description incorporates a closed-loop growth model in which the neural activity can affect neurite outgrowth, which in turn can affect neural activity. We carried out the detailed quantitative analysis of spatiotemporal activity patterns and studied the relationship between individual cells and the network as a whole to explore the relationship between developing connectivity and activity patterns. The model, developed in this work will allow us to develop new experimental techniques for studying and quantifying the influence of the neuronal activity on growth processes in neural networks and may lead to a novel techniques for constructing large-scale neural networks by self-organization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Ruta graveolens L. induces death of glioblastoma cells and neural progenitors, but not of neurons, via ERK 1/2 and AKT activation.

    Directory of Open Access Journals (Sweden)

    Maria Teresa Gentile

    Full Text Available Glioblastoma multiforme is a highly aggressive brain tumor whose prognosis is very poor. Due to early invasion of brain parenchyma, its complete surgical removal is nearly impossible, and even after aggressive combined treatment (association of surgery and chemo- and radio-therapy five-year survival is only about 10%. Natural products are sources of novel compounds endowed with therapeutic properties in many human diseases, including cancer. Here, we report that the water extract of Ruta graveolens L., commonly known as rue, induces death in different glioblastoma cell lines (U87MG, C6 and U138 widely used to test novel drugs in preclinical studies. Ruta graveolens' effect was mediated by ERK1/2 and AKT activation, and the inhibition of these pathways, via PD98058 and wortmannin, reverted its antiproliferative activity. Rue extract also affects survival of neural precursor cells (A1 obtained from embryonic mouse CNS. As in the case of glioma cells, rue stimulates the activation of ERK1/2 and AKT in A1 cells, whereas their blockade by pharmacological inhibitors prevents cell death. Interestingly, upon induction of differentiation and cell cycle exit, A1 cells become resistant to rue's noxious effects but not to those of temozolomide and cisplatin, two alkylating agents widely used in glioblastoma therapy. Finally, rutin, a major component of the Ruta graveolens water extract, failed to cause cell death, suggesting that rutin by itself is not responsible for the observed effects. In conclusion, we report that rue extracts induce glioma cell death, discriminating between proliferating/undifferentiated and non-proliferating/differentiated neurons. Thus, it can be a promising tool to isolate novel drugs and also to discover targets for therapeutic intervention.

  14. Creatine Enhances Transdifferentiation of Bone Marrow Stromal Cell-Derived Neural Stem Cell Into GABAergic Neuron-Like Cells Characterized With Differential Gene Expression.

    Science.gov (United States)

    Darabi, Shahram; Tiraihi, Taki; Delshad, AliReza; Sadeghizadeh, Majid; Taheri, Taher; Hassoun, Hayder K

    2017-04-01

    Creatine was reported to induce bone marrow stromal cells (BMSC) into GABAergic neuron-like cells (GNLC). In a previous study, creatine was used as a single inducer for BMSC into GNLC with low yield. In this study, BMSC-derived neurospheres (NS) have been used in generating GABAergic phenotype. The BMSC were isolated from adult rats and used in generating neurospheres and used for producing neural stem cells (NSC). A combination of all-trans-retinoic acid (RA), the ciliary neurotrophic factor (CNTF), and creatine was used in order to improve the yield of GNLC. We also used other protocols for the transdifferentiation including RA alone; RA and creatine; RA and CNTF; and RA, CNTF, and creatine. The BMSC, NSC, and GNLC were characterized by specific markers. The activity of the GNLC was evaluated using FM1-43. The isolated BMSC expressed Oct4, fibronectin, and CD44. The NS were immunoreactive to nestin and SOX2, the NSC were immunoreactive to nestin, NF68 and NF160, while the GNLC were immunoreactive to GAD1/2, VGAT, GABA, and synaptophysin. Oct4 and c-MYC, pluripotency genes, were expressed in the BMSC, while SOX2 and c-MYC were expressed in the NSC. The activity of GNLC indicates that the synaptic vesicles were released upon stimulation. The conclusion is that the combination of RA, CNTF, and creatine induced differentiation of neurosphere-derived NSC into GNLC within 1 week. This protocol gives higher yield than the other protocols used in this study. The mechanism of induction was clearly associated with several differential pluripotent genes.

  15. Hydraulic model tests of an innovative dike crest design

    NARCIS (Netherlands)

    Verhagen, H.J.; Kortenhaus, A.; Bollinger, K.; Dassayanake, D.

    2007-01-01

    Report on laboratory tests on a crest drainage dike; investigation if a channel in the crest of the dike is able to decrease the amount of overtopping over the dike. Chapter 2 provides details about findings from previous studies and the relevance of those findings to this research project.

  16. Degradation processes and the methods of securing wall crests

    Directory of Open Access Journals (Sweden)

    Maciej Trochonowicz

    2017-12-01

    Full Text Available The protection of historical ruins requires solution of doctrinal and technical problems. Technical problems concern above all preservation of walls, which are exposed to the influence of atmospheric factors. The problem that needs to be solved in any historic ruin is securing of wall crests. Form of protection of the wall crests depends on many factors, mainly technical features of the wall and architectural and conservatory vision. The following article presents three aspects important for protection of wall crests. Firstly, analysis of features of the wall as a structure, secondly the characteristics of destructive agents, thirdly forms of protection of wall crests. In the summary of the following article, advantages and disadvantages of each method of preservation of the wall crests were presented.

  17. Morphological neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-31

    The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.

  18. Defective neuronal migration and inhibition of bipolar to multipolar transition of migrating neural cells by Mesoderm-Specific Transcript, Mest, in the developing mouse neocortex.

    Science.gov (United States)

    Ji, Liting; Bishayee, Kausik; Sadra, Ali; Choi, Seunghyuk; Choi, Wooyul; Moon, Sungho; Jho, Eek-Hoon; Huh, Sung-Oh

    2017-07-04

    Brain developmental disorders such as lissencephaly can result from faulty neuronal migration and differentiation during the formation of the mammalian neocortex. The cerebral cortex is a modular structure, where developmentally, newborn neurons are generated as a neuro-epithelial sheet and subsequently differentiate, migrate and organize into their final positions in the cerebral cortical plate via a process involving both tangential and radial migration. The specific role of Mest, an imprinted gene, in neuronal migration has not been previously studied. In this work, we reduced expression of Mest with in utero electroporation of neuronal progenitors in the developing embryonic mouse neocortex. Reduction of Mest levels by shRNA significantly reduced the number of neurons migrating to the cortical plate. Also, Mest-knockdown disrupted the transition of bipolar neurons into multipolar neurons migrating out of the sub-ventricular zone region. The migrating neurons also adopted a more tangential migration pattern upon knockdown of the Mest message, losing their potential to attach to radial glia cells, required for radial migration. The differentiation and migration properties of neurons via Wnt-Akt signaling were affected by Mest changes. In addition, miR-335, encoded in a Mest gene intron, was identified as being responsible for blocking the default tangential migration of the neurons. Our results suggest that Mest and its intron product, miR-335, play important roles in neuronal migration with Mest regulating the morphological transition of primary neurons required in the formation of the mammalian neocortex. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. NeuronBank: a tool for cataloging neuronal circuitry

    Directory of Open Access Journals (Sweden)

    Paul S Katz

    2010-04-01

    Full Text Available The basic unit of any nervous system is the neuron. Therefore, understanding the operation of nervous systems ultimately requires an inventory of their constituent neurons and synaptic connectivity, which form neural circuits. The presence of uniquely identifiable neurons or classes of neurons in many invertebrates has facilitated the construction of cellular-level connectivity diagrams that can be generalized across individuals within a species. Homologous neurons can also be recognized across species. Here we describe NeuronBank.org, a web-based tool that we are developing for cataloging, searching, and analyzing neuronal circuitry within and across species. Information from a single species is represented in an individual branch of NeuronBank. Users can search within a branch or perform queries across branches to look for similarities in neuronal circuits across species. The branches allow for an extensible ontology so that additional characteristics can be added as knowledge grows. Each entry in NeuronBank generates a unique accession ID, allowing it to be easily cited. There is also an automatic link to a Wiki page allowing an encyclopedic explanation of the entry. All of the 44 previously published neurons plus one previously unpublished neuron from the mollusc, Tritonia diomedea, have been entered into a branch of NeuronBank as have 4 previously published neurons from the mollusc, Melibe leonina. The ability to organize information about neuronal circuits will make this information more accessible, ultimately aiding research on these important models.

  20. Single neuron computation

    CERN Document Server

    McKenna, Thomas M; Zornetzer, Steven F

    1992-01-01

    This book contains twenty-two original contributions that provide a comprehensive overview of computational approaches to understanding a single neuron structure. The focus on cellular-level processes is twofold. From a computational neuroscience perspective, a thorough understanding of the information processing performed by single neurons leads to an understanding of circuit- and systems-level activity. From the standpoint of artificial neural networks (ANNs), a single real neuron is as complex an operational unit as an entire ANN, and formalizing the complex computations performed by real n

  1. Mesmerising mirror neurons.

    Science.gov (United States)

    Heyes, Cecilia

    2010-06-01

    Mirror neurons have been hailed as the key to understanding social cognition. I argue that three currents of thought-relating to evolution, atomism and telepathy-have magnified the perceived importance of mirror neurons. When they are understood to be a product of associative learning, rather than an adaptation for social cognition, mirror neurons are no longer mesmerising, but they continue to raise important questions about both the psychology of science and the neural bases of social cognition. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Introduction to Concepts in Artificial Neural Networks

    Science.gov (United States)

    Niebur, Dagmar

    1995-01-01

    This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.

  3. A peptide derived from a trans-homophilic binding site in neural cell adhesion molecule induces neurite outgrowth and neuronal survival

    DEFF Research Database (Denmark)

    Køhler, Lene B; Soroka, Vladislav; Korshunova, Irina

    2010-01-01

    The neural cell adhesion molecule (NCAM) plays a key role in neural development, regeneration, and synaptic plasticity. The crystal structure of a fragment of NCAM comprising the three N-terminal immunoglobulin (Ig)-like modules indicates that the first and second Ig modules bind to each other, t...

  4. Cryoglobulinemic vasculitis in a patient with CREST syndrome.

    Science.gov (United States)

    Hurst, Rebecca L; Berianu, Florentina; Ginsburg, William W; Klein, Christopher J; Englestad, Janean K; Kennelly, Kathleen D

    2014-10-01

    Cryoglobulinemic vasculitis is a rare entity. Although it has been reported in diffuse systemic sclerosis, it has not been reported in calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly and telangiectasia (CREST) syndrome. We report a patient with cryoglobulinemic vasculitis with CREST syndrome who did not have typical clinical features of vasculitis. This 58-year-old woman presented with mild generalized weakness and a diagnosis of CREST syndrome, which included Raynaud's syndrome, dysphagia and telangiectasias. She was positive for serum cryoglobulins, which led to a sural nerve biopsy. The biopsy results were consistent with cryoglobulinemic vasculitis. Cryoglobulinemic vasculitis has not been previously reported in CREST syndrome to our knowledge. Additionally, the patient also had limited clinical symptoms. Our patient displays the importance of checking for cryoglobulins and obtaining a nerve biopsy when the serum is positive. Both of these diagnostic tests were integral for directing appropriate treatment for this patient. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Lessons learned from the EU project T-CREST

    DEFF Research Database (Denmark)

    Schoeberl, Martin

    2016-01-01

    A three year EU project, such a T-CREST, with partners from all over Europe and with backgrounds from different domains is a challenging endeavor. Successful execution of such a project depends on more factors than simply performing excellent research. Within the three-year project T-CREST eight...... partners from academia and industry developed and evaluated a time-predictable multi-core processor with an accompanying compiler and a worst-case execution time analysis tool. The tight cooperation of the partners and the shared vision of the need of new computer architectures for future real-time systems...... enabled the successful completion of the T-CREST project. The T-CREST platform is now available, with most components in open source, to be used for future real-time systems and as a platform for further research....

  6. Flow structure in front of the broad-crested weir

    Directory of Open Access Journals (Sweden)

    Zachoval Zbyněk

    2015-01-01

    Full Text Available The paper deals with research focused on description of flow structure in front of broad-crested weir. Based on experimental measurement, the flow structure in front of the weir (the recirculation zone of flow and tornado vortices and flow structure on the weir crest has been described. The determined flow character has been simulated using numerical model and based on comparing results the suitable model of turbulence has been recommended.

  7. Degradation processes and the methods of securing wall crests

    OpenAIRE

    Maciej Trochonowicz; Bogusław Szmygin

    2017-01-01

    The protection of historical ruins requires solution of doctrinal and technical problems. Technical problems concern above all preservation of walls, which are exposed to the influence of atmospheric factors. The problem that needs to be solved in any historic ruin is securing of wall crests. Form of protection of the wall crests depends on many factors, mainly technical features of the wall and architectural and conservatory vision. The following article presents three aspects important for ...

  8. Imitation, mirror neurons and autism

    OpenAIRE

    Williams, Justin H.G.; Whiten, Andrew; Suddendorf, Thomas; Perrett, David I.

    2001-01-01

    Various deficits in the cognitive functioning of people with autism have been documented in recent years but these provide only partial explanations for the condition. We focus instead on an imitative disturbance involving difficulties both in copying actions and in inhibiting more stereotyped mimicking, such as echolalia. A candidate for the neural basis of this disturbance may be found in a recently discovered class of neurons in frontal cortex, 'mirror neurons' (MNs). These neurons show ac...

  9. Overflow Characteristic of Cylindrical Shape Crest Weirs Over Horizontal Bed

    Directory of Open Access Journals (Sweden)

    Emad4 AbdulGabbar

    2013-05-01

    Full Text Available The most common types of weirs are the broad-crested weir, the sharp-crested weir, the circular crested weir and the ogee crested weir. Advantages of the cylindrical weir shape include the stable overflow pattern, the ease to pass floating debris, the simplicity of design compared to ogee crest design and the associated lower costs. In present study, it was investigated the overflow characteristics of circular weirs in laboratory for various cylinder radii of three sizes (11.4, 9.0, 6.3 cm, and the models fixed on the channel bed vertically to the direction of flow. The result shows that the increase in the ratio of head to weir radius ratio (Hw/R value causes an increase in discharge coefficient (Cd value for the same height of weir. It was observed that the cylinder size (i.e. radius of cylindrical weir (R has an effect on the (Cd. The flow magnification factor (qw/qs increases with an increase in (Hw/R value and values of (qw/qs were always higher than one for all values of (Hw/R, this means that weirs of cylindrical shape performed better than those of sharp crest for any value of weir radius tested in this study.

  10. Genetic algorithms used to optimize an artificial neural network design used in neutron spectrometry; Algoritmos geneticos utilizados para optimizar un diseno de red neuronal artificial usado en espectrometria de neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Arteaga A, T.; Ortiz R, J. M.; Vega C, H. R., E-mail: tarcicio70@yahoo.co.uk [Universidad Autonoma de Zacatecas, Av. Lopez Velarde 117, 98600 Zacatecas, Zac. (Mexico)

    2016-10-15

    Artificial neural networks (Ann) are widely used; it which consist of an input layer, one or more hidden layers and an output layer; these layers contain neurons and each has connections called weights, where the knowledge are allowed and let to Ann solve problems proposed. These Ann is used to reconstruction of the energy spectrum of neutrons from count rates and develop Bonner sphere neutron dosimetry. Currently, we have developed Ann with high performance and generalization ability. Determine your optimal architecture is usually a difficult task, an exhaustive search of all possible combinations of parameters is rarely possible further training of the neural network with random initial weights can cause two major drawbacks: it can stuck in local minima or converge very slowly. In this project it will be used Genetic Algorithms (Ga); which are based on the principle or analogy of evolution through natural selection and has shown to be very effective in optimizing complex search functions and large spaces or to find a near optimal overall efficiency. The aim is to decrease the architecture in number of hidden neurons and therefore the total number of connections is reducing. The benefits obtained by optimizing the network are that the number of connections would be considerably smaller and thus the computational complexity, hardware integration, resources will be lower such that will allow to be even more viable implemented. To use the Ga three problems must be solve: 1) coding the problem into chromosomes. 2) Construct a fitness function. 3) Proper selection of genetic operators; crossover, selection, mutation. As a result, the scientific knowledge obtained can to be applied to similar problems having a reference parameters used and their impact on the optimization would to be generated. It concluded that the input layer and output are subject to the problem; the Ga propose the optimal number of neurons in the hidden layer without losing the quality of the

  11. Neural control of left ventricular contractility in the dog heart: synaptic interactions of negative inotropic vagal preganglionic neurons in the nucleus ambiguus with tyrosine hydroxylase immunoreactive terminals.

    Science.gov (United States)

    Massari, V J; Dickerson, L W; Gray, A L; Lauenstein, J M; Blinder, K J; Newsome, J T; Rodak, D J; Fleming, T J; Gatti, P J; Gillis, R A

    1998-08-17

    Recent physiological evidence indicates that vagal postganglionic control of left ventricular contractility is mediated by neurons found in a ventricular epicardial fat pad ganglion. In the dog this region has been referred to as the cranial medial ventricular (CMV) ganglion [J.L. Ardell, Structure and function of mammalian intrinsic cardiac neurons, in: J.A. Armour, J.L. Ardell (Eds.). Neurocardiology, Oxford Univ. Press, New York, 1994, pp. 95-114; B.X. Yuan, J.L. Ardell, D.A. Hopkins, A.M. Losier, J.A. Armour, Gross and microscopic anatomy of the canine intrinsic cardiac nervous system, Anat. Rec., 239 (1994) 75-87]. Since activation of the vagal neuronal input to the CMV ganglion reduces left ventricular contractility without influencing cardiac rate or AV conduction, this ganglion contains a functionally selective pool of negative inotropic parasympathetic postganglionic neurons. In the present report we have defined the light microscopic distribution of preganglionic negative inotropic neurons in the CNS which are retrogradely labeled from the CMV ganglion. Some tissues were also processed for the simultaneous immunocytochemical visualization of tyrosine hydroxylase (TH: a marker for catecholaminergic neurons) and examined with both light microscopic and electron microscopic methods. Histochemically visualized neurons were observed in a long slender column in the ventrolateral nucleus ambiguus (NA-VL). The greatest number of retrogradely labeled neurons were observed just rostral to the level of the area postrema. TH perikarya and dendrites were commonly observed interspersed with vagal motoneurons in the NA-VL. TH nerve terminals formed axo-dendritic synapses upon negative inotropic vagal motoneurons, however the origin of these terminals remains to be determined. We conclude that synaptic interactions exist which would permit the parasympathetic preganglionic vagal control of left ventricular contractility to be modulated monosynaptically by

  12. Neural Networks

    International Nuclear Information System (INIS)

    Smith, Patrick I.

    2003-01-01

    information [2]. Each one of these cells acts as a simple processor. When individual cells interact with one another, the complex abilities of the brain are made possible. In neural networks, the input or data are processed by a propagation function that adds up the values of all the incoming data. The ending value is then compared with a threshold or specific value. The resulting value must exceed the activation function value in order to become output. The activation function is a mathematical function that a neuron uses to produce an output referring to its input value. [8] Figure 1 depicts this process. Neural networks usually have three components an input, a hidden, and an output. These layers create the end result of the neural network. A real world example is a child associating the word dog with a picture. The child says dog and simultaneously looks a picture of a dog. The input is the spoken word ''dog'', the hidden is the brain processing, and the output will be the category of the word dog based on the picture. This illustration describes how a neural network functions

  13. CREST--classification resources for environmental sequence tags.

    Directory of Open Access Journals (Sweden)

    Anders Lanzén

    Full Text Available Sequencing of taxonomic or phylogenetic markers is becoming a fast and efficient method for studying environmental microbial communities. This has resulted in a steadily growing collection of marker sequences, most notably of the small-subunit (SSU ribosomal RNA gene, and an increased understanding of microbial phylogeny, diversity and community composition patterns. However, to utilize these large datasets together with new sequencing technologies, a reliable and flexible system for taxonomic classification is critical. We developed CREST (Classification Resources for Environmental Sequence Tags, a set of resources and tools for generating and utilizing custom taxonomies and reference datasets for classification of environmental sequences. CREST uses an alignment-based classification method with the lowest common ancestor algorithm. It also uses explicit rank similarity criteria to reduce false positives and identify novel taxa. We implemented this method in a web server, a command line tool and the graphical user interfaced program MEGAN. Further, we provide the SSU rRNA reference database and taxonomy SilvaMod, derived from the publicly available SILVA SSURef, for classification of sequences from bacteria, archaea and eukaryotes. Using cross-validation and environmental datasets, we compared the performance of CREST and SilvaMod to the RDP Classifier. We also utilized Greengenes as a reference database, both with CREST and the RDP Classifier. These analyses indicate that CREST performs better than alignment-free methods with higher recall rate (sensitivity as well as precision, and with the ability to accurately identify most sequences from novel taxa. Classification using SilvaMod performed better than with Greengenes, particularly when applied to environmental sequences. CREST is freely available under a GNU General Public License (v3 from http://apps.cbu.uib.no/crest and http://lcaclassifier.googlecode.com.

  14. Bioprinting for Neural Tissue Engineering.

    Science.gov (United States)

    Knowlton, Stephanie; Anand, Shivesh; Shah, Twisha; Tasoglu, Savas

    2018-01-01

    Bioprinting is a method by which a cell-encapsulating bioink is patterned to create complex tissue architectures. Given the potential impact of this technology on neural research, we review the current state-of-the-art approaches for bioprinting neural tissues. While 2D neural cultures are ubiquitous for studying neural cells, 3D cultures can more accurately replicate the microenvironment of neural tissues. By bioprinting neuronal constructs, one can precisely control the microenvironment by specifically formulating the bioink for neural tissues, and by spatially patterning cell types and scaffold properties in three dimensions. We review a range of bioprinted neural tissue models and discuss how they can be used to observe how neurons behave, understand disease processes, develop new therapies and, ultimately, design replacement tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Differentiation state determines neural effects on microvascular endothelial cells

    International Nuclear Information System (INIS)

    Muffley, Lara A.; Pan, Shin-Chen; Smith, Andria N.; Ga, Maricar; Hocking, Anne M.; Gibran, Nicole S.

    2012-01-01

    Growing evidence indicates that nerves and capillaries interact paracrinely in uninjured skin and cutaneous wounds. Although mature neurons are the predominant neural cell in the skin, neural progenitor cells have also been detected in uninjured adult skin. The aim of this study was to characterize differential paracrine effects of neural progenitor cells and mature sensory neurons on dermal microvascular endothelial cells. Our results suggest that neural progenitor cells and mature sensory neurons have unique secretory profiles and distinct effects on dermal microvascular endothelial cell proliferation, migration, and nitric oxide production. Neural progenitor cells and dorsal root ganglion neurons secrete different proteins related to angiogenesis. Specific to neural progenitor cells were dipeptidyl peptidase-4, IGFBP-2, pentraxin-3, serpin f1, TIMP-1, TIMP-4 and VEGF. In contrast, endostatin, FGF-1, MCP-1 and thrombospondin-2 were specific to dorsal root ganglion neurons. Microvascular endothelial cell proliferation was inhibited by dorsal root ganglion neurons but unaffected by neural progenitor cells. In contrast, microvascular endothelial cell migration in a scratch wound assay was inhibited by neural progenitor cells and unaffected by dorsal root ganglion neurons. In addition, nitric oxide production by microvascular endothelial cells was increased by dorsal root ganglion neurons but unaffected by neural progenitor cells. -- Highlights: ► Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell proliferation. ► Neural progenitor cells, not dorsal root ganglion neurons, regulate microvascular endothelial cell migration. ► Neural progenitor cells and dorsal root ganglion neurons do not effect microvascular endothelial tube formation. ► Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell production of nitric oxide. ► Neural progenitor cells and dorsal root

  16. Neuromorphic Silicon Neuron Circuits

    Science.gov (United States)

    Indiveri, Giacomo; Linares-Barranco, Bernabé; Hamilton, Tara Julia; van Schaik, André; Etienne-Cummings, Ralph; Delbruck, Tobi; Liu, Shih-Chii; Dudek, Piotr; Häfliger, Philipp; Renaud, Sylvie; Schemmel, Johannes; Cauwenberghs, Gert; Arthur, John; Hynna, Kai; Folowosele, Fopefolu; Saighi, Sylvain; Serrano-Gotarredona, Teresa; Wijekoon, Jayawan; Wang, Yingxue; Boahen, Kwabena

    2011-01-01

    Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain–machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin–Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips. PMID:21747754

  17. Neuromorphic silicon neuron circuits

    Directory of Open Access Journals (Sweden)

    Giacomo eIndiveri

    2011-05-01

    Full Text Available Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance based Hodgkin-Huxley models to bi-dimensional generalized adaptive Integrate and Fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.

  18. Flow characteristics at trapezoidal broad-crested side weir

    Directory of Open Access Journals (Sweden)

    Říha Jaromír

    2015-06-01

    Full Text Available Broad-crested side weirs have been the subject of numerous hydraulic studies; however, the flow field at the weir crest and in front of the weir in the approach channel still has not been fully described. Also, the discharge coefficient of broad-crested side weirs, whether slightly inclined towards the stream or lateral, still has yet to be clearly determined. Experimental research was carried out to describe the flow characteristics at low Froude numbers in the approach flow channel for various combinations of in- and overflow discharges. Three side weir types with different oblique angles were studied. Their flow characteristics and discharge coefficients were analyzed and assessed based on the results obtained from extensive measurements performed on a hydraulic model. The empirical relation between the angle of side weir obliqueness, Froude numbers in the up- and downstream channels, and the coefficient of obliqueness was derived.

  19. Deep Neural Yodelling

    OpenAIRE

    Pfäffli, Daniel (Autor/in)

    2018-01-01

    Yodel music differs from most other genres by exercising the transition from chest voice to falsetto with an audible glottal stop which is recognised even by laymen. Yodel often consists of a yodeller with a choir accompaniment. In Switzerland, it is differentiated between the natural yodel and yodel songs. Today's approaches to music generation with machine learning algorithms are based on neural networks, which are best described by stacked layers of neurons which are connected with neurons...

  20. Stability of Cubipod Armoured Roundheads in Short Crested Waves

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Andersen, Thomas Lykke; Medina, Josep R.

    2011-01-01

    The paper presents a comparison of the stability of concrete cube armour and Cubipod armour in a breakwater roundhead with slope 1:1.5, exposed to both 2-D (long-crested) and 3-D (short-crested) waves. The model tests were performed at the Hydraulics and Coastal Engineering Laboratory at Aalborg...... University, Denmark. The model tests showed that Cubipod armour is more stable than cube armour when exposed to longer waves (steepness approx. 0.025) and has equal stability to cubes in shorter waves. The Cubipod armour layer contained due to its high porosity approximately 6-17% less concrete than the cube...

  1. Leukemia inhibitory factor (LIF) enhances MAP2 + and HUC/D + neurons and influences neurite extension during differentiation of neural progenitors derived from human embryonic stem cells.

    Science.gov (United States)

    Leukemia Inhibitory Factor (L1F), a member of the Interleukin 6 cytokine family, has a role in differentiation of Human Neural Progenitor (hNP) cells in vitro. hNP cells, derived from Human Embryonic Stem (hES) cells, have an unlimited capacity for self-renewal in monolayer cultu...

  2. Neurite extension and neuronal differentiation of human induced pluripotent stem cell derived neural stem cells on polyethylene glycol hydrogels containing a continuous Young's Modulus gradient.

    Science.gov (United States)

    Mosley, Matthew C; Lim, Hyun Ju; Chen, Jing; Yang, Yueh-Hsun; Li, Shenglan; Liu, Ying; Smith Callahan, Laura A

    2017-03-01

    Mechanotransduction in neural cells involves multiple signaling pathways that are not fully understood. Differences in lineage and maturation state are suggested causes for conflicting reports on neural cell mechanosensitivity. To optimize matrices for use in stem cell therapy treatments transplanting human induced pluripotent stem cell derived neural stem cells (hNSC) into lesions after spinal cord injury, the effects of Young's Modulus changes on hNSC behavior must be understood. The present study utilizes polyethylene glycol hydrogels containing a continuous gradient in Young's modulus to examine changes in the Young's Modulus of the culture substrate on hNSC neurite extension and neural differentiation. Changes in the Young's Modulus of the polyethylene glycol hydrogels was found to affect neurite extension and cellular organization on the matrices. hNSC cultured on 907 Pa hydrogels were found to extend longer neurites than hNSC cultured on other tested Young's Moduli hydrogels. The gene expression of β tubulin III and microtubule-associated protein 2 in hNSC was affected by changes in the Young's Modulus of the hydrogel. The combinatory method approach used in the present study demonstrates that hNSC are mechanosensitive and the matrix Young's Modulus should be a design consideration for hNSC transplant applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 824-833, 2017. © 2016 Wiley Periodicals, Inc.

  3. Dopaminergic-like neurons derived from oral mucosa stem cells by developmental cues improve symptoms in the hemi-parkinsonian rat model.

    Directory of Open Access Journals (Sweden)

    Javier Ganz

    Full Text Available Achieving safe and readily accessible sources for cell replacement therapy in Parkinson's disease (PD is still a challenging unresolved issue. Recently, a primitive neural crest stem cell population (hOMSC was isolated from the adult human oral mucosa and characterized in vitro and in vivo. In this study we assessed hOMSC ability to differentiate into dopamine-secreting cells with a neuronal-dopaminergic phenotype in vitro in response to dopaminergic developmental cues and tested their therapeutic potential in the hemi-Parkinsonian rat model. We found that hOMSC express constitutively a repertoire of neuronal and dopaminergic markers and pivotal transcription factors. Soluble developmental factors induced a reproducible neuronal-like morphology in the majority of hOMSC, downregulated stem cells markers, upregulated the expression of the neuronal and dopaminergic markers that resulted in dopamine release capabilities. Transplantation of these dopaminergic-induced hOMSC into the striatum of hemi-Parkinsonian rats improved their behavioral deficits as determined by amphetamine-induced rotational behavior, motor asymmetry and motor coordination tests. Human TH expressing cells and increased levels of dopamine in the transplanted hemispheres were observed 10 weeks after transplantation. These results demonstrate for the first time that soluble factors involved in the development of DA neurons, induced a DA phenotype in hOMSC in vitro that significantly improved the motor function of hemiparkinsonian rats. Based on their neural-related origin, their niche accessibility by minimal-invasive procedures and their propensity for DA differentiation, hOMSC emerge as an attractive tool for autologous cell replacement therapy in PD.

  4. Activation of Group II Metabotropic Glutamate Receptors Increases Proliferation but does not Influence Neuronal Differentiation of a Human Neural Stem Cell Line

    DEFF Research Database (Denmark)

    Dindler, Anne; Blaabjerg, Morten; Kamand, Morad

    2018-01-01

    of pharmacological activation and inhibition of mGluR2/3 on proliferation, differentiation and viability of a human neural stem cell line. Immunofluorescence staining revealed the presence of mGluR2/3 receptors on both proliferating and differentiating stem cells, including cells differentiated into β-tubulin III....... Western blot analysis revealed that the active, dimeric form of mGluR2/3 was mainly present on the proliferating cells, which may explain our findings. The present study emphasises the importance of glutamate and mGluRs on regulation of human neural stem cells and suggests a significant role of mGluR2....../3 during cell proliferation. This article is protected by copyright. All rights reserved....

  5. Migration flyway of the Mediterranean breeding Lesser Crested Tern ...

    African Journals Online (AJOL)

    The Lesser Crested Tern Thalasseus bengalensis emigratus breeding population in the Mediterranean is found exclusively in Libya, on the two coastal islands of Gara and Elba and one wetland on the mainland coast at Benghazi. In order to improve knowledge of the species migration to wintering quarters in West Africa, ...

  6. The CREST reactive-burn model for explosives

    Directory of Open Access Journals (Sweden)

    Maheswaran M-A.

    2011-01-01

    Full Text Available CREST is an innovative reactive-burn model that has been developed at AWE for simulating shock initiation and detonation propagation behaviour in explosives. The model has a different basis from other reactive-burn models in that its reaction rate is independent of local flow variables behind the shock wave e.g. pressure and temperature. The foundation for CREST, based on a detailed analysis of data from particle-velocity gauge experiments, is that the reaction rate depends only on the local shock strength and the time since the shock passed. Since a measure of shock strength is the entropy of the non-reacted explosive, which remains constant behind a shock, CREST uses an entropy-dependent reaction rate. This paper will provide an overview of the CREST model and its predictive capability. In particular, it will be shown that the model can predict a wide range of experimental phenomena for both shock initiation (e.g. the effects of porosity and initial temperature on sustained-shock and thin-flyer initiation and detonation propagation (e.g. the diameter effect curve and detonation failure cones using a single set of coefficients.

  7. Jaccoud's arthropathy and pulmonary fibrosis in CREST syndrome

    International Nuclear Information System (INIS)

    Spinel B, Nestor; Montenegro, Pablo; Rondon Federico; Restrepo, Jose F; Iglesias G, Antonio

    2010-01-01

    We report a case of a 48 years old patient with diagnosis of incomplete CREST syndrome (variant limited systemic sclerosis) in who we documented the presence of Jaccoud's arthropathy of the hands and pulmonary involvement by pulmonary fibrosis type usual interstitial pneumonia, with positivity for rheumatoid factor and anti-cyclic citrullinated peptide antibody.

  8. Long-throated flumes and broad-crested weirs

    NARCIS (Netherlands)

    Bos, M.G.

    1985-01-01

    Vital for water management are structures that can measure the flow in a wide variety of channels. Chapter 1 introduces the long-throated flume and the broad-crested weir; it explains why this family of structures can meet the boundary conditions and hydraulic demands of most measuring

  9. Neural Network Molecule: a Solution of the Inverse Biometry Problem through Software Support of Quantum Superposition on Outputs of the Network of Artificial Neurons

    Directory of Open Access Journals (Sweden)

    Vladimir I. Volchikhin

    2017-12-01

    Full Text Available Introduction: The aim of the study is to accelerate the solution of neural network biometrics inverse problem on an ordinary desktop computer. Materials and Methods: To speed up the calculations, the artificial neural network is introduced into the dynamic mode of “jittering” of the states of all 256 output bits. At the same time, too many output states of the neural network are logarithmically folded by transitioning to the Hamming distance space between the code of the image “Own” and the codes of the images “Alien”. From the database of images of “Alien” 2.5 % of the most similar images are selected. In the next generation, 97.5 % of the discarded images are restored with GOST R 52633.2-2010 procedures by crossing parent images and obtaining descendant images from them. Results: Over a period of about 10 minutes, 60 generations of directed search for the solution of the inverse problem can be realized that allows inversing matrices of neural network functionals of dimension 416 inputs to 256 outputs with restoration of up to 97 % information on unknown biometric parameters of the image “Own”. Discussion and Conclusions: Supporting for 10 minutes of computer time the 256 qubit quantum superposition allows on a conventional computer to bypass the actual infinity of analyzed states in 5050 (50 to 50 times more than the same computer could process realizing the usual calculations. The increase in the length of the supported quantum superposition by 40 qubits is equivalent to increasing the processor clock speed by about a billion times. It is for this reason that it is more profitable to increase the number of quantum superpositions supported by the software emulator in comparison with the creation of a more powerful processor.

  10. From Neurons to Newtons

    DEFF Research Database (Denmark)

    Nielsen, Bjørn Gilbert

    2001-01-01

    proteins generate forces, to the macroscopic levels where overt arm movements are vol- untarily controlled within an unpredictable environment by legions of neurons¯ring in orderly fashion. An extensive computer simulation system has been developed for this thesis, which at present contains a neural...... network scripting language for specifying arbitrary neural architectures, de¯nition ¯les for detailed spinal networks, various biologically realistic models of neurons, and dynamic synapses. Also included are structurally accurate models of intrafusal and extra-fusal muscle ¯bers and a general body...... that an explicit function may be derived which expresses the force that the spindle contractile elements must produce to exactly counter spindle unloading during muscle shortening. This information was used to calculate the corresponding "optimal" °-motoneuronal activity level. For some simple arm movement tasks...

  11. Simulation of lung motions using an artificial neural network; Utilisation d'un reseau de neurones artificiels pour la simulation des mouvements pulmonaires

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, R.; Henriet, J.; Sauget, M.; Gschwind, R.; Makovicka, L. [IRMA/ENISYS/FEMTO-ST, UMR 6174 CNRS, pole universitaire des Portes du Jura, BP 71427, 25211 Montbeliard cedex (France); Salomon, M. [AND/LIFC, universite de Franche-Comte, BP 527, rue Engel-Gros, 90016 Belfort cedex (France); Nguyen, F. [Service de radiotherapie, CHU Jean-Minjoz, 3, boulevard Fleming, 25030 Besancon cedex (France)

    2011-04-15

    Purpose. A way to improve the accuracy of lung radiotherapy for a patient is to get a better understanding of its lung motion. Indeed, thanks to this knowledge it becomes possible to follow the displacements of the clinical target volume (CTV) induced by the lung breathing. This paper presents a feasibility study of an original method to simulate the positions of points in patient's lung at all breathing phases. Patients and methods. This method, based on an artificial neural network, allowed learning the lung motion on real cases and then to simulate it for new patients for which only the beginning and the end breathing data are known. The neural network learning set is made up of more than 600 points. These points, shared out on three patients and gathered on a specific lung area, were plotted by a MD. Results. - The first results are promising: an average accuracy of 1 mm is obtained for a spatial resolution of 1 x 1 x 2.5 mm{sup 3}. Conclusion. We have demonstrated that it is possible to simulate lung motion with accuracy using an artificial neural network. As future work we plan to improve the accuracy of our method with the addition of new patient data and a coverage of the whole lungs. (authors)

  12. Discrimination of communication vocalizations by single neurons and groups of neurons in the auditory midbrain.

    Science.gov (United States)

    Schneider, David M; Woolley, Sarah M N

    2010-06-01

    Many social animals including songbirds use communication vocalizations for individual recognition. The perception of vocalizations depends on the encoding of complex sounds by neurons in the ascending auditory system, each of which is tuned to a particular subset of acoustic features. Here, we examined how well the responses of single auditory neurons could be used to discriminate among bird songs and we compared discriminability to spectrotemporal tuning. We then used biologically realistic models of pooled neural responses to test whether the responses of groups of neurons discriminated among songs better than the responses of single neurons and whether discrimination by groups of neurons was related to spectrotemporal tuning and trial-to-trial response variability. The responses of single auditory midbrain neurons could be used to discriminate among vocalizations with a wide range of abilities, ranging from chance to 100%. The ability to discriminate among songs using single neuron responses was not correlated with spectrotemporal tuning. Pooling the responses of pairs of neurons generally led to better discrimination than the average of the two inputs and the most discriminating input. Pooling the responses of three to five single neurons continued to improve neural discrimination. The increase in discriminability was largest for groups of neurons with similar spectrotemporal tuning. Further, we found that groups of neurons with correlated spike trains achieved the largest gains in discriminability. We simulated neurons with varying levels of temporal precision and measured the discriminability of responses from single simulated neurons and groups of simulated neurons. Simulated neurons with biologically observed levels of temporal precision benefited more from pooling correlated inputs than did neurons with highly precise or imprecise spike trains. These findings suggest that pooling correlated neural responses with the levels of precision observed in the

  13. BigNeuron: Large-scale 3D Neuron Reconstruction from Optical Microscopy Images

    OpenAIRE

    Peng, Hanchuan; Hawrylycz, Michael; Roskams, Jane; Hill, Sean; Spruston, Nelson; Meijering, Erik; Ascoli, Giorgio A.

    2015-01-01

    textabstractUnderstanding the structure of single neurons is critical for understanding how they function within neural circuits. BigNeuron is a new community effort that combines modern bioimaging informatics, recent leaps in labeling and microscopy, and the widely recognized need for openness and standardization to provide a community resource for automated reconstruction of dendritic and axonal morphology of single neurons. Understanding the structure of single neurons is critical for unde...

  14. Fast and Efficient Asynchronous Neural Computation with Adapting Spiking Neural Networks

    NARCIS (Netherlands)

    D. Zambrano (Davide); S.M. Bohte (Sander)

    2016-01-01

    textabstractBiological neurons communicate with a sparing exchange of pulses - spikes. It is an open question how real spiking neurons produce the kind of powerful neural computation that is possible with deep artificial neural networks, using only so very few spikes to communicate. Building on

  15. Neural correlates of consciousness

    African Journals Online (AJOL)

    neural cells.1 Under this approach, consciousness is believed to be a product of the ... possible only when the 40 Hz electrical hum is sustained among the brain circuits, ... expect the brain stem ascending reticular activating system. (ARAS) and the ... related synchrony of cortical neurons.11 Indeed, stimulation of brainstem ...

  16. Transplanted Dental Pulp Stem Cells Migrate to Injured Area and Express Neural Markers in a Rat Model of Cerebral Ischemia.

    Science.gov (United States)

    Zhang, Xuemei; Zhou, Yinglian; Li, Hulun; Wang, Rui; Yang, Dan; Li, Bing; Cao, Xiaofang; Fu, Jin

    2018-01-01

    Ischemic stroke is a major cause of disability and mortality worldwide, while effective restorative treatments are limited at present. Stem cell transplantation holds therapeutic potential for ischemic vascular diseases and may provide an opportunity for neural regeneration. Dental pulp stem cells (DPSCs) origin from neural crest and have neuro-ectodermal features including proliferation and multilineage differentiation potentials. The rat model of middle cerebral artery occlusion (MCAO) was used to evaluate whether intravenous administration of DPSCs can reduce infarct size and to estimate the migration and trans-differentiation into neuron-like cells in focal cerebral ischemia models. Brain tissues were collected at 4 weeks following cell transplantation and analyzed with immunofluorescence, immunohistochemistry and real-time polymerase chain reaction (RT-PCR) methods. Intravenously administration of rat-derived DPSCs were found to migrate into the boundary of ischemic areas and expressed neural specific markers, reducing infarct volume and cerebral edema. These results suggest that DPSCs treatment may serve as a potential therapy for clinical stroke patients in the future. © 2018 The Author(s). Published by S. Karger AG, Basel.

  17. Stereopsis and 3D surface perception by spiking neurons in laminar cortical circuits: a method for converting neural rate models into spiking models.

    Science.gov (United States)

    Cao, Yongqiang; Grossberg, Stephen

    2012-02-01

    A laminar cortical model of stereopsis and 3D surface perception is developed and simulated. The model shows how spiking neurons that interact in hierarchically organized laminar circuits of the visual cortex can generate analog properties of 3D visual percepts. The model describes how monocular and binocular oriented filtering interact with later stages of 3D boundary formation and surface filling-in in the LGN and cortical areas V1, V2, and V4. It proposes how interactions between layers 4, 3B, and 2/3 in V1 and V2 contribute to stereopsis, and how binocular and monocular information combine to form 3D boundary and surface representations. The model suggests how surface-to-boundary feedback from V2 thin stripes to pale stripes helps to explain how computationally complementary boundary and surface formation properties lead to a single consistent percept, eliminate redundant 3D boundaries, and trigger figure-ground perception. The model also shows how false binocular boundary matches may be eliminated by Gestalt grouping properties. In particular, the disparity filter, which helps to solve the correspondence problem by eliminating false matches, is realized using inhibitory interneurons as part of the perceptual grouping process by horizontal connections in layer 2/3 of cortical area V2. The 3D sLAMINART model simulates 3D surface percepts that are consciously seen in 18 psychophysical experiments. These percepts include contrast variations of dichoptic masking and the correspondence problem, the effect of interocular contrast differences on stereoacuity, Panum's limiting case, the Venetian blind illusion, stereopsis with polarity-reversed stereograms, da Vinci stereopsis, and perceptual closure. The model hereby illustrates a general method of unlumping rate-based models that use the membrane equations of neurophysiology into models that use spiking neurons, and which may be embodied in VLSI chips that use spiking neurons to minimize heat production. Copyright

  18. Stochastic neuron models

    CERN Document Server

    Greenwood, Priscilla E

    2016-01-01

    This book describes a large number of open problems in the theory of stochastic neural systems, with the aim of enticing probabilists to work on them. This includes problems arising from stochastic models of individual neurons as well as those arising from stochastic models of the activities of small and large networks of interconnected neurons. The necessary neuroscience background to these problems is outlined within the text, so readers can grasp the context in which they arise. This book will be useful for graduate students and instructors providing material and references for applying probability to stochastic neuron modeling. Methods and results are presented, but the emphasis is on questions where additional stochastic analysis may contribute neuroscience insight. An extensive bibliography is included. Dr. Priscilla E. Greenwood is a Professor Emerita in the Department of Mathematics at the University of British Columbia. Dr. Lawrence M. Ward is a Professor in the Department of Psychology and the Brain...

  19. Attractor dynamics in local neuronal networks

    Directory of Open Access Journals (Sweden)

    Jean-Philippe eThivierge

    2014-03-01

    Full Text Available Patterns of synaptic connectivity in various regions of the brain are characterized by the presence of synaptic motifs, defined as unidirectional and bidirectional synaptic contacts that follow a particular configuration and link together small groups of neurons. Recent computational work proposes that a relay network (two populations communicating via a third, relay population of neurons can generate precise patterns of neural synchronization. Here, we employ two distinct models of neuronal dynamics and show that simulated neural circuits designed in this way are caught in a global attractor of activity that prevents neurons from modulating their response on the basis of incoming stimuli. To circumvent the emergence of a fixed global attractor, we propose a mechanism of selective gain inhibition that promotes flexible responses to external stimuli. We suggest that local neuronal circuits may employ this mechanism to generate precise patterns of neural synchronization whose transient nature delimits the occurrence of a brief stimulus.

  20. Central auditory neurons have composite receptive fields.

    Science.gov (United States)

    Kozlov, Andrei S; Gentner, Timothy Q

    2016-02-02

    High-level neurons processing complex, behaviorally relevant signals are sensitive to conjunctions of features. Characterizing the receptive fields of such neurons is difficult with standard statistical tools, however, and the principles governing their organization remain poorly understood. Here, we demonstrate multiple distinct receptive-field features in individual high-level auditory neurons in a songbird, European starling, in response to natural vocal signals (songs). We then show that receptive fields with similar characteristics can be reproduced by an unsupervised neural network trained to represent starling songs with a single learning rule that enforces sparseness and divisive normalization. We conclude that central auditory neurons have composite receptive fields that can arise through a combination of sparseness and normalization in neural circuits. Our results, along with descriptions of random, discontinuous receptive fields in the central olfactory neurons in mammals and insects, suggest general principles of neural computation across sensory systems and animal classes.

  1. Multi-criteria optimization of dryers: use of neural networks and genetical algorithms; Optimisation multi-criteres de sechoirs: utilisation des reseaux de neurones et algorithmes genetiques

    Energy Technology Data Exchange (ETDEWEB)

    Hugget, A.; Nadeau, J.P.; Sabastian, P. [Ecole Nationale Superieure des Arts et Metiers, 33 - Talence (France)

    1997-12-31

    Drying remains a complex process to model and thus to optimize. In this paper a new approach is proposed which allows to perform a compression in the drying model in order to integrate it using neural networks. The simulation times become very small and allow to test a great number of configurations. This decisive advantage allows to perform a multi-criteria optimization using hybrid genetical algorithms based on technical-economical criteria like drying cost, production or final product quality. (J.S.) 10 refs.

  2. Application of neural networks to measurement methods based on radiation interactions with matter; Application des reseaux de neurones aux methodes de mesure basees sur l'interaction rayonnement matiere

    Energy Technology Data Exchange (ETDEWEB)

    Pilato, V

    1999-07-01

    The possibility of improving by neuronal techniques the preparation and interpretation of nuclear measurements was investigated. A general methodology was developed and applied to various problems in this field. Whatever the problem to be treated, to solve it comes to determine the relation which binds the inputs to the outputs. Neural networks based on supervised training, like the multilayer Perceptron, have the capability to calculate any relation between a set of input and output data. On the other hand, the training phase is often a long and delicate operation whose difficulties grow with the size of the network:it is thus interesting to reduce it by introducing knowledge a priori and/or by reducing the number of inputs in order to extract the relevant information. If the correlations between the inputs are linear, the Principal Components Analysis (PCA) and its neuronal equivalents make it possible to obtain by orthogonal projection a reduced number of input components while preserving the maximum of initial information. If the correlations are nonlinear, the Curvilinear Components Analysis (CCA) allows, by a unsupervised training, to carry out a nonlinear projection of the inputs in a space of reduced size. Besides, it is noticed that when the dimension of the input space is equal to the intrinsic dimension of the problem, this last is practically solved by CCA. We propose a general method which consists in characterizing as well as possible the problem by its inputs and then to extract and classify the information contained in those by projection in a space of reduced size. Association between the projected data and the problem outputs is then carried out by a supervised training network. Certain results having to be provided with their associated uncertainty, a statistical method based on the bootstrap algorithm is proposed. Potential applications other that those treated are considered. (author)

  3. Hydraulic Evaluation of the Crest Wing Wave Energy Converter

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    This report presents the results of an experimental study of the wave energy converting abilities of the Crest Wing wave energy converter (WEC). The Crest Wing is a WEC that uses its movement in matching the shape of an oncoming wave to generate power. Model tests have been performed using a scale...... model (length scale 1:30), provided by WaveEnergyFyn, in regular and irregular wave states that can be found in Assessment of Wave Energy Devices. Best Practice as used in Denmark (Frigaard et al., 2008). The tests were carried out at Dept. of Civil Engineering, Aalborg (Frigaard et al., 2008......). The tests were carried out at Dept. of Civil Engineering, Aalborg University (AAU) in the 3D deep water wave tank. The displacement and force applied to a power take off system, provided by WaveEnergyFyn, were measured and used to calculate total power take off....

  4. TeV electron measurement with CREST experiment

    Science.gov (United States)

    Park, Nahee; Anderson, T.; Bower, C.; Coutu, S.; Gennaro, J.; Geske, M.; Muller, D.; Musser, J.; Nutter, S.

    CREST, the Cosmic Ray Electron Synchrotron Telescope is a balloon-borne experiment de-signed to measure the spectrum of multi-TeV electrons by the detection of the x-ray synchrotron photons generated in the magnetic field of the Earth. Electrons in the TeV range are expected to reflect the properties of local sources because fluxes from remote locations are suppressed by radiative losses during propagation. Since CREST needs to intersect only a portion of the kilometers-long trail of photons generated by the high-energy electron, the method yields a larger effective area than the physical size of the detector, boosting detection areas. The in-strument is composed of an array of 1024 BaF2 crystals and a set of scintillating veto counters. A long duration balloon flight in Antarctica is currently planned for the 2010-11 season.

  5. An integral term adaptive neural control of fed-batch fermentation biotechnological process; Control neuronal adaptable con termino integral para un proceso biotecnologico de fermentacion por lote alimentado

    Energy Technology Data Exchange (ETDEWEB)

    Baruch, Ieroham; Hernandez, Luis Albert