WorldWideScience

Sample records for neural crest migration

  1. Chicken trunk neural crest migration visualized with HNK1.

    Science.gov (United States)

    Giovannone, Dion; Ortega, Blanca; Reyes, Michelle; El-Ghali, Nancy; Rabadi, Maes; Sao, Sothy; de Bellard, Maria Elena

    2015-04-01

    The development of the nervous system involves cells remaining within the neural tube (CNS) and a group of cells that delaminate from the dorsal neural tube and migrate extensively throughout the developing embryo called neural crest cells (NCC). These cells are a mesenchymal highly migratory group of cells that give rise to a wide variety of cell derivatives: melanocytes, sensory neurons, bone, Schwann cells, etc. But not all NCC can give rise to all derivatives, they have fate restrictions based on their axial level of origin: cranial, vagal, trunk and sacral. Our aim was to provide a thorough presentation on how does trunk neural crest cell migration looks in the chicken embryo, in wholemount and in sections using the unique chicken marker HNK1. The description presented here makes a good guideline for those interested in viewing trunk NCC migration patterns. We show how before HH14 there are few trunk NCC delaminating and migrating, but between HH15 through HH19 trunk NCC delaminate in large numbers. Melanocytes precursors begin to enter the dorsolateral pathway by HH17. We found that by HH20 HNK1 is not a valid good marker for NCC and that HNK1 is a better marker than Sox10 when looking at neural crest cells morphology and migration details. Copyright © 2015 The Authors. Published by Elsevier GmbH.. All rights reserved.

  2. Draxin, an axon guidance protein, affects chick trunk neural crest migration.

    Science.gov (United States)

    Su, Yuhong; Naser, Iftekhar B; Islam, Shahidul M; Zhang, Sanbing; Ahmed, Giasuddin; Chen, Sandy; Shinmyo, Yohei; Kawakami, Minoru; Yamamura, Ken-ichi; Tanaka, Hideaki

    2009-12-01

    The neural crest is a multipotent population of migratory cells that arises in the central nervous system and subsequently migrates along defined stereotypic pathways. In the present work, we analyzed the role of a repulsive axon guidance protein, draxin, in the migration of neural crest cells. Draxin is expressed in the roof plate of the chick trunk spinal cord and around the early migration pathway of neural crest cells. Draxin modulates chick neural crest cell migration in vitro by reducing the polarization of these cells. When exposed to draxin, the velocity of migrating neural crest cells was reduced, and the cells changed direction so frequently that the net migration distance was also reduced. Overexpression of draxin also caused some early migrating neural crest cells to change direction to the dorsolateral pathway in the chick trunk region, presumably due to draxin's inhibitory activity. These results demonstrate that draxin, an axon guidance protein, can also affect trunk neural crest migration in the chick embryo.

  3. Migrating neural crest cells in the trunk of the avian embryo are multipotent

    OpenAIRE

    Fraser, Scott E.; Bronner-Fraser, Marianne

    1991-01-01

    Trunk neural crest cells migrate extensively and give rise to diverse cell types, including cells of the sensory and autonomic nervous systems. Previously, we demonstrated that many premigratory trunk neural crest cells give rise to descendants with distinct phenotypes in multiple neural crest derivatives. The results are consistent with the idea that neural crest cells are multipotent prior to their emigration from the neural tube and become restricted in phenotype after leaving the neural t...

  4. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration.

    Science.gov (United States)

    Chevalier, N R; Gazguez, E; Bidault, L; Guilbert, T; Vias, C; Vian, E; Watanabe, Y; Muller, L; Germain, S; Bondurand, N; Dufour, S; Fleury, V

    2016-02-18

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development.

  5. Trunk neural crest cells: formation, migration and beyond.

    Science.gov (United States)

    Vega-Lopez, Guillermo A; Cerrizuela, Santiago; Aybar, Manuel J

    2017-01-01

    Neural crest cells (NCCs) are a multipotent, migratory cell population that generates an astonishingly diverse array of cell types during vertebrate development. The trunk neural crest has long been considered of particular significance. First, it has been held that the trunk neural crest has a morphogenetic role, acting to coordinate the development of the peripheral nervous system, secretory cells of the endocrine system and pigment cells of the skin. Second, the trunk neural crest additionally has skeletal potential. However, it has been demonstrated that a key role of the trunk neural crest streams is to organize the innervation of the intestine. Although trunk NCCs have a limited capacity for self-renewal, sometimes they become neural-crest-derived tumor cells and reveal the fact that that NCCs and tumor cells share the same molecular machinery. In this review we describe the routes taken by trunk NCCs and consider the signals and cues that pattern these trajectories. We also discuss recent advances in the characterization of the properties of trunk NCCs for various model organisms in order to highlight common themes. Finally, looking to the future, we discuss the need to translate the wealth of data from animal studies to the clinical area in order to develop treatments for neural crest-related human diseases.

  6. A novel role for Lh3 dependent ECM modifications during neural crest cell migration in zebrafish.

    Directory of Open Access Journals (Sweden)

    Santanu Banerjee

    Full Text Available During vertebrate development, trunk neural crest cells delaminate along the entire length of the dorsal neural tube and initially migrate as a non-segmented sheet. As they enter the somites, neural crest cells rearrange into spatially restricted segmental streams. Extracellular matrix components are likely to play critical roles in this transition from a sheet-like to a stream-like mode of migration, yet the extracellular matrix components and their modifying enzymes critical for this transition are largely unknown. Here, we identified the glycosyltransferase Lh3, known to modify extracellular matrix components, and its presumptive substrate Collagen18A1, to provide extrinsic signals critical for neural crest cells to transition from a sheet-like migration behavior to migrating as a segmental stream. Using live cell imaging we show that in lh3 null mutants, neural crest cells fail to transition from a sheet to a stream, and that they consequently enter the somites as multiple streams, or stall shortly after entering the somites. Moreover, we demonstrate that transgenic expression of lh3 in a small subset of somitic cells adjacent to where neural crest cells switch from sheet to stream migration restores segmental neural crest cell migration. Finally, we show that knockdown of the presumptive Lh3 substrate Collagen18A1 recapitulates the neural crest cell migration defects observed in lh3 mutants, consistent with the notion that Lh3 exerts its effect on neural crest cell migration by regulating post-translational modifications of Collagen18A1. Together these data suggest that Lh3-Collagen18A1 dependent ECM modifications regulate the transition of trunk neural crest cells from a non-segmental sheet like migration mode to a segmental stream migration mode.

  7. A novel role for Lh3 dependent ECM modifications during neural crest cell migration in zebrafish.

    Science.gov (United States)

    Banerjee, Santanu; Isaacman-Beck, Jesse; Schneider, Valerie A; Granato, Michael

    2013-01-01

    During vertebrate development, trunk neural crest cells delaminate along the entire length of the dorsal neural tube and initially migrate as a non-segmented sheet. As they enter the somites, neural crest cells rearrange into spatially restricted segmental streams. Extracellular matrix components are likely to play critical roles in this transition from a sheet-like to a stream-like mode of migration, yet the extracellular matrix components and their modifying enzymes critical for this transition are largely unknown. Here, we identified the glycosyltransferase Lh3, known to modify extracellular matrix components, and its presumptive substrate Collagen18A1, to provide extrinsic signals critical for neural crest cells to transition from a sheet-like migration behavior to migrating as a segmental stream. Using live cell imaging we show that in lh3 null mutants, neural crest cells fail to transition from a sheet to a stream, and that they consequently enter the somites as multiple streams, or stall shortly after entering the somites. Moreover, we demonstrate that transgenic expression of lh3 in a small subset of somitic cells adjacent to where neural crest cells switch from sheet to stream migration restores segmental neural crest cell migration. Finally, we show that knockdown of the presumptive Lh3 substrate Collagen18A1 recapitulates the neural crest cell migration defects observed in lh3 mutants, consistent with the notion that Lh3 exerts its effect on neural crest cell migration by regulating post-translational modifications of Collagen18A1. Together these data suggest that Lh3-Collagen18A1 dependent ECM modifications regulate the transition of trunk neural crest cells from a non-segmental sheet like migration mode to a segmental stream migration mode.

  8. A novel role for MuSK and non-canonical Wnt signaling during segmental neural crest cell migration.

    Science.gov (United States)

    Banerjee, Santanu; Gordon, Laura; Donn, Thomas M; Berti, Caterina; Moens, Cecilia B; Burden, Steven J; Granato, Michael

    2011-08-01

    Trunk neural crest cells delaminate from the dorsal neural tube as an uninterrupted sheet; however, they convert into segmentally organized streams before migrating through the somitic territory. These neural crest cell streams join the segmental trajectories of pathfinding spinal motor axons, suggesting that interactions between these two cell types might be important for neural crest cell migration. Here, we show that in the zebrafish embryo migration of both neural crest cells and motor axons is temporally synchronized and spatially restricted to the center of the somite, but that motor axons are dispensable for segmental neural crest cell migration. Instead, we find that muscle-specific receptor kinase (MuSK) and its putative ligand Wnt11r are crucial for restricting neural crest cell migration to the center of each somite. Moreover, we find that blocking planar cell polarity (PCP) signaling in somitic muscle cells also results in non-segmental neural crest cell migration. Using an F-actin biosensor we show that in the absence of MuSK neural crest cells fail to retract non-productive leading edges, resulting in non-segmental migration. Finally, we show that MuSK knockout mice display similar neural crest cell migration defects, suggesting a novel, evolutionarily conserved role for MuSK in neural crest migration. We propose that a Wnt11r-MuSK dependent, PCP-like pathway restricts neural crest cells to their segmental path.

  9. A potential inhibitory function of draxin in regulating mouse trunk neural crest migration.

    Science.gov (United States)

    Zhang, Sanbing; Su, Yuhong; Gao, Jinbao; Zhang, Chenbing; Tanaka, Hideaki

    2017-01-01

    Draxin is a repulsive axon guidance protein that plays important roles in the formation of three commissures in the central nervous system and dorsal interneuron 3 (dI3) in the chick spinal cord. In the present study, we report the expression pattern of mouse draxin in the embryonic mouse trunk spinal cord. In the presence of draxin, the longest net migration length of a migrating mouse trunk neural crest cell was significantly reduced. In addition, the relative number of apolar neural crest cells increased as the draxin treatment time increased. Draxin caused actin cytoskeleton rearrangement in the migrating trunk neural crest cells. Our data suggest that draxin may regulate mouse trunk neural crest cell migration by the rearrangement of cell actin cytoskeleton and by reducing the polarization activity of these cells subsequently.

  10. A PTK7/Ror2 Co-Receptor Complex Affects Xenopus Neural Crest Migration.

    Directory of Open Access Journals (Sweden)

    Martina Podleschny

    Full Text Available Neural crest cells are a highly migratory pluripotent cell population that generates a wide array of different cell types and failure in their migration can result in severe birth defects and malformation syndromes. Neural crest migration is controlled by various means including chemotaxis, repellent guidance cues and cell-cell interaction. Non-canonical Wnt PCP (planar cell polarity signaling has previously been shown to control cell-contact mediated neural crest cell guidance. PTK7 (protein tyrosine kinase 7 is a transmembrane pseudokinase and a known regulator of Wnt/PCP signaling, which is expressed in Xenopus neural crest cells and required for their migration. PTK7 functions as a Wnt co-receptor; however, it remains unclear by which means PTK7 affects neural crest migration. Expressing fluorescently labeled proteins in Xenopus neural crest cells we find that PTK7 co-localizes with the Ror2 Wnt-receptor. Further, co-immunoprecipitation experiments demonstrate that PTK7 interacts with Ror2. The PTK7/Ror2 interaction is likely relevant for neural crest migration, because Ror2 expression can rescue the PTK7 loss of function migration defect. Live cell imaging of explanted neural crest cells shows that PTK7 loss of function affects the formation of cell protrusions as well as cell motility. Co-expression of Ror2 can rescue these defects. In vivo analysis demonstrates that a kinase dead Ror2 mutant cannot rescue PTK7 loss of function. Thus, our data suggest that Ror2 can substitute for PTK7 and that the signaling function of its kinase domain is required for this effect.

  11. Amphioxus and lamprey AP-2 genes: implications for neural crest evolution and migration patterns

    Science.gov (United States)

    Meulemans, Daniel; Bronner-Fraser, Marianne

    2002-01-01

    The neural crest is a uniquely vertebrate cell type present in the most basal vertebrates, but not in cephalochordates. We have studied differences in regulation of the neural crest marker AP-2 across two evolutionary transitions: invertebrate to vertebrate, and agnathan to gnathostome. Isolation and comparison of amphioxus, lamprey and axolotl AP-2 reveals its extensive expansion in the vertebrate dorsal neural tube and pharyngeal arches, implying co-option of AP-2 genes by neural crest cells early in vertebrate evolution. Expression in non-neural ectoderm is a conserved feature in amphioxus and vertebrates, suggesting an ancient role for AP-2 genes in this tissue. There is also common expression in subsets of ventrolateral neurons in the anterior neural tube, consistent with a primitive role in brain development. Comparison of AP-2 expression in axolotl and lamprey suggests an elaboration of cranial neural crest patterning in gnathostomes. However, migration of AP-2-expressing neural crest cells medial to the pharyngeal arch mesoderm appears to be a primitive feature retained in all vertebrates. Because AP-2 has essential roles in cranial neural crest differentiation and proliferation, the co-option of AP-2 by neural crest cells in the vertebrate lineage was a potentially crucial event in vertebrate evolution.

  12. Cdon promotes neural crest migration by regulating N-cadherin localization.

    Science.gov (United States)

    Powell, Davalyn R; Williams, Jason S; Hernandez-Lagunas, Laura; Salcedo, Ernesto; O'Brien, Jenean H; Artinger, Kristin Bruk

    2015-11-15

    Neural crest cells (NCCs) are essential embryonic progenitor cells that are unique to vertebrates and form a remarkably complex and coordinated system of highly motile cells. Migration of NCCs occurs along specific pathways within the embryo in response to both environmental cues and cell-cell interactions within the neural crest population. Here, we demonstrate a novel role for the putative Sonic hedgehog (Shh) receptor and cell adhesion regulator, cdon, in zebrafish neural crest migration. cdon is expressed in developing premigratory NCCs but is downregulated once the cells become migratory. Knockdown of cdon results in aberrant migration of trunk NCCs: crestin positive cells can emigrate out of the neural tube but stall shortly after the initiation of migration. Live cell imaging analysis demonstrates reduced directedness of migration, increased velocity and mispositioned cell protrusions. In addition, transplantation analysis suggests that cdon is required cell-autonomously for directed NCC migration in the trunk. Interestingly, N-cadherin is mislocalized following cdon knockdown suggesting that the role of cdon in NCCs is to regulate N-cadherin localization. Our results reveal a novel role for cdon in zebrafish neural crest migration, and suggest a mechanism by which Cdon is required to localize N-cadherin to the cell membrane in migratory NCCs for directed migration.

  13. Leader cells define directionality of trunk, but not cranial, neural crest migration

    OpenAIRE

    Richardson, Jo; Gauert, Anton; Montecinos, Luis Briones; Fanlo, Lucía; Alhashem, Zainalabdeen Mohmammed; Assar, Rodrigo; MARTI, ELISA; Kabla, Alexandre; Härtel, Steffen; Linker, Claudia

    2016-01-01

    Summary:Collective cell migration is fundamental for life and a hallmark of cancer. Neural crest (NC) cells migrate collectively, but the mechanisms governing this process remain controversial. Previous analyses in Xenopus indicate that cranial NC (CNC) cells are a homogeneous population relying on cell-cell interactions for directional migration, while chick embryo analyses suggest a heterogeneous population with leader cells instructing directionality. Our data in chick and zebrafish embryo...

  14. Emergence and migration of trunk neural crest cells in a snake, the California Kingsnake (Lampropeltis getula californiae).

    Science.gov (United States)

    Reyes, Michelle; Zandberg, Katrina; Desmawati, Iska; de Bellard, Maria E

    2010-05-18

    The neural crest is a group of multipotent cells that emerges after an epithelial-to-mesenchymal transition from the dorsal neural tube early during development. These cells then migrate throughout the embryo, giving rise to a wide variety derivatives including the peripheral nervous system, craniofacial skeleton, pigment cells, and endocrine organs. While much is known about neural crest cells in mammals, birds, amphibians and fish, relatively little is known about their development in non-avian reptiles like snakes and lizards. In this study, we show for the first time ever trunk neural crest migration in a snake by labeling it with DiI and immunofluorescence. As in birds and mammals, we find that early migrating trunk neural crest cells use both a ventromedial pathway and an inter-somitic pathway in the snake. However, unlike birds and mammals, we also observed large numbers of late migrating neural crest cells utilizing the inter-somitic pathway in snake. We found that while trunk neural crest migration in snakes is very similar to that of other amniotes, the inter-somitic pathway is used more extensively by late-migrating trunk neural crest cells in snake.

  15. Leader Cells Define Directionality of Trunk, but Not Cranial, Neural Crest Cell Migration

    Directory of Open Access Journals (Sweden)

    Jo Richardson

    2016-05-01

    Full Text Available Collective cell migration is fundamental for life and a hallmark of cancer. Neural crest (NC cells migrate collectively, but the mechanisms governing this process remain controversial. Previous analyses in Xenopus indicate that cranial NC (CNC cells are a homogeneous population relying on cell-cell interactions for directional migration, while chick embryo analyses suggest a heterogeneous population with leader cells instructing directionality. Our data in chick and zebrafish embryos show that CNC cells do not require leader cells for migration and all cells present similar migratory capacities. In contrast, laser ablation of trunk NC (TNC cells shows that leader cells direct movement and cell-cell contacts are required for migration. Moreover, leader and follower identities are acquired before the initiation of migration and remain fixed thereafter. Thus, two distinct mechanisms establish the directionality of CNC cells and TNC cells. This implies the existence of multiple molecular mechanisms for collective cell migration.

  16. Emergence and migration of trunk neural crest cells in a snake, the California Kingsnake (Lampropeltis getula californiae)

    OpenAIRE

    Desmawati Iska; Zandberg Katrina; Reyes Michelle; de Bellard Maria E

    2010-01-01

    Abstract Background The neural crest is a group of multipotent cells that emerges after an epithelial-to-mesenchymal transition from the dorsal neural tube early during development. These cells then migrate throughout the embryo, giving rise to a wide variety derivatives including the peripheral nervous system, craniofacial skeleton, pigment cells, and endocrine organs. While much is known about neural crest cells in mammals, birds, amphibians and fish, relatively little is known about their ...

  17. Vangl-dependent planar cell polarity signalling is not required for neural crest migration in mammals.

    Science.gov (United States)

    Pryor, Sophie E; Massa, Valentina; Savery, Dawn; Andre, Philipp; Yang, Yingzi; Greene, Nicholas D E; Copp, Andrew J

    2014-08-01

    The role of planar cell polarity (PCP) signalling in neural crest (NC) development is unclear. The PCP dependence of NC cell migration has been reported in Xenopus and zebrafish, but NC migration has not been studied in mammalian PCP mutants. Vangl2(Lp/Lp) mouse embryos lack PCP signalling and undergo almost complete failure of neural tube closure. Here we show, however, that NC specification, migration and derivative formation occur normally in Vangl2(Lp/Lp) embryos. The gene family member Vangl1 was not expressed in NC nor ectopically expressed in Vangl2(Lp/Lp) embryos, and doubly homozygous Vangl1/Vangl2 mutants exhibited normal NC migration. Acute downregulation of Vangl2 in the NC lineage did not prevent NC migration. In vitro, Vangl2(Lp/Lp) neural tube explants generated emigrating NC cells, as in wild type. Hence, PCP signalling is not essential for NC migration in mammals, in contrast to its essential role in neural tube closure. PCP mutations are thus unlikely to mediate NC-related birth defects in humans.

  18. Leader Cells Define Directionality of Trunk, but Not Cranial, Neural Crest Cell Migration.

    Science.gov (United States)

    Richardson, Jo; Gauert, Anton; Briones Montecinos, Luis; Fanlo, Lucía; Alhashem, Zainalabdeen Mohmammed; Assar, Rodrigo; Marti, Elisa; Kabla, Alexandre; Härtel, Steffen; Linker, Claudia

    2016-05-31

    Collective cell migration is fundamental for life and a hallmark of cancer. Neural crest (NC) cells migrate collectively, but the mechanisms governing this process remain controversial. Previous analyses in Xenopus indicate that cranial NC (CNC) cells are a homogeneous population relying on cell-cell interactions for directional migration, while chick embryo analyses suggest a heterogeneous population with leader cells instructing directionality. Our data in chick and zebrafish embryos show that CNC cells do not require leader cells for migration and all cells present similar migratory capacities. In contrast, laser ablation of trunk NC (TNC) cells shows that leader cells direct movement and cell-cell contacts are required for migration. Moreover, leader and follower identities are acquired before the initiation of migration and remain fixed thereafter. Thus, two distinct mechanisms establish the directionality of CNC cells and TNC cells. This implies the existence of multiple molecular mechanisms for collective cell migration. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Controlled levels of canonical Wnt signaling are required for neural crest migration.

    Science.gov (United States)

    Maj, Ewa; Künneke, Lutz; Loresch, Elisabeth; Grund, Anita; Melchert, Juliane; Pieler, Tomas; Aspelmeier, Timo; Borchers, Annette

    2016-09-01

    Canonical Wnt signaling plays a dominant role in the development of the neural crest (NC), a highly migratory cell population that generates a vast array of cell types. Canonical Wnt signaling is required for NC induction as well as differentiation, however its role in NC migration remains largely unknown. Analyzing nuclear localization of β-catenin as readout for canonical Wnt activity, we detect nuclear β-catenin in premigratory but not migratory Xenopus NC cells suggesting that canonical Wnt activity has to decrease to basal levels to enable NC migration. To define a possible function of canonical Wnt signaling in Xenopus NC migration, canonical Wnt signaling was modulated at different time points after NC induction. This was accomplished using either chemical modulators affecting β-catenin stability or inducible glucocorticoid fusion constructs of Lef/Tcf transcription factors. In vivo analysis of NC migration by whole mount in situ hybridization demonstrates that ectopic activation of canonical Wnt signaling inhibits cranial NC migration. Further, NC transplantation experiments confirm that this effect is tissue-autonomous. In addition, live-cell imaging in combination with biophysical data analysis of explanted NC cells confirms the in vivo findings and demonstrates that modulation of canonical Wnt signaling affects the ability of NC cells to perform single cell migration. Thus, our data support the hypothesis that canonical Wnt signaling needs to be tightly controlled to enable migration of NC cells.

  20. E-cadherin is required for cranial neural crest migration in Xenopus laevis.

    Science.gov (United States)

    Huang, Chaolie; Kratzer, Marie-Claire; Wedlich, Doris; Kashef, Jubin

    2016-03-15

    The cranial neural crest (CNC) is a highly motile and multipotent embryonic cell population, which migrates directionally on defined routes throughout the embryo, contributing to facial structures including cartilage, bone and ganglia. Cadherin-mediated cell-cell adhesion is known to play a crucial role in the directional migration of CNC cells. However, migrating CNC co-express different cadherin subtypes, and their individual roles have yet to be fully explored. In previous studies, the expression of individual cadherin subtypes has been analysed using different methods with varying sensitivities, preventing the direct comparison of expression levels. Here, we provide the first comprehensive and comparative analysis of the expression of six cadherin superfamily members during different phases of CNC cell migration in Xenopus. By applying a quantitative RT-qPCR approach, we can determine the copy number and abundance of each expressed cadherin through different phases of CNC migration. Using this approach, we show for the first time expression of E-cadherin and XB/C-cadherin in CNC cells, adding them as two new members of cadherins co-expressed during CNC migration. Cadherin co-expression during CNC migration in Xenopus, in particular the constant expression of E-cadherin, contradicts the classical epithelial-mesenchymal transition (EMT) model postulating a switch in cadherin expression. Loss-of-function experiments further show that E-cadherin is required for proper CNC cell migration in vivo and also for cell protrusion formation in vitro. Knockdown of E-cadherin is not rescued by co-injection of other classical cadherins, pointing to a specific function of E-cadherin in mediating CNC cell migration. Finally, through reconstitution experiments with different E-cadherin deletion mutants in E-cadherin morphant embryos, we demonstrate that the extracellular domain, but not the cytoplasmic domain, of E-cadherin is sufficient to rescue CNC cell migration in vivo.

  1. Migration pathways of sacral neural crest during development of lower urogenital tract innervation.

    Science.gov (United States)

    Wiese, Carrie B; Deal, Karen K; Ireland, Sara J; Cantrell, V Ashley; Southard-Smith, E Michelle

    2017-09-01

    The migration and fate of cranial and vagal neural crest-derived progenitor cells (NCPCs) have been extensively studied; however, much less is known about sacral NCPCs particularly in regard to their distribution in the urogenital system. To construct a spatiotemporal map of NCPC migration pathways into the developing lower urinary tract, we utilized the Sox10-H2BVenus transgene to visualize NCPCs expressing Sox10. Our aim was to define the relationship of Sox10-expressing NCPCs relative to bladder innervation, smooth muscle differentiation, and vascularization through fetal development into adulthood. Sacral NCPC migration is a highly regimented, specifically timed process, with several potential regulatory mileposts. Neuronal differentiation occurs concomitantly with sacral NCPC migration, and neuronal cell bodies are present even before the pelvic ganglia coalesce. Sacral NCPCs reside within the pelvic ganglia anlagen through 13.5 days post coitum (dpc), after which they begin streaming into the bladder body in progressive waves. Smooth muscle differentiation and vascularization of the bladder initiate prior to innervation and appear to be independent processes. In adult bladder, the majority of Sox10+ cells express the glial marker S100β, consistent with Sox10 being a glial marker in other tissues. However, rare Sox10+ NCPCs are seen in close proximity to blood vessels and not all are S100β+, suggesting either glial heterogeneity or a potential nonglial role for Sox10+ cells along vasculature. Taken together, the developmental atlas of Sox10+ NCPC migration and distribution profile of these cells in adult bladder provided here will serve as a roadmap for future investigation in mouse models of lower urinary tract dysfunction. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Dual function of Slit2 in repulsion and enhanced migration of trunk, but not vagal, neural crest cells

    OpenAIRE

    De Bellard, Maria Elena; Rao, Yi; Bronner-Fraser, Marianne

    2003-01-01

    Neural crest precursors to the autonomic nervous system form different derivatives depending upon their axial level of origin; for example, vagal, but not trunk, neural crest cells form the enteric ganglia of the gut. Here, we show that Slit2 is expressed at the entrance of the gut, which is selectively invaded by vagal, but not trunk, neural crest. Accordingly, only trunk neural crest cells express Robo receptors. In vivo and in vitro experiments demonstrate that trunk, not vagal, crest cell...

  3. Analysis of neural crest migration and differentiation by cross-species transplantation.

    Science.gov (United States)

    Griswold, Shannon L; Lwigale, Peter Y

    2012-02-07

    Avian embryos provide a unique platform for studying many vertebrate developmental processes, due to the easy access of the embryos within the egg. Chimeric avian embryos, in which quail donor tissue is transplanted into a chick embryo in ovo, combine the power of indelible genetic labeling of cell populations with the ease of manipulation presented by the avian embryo. Quail-chick chimeras are a classical tool for tracing migratory neural crest cells (NCCs). NCCs are a transient migratory population of cells in the embryo, which originate in the dorsal region of the developing neural tube. They undergo an epithelial to mesenchymal transition and subsequently migrate to other regions of the embryo, where they differentiate into various cell types including cartilage, melanocytes, neurons and glia. NCCs are multipotent, and their ultimate fate is influenced by 1) the region of the neural tube in which they originate along the rostro-caudal axis of the embryo, 2) signals from neighboring cells as they migrate, and 3) the microenvironment of their ultimate destination within the embryo. Tracing these cells from their point of origin at the neural tube, to their final position and fate within the embryo, provides important insight into the developmental processes that regulate patterning and organogenesis. Transplantation of complementary regions of donor neural tube (homotopic grafting) or different regions of donor neural tube (heterotopic grafting) can reveal differences in pre-specification of NCCs along the rostro-caudal axis. This technique can be further adapted to transplant a unilateral compartment of the neural tube, such that one side is derived from donor tissue, and the contralateral side remains unperturbed in the host embryo, yielding an internal control within the same sample. It can also be adapted for transplantation of brain segments in later embryos, after HH10, when the anterior neural tube has closed. Here we report techniques for generating quail

  4. Dual function of Slit2 in repulsion and enhanced migration of trunk, but not vagal, neural crest cells.

    Science.gov (United States)

    De Bellard, Maria Elena; Rao, Yi; Bronner-Fraser, Marianne

    2003-07-21

    Neural crest precursors to the autonomic nervous system form different derivatives depending upon their axial level of origin; for example, vagal, but not trunk, neural crest cells form the enteric ganglia of the gut. Here, we show that Slit2 is expressed at the entrance of the gut, which is selectively invaded by vagal, but not trunk, neural crest. Accordingly, only trunk neural crest cells express Robo receptors. In vivo and in vitro experiments demonstrate that trunk, not vagal, crest cells avoid cells or cell membranes expressing Slit2, thereby contributing to the differential ability of neural crest populations to invade and innervate the gut. Conversely, exposure to soluble Slit2 significantly increases the distance traversed by trunk neural crest cells. These results suggest that Slit2 can act bifunctionally, both repulsing and stimulating the motility of trunk neural crest cells.

  5. Neural Crest Migration and Survival Are Susceptible to Morpholino-Induced Artifacts

    Science.gov (United States)

    Jette, Cicely A.

    2016-01-01

    The neural crest (NC) is a stem cell-like embryonic population that is essential for generating and patterning the vertebrate body, including the craniofacial skeleton and peripheral nervous system. Defects in NC development underlie many birth defects and contribute to formation of some of the most malignant cancers in humans, such as melanoma and neuroblastoma. For these reasons, significant research efforts have been expended to identify genes that control NC development, as it is expected to lead to a deeper understanding of the genetic mechanisms controlling vertebrate development and identify new treatments for NC-derived diseases and cancers. However, a number of inconsistencies regarding gene function during NC development have emerged from comparative analyses of gene function between mammalian and non-mammalian systems (chick, frog, zebrafish). This poses a significant barrier to identification of single genes and/or redundant pathways to target in NC diseases. Here, we determine whether technical differences, namely morpholino-based approaches used in non-mammalian systems, could contribute to these discrepancies, by examining the extent to which NC phenotypes in fascin1a (fscn1a) morphant embryos are similar to or different from fscn1a null mutants in zebrafish. Analysis of fscn1a morphants showed that they mimicked early NC phenotypes observed in fscn1a null mutants; however, these embryos also displayed NC migration and derivative phenotypes not observed in null mutants, including accumulation of p53-independent cell death. These data demonstrate that morpholinos can cause seemingly specific NC migration and derivative phenotypes, and thus have likely contributed to the inconsistencies surrounding NC gene function between species. We suggest that comparison of genetic mutants between different species is the most rigorous method for identifying conserved genetic mechanisms controlling NC development and is critical to identify new treatments for NC

  6. Analysis of trunk neural crest cell migration using a modified Zigmond chamber assay.

    Science.gov (United States)

    Walheim, Christopher C; Zanin, Juan Pablo; de Bellard, Maria Elena

    2012-01-19

    Neural crest cells (NCCs) are a transient population of cells present in vertebrate development that emigrate from the dorsal neural tube (NT) after undergoing an epithelial-mesenchymal transition. Following EMT, NCCs migrate large distances along stereotypic pathways until they reach their targets. NCCs differentiate into a vast array of cell types including neurons, glia, melanocytes, and chromaffin cells. The ability of NCCs to reach and recognize their proper target locations is foundational for the appropriate formation of all structures containing trunk NCC-derived components. Elucidating the mechanisms of guidance for trunk NCC migration has therefore been a matter of great significance. Numerous molecules have been demonstrated to guide NCC migration. For instance, trunk NCCs are known to be repelled by negative guidance cues such as Semaphorin, Ephrin, and Slit ligands. However, not until recently have any chemoattractants of trunk NCCs been identified. Conventional in vitro approaches to studying the chemotactic behavior of adherent cells work best with immortalized, homogenously distributed cells, but are more challenging to apply to certain primary stem cell cultures that initially lack a homogenous distribution and rapidly differentiate (such as NCCs). One approach to homogenize the distribution of trunk NCCs for chemotaxis studies is to isolate trunk NCCs from primary NT explant cultures, then lift and replate them to be almost 100% confluent. However, this plating approach requires substantial amounts of time and effort to explant enough cells, is harsh, and distributes trunk NCCs in a dissimilar manner to that found in in vivo conditions. Here, we report an in vitro approach that is able to evaluate chemotaxis and other migratory responses of trunk NCCs without requiring a homogenous cell distribution. This technique utilizes time-lapse imaging of primary, unperturbed trunk NCCs inside a modified Zigmond chamber (a standard Zigmond chamber is

  7. Neural crest contributions to the lamprey head

    Science.gov (United States)

    McCauley, David W.; Bronner-Fraser, Marianne

    2003-01-01

    The neural crest is a vertebrate-specific cell population that contributes to the facial skeleton and other derivatives. We have performed focal DiI injection into the cranial neural tube of the developing lamprey in order to follow the migratory pathways of discrete groups of cells from origin to destination and to compare neural crest migratory pathways in a basal vertebrate to those of gnathostomes. The results show that the general pathways of cranial neural crest migration are conserved throughout the vertebrates, with cells migrating in streams analogous to the mandibular and hyoid streams. Caudal branchial neural crest cells migrate ventrally as a sheet of cells from the hindbrain and super-pharyngeal region of the neural tube and form a cylinder surrounding a core of mesoderm in each pharyngeal arch, similar to that seen in zebrafish and axolotl. In addition to these similarities, we also uncovered important differences. Migration into the presumptive caudal branchial arches of the lamprey involves both rostral and caudal movements of neural crest cells that have not been described in gnathostomes, suggesting that barriers that constrain rostrocaudal movement of cranial neural crest cells may have arisen after the agnathan/gnathostome split. Accordingly, neural crest cells from a single axial level contributed to multiple arches and there was extensive mixing between populations. There was no apparent filling of neural crest derivatives in a ventral-to-dorsal order, as has been observed in higher vertebrates, nor did we find evidence of a neural crest contribution to cranial sensory ganglia. These results suggest that migratory constraints and additional neural crest derivatives arose later in gnathostome evolution.

  8. The Wnt Co-Receptor Lrp5 Is Required for Cranial Neural Crest Cell Migration in Zebrafish.

    Directory of Open Access Journals (Sweden)

    Bernd Willems

    Full Text Available During vertebrate neurulation, cranial neural crest cells (CNCCs undergo epithelial to mesenchymal transition (EMT, delaminate from the neural plate border, and migrate as separate streams into different cranial regions. There, they differentiate into distinct parts of the craniofacial skeleton. Canonical Wnt signaling has been shown to be essential for this process at different levels but the involved receptors remained unclear. Here we show that the frizzled co-receptor low-density-lipoprotein (LDL receptor-related protein 5 (Lrp5 plays a crucial role in CNCC migration and morphogenesis of the cranial skeleton. Early during induction and migration of CNCCs, lrp5 is expressed ubiquitously but later gets restricted to CNCC derivatives in the ventral head region besides different regions in the CNS. A knock-down of lrp5 does not interfere with induction of CNCCs but leads to reduced proliferation of premigratory CNCCs. In addition, cell migration is disrupted as CNCCs are found in clusters at ectopic positions in the dorsomedial neuroepithelium after lrp5 knock-down and transient CRISPR/Cas9 gene editing. These migratory defects consequently result in malformations of the craniofacial skeleton. To date, Lrp5 has mainly been associated with bone homeostasis in mammals. Here we show that in zebrafish, lrp5 also controls cell migration during early morphogenetic processes and contributes to shaping the craniofacial skeleton.

  9. The Wnt Co-Receptor Lrp5 Is Required for Cranial Neural Crest Cell Migration in Zebrafish.

    Science.gov (United States)

    Willems, Bernd; Tao, Shijie; Yu, Tingsheng; Huysseune, Ann; Witten, Paul Eckhard; Winkler, Christoph

    2015-01-01

    During vertebrate neurulation, cranial neural crest cells (CNCCs) undergo epithelial to mesenchymal transition (EMT), delaminate from the neural plate border, and migrate as separate streams into different cranial regions. There, they differentiate into distinct parts of the craniofacial skeleton. Canonical Wnt signaling has been shown to be essential for this process at different levels but the involved receptors remained unclear. Here we show that the frizzled co-receptor low-density-lipoprotein (LDL) receptor-related protein 5 (Lrp5) plays a crucial role in CNCC migration and morphogenesis of the cranial skeleton. Early during induction and migration of CNCCs, lrp5 is expressed ubiquitously but later gets restricted to CNCC derivatives in the ventral head region besides different regions in the CNS. A knock-down of lrp5 does not interfere with induction of CNCCs but leads to reduced proliferation of premigratory CNCCs. In addition, cell migration is disrupted as CNCCs are found in clusters at ectopic positions in the dorsomedial neuroepithelium after lrp5 knock-down and transient CRISPR/Cas9 gene editing. These migratory defects consequently result in malformations of the craniofacial skeleton. To date, Lrp5 has mainly been associated with bone homeostasis in mammals. Here we show that in zebrafish, lrp5 also controls cell migration during early morphogenetic processes and contributes to shaping the craniofacial skeleton.

  10. Division of labor during trunk neural crest development.

    Science.gov (United States)

    Gammill, Laura S; Roffers-Agarwal, Julaine

    2010-08-15

    Neural crest cells, the migratory precursors of numerous cell types including the vertebrate peripheral nervous system, arise in the dorsal neural tube and follow prescribed routes into the embryonic periphery. While the timing and location of neural crest migratory pathways has been well documented in the trunk, a comprehensive collection of signals that guides neural crest migration along these paths has only recently been established. In this review, we outline the molecular cascade of events during trunk neural crest development. After describing the sequential routes taken by trunk neural crest cells, we consider the guidance cues that pattern these neural crest trajectories. We pay particular attention to segmental neural crest development and the steps and signals that generate a metameric peripheral nervous system, attempting to reconcile conflicting observations in chick and mouse. Finally, we compare cranial and trunk neural crest development in order to highlight common themes.

  11. Design of a high-throughput human neural crest cell migration assay to indicate potential developmental toxicants.

    Science.gov (United States)

    Nyffeler, Johanna; Karreman, Christiaan; Leisner, Heidrun; Kim, Yong Jun; Lee, Gabsang; Waldmann, Tanja; Leist, Marcel

    2017-01-01

    Migration of neural crest cells (NCCs) is one of the pivotal processes of human fetal development. Malformations arise if NCC migration and differentiation are impaired genetically or by toxicants. In the currently available test systems for migration inhibition of NCC (MINC), the manual generation of a cell-free space results in extreme operator dependencies, and limits throughput. Here a new test format was established. The assay avoids scratching by plating cells around a commercially available circular stopper. Removal of the stopper barrier after cell attachment initiates migration. This microwell-based circular migration zone NCC function assay (cMINC) was further optimized for toxicological testing of human pluripotent stem cell (hPSC)-derived NCCs. The challenge of obtaining data on viability and migration by automated image processing was addressed by developing a freeware. Data on cell proliferation were obtained by labelling replicating cells, and by careful assessment of cell viability for each experimental sample. The role of cell proliferation as an experimental confounder was tested experimentally by performing the cMINC in the presence of the proliferation-inhibiting drug cytosine arabinoside (AraC), and by a careful evaluation of mitotic events over time. Data from these studies led to an adaptation of the test protocol, so that toxicant exposure was limited to 24 h. Under these conditions, a prediction model was developed that allows classification of toxicants as either inactive, leading to unspecific cytotoxicity, or specifically inhibiting NC migration at non-cytotoxic concentrations.

  12. Calponin 2 Acts As an Effector of Noncanonical Wnt-Mediated Cell Polarization during Neural Crest Cell Migration

    Directory of Open Access Journals (Sweden)

    Bärbel Ulmer

    2013-03-01

    Full Text Available Neural crest cells (NCCs migrate throughout the embryo to differentiate into cell types of all germ layers. Initial directed NCC emigration relies on planar cell polarity (PCP, which through the activity of the small GTPases RhoA and Rac governs the actin-driven formation of polarized cell protrusions. We found that the actin binding protein calponin 2 (Cnn2 was expressed in protrusions at the leading edge of migratory NCCs in chicks and frogs. Cnn2 knockdown resulted in NCC migration defects in frogs and chicks and randomized outgrowth of cell protrusions in NCC explants. Morphant cells showed central stress fibers at the expense of the peripheral actin network. Cnn2 acted downstream of Wnt/PCP, as migration defects induced by dominant-negative Wnt11 or inhibition of RhoA function were rescued by Cnn2 knockdown. These results suggest that Cnn2 modulates actin dynamics during NCC migration as an effector of noncanonical Wnt/PCP signaling.

  13. miR-204 targeting of Ankrd13A controls both mesenchymal neural crest and lens cell migration.

    Directory of Open Access Journals (Sweden)

    Raffaella Avellino

    Full Text Available Loss of cell adhesion and enhancement of cell motility contribute to epithelial-to-mesenchymal transition during development. These processes are related to a rearrangement of cell-cell and cell-substrate adhesion molecules; b cross talk between extra-cellular matrix and internal cytoskeleton through focal adhesion molecules. Focal adhesions are stringently regulated transient structures implicated in cell adhesion, spreading and motility during tissue development. Importantly, despite the extensive elucidation of the molecular composition of focal adhesions, the complex regulation of their dynamics is largely unclear. Here, we demonstrate, using live-imaging in medaka, that the microRNA miR-204 promotes both mesenchymal neural crest and lens cell migration and elongation. Overexpression of miR-204 results in upregulated cell motility, while morpholino-mediated ablation of miR-204 activity causes abnormal lens morphogenesis and neural crest cell mislocalization. Using a variety of in vivo and in vitro approaches, we demonstrate that these actions are mediated by the direct targeting of the Ankrd13A gene, which in turn controls focal cell adhesion formation and distribution. Significantly, in vivo restoration of abnormally elevated levels of Ankrd13A resulting from miR-204 inactivation rescued the aberrant lens phenotype in medaka fish. These data uncover, for the first time in vivo, the role of a microRNA in developmental control of mesenchymal cell migration and highlight miR-204 as a "master regulator" of the molecular networks that regulate lens morphogenesis in vertebrates.

  14. Novel migrating mouse neural crest cell assay system utilizing P0-Cre/EGFP fluorescent time-lapse imaging

    Directory of Open Access Journals (Sweden)

    Kawakami Minoru

    2011-11-01

    Full Text Available Abstract Background Neural crest cells (NCCs are embryonic, multipotent stem cells. Their long-range and precision-guided migration is one of their most striking characteristics. We previously reported that P0-Cre/CAG-CAT-lacZ double-transgenic mice showed significant lacZ expression in tissues derived from NCCs. Results In this study, by embedding a P0-Cre/CAG-CAT-EGFP embryo at E9.5 in collagen gel inside a culture glass slide, we were able to keep the embryo developing ex vivo for more than 24 hours; this development was with enough NCC fluorescent signal intensity to enable single-cell resolution analysis, with the accompanying NCC migration potential intact and with the appropriate NCC response to the extracellular signal maintained. By implantation of beads with absorbed platelet-derived growth factor-AA (PDGF-AA, we demonstrated that PDGF-AA acts as an NCC-attractant in embryos. We also performed assays with NCCs isolated from P0-Cre/CAG-CAT-EGFP embryos on culture plates. The neuromediator 5-hydroxytryptamine (5-HT has been known to regulate NCC migration. We newly demonstrated that dopamine, in addition to 5-HT, stimulated NCC migration in vitro. Two NCC populations, with different axial levels of origins, showed unique distribution patterns regarding migration velocity and different dose-response patterns to both 5-HT and dopamine. Conclusions Although avian species predominated over the other species in the NCC study, our novel system should enable us to use mice to assay many different aspects of NCCs in embryos or on culture plates, such as migration, division, differentiation, and apoptosis.

  15. Combination of multiple neural crest migration assays to identify environmental toxicants from a proof-of-concept chemical library.

    Science.gov (United States)

    Nyffeler, Johanna; Dolde, Xenia; Krebs, Alice; Pinto-Gil, Kevin; Pastor, Manuel; Behl, Mamta; Waldmann, Tanja; Leist, Marcel

    2017-05-05

    Many in vitro tests have been developed to screen for potential neurotoxicity. However, only few cell function-based tests have been used for comparative screening, and thus experience is scarce on how to confirm and evaluate screening hits. We addressed these questions for the neural crest cell migration test (cMINC). After an initial screen, a hit follow-up strategy was devised. A library of 75 compounds plus internal controls (NTP80-list), assembled by the National Toxicology Program of the USA (NTP) was used. It contained some known classes of (developmental) neurotoxic compounds. The primary screen yielded 23 confirmed hits, which comprised ten flame retardants, seven pesticides and six drug-like compounds. Comparison of concentration-response curves for migration and viability showed that all hits were specific. The extent to which migration was inhibited was 25-90%, and two organochlorine pesticides (DDT, heptachlor) were most efficient. In the second part of this study, (1) the cMINC assay was repeated under conditions that prevent proliferation; (2) a transwell migration assay was used as a different type of migration assay; (3) cells were traced to assess cell speed. Some toxicants had largely varying effects between assays, but each hit was confirmed in at least one additional test. This comparative study allows an estimate on how confidently the primary hits from a cell function-based screen can be considered as toxicants disturbing a key neurodevelopmental process. Testing of the NTP80-list in more assays will be highly interesting to assemble a test battery and to build prediction models for developmental toxicity.

  16. FGF Signaling Transforms Non-neural Ectoderm into Neural Crest

    OpenAIRE

    Yardley, Nathan; García-Castro, Martín I.

    2012-01-01

    The neural crest arises at the border between the neural plate and the adjacent non-neural ectoderm. It has been suggested that both neural and non-neural ectoderm can contribute to the neural crest. Several studies have examined the molecular mechanisms that regulate neural crest induction in neuralized tissues or the neural plate border. Here, using the chick as a model system, we address the molecular mechanisms by which non-neural ectoderm generates neural crest. We report that in respons...

  17. Simple in vitro migration assay for neural crest cells and the opposite effects of all-trans-retinoic acid on cephalic- and trunk-derived cells.

    Science.gov (United States)

    Usami, Makoto; Mitsunaga, Katsuyoshi; Irie, Tomohiko; Miyajima, Atsuko; Doi, Osamu

    2014-08-01

    Here, we describe a simple in vitro neural crest cell (NCC) migration assay and the effects of all-trans-retinoic acid (RA) on NCCs. Neural tubes excised from the rhombencephalic or trunk region of day 10.5 rat embryos were cultured for 48 h to allow emigration and migration of NCCs. Migration of NCCs was measured as the change in the radius (radius ratio) calculated from the circular spread of NCCs between 24 and 48 h of culture. RA was added to the culture medium after 24 h at embryotoxic concentrations determined by rat whole embryo culture. RA (10 μM) reduced the migration of cephalic NCCs, whereas it enhanced the migration of trunk NCCs, indicating that RA has opposite effects on these two types of NCCs. © 2014 Japanese Teratology Society.

  18. Cardiovascular Development and the Colonizing Cardiac Neural Crest Lineage

    Directory of Open Access Journals (Sweden)

    Paige Snider

    2007-01-01

    Full Text Available Although it is well established that transgenic manipulation of mammalian neural crest-related gene expression and microsurgical removal of premigratory chicken and Xenopus embryonic cardiac neural crest progenitors results in a wide spectrum of both structural and functional congenital heart defects, the actual functional mechanism of the cardiac neural crest cells within the heart is poorly understood. Neural crest cell migration and appropriate colonization of the pharyngeal arches and outflow tract septum is thought to be highly dependent on genes that regulate cell-autonomous polarized movement (i.e., gap junctions, cadherins, and noncanonical Wnt1 pathway regulators. Once the migratory cardiac neural crest subpopulation finally reaches the heart, they have traditionally been thought to participate in septation of the common outflow tract into separate aortic and pulmonary arteries. However, several studies have suggested these colonizing neural crest cells may also play additional unexpected roles during cardiovascular development and may even contribute to a crest-derived stem cell population. Studies in both mice and chick suggest they can also enter the heart from the venous inflow as well as the usual arterial outflow region, and may contribute to the adult semilunar and atrioventricular valves as well as part of the cardiac conduction system. Furthermore, although they are not usually thought to give rise to the cardiomyocyte lineage, neural crest cells in the zebrafish (Danio rerio can contribute to the myocardium and may have different functions in a species-dependent context. Intriguingly, both ablation of chick and Xenopus premigratory neural crest cells, and a transgenic deletion of mouse neural crest cell migration or disruption of the normal mammalian neural crest gene expression profiles, disrupts ventral myocardial function and/or cardiomyocyte proliferation. Combined, this suggests that either the cardiac neural crest

  19. Neural crest: The fourth germ layer

    Directory of Open Access Journals (Sweden)

    K Shyamala

    2015-01-01

    Full Text Available The neural crest cells (NCCs, a transient group of cells that emerges from the dorsal aspect of the neural tube during early vertebrate development has been a fascinating group of cells because of its multipotency, long range migration through embryo and its capacity to generate a prodigious number of differentiated cell types. For these reasons, although derived from the ectoderm, the neural crest (NC has been called the fourth germ layer. The non neural ectoderm, the neural plate and the underlying mesoderm are needed for the induction and formation of NC cells. Once formed, NC cells start migrating as a wave of cells, moving away from the neuroepithelium and quickly splitting into distinct streams. These migrating NCCs home in to different regions and give rise to plethora of tissues. Umpteen number of signaling molecules are essential for formation, epithelial mesenchymal transition, delamination, migration and localization of NCC. Authors believe that a clear understanding of steps and signals involved in NC formation, migration, etc., may help in understanding the pathogenesis behind cancer metastasis and many other diseases. Hence, we have taken this review to discuss the various aspects of the NC cells.

  20. Vagal neural crest cell migratory behavior: a transition between the cranial and trunk crest.

    Science.gov (United States)

    Kuo, Bryan R; Erickson, Carol A

    2011-09-01

    Migration and differentiation of cranial neural crest cells are largely controlled by environmental cues, whereas pathfinding at the trunk level is dictated by cell-autonomous molecular changes owing to early specification of the premigratory crest. Here, we investigated the migration and patterning of vagal neural crest cells. We show that (1) vagal neural crest cells exhibit some developmental bias, and (2) they take separate pathways to the heart and to the gut. Together these observations suggest that prior specification dictates initial pathway choice. However, when we challenged the vagal neural crest cells with different migratory environments, we observed that the behavior of the anterior vagal neural crest cells (somite-level 1-3) exhibit considerable migratory plasticity, whereas the posterior vagal neural crest cells (somite-level 5-7) are more restricted in their behavior. We conclude that the vagal neural crest is a transitional population that has evolved between the head and the trunk. Copyright © 2011 Wiley-Liss, Inc.

  1. The neural crest and neural crest cells: discovery and significance for theories of embryonic organization

    Indian Academy of Sciences (India)

    Brian K Hall

    2008-12-01

    The neural crest has long fascinated developmental biologists, and, increasingly over the past decades, evolutionary and evolutionary developmental biologists. The neural crest is the name given to the fold of ectoderm at the junction between neural and epidermal ectoderm in neurula-stage vertebrate embryos. In this sense, the neural crest is a morphological term akin to head fold or limb bud. This region of the dorsal neural tube consists of neural crest cells, a special population(s) of cell, that give rise to an astonishing number of cell types and to an equally astonishing number of tissues and organs. Neural crest cell contributions may be direct — providing cells — or indirect — providing a necessary, often inductive, environment in which other cells develop. The enormous range of cell types produced provides an important source of evidence of the neural crest as a germ layer, bringing the number of germ layers to four — ectoderm, endoderm, mesoderm, and neural crest. In this paper I provide a brief overview of the major phases of investigation into the neural crest and the major players involved, discuss how the origin of the neural crest relates to the origin of the nervous system in vertebrate embryos, discuss the impact on the germ-layer theory of the discovery of the neural crest and of secondary neurulation, and present evidence of the neural crest as the fourth germ layer. A companion paper (Hall, Evol. Biol. 2008) deals with the evolutionary origins of the neural crest and neural crest cells.

  2. DNA methyltransferase 3b is dispensable for mouse neural crest development.

    Directory of Open Access Journals (Sweden)

    Bridget T Jacques-Fricke

    Full Text Available The neural crest is a population of multipotent cells that migrates extensively throughout vertebrate embryos to form diverse structures. Mice mutant for the de novo DNA methyltransferase DNMT3b exhibit defects in two neural crest derivatives, the craniofacial skeleton and cardiac ventricular septum, suggesting that DNMT3b activity is necessary for neural crest development. Nevertheless, the requirement for DNMT3b specifically in neural crest cells, as opposed to interacting cell types, has not been determined. Using a conditional DNMT3b allele crossed to the neural crest cre drivers Wnt1-cre and Sox10-cre, neural crest DNMT3b mutants were generated. In both neural crest-specific and fully DNMT3b-mutant embryos, cranial neural crest cells exhibited only subtle migration defects, with increased numbers of dispersed cells trailing organized streams in the head. In spite of this, the resulting cranial ganglia, craniofacial skeleton, and heart developed normally when neural crest cells lacked DNMT3b. This indicates that DNTM3b is not necessary in cranial neural crest cells for their development. We conclude that defects in neural crest derivatives in DNMT3b mutant mice reflect a requirement for DNMT3b in lineages such as the branchial arch mesendoderm or the cardiac mesoderm that interact with neural crest cells during formation of these structures.

  3. Neural crest cell evolution: how and when did a neural crest cell become a neural crest cell.

    Science.gov (United States)

    Muñoz, William A; Trainor, Paul A

    2015-01-01

    As vertebrates evolved from protochordates, they shifted to a more predatory lifestyle, and radiated and adapted to most niches of the planet. This process was largely facilitated by the generation of novel vertebrate head structures, which were derived from neural crest cells (NCC). The neural crest is a unique vertebrate cell population that is frequently termed the "fourth germ layer" because it forms in conjunction with the other germ layers and contributes to a diverse array of cell types and tissues including the craniofacial skeleton, the peripheral nervous system, and pigment cells among many other tissues and cell types. NCC are defined by their origin at the neural plate border, via an epithelial-to-mesenchymal transition (EMT), together with multipotency and polarized patterns of migration. These defining characteristics, which evolved independently in the germ layers of invertebrates, were subsequently co-opted through their gene regulatory networks to form NCC in vertebrates. Moreover, recent data suggest that the ability to undergo an EMT was one of the latter features co-opted by NCC. In this review, we discuss the potential origins of NCC and how they evolved to contribute to nearly all tissues and organs throughout the body, based on paleontological evidence together with an evaluation of the evolution of molecules involved in NCC development and their migratory cell paths.

  4. Vestigial-like 3 is a novel Ets1 interacting partner and regulates trigeminal nerve formation and cranial neural crest migration.

    Science.gov (United States)

    Simon, Emilie; Thézé, Nadine; Fédou, Sandrine; Thiébaud, Pierre; Faucheux, Corinne

    2017-09-04

    Drosophila Vestigial is the founding member of a protein family containing a highly conserved domain, called Tondu that mediates their interaction with members of the TEAD family of transcription factors (Scalloped in Drosophila). In Drosophila, the Vestigial/Scalloped complex controls wing development by regulating the expression of target genes through binding to MCAT sequences. In vertebrates, there are four Vestigial-like genes whose functions are still not well understood. Here we describe the regulation and function of vestigial-like 3 (vgll3) during Xenopus early development. A combination of signals including FGF8, Wnt8a, Hoxa2, Hoxb2 and retinoic acid limits vgll3 expression to hindbrain rhombomere 2. We show that vgll3 regulates trigeminal placode and nerve formation and is required for normal neural crest development by affecting their migration and adhesion properties. At the molecular level, vgll3 is a potent activator of pax3, zic1, Wnt and FGF that are important for brain patterning and neural crest cell formation. Vgll3 interacts in the embryo with Tead proteins but unexpectedly with Ets1 with which it is able to stimulate a MCAT driven luciferase reporter gene. Our findings highlight a critical function for vgll3 in vertebrate early development. © 2017. Published by The Company of Biologists Ltd.

  5. Retinoic acid upregulates ret and induces chain migration and population expansion in vagal neural crest cells to colonise the embryonic gut.

    Directory of Open Access Journals (Sweden)

    Johanna E Simkin

    Full Text Available Vagal neural crest cells (VNCCs arise in the hindbrain, and at (avian embryonic day (E 1.5 commence migration through paraxial tissues to reach the foregut as chains of cells 1-2 days later. They then colonise the rest of the gut in a rostrocaudal wave. The chains of migrating cells later resolve into the ganglia of the enteric nervous system. In organ culture, E4.5 VNCCs resident in the gut (termed enteric or ENCC which have previously encountered vagal paraxial tissues, rapidly colonised aneural gut tissue in large numbers as chains of cells. Within the same timeframe, E1.5 VNCCs not previously exposed to paraxial tissues provided very few cells that entered the gut mesenchyme, and these never formed chains, despite their ability to migrate in paraxial tissue and in conventional cell culture. Exposing VNCCs in vitro to paraxial tissue normally encountered en route to the foregut conferred enteric migratory ability. VNCC after passage through paraxial tissue developed elements of retinoic acid signalling such as Retinoic Acid Binding Protein 1 expression. The paraxial tissue's ability to promote gut colonisation was reproduced by the addition of retinoic acid, or the synthetic retinoid Am80, to VNCCs (but not to trunk NCCs in organ culture. The retinoic acid receptor antagonist CD 2665 strongly reduced enteric colonisation by E1.5 VNCC and E4.5 ENCCs, at a concentration suggesting RARα signalling. By FACS analysis, retinoic acid application to vagal neural tube and NCCs in vitro upregulated Ret; a Glial-derived-neurotrophic-factor receptor expressed by ENCCs which is necessary for normal enteric colonisation. This shows that early VNCC, although migratory, are incapable of migrating in appropriate chains in gut mesenchyme, but can be primed for this by retinoic acid. This is the first instance of the characteristic form of NCC migration, chain migration, being attributed to the application of a morphogen.

  6. Control of the collective migration of enteric neural crest cells by the Complement anaphylatoxin C3a and N-cadherin.

    Science.gov (United States)

    Broders-Bondon, Florence; Paul-Gilloteaux, Perrine; Gazquez, Elodie; Heysch, Julie; Piel, Matthieu; Mayor, Roberto; Lambris, John D; Dufour, Sylvie

    2016-06-01

    We analyzed the cellular and molecular mechanisms governing the adhesive and migratory behavior of enteric neural crest cells (ENCCs) during their collective migration within the developing mouse gut. We aimed to decipher the role of the complement anaphylatoxin C3a during this process, because this well-known immune system attractant has been implicated in cephalic NCC co-attraction, a process controlling directional migration. We used the conditional Ht-PA-cre transgenic mouse model allowing a specific ablation of the N-cadherin gene and the expression of a fluorescent reporter in migratory ENCCs without affecting the central nervous system. We performed time-lapse videomicroscopy of ENCCs from control and N-cadherin mutant gut explants cultured on fibronectin (FN) and micropatterned FN-stripes with C3a or C3aR antagonist, and studied cell migration behavior with the use of triangulation analysis to quantify cell dispersion. We performed ex vivo gut cultures with or without C3aR antagonist to determine the effect on ENCC behavior. Confocal microscopy was used to analyze the cell-matrix adhesion properties. We provide the first demonstration of the localization of the complement anaphylatoxin C3a and its receptor on ENCCs during their migration in the embryonic gut. C3aR receptor inhibition alters ENCC adhesion and migration, perturbing directionality and increasing cell dispersion both in vitro and ex vivo. N-cadherin-null ENCCs do not respond to C3a co-attraction. These findings indicate that C3a regulates cell migration in a N-cadherin-dependent process. Our results shed light on the role of C3a in regulating collective and directional cell migration, and in ganglia network organization during enteric nervous system ontogenesis. The detection of an immune system chemokine in ENCCs during ENS development may also shed light on new mechanisms for gastrointestinal disorders.

  7. Thyroid hormone and retinoic acid interact to regulate zebrafish craniofacial neural crest development.

    Science.gov (United States)

    Bohnsack, Brenda L; Kahana, Alon

    2013-01-15

    Craniofacial and ocular morphogenesis require proper regulation of cranial neural crest migration, proliferation, survival and differentiation. Although alterations in maternal thyroid hormone (TH) are associated with congenital craniofacial anomalies, the role of TH on the neural crest has not been previously described. Using zebrafish, we demonstrate that pharmacologic and genetic alterations in TH signaling disrupt cranial neural crest migration, proliferation, and survival, leading to craniofacial, extraocular muscle, and ocular developmental abnormalities. In the rostral cranial neural crest that gives rise to the periocular mesenchyme and the frontonasal process, retinoic acid (RA) rescued migratory defects induced by decreased TH signaling. In the caudal cranial neural crest, TH and RA had reciprocal effects on anterior and posterior pharyngeal arch development. The interactions between TH and RA signaling were partially mediated by the retinoid X receptor. We conclude that TH regulates both rostral and caudal cranial neural crest. Further, coordinated interactions of TH and RA are required for proper craniofacial and ocular development.

  8. Zebrafish arl6ip1 is required for neural crest development during embryogenesis.

    Directory of Open Access Journals (Sweden)

    Chi-Tang Tu

    Full Text Available BACKGROUND: Although the embryonic expression pattern of ADP ribosylation factor-like 6 interacting protein 1 (Arl6ip1 has been reported, its function in neural crest development is unclear. METHODS/PRINCIPAL FINDINGS: We found that knockdown of Arl6ip1 caused defective embryonic neural crest derivatives that were particularly severe in craniofacial cartilages. Expressions of the ectodermal patterning factors msxb, dlx3b, and pax3 were normal, but the expressions of the neural crest specifier genes foxd3, snai1b, and sox10 were greatly reduced. These findings suggest that arl6ip1 is essential for specification of neural crest derivatives, but not neural crest induction. Furthermore, we revealed that the streams of crestin- and sox10-expressing neural crest cells, which migrate ventrally from neural tube into trunk, were disrupted in arl6ip1 morphants. This migration defect was not only in the trunk neural crest, but also in the enteric tract where the vagal-derived neural crest cells failed to populate the enteric nervous system. We found that this migration defect was induced by dampened Shh signaling, which may have resulted from defective cilia. These data further suggested that arl6ip1 is required for neural crest migration. Finally, by double-staining of TUNEL and crestin, we confirmed that the loss of neural crest cells could not be attributed to apoptosis. CONCLUSIONS/SIGNIFICANCE: Therefore, we concluded that arl6ip1 is required for neural crest migration and sublineage specification.

  9. Ultrastructural and tissue-culture studies on the role of fibronectin, collagen and glycosaminoglycans in the migration of neural crest cells in the fowl embryo.

    Science.gov (United States)

    Newgreen, D F; Gibbins, I L; Sauter, J; Wallenfels, B; Wütz, R

    1982-01-01

    The initial migration of neural crest (NC) cells into cell-free space was studied by transmission electron microscopy at trunk levels of fowl embryos, some of which were fixed in the presence of ruthenium red. Migrating NC cells occurred in zones which contained fewer ruthenium-red stained 15-40nm diameter granules than other regions. The ruthenium-red stained granules were linked by similarly stained thin (greater than 3nm diameter) microfibrils. The granules resemble proteoglycan and the microfibrils may be hyaluronate. NC cells contacted thicker (greater than 10 nm diameter) fibrils and interstitial bodies, which did not require ruthenium red for visualization. Cytoplasmic microfilaments were sometimes aligned at the point of contact with the extracellular fibrils, which may be fibronectin and collagen. Phase-contrast time-lapse videotaping and scanning electron microscopy showed that NC cells of the fowl embryo in vitro migrated earlier and more extensively on glass coated with fibronectin-rich fibrous material and adsorbed fibronectin molecules than on glass coated with collagen type I (fibres and adsorbed molecules). NC cells became completely enmeshed in fibronectin-rich fibres, but generally remained on the surface of collagen-fibre gels. When given a choice, NC cells strongly preferred fibronectin coatings to plain glass, and plain glass to dried collagen gels. NC cells showed a slight preference for plain glass over glass to which collagen was adsorbed. Addition to the culture medium of hyaluronate (initial conc. 20 mg/ml), chondroitin (5 mg/ml) and fully sulphated chondroitin sulphate and dermatan sulphate (up to 10 mg/ml) did not drastically alter NC cell migration on fibronectin-rich fibrous substrates.

  10. Musculocontractural Ehlers–Danlos syndrome and neurocristopathies: dermatan sulfate is required for Xenopus neural crest cells to migrate and adhere to fibronectin

    Directory of Open Access Journals (Sweden)

    Nadège Gouignard

    2016-06-01

    Full Text Available Of all live births with congenital anomalies, approximately one-third exhibit deformities of the head and face. Most craniofacial disorders are associated with defects in a migratory stem and progenitor cell population, which is designated the neural crest (NC. Musculocontractural Ehlers–Danlos syndrome (MCEDS is a heritable connective tissue disorder with distinct craniofacial features; this syndrome comprises multiple congenital malformations that are caused by dysfunction of dermatan sulfate (DS biosynthetic enzymes, including DS epimerase-1 (DS-epi1; also known as DSE. Studies in mice have extended our understanding of DS-epi1 in connective tissue maintenance; however, its role in fetal development is not understood. We demonstrate that DS-epi1 is important for the generation of isolated iduronic acid residues in chondroitin sulfate (CS/DS proteoglycans in early Xenopus embryos. The knockdown of DS-epi1 does not affect the formation of early NC progenitors; however, it impairs the correct activation of transcription factors involved in the epithelial–mesenchymal transition (EMT and reduces the extent of NC cell migration, which leads to a decrease in NC-derived craniofacial skeleton, melanocytes and dorsal fin structures. Transplantation experiments demonstrate a tissue-autonomous role for DS-epi1 in cranial NC cell migration in vivo. Cranial NC explant and single-cell cultures indicate a requirement of DS-epi1 in cell adhesion, spreading and extension of polarized cell processes on fibronectin. Thus, our work indicates a functional link between DS and NC cell migration. We conclude that NC defects in the EMT and cell migration might account for the craniofacial anomalies and other congenital malformations in MCEDS, which might facilitate the diagnosis and development of therapies for this distressing condition. Moreover, the presented correlations between human DS-epi1 expression and gene sets of mesenchymal character, invasion and

  11. Slit molecules prevent entrance of trunk neural crest cells in developing gut.

    Science.gov (United States)

    Zuhdi, Nora; Ortega, Blanca; Giovannone, Dion; Ra, Hannah; Reyes, Michelle; Asención, Viviana; McNicoll, Ian; Ma, Le; de Bellard, Maria Elena

    2015-04-01

    Neural crest cells emerge from the dorsal neural tube early in development and give rise to sensory and sympathetic ganglia, adrenal cells, teeth, melanocytes and especially enteric nervous system. Several inhibitory molecules have been shown to play important roles in neural crest migration, among them are the chemorepulsive Slit1-3. It was known that Slits chemorepellants are expressed at the entry to the gut, and thus could play a role in the differential ability of vagal but not trunk neural crest cells to invade the gut and form enteric ganglia. Especially since trunk neural crest cells express Robo receptor while vagal do not. Thus, although we know that Robo mediates migration along the dorsal pathway in neural crest cells, we do not know if it is responsible in preventing their entry into the gut. The goal of this study was to further corroborate a role for Slit molecules in keeping trunk neural crest cells away from the gut. We observed that when we silenced Robo receptor in trunk neural crest, the sympathoadrenal (somites 18-24) were capable of invading gut mesenchyme in larger proportion than more rostral counterparts. The more rostral trunk neural crest tended not to migrate beyond the ventral aorta, suggesting that there are other repulsive molecules keeping them away from the gut. Interestingly, we also found that when we silenced Robo in sacral neural crest they did not wait for the arrival of vagal crest but entered the gut and migrated rostrally, suggesting that Slit molecules are the ones responsible for keeping them waiting at the hindgut mesenchyme. These combined results confirm that Slit molecules are responsible for keeping the timeliness of colonization of the gut by neural crest cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Two developmentally distinct populations of neural crest cells contribute to the zebrafish heart.

    Science.gov (United States)

    Cavanaugh, Ann M; Huang, Jie; Chen, Jau-Nian

    2015-08-15

    Cardiac neural crest cells are essential for outflow tract remodeling in animals with divided systemic and pulmonary circulatory systems, but their contributions to cardiac development in animals with a single-loop circulatory system are less clear. Here we genetically labeled neural crest cells and examined their contribution to the developing zebrafish heart. We identified two populations of neural crest cells that contribute to distinct compartments of zebrafish cardiovascular system at different developmental stages. A stream of neural crest cells migrating through pharyngeal arches 1 and 2 integrates into the myocardium of the primitive heart tube between 24 and 30 h post fertilization and gives rise to cardiomyocytes. A second wave of neural crest cells migrating along aortic arch 6 envelops the endothelium of the ventral aorta and invades the bulbus arteriosus after three days of development. Interestingly, while inhibition of FGF signaling has no effect on the integration of neural crest cells to the primitive heart tube, it prevents these cells from contributing to the outflow tract, demonstrating disparate responses of neural crest cells to FGF signaling. Furthermore, neural crest ablation in zebrafish leads to multiple cardiac defects, including reduced heart rate, defective myocardial maturation and a failure to recruit progenitor cells from the second heart field. These findings add to our understanding of the contribution of neural crest cells to the developing heart and provide insights into the requirement for these cells in cardiac maturation.

  13. Neural crest patterning and the evolution of the jaw.

    Science.gov (United States)

    Kimmel, C B; Miller, C T; Keynes, R J

    2001-01-01

    Here we present ideas connecting the behaviour of the cranial neural crest during development with the venerable, perhaps incorrect, view that gill-supporting cartilages of an ancient agnathan evolved into the skeleton of an early gnathostome's jaw. We discuss the pattern of migration of the cranial neural crest ectomesenchyme in zebrafish, along with the subsequent arrangement of postmigratory crest and head mesoderm in the nascent pharyngeal segments (branchiomeres), in diverse gnathostomes and in lampreys. These characteristics provide for a plausible von Baerian explanation for the problematic inside-outside change in topology of the gills and their supports between these 2 major groups of vertebrates. We consider it likely that the jaw supports did indeed arise from branchiomeric cartilages.

  14. Migratory patterns and developmental potential of trunk neural crest cells in the axolotl embryo.

    Science.gov (United States)

    Epperlein, Hans-Henning; Selleck, Mark A J; Meulemans, Daniel; Mchedlishvili, Levan; Cerny, Robert; Sobkow, Lidia; Bronner-Fraser, Marianne

    2007-02-01

    Using cell markers and grafting, we examined the timing of migration and developmental potential of trunk neural crest cells in axolotl. No obvious differences in pathway choice were noted for DiI-labeling at different lateral or medial positions of the trunk neural folds in neurulae, which contributed not only to neural crest but also to Rohon-Beard neurons. Labeling wild-type dorsal trunks at pre- and early-migratory stages revealed that individual neural crest cells migrate away from the neural tube along two main routes: first, dorsolaterally between the epidermis and somites and, later, ventromedially between the somites and neural tube/notochord. Dorsolaterally migrating crest primarily forms pigment cells, with those from anterior (but not mid or posterior) trunk neural folds also contributing glia and neurons to the lateral line. White mutants have impaired dorsolateral but normal ventromedial migration. At late migratory stages, most labeled cells move along the ventromedial pathway or into the dorsal fin. Contrasting with other anamniotes, axolotl has a minor neural crest contribution to the dorsal fin, most of which arises from the dermomyotome. Taken together, the results reveal stereotypic migration and differentiation of neural crest cells in axolotl that differ from other vertebrates in timing of entry onto the dorsolateral pathway and extent of contribution to some derivatives.

  15. Defective ALK5 signaling in the neural crest leads to increased postmigratory neural crest cell apoptosis and severe outflow tract defects

    Directory of Open Access Journals (Sweden)

    Sucov Henry M

    2006-11-01

    Full Text Available Abstract Background Congenital cardiovascular diseases are the most common form of birth defects in humans. A substantial portion of these defects has been associated with inappropriate induction, migration, differentiation and patterning of pluripotent cardiac neural crest stem cells. While TGF-β-superfamily signaling has been strongly implicated in neural crest cell development, the detailed molecular signaling mechanisms in vivo are still poorly understood. Results We deleted the TGF-β type I receptor Alk5 specifically in the mouse neural crest cell lineage. Failure in signaling via ALK5 leads to severe cardiovascular and pharyngeal defects, including inappropriate remodeling of pharyngeal arch arteries, abnormal aortic sac development, failure in pharyngeal organ migration and persistent truncus arteriosus. While ALK5 is not required for neural crest cell migration, our results demonstrate that it plays an important role in the survival of post-migratory cardiac neural crest cells. Conclusion Our results demonstrate that ALK5-mediated signaling in neural crest cells plays an essential cell-autonomous role in the pharyngeal and cardiac outflow tract development.

  16. Divergent roles for Eph and Ephrin in Avian Cranial Neural Crest

    Directory of Open Access Journals (Sweden)

    Burke Robert D

    2008-05-01

    Full Text Available Abstract Background As in other vertebrates, avian hindbrain neural crest migrates in streams to specific branchial arches. Signalling from Eph receptors and ephrins has been proposed to provide a molecular mechanism that guides the cells restricting them to streams. In mice and frogs, cranial neural crest express a combination of Eph receptors and ephrins that appear to exclude cells from adjacent tissues by forward and reverse signalling. The objective of this study was to provide comparative data on the distribution and function of Eph receptors and ephrins in avian embryos. Results To distinguish neural crest from bordering ectoderm and head mesenchyme, we have co-labelled embryos for Eph or ephrin RNA and a neural crest marker protein. Throughout their migration avian cranial neural crest cells express EphA3, EphA4, EphA7, EphB1, and EphB3 and move along pathways bordered by non-neural crest cells expressing ephrin-B1. In addition, avian cranial neural crest cells express ephrin-B2 and migrate along pathways bordered by non-neural crest cells expressing EphB2. Thus, the distribution of avian Eph receptors and ephrins differs from those reported in other vertebrates. In stripe assays when explanted cranial neural crest were given the choice between FN or FN plus clustered ephrin-B1 or EphB2 fusion protein, the cells strongly localize to lanes containing only FN. This preference is mitigated in the presence of soluble ephrin-B1 or EphB2 fusion protein. Conclusion These findings show that avian cranial neural crest use Eph and ephrin receptors as other vertebrates in guiding migration. However, the Eph receptors are expressed in different combinations by neural crest destined for each branchial arch and ephrin-B1 and ephrin-B2 appear to have opposite roles to those reported to guide cranial neural crest migration in mice. Unlike many of the signalling, specification, and effector pathways of neural crest, the roles of Eph receptors and ephrins

  17. Methods for derivation of multipotent neural crest cells derived from human pluripotent stem cells

    Science.gov (United States)

    Avery, John; Dalton, Stephen

    2016-01-01

    Summary Multipotent, neural crest cells (NCCs) produce a wide-range of cell types during embryonic development. This includes melanocytes, peripheral neurons, smooth muscle cells, osteocytes, chondrocytes and adipocytes. The protocol described here allows for highly-efficient differentiation of human pluripotent stem cells to a neural crest fate within 15 days. This is accomplished under feeder-free conditions, using chemically defined medium supplemented with two small molecule inhibitors that block glycogen synthase kinase 3 (GSK3) and bone morphogenic protein (BMP) signaling. This technology is well-suited as a platform to understand in greater detail the pathogenesis of human disease associated with impaired neural crest development/migration. PMID:25986498

  18. Neural crest cells: from developmental biology to clinical interventions.

    Science.gov (United States)

    Noisa, Parinya; Raivio, Taneli

    2014-09-01

    Neural crest cells are multipotent cells, which are specified in embryonic ectoderm in the border of neural plate and epiderm during early development by interconnection of extrinsic stimuli and intrinsic factors. Neural crest cells are capable of differentiating into various somatic cell types, including melanocytes, craniofacial cartilage and bone, smooth muscle, and peripheral nervous cells, which supports their promise for cell therapy. In this work, we provide a comprehensive review of wide aspects of neural crest cells from their developmental biology to applicability in medical research. We provide a simplified model of neural crest cell development and highlight the key external stimuli and intrinsic regulators that determine the neural crest cell fate. Defects of neural crest cell development leading to several human disorders are also mentioned, with the emphasis of using human induced pluripotent stem cells to model neurocristopathic syndromes. © 2014 Wiley Periodicals, Inc.

  19. Pax7 lineage contributions to the mammalian neural crest.

    Directory of Open Access Journals (Sweden)

    Barbara Murdoch

    Full Text Available Neural crest cells are vertebrate-specific multipotent cells that contribute to a variety of tissues including the peripheral nervous system, melanocytes, and craniofacial bones and cartilage. Abnormal development of the neural crest is associated with several human maladies including cleft/lip palate, aggressive cancers such as melanoma and neuroblastoma, and rare syndromes, like Waardenburg syndrome, a complex disorder involving hearing loss and pigment defects. We previously identified the transcription factor Pax7 as an early marker, and required component for neural crest development in chick embryos. In mammals, Pax7 is also thought to play a role in neural crest development, yet the precise contribution of Pax7 progenitors to the neural crest lineage has not been determined.Here we use Cre/loxP technology in double transgenic mice to fate map the Pax7 lineage in neural crest derivates. We find that Pax7 descendants contribute to multiple tissues including the cranial, cardiac and trunk neural crest, which in the cranial cartilage form a distinct regional pattern. The Pax7 lineage, like the Pax3 lineage, is additionally detected in some non-neural crest tissues, including a subset of the epithelial cells in specific organs.These results demonstrate a previously unappreciated widespread distribution of Pax7 descendants within and beyond the neural crest. They shed light regarding the regionally distinct phenotypes observed in Pax3 and Pax7 mutants, and provide a unique perspective into the potential roles of Pax7 during disease and development.

  20. Should I stay or should I go? Cadherin function and regulation in the neural crest.

    Science.gov (United States)

    Taneyhill, Lisa A; Schiffmacher, Andrew T

    2017-03-02

    Our increasing comprehension of neural crest cell development has reciprocally advanced our understanding of cadherin expression, regulation, and function. As a transient population of multipotent stem cells that significantly contribute to the vertebrate body plan, neural crest cells undergo a variety of transformative processes and exhibit many cellular behaviors, including epithelial-to-mesenchymal transition (EMT), motility, collective cell migration, and differentiation. Multiple studies have elucidated regulatory and mechanistic details of specific cadherins during neural crest cell development in a highly contextual manner. Collectively, these results reveal that gradual changes within neural crest cells are accompanied by often times subtle, yet important, alterations in cadherin expression and function. The primary focus of this review is to coalesce recent data on cadherins in neural crest cells, from their specification to their emergence as motile cells soon after EMT, and to highlight the complexities of cadherin expression beyond our current perceptions, including the hypothesis that the neural crest EMT is a transition involving a predominantly singular cadherin switch. Further advancements in genetic approaches and molecular techniques will provide greater opportunities to integrate data from various model systems in order to distinguish unique or overlapping functions of cadherins expressed at any point throughout the ontogeny of the neural crest.

  1. Characterization of the trunk neural crest in the bamboo shark, Chiloscyllium punctatum.

    Science.gov (United States)

    Juarez, Marilyn; Reyes, Michelle; Coleman, Tiffany; Rotenstein, Lisa; Sao, Sothy; Martinez, Darwin; Jones, Matthew; Mackelprang, Rachel; De Bellard, Maria Elena

    2013-10-01

    The neural crest is a population of mesenchymal cells that after migrating from the neural tube gives rise to structure and cell types: the jaw, part of the peripheral ganglia, and melanocytes. Although much is known about neural crest development in jawed vertebrates, a clear picture of trunk neural crest development for elasmobranchs is yet to be developed. Here we present a detailed study of trunk neural crest development in the bamboo shark, Chiloscyllium punctatum. Vital labeling with dioctadecyl tetramethylindocarbocyanine perchlorate (DiI) and in situ hybridization using cloned Sox8 and Sox9 probes demonstrated that trunk neural crest cells follow a pattern similar to the migratory paths already described in zebrafish and amphibians. We found shark trunk neural crest along the rostral side of the somites, the ventromedial pathway, the branchial arches, the gut, the sensory ganglia, and the nerves. Interestingly, C. punctatum Sox8 and Sox9 sequences aligned with vertebrate SoxE genes, but appeared to be more ancient than the corresponding vertebrate paralogs. The expression of these two SoxE genes in trunk neural crest cells, especially Sox9, matched the Sox10 migratory patterns observed in teleosts. Also of interest, we observed DiI cells and Sox9 labeling along the lateral line, suggesting that in C. punctatum, glial cells in the lateral line are likely of neural crest origin. Although this has been observed in other vertebrates, we are the first to show that the pattern is present in cartilaginous fishes. These findings demonstrate that trunk neural crest cell development in C. punctatum follows the same highly conserved migratory pattern observed in jawed vertebrates. © 2013 Wiley Periodicals, Inc.

  2. Crestospheres: Long-Term Maintenance of Multipotent, Premigratory Neural Crest Stem Cells

    Directory of Open Access Journals (Sweden)

    Laura Kerosuo

    2015-10-01

    Full Text Available Premigratory neural crest cells comprise a transient, embryonic population that arises within the CNS, but subsequently migrates away and differentiates into many derivatives. Previously, premigratory neural crest could not be maintained in a multipotent, adhesive state without spontaneous differentiation. Here, we report conditions that enable maintenance of neuroepithelial “crestospheres” that self-renew and retain multipotency for weeks. Moreover, under differentiation conditions, these cells can form multiple derivatives in vitro and in vivo after transplantation into chick embryos. Similarly, human embryonic stem cells directed to a neural crest fate can be maintained as crestospheres and subsequently differentiated into several derivatives. By devising conditions that maintain the premigratory state in vitro, these results demonstrate that neuroepithelial neural crest precursors are capable of long-term self-renewal. This approach will help uncover mechanisms underlying their developmental potential, differentiation and, together with the induced pluripotent stem cell techniques, the pathology of human neurocristopathies.

  3. Trunk lateral cells are neural crest-like cells in the ascidian Ciona intestinalis: insights into the ancestry and evolution of the neural crest.

    Science.gov (United States)

    Jeffery, William R; Chiba, Takuto; Krajka, Florian Razy; Deyts, Carole; Satoh, Nori; Joly, Jean-Stéphane

    2008-12-01

    Neural crest-like cells (NCLC) that express the HNK-1 antigen and form body pigment cells were previously identified in diverse ascidian species. Here we investigate the embryonic origin, migratory activity, and neural crest related gene expression patterns of NCLC in the ascidian Ciona intestinalis. HNK-1 expression first appeared at about the time of larval hatching in dorsal cells of the posterior trunk. In swimming tadpoles, HNK-1 positive cells began to migrate, and after metamorphosis they were localized in the oral and atrial siphons, branchial gill slits, endostyle, and gut. Cleavage arrest experiments showed that NCLC are derived from the A7.6 cells, the precursors of trunk lateral cells (TLC), one of the three types of migratory mesenchymal cells in ascidian embryos. In cleavage arrested embryos, HNK-1 positive TLC were present on the lateral margins of the neural plate and later became localized adjacent to the posterior sensory vesicle, a staging zone for their migration after larval hatching. The Ciona orthologues of seven of sixteen genes that function in the vertebrate neural crest gene regulatory network are expressed in the A7.6/TLC lineage. The vertebrate counterparts of these genes function downstream of neural plate border specification in the regulatory network leading to neural crest development. The results suggest that NCLC and neural crest cells may be homologous cell types originating in the common ancestor of tunicates and vertebrates and support the possibility that a putative regulatory network governing NCLC development was co-opted to produce neural crest cells during vertebrate evolution.

  4. Xenopus reduced folate carrier regulates neural crest development epigenetically.

    Directory of Open Access Journals (Sweden)

    Jiejing Li

    Full Text Available Folic acid deficiency during pregnancy causes birth neurocristopathic malformations resulting from aberrant development of neural crest cells. The Reduced folate carrier (RFC is a membrane-bound receptor for facilitating transfer of reduced folate into the cells. RFC knockout mice are embryonic lethal and develop multiple malformations, including neurocristopathies. Here we show that XRFC is specifically expressed in neural crest tissues in Xenopus embryos and knockdown of XRFC by specific morpholino results in severe neurocristopathies. Inhibition of RFC blocked the expression of a series of neural crest marker genes while overexpression of RFC or injection of 5-methyltetrahydrofolate expanded the neural crest territories. In animal cap assays, knockdown of RFC dramatically reduced the mono- and trimethyl-Histone3-K4 levels and co-injection of the lysine methyltransferase hMLL1 largely rescued the XRFC morpholino phenotype. Our data revealed that the RFC mediated folate metabolic pathway likely potentiates neural crest gene expression through epigenetic modifications.

  5. Live image profiling of neural crest lineages in zebrafish transgenic lines.

    Science.gov (United States)

    Kwak, Jina; Park, Ok Kyu; Jung, Yoo Jung; Hwang, Byung Joon; Kwon, Seung-Hae; Kee, Yun

    2013-03-01

    Zebrafish transgenic lines are important experimental tools for lineage tracing and imaging studies. It is crucial to precisely characterize the cell lineages labeled in transgenic lines to understand their limitations and thus properly interpret the data obtained from their use; only then can we confidently select a line appropriate for our particular research objectives. Here we profiled the cell lineages labeled in the closely related neural crest transgenic lines Tg(foxd3:GFP), Tg(sox10:eGFP) and Tg(sox10:mRFP). These fish were crossed to generate embryos, in which foxd3 and sox10 transgenic neural crest labeling could be directly compared at the cellular level using live confocal imaging. We have identified key differences in the cell lineages labeled in each line during early neural crest development and demonstrated that the most anterior cranial neural crest cells initially migrating out of neural tube at the level of forebrain and anterior midbrain express sox10:eGFP and sox10:mRFP, but not foxd3:GFP. This differential profile was robustly maintained in the differentiating progeny of the neural crest lineages until 3.5dpf. Our data will enable researchers to make an informed choice in selecting transgenic lines for future neural crest research.

  6. Dissecting early regulatory relationships in the lamprey neural crest gene network.

    Science.gov (United States)

    Nikitina, Natalya; Sauka-Spengler, Tatjana; Bronner-Fraser, Marianne

    2008-12-23

    The neural crest, a multipotent embryonic cell type, originates at the border between neural and nonneural ectoderm. After neural tube closure, these cells undergo an epithelial-mesenchymal transition, migrate to precise, often distant locations, and differentiate into diverse derivatives. Analyses of expression and function of signaling and transcription factors in higher vertebrates has led to the proposal that a neural crest gene regulatory network (NC-GRN) orchestrates neural crest formation. Here, we interrogate the NC-GRN in the lamprey, taking advantage of its slow development and basal phylogenetic position to resolve early inductive events, 1 regulatory step at the time. To establish regulatory relationships at the neural plate border, we assess relative expression of 6 neural crest network genes and effects of individually perturbing each on the remaining 5. The results refine an upstream portion of the NC-GRN and reveal unexpected order and linkages therein; e.g., lamprey AP-2 appears to function early as a neural plate border rather than a neural crest specifier and in a pathway linked to MsxA but independent of ZicA. These findings provide an ancestral framework for performing comparative tests in higher vertebrates in which network linkages may be more difficult to resolve because of their rapid development.

  7. Cardiac neural crest contributes to cardiomyogenesis in zebrafish.

    Science.gov (United States)

    Sato, Mariko; Yost, H Joseph

    2003-05-01

    In birds and mammals, cardiac neural crest is essential for heart development and contributes to conotruncal cushion formation and outflow tract septation. The zebrafish prototypical heart lacks outflow tract septation, raising the question of whether cardiac neural crest exists in zebrafish. Here, results from three distinct lineage-labeling approaches identify zebrafish cardiac neural crest cells and indicate that these cells have the ability to generate MF20-positive muscle cells in the myocardium of the major chambers during development. Fate-mapping demonstrates that cardiac neural crest cells originate both from neural tube regions analogous to those found in birds, as well as from a novel region rostral to the otic vesicle. In contrast to other vertebrates, cardiac neural crest invades the myocardium in all segments of the heart, including outflow tract, atrium, atrioventricular junction, and ventricle in zebrafish. Three distinct groups of premigratory neural crest along the rostrocaudal axis have different propensities to contribute to different segments in the heart and are correspondingly marked by unique combinations of gene expression patterns. Zebrafish will serve as a model for understanding interactions between cardiac neural crest and cardiovascular development.

  8. Neural crest stem cell population in craniomaxillofacial development and tissue repair

    Directory of Open Access Journals (Sweden)

    M La Noce

    2014-10-01

    Full Text Available Neural crest cells, delaminating from the neural tube during migration, undergo an epithelial-mesenchymal transition and differentiate into several cell types strongly reinforcing the mesoderm of the craniofacial body area – giving rise to bone, cartilage and other tissues and cells of this human body area. Recent studies on craniomaxillofacial neural crest-derived cells have provided evidence for the tremendous plasticity of these cells. Actually, neural crest cells can respond and adapt to the environment in which they migrate and the cranial mesoderm plays an important role toward patterning the identity of the migrating neural crest cells. In our experience, neural crest-derived stem cells, such as dental pulp stem cells, can actively proliferate, repair bone and give rise to other tissues and cytotypes, including blood vessels, smooth muscle, adipocytes and melanocytes, highlighting that their use in tissue engineering is successful. In this review, we provide an overview of the main pathways involved in neural crest formation, delamination, migration and differentiation; and, in particular, we concentrate our attention on the translatability of the latest scientific progress. Here we try to suggest new ideas and strategies that are needed to fully develop the clinical use of these cells. This effort should involve both researchers/clinicians and improvements in good manufacturing practice procedures. It is important to address studies towards clinical application or take into consideration that studies must have an effective therapeutic prospect for humans. New approaches and ideas must be concentrated also toward stem cell recruitment and activation within the human body, overcoming the classical grafting.

  9. Ancient evolutionary origin of vertebrate enteric neurons from trunk-derived neural crest.

    Science.gov (United States)

    Green, Stephen A; Uy, Benjamin R; Bronner, Marianne E

    2017-04-06

    The enteric nervous system of jawed vertebrates arises primarily from vagal neural crest cells that migrate to the foregut and subsequently colonize and innervate the entire gastrointestinal tract. Here we examine development of the enteric nervous system in the basal jawless vertebrate the sea lamprey (Petromyzon marinus) to gain insight into its evolutionary origin. Surprisingly, we find no evidence for the existence of a vagally derived enteric neural crest population in the lamprey. Rather, labelling with the lipophilic dye DiI shows that late-migrating cells, originating from the trunk neural tube and associated with nerve fibres, differentiate into neurons within the gut wall and typhlosole. We propose that these trunk-derived neural crest cells may be homologous to Schwann cell precursors, recently shown in mammalian embryos to populate post-embryonic parasympathetic ganglia, including enteric ganglia. Our results suggest that neural-crest-derived Schwann cell precursors made an important contribution to the ancient enteric nervous system of early jawless vertebrates, a role that was largely subsumed by vagal neural crest cells in early gnathostomes.

  10. Endothelial cells regulate neural crest and second heart field morphogenesis.

    Science.gov (United States)

    Milgrom-Hoffman, Michal; Michailovici, Inbal; Ferrara, Napoleone; Zelzer, Elazar; Tzahor, Eldad

    2014-07-04

    Cardiac and craniofacial developmental programs are intricately linked during early embryogenesis, which is also reflected by a high frequency of birth defects affecting both regions. The molecular nature of the crosstalk between mesoderm and neural crest progenitors and the involvement of endothelial cells within the cardio-craniofacial field are largely unclear. Here we show in the mouse that genetic ablation of vascular endothelial growth factor receptor 2 (Flk1) in the mesoderm results in early embryonic lethality, severe deformation of the cardio-craniofacial field, lack of endothelial cells and a poorly formed vascular system. We provide evidence that endothelial cells are required for migration and survival of cranial neural crest cells and consequently for the deployment of second heart field progenitors into the cardiac outflow tract. Insights into the molecular mechanisms reveal marked reduction in Transforming growth factor beta 1 (Tgfb1) along with changes in the extracellular matrix (ECM) composition. Our collective findings in both mouse and avian models suggest that endothelial cells coordinate cardio-craniofacial morphogenesis, in part via a conserved signaling circuit regulating ECM remodeling by Tgfb1.

  11. Endothelial cells regulate neural crest and second heart field morphogenesis

    Directory of Open Access Journals (Sweden)

    Michal Milgrom-Hoffman

    2014-07-01

    Full Text Available Cardiac and craniofacial developmental programs are intricately linked during early embryogenesis, which is also reflected by a high frequency of birth defects affecting both regions. The molecular nature of the crosstalk between mesoderm and neural crest progenitors and the involvement of endothelial cells within the cardio–craniofacial field are largely unclear. Here we show in the mouse that genetic ablation of vascular endothelial growth factor receptor 2 (Flk1 in the mesoderm results in early embryonic lethality, severe deformation of the cardio–craniofacial field, lack of endothelial cells and a poorly formed vascular system. We provide evidence that endothelial cells are required for migration and survival of cranial neural crest cells and consequently for the deployment of second heart field progenitors into the cardiac outflow tract. Insights into the molecular mechanisms reveal marked reduction in Transforming growth factor beta 1 (Tgfb1 along with changes in the extracellular matrix (ECM composition. Our collective findings in both mouse and avian models suggest that endothelial cells coordinate cardio–craniofacial morphogenesis, in part via a conserved signaling circuit regulating ECM remodeling by Tgfb1.

  12. cMyc Regulates the Size of the Premigratory Neural Crest Stem Cell Pool.

    Science.gov (United States)

    Kerosuo, Laura; Bronner, Marianne E

    2016-12-06

    The neural crest is a transient embryonic population that originates within the central nervous system (CNS) and then migrates into the periphery and differentiates into multiple cell types. The mechanisms that govern neural crest stem-like characteristics and self-renewal ability are poorly understood. Here, we show that the proto-oncogene cMyc is a critical factor in the chick dorsal neural tube, where it regulates the size of the premigratory neural crest stem cell pool. Loss of cMyc dramatically decreases the number of emigrating neural crest cells due to reduced self-renewal capacity, increased cell death, and shorter duration of the emigration process. Interestingly, rather than via E-Box binding, cMyc acts in the dorsal neural tube by interacting with another transcription factor, Miz1, to promote self-renewal. The finding that cMyc operates in a non-canonical manner in the premigratory neural crest highlights the importance of examining its role at specific time points and in an in vivo context.

  13. Regulators of gene expression in Enteric Neural Crest Cells are putative Hirschsprung disease genes

    NARCIS (Netherlands)

    Schriemer, Duco; Sribudiani, Yunia; IJpma, Arne; Natarajan, Dipa; MacKenzie, Katherine C.; Metzger, Marco; Binder, Ellen; Burns, Alan J.; Thapar, Nikhil; Hofstra, Robert M. W.; Eggen, Bart J. L.

    2016-01-01

    The enteric nervous system (ENS) is required for peristalsis of the gut and is derived from Enteric Neural Crest Cells (ENCCs). During ENS development, the RET receptor tyrosine kinase plays a critical role in the proliferation and survival of ENCCs, their migration along the developing gut, and dif

  14. Regulators of gene expression in Enteric Neural Crest Cells are putative Hirschsprung disease genes

    NARCIS (Netherlands)

    Schriemer, Duco; Sribudiani, Yunia; IJpma, Arne; Natarajan, Dipa; MacKenzie, Katherine C; Metzger, Marco; Binder, Ellen; Burns, Alan J; Thapar, Nikhil; Hofstra, Robert M W; Eggen, Bart J L

    2016-01-01

    The enteric nervous system (ENS) is required for peristalsis of the gut and is derived from enteric neural crest cells (ENCCs). During ENS development, the RET receptor tyrosine kinase plays a critical role in the proliferation and survival of ENCCs, their migration along the developing gut, and dif

  15. Signi fi cance of Neural Crest in Tooth Development: The Molecular Signature

    Directory of Open Access Journals (Sweden)

    VP Jayasekharan

    2014-07-01

    Full Text Available The neural crest originates from cells located along the lateral margins of the neural plate. Neural crest cells arise as the result of an inductive action by the non-neural ectoderm adjacent to the neural plate and possibly by nearby mesoderm as well. As the neural tube forms, a group of cells separate from the neuro- ectoderm. These cells have the capacity to migrate and differen- tiate extensively within the developing embryo and they are the basis of structures such as spinal sensory ganglia, sympathetic neurons, Schwann cells, pigment cells and meninges. Speci fi c interactions occur during the development of tooth and recent research has concentrated more on the molecular aspects of these interactions. Thus, it is highly imperative to understand and digress the complex mechanisms involved in these processes

  16. Evolution of neural crest and placodes: amphioxus as a model for the ancestral vertebrate?

    Science.gov (United States)

    Holland, L. Z.; Holland, N. D.

    2001-01-01

    Recent studies of protochordates (ascidian tunicates and amphioxus) have given insights into possible ancestors of 2 of the characteristic features of the vertebrate head: neural crest and placodes. The neural crest probably evolved from cells on either side of the neural plate-epidermis boundary in a protochordate ancestral to the vertebrates. In amphioxus, homologues of several vertebrate neural crest marker genes (BMP2/4, Pax3/7, Msx, Dll and Snail) are expressed at the edges of the neural plate and/or adjacent nonneural ectoderm. Some of these markers are also similarly expressed in tunicates. In protochordates, however, these cells, unlike vertebrate neural crest, neither migrate as individuals through embryonic tissues nor differentiate into a wide spectrum of cell types. Therefore, while the protochordate ancestor of the vertebrates probably had the beginnings of a genetic programme for neural crest formation, this programme was augmented in the earliest vertebrates to attain definitive neural crest. Clear homologues of vertebrate placodes are lacking in protochordates. However, both amphioxus and tunicates have ectodermal sensory cells. In tunicates these are all primary neurons, sending axons to the central nervous system, while in amphioxus, the ectodermal sensory cells include both primary neurons and secondary neurons lacking axons. Comparisons of developmental gene expression suggest that the anterior ectoderm in amphioxus may be homologous to the vertebrate olfactory placode, the only vertebrate placode with primary, not secondary, neurons. Similarly, biochemical, morphological and gene expression data suggest that amphioxus and tunicates also have homologues of the adenohypophysis, one of the few vertebrate structures derived from nonneurogenic placodes. In contrast, the origin of the other vertebrate placodes is very uncertain.

  17. Evolution of neural crest and placodes: amphioxus as a model for the ancestral vertebrate?

    Science.gov (United States)

    Holland, L. Z.; Holland, N. D.

    2001-01-01

    Recent studies of protochordates (ascidian tunicates and amphioxus) have given insights into possible ancestors of 2 of the characteristic features of the vertebrate head: neural crest and placodes. The neural crest probably evolved from cells on either side of the neural plate-epidermis boundary in a protochordate ancestral to the vertebrates. In amphioxus, homologues of several vertebrate neural crest marker genes (BMP2/4, Pax3/7, Msx, Dll and Snail) are expressed at the edges of the neural plate and/or adjacent nonneural ectoderm. Some of these markers are also similarly expressed in tunicates. In protochordates, however, these cells, unlike vertebrate neural crest, neither migrate as individuals through embryonic tissues nor differentiate into a wide spectrum of cell types. Therefore, while the protochordate ancestor of the vertebrates probably had the beginnings of a genetic programme for neural crest formation, this programme was augmented in the earliest vertebrates to attain definitive neural crest. Clear homologues of vertebrate placodes are lacking in protochordates. However, both amphioxus and tunicates have ectodermal sensory cells. In tunicates these are all primary neurons, sending axons to the central nervous system, while in amphioxus, the ectodermal sensory cells include both primary neurons and secondary neurons lacking axons. Comparisons of developmental gene expression suggest that the anterior ectoderm in amphioxus may be homologous to the vertebrate olfactory placode, the only vertebrate placode with primary, not secondary, neurons. Similarly, biochemical, morphological and gene expression data suggest that amphioxus and tunicates also have homologues of the adenohypophysis, one of the few vertebrate structures derived from nonneurogenic placodes. In contrast, the origin of the other vertebrate placodes is very uncertain.

  18. Fate mapping in embryos of Neoceratodus forsteri reveals cranial neural crest participation in tooth development is conserved from lungfish to tetrapods.

    Science.gov (United States)

    Kundrát, Martin; Joss, Jean M P; Smith, Moya M

    2008-01-01

    Experimental evidence that the neural crest participates in tooth development in any osteichthyan fish has so far been lacking. Using vital dye cell-lineage tracking, we demonstrate that trigeminal stream neural crest cells contribute to the dental papilla of developing teeth in the Australian lungfish. Trigeminal neural crest cells labeled before migration have been traced during the earliest stages of tooth development. Neural crest cells from a single midbrain locus were relocated as ectomesenchyme in all developing teeth of the lungfish regardless of their topographical position in the dentition. These cells remain at the dental papilla interface and become cells committed to dentine production. Our findings provide the first cell-lineage evidence that cranial neural crest is fated to ectomesenchyme for tooth development and dentine production in the living sister-group to tetrapods. This shows that cranial neural crest contribution to teeth is conserved from this node on the tetrapod phylogeny.

  19. Meis3 is required for neural crest invasion of the gut during zebrafish enteric nervous system development.

    Science.gov (United States)

    Uribe, Rosa A; Bronner, Marianne E

    2015-11-01

    During development, vagal neural crest cells fated to contribute to the enteric nervous system migrate ventrally away from the neural tube toward and along the primitive gut. The molecular mechanisms that regulate their early migration en route to and entry into the gut remain elusive. Here we show that the transcription factor meis3 is expressed along vagal neural crest pathways. Meis3 loss of function results in a reduction in migration efficiency, cell number, and the mitotic activity of neural crest cells in the vicinity of the gut but has no effect on neural crest or gut specification. Later, during enteric nervous system differentiation, Meis3-depleted embryos exhibit colonic aganglionosis, a disorder in which the hindgut is devoid of neurons. Accordingly, the expression of Shh pathway components, previously shown to have a role in the etiology of Hirschsprung's disease, was misregulated within the gut after loss of Meis3. Taken together, these findings support a model in which Meis3 is required for neural crest proliferation, migration into, and colonization of the gut such that its loss leads to severe defects in enteric nervous system development.

  20. An amphioxus winged helix/forkhead gene, AmphiFoxD: insights into vertebrate neural crest evolution

    Science.gov (United States)

    Yu, Jr-Kai; Holland, Nicholas D.; Holland, Linda Z.

    2002-01-01

    During amphioxus development, the neural plate is bordered by cells expressing many genes with homologs involved in vertebrate neural crest induction. However, these amphioxus cells evidently lack additional genetic programs for the cell delaminations, migrations, and differentiations characterizing definitive vertebrate neural crest. We characterize an amphioxus winged helix/forkhead gene (AmphiFoxD) closely related to vertebrate FoxD genes. Phylogenetic analysis indicates that the AmphiFoxD is basal to vertebrate FoxD1, FoxD2, FoxD3, FoxD4, and FoxD5. One of these vertebrate genes (FoxD3) consistently marks neural crest during development. Early in amphioxus development, AmphiFoxD is expressed medially in the anterior neural plate as well as in axial (notochordal) and paraxial mesoderm; later, the gene is expressed in the somites, notochord, cerebral vesicle (diencephalon), and hindgut endoderm. However, there is never any expression in cells bordering the neural plate. We speculate that an AmphiFoxD homolog in the common ancestor of amphioxus and vertebrates was involved in histogenic processes in the mesoderm (evagination and delamination of the somites and notochord); then, in the early vertebrates, descendant paralogs of this gene began functioning in the presumptive neural crest bordering the neural plate to help make possible the delaminations and cell migrations that characterize definitive vertebrate neural crest. Copyright 2002 Wiley-Liss, Inc.

  1. Lack of beta1 integrins in enteric neural crest cells leads to a Hirschsprung-like phenotype

    DEFF Research Database (Denmark)

    Breau, Marie A; Pietri, Thomas; Eder, Olivier

    2006-01-01

    crest cells fail to colonise the gut completely, leading to an aganglionosis of the descending colon, which resembles the human Hirschsprung's disease. Moreover, beta1-null enteric neural crest cells form abnormal aggregates in the gut wall, leading to a severe alteration of the ganglia network...... organisation. Organotypic cultures of gut explants reveal that beta1-null enteric neural crest cells show impaired adhesion on extracellular matrix and enhanced intercellular adhesion properties. They display migration defects in collagen gels and gut tissue environments. We also provide evidence that beta1...

  2. Iris sector heterochromia as a marker for neural crest disease.

    Science.gov (United States)

    Brazel, S M; Sullivan, T J; Thorner, P S; Clarke, M P; Hunter, W S; Morin, J D

    1992-02-01

    A 6-month-old female infant with biopsy-proved Hirschsprung's disease had associated sector heterochromia of the irides. The association between sector heterochromia and Hirschsprung's disease has been previously reported and both conditions have been ascribed to neural crest defects. Histologic characteristics of the ocular involvement have not previously been reported, to our knowledge. Histopathologic examination of the globes revealed decreased iris stroma, decreased pigmentation in the anterior stroma, and reduced numbers of pigment-producing cells in the affected areas. Both the ocular and gastrointestinal findings reflect abnormalities in tissues of neural crest origin.

  3. Current perspectives of the signaling pathways directing neural crest induction.

    Science.gov (United States)

    Stuhlmiller, Timothy J; García-Castro, Martín I

    2012-11-01

    The neural crest is a migratory population of embryonic cells with a tremendous potential to differentiate and contribute to nearly every organ system in the adult body. Over the past two decades, an incredible amount of research has given us a reasonable understanding of how these cells are generated. Neural crest induction involves the combinatorial input of multiple signaling pathways and transcription factors, and is thought to occur in two phases from gastrulation to neurulation. In the first phase, FGF and Wnt signaling induce NC progenitors at the border of the neural plate, activating the expression of members of the Msx, Pax, and Zic families, among others. In the second phase, BMP, Wnt, and Notch signaling maintain these progenitors and bring about the expression of definitive NC markers including Snail2, FoxD3, and Sox9/10. In recent years, additional signaling molecules and modulators of these pathways have been uncovered, creating an increasingly complex regulatory network. In this work, we provide a comprehensive review of the major signaling pathways that participate in neural crest induction, with a focus on recent developments and current perspectives. We provide a simplified model of early neural crest development and stress similarities and differences between four major model organisms: Xenopus, chick, zebrafish, and mouse.

  4. Expression of chondrogenic potential of mouse trunk neural crest cells by FGF2 treatment.

    Science.gov (United States)

    Ido, Atsushi; Ito, Kazuo

    2006-02-01

    There is a significant difference between the developmental patterns of cranial and trunk neural crest cells in the amniote. Thus, whereas cranial neural crest cells generate bone and cartilage, trunk neural crest cells do not contribute to skeletal derivatives. We examined whether mouse trunk neural crest cells can undergo chondrogenesis to analyze how the difference between the developmental patterns of cranial and trunk neural crest cells arises. Our present data demonstrate that mouse trunk neural crest cells have chondrogenic potential and that fibroblast growth factor (FGF) 2 is an inducing factor for their chondrogenesis in vitro. FGF2 altered the expression patterns of Hox9 genes and Id2, a cranial neural crest cell marker. These results suggest that environmental cues may play essential roles in generating the difference between developmental patterns of cranial and trunk neural crest cells. Copyright 2005 Wiley-Liss, Inc.

  5. Cell Motility and Invasiveness of Neurofibromin-Deficient Neural Crest Cells and Malignant Triton Tumor Lines

    Science.gov (United States)

    2005-06-01

    immunoblotting techniques to characterize signaling pathways activated by TGF-beta and PDGF-BB in MPNST -like sarcoma cell lines isolated from cisNfl+/-;p53...mouse model to include characterizations of genomic instability in the context of malignant transformation, and to test possible modifiers of MPNST ...growth and invasiveness. 15. SUBJECT TERMS neurofibromatosis type 1; neural crest cells; cell motility and Migration; PDGF; TGF-beta; MPNST

  6. Premigratory and migratory neural crest cells are multipotent in vivo

    NARCIS (Netherlands)

    Baggiolini, Arianna; Varum, Sandra; Mateos, José María; Bettosini, Damiano; John, Nessy; Bonalli, Mario; Ziegler, Urs; Dimou, Leda; Clevers, Hans; Furrer, Reinhard; Sommer, Lukas

    2015-01-01

    The neural crest (NC) is an embryonic stem/progenitor cell population that generates a diverse array of cell lineages, including peripheral neurons, myelinating Schwann cells, and melanocytes, among others. However, there is a long-standing controversy as to whether this broad developmental

  7. Premigratory and migratory neural crest cells are multipotent in vivo

    NARCIS (Netherlands)

    Baggiolini, Arianna; Varum, Sandra; Mateos, José María; Bettosini, Damiano; John, Nessy; Bonalli, Mario; Ziegler, Urs; Dimou, Leda; Clevers, Hans; Furrer, Reinhard; Sommer, Lukas

    2015-01-01

    The neural crest (NC) is an embryonic stem/progenitor cell population that generates a diverse array of cell lineages, including peripheral neurons, myelinating Schwann cells, and melanocytes, among others. However, there is a long-standing controversy as to whether this broad developmental perspect

  8. Dynamic and differential regulation of stem cell factor FoxD3 in the neural crest is Encrypted in the genome.

    Directory of Open Access Journals (Sweden)

    Marcos S Simões-Costa

    Full Text Available The critical stem cell transcription factor FoxD3 is expressed by the premigratory and migrating neural crest, an embryonic stem cell population that forms diverse derivatives. Despite its important role in development and stem cell biology, little is known about what mediates FoxD3 activity in these cells. We have uncovered two FoxD3 enhancers, NC1 and NC2, that drive reporter expression in spatially and temporally distinct manners. Whereas NC1 activity recapitulates initial FoxD3 expression in the cranial neural crest, NC2 activity recapitulates initial FoxD3 expression at vagal/trunk levels while appearing only later in migrating cranial crest. Detailed mutational analysis, in vivo chromatin immunoprecipitation, and morpholino knock-downs reveal that transcription factors Pax7 and Msx1/2 cooperate with the neural crest specifier gene, Ets1, to bind to the cranial NC1 regulatory element. However, at vagal/trunk levels, they function together with the neural plate border gene, Zic1, which directly binds to the NC2 enhancer. These results reveal dynamic and differential regulation of FoxD3 in distinct neural crest subpopulations, suggesting that heterogeneity is encrypted at the regulatory level. Isolation of neural crest enhancers not only allows establishment of direct regulatory connections underlying neural crest formation, but also provides valuable tools for tissue specific manipulation and investigation of neural crest cell identity in amniotes.

  9. The ciliary baton: orchestrating neural crest cell development.

    Science.gov (United States)

    Chang, Ching-Fang; Schock, Elizabeth N; Attia, Aria C; Stottmann, Rolf W; Brugmann, Samantha A

    2015-01-01

    Primary cilia are cell surface, microtubule-based organelles that dynamically extend from cells to receive and process molecular and mechanical signaling cues. In the last decade, this organelle has gained increasing popularity due to its ability to act as a cellular antenna, receive molecular stimuli, and respond to the cell's environment. A growing field of data suggests that various tissues utilize and interpret the loss of cilia in different ways. Thus, careful examination of the role of cilia on individual cell types and tissues is necessary. Neural crest cells (NCCs) are an excellent example of cells that survey their environment for developmental cues. In this review, we discuss how NCCs utilize primary cilia during their ontogenic development, paying special attention to the role primary cilia play in processing developmental signals required for NCC specification, migration, proliferation, and differentiation. We also discuss how the loss of functional cilia on cranial and trunk NCCs affects the development of various organ systems to which they contribute. A deeper understanding of ciliary function could contribute greatly to understanding the molecular mechanisms guiding NCC development and differentiation. Furthermore, superimposing the ciliary contribution on our current understanding of NCC development identifies new avenues for therapeutic intervention in neurocristopathies. © 2015 Elsevier Inc. All rights reserved.

  10. Generating trunk neural crest from human pluripotent stem cells

    OpenAIRE

    Miller Huang; Matthew L. Miller; McHenry, Lauren K.; Tina Zheng; Qiqi Zhen; Shirin Ilkhanizadeh; Conklin, Bruce R.; Bronner, Marianne E.; Weiss, William A.

    2016-01-01

    Neural crest cells (NCC) are stem cells that generate different lineages, including neuroendocrine, melanocytic, cartilage, and bone. The differentiation potential of NCC varies according to the level from which cells emerge along the neural tube. For example, only anterior “cranial” NCC form craniofacial bone, whereas solely posterior “trunk” NCC contribute to sympathoadrenal cells. Importantly, the isolation of human fetal NCC carries ethical and scientific challenges, as NCC induction typi...

  11. Distinct enhancers at the Pax3 locus can function redundantly to regulate neural tube and neural crest expressions.

    Science.gov (United States)

    Degenhardt, Karl R; Milewski, Rita C; Padmanabhan, Arun; Miller, Mayumi; Singh, Manvendra K; Lang, Deborah; Engleka, Kurt A; Wu, Meilin; Li, Jun; Zhou, Diane; Antonucci, Nicole; Li, Li; Epstein, Jonathan A

    2010-03-15

    Pax3 is a transcription factor expressed in somitic mesoderm, dorsal neural tube and pre-migratory neural crest during embryonic development. We have previously identified cis-acting enhancer elements within the proximal upstream genomic region of Pax3 that are sufficient to direct functional expression of Pax3 in neural crest. These elements direct expression of a reporter gene to pre-migratory neural crest in transgenic mice, and transgenic expression of a Pax3 cDNA using these elements is sufficient to rescue neural crest development in mice otherwise lacking endogenous Pax3. We show here that deletion of these enhancer sequences by homologous recombination is insufficient to abrogate neural crest expression of Pax3 and results in viable mice. We identify a distinct enhancer in the fourth intron that is also capable of mediating neural crest expression in transgenic mice and zebrafish. Our analysis suggests the existence of functionally redundant neural crest enhancer modules for Pax3.

  12. Conditional beta1-integrin gene deletion in neural crest cells causes severe developmental alterations of the peripheral nervous system

    DEFF Research Database (Denmark)

    Pietri, Thomas; Eder, Olivier; Breau, Marie Anne;

    2004-01-01

    Integrins are transmembrane receptors that are known to interact with the extracellular matrix and to be required for migration, proliferation, differentiation and apoptosis. We have generated mice with a neural crest cell-specific deletion of the beta1-integrin gene to analyse the role of beta1-...

  13. Sox10-dependent neural crest origin of olfactory microvillous neurons in zebrafish.

    Science.gov (United States)

    Saxena, Ankur; Peng, Brian N; Bronner, Marianne E

    2013-03-19

    The sense of smell in vertebrates is detected by specialized sensory neurons derived from the peripheral nervous system. Classically, it has been presumed that the olfactory placode forms all olfactory sensory neurons. In contrast, we show that the cranial neural crest is the primary source of microvillous sensory neurons within the olfactory epithelium of zebrafish embryos. Using photoconversion-based fate mapping and live cell tracking coupled with laser ablation, we followed neural crest precursors as they migrated from the neural tube to the nasal cavity. A subset that coexpressed Sox10 protein and a neurogenin1 reporter ingressed into the olfactory epithelium and differentiated into microvillous sensory neurons. Timed loss-of-function analysis revealed a critical role for Sox10 in microvillous neurogenesis. Taken together, these findings directly demonstrate a heretofore unknown contribution of the cranial neural crest to olfactory sensory neurons in zebrafish and provide important insights into the assembly of the nascent olfactory system. DOI:http://dx.doi.org/10.7554/eLife.00336.001.

  14. Applications of Mesenchymal Stem Cells and Neural Crest Cells in Craniofacial Skeletal Research

    Directory of Open Access Journals (Sweden)

    Satoru Morikawa

    2016-01-01

    Full Text Available Craniofacial skeletal tissues are composed of tooth and bone, together with nerves and blood vessels. This composite material is mainly derived from neural crest cells (NCCs. The neural crest is transient embryonic tissue present during neural tube formation whose cells have high potential for migration and differentiation. Thus, NCCs are promising candidates for craniofacial tissue regeneration; however, the clinical application of NCCs is hindered by their limited accessibility. In contrast, mesenchymal stem cells (MSCs are easily accessible in adults, have similar potential for self-renewal, and can differentiate into skeletal tissues, including bones and cartilage. Therefore, MSCs may represent good sources of stem cells for clinical use. MSCs are classically identified under adherent culture conditions, leading to contamination with other cell lineages. Previous studies have identified mouse- and human-specific MSC subsets using cell surface markers. Additionally, some studies have shown that a subset of MSCs is closely related to neural crest derivatives and endothelial cells. These MSCs may be promising candidates for regeneration of craniofacial tissues from the perspective of developmental fate. Here, we review the fundamental biology of MSCs in craniofacial research.

  15. Hematopoietic Stem Cells in Neural-crest Derived Bone Marrow.

    Science.gov (United States)

    Jiang, Nan; Chen, Mo; Yang, Guodong; Xiang, Lusai; He, Ling; Hei, Thomas K; Chotkowski, Gregory; Tarnow, Dennis P; Finkel, Myron; Ding, Lei; Zhou, Yanheng; Mao, Jeremy J

    2016-12-21

    Hematopoietic stem cells (HSCs) in the endosteum of mesoderm-derived appendicular bones have been extensively studied. Neural crest-derived bones differ from appendicular bones in developmental origin, mode of bone formation and pathological bone resorption. Whether neural crest-derived bones harbor HSCs is elusive. Here, we discovered HSC-like cells in postnatal murine mandible, and benchmarked them with donor-matched, mesoderm-derived femur/tibia HSCs, including clonogenic assay and long-term culture. Mandibular CD34 negative, LSK cells proliferated similarly to appendicular HSCs, and differentiated into all hematopoietic lineages. Mandibular HSCs showed a consistent deficiency in lymphoid differentiation, including significantly fewer CD229 + fractions, PreProB, ProB, PreB and B220 + slgM cells. Remarkably, mandibular HSCs reconstituted irradiated hematopoietic bone marrow in vivo, just as appendicular HSCs. Genomic profiling of osteoblasts from mandibular and femur/tibia bone marrow revealed deficiencies in several HSC niche regulators among mandibular osteoblasts including Cxcl12. Neural crest derived bone harbors HSCs that function similarly to appendicular HSCs but are deficient in the lymphoid lineage. Thus, lymphoid deficiency of mandibular HSCs may be accounted by putative niche regulating genes. HSCs in craniofacial bones have functional implications in homeostasis, osteoclastogenesis, immune functions, tumor metastasis and infections such as osteonecrosis of the jaw.

  16. Isolation and culture of neural crest cells from embryonic murine neural tube.

    Science.gov (United States)

    Pfaltzgraff, Elise R; Mundell, Nathan A; Labosky, Patricia A

    2012-06-02

    The embryonic neural crest (NC) is a multipotent progenitor population that originates at the dorsal aspect of the neural tube, undergoes an epithelial to mesenchymal transition (EMT) and migrates throughout the embryo, giving rise to diverse cell types. NC also has the unique ability to influence the differentiation and maturation of target organs. When explanted in vitro, NC progenitors undergo self-renewal, migrate and differentiate into a variety of tissue types including neurons, glia, smooth muscle cells, cartilage and bone. NC multipotency was first described from explants of the avian neural tube. In vitro isolation of NC cells facilitates the study of NC dynamics including proliferation, migration, and multipotency. Further work in the avian and rat systems demonstrated that explanted NC cells retain their NC potential when transplanted back into the embryo. Because these inherent cellular properties are preserved in explanted NC progenitors, the neural tube explant assay provides an attractive option for studying the NC in vitro. To attain a better understanding of the mammalian NC, many methods have been employed to isolate NC populations. NC-derived progenitors can be cultured from post-migratory locations in both the embryo and adult to study the dynamics of post-migratory NC progenitors, however isolation of NC progenitors as they emigrate from the neural tube provides optimal preservation of NC cell potential and migratory properties. Some protocols employ fluorescence activated cell sorting (FACS) to isolate a NC population enriched for particular progenitors. However, when starting with early stage embryos, cell numbers adequate for analyses are difficult to obtain with FACS, complicating the isolation of early NC populations from individual embryos. Here, we describe an approach that does not rely on FACS and results in an approximately 96% pure NC population based on a Wnt1-Cre activated lineage reporter. The method presented here is adapted from

  17. Involvement of endothelin receptors in normal and pathological development of neural crest cells.

    Science.gov (United States)

    Pla, Patrick; Larue, Lionel

    2003-06-01

    Endothelin receptors (Ednr) are G-protein-coupled receptors with seven membrane-spanning domains and are involved in various physiological processes in adults. We review here the function of these receptors during the development and transformation of the neural crest cell-specific lineage. Neural crest cells (NCC) may be classified according to their location in the body. In particular, there are clear differences between the neural crest cells arising from the cephalic part of the embryo and those arising from the vagal and truncal part. The development of cranial and cardiac NCC requires the endothelin-1/Ednra system to be fully functional whereas the development of more posterior NCC requires full functionality of the endothelin-3/Ednrb system. Mutations have been found in the genes corresponding to these systems in mammals. These mutations principally impair pigmentation and enteric ganglia development. The precise patterns of expression of these receptors and their ligands have been determined in avian and mammalian models. Data obtained in vitro and in vivo have provided insight into the roles of these proteins in cell proliferation, migration, differentiation and transformation.

  18. File list: DNS.PSC.20.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.20.AllAg.hESC_derived_neural_crests hg19 DNase-seq Pluripotent stem cell hESC derived neural crest...s http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.20.AllAg.hESC_derived_neural_crests.bed ...

  19. File list: DNS.PSC.10.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.10.AllAg.hESC_derived_neural_crests hg19 DNase-seq Pluripotent stem cell hESC derived neural crest...s http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.10.AllAg.hESC_derived_neural_crests.bed ...

  20. File list: DNS.PSC.05.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.05.AllAg.hESC_derived_neural_crests hg19 DNase-seq Pluripotent stem cell hESC derived neural crest...s http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.05.AllAg.hESC_derived_neural_crests.bed ...

  1. File list: DNS.PSC.50.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.50.AllAg.hESC_derived_neural_crests hg19 DNase-seq Pluripotent stem cell hESC derived neural crest...s http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.50.AllAg.hESC_derived_neural_crests.bed ...

  2. Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers.

    Science.gov (United States)

    Plouhinec, Jean-Louis; Roche, Daniel D; Pegoraro, Caterina; Figueiredo, Ana Leonor; Maczkowiak, Frédérique; Brunet, Lisa J; Milet, Cécile; Vert, Jean-Philippe; Pollet, Nicolas; Harland, Richard M; Monsoro-Burq, Anne H

    2014-02-15

    Neural crest development is orchestrated by a complex and still poorly understood gene regulatory network. Premigratory neural crest is induced at the lateral border of the neural plate by the combined action of signaling molecules and transcription factors such as AP2, Gbx2, Pax3 and Zic1. Among them, Pax3 and Zic1 are both necessary and sufficient to trigger a complete neural crest developmental program. However, their gene targets in the neural crest regulatory network remain unknown. Here, through a transcriptome analysis of frog microdissected neural border, we identified an extended gene signature for the premigratory neural crest, and we defined novel potential members of the regulatory network. This signature includes 34 novel genes, as well as 44 known genes expressed at the neural border. Using another microarray analysis which combined Pax3 and Zic1 gain-of-function and protein translation blockade, we uncovered 25 Pax3 and Zic1 direct targets within this signature. We demonstrated that the neural border specifiers Pax3 and Zic1 are direct upstream regulators of neural crest specifiers Snail1/2, Foxd3, Twist1, and Tfap2b. In addition, they may modulate the transcriptional output of multiple signaling pathways involved in neural crest development (Wnt, Retinoic Acid) through the induction of key pathway regulators (Axin2 and Cyp26c1). We also found that Pax3 could maintain its own expression through a positive autoregulatory feedback loop. These hierarchical inductions, feedback loops, and pathway modulations provide novel tools to understand the neural crest induction network.

  3. The neural crest stem cells: control of neural crest cell fate and plasticity by endothelin-3

    Directory of Open Access Journals (Sweden)

    ELISABETH DUPIN

    2001-12-01

    Full Text Available How the considerable diversity of neural crest (NC-derived cell types arises in the vertebrate embryo has long been a key question in developmental biology. The pluripotency and plasticity of differentiation of the NC cell population has been fully documented and it is well-established that environmental cues play an important role in patterning the NC derivatives throughout the body. Over the past decade, in vivo and in vitro cellular approaches have unravelled the differentiation potentialities of single NC cells and led to the discovery of NC stem cells. Although it is clear that the final fate of individual cells is in agreement with their final position within the embryo, it has to be stressed that the NC cells that reach target sites are pluripotent and further restrictions occur only late in development. It is therefore a heterogenous collection of cells that is submitted to local environmental signals in the various NC-derived structures. Several factors were thus identified which favor the development of subsets of NC-derived cells in vitro. Moreover, the strategy of gene targeting in mouse has led at identifying new molecules able to control one or several aspects of NC cell differentiation in vivo. Endothelin peptides (and endothelin receptors are among those. The conjunction of recent data obtained in mouse and avian embryos and reviewed here contributes to a better understanding of the action of the endothelin signaling pathway in the emergence and stability of NC-derived cell phenotypes.O modo como a diversidade dos tipos celulares derivados da crista neural (CN surge, no embrião de vertebrado, tem sido uma pergunta chave na biologia do desenvolvimento. A pluripotência e a plasticidade na diferenciação da população de células da CN têm sido intensivamente documentadas, ficando deste modo estabelecido que os factores ambientais têm um papel importante na correta diferenciação dos derivados da CN no organismo. Na d

  4. Late-emigrating trunk neural crest cells in turtle embryos generate an osteogenic ectomesenchyme in the plastron.

    Science.gov (United States)

    Cebra-Thomas, Judith A; Terrell, Anne; Branyan, Kayla; Shah, Sonal; Rice, Ritva; Gyi, Lin; Yin, Melinda; Hu, Yusha; Mangat, Gulnar; Simonet, Jacqueline; Betters, Erin; Gilbert, Scott F

    2013-11-01

    The turtle plastron is composed of a keratinized epidermis overlying nine dermal bones. Its developmental origin has been controversial; recent evidence suggests that the plastral bones derive from trunk neural crest cells (NCCs). This study extends the observations that there is a turtle-specific, second wave of trunk NCC delamination and migration, after the original NCCs have reached their destination and differentiated. This second wave was confirmed by immunohistochemistry in whole-mounts and serial sections, by injecting DiI (1,1', di-octadecyl-3,3,3',3',-tetramethylindo-carbocyanine perchlorate) into the lumen of the neural tube and tracing labeled cells into the plastron, and by isolating neural tubes from older turtle embryos and observing delaminating NCCs. This later migration gives rise to a plastral ectomesenchyme that expresses NCC markers and can be induced to initiate bone formation. The NCCs of this second migration have properties similar to those of the earlier NCCs, but also express markers characteristic of cranial NCCs. The majority of the cells of the plastron mesenchyme express neural crest markers, and have osteogenic differentiation capabilities that are similar or identical to craniofacial ectomesenchyme. Our evidence supports the contention that turtle plastron bones are derived from a late emigrating population of cells derived from the trunk neural crest. Copyright © 2013 Wiley Periodicals, Inc.

  5. Hedgehog signaling is required for cranial neural crest morphogenesis and chondrogenesis at the midline in the zebrafish skull.

    Science.gov (United States)

    Wada, Naoyuki; Javidan, Yashar; Nelson, Sarah; Carney, Thomas J; Kelsh, Robert N; Schilling, Thomas F

    2005-09-01

    Neural crest cells that form the vertebrate head skeleton migrate and interact with surrounding tissues to shape the skull, and defects in these processes underlie many human craniofacial syndromes. Signals at the midline play a crucial role in the development of the anterior neurocranium, which forms the ventral braincase and palate, and here we explore the role of Hedgehog (Hh) signaling in this process. Using sox10:egfp transgenics to follow neural crest cell movements in the living embryo, and vital dye labeling to generate a fate map, we show that distinct populations of neural crest form the two main cartilage elements of the larval anterior neurocranium: the paired trabeculae and the midline ethmoid. By analyzing zebrafish mutants that disrupt sonic hedgehog (shh) expression, we demonstrate that shh is required to specify the movements of progenitors of these elements at the midline, and to induce them to form cartilage. Treatments with cyclopamine, to block Hh signaling at different stages, suggest that although requirements in morphogenesis occur during neural crest migration beneath the brain, requirements in chondrogenesis occur later, as cells form separate trabecular and ethmoid condensations. Cell transplantations indicate that these also reflect different sources of Shh, one from the ventral neural tube that controls trabecular morphogenesis and one from the oral ectoderm that promotes chondrogenesis. Our results suggest a novel role for Shh in the movements of neural crest cells at the midline, as well as in their differentiation into cartilage, and help to explain why both skeletal fusions and palatal clefting are associated with the loss of Hh signaling in holoprosencephalic humans.

  6. Neural Crest As the Source of Adult Stem Cells

    Science.gov (United States)

    Pierret, Chris; Spears, Kathleen; Maruniak, Joel A.; Kirk, Mark D.

    2012-01-01

    Recent studies suggest that adult stem cells can cross germ layer boundaries. For example, bone marrow-derived stem cells appear to differentiate into neurons and glial cells, as well as other types of cells. How can stem cells from bone marrow, pancreas, skin, or fat become neurons and glia; in other words, what molecular and cellular events direct mesodermal cells to a neural fate? Transdifferentiation, dediffereniation, and fusion of donor adult stem cells with fully differentiated host cells have been proposed to explain the plasticity of adult stem cells. Here we review the origin of select adult stem cell populations and propose a unifying hypothesis to explain adult stem cell plasticity. In addition, we outline specific experiments to test our hypothesis. We propose that peripheral, tissue-derived, or adult stem cells are all progeny of the neural crest. PMID:16646675

  7. Zebrafish Zic2a and Zic2b regulate neural crest and craniofacial development.

    Science.gov (United States)

    Teslaa, Jessica J; Keller, Abigail N; Nyholm, Molly K; Grinblat, Yevgenya

    2013-08-01

    Holoprosencephaly (HPE), the most common malformation of the human forebrain, is associated with defects of the craniofacial skeleton. ZIC2, a zinc-finger transcription factor, is strongly linked to HPE and to a characteristic set of dysmorphic facial features in humans. We have previously identified important functions for zebrafish Zic2 in the developing forebrain. Here, we demonstrate that ZIC2 orthologs zic2a and zic2b also regulate the forming zebrafish craniofacial skeleton, including the jaw and neurocranial cartilages, and use the zebrafish to study Zic2-regulated processes that may contribute to the complex etiology of HPE. Using temporally controlled Zic2a overexpression, we show that the developing craniofacial cartilages are sensitive to Zic2 elevation prior to 24hpf. This window of sensitivity overlaps the critical expansion and migration of the neural crest (NC) cells, which migrate from the developing neural tube to populate vertebrate craniofacial structures. We demonstrate that zic2b influences the induction of NC at the neural plate border, while both zic2a and zic2b regulate NC migratory onset and strongly contribute to chromatophore development. Both Zic2 depletion and early ectopic Zic2 expression cause moderate, incompletely penetrant mispatterning of the NC-derived jaw precursors at 24hpf, yet by 2dpf these changes in Zic2 expression result in profoundly mispatterned chondrogenic condensations. We attribute this discrepancy to an additional role for Zic2a and Zic2b in patterning the forebrain primordium, an important signaling source during craniofacial development. This hypothesis is supported by evidence that transplanted Zic2-deficient cells can contribute to craniofacial cartilages in a wild-type background. Collectively, these data suggest that zebrafish Zic2 plays a dual role during craniofacial development, contributing to two disparate aspects of craniofacial morphogenesis: (1) neural crest induction and migration, and (2) early

  8. Analysis of neural crest-derived clones reveals novel aspects of facial development

    NARCIS (Netherlands)

    Kaucka, Marketa; Ivashkin, Evgeny; Gyllborg, Daniel; Zikmund, Tomas; Tesarova, Marketa; Kaiser, Jozef; Xie, Meng; Petersen, Julian; Pachnis, Vassilis; Nicolis, Silvia K; Yu, Tian; Sharpe, Paul; Arenas, Ernest; Brismar, Hjalmar; Blom, Hans; Clevers, Hans; Suter, Ueli; Chagin, Andrei S; Fried, Kaj; Hellander, Andreas; Adameyko, Igor

    2016-01-01

    Cranial neural crest cells populate the future facial region and produce ectomesenchyme-derived tissues, such as cartilage, bone, dermis, smooth muscle, adipocytes, and many others. However, the contribution of individual neural crest cells to certain facial locations and the general spatial clonal

  9. Inca: a novel p21-activated kinase-associated protein required for cranial neural crest development.

    Science.gov (United States)

    Luo, Ting; Xu, Yanhua; Hoffman, Trevor L; Zhang, Tailin; Schilling, Thomas; Sargent, Thomas D

    2007-04-01

    Inca (induced in neural crest by AP2) is a novel protein discovered in a microarray screen for genes that are upregulated in Xenopus embryos by the transcriptional activator protein Tfap2a. It has no significant similarity to any known protein, but is conserved among vertebrates. In Xenopus, zebrafish and mouse embryos, Inca is expressed predominantly in the premigratory and migrating neural crest (NC). Knockdown experiments in frog and fish using antisense morpholinos reveal essential functions for Inca in a subset of NC cells that form craniofacial cartilage. Cells lacking Inca migrate successfully but fail to condense into skeletal primordia. Overexpression of Inca disrupts cortical actin and prevents formation of actin "purse strings", which are required for wound healing in Xenopus embryos. We show that Inca physically interacts with p21-activated kinase 5 (PAK5), a known regulator of the actin cytoskeleton that is co-expressed with Inca in embryonic ectoderm, including in the NC. These results suggest that Inca and PAK5 cooperate in restructuring cytoskeletal organization and in the regulation of cell adhesion in the early embryo and in NC cells during craniofacial development.

  10. Imidacloprid Exposure Suppresses Neural Crest Cells Generation during Early Chick Embryo Development.

    Science.gov (United States)

    Wang, Chao-Jie; Wang, Guang; Wang, Xiao-Yu; Liu, Meng; Chuai, Manli; Lee, Kenneth Ka Ho; He, Xiao-Song; Lu, Da-Xiang; Yang, Xuesong

    2016-06-15

    Imidacloprid is a neonicotinoid pesticide that is widely used in the control pests found on crops and fleas on pets. However, it is still unclear whether imidacloprid exposure could affect early embryo development-despite some studies having been conducted on the gametes. In this study, we demonstrated that imidacloprid exposure could lead to abnormal craniofacial osteogenesis in the developing chick embryo. Cranial neural crest cells (NCCs) are the progenitor cells of the chick cranial skull. We found that the imidacloprid exposure retards the development of gastrulating chick embryos. HNK-1, PAX7, and Ap-2α immunohistological stainings indicated that cranial NCCs generation was inhibited after imidacloprid exposure. Double immunofluorescent staining (Ap-2α and PHIS3 or PAX7 and c-Caspase3) revealed that imidacloprid exposure inhibited both NCC proliferation and apoptosis. In addition, it inhibited NCCs production by repressing Msx1 and BMP4 expression in the developing neural tube and by altering expression of EMT-related adhesion molecules (Cad6B, E-Cadherin, and N-cadherin) in the developing neural crests. We also determined that imidacloprid exposure suppressed cranial NCCs migration and their ability to differentiate. In sum, we have provided experimental evidence that imidacloprid exposure during embryogenesis disrupts NCCs development, which in turn causes defective cranial bone development.

  11. Neural Crest Cells Contribute an Astrocyte-like Glial Population to the Spleen

    Science.gov (United States)

    Barlow-Anacker, Amanda J.; Fu, Ming; Erickson, Christopher S.; Bertocchini, Federica; Gosain, Ankush

    2017-01-01

    Neural crest cells (NCC) are multi-potent cells of ectodermal origin that colonize diverse organs, including the gastrointestinal tract to form the enteric nervous system (ENS) and hematopoietic organs (bone marrow, thymus) where they participate in lymphocyte trafficking. Recent studies have implicated the spleen as an anatomic site for integration of inflammatory signals from the intestine with efferent neural inputs. We have previously observed alterations in splenic lymphocyte subsets in animals with defective migration of NCC that model Hirschsprung’s disease, leading us to hypothesize that there may be a direct cellular contribution of NCC to the spleen. Here, we demonstrate that NCC colonize the spleen during embryogenesis and persist into adulthood. Splenic NCC display markers indicating a glial lineage and are arranged anatomically adjacent to blood vessels, pericytes and nerves, suggesting an astrocyte-like phenotype. Finally, we identify similar neural-crest derived cells in both the avian and non-human primate spleen, showing evolutionary conservation of these cells. PMID:28349968

  12. Stem Cells from Human Exfoliated Deciduous Tooth Exhibit Stromal-Derived Inducing Activity and Lead to Generation of Neural Crest Cells from Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Khadijeh Karbalaie

    2015-04-01

    Full Text Available Objective: The neural crest is a transient structure of early vertebrate embryos that generates neural crest cells (NCCs. These cells can migrate throughout the body and produce a diverse array of mature tissue types. Due to the ethical and technical problems surrounding the isolation of these early human embryo cells, researchers have focused on in vitro studies to produce NCCs and increase their knowledge of neural crest development. Materials and Methods: In this experimental study, we cultured human embryonic stem cells (hESCs on stromal stem cells from human exfoliated deciduous teeth (SHED for a two-week period. We used different approaches to characterize these differentiated cells as neural precursor cells (NPCs and NCCs. Results: In the first co-culture week, hESCs appeared as crater-like structures with marginal rosettes. NPCs derived from these structures expressed the early neural crest marker p75 in addition to numerous other genes associated with neural crest induction such as SNAIL, SLUG, PTX3 and SOX9. Flow cytometry analysis showed 70% of the cells were AP2/P75 positive. Moreover, the cells were able to self-renew, sustain multipotent differentiation potential, and readily form neurospheres in suspension culture. Conclusion: SHED, as an adult stem cell with a neural crest origin, has stromal-derived inducing activity (SDIA and can be used as an NCC inducer from hESCs. These cells provide an invaluable resource to study neural crest differentiation in both normal and disordered human neural crest development.

  13. File list: Unc.PSC.05.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.05.AllAg.hESC_derived_neural_crests hg19 Unclassified Pluripotent stem cell hESC derived neural cres...ts SRX059366 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.PSC.05.AllAg.hESC_derived_neural_crests.bed ...

  14. File list: InP.PSC.05.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.PSC.05.AllAg.hESC_derived_neural_crests hg19 Input control Pluripotent stem cel...l hESC derived neural crests SRX1091573,SRX059369,SRX059361 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.PSC.05.AllAg.hESC_derived_neural_crests.bed ...

  15. File list: Pol.PSC.10.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.10.AllAg.hESC_derived_neural_crests hg19 RNA polymerase Pluripotent stem ce...ll hESC derived neural crests http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.10.AllAg.hESC_derived_neural_crests.bed ...

  16. File list: NoD.PSC.20.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.PSC.20.AllAg.hESC_derived_neural_crests hg19 No description Pluripotent stem ce...ll hESC derived neural crests http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.PSC.20.AllAg.hESC_derived_neural_crests.bed ...

  17. File list: Pol.PSC.50.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.50.AllAg.hESC_derived_neural_crests hg19 RNA polymerase Pluripotent stem ce...ll hESC derived neural crests http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.50.AllAg.hESC_derived_neural_crests.bed ...

  18. File list: NoD.PSC.50.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.PSC.50.AllAg.hESC_derived_neural_crests hg19 No description Pluripotent stem ce...ll hESC derived neural crests http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.PSC.50.AllAg.hESC_derived_neural_crests.bed ...

  19. File list: Pol.PSC.20.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.20.AllAg.hESC_derived_neural_crests hg19 RNA polymerase Pluripotent stem ce...ll hESC derived neural crests http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.20.AllAg.hESC_derived_neural_crests.bed ...

  20. File list: InP.PSC.10.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.PSC.10.AllAg.hESC_derived_neural_crests hg19 Input control Pluripotent stem cel...l hESC derived neural crests SRX1091573,SRX059369,SRX059361 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.PSC.10.AllAg.hESC_derived_neural_crests.bed ...

  1. File list: NoD.PSC.05.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.PSC.05.AllAg.hESC_derived_neural_crests hg19 No description Pluripotent stem ce...ll hESC derived neural crests http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.PSC.05.AllAg.hESC_derived_neural_crests.bed ...

  2. File list: Pol.PSC.05.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.05.AllAg.hESC_derived_neural_crests hg19 RNA polymerase Pluripotent stem cell hESC derived neural... crests http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.05.AllAg.hESC_derived_neural_crests.bed ...

  3. File list: InP.PSC.50.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.PSC.50.AllAg.hESC_derived_neural_crests hg19 Input control Pluripotent stem cell hESC derived neural... crests SRX1091573,SRX059369,SRX059361 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.PSC.50.AllAg.hESC_derived_neural_crests.bed ...

  4. File list: Unc.PSC.20.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.20.AllAg.hESC_derived_neural_crests hg19 Unclassified Pluripotent stem cell hESC derived neural... crests SRX059366 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.PSC.20.AllAg.hESC_derived_neural_crests.bed ...

  5. File list: NoD.PSC.10.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.PSC.10.AllAg.hESC_derived_neural_crests hg19 No description Pluripotent stem cell hESC derived neural... crests http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.PSC.10.AllAg.hESC_derived_neural_crests.bed ...

  6. File list: Unc.PSC.50.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.50.AllAg.hESC_derived_neural_crests hg19 Unclassified Pluripotent stem cell hESC derived neural... crests SRX059366 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.PSC.50.AllAg.hESC_derived_neural_crests.bed ...

  7. File list: InP.PSC.20.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.PSC.20.AllAg.hESC_derived_neural_crests hg19 Input control Pluripotent stem cell hESC derived neural... crests SRX1091573,SRX059369,SRX059361 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.PSC.20.AllAg.hESC_derived_neural_crests.bed ...

  8. Neural crest stem cells: discovery, properties and potential for therapy

    Institute of Scientific and Technical Information of China (English)

    Annita Achilleos; Paul A Trainor

    2012-01-01

    Neural crest (NC) cells are a migratory cell population synonymous with vertebrate evolution.They generate a wide variety of cell and tissue types during embryonic and adult development including cartilage and bone,connective tissue,pigment and endocrine cells as well as neurons and glia amongst many others.Such incredible lineage potential combined with a limited capacity for self-renewal,which persists even into adult life,demonstrates that NC cells bear the key hallmarks of stem and progenitor cells.In this review,we describe the identification,characterization and isolation of NC stem and progenitor cells from different tissues in both embryo and adult organisms.We discuss their specific properties and their potential application in cell-based tissue and disease-specific repair.

  9. Human bone marrow harbors cells with neural crest-associated characteristics like human adipose and dermis tissues.

    Science.gov (United States)

    Coste, Cécile; Neirinckx, Virginie; Sharma, Anil; Agirman, Gulistan; Rogister, Bernard; Foguenne, Jacques; Lallemend, François; Gothot, André; Wislet, Sabine

    2017-01-01

    Adult neural crest stem-derived cells (NCSC) are of extraordinary high plasticity and promising candidates for use in regenerative medicine. Several locations such as skin, adipose tissue, dental pulp or bone marrow have been described in rodent, as sources of NCSC. However, very little information is available concerning their correspondence in human tissues, and more precisely for human bone marrow. The main objective of this study was therefore to characterize NCSC from adult human bone marrow. In this purpose, we compared human bone marrow stromal cells to human adipose tissue and dermis, already described for containing NCSC. We performed comparative analyses in terms of gene and protein expression as well as functional characterizations. It appeared that human bone marrow, similarly to adipose tissue and dermis, contains NESTIN+ / SOX9+ / TWIST+ / SLUG+ / P75NTR+ / BRN3A+/ MSI1+/ SNAIL1+ cells and were able to differentiate into melanocytes, Schwann cells and neurons. Moreover, when injected into chicken embryos, all those cells were able to migrate and follow endogenous neural crest migration pathways. Altogether, the phenotypic characterization and migration abilities strongly suggest the presence of neural crest-derived cells in human adult bone marrow.

  10. Gene array analysis of neural crest cells identifies transcription factors necessary for direct conversion of embryonic fibroblasts into neural crest cells

    Directory of Open Access Journals (Sweden)

    Tsutomu Motohashi

    2016-03-01

    Full Text Available Neural crest cells (NC cells are multipotent cells that emerge from the edge of the neural folds and migrate throughout the developing embryo. Although the gene regulatory network for generation of NC cells has been elucidated in detail, it has not been revealed which of the factors in the network are pivotal to directing NC identity. In this study we analyzed the gene expression profile of a pure NC subpopulation isolated from Sox10-IRES-Venus mice and investigated whether these genes played a key role in the direct conversion of Sox10-IRES-Venus mouse embryonic fibroblasts (MEFs into NC cells. The comparative molecular profiles of NC cells and neural tube cells in 9.5-day embryos revealed genes including transcription factors selectively expressed in developing trunk NC cells. Among 25 NC cell-specific transcription factor genes tested, SOX10 and SOX9 were capable of converting MEFs into SOX10-positive (SOX10+ cells. The SOX10+ cells were then shown to differentiate into neurons, glial cells, smooth muscle cells, adipocytes and osteoblasts. These SOX10+ cells also showed limited self-renewal ability, suggesting that SOX10 and SOX9 directly converted MEFs into NC cells. Conversely, the remaining transcription factors, including well-known NC cell specifiers, were unable to convert MEFs into SOX10+ NC cells. These results suggest that SOX10 and SOX9 are the key factors necessary for the direct conversion of MEFs into NC cells.

  11. Review: the role of neural crest cells in the endocrine system.

    Science.gov (United States)

    Adams, Meghan Sara; Bronner-Fraser, Marianne

    2009-01-01

    The neural crest is a pluripotent population of cells that arises at the junction of the neural tube and the dorsal ectoderm. These highly migratory cells form diverse derivatives including neurons and glia of the sensory, sympathetic, and enteric nervous systems, melanocytes, and the bones, cartilage, and connective tissues of the face. The neural crest has long been associated with the endocrine system, although not always correctly. According to current understanding, neural crest cells give rise to the chromaffin cells of the adrenal medulla, chief cells of the extra-adrenal paraganglia, and thyroid C cells. The endocrine tumors that correspond to these cell types are pheochromocytomas, extra-adrenal paragangliomas, and medullary thyroid carcinomas. Although controversies concerning embryological origin appear to have mostly been resolved, questions persist concerning the pathobiology of each tumor type and its basis in neural crest embryology. Here we present a brief history of the work on neural crest development, both in general and in application to the endocrine system. In particular, we present findings related to the plasticity and pluripotency of neural crest cells as well as a discussion of several different neural crest tumors in the endocrine system.

  12. Fluorescence-Activated Cell Sorting of EGFP-Labeled Neural Crest Cells From Murine Embryonic Craniofacial Tissue

    Directory of Open Access Journals (Sweden)

    Saurabh Singh

    2005-01-01

    Full Text Available During the early stages of embryogenesis, pluripotent neural crest cells (NCC are known to migrate from the neural folds to populate multiple target sites in the embryo where they differentiate into various derivatives, including cartilage, bone, connective tissue, melanocytes, glia, and neurons of the peripheral nervous system. The ability to obtain pure NCC populations is essential to enable molecular analyses of neural crest induction, migration, and/or differentiation. Crossing Wnt1-Cre and Z/EG transgenic mouse lines resulted in offspring in which the Wnt1-Cre transgene activated permanent EGFP expression only in NCC. The present report demonstrates a flow cytometric method to sort and isolate populations of EGFP-labeled NCC. The identity of the sorted neural crest cells was confirmed by assaying expression of known marker genes by TaqMan Quantitative Real-Time Polymerase Chain Reaction (QRT-PCR. The molecular strategy described in this report provides a means to extract intact RNA from a pure population of NCC thus enabling analysis of gene expression in a defined population of embryonic precursor cells critical to development.

  13. Islet1 derivatives in the heart are of both neural crest and second heart field origin

    Science.gov (United States)

    Engleka, Kurt A.; Manderfield, Lauren J.; Brust, Rachael D.; Li, Li; Cohen, Ashley; Dymecki, Susan M.; Epstein, Jonathan A.

    2012-01-01

    Rationale Islet1 (Isl1) has been proposed as a marker of cardiac progenitor cells derived from the second heart field and is utilized to identify and purify cardiac progenitors from murine and human specimens for ex vivo expansion. The use of Isl1 as a specific second heart field marker is dependent on its exclusion from other cardiac lineages such as neural crest. Objective Determine if Isl1 is expressed by cardiac neural crest. Methods and Results We used an intersectional fate-mapping system employing the RC::FrePe allele which reports dual Flpe and Cre recombination. Combining Isl11Cre/+, a SHF driver, and Wnt1::Flpe, a neural crest driver, with Rc::FrePe reveals that some Isl1 derivatives in the cardiac outflow tract derive from Wnt1-expressing neural crest progenitors. In contrast, no overlap was observed between Wnt1-derived neural crest and an alternative second heart field driver, Mef2c-AHF-Cre. Conclusions Isl1 is not restricted to second heart field progenitors in the developing heart but also labels cardiac neural crest. The intersection of Isl1 and Wnt1 lineages within the heart provides a caveat to using Isl1 as an exclusive second heart field cardiac progenitor marker and suggests that some Isl1-expressing progenitor cells derived from embryos, ES or iPS cultures may be of neural crest lineage. PMID:22394517

  14. Adipose stromal cells contain phenotypically distinct adipogenic progenitors derived from neural crest.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Sowa

    Full Text Available Recent studies have shown that adipose-derived stromal/stem cells (ASCs contain phenotypically and functionally heterogeneous subpopulations of cells, but their developmental origin and their relative differentiation potential remain elusive. In the present study, we aimed at investigating how and to what extent the neural crest contributes to ASCs using Cre-loxP-mediated fate mapping. ASCs harvested from subcutaneous fat depots of either adult P0-Cre/or Wnt1-Cre/Floxed-reporter mice contained a few neural crest-derived ASCs (NCDASCs. This subpopulation of cells was successfully expanded in vitro under standard culture conditions and their growth rate was comparable to non-neural crest derivatives. Although NCDASCs were positive for several mesenchymal stem cell markers as non-neural crest derivatives, they exhibited a unique bipolar or multipolar morphology with higher expression of markers for both neural crest progenitors (p75NTR, Nestin, and Sox2 and preadipocytes (CD24, CD34, S100, Pref-1, GATA2, and C/EBP-delta. NCDASCs were able to differentiate into adipocytes with high efficiency but their osteogenic and chondrogenic potential was markedly attenuated, indicating their commitment to adipogenesis. In vivo, a very small proportion of adipocytes were originated from the neural crest. In addition, p75NTR-positive neural crest-derived cells were identified along the vessels within the subcutaneous adipose tissue, but they were negative for mural and endothelial markers. These results demonstrate that ASCs contain neural crest-derived adipocyte-restricted progenitors whose phenotype is distinct from that of non-neural crest derivatives.

  15. Neural crest does not contribute to the neck and shoulder in the axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Epperlein, Hans-Henning; Khattak, Shahryar; Knapp, Dunja; Tanaka, Elly M; Malashichev, Yegor B

    2012-01-01

    A major step during the evolution of tetrapods was their transition from water to land. This process involved the reduction or complete loss of the dermal bones that made up connections to the skull and a concomitant enlargement of the endochondral shoulder girdle. In the mouse the latter is derived from three separate embryonic sources: lateral plate mesoderm, somites, and neural crest. The neural crest was suggested to sustain the muscle attachments. How this complex composition of the endochondral shoulder girdle arose during evolution and whether it is shared by all tetrapods is unknown. Salamanders that lack dermal bone within their shoulder girdle were of special interest for a possible contribution of the neural crest to the endochondral elements and muscle attachment sites, and we therefore studied them in this context. We grafted neural crest from GFP+ fluorescent transgenic axolotl (Ambystoma mexicanum) donor embryos into white (d/d) axolotl hosts and followed the presence of neural crest cells within the cartilage of the shoulder girdle and the connective tissue of muscle attachment sites of the neck-shoulder region. Strikingly, neural crest cells did not contribute to any part of the endochondral shoulder girdle or to the connective tissue at muscle attachment sites in axolotl. Our results in axolotl suggest that neural crest does not serve a general function in vertebrate shoulder muscle attachment sites as predicted by the "muscle scaffold theory," and that it is not necessary to maintain connectivity of the endochondral shoulder girdle to the skull. Our data support the possibility that the contribution of the neural crest to the endochondral shoulder girdle, which is observed in the mouse, arose de novo in mammals as a developmental basis for their skeletal synapomorphies. This further supports the hypothesis of an increased neural crest diversification during vertebrate evolution.

  16. Neural crest does not contribute to the neck and shoulder in the axolotl (Ambystoma mexicanum.

    Directory of Open Access Journals (Sweden)

    Hans-Henning Epperlein

    Full Text Available BACKGROUND: A major step during the evolution of tetrapods was their transition from water to land. This process involved the reduction or complete loss of the dermal bones that made up connections to the skull and a concomitant enlargement of the endochondral shoulder girdle. In the mouse the latter is derived from three separate embryonic sources: lateral plate mesoderm, somites, and neural crest. The neural crest was suggested to sustain the muscle attachments. How this complex composition of the endochondral shoulder girdle arose during evolution and whether it is shared by all tetrapods is unknown. Salamanders that lack dermal bone within their shoulder girdle were of special interest for a possible contribution of the neural crest to the endochondral elements and muscle attachment sites, and we therefore studied them in this context. RESULTS: We grafted neural crest from GFP+ fluorescent transgenic axolotl (Ambystoma mexicanum donor embryos into white (d/d axolotl hosts and followed the presence of neural crest cells within the cartilage of the shoulder girdle and the connective tissue of muscle attachment sites of the neck-shoulder region. Strikingly, neural crest cells did not contribute to any part of the endochondral shoulder girdle or to the connective tissue at muscle attachment sites in axolotl. CONCLUSIONS: Our results in axolotl suggest that neural crest does not serve a general function in vertebrate shoulder muscle attachment sites as predicted by the "muscle scaffold theory," and that it is not necessary to maintain connectivity of the endochondral shoulder girdle to the skull. Our data support the possibility that the contribution of the neural crest to the endochondral shoulder girdle, which is observed in the mouse, arose de novo in mammals as a developmental basis for their skeletal synapomorphies. This further supports the hypothesis of an increased neural crest diversification during vertebrate evolution.

  17. Generating trunk neural crest from human pluripotent stem cells.

    Science.gov (United States)

    Huang, Miller; Miller, Matthew L; McHenry, Lauren K; Zheng, Tina; Zhen, Qiqi; Ilkhanizadeh, Shirin; Conklin, Bruce R; Bronner, Marianne E; Weiss, William A

    2016-01-27

    Neural crest cells (NCC) are stem cells that generate different lineages, including neuroendocrine, melanocytic, cartilage, and bone. The differentiation potential of NCC varies according to the level from which cells emerge along the neural tube. For example, only anterior "cranial" NCC form craniofacial bone, whereas solely posterior "trunk" NCC contribute to sympathoadrenal cells. Importantly, the isolation of human fetal NCC carries ethical and scientific challenges, as NCC induction typically occur before pregnancy is detectable. As a result, current knowledge of NCC biology derives primarily from non-human organisms. Important differences between human and non-human NCC, such as expression of HNK1 in human but not mouse NCC, suggest a need to study human NCC directly. Here, we demonstrate that current protocols to differentiate human pluripotent stem cells (PSC) to NCC are biased toward cranial NCC. Addition of retinoic acid drove trunk-related markers and HOX genes characteristic of a posterior identity. Subsequent treatment with bone morphogenetic proteins (BMPs) enhanced differentiation to sympathoadrenal cells. Our approach provides methodology for detailed studies of human NCC, and clarifies roles for retinoids and BMPs in the differentiation of human PSC to trunk NCC and to sympathoadrenal lineages.

  18. Roles of chromatin remodelers in maintenance mechanisms of multipotency of mouse trunk neural crest cells in the formation of neural crest-derived stem cells.

    Science.gov (United States)

    Fujita, Kyohei; Ogawa, Ryuhei; Kawawaki, Syunsaku; Ito, Kazuo

    2014-08-01

    We analyzed roles of two chromatin remodelers, Chromodomain Helicase DNA-binding protein 7 (CHD7) and SWItch/Sucrose NonFermentable-B (SWI/SNF-B), and Bone Morphogenetic Protein (BMP)/Wnt signaling in the maintenance of the multipotency of mouse trunk neural crest cells, leading to the formation of mouse neural crest-derived stem cells (mouse NCSCs). CHD7 was expressed in the undifferentiated neural crest cells and in the dorsal root ganglia (DRG) and sciatic nerve, typical tissues containing NCSCs. BMP/Wnt signaling stimulated the expression of CHD7 and participated in maintaining the multipotency of neural crest cells. Furthermore, the promotion of CHD7 expression maintained the multipotency of these cells. The inhibition of CHD7 and SWI/SNF-B expression significantly suppressed the maintenance of the multipotency of these cells. In addition, BMP/Wnt treatment promoted CHD7 expression and caused the increase of the percentage of multipotent cells in DRG. Thus, the present data suggest that the chromatin remodelers as well as BMP/Wnt signaling play essential roles in the maintenance of the multipotency of mouse trunk neural crest cells and in the formation of mouse NCSCs. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. A dynamic code of dorsal neural tube genes regulates the segregation between neurogenic and melanogenic neural crest cells.

    Science.gov (United States)

    Nitzan, Erez; Krispin, Shlomo; Pfaltzgraff, Elise R; Klar, Avihu; Labosky, Patricia A; Kalcheim, Chaya

    2013-06-01

    Understanding when and how multipotent progenitors segregate into diverse fates is a key question during embryonic development. The neural crest (NC) is an exemplary model system with which to investigate the dynamics of progenitor cell specification, as it generates a multitude of derivatives. Based on 'in ovo' lineage analysis, we previously suggested an early fate restriction of premigratory trunk NC to generate neural versus melanogenic fates, yet the timing of fate segregation and the underlying mechanisms remained unknown. Analysis of progenitors expressing a Foxd3 reporter reveals that prospective melanoblasts downregulate Foxd3 and have already segregated from neural lineages before emigration. When this downregulation is prevented, late-emigrating avian precursors fail to upregulate the melanogenic markers Mitf and MC/1 and the guidance receptor Ednrb2, generating instead glial cells that express P0 and Fabp. In this context, Foxd3 lies downstream of Snail2 and Sox9, constituting a minimal network upstream of Mitf and Ednrb2 to link melanogenic specification with migration. Consistent with the gain-of-function data in avians, loss of Foxd3 function in mouse NC results in ectopic melanogenesis in the dorsal tube and sensory ganglia. Altogether, Foxd3 is part of a dynamically expressed gene network that is necessary and sufficient to regulate fate decisions in premigratory NC. Their timely downregulation in the dorsal neural tube is thus necessary for the switch between neural and melanocytic phases of NC development.

  20. Induction of cranial and posterior trunk neural crest by exogenous retinoic acid in zebrafish

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Retinoic acid (RA) plays an important role in development of vertebrate embryos. We demonstrate impacts of exogenous RA on the formation of neural crest cells in zebrafish using specific neural crest markers sox9b and crestin. Treatment with all-trans RA at 10?7 mmol/L at 50% epiboly induces sox9b expression in the forebrain and crestin expression in the forebrain and midbrain, resulting in significant increase of pigment cells in the head derived from the cranial neural crest. In addition, RA treatment induces expression of sox9b and crestin in the caudal marginal cells of the neuroectoderm during early segmentation. Earlier commitment of these cells to the neural crest fate in the posterior margins leads to abnormal development of the posterior body, probably by preventing mingling of ventral derived and dorsal-derived cells during the formation of the tailbud.

  1. [Peripheral nerve ectomesenchymoma (neuroectomesenchymoma): a malignant tumor made up of neural crest elements].

    Science.gov (United States)

    Galil-Ogly, G A; Poroshin, K K; Krylov, L M

    1981-01-01

    Characteristics of a little-studied tumor of soft tissues are described on the basis of the author's own material (4 observations) and data from the literature. The matter at issue is a benign or malignant schwannoma (less frequently, ganglioneuroblastoma) in which there are areas of rhabdomyosarcoma and sometimes tumor elements of mesenchymal origin (angio- lipo-, or osteogenic sarcoma). As a rule, this tumor is located along the peripheral nerve or arises in one of the nodes in Recklinghausen's disease and has a trend to hematogenic metastasising. It is suggested that the source of growth of neoplasias of this kind are the cells of "neural crest" migrating in the process of embryogenesis. These cells are responsible for the formation of lemmocytes, ganglial elements and melanocytes, as well as ectomesenchyma from which, in its turn, a part of cross-striated musculature is formed. Therefore, the tumors described in the paper should be designated as "neuroectomesenchymoma" (according to some authors, ectomesenchymoma).

  2. An exclusively mesodermal origin of fin mesenchyme demonstrates that zebrafish trunk neural crest does not generate ectomesenchyme.

    Science.gov (United States)

    Lee, Raymond Teck Ho; Knapik, Ela W; Thiery, Jean Paul; Carney, Thomas J

    2013-07-01

    The neural crest is a multipotent stem cell population that arises from the dorsal aspect of the neural tube and generates both non-ectomesenchymal (melanocytes, peripheral neurons and glia) and ectomesenchymal (skeletogenic, odontogenic, cartilaginous and connective tissue) derivatives. In amniotes, only cranial neural crest generates both classes, with trunk neural crest restricted to non-ectomesenchyme. By contrast, it has been suggested that anamniotes might generate derivatives of both classes at all axial levels, with trunk neural crest generating fin osteoblasts, scale mineral-forming cells and connective tissue cells; however, this has not been fully tested. The cause and evolutionary significance of this cranial/trunk dichotomy, and its absence in anamniotes, are debated. Recent experiments have disputed the contribution of fish trunk neural crest to fin osteoblasts and scale mineral-forming cells. This prompted us to test the contribution of anamniote trunk neural crest to fin connective tissue cells. Using genetics-based lineage tracing in zebrafish, we find that these fin mesenchyme cells derive entirely from the mesoderm and that neural crest makes no contribution. Furthermore, contrary to previous suggestions, larval fin mesenchyme cells do not generate the skeletogenic cells of the adult fin, but persist to form fibroblasts associated with adult fin rays. Our data demonstrate that zebrafish trunk neural crest does not generate ectomesenchymal derivatives and challenge long-held ideas about trunk neural crest fate. These findings have important implications for the ontogeny and evolution of the neural crest.

  3. Transcriptome analysis reveals novel players in the cranial neural crest gene regulatory network

    OpenAIRE

    Simões-Costa, Marcos; Tan-Cabugao, Joanne; Antoshechkin, Igor; Sauka-Spengler, Tatjana; Bronner, Marianne E.

    2014-01-01

    The neural crest is an embryonic stem cell population that gives rise to a multitude of derivatives. In particular, the cranial neural crest (CNC) is unique in its ability to contribute to both facial skeleton and peripheral ganglia. To gain further insight into the molecular underpinnings that distinguish the CNC from other embryonic tissues, we have utilized a CNC-specific enhancer as a tool to isolate a pure, region-specific NC subpopulation for transcriptional profiling. The resulting dat...

  4. Isolation and characterization of neural crest-derived stem cells from dental pulp of neonatal mice.

    Directory of Open Access Journals (Sweden)

    Kajohnkiart Janebodin

    Full Text Available Dental pulp stem cells (DPSCs are shown to reside within the tooth and play an important role in dentin regeneration. DPSCs were first isolated and characterized from human teeth and most studies have focused on using this adult stem cell for clinical applications. However, mouse DPSCs have not been well characterized and their origin(s have not yet been elucidated. Herein we examined if murine DPSCs are neural crest derived and determined their in vitro and in vivo capacity. DPSCs from neonatal murine tooth pulp expressed embryonic stem cell and neural crest related genes, but lacked expression of mesodermal genes. Cells isolated from the Wnt1-Cre/R26R-LacZ model, a reporter of neural crest-derived tissues, indicated that DPSCs were Wnt1-marked and therefore of neural crest origin. Clonal DPSCs showed multi-differentiation in neural crest lineage for odontoblasts, chondrocytes, adipocytes, neurons, and smooth muscles. Following in vivo subcutaneous transplantation with hydroxyapatite/tricalcium phosphate, based on tissue/cell morphology and specific antibody staining, the clones differentiated into odontoblast-like cells and produced dentin-like structure. Conversely, bone marrow stromal cells (BMSCs gave rise to osteoblast-like cells and generated bone-like structure. Interestingly, the capillary distribution in the DPSC transplants showed close proximity to odontoblasts whereas in the BMSC transplants bone condensations were distant to capillaries resembling dentinogenesis in the former vs. osteogenesis in the latter. Thus we demonstrate the existence of neural crest-derived DPSCs with differentiation capacity into cranial mesenchymal tissues and other neural crest-derived tissues. In turn, DPSCs hold promise as a source for regenerating cranial mesenchyme and other neural crest derived tissues.

  5. Cranial and trunk neural crest cells use different mechanisms for attachment to extracellular matrices

    OpenAIRE

    Lallier, Thomas; Leblanc, Gabrielle; Artinger, Kristin B.; Bronner-Fraser, Marianne

    1992-01-01

    We have used a quantitative cell attachment assay to compare the interactions of cranial and trunk neural crest cells with the extracellular matrix (ECM) molecules fibronectin, laminin and collagen types I and IV. Antibodies to the β_1 subunit of integrin inhibited attachment under all conditions tested, suggesting that integrins mediate neural crest cell interactions with these ECM molecules. The HNK-1 antibody against a surface carbohydrate epitope under certain conditions inhibited both cr...

  6. Ets-1 confers cranial features on neural crest delamination.

    Directory of Open Access Journals (Sweden)

    Eric Théveneau

    Full Text Available Neural crest cells (NCC have the particularity to invade the environment where they differentiate after separation from the neuroepithelium. This process, called delamination, is strikingly different between cranial and trunk NCCs. If signalings controlling slow trunk delamination start being deciphered, mechanisms leading to massive and rapid cranial outflow are poorly documented. Here, we show that the chick cranial NCCs delamination is the result of two events: a substantial cell mobilization and an epithelium to mesenchyme transition (EMT. We demonstrate that ets-1, a transcription factor specifically expressed in cranial NCCs, is responsible for the former event by recruiting massively cranial premigratory NCCs independently of the S-phase of the cell cycle and by leading the gathered cells to straddle the basal lamina. However, it does not promote the EMT process alone but can cooperate with snail-2 (previously called slug to this event. Altogether, these data lead us to propose that ets-1 plays a pivotal role in conferring specific cephalic characteristics on NCC delamination.

  7. An exclusively mesodermal origin of fin mesenchyme demonstrates that zebrafish trunk neural crest does not generate ectomesenchyme

    OpenAIRE

    Lee, Raymond Teck Ho; Knapik, Ela W.; Thiery, Jean Paul; Carney, Thomas J.

    2013-01-01

    The neural crest is a multipotent stem cell population that arises from the dorsal aspect of the neural tube and generates both non-ectomesenchymal (melanocytes, peripheral neurons and glia) and ectomesenchymal (skeletogenic, odontogenic, cartilaginous and connective tissue) derivatives. In amniotes, only cranial neural crest generates both classes, with trunk neural crest restricted to non-ectomesenchyme. By contrast, it has been suggested that anamniotes might generate derivatives of both c...

  8. Tfap2a and Foxd3 regulate early steps in the development of the neural crest progenitor population.

    Science.gov (United States)

    Wang, Wen-Der; Melville, David B; Montero-Balaguer, Mercedes; Hatzopoulos, Antonis K; Knapik, Ela W

    2011-12-01

    The neural crest is a stem cell-like population exclusive to vertebrates that gives rise to many different cell types including chondrocytes, neurons and melanocytes. Arising from the neural plate border at the intersection of Wnt and Bmp signaling pathways, the complexity of neural crest gene regulatory networks has made the earliest steps of induction difficult to elucidate. Here, we report that tfap2a and foxd3 participate in neural crest induction and are necessary and sufficient for this process to proceed. Double mutant tfap2a (mont blanc, mob) and foxd3 (mother superior, mos) mob;mos zebrafish embryos completely lack all neural crest-derived tissues. Moreover, tfap2a and foxd3 are expressed during gastrulation prior to neural crest induction in distinct, complementary, domains; tfap2a is expressed in the ventral non-neural ectoderm and foxd3 in the dorsal mesendoderm and ectoderm. We further show that Bmp signaling is expanded in mob;mos embryos while expression of dkk1, a Wnt signaling inhibitor, is increased and canonical Wnt targets are suppressed. These changes in Bmp and Wnt signaling result in specific perturbations of neural crest induction rather than general defects in neural plate border or dorso-ventral patterning. foxd3 overexpression, on the other hand, enhances the ability of tfap2a to ectopically induce neural crest around the neural plate, overriding the normal neural plate border limit of the early neural crest territory. Although loss of either Tfap2a or Foxd3 alters Bmp and Wnt signaling patterns, only their combined inactivation sufficiently alters these signaling gradients to abort neural crest induction. Collectively, our results indicate that tfap2a and foxd3, in addition to their respective roles in the differentiation of neural crest derivatives, also jointly maintain the balance of Bmp and Wnt signaling in order to delineate the neural crest induction domain.

  9. Skeletogenic fate of zebrafish cranial and trunk neural crest.

    Directory of Open Access Journals (Sweden)

    Erika Kague

    Full Text Available The neural crest (NC is a major contributor to the vertebrate craniofacial skeleton, detailed in model organisms through embryological and genetic approaches, most notably in chick and mouse. Despite many similarities between these rather distant species, there are also distinct differences in the contribution of the NC, particularly to the calvariae of the skull. Lack of information about other vertebrate groups precludes an understanding of the evolutionary significance of these differences. Study of zebrafish craniofacial development has contributed substantially to understanding of cartilage and bone formation in teleosts, but there is currently little information on NC contribution to the zebrafish skeleton. Here, we employ a two-transgene system based on Cre recombinase to genetically label NC in the zebrafish. We demonstrate NC contribution to cells in the cranial ganglia and peripheral nervous system known to be NC-derived, as well as to a subset of myocardial cells. The indelible labeling also enables us to determine NC contribution to late-forming bones, including the calvariae. We confirm suspected NC origin of cartilage and bones of the viscerocranium, including cartilages such as the hyosymplectic and its replacement bones (hymandibula and symplectic and membranous bones such as the opercle. The cleithrum develops at the border of NC and mesoderm, and as an ancestral component of the pectoral girdle was predicted to be a hybrid bone composed of both NC and mesoderm tissues. However, we find no evidence of a NC contribution to the cleithrum. Similarly, in the vault of the skull, the parietal bones and the caudal portion of the frontal bones show no evidence of NC contribution. We also determine a NC origin for caudal fin lepidotrichia; the presumption is that these are derived from trunk NC, demonstrating that these cells have the ability to form bone during normal vertebrate development.

  10. Enteric neural crest cells regulate vertebrate stomach patterning and differentiation.

    Science.gov (United States)

    Faure, Sandrine; McKey, Jennifer; Sagnol, Sébastien; de Santa Barbara, Pascal

    2015-01-15

    In vertebrates, the digestive tract develops from a uniform structure where reciprocal epithelial-mesenchymal interactions pattern this complex organ into regions with specific morphologies and functions. Concomitant with these early patterning events, the primitive GI tract is colonized by the vagal enteric neural crest cells (vENCCs), a population of cells that will give rise to the enteric nervous system (ENS), the intrinsic innervation of the GI tract. The influence of vENCCs on early patterning and differentiation of the GI tract has never been evaluated. In this study, we report that a crucial number of vENCCs is required for proper chick stomach development, patterning and differentiation. We show that reducing the number of vENCCs by performing vENCC ablations induces sustained activation of the BMP and Notch pathways in the stomach mesenchyme and impairs smooth muscle development. A reduction in vENCCs also leads to the transdifferentiation of the stomach into a stomach-intestinal mixed phenotype. In addition, sustained Notch signaling activity in the stomach mesenchyme phenocopies the defects observed in vENCC-ablated stomachs, indicating that inhibition of the Notch signaling pathway is essential for stomach patterning and differentiation. Finally, we report that a crucial number of vENCCs is also required for maintenance of stomach identity and differentiation through inhibition of the Notch signaling pathway. Altogether, our data reveal that, through the regulation of mesenchyme identity, vENCCs act as a new mediator in the mesenchymal-epithelial interactions that control stomach development. © 2015. Published by The Company of Biologists Ltd.

  11. Substrate-mediated reprogramming of human fibroblasts into neural crest stem-like cells and their applications in neural repair.

    Science.gov (United States)

    Tseng, Ting-Chen; Hsieh, Fu-Yu; Dai, Niann-Tzyy; Hsu, Shan-Hui

    2016-09-01

    Cell- and gene-based therapies have emerged as promising strategies for treating neurological diseases. The sources of neural stem cells are limited while the induced pluripotent stem (iPS) cells have risk of tumor formation. Here, we proposed the generation of self-renewable, multipotent, and neural lineage-related neural crest stem-like cells by chitosan substrate-mediated gene transfer of a single factor forkhead box D3 (FOXD3) for the use in neural repair. A simple, non-toxic, substrate-mediated method was applied to deliver the naked FOXD3 plasmid into human fibroblasts. The transfection of FOXD3 increased cell proliferation and up-regulated the neural crest marker genes (FOXD3, SOX2, and CD271), stemness marker genes (OCT4, NANOG, and SOX2), and neural lineage-related genes (Nestin, β-tubulin and GFAP). The expression levels of stemness marker genes and neural crest maker genes in the FOXD3-transfected fibroblasts were maintained until the fifth passage. The FOXD3 reprogrammed fibroblasts based on the new method significantly rescued the neural function of the impaired zebrafish. The chitosan substrate-mediated delivery of naked plasmid showed feasibility in reprogramming somatic cells. Particularly, the FOXD3 reprogrammed fibroblasts hold promise as an easily accessible cellular source with neural crest stem-like behavior for treating neural diseases in the future.

  12. Matrigel supports neural, melanocytic and chondrogenic differentiation of trunk neural crest cells.

    Science.gov (United States)

    Ramos-Hryb, Ana B; Da-Costa, Meline C; Trentin, Andréa G; Calloni, Giordano W

    2013-01-01

    The neural crest (NC) is composed of highly multipotent precursor cells able to differentiate into both neural and mesenchymal phenotypes. Until now, most studies focusing on NC cell differentiation have been performed with traditional two-dimensional (2D) cell culture systems. However, such culture systems do not reflect the complex three-dimensional (3D) microenvironments of in vivo NC cells. To address this limitation, we have developed a method of Matrigel™ coating to create 2D and 3D microenvironments in the same culture well. When we performed cultures of trunk neural crest cells (TNCCs) on three different lots of basement membrane matrix (Matrigel™), we observed that all analyzed Matrigel™ lots were equally efficient in allowing the appearance of glial cells, neurons, melanocytes, smooth muscle cells and chondrocytes. We further observed that chondrocytes were found predominantly in the 3D microenvironment, whereas smooth muscle cells were almost exclusively located in the 2D microenvironment. Glial cells were present in both environments, but with broader quantities on the 2D surface. Melanocytes and neurons were equally distributed in both 2D and 3D microenvironments, but with distinct morphologies. It is worth noting the higher frequency of chondrocytes detected in this study using the 3D Matrigel™ microenvironment compared to previous reports of chondrogenesis obtained from TNCCs on traditional 2D cultures. In conclusion, Matrigel™ represents an attractive scaffold to study NC multipotentiality and differentiation, since it permits the appearance of the major NC phenotypes.

  13. File list: ALL.PSC.05.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.05.AllAg.hESC_derived_neural_crests hg19 All antigens Pluripotent stem cell hESC derived neural cres...RX059366,SRX059364 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.PSC.05.AllAg.hESC_derived_neural_crests.bed ...

  14. File list: Oth.PSC.10.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.10.AllAg.hESC_derived_neural_crests hg19 TFs and others Pluripotent stem cell hESC derived neural...X1091546,SRX1091550,SRX059360,SRX059368,SRX059367 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.PSC.10.AllAg.hESC_derived_neural_crests.bed ...

  15. File list: ALL.PSC.50.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.50.AllAg.hESC_derived_neural_crests hg19 All antigens Pluripotent stem cell hESC derived neural...X1091539,SRX059364 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.PSC.50.AllAg.hESC_derived_neural_crests.bed ...

  16. File list: ALL.PSC.10.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.10.AllAg.hESC_derived_neural_crests hg19 All antigens Pluripotent stem cell hESC derived neural...X059364,SRX1091530 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.PSC.10.AllAg.hESC_derived_neural_crests.bed ...

  17. File list: His.PSC.50.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.50.AllAg.hESC_derived_neural_crests hg19 Histone Pluripotent stem cell hESC derived neural...30,SRX059362,SRX1091539,SRX059364 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.50.AllAg.hESC_derived_neural_crests.bed ...

  18. File list: His.PSC.05.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.05.AllAg.hESC_derived_neural_crests hg19 Histone Pluripotent stem cell hESC derived neural...13,SRX1091515,SRX059363,SRX059364 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.05.AllAg.hESC_derived_neural_crests.bed ...

  19. File list: ALL.PSC.20.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.20.AllAg.hESC_derived_neural_crests hg19 All antigens Pluripotent stem cell hESC derived neural...X1091539,SRX059364 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.PSC.20.AllAg.hESC_derived_neural_crests.bed ...

  20. File list: Oth.PSC.05.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.05.AllAg.hESC_derived_neural_crests hg19 TFs and others Pluripotent stem cell hESC derived neural...X1091546,SRX1091550,SRX059360,SRX059368,SRX059367 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.PSC.05.AllAg.hESC_derived_neural_crests.bed ...

  1. File list: Oth.PSC.20.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.20.AllAg.hESC_derived_neural_crests hg19 TFs and others Pluripotent stem ce...X1091550,SRX059360,SRX1091547,SRX059367,SRX059368 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.PSC.20.AllAg.hESC_derived_neural_crests.bed ... ...ll hESC derived neural crests SRX1091543,SRX1091542,SRX1091549,SRX1091551,SRX131914,SRX1091546,SRX1091541,SR

  2. File list: Oth.PSC.50.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.50.AllAg.hESC_derived_neural_crests hg19 TFs and others Pluripotent stem ce...X1091550,SRX059360,SRX1091547,SRX059367,SRX059368 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.PSC.50.AllAg.hESC_derived_neural_crests.bed ... ...ll hESC derived neural crests SRX1091543,SRX1091542,SRX1091549,SRX1091551,SRX131914,SRX1091546,SRX1091541,SR

  3. Genomic factors that shape craniofacial outcome and neural crest vulnerability in FASD

    Directory of Open Access Journals (Sweden)

    Susan M. Smith

    2014-08-01

    Full Text Available Prenatal alcohol exposure (PAE causes distinctive facial characteristics in some pregnancies and not others; genetic factors may contribute to this differential vulnerability. Ethanol disrupts multiple events of neural crest development including induction, survival, migration, and differentiation. Animal models and genomic approaches have substantially advanced our understanding of the mechanisms underlying these facial changes. PAE during gastrulation produces craniofacial changes corresponding with human fetal alcohol syndrome. These result because PAE reduces prechordal plate extension and suppresses sonic hedgehog, leading to holoprosencephaly and malpositioned facial primordia. Haploinsufficiency in sonic hedgehog signaling increases vulnerability to facial deficits and may influence some PAE pregnancies. In contrast, PAE during early neurogenesis produces facial hypoplasia, preceded by neural crest reductions due to significant apoptosis. Factors mediating this apoptosis include intracellular calcium mobilization, elevated reactive oxygen species, and loss of trophic support from β-catenin/calcium, sonic hedgehog, and mTOR signaling. Genomewide SNP analysis links PDGF receptor genes with facial outcomes in human PAE. Multiple genomic-level comparisons of ethanol-sensitive and –resistant early embryos, in both mouse and chick, independently identify common candidate genes that may potentially modify craniofacial vulnerability, including ribosomal proteins, proteosome, RNA splicing, and focal adhesion. In summary, research using animal models with genome-level differences in ethanol vulnerability, as well as targeted loss- and gain-of-function mutants, has clarified the mechanisms mediating craniofacial change in PAE. The findings additionally suggest that craniofacial deficits may represent a gene-ethanol interaction for some affected individuals. Genetic-level changes may prime individuals toward greater sensitivity or resistance to

  4. Id expression in amphioxus and lamprey highlights the role of gene cooption during neural crest evolution

    Science.gov (United States)

    Meulemans, Daniel; McCauley, David; Bronner-Fraser, Marianne

    2003-01-01

    Neural crest cells are unique to vertebrates and generate many of the adult structures that differentiate them from their closest invertebrate relatives, the cephalochordates. Id genes are robust markers of neural crest cells at all stages of development. We compared Id gene expression in amphioxus and lamprey to ask if cephalochordates deploy Id genes at the neural plate border and dorsal neural tube in a manner similar to vertebrates. Furthermore, we examined whether Id expression in these cells is a basal vertebrate trait or a derived feature of gnathostomes. We found that while expression of Id genes in the mesoderm and endoderm is conserved between amphioxus and vertebrates, expression in the lateral neural plate border and dorsal neural tube is a vertebrate novelty. Furthermore, expression of lamprey Id implies that recruitment of Id genes to these cells occurred very early in the vertebrate lineage. Based on expression in amphioxus we postulate that Id cooption conferred sensory cell progenitor-like properties upon the lateral neurectoderm, and pharyngeal mesoderm-like properties upon cranial neural crest. Amphioxus Id expression is also consistent with homology between the anterior neurectoderm of amphioxus and the presumptive placodal ectoderm of vertebrates. These observations support the idea that neural crest evolution was driven in large part by cooption of multipurpose transcriptional regulators from other tissues and cell types.

  5. Role of DNMT3B in the regulation of early neural and neural crest specifiers.

    Science.gov (United States)

    Martins-Taylor, Kristen; Schroeder, Diane I; LaSalle, Janine M; Lalande, Marc; Xu, Ren-He

    2012-01-01

    The de novo DNA methyltransferase DNMT3B functions in establishing DNA methylation patterns during development. DNMT3B missense mutations cause immunodeficiency, centromere instability and facial anomalies (ICF) syndrome. The restriction of Dnmt3b expression to neural progenitor cells, as well as the mild cognitive defects observed in ICF patients, suggests that DNMT3B may play an important role in early neurogenesis. We performed RNAi knockdown of DNMT3B in human embryonic stem cells (hESCs) in order to investigate the mechanistic contribution of DNMT3B to DNA methylation and early neuronal differentiation. While DNMT3B was not required for early neuroepithelium specification, DNMT3B deficient neuroepithelium exhibited accelerated maturation with earlier expression, relative to normal hESCs, of mature neuronal markers (such as NEUROD1) and of early neuronal regional specifiers (such as those for the neural crest). Genome-wide analyses of DNA methylation by MethylC-seq identified novel regions of hypomethylation in the DNMT3B knockdowns along the X chromosome as well as pericentromeric regions, rather than changes to promoters of specific dysregulated genes. We observed a loss of H3K27me3 and the polycomb complex protein EZH2 at the promoters of early neural and neural crest specifier genes during differentiation of DNMT3B knockdown but not normal hESCs. Our results indicate that DNMT3B mediates large-scale methylation patterns in hESCs and that DNMT3B deficiency in the cells alters the timing of their neuronal differentiation and maturation.

  6. Cranial muscles in amphibians: development, novelties and the role of cranial neural crest cells.

    Science.gov (United States)

    Schmidt, Jennifer; Piekarski, Nadine; Olsson, Lennart

    2013-01-01

    Our research on the evolution of the vertebrate head focuses on understanding the developmental origins of morphological novelties. Using a broad comparative approach in amphibians, and comparisons with the well-studied quail-chicken system, we investigate how evolutionarily conserved or variable different aspects of head development are. Here we review research on the often overlooked development of cranial muscles, and on its dependence on cranial cartilage development. In general, cranial muscle cell migration and the spatiotemporal pattern of cranial muscle formation appears to be very conserved among the few species of vertebrates that have been studied. However, fate-mapping of somites in the Mexican axolotl revealed differences in the specific formation of hypobranchial muscles (tongue muscles) in comparison to the chicken. The proper development of cranial muscles has been shown to be strongly dependent on the mostly neural crest-derived cartilage elements in the larval head of amphibians. For example, a morpholino-based knock-down of the transcription factor FoxN3 in Xenopus laevis has drastic indirect effects on cranial muscle patterning, although the direct function of the gene is mostly connected to neural crest development. Furthermore, extirpation of single migratory streams of cranial neural crest cells in combination with fate-mapping in a frog shows that individual cranial muscles and their neural crest-derived connective tissue attachments originate from the same visceral arch, even when the muscles attach to skeletal components that are derived from a different arch. The same pattern has also been found in the chicken embryo, the only other species that has been thoroughly investigated, and thus might be a conserved pattern in vertebrates that reflects the fundamental nature of a mechanism that keeps the segmental order of the head in place despite drastic changes in adult anatomy. There is a need for detailed comparative fate-mapping of pre

  7. Radionuclide diagnosis and therapy of neural crest tumors using iodine-131 metaiodobenzylguanidine

    Energy Technology Data Exchange (ETDEWEB)

    Hoefnagel, C.A.; Voute, P.A.; de Kraker, J.; Marcuse, H.R.

    1987-03-01

    The successful application of (/sup 131/I)metaiodobenzylguanidine (MIBG) in diagnosis and therapy of pheochromocytoma has led to its use in other tumors which derive from the neural crest and potentially concentrate this radiopharmaceutical as well. In the present series, (/sup 131/)MIBG total-body scintigraphy was used for detection of neuroblastoma in 47 patients and 47 cases of other neural crest tumors. The method was found to be as reliable in neuroblastoma (sensitivity 95%, specificity 100%), as it is in pheochromocytoma. Although other neural crest tumors may concentrate (/sup 131/I)MIBG, this is not a consistent finding; however, it is useful to investigate which tumors do, as this may provide an alternative treatment modality for some patients. Although followup is still very short, preliminary results of therapeutic use of (/sup 131/I) MIBG in 21 patients indicate that this treatment modality may be effective in neuroblastoma and malignant pheochromocytoma.

  8. Wave transmission at low-crested structures using neural networks

    NARCIS (Netherlands)

    Van Oosten, R.P.; Peixó Marco, J.; Van der Meer, J.W.; Van Gent, M.; Verhagen, H.J.

    2006-01-01

    The European Union funded project DELOS was focused on wave transmission and an extensive database on low-crested rubble mound structures was generated. During DELOS, new empirical wave transmission formulae were derived. These formulae still showed a considerable scatter due to a limited number of

  9. Neural Crest Stem Cells from Dental Tissues: A New Hope for Dental and Neural Regeneration

    Directory of Open Access Journals (Sweden)

    Gaskon Ibarretxe

    2012-01-01

    Full Text Available Several stem cell sources persist in the adult human body, which opens the doors to both allogeneic and autologous cell therapies. Tooth tissues have proven to be a surprisingly rich and accessible source of neural crest-derived ectomesenchymal stem cells (EMSCs, which may be employed to repair disease-affected oral tissues in advanced regenerative dentistry. Additionally, one area of medicine that demands intensive research on new sources of stem cells is nervous system regeneration, since this constitutes a therapeutic hope for patients affected by highly invalidating conditions such as spinal cord injury, stroke, or neurodegenerative diseases. However, endogenous adult sources of neural stem cells present major drawbacks, such as their scarcity and complicated obtention. In this context, EMSCs from dental tissues emerge as good alternative candidates, since they are preserved in adult human individuals, and retain both high proliferation ability and a neural-like phenotype in vitro. In this paper, we discuss some important aspects of tissue regeneration by cell therapy and point out some advantages that EMSCs provide for dental and neural regeneration. We will finally review some of the latest research featuring experimental approaches and benefits of dental stem cell therapy.

  10. File list: His.PSC.20.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.20.AllAg.hESC_derived_neural_crests hg19 Histone Pluripotent stem cell hESC derived neu...30,SRX059362,SRX1091539,SRX059364 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.20.AllAg.hESC_derived_neural_crests.bed ...

  11. File list: His.PSC.10.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.10.AllAg.hESC_derived_neural_crests hg19 Histone Pluripotent stem cell hESC derived neu...3,SRX1091531,SRX059364,SRX1091530 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.10.AllAg.hESC_derived_neural_crests.bed ...

  12. Pax3 and Hippo Signaling Coordinate Melanocyte Gene Expression in Neural Crest

    Directory of Open Access Journals (Sweden)

    Lauren J. Manderfield

    2014-12-01

    Full Text Available Loss of Pax3, a developmentally regulated transcription factor expressed in premigratory neural crest, results in severe developmental defects and embryonic lethality. Although Pax3 mutations produce profound phenotypes, the intrinsic transcriptional activation exhibited by Pax3 is surprisingly modest. We postulated the existence of transcriptional coactivators that function with Pax3 to mediate developmental functions. A high-throughput screen identified the Hippo effector proteins Taz and Yap65 as Pax3 coactivators. Synergistic coactivation of target genes by Pax3-Taz/Yap65 requires DNA binding by Pax3, is Tead independent, and is regulated by Hippo kinases Mst1 and Lats2. In vivo, Pax3 and Yap65 colocalize in the nucleus of neural crest progenitors in the dorsal neural tube. Neural crest deletion of Taz and Yap65 results in embryo-lethal neural crest defects and decreased expression of the Pax3 target gene, Mitf. These results suggest that Pax3 activity is regulated by the Hippo pathway and that Pax factors are Hippo effectors.

  13. Sonic hedgehog is a chemotactic neural crest cell guide that is perturbed by ethanol exposure.

    Science.gov (United States)

    Tolosa, Ezequiel J; Fernández-Zapico, Martín E; Battiato, Natalia L; Rovasio, Roberto A

    2016-01-01

    Our aim was to understand the involvement of Sonic hedgehog (Shh) morphogen in the oriented distribution of neural crest cells (NCCs) toward the optic vesicle and to look for potential disorders of this guiding mechanism after ethanol exposure. In vitro directional analysis showed the chemotactic response of NCCs up Shh gradients and to notochord co-cultures (Shh source) or to their conditioned medium, a response inhibited by anti-Shh antibody, receptor inhibitor cyclopamine and anti-Smo morpholino (MO). Expression of the Ptch-Smo receptor complex on in vitro NCCs was also shown. In whole embryos, the expression of Shh mRNA and protein was seen in the ocular region, and of Ptch, Smo and Gli/Sufu system on cephalic NCCs. Anti-Smo MO or Ptch-mutated plasmid (Ptch1(Δloop2)) impaired cephalic NCC migration/distribution, with fewer cells invading the optic region and with higher cell density at the homolateral mesencephalic level. Beads embedded with cyclopamine (Smo-blocking) or Shh (ectopic signal) supported the role of Shh as an in vivo guide molecule for cephalic NCCs. Ethanol exposure perturbed in vitro and in vivo NCC migration. Early stage embryos treated with ethanol, in a model reproducing Fetal Alcohol Syndrome, showed later disruptions of craniofacial development associated with abnormal in situ expression of Shh morphogen. The results show the Shh/Ptch/Smo-dependent migration of NCCs toward the optic vesicle, with the support of specific inactivation with genetic and pharmacological tools. They also help to understand mechanisms of accurate distribution of embryonic cells and of their perturbation by a commonly consumed teratogen, and demonstrate, in addition to its other known developmental functions, a new biological activity of cellular guidance for Shh.

  14. Neural tube closure in Xenopus laevis involves medial migration, directed protrusive activity, cell intercalation and convergent extension.

    Science.gov (United States)

    Davidson, L A; Keller, R E

    1999-10-01

    We have characterized the cell movements and prospective cell identities as neural folds fuse during neural tube formation in Xenopus laevis. A newly developed whole-mount, two-color fluorescent RNA in situ hybridization method, visualized with confocal microscopy, shows that the dorsal neural tube gene xpax3 and the neural-crest-specific gene xslug are expressed far lateral to the medial site of neural fold fusion and that expression moves medially after fusion. To determine whether cell movements or dynamic changes in gene expression are responsible, we used low-light videomicroscopy followed by fluorescent in situ and confocal microscopy. These methods revealed that populations of prospective neural crest and dorsal neural tube cells near the lateral margin of the neural plate at the start of neurulation move to the dorsal midline using distinctive forms of motility. Before fold fusion, superficial neural cells apically contract, roll the neural plate into a trough and appear to pull the superficial epidermal cell sheet medially. After neural fold fusion, lateral deep neural cells move medially by radially intercalating between other neural cells using two types of motility. The neural crest cells migrate as individual cells toward the dorsal midline using medially directed monopolar protrusions. These movements combine the two lateral populations of neural crest into a single medial population that form the roof of the neural tube. The remaining cells of the dorsal neural tube extend protrusions both medially and laterally bringing about radial intercalation of deep and superficial cells to form a single-cell-layered, pseudostratified neural tube. While ours is the first description of medially directed cell migration during neural fold fusion and re-establishment of the neural tube, these complex cell behaviors may be involved during cavitation of the zebrafish neural keel and secondary neurulation in the posterior axis of chicken and mouse.

  15. Evolution of vertebrates as viewed from the crest.

    Science.gov (United States)

    Green, Stephen A; Simoes-Costa, Marcos; Bronner, Marianne E

    2015-04-23

    The origin of vertebrates was accompanied by the advent of a novel cell type: the neural crest. Emerging from the central nervous system, these cells migrate to diverse locations and differentiate into numerous derivatives. By coupling morphological and gene regulatory information from vertebrates and other chordates, we describe how addition of the neural-crest-specification program may have enabled cells at the neural plate border to acquire multipotency and migratory ability. Analysis of the topology of the neural crest gene regulatory network can serve as a useful template for understanding vertebrate evolution, including elaboration of neural crest derivatives.

  16. Evolution of vertebrates: a view from the crest

    Science.gov (United States)

    Bronner, Marianne E.

    2016-01-01

    The origin of vertebrates was accompanied by the advent of a novel cell type: the neural crest. Emerging from the central nervous system, these cells migrate to diverse locations and differentiate into numerous derivatives. By coupling morphological and gene regulatory information from vertebrates and other chordates, we describe how addition of the neural crest specification program may have enabled cells at the neural plate border to acquire multipotency and migratory ability. Analyzing the topology of the neural crest gene regulatory network can serve as a useful template for understanding vertebrate evolution, including elaboration of neural crest derivatives. PMID:25903629

  17. Premigratory and migratory neural crest cells are multipotent in vivo

    NARCIS (Netherlands)

    Baggiolini, Arianna; Varum, Sandra; Mateos, José María; Bettosini, Damiano; John, Nessy; Bonalli, Mario; Ziegler, Urs; Dimou, Leda; Clevers, Hans; Furrer, Reinhard; Sommer, Lukas

    2015-01-01

    The neural crest (NC) is an embryonic stem/progenitor cell population that generates a diverse array of cell lineages, including peripheral neurons, myelinating Schwann cells, and melanocytes, among others. However, there is a long-standing controversy as to whether this broad developmental

  18. Defining properties of neural crest-derived progenitor cells from the apex of human developing tooth.

    Science.gov (United States)

    Degistirici, Ozer; Jaquiery, Claude; Schönebeck, Bodo; Siemonsmeier, Jürgen; Götz, Werner; Martin, Ivan; Thie, Michael

    2008-02-01

    The connective tissue of the human tooth arises from cells that are derived from the cranial neural crest and, thus, are termed as "ectomesenchymal cells." Here, cells being located in a pad-like tissue adjacent to the apex of the developing tooth, which we designated the third molar pad, were separated by the microexplant technique. When outgrowing from the explant, dental neural crest-derived progenitor cells (dNC-PCs) adhered to plastic, proliferated steadily, and displayed a fibroblast-like morphology. At the mRNA level, dNC-PCs expressed neural crest marker genes like Sox9, Snail1, Snail2, Twist1, Msx2, and Dlx6. Cytofluorometric analysis indicated that cells were positive for CD49d (alpha4 integrin), CD56 (NCAM), and PDGFRalpha, while negative for CD31, CD34, CD45, and STRO-1. dNC-PCs could be differentiated into neurogenic, chondrogenic, and osteogenic lineages and were shown to produce bone matrix in athymic mice. These results demonstrate that human third molar pad possesses neural crest-derived cells that represent multipotent stem/progenitor cells. As a rather large amount of dNC-PCs could be obtained from each single third molar, cells may be used to regenerate a wide range of tissues within the craniofacial region of humans.

  19. Premigratory and migratory neural crest cells are multipotent in vivo

    NARCIS (Netherlands)

    Baggiolini, Arianna; Varum, Sandra; Mateos, José María; Bettosini, Damiano; John, Nessy; Bonalli, Mario; Ziegler, Urs; Dimou, Leda; Clevers, Hans; Furrer, Reinhard; Sommer, Lukas

    2015-01-01

    The neural crest (NC) is an embryonic stem/progenitor cell population that generates a diverse array of cell lineages, including peripheral neurons, myelinating Schwann cells, and melanocytes, among others. However, there is a long-standing controversy as to whether this broad developmental perspect

  20. Evolution of cranial development and the role of neural crest: insights from amphibians.

    Science.gov (United States)

    Hanken, James; Gross, Joshua B

    2005-11-01

    Contemporary studies of vertebrate cranial development document the essential role played by the embryonic neural crest as both a source of adult tissues and a locus of cranial form and patterning. Yet corresponding and basic features of cranial evolution, such as the extent of conservation vs. variation among species in the contribution of the neural crest to specific structures, remain to be adequately resolved. Investigation of these features requires comparable data from species that are both phylogenetically appropriate and taxonomically diverse. One key group are amphibians, which are uniquely able to inform our understanding of the ancestral patterns of ontogeny in fishes and tetrapods as well as the evolution of presumably derived patterns reported for amniotes. Recent data support the hypothesis that a prominent contribution of the neural crest to cranial skeletal and muscular connective tissues is a fundamental property that evolved early in vertebrate history and is retained in living forms. The contribution of the neural crest to skull bones appears to be more evolutionarily labile than that of cartilages, although significance of the limited comparative data is difficult to establish at present. Results underline the importance of accurate and reliable homology assessments for evaluating the contrasting patterns of derivation reported for the three principal tetrapod models: mouse, chicken and frog.

  1. Sox2 acts as a rheostat of epithelial to mesenchymal transition during neural crest development

    Directory of Open Access Journals (Sweden)

    Nikolaos eMandalos

    2014-09-01

    Full Text Available Precise control of self-renewal and differentiation of progenitor cells into the cranial neural crest (CNC pool ensures proper head development, guided by signaling pathways such as BMPs, FGFs, Shh and Notch. Here, we show that murine Sox2 plays an essential role in controlling progenitor cell behavior during craniofacial development. A Conditional by Inversion Sox2 allele (Sox2COIN has been employed to generate an epiblast ablation of Sox2 function (Sox2EpINV. Sox2EpINV/+(H haploinsufficient and conditional (Sox2EpINV/mosaic mutant embryos proceed beyond gastrulation and die around E11. These mutant embryos exhibit severe anterior malformations, with hydrocephaly and frontonasal truncations, which could be attributed to the deregulation of CNC progenitor cells during their epithelial to mesenchymal transition. This irregularity results in an exacerbated and aberrant migration of Sox10+ NCC in the branchial arches and frontonasal process of the Sox2 mutant embryos. These results suggest a novel role for Sox2 as a regulator of the epithelial to mesenchymal transitions that are important for the cell flow in the developing head.

  2. Neural crest contribution to lingual mesenchyme, epithelium and developing taste papillae and taste buds

    OpenAIRE

    Liu, Hong-Xiang; Komatsu, Yoshihiro; Mishina, Yuji; Mistretta, Charlotte M.

    2012-01-01

    The epithelium of mammalian tongue hosts most of the taste buds that transduce gustatory stimuli into neural signals. In the field of taste biology, taste bud cells have been described as arising from “local epithelium”, in distinction from many other receptor organs that are derived from neurogenic ectoderm including neural crest (NC). In fact, contribution of NC to both epithelium and mesenchyme in the developing tongue is not fully understood. In the present study we used two independent, ...

  3. An FGF3-BMP Signaling Axis Regulates Caudal Neural Tube Closure, Neural Crest Specification and Anterior-Posterior Axis Extension.

    Directory of Open Access Journals (Sweden)

    Matthew J Anderson

    2016-05-01

    Full Text Available During vertebrate axis extension, adjacent tissue layers undergo profound morphological changes: within the neuroepithelium, neural tube closure and neural crest formation are occurring, while within the paraxial mesoderm somites are segmenting from the presomitic mesoderm (PSM. Little is known about the signals between these tissues that regulate their coordinated morphogenesis. Here, we analyze the posterior axis truncation of mouse Fgf3 null homozygotes and demonstrate that the earliest role of PSM-derived FGF3 is to regulate BMP signals in the adjacent neuroepithelium. FGF3 loss causes elevated BMP signals leading to increased neuroepithelium proliferation, delay in neural tube closure and premature neural crest specification. We demonstrate that elevated BMP4 depletes PSM progenitors in vitro, phenocopying the Fgf3 mutant, suggesting that excessive BMP signals cause the Fgf3 axis defect. To test this in vivo we increased BMP signaling in Fgf3 mutants by removing one copy of Noggin, which encodes a BMP antagonist. In such mutants, all parameters of the Fgf3 phenotype were exacerbated: neural tube closure delay, premature neural crest specification, and premature axis termination. Conversely, genetically decreasing BMP signaling in Fgf3 mutants, via loss of BMP receptor activity, alleviates morphological defects. Aberrant apoptosis is observed in the Fgf3 mutant tailbud. However, we demonstrate that cell death does not cause the Fgf3 phenotype: blocking apoptosis via deletion of pro-apoptotic genes surprisingly increases all Fgf3 defects including causing spina bifida. We demonstrate that this counterintuitive consequence of blocking apoptosis is caused by the increased survival of BMP-producing cells in the neuroepithelium. Thus, we show that FGF3 in the caudal vertebrate embryo regulates BMP signaling in the neuroepithelium, which in turn regulates neural tube closure, neural crest specification and axis termination. Uncovering this FGF3

  4. An FGF3-BMP Signaling Axis Regulates Caudal Neural Tube Closure, Neural Crest Specification and Anterior-Posterior Axis Extension.

    Science.gov (United States)

    Anderson, Matthew J; Schimmang, Thomas; Lewandoski, Mark

    2016-05-01

    During vertebrate axis extension, adjacent tissue layers undergo profound morphological changes: within the neuroepithelium, neural tube closure and neural crest formation are occurring, while within the paraxial mesoderm somites are segmenting from the presomitic mesoderm (PSM). Little is known about the signals between these tissues that regulate their coordinated morphogenesis. Here, we analyze the posterior axis truncation of mouse Fgf3 null homozygotes and demonstrate that the earliest role of PSM-derived FGF3 is to regulate BMP signals in the adjacent neuroepithelium. FGF3 loss causes elevated BMP signals leading to increased neuroepithelium proliferation, delay in neural tube closure and premature neural crest specification. We demonstrate that elevated BMP4 depletes PSM progenitors in vitro, phenocopying the Fgf3 mutant, suggesting that excessive BMP signals cause the Fgf3 axis defect. To test this in vivo we increased BMP signaling in Fgf3 mutants by removing one copy of Noggin, which encodes a BMP antagonist. In such mutants, all parameters of the Fgf3 phenotype were exacerbated: neural tube closure delay, premature neural crest specification, and premature axis termination. Conversely, genetically decreasing BMP signaling in Fgf3 mutants, via loss of BMP receptor activity, alleviates morphological defects. Aberrant apoptosis is observed in the Fgf3 mutant tailbud. However, we demonstrate that cell death does not cause the Fgf3 phenotype: blocking apoptosis via deletion of pro-apoptotic genes surprisingly increases all Fgf3 defects including causing spina bifida. We demonstrate that this counterintuitive consequence of blocking apoptosis is caused by the increased survival of BMP-producing cells in the neuroepithelium. Thus, we show that FGF3 in the caudal vertebrate embryo regulates BMP signaling in the neuroepithelium, which in turn regulates neural tube closure, neural crest specification and axis termination. Uncovering this FGF3-BMP signaling axis is

  5. Role of cranial neural crest cells in visceral arch muscle positioning and morphogenesis in the Mexican axolotl, Ambystoma mexicanum.

    Science.gov (United States)

    Ericsson, Rolf; Cerny, Robert; Falck, Pierre; Olsson, Lennart

    2004-10-01

    The role of cranial neural crest cells in the formation of visceral arch musculature was investigated in the Mexican axolotl, Ambystoma mexicanum. DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine, perchlorate) labeling and green fluorescent protein (GFP) mRNA injections combined with unilateral transplantations of neural folds showed that neural crest cells contribute to the connective tissues but not the myofibers of developing visceral arch muscles in the mandibular, hyoid, and branchial arches. Extirpations of individual cranial neural crest streams demonstrated that neural crest cells are necessary for correct morphogenesis of visceral arch muscles. These do, however, initially develop in their proper positions also in the absence of cranial neural crest. Visceral arch muscles forming in the absence of neural crest cells start to differentiate at their origins but fail to extend toward their insertions and may have a frayed appearance. Our data indicate that visceral arch muscle positioning is controlled by factors that do not have a neural crest origin. We suggest that the cranial neural crest-derived connective tissues provide directional guidance important for the proper extension of the cranial muscles and the subsequent attachment to the insertion on the correct cartilage. In a comparative context, our data from the Mexican axolotl support the view that the cranial neural crest plays a fundamental role in the development of not only the skeleton of the vertebrate head but also in the morphogenesis of the cranial muscles and that this might be a primitive feature of cranial development in vertebrates.

  6. Neural crest contribution to lingual mesenchyme, epithelium and developing taste papillae and taste buds.

    Science.gov (United States)

    Liu, Hong-Xiang; Komatsu, Yoshihiro; Mishina, Yuji; Mistretta, Charlotte M

    2012-08-15

    The epithelium of mammalian tongue hosts most of the taste buds that transduce gustatory stimuli into neural signals. In the field of taste biology, taste bud cells have been described as arising from "local epithelium", in distinction from many other receptor organs that are derived from neurogenic ectoderm including neural crest (NC). In fact, contribution of NC to both epithelium and mesenchyme in the developing tongue is not fully understood. In the present study we used two independent, well-characterized mouse lines, Wnt1-Cre and P0-Cre that express Cre recombinase in a NC-specific manner, in combination with two Cre reporter mouse lines, R26R and ZEG, and demonstrate a contribution of NC-derived cells to both tongue mesenchyme and epithelium including taste papillae and taste buds. In tongue mesenchyme, distribution of NC-derived cells is in close association with taste papillae. In tongue epithelium, labeled cells are observed in an initial scattered distribution and progress to a clustered pattern between papillae, and within papillae and early taste buds. This provides evidence for a contribution of NC to lingual epithelium. Together with previous reports for the origin of taste bud cells from local epithelium in postnatal mouse, we propose that NC cells migrate into and reside in the epithelium of the tongue primordium at an early embryonic stage, acquire epithelial cell phenotypes, and undergo cell proliferation and differentiation that is involved in the development of taste papillae and taste buds. Our findings lead to a new concept about derivation of taste bud cells that include a NC origin.

  7. Identification and dissection of a key enhancer mediating cranial neural crest specific expression of transcription factor, Ets-1.

    Science.gov (United States)

    Barembaum, Meyer; Bronner, Marianne E

    2013-10-15

    Neural crest cells form diverse derivatives that vary according to their level of origin along the body axis, with only cranial neural crest cells contributing to facial skeleton. Interestingly, the transcription factor Ets-1 is uniquely expressed in cranial but not trunk neural crest, where it functions as a direct input into neural crest specifier genes, Sox10 and FoxD3. We have isolated and interrogated a cis-regulatory element, conserved between birds and mammals, that drives reporter expression in a manner that recapitulates that of endogenous Ets-1 expression in the neural crest. Within a minimal Ets-1 enhancer region, mutation of putative binding sites for SoxE, homeobox, Ets, TFAP2 or Fox proteins results in loss or reduction of neural crest enhancer activity. Morpholino-mediated loss-of-function experiments show that Sox9, Pax7, Msx1/2, Ets-1, TFAP2A and FoxD3, all are required for enhancer activity. In contrast, mutation of a putative cMyc/E-box sequence augments reporter expression, consistent with this being a repressor binding site. Taken together, these results uncover new inputs into Ets-1, revealing critical links in the cranial neural crest gene regulatory network. © 2013 Elsevier Inc. All rights reserved.

  8. miR-21 promotes the differentiation of hair follicle-derived neural crest stem cells into Schwann cells

    Institute of Scientific and Technical Information of China (English)

    Yuxin Ni; Kaizhi Zhang; Xuejuan Liu; Tingting Yang; Baixiang Wang; Li Fu; Lan A; Yanmin Zhou

    2014-01-01

    Hair follicle-derived neural crest stem cells can be induced to differentiate into Schwann cells in vivo and in vitro. However, the underlying regulatory mechanism during cell differentiation remains poorly understood. This study isolated neural crest stem cells from human hair folli-cles and induced them to differentiate into Schwann cells. Quantitative RT-PCR showed that microRNA (miR)-21 expression was gradually increased during the differentiation of neural crest stem cells into Schwann cells. After transfection with the miR-21 agonist (agomir-21), the differentiation capacity of neural crest stem cells was enhanced. By contrast, after transfection with the miR-21 antagonist (antagomir-21), the differentiation capacity was attenuated. Further study results showed that SOX-2 was an effective target of miR-21. Without compromising SOX2 mRNA expression, miR-21 can down-regulate SOX protein expression by binding to the 3′-UTR of miR-21 mRNA. Knocking out the SOX2 gene from the neural crest stem cells significantly reversed the antagomir-21 inhibition of neural crest stem cells differentiating into Schwann cells. The results suggest that miR-21 expression was increased during the differentiation of neural crest stem cells into Schwann cells and miR-21 promoted the differentiation through down-regu-lating SOX protein expression by binding to the 3′-UTR of SOX2 mRNA.

  9. Neural crest-derived mesenchymal cells require Wnt signaling for their development and drive invagination of the telencephalic midline.

    Directory of Open Access Journals (Sweden)

    Youngshik Choe

    Full Text Available Embryonic neural crest cells contribute to the development of the craniofacial mesenchyme, forebrain meninges and perivascular cells. In this study, we investigated the function of ß-catenin signaling in neural crest cells abutting the dorsal forebrain during development. In the absence of ß-catenin signaling, neural crest cells failed to expand in the interhemispheric region and produced ectopic smooth muscle cells instead of generating dermal and calvarial mesenchyme. In contrast, constitutive expression of stabilized ß-catenin in neural crest cells increased the number of mesenchymal lineage precursors suggesting that ß-catenin signaling is necessary for the expansion of neural crest-derived mesenchymal cells. Interestingly, the loss of neural crest-derived mesenchymal stem cells (MSCs leads to failure of telencephalic midline invagination and causes ventricular system defects. This study shows that ß-catenin signaling is required for the switch of neural crest cells to MSCs and mediates the expansion of MSCs to drive the formation of mesenchymal structures of the head. Furthermore, loss of these structures causes striking defects in forebrain morphogenesis.

  10. Bmps and id2a act upstream of Twist1 to restrict ectomesenchyme potential of the cranial neural crest.

    Directory of Open Access Journals (Sweden)

    Ankita Das

    Full Text Available Cranial neural crest cells (CNCCs have the remarkable capacity to generate both the non-ectomesenchyme derivatives of the peripheral nervous system and the ectomesenchyme precursors of the vertebrate head skeleton, yet how these divergent lineages are specified is not well understood. Whereas studies in mouse have indicated that the Twist1 transcription factor is important for ectomesenchyme development, its role and regulation during CNCC lineage decisions have remained unclear. Here we show that two Twist1 genes play an essential role in promoting ectomesenchyme at the expense of non-ectomesenchyme gene expression in zebrafish. Twist1 does so by promoting Fgf signaling, as well as potentially directly activating fli1a expression through a conserved ectomesenchyme-specific enhancer. We also show that Id2a restricts Twist1 activity to the ectomesenchyme lineage, with Bmp activity preferentially inducing id2a expression in non-ectomesenchyme precursors. We therefore propose that the ventral migration of CNCCs away from a source of Bmps in the dorsal ectoderm promotes ectomesenchyme development by relieving Id2a-dependent repression of Twist1 function. Together our model shows how the integration of Bmp inhibition at its origin and Fgf activation along its migratory route would confer temporal and spatial specificity to the generation of ectomesenchyme from the neural crest.

  11. Stage-specific control of neural crest stem cell proliferation by the small rho GTPases Cdc42 and Rac1

    DEFF Research Database (Denmark)

    Fuchs, Sebastian; Herzog, Dominik; Sumara, Grzegorz

    2009-01-01

    regulated by small Rho GTPases. Deletion of either Cdc42 or Rac1 in the NC results in size reduction of multiple NC target structures because of increased cell-cycle exit, while NC cells emigrating from the neural tube are not affected. Consistently, Cdc42 or Rac1 inactivation reduces self......The neural crest (NC) generates a variety of neural and non-neural tissues during vertebrate development. Both migratory NC cells and their target structures contain cells with stem cell features. Here we show that these populations of neural crest-derived stem cells (NCSCs) are differentially...

  12. Making headway: the roles of Hox genes and neural crest cells in craniofacial development.

    Science.gov (United States)

    Trainor, Paul A

    2003-04-14

    Craniofacial development is an extraordinarily complex process requiring the orchestrated integration of multiple specialized tissues such as the surface ectoderm, neural crest, mesoderm, and pharyngeal endoderm in order to generate the central and peripheral nervous systems, axial skeleton, musculature, and connective tissues of the head and face. How do the characteristic facial structures develop in the appropriate locations with their correct shapes and sizes, given the widely divergent patterns of cell movements that occur during head development? The patterning information could depend upon localized interactions between the epithelial and mesenchymal tissues or alternatively, the developmental program for the characteristic facial structures could be intrinsic to each individual tissue precursor. Understanding the mechanisms that control vertebrate head development is an important issue since craniofacial anomalies constitute nearly one third of all human congenital defects. This review discusses recent advances in our understanding of neural crest cell patterning and the dynamic nature of the tissue interactions that are required for normal craniofacial development.

  13. Neural crest and mesoderm lineage-dependent gene expression in orofacial development.

    Science.gov (United States)

    Bhattacherjee, Vasker; Mukhopadhyay, Partha; Singh, Saurabh; Johnson, Charles; Philipose, John T; Warner, Courtney P; Greene, Robert M; Pisano, M Michele

    2007-06-01

    The present study utilizes a combination of genetic labeling/selective isolation of pluripotent embryonic progenitor cells, and oligonucleotide-based microarray technology, to delineate and compare the "molecular fingerprint" of two mesenchymal cell populations from distinct lineages in the developing embryonic orofacial region. The first branchial arches-bi-lateral tissue primordia that flank the primitive oral cavity-are populated by pluripotent mesenchymal cells from two different lineages: neural crest (neuroectoderm)- and mesoderm-derived mesenchymal cells. These cells give rise to all of the connective tissue elements (bone, cartilage, smooth and skeletal muscle, dentin) of the orofacial region (maxillary and mandibular portion), as well as neurons and glia associated with the cranial ganglia, among other tissues. In the present study, neural crest- and mesoderm-derived mesenchymal cells were selectively isolated from the first branchial arch of gestational day 9.5 mouse embryos using laser capture microdissection (LCM). The two different embryonic cell lineages were distinguished through utilization of a novel two component transgenic mouse model (Wnt1Cre/ZEG) in which the neural crest cells and their derivatives are indelibly marked (i.e., expressing enhanced green fluorescent protein, EGFP) throughout the pre- and post-natal lifespan of the organism. EGFP-labeled neural crest-derived, and non-fluorescent mesoderm-derived mesenchymal cells from the first branchial arch were visualized in frozen tissue sections from gestational day 9.5 mouse embryos and independently isolated by LCM under epifluorescence optics. RNA was extracted from the two populations of LCM-procured cells, and amplified by double-stranded cDNA synthesis and in vitro transcription. Gene expression profiles of the two progenitor cell populations were generated via hybridization of the cell-type specific cRNA samples to oligo-based GeneChip microarrays. Comparison of gene expression

  14. Dental anomalies in different cleft groups related to neural crest developmental fields contributes to the understanding of cleft aetiology

    DEFF Research Database (Denmark)

    Riis, Louise Claudius; Kjær, Inger; Mølsted, Kirsten

    2014-01-01

    , radiographs, dental casts, and medical records. PATIENTS: Ninety individuals (30 cleft lip, 30 cleft palate, and 30 combined cleft lip and palate), aged 5-27 years. MAIN OUTCOME MEASURES: Visual evaluation of tooth number and tooth morphology. RESULTS: Cleft lip: Dental deviations were predominantly observed...... in the frontonasal field. Supernumerary lateral incisors occurred significantly more often in cleft lip compared to other cleft types. Cleft palate: Dental deviations were observed in the maxillary and palatal fields indicating that both fields are involved in the development of cleft palate. Malformed roots were...... seen significantly more often in cleft palate. Combined cleft lip and palate: Number and type of dental deviations differed significantly from deviations in other cleft types, e.g. significantly more ageneses. CONCLUSIONS: Cleft lip seems to be caused by a disorder in neural crest migration...

  15. Foxc1 and Foxc2 in the Neural Crest Are Required for Ocular Anterior Segment Development

    Science.gov (United States)

    Seo, Seungwoon; Chen, Lisheng; Liu, Wenzhong; Zhao, Demin; Schultz, Kathryn M.; Sasman, Amy; Liu, Ting; Zhang, Hao F.; Gage, Philip J.; Kume, Tsutomu

    2017-01-01

    Purpose The large Forkhead (Fox) transcription factor family has essential roles in development, and mutations cause a wide range of ocular and nonocular disease. One member, Foxc2 is expressed in neural crest (NC)-derived periocular mesenchymal cells of the developing murine eye; however, its precise role in the development, establishment, and maintenance of the ocular surface has yet to be investigated. Methods To specifically delete Foxc2 from NC-derived cells, conditional knockout mice for Foxc2 (NC-Foxc2−/−) were generated by crossing Foxc2F mice with Wnt1-Cre mice. Similarly, we also generated compound NC-specific mutations of Foxc2 and a closely related gene, Foxc1 (NC-Foxc1−/−;NC-Foxc2−/−) in mice. Results Neural crest-Foxc2−/− mice show abnormal thickness in the peripheral-to-central corneal stroma and limbus and displaced pupils with irregular iris. The neural crest-specific mutation in Foxc2 also leads to ectopic neovascularization in the cornea, as well as impaired ocular epithelial cell identity and corneal conjunctivalization. Compound, NC-specific Foxc1; Foxc2 homozygous mutant mice have more severe defects in structures of the ocular surface, such as the cornea and eyelids, accompanied by significant declines in the expression of another key developmental factor, Pitx2, and its downstream effector Dkk2, which antagonizes canonical Wnt signaling. Conclusions The neural crest-Foxc2 mutation is associated with corneal conjunctivalization, ectopic corneal neovascularization, and disrupted ocular epithelial cell identity. Furthermore, Foxc2 and Foxc1 cooperatively function in NC-derived mesenchymal cells to ensure proper morphogenesis of the ocular surface via the regulation of Wnt signaling. Together, Foxc2 is required in the NC lineage for mesenchymal-epithelial interactions in corneal and ocular surface development. PMID:28253399

  16. Neural Crest Cells Isolated from the Bone Marrow of Transgenic Mice Express JCV T-Antigen.

    Directory of Open Access Journals (Sweden)

    Jennifer Gordon

    Full Text Available JC virus (JCV, a common human polyomavirus, is the etiological agent of the demyelinating disease, progressive multifocal leukoencephalopathy (PML. In addition to its role in PML, studies have demonstrated the transforming ability of the JCV early protein, T-antigen, and its association with some human cancers. JCV infection occurs in childhood and latent virus is thought to be maintained within the bone marrow, which harbors cells of hematopoietic and non-hematopoietic lineages. Here we show that non-hematopoietic mesenchymal stem cells (MSCs isolated from the bone marrow of JCV T-antigen transgenic mice give rise to JCV T-antigen positive cells when cultured under neural conditions. JCV T-antigen positive cells exhibited neural crest characteristics and demonstrated p75, SOX-10 and nestin positivity. When cultured in conditions typical for mesenchymal cells, a population of T-antigen negative cells, which did not express neural crest markers arose from the MSCs. JCV T-antigen positive cells could be cultured long-term while maintaining their neural crest characteristics. When these cells were induced to differentiate into neural crest derivatives, JCV T-antigen was downregulated in cells differentiating into bone and maintained in glial cells expressing GFAP and S100. We conclude that JCV T-antigen can be stably expressed within a fraction of bone marrow cells differentiating along the neural crest/glial lineage when cultured in vitro. These findings identify a cell population within the bone marrow permissible for JCV early gene expression suggesting the possibility that these cells could support persistent viral infection and thus provide clues toward understanding the role of the bone marrow in JCV latency and reactivation. Further, our data provides an excellent experimental model system for studying the cell-type specificity of JCV T-antigen expression, the role of bone marrow-derived stem cells in the pathogenesis of JCV-related diseases

  17. [Phenotypic plasticity of neural crest-derived melanocytes and Schwann cells].

    Science.gov (United States)

    Dupin, Elisabeth

    2011-01-01

    Melanocytes, the pigmented cells of the skin, and the glial Schwann cells lining peripheral nerves are developmentally derived from an early and transient ectodermal structure of the vertebrate embryo, the neural crest, which is also at the origin of multiple neural and non-neural cell types. Besides melanocytes and neural cells of the peripheral nervous system, the neural crest cells give rise to mesenchymal cell types in the head, which form most of the craniofacial skeleton, dermis, fat tissue and vascular musculo-connective components. How such a wide diversity of differentiation fates is established during embryogenesis and is later maintained in adult tissues are among key questions in developmental and stem cell biology. The analysis of the developmental potentials of single neural crest cells cultured in vitro led to characterizing multipotent stem/progenitor cells as well as more restricted precursors in the early neural crest of avian and mammalian embryos. Data support a hierarchical model of the diversification of neural crest lineages through progressive restrictions of multipotent stem cell potentials driven by local environmental factors. In particular, melanocytes and glial Schwann cells were shown to arise from a common bipotent progenitor, which depends upon the peptide endothelin-3 for proliferation and self-renewal ability. In vivo, signaling by endothelin-3 and its receptor is also required for the early development of melanocytes and proper pigmentation of the vertebrate body. It is generally assumed that, after lineage specification and terminal differentiation, specialized cell types, like the melanocytes and Schwann cells, do not change their identity. However, this classic notion that somatic cell differentiation is a stable and irreversible process has been challenged by emerging evidence that dedifferentiation can occur in different biological systems through nuclear transfer, cell fusion, epigenetic modifications and ectopic gene

  18. Differential requirements of BMP and Wnt signalling during gastrulation and neurulation define two steps in neural crest induction.

    Science.gov (United States)

    Steventon, Ben; Araya, Claudio; Linker, Claudia; Kuriyama, Sei; Mayor, Roberto

    2009-03-01

    The neural crest is induced by a combination of secreted signals. Although previous models of neural crest induction have proposed a step-wise activation of these signals, the actual spatial and temporal requirement has not been analysed. Through analysing the role of the mesoderm we show for the first time that specification of neural crest requires two temporally and chemically different steps: first, an induction at the gastrula stage dependent on signals arising from the dorsolateral mesoderm; and second, a maintenance step at the neurula stage dependent on signals from tissues adjacent to the neural crest. By performing tissue recombination experiments and using specific inhibitors of different inductive signals, we show that the first inductive step requires Wnt activation and BMP inhibition, whereas the later maintenance step requires activation of both pathways. This change in BMP necessity from BMP inhibition at gastrula to BMP activation at neurula stages is further supported by the dynamic expression of BMP4 and its antagonists, and is confirmed by direct measurements of BMP activity in the neural crest cells. The differential requirements of BMP activity allow us to propose an explanation for apparently discrepant results between chick and frog experiments. The demonstration that Wnt signals are required for neural crest induction by mesoderm solves an additional long-standing controversy. Finally, our results emphasise the importance of considering the order of exposure to signals during an inductive event.

  19. Inactivation of Geminin in neural crest cells affects the generation and maintenance of enteric progenitor cells, leading to enteric aganglionosis.

    Science.gov (United States)

    Stathopoulou, Athanasia; Natarajan, Dipa; Nikolopoulou, Pinelopi; Patmanidi, Alexandra L; Lygerou, Zoi; Pachnis, Vassilis; Taraviras, Stavros

    2016-01-15

    Neural crest cells comprise a multipotent, migratory cell population that generates a diverse array of cell and tissue types, during vertebrate development. Enteric Nervous System controls the function of the gastrointestinal tract and is mainly derived from the vagal and sacral neural crest cells. Deregulation on self-renewal and differentiation of the enteric neural crest cells is evident in enteric nervous system disorders, such as Hirschsprung disease, characterized by the absence of ganglia in a variable length of the distal bowel. Here we show that Geminin is essential for Enteric Nervous System generation as mice that lacked Geminin expression specifically in neural crest cells revealed decreased generation of vagal neural crest cells, and enteric neural crest cells (ENCCs). Geminin-deficient ENCCs showed increased apoptosis and decreased cell proliferation during the early stages of gut colonization. Furthermore, decreased number of committed ENCCs in vivo and the decreased self-renewal capacity of enteric progenitor cells in vitro, resulted in almost total aganglionosis resembling a severe case of Hirschsprung disease. Our results suggest that Geminin is an important regulator of self-renewal and survival of enteric nervous system progenitor cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Generation of Neural Crest-Like Cells From Human Periodontal Ligament Cell-Derived Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Tomokiyo, Atsushi; Hynes, Kim; Ng, Jia; Menicanin, Danijela; Camp, Esther; Arthur, Agnes; Gronthos, Stan; Mark Bartold, Peter

    2017-02-01

    Neural crest cells (NCC) hold great promise for tissue engineering, however the inability to easily obtain large numbers of NCC is a major factor limiting their use in studies of regenerative medicine. Induced pluripotent stem cells (iPSC) are emerging as a novel candidate that could provide an unlimited source of NCC. In the present study, we examined the potential of neural crest tissue-derived periodontal ligament (PDL) iPSC to differentiate into neural crest-like cells (NCLC) relative to iPSC generated from a non-neural crest derived tissue, foreskin fibroblasts (FF). We detected high HNK1 expression during the differentiation of PDL and FF iPSC into NCLC as a marker for enriching for a population of cells with NCC characteristics. We isolated PDL iPSC- and FF iPSC-derived NCLC, which highly expressed HNK1. A high proportion of the HNK1-positive cell populations generated, expressed the MSC markers, whilst very few cells expressed the pluripotency markers or the hematopoietic markers. The PDL and FF HNK1-positive populations gave rise to smooth muscle, neural, glial, osteoblastic and adipocytic like cells and exhibited higher expression of smooth muscle, neural, and glial cell-associated markers than the PDL and FF HNK1-negative populations. Interestingly, the HNK1-positive cells derived from the PDL-iPSC exhibited a greater ability to differentiate into smooth muscle, neural, glial cells and adipocytes, than the HNK1-positive cells derived from the FF-iPSC. Our work suggests that HNK1-enriched NCLC from neural crest tissue-derived iPSC more closely resemble the phenotypic and functional hallmarks of NCC compared to the HNK1-low population and non-neural crest iPSC-derived NCLC. J. Cell. Physiol. 232: 402-416, 2017. © 2016 Wiley Periodicals, Inc.

  1. Transforming growth factor beta1 regulates melanocyte proliferation and differentiation in mouse neural crest cells via stem cell factor/KIT signaling.

    Science.gov (United States)

    Kawakami, Tamihiro; Soma, Yoshinao; Kawa, Yoko; Ito, Masaru; Yamasaki, Emiko; Watabe, Hidenori; Hosaka, Eri; Yajima, Kenji; Ohsumi, Kayoko; Mizoguchi, Masako

    2002-03-01

    Stem cell factor is essential to the migration and differentiation of melanocytes during embryogenesis based on the observation that mutations in either the stem cell factor gene, or its ligand, KIT, result in defects in coat pigmentation in mice. Stem cell factor is also required for the survival of melanocyte precursors while they are migrating towards the skin. Transforming growth factor beta1 has been implicated in the regulation of both cellular proliferation and differentiation. NCC-melb4, an immortal cloned cell line, was cloned from a mouse neural crest cell. NCC-melb4 cells provide a model to study the specific stage of differentiation and proliferation of melanocytes. They also express KIT as a melanoblast marker. Using the NCC-melb4 cell line, we investigated the effect of transforming growth factor beta1 on the differentiation and proliferation of immature melanocyte precursors. Immunohistochemically, NCC-melb4 cells showed transforming growth factor beta1 expression. The anti-transforming growth factor beta1 antibody inhibited the cell growth, and downregulated the KIT protein and mRNA expression. To investigate further the activation of autocrine transforming growth factor beta1, NCC-melb4 cells were incubated in nonexogenous transforming growth factor beta1 culture medium. KIT protein decreased with anti-transforming growth factor beta1 antibody concentration in a concentration-dependent manner. We concluded that in NCC-melb4 cells, transforming growth factor beta1 promotes melanocyte precursor proliferation in autocrine and/or paracrine regulation. We further investigated the influence of transforming growth factor beta1 in vitro using a neural crest cell primary culture system from wild-type mice. Anti-transforming growth factor beta1 antibody decreased the number of KIT positive neural crest cell. In addition, the anti-transforming growth factor beta1 antibody supplied within the wild-type neural crest explants abolished the growth of the neural

  2. In vitro differentiation of quail neural crest cells into sensory-like neuroblasts

    Science.gov (United States)

    Sieber-Blum, Maya; Kumar, Sanjiv R.; Riley, Danny A.

    1988-01-01

    Data are presented that demonstrate the ability of quail neural-crest embrionic cells grown as primary culture to differentiate in vitro into sensorylike neuroblasts. After 7-14 days of growth as primary culture, many of the putative sensory neuroblasts displayed substance P (SP)-like immunoreactivity and some exhibited histochemical carbonic anhydrase activity. Double staining experiments showed that the SP-like immunoreactive neuroblasts did not contain detectable levels of tyrosine hydroxylase or dopamine-beta-hydroxylase. The neuronal nature of the cultured sensorylike neuroblasts was further documented by double labeling for antibodies against the 68 kDa neurofilament polypeptide and substance P.

  3. Constitutively active Notch1 converts cranial neural crest-derived frontonasal mesenchyme to perivascular cells in vivo

    Directory of Open Access Journals (Sweden)

    Sophie R. Miller

    2017-03-01

    Full Text Available Perivascular/mural cells originate from either the mesoderm or the cranial neural crest. Regardless of their origin, Notch signalling is necessary for their formation. Furthermore, in both chicken and mouse, constitutive Notch1 activation (via expression of the Notch1 intracellular domain is sufficient in vivo to convert trunk mesoderm-derived somite cells to perivascular cells, at the expense of skeletal muscle. In experiments originally designed to investigate the effect of premature Notch1 activation on the development of neural crest-derived olfactory ensheathing glial cells (OECs, we used in ovo electroporation to insert a tetracycline-inducible NotchΔE construct (encoding a constitutively active mutant of mouse Notch1 into the genome of chicken cranial neural crest cell precursors, and activated NotchΔE expression by doxycycline injection at embryonic day 4. NotchΔE-targeted cells formed perivascular cells within the frontonasal mesenchyme, and expressed a perivascular marker on the olfactory nerve. Hence, constitutively activating Notch1 is sufficient in vivo to drive not only somite cells, but also neural crest-derived frontonasal mesenchyme and perhaps developing OECs, to a perivascular cell fate. These results also highlight the plasticity of neural crest-derived mesenchyme and glia.

  4. Impaired Cellular Immunity in the Murine Neural Crest Conditional Deletion of Endothelin Receptor-B Model of Hirschsprung's Disease.

    Directory of Open Access Journals (Sweden)

    Ankush Gosain

    Full Text Available Hirschsprung's disease (HSCR is characterized by aganglionosis from failure of neural crest cell (NCC migration to the distal hindgut. Up to 40% of HSCR patients suffer Hirschsprung's-associated enterocolitis (HAEC, with an incidence that is unchanged from the pre-operative to the post-operative state. Recent reports indicate that signaling pathways involved in NCC migration may also be involved in the development of secondary lymphoid organs. We hypothesize that gastrointestinal (GI mucosal immune defects occur in HSCR that may contribute to enterocolitis. EdnrB was deleted from the neural crest (EdnrBNCC-/- resulting in mutants with defective NCC migration, distal colonic aganglionosis and the development of enterocolitis. The mucosal immune apparatus of these mice was interrogated at post-natal day (P 21-24, prior to histological signs of enterocolitis. We found that EdnrBNCC-/- display lymphopenia of their Peyer's Patches, the major inductive site of GI mucosal immunity. EdnrBNCC-/- Peyer's Patches demonstrate decreased B-lymphocytes, specifically IgM+IgDhi (Mature B-lymphocytes, which are normally activated and produce IgA following antigen presentation. EdnrBNCC-/- animals demonstrate decreased small intestinal secretory IgA, but unchanged nasal and bronchial airway secretory IgA, indicating a gut-specific defect in IgA production or secretion. In the spleen, which is the primary source of IgA-producing Mature B-lymphocytes, EdnrBNCC-/- animals display decreased B-lymphocytes, but an increase in Mature B-lymphocytes. EdnrBNCC-/- spleens are also small and show altered architecture, with decreased red pulp and a paucity of B-lymphocytes in the germinal centers and marginal zone. Taken together, these findings suggest impaired GI mucosal immunity in EdnrBNCC-/- animals, with the spleen as a potential site of the defect. These findings build upon the growing body of literature that suggests that intestinal defects in HSCR are not restricted

  5. Connecting teratogen-induced congenital heart defects to neural crest cells and their effect on cardiac function.

    Science.gov (United States)

    Karunamuni, Ganga H; Ma, Pei; Gu, Shi; Rollins, Andrew M; Jenkins, Michael W; Watanabe, Michiko

    2014-09-01

    Neural crest cells play many key roles in embryonic development, as demonstrated by the abnormalities that result from their specific absence or dysfunction. Unfortunately, these key cells are particularly sensitive to abnormalities in various intrinsic and extrinsic factors, such as genetic deletions or ethanol-exposure that lead to morbidity and mortality for organisms. This review discusses the role identified for a segment of neural crest in regulating the morphogenesis of the heart and associated great vessels. The paradox is that their derivatives constitute a small proportion of cells to the cardiovascular system. Findings supporting that these cells impact early cardiac function raises the interesting possibility that they indirectly control cardiovascular development at least partially through regulating function. Making connections between insults to the neural crest, cardiac function, and morphogenesis is more approachable with technological advances. Expanding our understanding of early functional consequences could be useful in improving diagnosis and testing therapies.

  6. Making Headway: The Roles of Hox Genes and Neural Crest Cells in Craniofacial Development

    Directory of Open Access Journals (Sweden)

    Paul A. Trainor

    2003-01-01

    Full Text Available Craniofacial development is an extraordinarily complex process requiring the orchestrated integration of multiple specialized tissues such as the surface ectoderm, neural crest, mesoderm, and pharyngeal endoderm in order to generate the central and peripheral nervous systems, axial skeleton, musculature, and connective tissues of the head and face. How do the characteristic facial structures develop in the appropriate locations with their correct shapes and sizes, given the widely divergent patterns of cell movements that occur during head development? The patterning information could depend upon localized interactions between the epithelial and mesenchymal tissues or alternatively, the developmental program for the characteristic facial structures could be intrinsic to each individual tissue precursor. Understanding the mechanisms that control vertebrate head development is an important issue since craniofacial anomalies constitute nearly one third of all human congenital defects. This review discusses recent advances in our understanding of neural crest cell patterning and the dynamic nature of the tissue interactions that are required for normal craniofacial development.

  7. ADAM10 is essential for cranial neural crest-derived maxillofacial bone development

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Yu, E-mail: tanyu2048@163.com; Fu, Runqing, E-mail: furunqing@sjtu.edu.cn; Liu, Jiaqiang, E-mail: liujqmj@163.com; Wu, Yong, E-mail: wyonger@gmail.com; Wang, Bo, E-mail: wb228@126.com; Jiang, Ning, E-mail: 179639060@qq.com; Nie, Ping, E-mail: nieping1011@sina.com; Cao, Haifeng, E-mail: 0412chf@163.com; Yang, Zhi, E-mail: wcums1981@163.com; Fang, Bing, E-mail: fangbing@sjtu.edu.cn

    2016-07-08

    Growth disorders of the craniofacial bones may lead to craniofacial deformities. The majority of maxillofacial bones are derived from cranial neural crest cells via intramembranous bone formation. Any interruption of the craniofacial skeleton development process might lead to craniofacial malformation. A disintegrin and metalloprotease (ADAM)10 plays an essential role in organ development and tissue integrity in different organs. However, little is known about its function in craniofacial bone formation. Therefore, we investigated the role of ADAM10 in the developing craniofacial skeleton, particularly during typical mandibular bone development. First, we showed that ADAM10 was expressed in a specific area of the craniofacial bone and that the expression pattern dynamically changed during normal mouse craniofacial development. Then, we crossed wnt1-cre transgenic mice with adam10-flox mice to generate ADAM10 conditional knockout mice. The stereomicroscopic, radiographic, and von Kossa staining results showed that conditional knockout of ADAM10 in cranial neural crest cells led to embryonic death, craniofacial dysmorphia and bone defects. Furthermore, we demonstrated that impaired mineralization could be triggered by decreased osteoblast differentiation, increased cell death. Overall, these findings show that ADAM10 plays an essential role in craniofacial bone development. -- Highlights: •We firstly reported that ADAM10 was essentially involved in maxillofacial bone development. •ADAM10 cKO mice present craniofacial dysmorphia and bone defects. •Impaired osteoblast differentiation,proliferation and apoptosis underlie the bone deformity.

  8. Inhibition of FGF signaling accelerates neural crest cell differentiation of human pluripotent stem cells.

    Science.gov (United States)

    Jaroonwitchawan, Thiranut; Muangchan, Pattamon; Noisa, Parinya

    2016-12-02

    Neural crest (NC) is a transient population, arising during embryonic development and capable of differentiating into various somatic cells. The defects of neural crest development leads to neurocristopathy. Several signaling pathways were revealed their significance in NC cell specification. Fibroblast growth factor (FGF) is recognized as an important signaling during NC development, for instance Xenopus and avian; however, its contributions in human species are remained elusive. Here we used human pluripotent stem cells (hPSCs) to investigate the consequences of FGF inhibition during NC cell differentiation. The specific-FGF receptor inhibitor, SU5402, was used in this investigation. The inhibition of FGF did not found to affect the proliferation or death of hPSC-derived NC cells, but promoted hPSCs to commit NC cell fate. NC-specific genes, including PAX3, SLUG, and TWIST1, were highly upregulated, while hPSC genes, such as OCT4, and E-CAD, rapidly reduced upon FGF signaling blockage. Noteworthy, TFAP-2α, a marker of migratory NC cells, abundantly presented in SU5402-induced cells. This accelerated NC cell differentiation could be due to the activation of Notch signaling upon the blockage of ERK1/2 phosphorylation, since NICD was increased by SU5402. Altogether, this study proposed the contributions of FGF signaling in controlling human NC cell differentiation from hPSCs, the crosstalk between FGF and Notch, and might imply to the influences of FGF signaling in neurocristophatic diseases.

  9. Using human neural crest-derived progenitor cells to investigate osteogenesis: an in vitro study.

    Science.gov (United States)

    Degistirici, Ozer; Grabellus, Florian; Irsen, Stephan; Schmid, Kurt Werner; Thie, Michael

    2010-04-01

    Human tooth contains a distinct population of neural crest-derived progenitor cells (dNC-PCs) which are known to give rise to specialized daughter cells of an osteogenic lineage. We hypothesised that dNC-PCs could develop into neural crest-derived bone in a self-propagating and extracorporal culture system. Thus, we examined the three-dimensional structure obtained from osteogenic-stimulated dNC-PCs by morphological, biochemical and spectroscopic methods. After the onset of stimulation, cells formed a multilayer with outer cells covering the surface and inner cells secreting a hyaline matrix. With prolonged culture, multilayers contracted and formed a three-dimensional construct which subsequently converted to a calcified mass. Differentiation of progenitor cells was associated with apoptosis. Cell types which survived were smooth muscle actin-positive cells and bone-like cells. The expression of osteoblastic markers and the secretion of a collagenous matrix indicate that the bone cells had acquired their functional phenotype. Furthermore, these cells produced and secreted membrane-bound vesicles into the newly forming matrix. Consequently, an early biomineralized extracellular matrix was found with calcium phosphate deposits being associated with the newly formed collagen matrix framework. The molar calcium-phosphorus-ratio of the mineralized collagen indicated that amorphous calcium phosphate was present within this matrix. The data suggest that stimulated cultures of dNC-PCs are able to recapitulate some processes of the early phase of osteogenesis.

  10. Lgr5 Marks Neural Crest Derived Multipotent Oral Stromal Stem Cells.

    Science.gov (United States)

    Boddupally, Keerthi; Wang, Guangfang; Chen, Yibu; Kobielak, Agnieszka

    2016-03-01

    It has been suggested that multipotent stem cells with neural crest (NC) origin persist into adulthood in oral mucosa. However their exact localization and role in normal homeostasis is unknown. In this study, we discovered that Lgr5 is expressed in NC cells during embryonic development, which give rise to the dormant stem cells in the adult tongue and oral mucosa. Those Lgr5 positive oral stromal stem cells display properties of NC stem cells including clonal growth and multipotent differentiation. RNA sequencing revealed that adult Lgr5+ oral stromal stem cells express high number of neural crest related markers like Sox9, Twist1, Snai1, Myc, Ets1, Crabp1, Epha2, and Itgb1. Using lineage-tracing experiments, we show that these cells persist more than a year in the ventral tongue and some areas of the oral mucosa and give rise to stromal progeny. In vivo transplantation demonstrated that these cells reconstitute the stroma. Our studies show for the first time that Lgr5 is expressed in the NC cells at embryonic day 9.5 (E9.5) and is maintained during embryonic development and postnataly in the stroma of the ventral tongue, and some areas of the oral mucosa and that Lgr5+ cells participate in the maintenance of the stroma.

  11. The membrane disordering effect of ethanol on neural crest cells in vitro and the protective role of GM1 ganglioside.

    Science.gov (United States)

    Chen, S Y; Yang, B; Jacobson, K; Sulik, K K

    1996-01-01

    The teratogenic effect of ethanol appears to be related to excessive cell death in selected cell populations including craniofacial neural crest. Because there is a large body of evidence suggesting that a primary site of action of ethanol is at the membrane level, the current study was designed to examine and attempt to ameliorate ethanol-induced neural crest cell membrane changes that proceed cell death. To this end, neural crest cells were grown as primary cultures from mouse cranial neural tube be explants. In these cultured cells, the relationships between changes in membrane lipid lateral mobility (a measure of membrane fluidity) as determined using the technique of fluorescence recovery after photobleaching (FRAP), ethanol-induced cell death, and the protective role of GM1 ganglioside were examined. A dose-response study showed that treatment with 50, 100, 150, or 200 mM ethanol respectively, for 24 h was positively correlated with membrane lipid lateral mobility and negatively correlated with cell viability. Pre- or co-treatment of the cells with GM1 ganglioside diminished the ethanol-induced increases in membrane fluidity and decreases in cell viability. The results of this study suggest that change in membrane fluidity can account, in part, for ethanol-induced neural crest cell death and that the protection conferred by GM1 ganglioside may result from membrane stabilization and subsequent preservation of the biophysical properties and biological function of the ethanol-exposed cell membranes.

  12. Human epidermal neural crest stem cells as candidates for cell-based therapies, disease modeling, and drug discovery.

    Science.gov (United States)

    Sieber-Blum, Maya

    2014-09-01

    In this review article I explore the suitability of human epidermal neural crest stem cells (hEPI-NCSC) for translational medicine. hEPI-NCSC are multipotent somatic stem cells that are derived from the embryonic neural crest. hEPI-NCSC are located in the bulge of hair follicles where they persist postnatally and into adulthood. Because of their location in the hairy skin and their migratory behavior, hEPI-NCSC can be easily isolated as a highly pure population of stem cells without the need for purification. Furthermore they can be expanded ex vivo into millions of stem cells, they do not form tumors in vivo, and they can undergo directed differentiation into crest and noncrest-derived cell types of clinical relevance. Taken together, these characteristics make hEPI-NCSC attractive candidates for cell-based therapies, drug discovery, and disease modeling. © 2014 Wiley Periodicals, Inc.

  13. Neural crest-derived cells with stem cell features can be traced back to multiple lineages in the adult skin

    NARCIS (Netherlands)

    C.E. Wong (Christine); S. Paratore (Sabrina); M.T. Dours-Zimmermann (María); T. Rochat (Thierry); T. Pietri (Thomas); U. Suter (Ueli); D. Zimmermann (Dieter); S. Dufour (Sylvie); J.P. Thiery (Joachim); D.N. Meijer (Dies); C. Beermann (Christopher); Y. Barrandon (Yann); L. Sommer (Lukas)

    2006-01-01

    textabstractGiven their accessibility, multipotent skin-derived cells might be useful for future cell replacement therapies. We describe the isolation of multipotent stem cell-like cells from the adult trunk skin of mice and humans that express the neural crest stem cell markers p75 and Sox10 and

  14. Neural crest-derived cells with stem cell features can be traced back to multiple lineages in the adult skin

    NARCIS (Netherlands)

    C.E. Wong (Christine); S. Paratore (Sabrina); M.T. Dours-Zimmermann (María); T. Rochat (Thierry); T. Pietri (Thomas); U. Suter (Ueli); D. Zimmermann (Dieter); S. Dufour (Sylvie); J.P. Thiery (Joachim); D.N. Meijer (Dies); C. Beermann (Christopher); Y. Barrandon (Yann); L. Sommer (Lukas)

    2006-01-01

    textabstractGiven their accessibility, multipotent skin-derived cells might be useful for future cell replacement therapies. We describe the isolation of multipotent stem cell-like cells from the adult trunk skin of mice and humans that express the neural crest stem cell markers p75 and Sox10 and di

  15. The lamprey: a jawless vertebrate model system for examining origin of the neural crest and other vertebrate traits.

    Science.gov (United States)

    Green, Stephen A; Bronner, Marianne E

    2014-01-01

    Lampreys are a group of jawless fishes that serve as an important point of comparison for studies of vertebrate evolution. Lampreys and hagfishes are agnathan fishes, the cyclostomes, which sit at a crucial phylogenetic position as the only living sister group of the jawed vertebrates. Comparisons between cyclostomes and jawed vertebrates can help identify shared derived (i.e. synapomorphic) traits that might have been inherited from ancestral early vertebrates, if unlikely to have arisen convergently by chance. One example of a uniquely vertebrate trait is the neural crest, an embryonic tissue that produces many cell types crucial to vertebrate features, such as the craniofacial skeleton, pigmentation of the skin, and much of the peripheral nervous system (Gans and Northcutt, 1983). Invertebrate chordates arguably lack unambiguous neural crest homologs, yet have cells with some similarities, making comparisons with lampreys and jawed vertebrates essential for inferring characteristics of development in early vertebrates, and how they may have evolved from nonvertebrate chordates. Here we review recent research on cyclostome neural crest development, including research on lamprey gene regulatory networks and differentiated neural crest fates. Copyright © 2014 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  16. Intrastriatal transplantation of adult human neural crest-derived stem cells improves functional outcome in parkinsonian rats.

    Science.gov (United States)

    Müller, Janine; Ossig, Christiana; Greiner, Johannes F W; Hauser, Stefan; Fauser, Mareike; Widera, Darius; Kaltschmidt, Christian; Storch, Alexander; Kaltschmidt, Barbara

    2015-01-01

    Parkinson's disease (PD) is considered the second most frequent and one of the most severe neurodegenerative diseases, with dysfunctions of the motor system and with nonmotor symptoms such as depression and dementia. Compensation for the progressive loss of dopaminergic (DA) neurons during PD using current pharmacological treatment strategies is limited and remains challenging. Pluripotent stem cell-based regenerative medicine may offer a promising therapeutic alternative, although the medical application of human embryonic tissue and pluripotent stem cells is still a matter of ethical and practical debate. Addressing these challenges, the present study investigated the potential of adult human neural crest-derived stem cells derived from the inferior turbinate (ITSCs) transplanted into a parkinsonian rat model. Emphasizing their capability to give rise to nervous tissue, ITSCs isolated from the adult human nose efficiently differentiated into functional mature neurons in vitro. Additional successful dopaminergic differentiation of ITSCs was subsequently followed by their transplantation into a unilaterally lesioned 6-hydroxydopamine rat PD model. Transplantation of predifferentiated or undifferentiated ITSCs led to robust restoration of rotational behavior, accompanied by significant recovery of DA neurons within the substantia nigra. ITSCs were further shown to migrate extensively in loose streams primarily toward the posterior direction as far as to the midbrain region, at which point they were able to differentiate into DA neurons within the locus ceruleus. We demonstrate, for the first time, that adult human ITSCs are capable of functionally recovering a PD rat model. ©AlphaMed Press.

  17. A spectrum of skeletal anomalies associated with pulmonary agenesis: Possible neural crest injuries

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, J.; Masel, J.; McCredie, J.

    1989-07-01

    Six cases of unilateral pulmonary agenesis with skeletal and other deformities have been diagnosed in our hospitals. The various pulmonary, spinal, rib and limb anomalies with their possible interrelationships were examined and described in detail and comparison with previously reported cases was made. It became apparent that the limb abnormalities which most constantly involved hypoplasia of the phalanges of a thumb with varying metacarpal and radial anomalies, were ipsilateral to the pulmonary agenesis in all cases. The spinal deformities involved degrees of failure of segementation of T1-T3 with other vertebrae randomly involved. Rib abnormalities also varied and did not necessarily correspond to the same side as the pulmonary agenesis. The concept of the anomalies all being part of a group of neural crest injuries was then explored. (orig.).

  18. Radionuclide therapy of tumors derived from the neural crest; Therapie neuroendokriner Tumoren

    Energy Technology Data Exchange (ETDEWEB)

    Graichen, S.; Risse, J.H.; Gruenwald, F. [Klinik fuer Nuklearmedizin, Johann-Wolfgang-Goethe-Univ., Frankfurt am Main (Germany)

    2001-07-01

    In recent years there has been an increase in the use of radioionated MIBG not only as a diagnostic tool but also as a therapeutical approach in tumors derived from the neural crest. This article reviews the current therapeutic potential of MIBG and radiolabeled peptides (Y-90-DOTATOC, Y-90-DOTA-lantreotide) in the treatment of neuroendocrine tumors such as neuroblastoma, pheochromocytoma/paraganglioma, medullary thyroid carcinoma and carcinoid. (orig.) [German] Der Stellenwert von MIBG zur Therapie neuroendokriner Tumoren hat in den letzten Jahren an Bedeutung gewonnen. Dieser Artikel soll einen Ueberblick ueber die derzeitigen therapeutischen Moeglichkeiten und Einsatzgebiete von MIBG und regulatorischen Peptiden (Y-90-DOTATOC, Y-90-DOTA-lantreotide) in der Therapie von Tumoren neuronalen Ursprungs, wie z. B. Neuroblastom, Phaeochromozytom/Paragangliom, medullaeres Schilddruesenkarzinom und Karzinoid geben. (orig.)

  19. Roles of Hoxb5 in the development of vagal and trunk neural crest cells.

    Science.gov (United States)

    Kam, Mandy K M; Lui, Vincent C H

    2015-02-01

    Neural crest cells (NC) are a group of multipotent stem cells uniquely present in vertebrates. They are destined to form various organs according to their anterior-posterior (A-P) levels of origin in the neural tube (NT). They develop into a wide spectrum of cell lineages under the influence of signaling cascades, neural plate border genes and NC specifier genes. Although this complex gene regulatory network (GRN) specifies the fate of NC and the combinatory action of Hox genes executed at the time of NC induction governs the patterning of NC for the formation of specific structures along the A-P axis, not much information on how GRN and Hox genes directly interact and orchestrate is available. This review summarizes recent findings on the multiple roles of Hoxb5 on the survival and cell lineage differentiation of vagal and trunk NC cells during early development, by direct transcriptional regulation of NC specifier genes (Sox9 and Foxd3) of the GRN. We will also review findings on the transcriptional regulation of Ret by Hoxb5 in the population of the vagal NC that are committed to the enteric neuron and glia lineages. Functional redundancy between Hox proteins (Hoxa5 and Hoxc5) from the same paralogue group as Hoxb5, and the cooperative effects of Hox cofactors, collaborators and transcription factors in the Hoxb5 transcriptional regulation of target genes will also be discussed. © 2015 Japanese Society of Developmental Biologists.

  20. Reiterative AP2a activity controls sequential steps in the neural crest gene regulatory network.

    Science.gov (United States)

    de Crozé, Noémie; Maczkowiak, Frédérique; Monsoro-Burq, Anne H

    2011-01-04

    The neural crest (NC) emerges from combinatorial inductive events occurring within its progenitor domain, the neural border (NB). Several transcription factors act early at the NB, but the initiating molecular events remain elusive. Recent data from basal vertebrates suggest that ap2 might have been critical for NC emergence; however, the role of AP2 factors at the NB remains unclear. We show here that AP2a initiates NB patterning and is sufficient to elicit a NB-like pattern in neuralized ectoderm. In contrast, the other early regulators do not participate in ap2a initiation at the NB, but cooperate to further establish a robust NB pattern. The NC regulatory network uses a multistep cascade of secreted inducers and transcription factors, first at the NB and then within the NC progenitors. Here we report that AP2a acts at two distinct steps of this cascade. As the earliest known NB specifier, AP2a mediates Wnt signals to initiate the NB and activate pax3; as a NC specifier, AP2a regulates further NC development independent of and downstream of NB patterning. Our findings reconcile conflicting observations from various vertebrate organisms. AP2a provides a paradigm for the reiterated use of multifunctional molecules, thereby facilitating emergence of the NC in vertebrates.

  1. Postotic and preotic cranial neural crest cells differently contribute to thyroid development.

    Science.gov (United States)

    Maeda, Kazuhiro; Asai, Rieko; Maruyama, Kazuaki; Kurihara, Yukiko; Nakanishi, Toshio; Kurihara, Hiroki; Miyagawa-Tomita, Sachiko

    2016-01-01

    Thyroid development and formation vary among species, but in most species the thyroid morphogenesis consists of five stages: specification, budding, descent, bilobation and folliculogenesis. The detailed mechanisms of these stages have not been fully clarified. During early development, the cranial neural crest (CNC) contributes to the thyroid gland. The removal of the postotic CNC (corresponding to rhombomeres 6, 7 and 8, also known as the cardiac neural crest) results in abnormalities of the cardiovascular system, thymus, parathyroid glands, and thyroid gland. To investigate the influence of the CNC on thyroid bilobation process, we divided the CNC into two regions, the postotic CNC and the preotic CNC (from the mesencephalon to rhombomere 5) regions and examined. We found that preotic CNC-ablated embryos had a unilateral thyroid lobe, and confirmed the presence of a single lobe or the absence of lobes in postotic CNC-ablated chick embryos. The thyroid anlage in each region-ablated embryos was of a normal size at the descent stage, but at a later stage, the thyroid in preotic CNC-ablated embryos was of a normal size, conflicting with a previous report in which the thyroid was reduced in size in the postotic CNC-ablated embryos. The postotic CNC cells differentiated into connective tissues of the thyroid in quail-to-chick chimeras. In contrast, the preotic CNC cells did not differentiate into connective tissues of the thyroid. We found that preotic CNC cells encompassed the thyroid anlage from the specification stage to the descent stage. Finally, we found that endothelin-1 and endothelin type A receptor-knockout mice and bosentan (endothelin receptor antagonist)-treated chick embryos showed bilobation anomalies that included single-lobe formation. Therefore, not only the postotic CNC, but also the preotic CNC plays an important role in thyroid morphogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Pigment pattern evolution by differential deployment of neural crest and post-embryonic melanophore lineages in Danio fishes.

    Science.gov (United States)

    Quigley, Ian K; Turner, Jessica M; Nuckels, Richard J; Manuel, Joan L; Budi, Erine H; MacDonald, Erin L; Parichy, David M

    2004-12-01

    Latent precursors or stem cells of neural crest origin are present in a variety of post-embryonic tissues. Although these cells are of biomedical interest for roles in human health and disease, their potential evolutionary significance has been underappreciated. As a first step towards elucidating the contributions of such cells to the evolution of vertebrate form, we investigated the relative roles of neural crest cells and post-embryonic latent precursors during the evolutionary diversification of adult pigment patterns in Danio fishes. These pigment patterns result from the numbers and arrangements of embryonic melanophores that are derived from embryonic neural crest cells, as well as from post-embryonic metamorphic melanophores that are derived from latent precursors of presumptive neural crest origin. In the zebrafish D. rerio, a pattern of melanophore stripes arises during the larval-to-adult transformation by the recruitment of metamorphic melanophores from latent precursors. Using a comparative approach in the context of new phylogenetic data, we show that adult pigment patterns in five additional species also arise from metamorphic melanophores, identifying this as an ancestral mode of adult pigment pattern development. By contrast, superficially similar adult stripes of D. nigrofasciatus (a sister species to D. rerio) arise by the reorganization of melanophores that differentiated at embryonic stages, with a diminished contribution from metamorphic melanophores. Genetic mosaic and molecular marker analyses reveal evolutionary changes that are extrinsic to D. nigrofasciatus melanophore lineages, including a dramatic reduction of metamorphic melanophore precursors. Finally, interspecific complementation tests identify a candidate genetic pathway for contributing to the evolutionary reduction in metamorphic melanophores and the increased contribution of early larval melanophores to D. nigrofasciatus adult pigment pattern development. These results

  3. Perturbation of Hoxb5 signaling in vagal and trunk neural crest cells causes apoptosis and neurocristopathies in mice.

    Science.gov (United States)

    Kam, M K M; Cheung, M C H; Zhu, J J; Cheng, W W C; Sat, E W Y; Tam, P K H; Lui, V C H

    2014-02-01

    Neural crest cells (NCCs) migrate from different regions along the anterior-posterior axis of the neural tube (NT) to form different structures. Defective NCC development causes congenital neurocristopathies affecting multiple NCC-derived tissues in human. Perturbed Hoxb5 signaling in vagal NCC causes enteric nervous system (ENS) defects. This study aims to further investigate if perturbed Hoxb5 signaling in trunk NCC contributes to defects of other NCC-derived tissues besides the ENS. We perturbed Hoxb5 signaling in NCC from the entire NT, and investigated its impact in the development of tissues derived from these cells in mice. Perturbation of Hoxb5 signaling in these NCC resulted in Sox9 downregulation, NCC apoptosis, hypoplastic sympathetic and dorsal root ganglia, hypopigmentation and ENS defects. Mutant mice with NCC-specific Sox9 deletion also displayed some of these phenotypes. In vitro and in vivo assays indicated that the Sox9 promoter was bound and trans-activated by Hoxb5. In ovo studies further revealed that Sox9 alleviated apoptosis induced by perturbed Hoxb5 signaling, and Hoxb5 induced ectopic Sox9 expression in chick NT. This study demonstrates that Hoxb5 regulates Sox9 expression in NCC and disruption of this signaling causes Sox9 downregulation, NCC apoptosis and multiple NCC-developmental defects. Phenotypes such as ENS deficiency, hypopigmentation and some of the neurological defects are reported in patients with Hirschsprung disease (HSCR). Whether dysregulation of Hoxb5 signaling and early depletion of NCC contribute to ENS defect and other neurocristopathies in HSCR patients deserves further investigation.

  4. Environmental factors unveil dormant developmental capacities in multipotent progenitors of the trunk neural crest.

    Science.gov (United States)

    Coelho-Aguiar, Juliana M; Le Douarin, Nicole M; Dupin, Elisabeth

    2013-12-01

    The neural crest (NC), an ectoderm-derived structure of the vertebrate embryo, gives rise to the melanocytes, most of the peripheral nervous system and the craniofacial mesenchymal tissues (i.e., connective, bone, cartilage and fat cells). In the trunk of Amniotes, no mesenchymal tissues are derived from the NC. In certain in vitro conditions however, avian and murine trunk NC cells (TNCCs) displayed a limited mesenchymal differentiation capacity. Whether this capacity originates from committed precursors or from multipotent TNCCs was unknown. Here, we further investigated the potential of TNCCs to develop into mesenchymal cell types in vitro. We found that, in fact, quail TNCCs exhibit a high ability to differentiate into myofibroblasts, chondrocytes, lipid-laden adipocytes and mineralizing osteoblasts. In single cell cultures, both mesenchymal and neural cell types coexisted in TNCC clonal progeny: 78% of single cells yielded osteoblasts together with glial cells and neurons; moreover, TNCCs generated heterogenous clones with adipocytes, myofibroblasts, melanocytes and/or glial cells. Therefore, alike cephalic NCCs, early migratory TNCCs comprised multipotent progenitors able to generate both mesenchymal and melanocytic/neural derivatives, suggesting a continuum in NC developmental potentials along the neural axis. The skeletogenic capacity of the TNC, which was present in the exoskeletal armor of the extinct basal forms of Vertebrates and which persisted in the distal fin rays of extant teleost fish, thus did not totally disappear during vertebrate evolution. Mesenchymal potentials of the TNC, although not fulfilled during development, are still present in a dormant state in Amniotes and can be disclosed in in vitro culture. Whether these potentials are not expressed in vivo due to the presence of inhibitory cues or to the lack of permissive factors in the trunk environment remains to be understood. © 2013 Published by Elsevier Inc.

  5. The different effects on cranial and trunk neural crest cell behaviour following exposure to a low concentration of alcohol in vitro.

    Science.gov (United States)

    Czarnobaj, Joanna; Bagnall, Keith M; Bamforth, J Steven; Milos, Nadine C

    2014-05-01

    Embryonic neural crest cells give rise to large regions of the face and peripheral nervous system. Exposure of these cells to high alcohol concentrations leads to cell death in the craniofacial region resulting in facial defects. However, the effects of low concentrations of alcohol on neural crest cells are not clear. In this study, cranial neural crest cells from Xenopus laevis were cultured in an ethanol concentration approximately equivalent to one drink. Techniques were developed to study various aspects of neural crest cell behaviour and a number of cellular parameters were quantified. In the presence of alcohol, a significant number of cranial neural crest cells emigrated from the explant on fibronectin but the liberation of individual cells was delayed. The cells also remained close to the explant and their morphology changed. Cranial neural crest cells did not grow on Type 1 collagen. For the purposes of comparison, the behaviour of trunk neural crest cells was also studied. The presence of alcohol correlated with increased retention of single cells on fibronectin but left other parameters unchanged. The behaviour of trunk neural crest cells growing on Type 1 collagen in the presence of alcohol did not differ from controls. Low concentrations of alcohol therefore significantly affected both cranial and trunk neural crest cells, with a wider variety of effects on cells from the cranial as opposed to the trunk region. The results suggest that low concentrations of alcohol may be more detrimental to early events in organ formation than currently suspected. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Formation of a “Pre-mouth Array” from the Extreme Anterior Domain Is Directed by Neural Crest and Wnt/PCP Signaling

    Directory of Open Access Journals (Sweden)

    Laura Jacox

    2016-08-01

    Full Text Available The mouth arises from the extreme anterior domain (EAD, a region where the ectoderm and endoderm are directly juxtaposed. Here, we identify a “pre-mouth array” in Xenopus that forms soon after the cranial neural crest has migrated to lie on either side of the EAD. Initially, EAD ectoderm comprises a wide and short epithelial mass that becomes narrow and tall with cells and nuclei changing shape, a characteristic of convergent extension. The resulting two rows of cells—the pre-mouth array—later split down the midline to surround the mouth opening. Neural crest is essential for convergent extension and likely signals to the EAD through the Wnt/planar cell polarity (PCP pathway. Fzl7 receptor is locally required in EAD ectoderm, while Wnt11 ligand is required more globally. Indeed, heterologous cells expressing Wnt11 can elicit EAD convergent extension. The study reveals a precise cellular mechanism that positions and contributes to the future mouth.

  7. Rutin increases neural crest stem cell survival against damage caused by aflatoxin B1

    Directory of Open Access Journals (Sweden)

    Jader Nones

    2015-09-01

    Full Text Available http://dx.doi.org/10.5007/2175-7925.2015v28n4p1 The neural crest (NC corresponds to a collection of multipotent and oligopotent progenitors endowed with both neural and mesenchymal potential. The derivatives of the NC at the trunk level include neurons and glial cells of the peripheral nervous system, melanocytes, smooth muscle cells and some endocrine cells. The present work investigated, for the first time, the influence of aflatoxin B1 (AFB1 and the flavonoid rutin on the survival and proliferation of NC and NC-derived melanocytes. Quail NC cell cultures were treated with AFB1 (30 μM and/or rutin (20 μM for 6 days. Cell viability was assessed by MTT and trypan blue analyses and cell proliferation by BrdU staining. Melanocytes were identified by immunocytochemistry against the melanocyte-specific cellular marker MelEM. The AFB1 treatment decreased both NC cell viability and proliferation. The total number of MelEM-positive cells was also reduced after this treatment, an effect partially prevented by the addition of rutin. On the other hand, rutin added alone did not influence the NC cell population. Our results demonstrated that rutin increases the survival of the NC after damage caused by AFB1. However, additional studies are needed to better understand the mechanisms involved in AFB1 and rutin interactions.

  8. Yap and Taz play a crucial role in neural crest-derived craniofacial development.

    Science.gov (United States)

    Wang, Jun; Xiao, Yang; Hsu, Chih-Wei; Martinez-Traverso, Idaliz M; Zhang, Min; Bai, Yan; Ishii, Mamoru; Maxson, Robert E; Olson, Eric N; Dickinson, Mary E; Wythe, Joshua D; Martin, James F

    2016-02-01

    The role of the Hippo signaling pathway in cranial neural crest (CNC) development is poorly understood. We used the Wnt1(Cre) and Wnt1(Cre2SOR) drivers to conditionally ablate both Yap and Taz in the CNC of mice. When using either Cre driver, Yap and Taz deficiency in the CNC resulted in enlarged, hemorrhaging branchial arch blood vessels and hydrocephalus. However, Wnt1(Cre2SOR) mutants had an open cranial neural tube phenotype that was not evident in Wnt1(Cre) mutants. In O9-1 CNC cells, the loss of Yap impaired smooth muscle cell differentiation. RNA-sequencing data indicated that Yap and Taz regulate genes encoding Fox transcription factors, specifically Foxc1. Proliferation was reduced in the branchial arch mesenchyme of Yap and Taz CNC conditional knockout (CKO) embryos. Moreover, Yap and Taz CKO embryos had cerebellar aplasia similar to Dandy-Walker spectrum malformations observed in human patients and mouse embryos with mutations in Foxc1. In embryos and O9-1 cells deficient for Yap and Taz, Foxc1 expression was significantly reduced. Analysis of Foxc1 regulatory regions revealed a conserved recognition element for the Yap and Taz DNA binding co-factor Tead. ChIP-PCR experiments supported the conclusion that Foxc1 is directly regulated by the Yap-Tead complex. Our findings uncover important roles for Yap and Taz in CNC diversification and development. © 2016. Published by The Company of Biologists Ltd.

  9. SOXE neofunctionalization and elaboration of the neural crest during chordate evolution

    Science.gov (United States)

    Tai, Andrew; Cheung, Martin; Huang, Yong-Heng; Jauch, Ralf; Bronner, Marianne E.; Cheah, Kathryn S. E.

    2016-01-01

    During chordate evolution, two genome-wide duplications facilitated acquisition of vertebrate traits, including emergence of neural crest cells (NCCs), in which neofunctionalization of the duplicated genes are thought to have facilitated development of craniofacial structures and the peripheral nervous system. How these duplicated genes evolve and acquire the ability to specify NC and their derivatives are largely unknown. Vertebrate SoxE paralogues, most notably Sox9/10, are essential for NC induction, delamination and lineage specification. In contrast, the basal chordate, amphioxus, has a single SoxE gene and lacks NC-like cells. Here, we test the hypothesis that duplication and divergence of an ancestral SoxE gene may have facilitated elaboration of NC lineages. By using an in vivo expression assay to compare effects of AmphiSoxE and vertebrate Sox9 on NC development, we demonstrate that all SOXE proteins possess similar DNA binding and homodimerization properties and can induce NCCs. However, AmphiSOXE is less efficient than SOX9 in transactivation activity and in the ability to preferentially promote glial over neuronal fate, a difference that lies within the combined properties of amino terminal and transactivation domains. We propose that acquisition of AmphiSoxE expression in the neural plate border led to NCC emergence while duplication and divergence produced advantageous mutations in vertebrate homologues, promoting elaboration of NC traits. PMID:27734831

  10. Soluble Jagged1 attenuates lateral inhibition, allowing for the clonal expansion of neural crest stem cells.

    Science.gov (United States)

    Nikopoulos, George N; Duarte, Maria; Kubu, Chris J; Bellum, Stephen; Friesel, Robert; Maciag, Thomas; Prudovsky, Igor; Verdi, Joseph M

    2007-12-01

    The activation of Notch signaling in neural crest stem cells (NCSCs) results in the rapid loss of neurogenic potential and differentiation into glia. We now show that the attenuation of endogenous Notch signaling within expanding NCSC clones by the Notch ligand soluble Jagged1 (sJ1), maintains NCSCs in a clonal self-renewing state in vitro without affecting their sensitivity to instructive differentiation signals observed previously during NCSC self-renewal. sJ1 functions as a competitive inhibitor of Notch signaling to modulate endogenous cell-cell communication to levels sufficient to inhibit neural differentiation but insufficient to instruct gliogenic differentiation. Attenuated Notch signaling promotes the induction and nonclassic release of fibroblast growth factor 1 (FGF1). The functions of sJ1 and FGF1 signaling are complementary, as abrogation of FGF signaling diminishes the ability of sJ1 to promote NCSC expansion, yet the secondary NCSCs maintain the dosage sensitivity of the founder. These results validate and build upon previous studies on the role of Notch signaling in stem cell self-renewal and suggest that the differentiation bias or self-renewal potential of NCSCs is intrinsically linked to the level of endogenous Notch signaling. This should provide a unique opportunity for the expansion of NCSCs ex vivo without altering their differentiation bias for clinical cell replacement or transplant strategies in tissue repair. Disclosure of potential conflicts of interest is found at the end of this article.

  11. Negative effect of Hox gene expression on the development of the neural crest-derived facial skeleton.

    Science.gov (United States)

    Creuzet, Sophie; Couly, Gérard; Vincent, Christine; Le Douarin, Nicole M

    2002-09-01

    Diencephalic, mesencephalic and metencephalic neural crest cells are skeletogenic and derive from neural folds that do not express Hox genes. In order to examine the influence of Hox gene expression on skull morphogenesis, expression of Hoxa2, Hoxa3 and Hoxb4 in conjunction with that of the green fluorescent protein has been selectively targeted to the Hox-negative neural folds of the avian embryo prior to the onset of crest cell emigration. Hoxa2 expression precludes the development of the entire facial skeleton. Transgenic Hoxa2 embryos such as those from which the Hox-negative domain of the cephalic neural crest has been removed have no upper or lower jaws and no frontonasal structures. Embryos subjected to the forced expression of Hoxa3 and Hoxb4 show severe defects in the facial skeleton but not a complete absence of facial cartilage. Hoxa3 prevents the formation of the skeleton derived from the first branchial arch, but allows the development (albeit reduced) of the nasal septum. Hoxb4, by contrast, hampers the formation of the nasal bud-derived skeleton, while allowing that of a proximal (but not distal) segment of the lower jaw. The combined effect of Hoxa3 and Hoxb4 prevents the formation of facial skeletal structures, comparable with Hoxa2. None of these genes impairs the formation of neural derivatives of the crest. These results suggest that over the course of evolution, the absence of Hox gene expression in the anterior part of the chordate embryo was crucial in the vertebrate phylum for the development of a face, jaws and brain case, and, hence, also for that of the forebrain.

  12. Role of DNMT3B in the regulation of early neural and neural crest specifiers

    OpenAIRE

    Martins-Taylor, Kristen; Schroeder, Diane I.; LaSalle, Janine M.; Lalande, Marc; Xu, Ren-He

    2012-01-01

    The de novo DNA methyltransferase DNMT3B functions in establishing DNA methylation patterns during development. DNMT3B missense mutations cause immunodeficiency, centromere instability and facial anomalies (ICF) syndrome. The restriction of Dnmt3b expression to neural progenitor cells, as well as the mild cognitive defects observed in ICF patients, suggests that DNMT3B may play an important role in early neurogenesis. We performed RNAi knockdown of DNMT3B in human embryonic stem cells (hESCs)...

  13. A novel N-terminal motif is responsible for the evolution of neural crest-specific gene-regulatory activity in vertebrate FoxD3.

    Science.gov (United States)

    Ono, Hiroki; Kozmik, Zbynek; Yu, Jr-Kai; Wada, Hiroshi

    2014-01-15

    The neural crest is unique to vertebrates and has allowed the evolution of their complicated craniofacial structures. During vertebrate evolution, the acquisition of the neural crest must have been accompanied by the emergence of a new gene regulatory network (GRN). Here, to investigate the role of protein evolution in the emergence of the neural crest GRN, we examined the neural crest cell (NCC) differentiation-inducing activity of chordate FoxD genes. Amphioxus and vertebrate (Xenopus) FoxD proteins both exhibited transcriptional repressor activity in Gal4 transactivation assays and bound to similar DNA sequences in vitro. However, whereas vertebrate FoxD3 genes induced the differentiation of ectopic NCCs when overexpressed in chick neural tube, neither amphioxus FoxD nor any other vertebrate FoxD paralogs exhibited this activity. Experiments using chimeric proteins showed that the N-terminal portion of the vertebrate FoxD3 protein is critical to its NCC differentiation-inducing activity. Furthermore, replacement of the N-terminus of amphioxus FoxD with a 39-amino-acid segment from zebrafish FoxD3 conferred neural crest-inducing activity on amphioxus FoxD or zebrafish FoxD1. Therefore, fixation of this N-terminal amino acid sequence may have been crucial in the evolutionary recruitment of FoxD3 to the vertebrate neural crest GRN. © 2013 Published by Elsevier Inc.

  14. IN VITRO PROPERTIES OF NEURAL CREST-DERIVED MULTIPOTENT STEM CELLS FROM A BULGE REGION OF WHISKER FOLLICLE

    Directory of Open Access Journals (Sweden)

    R. G. Vasyliev

    2014-08-01

    Full Text Available A culture method for multipotent neural crest-derived stem cell isolated from the bulge region of the hair follicle of whisker pad of adult mice has been described and their biological properties have been studied. It was shown that the cells possess a fibroblast-like morphology, they are nestin-positive and cytokeratin-negative, and also express the following surface markers: CD44, CD73, CD90 and Sca-1. This cell type shows the functional properties of stem cells in culture: clonogenicity, self-renewal, sphere-forming capacity and the ability to the directed multilineage differentiation. Due to these properties, neural crest-derived multipotent stem cells are promising for application in the regenerative medicine

  15. Phenothiourea sensitizes zebrafish cranial neural crest and extraocular muscle development to changes in retinoic acid and IGF signaling.

    Directory of Open Access Journals (Sweden)

    Brenda L Bohnsack

    Full Text Available 1-Phenyl 2-thiourea (PTU is a tyrosinase inhibitor commonly used to block pigmentation and aid visualization of zebrafish development. At the standard concentration of 0.003% (200 µM, PTU inhibits melanogenesis and reportedly has minimal other effects on zebrafish embryogenesis. We found that 0.003% PTU altered retinoic acid and insulin-like growth factor (IGF regulation of neural crest and mesodermal components of craniofacial development. Reduction of retinoic acid synthesis by the pan-aldehyde dehydrogenase inhibitor diethylbenzaldehyde, only when combined with 0.003% PTU, resulted in extraocular muscle disorganization. PTU also decreased retinoic acid-induced teratogenic effects on pharyngeal arch and jaw cartilage despite morphologically normal appearing PTU-treated controls. Furthermore, 0.003% PTU in combination with inhibition of IGF signaling through either morpholino knockdown or pharmacologic inhibition of tyrosine kinase receptor phosphorylation, disrupted jaw development and extraocular muscle organization. PTU in and of itself inhibited neural crest development at higher concentrations (0.03% and had the greatest inhibitory effect when added prior to 22 hours post fertilization (hpf. Addition of 0.003% PTU between 4 and 20 hpf decreased thyroxine (T4 in thyroid follicles in the nasopharynx of 96 hpf embryos. Treatment with exogenous triiodothyronine (T3 and T4 improved, but did not completely rescue, PTU-induced neural crest defects. Thus, PTU should be used with caution when studying zebrafish embryogenesis as it alters the threshold of different signaling pathways important during craniofacial development. The effects of PTU on neural crest development are partially caused by thyroid hormone signaling.

  16. Phenothiourea sensitizes zebrafish cranial neural crest and extraocular muscle development to changes in retinoic acid and IGF signaling.

    Science.gov (United States)

    Bohnsack, Brenda L; Gallina, Donika; Kahana, Alon

    2011-01-01

    1-Phenyl 2-thiourea (PTU) is a tyrosinase inhibitor commonly used to block pigmentation and aid visualization of zebrafish development. At the standard concentration of 0.003% (200 µM), PTU inhibits melanogenesis and reportedly has minimal other effects on zebrafish embryogenesis. We found that 0.003% PTU altered retinoic acid and insulin-like growth factor (IGF) regulation of neural crest and mesodermal components of craniofacial development. Reduction of retinoic acid synthesis by the pan-aldehyde dehydrogenase inhibitor diethylbenzaldehyde, only when combined with 0.003% PTU, resulted in extraocular muscle disorganization. PTU also decreased retinoic acid-induced teratogenic effects on pharyngeal arch and jaw cartilage despite morphologically normal appearing PTU-treated controls. Furthermore, 0.003% PTU in combination with inhibition of IGF signaling through either morpholino knockdown or pharmacologic inhibition of tyrosine kinase receptor phosphorylation, disrupted jaw development and extraocular muscle organization. PTU in and of itself inhibited neural crest development at higher concentrations (0.03%) and had the greatest inhibitory effect when added prior to 22 hours post fertilization (hpf). Addition of 0.003% PTU between 4 and 20 hpf decreased thyroxine (T4) in thyroid follicles in the nasopharynx of 96 hpf embryos. Treatment with exogenous triiodothyronine (T3) and T4 improved, but did not completely rescue, PTU-induced neural crest defects. Thus, PTU should be used with caution when studying zebrafish embryogenesis as it alters the threshold of different signaling pathways important during craniofacial development. The effects of PTU on neural crest development are partially caused by thyroid hormone signaling.

  17. Dissecting CNBP, a zinc-finger protein required for neural crest development, in its structural and functional domains.

    Science.gov (United States)

    Armas, Pablo; Agüero, Tristán H; Borgognone, Mariana; Aybar, Manuel J; Calcaterra, Nora B

    2008-10-17

    Cellular nucleic-acid-binding protein (CNBP) plays an essential role in forebrain and craniofacial development by controlling cell proliferation and survival to mediate neural crest expansion. CNBP binds to single-stranded nucleic acids and displays nucleic acid chaperone activity in vitro. The CNBP family shows a conserved modular organization of seven Zn knuckles and an arginine-glycine-glycine (RGG) box between the first and second Zn knuckles. The participation of these structural motifs in CNBP biochemical activities has still not been addressed. Here, we describe the generation of CNBP mutants that dissect the protein into regions with structurally and functionally distinct properties. Mutagenesis approaches were followed to generate: (i) an amino acid replacement that disrupted the fifth Zn knuckle; (ii) N-terminal deletions that removed the first Zn knuckle and the RGG box, or the RGG box alone; and (iii) a C-terminal deletion that eliminated the three last Zn knuckles. Mutant proteins were overexpressed in Escherichia coli, purified, and used to analyze their biochemical features in vitro, or overexpressed in Xenopus laevis embryos to study their function in vivo during neural crest cell development. We found that the Zn knuckles are required, but not individually essential, for CNBP biochemical activities, whereas the RGG box is essential for RNA-protein binding and nucleic acid chaperone activity. Removal of the RGG box allowed CNBP to preserve a weak single-stranded-DNA-binding capability. A mutant mimicking the natural N-terminal proteolytic CNBP form behaved as the RGG-deleted mutant. By gain-of-function and loss-of-function experiments in Xenopus embryos, we confirmed the participation of CNBP in neural crest development, and we demonstrated that the CNBP mutants lacking the N-terminal region or the RGG box alone may act as dominant negatives in vivo. Based on these data, we speculate about the existence of a specific proteolytic mechanism for the

  18. Delivery of epidermal neural crest stem cells (EPI-NCSC) to hippocamp in Alzheimer's disease rat model.

    Science.gov (United States)

    Esmaeilzade, Banafshe; Nobakht, Maliheh; Joghataei, Mohammad Taghi; Rahbar Roshandel, Nahid; Rasouli, Homa; Samadi Kuchaksaraei, Ali; Hosseini, Seyed Mohammad; Najafzade, Nowruz; Asalgoo, Sara; Hejazian, Leila Beygom; Moghani Ghoroghi, Fatima

    2012-01-01

    Alzheimer's disease (AD) is characterized by progressive neuronal loss in hippocamp. Epidermal neural crest stem cells (EPI-NCSC) can differentiate into neurons, astrocytes and oligodendrocytes. The purpose of this study was to evaluate the effects of transplanting EPI-NCSC into AD rat model. Two weeks after induction of AD by injection of Amyloid-β1-40 into CA1 area of rat hippocamp, Y-maze and single-trial passive avoidance tests were used to show deficit of learning and memory abilities. EPI-NCSC were obtained from the vibrissa hair follicle of rat, cultured and labeled with bromodeoxyuridine. When Alzheimer was proved by behavioral tests, EPI-NCSC was transplanted into CA3 area of hippocamp in AD rat model. The staining of EPI-NCSC markers (nestin and SOX10) was done in vitro. Double-labeling immunofluorescence was performed to study survival and differentiation of the grafted cells. We showed that transplanted EPI-NCSC survive and produce many neurons and a few glial cells, presenting glial fibrillary acidic protein. Total number of granule cells in hippocamp was estimated to be more in the AD rat model with transplanted cells as compared to AD control group. We observed that rats with hippocampal damage made more errors than control rats on the Y-maze, when reward locations were reversed. Transplanted cells were migrated to all areas of hippocamp and the total number of granule cell in treatment group was equal compared to control group. Transplantation of EPI-NCSC into hippocamp might differentiate into cholinergic neurons and could cure impairment of memory in AD rat model.

  19. Are neural crest stem cells the missing link between hematopoietic and neurogenic niches?

    Science.gov (United States)

    Coste, Cécile; Neirinckx, Virginie; Gothot, André; Wislet, Sabine; Rogister, Bernard

    2015-01-01

    Hematopoietic niches are defined as cellular and molecular microenvironments that regulate hematopoietic stem cell (HSC) function together with stem cell autonomous mechanisms. Many different cell types have been characterized as contributors to the formation of HSC niches, such as osteoblasts, endothelial cells, Schwann cells, and mesenchymal progenitors. These mesenchymal progenitors have themselves been classified as CXC chemokine ligand (CXCL) 12-abundant reticular (CAR) cells, stem cell factor expressing cells, or nestin-positive mesenchymal stem cells (MSCs), which have been recently identified as neural crest-derived cells (NCSCs). Together, these cells are spatially associated with HSCs and believed to provide appropriate microenvironments for HSC self-renewal, differentiation, mobilization and hibernation both by cell-cell contact and soluble factors. Interestingly, it appears that regulatory pathways governing the hematopoietic niche homeostasis are operating in the neurogenic niche as well. Therefore, this review paper aims to compare both the regulation of hematopoietic and neurogenic niches, in order to highlight the role of NCSCs and nervous system components in the development and the regulation of the hematopoietic system.

  20. Are neural crest stem cells the missing link between hematopoietic and neurogenic niches?

    Directory of Open Access Journals (Sweden)

    Cécile eCoste

    2015-06-01

    Full Text Available Hematopoietic niches are defined as cellular and molecular microenvironments that regulate hematopoietic stem cell (HSC function together with stem cell autonomous mechanisms. Many different cell types have been characterized as contributors to the formation of HSC niches, such as osteoblasts, endothelial cells, Schwann cells, and mesenchymal progenitors. These mesenchymal progenitors have themselves been classified as CXC chemokine ligand (CXCL12-abundant reticular (CAR cells, stem cell factor expressing cells, or nestin-positive mesenchymal stem cells (MSCs, which have been recently identified as neural crest-derived cells (NCSCs. Together, these cells are spatially associated with HSCs and believed to provide appropriate microenvironments for HSC self-renewal, differentiation, mobilization and hibernation both by cell-to-cell contact and soluble factors. Interestingly, it appears that regulatory pathways governing the hematopoietic niche homeostasis are operating in the neurogenic niche as well. Therefore, this review paper aims to compare both the regulation of hematopoietic and neurogenic niches, in order to highlight the role of NCSCs and nervous system components in the development and the regulation of the hematopoietic system.

  1. Prospect of Human Pluripotent Stem Cell-Derived Neural Crest Stem Cells in Clinical Application

    Directory of Open Access Journals (Sweden)

    Qian Zhu

    2016-01-01

    Full Text Available Neural crest stem cells (NCSCs represent a transient and multipotent cell population that contributes to numerous anatomical structures such as peripheral nervous system, teeth, and cornea. NCSC maldevelopment is related to various human diseases including pigmentation abnormalities, disorders affecting autonomic nervous system, and malformations of teeth, eyes, and hearts. As human pluripotent stem cells including human embryonic stem cells (hESCs and human induced pluripotent stem cells (hiPSCs can serve as an unlimited cell source to generate NCSCs, hESC/hiPSC-derived NCSCs can be a valuable tool to study the underlying mechanisms of NCSC-associated diseases, which paves the way for future therapies for these abnormalities. In addition, hESC/hiPSC-derived NCSCs with the capability of differentiating to various cell types are highly promising for clinical organ repair and regeneration. In this review, we first discuss NCSC generation methods from human pluripotent stem cells and differentiation mechanism of NCSCs. Then we focus on the clinical application potential of hESC/hiPSC-derived NCSCs on peripheral nerve injuries, corneal blindness, tooth regeneration, pathological melanogenesis, Hirschsprung disease, and cardiac repair and regeneration.

  2. Prospect of Human Pluripotent Stem Cell-Derived Neural Crest Stem Cells in Clinical Application

    Science.gov (United States)

    Zhu, Qian; Lu, Qiqi; Gao, Rong

    2016-01-01

    Neural crest stem cells (NCSCs) represent a transient and multipotent cell population that contributes to numerous anatomical structures such as peripheral nervous system, teeth, and cornea. NCSC maldevelopment is related to various human diseases including pigmentation abnormalities, disorders affecting autonomic nervous system, and malformations of teeth, eyes, and hearts. As human pluripotent stem cells including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) can serve as an unlimited cell source to generate NCSCs, hESC/hiPSC-derived NCSCs can be a valuable tool to study the underlying mechanisms of NCSC-associated diseases, which paves the way for future therapies for these abnormalities. In addition, hESC/hiPSC-derived NCSCs with the capability of differentiating to various cell types are highly promising for clinical organ repair and regeneration. In this review, we first discuss NCSC generation methods from human pluripotent stem cells and differentiation mechanism of NCSCs. Then we focus on the clinical application potential of hESC/hiPSC-derived NCSCs on peripheral nerve injuries, corneal blindness, tooth regeneration, pathological melanogenesis, Hirschsprung disease, and cardiac repair and regeneration. PMID:28090209

  3. MycN Is Critical for the Maintenance of Human Embryonic Stem Cell-Derived Neural Crest Stem Cells.

    Directory of Open Access Journals (Sweden)

    Jie Ting Zhang

    Full Text Available The biologic studies of human neural crest stem cells (hNCSCs are extremely challenging due to the limited source of hNCSCs as well as ethical and technical issues surrounding isolation of early human embryonic tissues. On the other hand, vast majority of studies on MycN have been conducted in human tumor cells, thus, the role of MycN in normal human neural crest development is completely unknown. In the present study, we determined the role of MycN in hNCSCs isolated from in vitro-differentiating human embryonic stem cells (hESCs. For the first time, we show that suppression of MycN in hNCSCs inhibits cell growth and cell cycle progression. Knockdown of MycN in hNCSCs increases the expression of Cdkn1a, Cdkn2a and Cdkn2b, which encodes the cyclin-dependent kinases p21CIP1, p16 INK4a and p15INK4b. In addition, MycN is involved in the regulation of human sympathetic neurogenesis, as knockdown of MycN enhances the expression of key transcription factors involved in sympathetic neuron differentiation, including Phox2a, Phox2b, Mash1, Hand2 and Gata3. We propose that unlimited source of hNCSCs provides an invaluable platform for the studies of human neural crest development and diseases.

  4. The PAF1 complex component Leo1 is essential for cardiac and neural crest development in zebrafish.

    Science.gov (United States)

    Nguyen, Catherine T; Langenbacher, Adam; Hsieh, Michael; Chen, Jau-Nian

    2010-05-01

    Leo1 is a component of the Polymerase-Associated Factor 1 (PAF1) complex, an evolutionarily conserved protein complex involved in gene transcription regulation and chromatin remodeling. The role of leo1 in vertebrate embryogenesis has not previously been examined. Here, we report that zebrafish leo1 encodes a nuclear protein that has a similar molecular structure to Leo1 proteins from other species. From a genetic screen, we identified a zebrafish mutant defective in the leo1 gene. The truncated Leo1(LA1186) protein lacks a nuclear localization signal and is distributed mostly in the cytoplasm. Phenotypic analysis showed that while the initial patterning of the primitive heart tube is not affected in leo1(LA1186) mutant embryos, the differentiation of cardiomyocytes at the atrioventricular boundary is aberrant, suggesting a requirement for Leo1 in cardiac differentiation. In addition, the expression levels of markers for neural crest-derived cells such as crestin, gch2, dct and mitfa are greatly reduced in leo1(LA1186) mutants, indicating a requirement for Leo1 in maintaining the neural crest population. Consistent with this finding, melanocyte and xanthophore populations are severely reduced, craniofacial cartilage is barely detectable, and mbp-positive glial cells are absent in leo1(LA1186) mutants after three days of development. Taken together, these results provide the first genetic evidence of the requirement for Leo1 in the development of the heart and neural crest cell populations.

  5. MycN Is Critical for the Maintenance of Human Embryonic Stem Cell-Derived Neural Crest Stem Cells.

    Science.gov (United States)

    Zhang, Jie Ting; Weng, Zhi Hui; Tsang, Kam Sze; Tsang, Lai Ling; Chan, Hsiao Chang; Jiang, Xiao Hua

    2016-01-01

    The biologic studies of human neural crest stem cells (hNCSCs) are extremely challenging due to the limited source of hNCSCs as well as ethical and technical issues surrounding isolation of early human embryonic tissues. On the other hand, vast majority of studies on MycN have been conducted in human tumor cells, thus, the role of MycN in normal human neural crest development is completely unknown. In the present study, we determined the role of MycN in hNCSCs isolated from in vitro-differentiating human embryonic stem cells (hESCs). For the first time, we show that suppression of MycN in hNCSCs inhibits cell growth and cell cycle progression. Knockdown of MycN in hNCSCs increases the expression of Cdkn1a, Cdkn2a and Cdkn2b, which encodes the cyclin-dependent kinases p21CIP1, p16 INK4a and p15INK4b. In addition, MycN is involved in the regulation of human sympathetic neurogenesis, as knockdown of MycN enhances the expression of key transcription factors involved in sympathetic neuron differentiation, including Phox2a, Phox2b, Mash1, Hand2 and Gata3. We propose that unlimited source of hNCSCs provides an invaluable platform for the studies of human neural crest development and diseases.

  6. Derivation of corneal endothelial cell-like cells from rat neural crest cells in vitro.

    Directory of Open Access Journals (Sweden)

    Chengqun Ju

    Full Text Available The aim of this study was to investigate the feasibility of inducing rat neural crest cells (NCC to differentiate to functional corneal endothelial cell (CEC-like cells in vitro. Rat NCC were induced with adult CEC-derived conditioned medium. Immunofluorescence, flow cytometry and real time RT-PCR assay were used to detect expression of the corneal endothelium differentiation marker N-cadherin and transcription factors FoxC1 and Pitx2. CFDA SE-labeled CEC-like cells were transplanted to the corneal endothelium of a rat corneal endothelium deficiency model, and an eye-down position was maintained for 24 hours to allow cell attachment. The animals were observed for as long as 2 months after surgery and underwent clinical and histological examination. Spindle-like NCC turned to polygonal CEC-like after induction and expressed N-cadherin, FoxC1, Pitx2, zonula occludens-1 and sodium-potassium pump Na(+/K(+ ATPase. The corneas of the experimental group were much clearer than those of the control group and the mean corneal thickness in the experimental group was significantly less than in the control group7, 14, 21 and 28 days after surgery. Confocal microscopy through focusing and histological analysis confirmed that green fluorescence-positive CEC-like cells formed a monolayer covering the Descemet's membrane in the experimental group. In conclusion, CEC-like cells derived from NCCs displayed characters of native CEC, and the induction protocol provides guidance for future human CEC induction from NCC.

  7. Specific diagnosis of neural crest tumours by MIBG scintigraphy; Diagnostic specifique des tumeurs issues de la crete neurale par la scintigraphie a la MIBG

    Energy Technology Data Exchange (ETDEWEB)

    Hoefnagel, C.A. [Het Nederlands Kanker Instituut, Amsterdam (Netherlands)

    1995-12-31

    MIBG scintigraphy has been used since 1981 as a diagnostic tool in pheochromocytoma and subsequently in a wide variety of neural crest tumors. The authors give the criteria for the choice between {sup 123}I and {sup 123}I-MIBG, remind drug interactions, report sensitivity and specificity values in main indications and discuss the relative merits of MIBG and pentetreotide scintigraphy. (author). 7 refs., 4 figs., 1 tab.

  8. Canine epidermal neural crest stem cells: characterization and potential as therapy candidate for a large animal model of spinal cord injury.

    Science.gov (United States)

    Gericota, Barbara; Anderson, Joseph S; Mitchell, Gaela; Borjesson, Dori L; Sturges, Beverly K; Nolta, Jan A; Sieber-Blum, Maya

    2014-03-01

    The discovery of multipotent neural crest-derived stem cells, named epidermal neural crest stem cells (EPI-NCSC), that persist postnatally in an easy-to-access location-the bulge of hair follicles-opens a spectrum of novel opportunities for patient-specific therapies. We present a detailed characterization of canine EPI-NCSC (cEPI-NCSC) from multiple dog breeds and protocols for their isolation and ex vivo expansion. Furthermore, we provide novel tools for research in canines, which currently are still scarce. In analogy to human and mouse EPI-NCSC, the neural crest origin of cEPI-NCSC is shown by their expression of the neural crest stem cell molecular signature and other neural crest-characteristic genes. Similar to human EPI-NCSC, cEPI-NCSC also expressed pluripotency genes. We demonstrated that cEPI-NCSC can generate all major neural crest derivatives. In vitro clonal analyses established multipotency and self-renewal ability of cEPI-NCSC, establishing cEPI-NCSC as multipotent somatic stem cells. A critical analysis of the literature on canine spinal cord injury (SCI) showed the need for novel treatments and suggested that cEPI-NCSC represent viable candidates for cell-based therapies in dog SCI, particularly for chondrodystrophic dogs. This notion is supported by the close ontological relationship between neural crest stem cells and spinal cord stem cells. Thus, cEPI-NCSC promise to offer not only a potential treatment for canines but also an attractive and realistic large animal model for human SCI. Taken together, we provide the groundwork for the development of a novel cell-based therapy for a condition with extremely poor prognosis and no available effective treatment.

  9. Efficient animal-serum free 3D cultivation method for adult human neural crest-derived stem cell therapeutics

    Directory of Open Access Journals (Sweden)

    JFW Greiner

    2011-12-01

    Full Text Available Due to their broad differentiation potential and their persistence into adulthood, human neural crest-derived stem cells (NCSCs harbour great potential for autologous cellular therapies, which include the treatment of neurodegenerative diseases and replacement of complex tissues containing various cell types, as in the case of musculoskeletal injuries. The use of serum-free approaches often results in insufficient proliferation of stem cells and foetal calf serum implicates the use of xenogenic medium components. Thus, there is much need for alternative cultivation strategies. In this study we describe for the first time a novel, human blood plasma based semi-solid medium for cultivation of human NCSCs. We cultivated human neural crest-derived inferior turbinate stem cells (ITSCs within a blood plasma matrix, where they revealed higher proliferation rates compared to a standard serum-free approach. Three-dimensionality of the matrix was investigated using helium ion microscopy. ITSCs grew within the matrix as revealed by laser scanning microscopy. Genetic stability and maintenance of stemness characteristics were assured in 3D cultivated ITSCs, as demonstrated by unchanged expression profile and the capability for self-renewal. ITSCs pre-cultivated in the 3D matrix differentiated efficiently into ectodermal and mesodermal cell types, particularly including osteogenic cell types. Furthermore, ITSCs cultivated as described here could be easily infected with lentiviruses directly in substrate for potential tracing or gene therapeutic approaches. Taken together, the use of human blood plasma as an additive for a completely defined medium points towards a personalisable and autologous cultivation of human neural crest-derived stem cells under clinical grade conditions.

  10. Analyses of fugu hoxa2 genes provide evidence for subfunctionalization of neural crest cell and rhombomere cis-regulatory modules during vertebrate evolution.

    Science.gov (United States)

    McEllin, Jennifer A; Alexander, Tara B; Tümpel, Stefan; Wiedemann, Leanne M; Krumlauf, Robb

    2016-01-15

    Hoxa2 gene is a primary player in regulation of craniofacial programs of head development in vertebrates. Here we investigate the evolution of a Hoxa2 neural crest enhancer identified originally in mouse by comparing and contrasting the fugu hoxa2a and hoxa2b genes with their orthologous teleost and mammalian sequences. Using sequence analyses in combination with transgenic regulatory assays in zebrafish and mouse embryos we demonstrate subfunctionalization of regulatory activity for expression in hindbrain segments and neural crest cells between these two fugu co-orthologs. hoxa2a regulatory sequences have retained the ability to mediate expression in neural crest cells while those of hoxa2b include cis-elements that direct expression in rhombomeres. Functional dissection of the neural crest regulatory potential of the fugu hoxa2a and hoxa2b genes identify the previously unknown cis-element NC5, which is implicated in generating the differential activity of the enhancers from these genes. The NC5 region plays a similar role in the ability of this enhancer to mediate reporter expression in mice, suggesting it is a conserved component involved in control of neural crest expression of Hoxa2 in vertebrate craniofacial development.

  11. Neural crest-mediated bone resorption is a determinant of species-specific jaw length.

    Science.gov (United States)

    Ealba, Erin L; Jheon, Andrew H; Hall, Jane; Curantz, Camille; Butcher, Kristin D; Schneider, Richard A

    2015-12-01

    Precise control of jaw length during development is crucial for proper form and function. Previously we have shown that in birds, neural crest mesenchyme (NCM) confers species-specific size and shape to the beak by regulating molecular and histological programs for the induction and deposition of cartilage and bone. Here we reveal that a hitherto unrecognized but similarly essential mechanism for establishing jaw length is the ability of NCM to mediate bone resorption. Osteoclasts are considered the predominant cells that resorb bone, although osteocytes have also been shown to participate in this process. In adults, bone resorption is tightly coupled to bone deposition as a means to maintain skeletal homeostasis. Yet, the role and regulation of bone resorption during growth of the embryonic skeleton have remained relatively unexplored. We compare jaw development in short-beaked quail versus long-billed duck and find that quail have substantially higher levels of enzymes expressed by bone-resorbing cells including tartrate-resistant acid phosphatase (TRAP), Matrix metalloproteinase 13 (Mmp13), and Mmp9. Then, we transplant NCM destined to form the jaw skeleton from quail to duck and generate chimeras in which osteocytes arise from quail donor NCM and osteoclasts come exclusively from the duck host. Chimeras develop quail-like jaw skeletons coincident with dramatically elevated expression of TRAP, Mmp13, and Mmp9. To test for a link between bone resorption and jaw length, we block resorption using a bisphosphonate, osteoprotegerin protein, or an MMP13 inhibitor, and this significantly lengthens the jaw. Conversely, activating resorption with RANKL protein shortens the jaw. Finally, we find that higher resorption in quail presages their relatively lower adult jaw bone mineral density (BMD) and that BMD is also NCM-mediated. Thus, our experiments suggest that NCM not only controls bone resorption by its own derivatives but also modulates the activity of mesoderm

  12. Revised lineage of larval photoreceptor cells in Ciona reveals archetypal collaboration between neural tube and neural crest in sensory organ formation.

    Science.gov (United States)

    Oonuma, Kouhei; Tanaka, Moeko; Nishitsuji, Koki; Kato, Yumiko; Shimai, Kotaro; Kusakabe, Takehiro G

    2016-12-01

    The Ciona intestinalis larva has two distinct photoreceptor organs, a conventional pigmented ocellus and a nonpigmented ocellus, that are asymmetrically situated in the brain. The ciliary photoreceptor cells of these ocelli resemble visual cells of the vertebrate retina. Precise elucidation of the lineage of the photoreceptor cells will be key to understanding the developmental mechanisms of these cells as well as the evolutionary relationships between the photoreceptor organs of ascidians and vertebrates. Photoreceptor cells of the pigmented ocellus have been thought to develop from anterior animal (a-lineage) blastomeres, whereas the developmental origin of the nonpigmented ocellus has not been determined. Here, we show that the photoreceptor cells of both ocelli develop from the right anterior vegetal hemisphere: those of the pigmented ocellus from the right A9.14 cell and those of the nonpigmented ocellus from the right A9.16 cell. The pigmented ocellus is formed by a combination of two lineages of cells with distinct embryonic origins: the photoreceptor cells originate from a medial portion of the A-lineage neural plate, while the pigment cell originates from the lateral edge of the a-lineage neural plate. In light of the recently proposed close evolutionary relationship between the ocellus pigment cell of ascidians and the cephalic neural crest of vertebrates, the ascidian ocellus may represent a prototypic contribution of the neural crest to a cranial sensory organ.

  13. Differentiation defect in neural crest-derived smooth muscle cells in patients with aortopathy associated with bicuspid aortic valves.

    Science.gov (United States)

    Jiao, Jiao; Xiong, Wei; Wang, Lunchang; Yang, Jiong; Qiu, Ping; Hirai, Hiroyuki; Shao, Lina; Milewicz, Dianna; Chen, Y Eugene; Yang, Bo

    2016-08-01

    Individuals with bicuspid aortic valves (BAV) are at a higher risk of developing thoracic aortic aneurysms (TAA) than patients with trileaflet aortic valves (TAV). The aneurysms associated with BAV most commonly involve the ascending aorta and spare the descending aorta. Smooth muscle cells (SMCs) in the ascending and descending aorta arise from neural crest (NC) and paraxial mesoderm (PM), respectively. We hypothesized defective differentiation of the neural crest stem cells (NCSCs)-derived SMCs but not paraxial mesoderm cells (PMCs)-derived SMCs contributes to the aortopathy associated with BAV. When induced pluripotent stem cells (iPSCs) from BAV/TAA patients were differentiated into NCSC-derived SMCs, these cells demonstrated significantly decreased expression of marker of SMC differentiation (MYH11) and impaired contraction compared to normal control. In contrast, the PMC-derived SMCs were similar to control cells in these aspects. The NCSC-SMCs from the BAV/TAA also showed decreased TGF-β signaling based on phosphorylation of SMAD2, and increased mTOR signaling. Inhibition of mTOR pathway using rapamycin rescued the aberrant differentiation. Our data demonstrates that decreased differentiation and contraction of patient's NCSC-derived SMCs may contribute to that aortopathy associated with BAV.

  14. Differentiation defect in neural crest-derived smooth muscle cells in patients with aortopathy associated with bicuspid aortic valves

    Directory of Open Access Journals (Sweden)

    Jiao Jiao

    2016-08-01

    Full Text Available Individuals with bicuspid aortic valves (BAV are at a higher risk of developing thoracic aortic aneurysms (TAA than patients with trileaflet aortic valves (TAV. The aneurysms associated with BAV most commonly involve the ascending aorta and spare the descending aorta. Smooth muscle cells (SMCs in the ascending and descending aorta arise from neural crest (NC and paraxial mesoderm (PM, respectively. We hypothesized defective differentiation of the neural crest stem cells (NCSCs-derived SMCs but not paraxial mesoderm cells (PMCs-derived SMCs contributes to the aortopathy associated with BAV. When induced pluripotent stem cells (iPSCs from BAV/TAA patients were differentiated into NCSC-derived SMCs, these cells demonstrated significantly decreased expression of marker of SMC differentiation (MYH11 and impaired contraction compared to normal control. In contrast, the PMC-derived SMCs were similar to control cells in these aspects. The NCSC-SMCs from the BAV/TAA also showed decreased TGF-β signaling based on phosphorylation of SMAD2, and increased mTOR signaling. Inhibition of mTOR pathway using rapamycin rescued the aberrant differentiation. Our data demonstrates that decreased differentiation and contraction of patient's NCSC-derived SMCs may contribute to that aortopathy associated with BAV.

  15. Distinct functional and temporal requirements for zebrafish Hdac1 during neural crest-derived craniofacial and peripheral neuron development.

    Directory of Open Access Journals (Sweden)

    Myron S Ignatius

    Full Text Available The regulation of gene expression is accomplished by both genetic and epigenetic means and is required for the precise control of the development of the neural crest. In hdac1(b382 mutants, craniofacial cartilage development is defective in two distinct ways. First, fewer hoxb3a, dlx2 and dlx3-expressing posterior branchial arch precursors are specified and many of those that are consequently undergo apoptosis. Second, in contrast, normal numbers of progenitors are present in the anterior mandibular and hyoid arches, but chondrocyte precursors fail to terminally differentiate. In the peripheral nervous system, there is a disruption of enteric, DRG and sympathetic neuron differentiation in hdac1(b382 mutants compared to wildtype embryos. Specifically, enteric and DRG-precursors differentiate into neurons in the anterior gut and trunk respectively, while enteric and DRG neurons are rarely present in the posterior gut and tail. Sympathetic neuron precursors are specified in hdac1(b382 mutants and they undergo generic neuronal differentiation but fail to undergo noradrenergic differentiation. Using the HDAC inhibitor TSA, we isolated enzyme activity and temporal requirements for HDAC function that reproduce hdac1(b382 defects in craniofacial and sympathetic neuron development. Our study reveals distinct functional and temporal requirements for zebrafish hdac1 during neural crest-derived craniofacial and peripheral neuron development.

  16. The taming of the neural crest: a developmental perspective on the origins of morphological covariation in domesticated mammals

    Science.gov (United States)

    Sánchez-Villagra, Marcelo R.; Geiger, Madeleine; Schneider, Richard A.

    2016-06-01

    Studies on domestication are blooming, but the developmental bases for the generation of domestication traits and breed diversity remain largely unexplored. Some phenotypic patterns of human neurocristopathies are suggestive of those reported for domesticated mammals and disrupting neural crest developmental programmes have been argued to be the source of traits deemed the `domestication syndrome'. These character changes span multiple organ systems and morphological structures. But an in-depth examination within the phylogenetic framework of mammals including domesticated forms reveals that the distribution of such traits is not universal, with canids being the only group showing a large set of predicted features. Modularity of traits tied to phylogeny characterizes domesticated mammals: through selective breeding, individual behavioural and morphological traits can be reordered, truncated, augmented or deleted. Similarly, mammalian evolution on islands has resulted in suites of phenotypic changes like those of some domesticated forms. Many domesticated mammals can serve as valuable models for conducting comparative studies on the evolutionary developmental biology of the neural crest, given that series of their embryos are readily available and that their phylogenetic histories and genomes are well characterized.

  17. Stem cell property of postmigratory cranial neural crest cells and their utility in alveolar bone regeneration and tooth development.

    Science.gov (United States)

    Chung, Il-Hyuk; Yamaza, Takayoshi; Zhao, Hu; Choung, Pill-Hoon; Shi, Songtao; Chai, Yang

    2009-04-01

    The vertebrate neural crest is a multipotent cell population that gives rise to a variety of different cell types. We have discovered that postmigratory cranial neural crest cells (CNCCs) maintain mesenchymal stem cell characteristics and show potential utility for the regeneration of craniofacial structures. We are able to induce the osteogenic differentiation of postmigratory CNCCs, and this differentiation is regulated by bone morphogenetic protein (BMP) and transforming growth factor-beta signaling pathways. After transplantation into a host animal, postmigratory CNCCs form bone matrix. CNCC-formed bones are distinct from bones regenerated by bone marrow mesenchymal stem cells. In addition, CNCCs support tooth germ survival via BMP signaling in our CNCC-tooth germ cotransplantation system. Thus, we conclude that postmigratory CNCCs preserve stem cell features, contribute to craniofacial bone formation, and play a fundamental role in supporting tooth organ development. These findings reveal a novel function for postmigratory CNCCs in organ development, and demonstrate the utility of these CNCCs in regenerating craniofacial structures.

  18. Genetic background impacts developmental potential of enteric neural crest-derived progenitors in the Sox10Dom model of Hirschsprung disease.

    Science.gov (United States)

    Walters, Lauren C; Cantrell, V Ashley; Weller, Kevin P; Mosher, Jack T; Southard-Smith, E Michelle

    2010-11-15

    Abnormalities in the development of enteric neural crest-derived progenitors (ENPs) that generate the enteric nervous system (ENS) can lead to aganglionosis in a variable portion of the distal gastrointestinal tract. Cumulative evidence suggests that variation of aganglionosis is due to gene interactions that modulate the ability of ENPs to populate the intestine; however, the developmental processes underlying this effect are unknown. We hypothesized that differences in enteric ganglion deficits could be attributable to the effects of genetic background on early developmental processes, including migration, proliferation, or lineage divergence. Developmental processes were investigated in congenic Sox10(Dom) mice, an established Hirschsprung disease (HSCR) model, on distinct inbred backgrounds, C57BL/6J (B6) and C3HeB/FeJ (C3Fe). Immuno-staining on whole-mount fetal gut tissue and dissociated cell suspensions was used to assess migration and proliferation. Flow cytometry utilizing the cell surface markers p75 and HNK-1 was used to isolate live ENPs for analysis of developmental potential. Frequency of ENPs was reduced in Sox10(Dom) embryos relative to wild-type embryos, but was unaffected by genetic background. Both migration and developmental potential of ENPs in Sox10(Dom) embryos were altered by inbred strain background with the most highly significant differences seen for developmental potential between strains and genotypes. In vivo imaging of fetal ENPs and postnatal ganglia demonstrates that altered lineage divergence impacts ganglia in the proximal intestine. Our analysis demonstrates that genetic background alters early ENS development and suggests that abnormalities in lineage diversification can shift the proportions of ENP populations and thus may contribute to ENS deficiencies in vivo.

  19. Search for the Missing lncs: Gene Regulatory Networks in Neural Crest Development and Long Non-coding RNA Biomarkers of Hirschsprung's Disease

    Science.gov (United States)

    Hirschsprung’s disease (HSCR), a birth defect characterized by variable aganglionosis of the gut, affects about 1 in 5000 births, and is a consequence of abnormal development of neural crest cells, from which enteric ganglia derive. In the companion article in this issue (S...

  20. Face off against ROS: Tcof1/Treacle safeguards neuroepithelial cells and progenitor neural crest cells from oxidative stress during craniofacial development.

    Science.gov (United States)

    Sakai, Daisuke; Trainor, Paul A

    2016-09-01

    One-third of all congenital birth defects affect the head and face, and most craniofacial anomalies are considered to arise through defects in the development of cranial neural crest cells. Cranial neural crest cells give rise to the majority of craniofacial bones, cartilages and connective tissues. Therefore, understanding the events that control normal cranial neural crest and subsequent craniofacial development is important for elucidating the pathogenetic mechanisms of craniofacial anomalies and for the exploring potential therapeutic avenues for their prevention. Treacher Collins syndrome (TCS) is a congenital disorder characterized by severe craniofacial anomalies. An animal model of TCS, generated through mutation of Tcof1, the mouse (Mus musculus) homologue of the gene primarily mutated in association with TCS in humans, has recently revealed significant insights into the pathogenesis of TCS. Apoptotic elimination of neuroepithelial cells including neural crest cells is the primary cause of craniofacial defects in Tcof1 mutant embryos. However, our understanding of the mechanisms that induce tissue-specific apoptosis remains incomplete. In this review, we describe recent advances in our understanding of the pathogenesis TCS. Furthermore, we discuss the role of Tcof1 in normal embryonic development, the correlation between genetic and environmental factors on the severity of craniofacial abnormalities, and the prospect for prenatal prevention of craniofacial anomalies.

  1. Requirement for frzb and fzd7a in cranial neural crest convergence and extension mechanisms during zebrafish palate and jaw morphogenesis.

    Science.gov (United States)

    Kamel, George; Hoyos, Tatiana; Rochard, Lucie; Dougherty, Max; Kong, Yawei; Tse, William; Shubinets, Valeriy; Grimaldi, Michael; Liao, Eric C

    2013-09-15

    Regulation of convergence and extension by wnt-frizzled signaling is a common theme in embryogenesis. This study examines the functional requirements of frzb and fzd7a in convergence and extension mechanisms during craniofacial development. Using a morpholino knockdown approach, we found that frzb and fzd7a are dispensable for directed migration of the bilateral trabeculae, but necessary for the convergence and extension of the palatal elements, where the extension process is mediated by chondrocyte proliferation, morphologic change and intercalation. In contrast, frzb and fzd7a are required for convergence of the mandibular prominences, where knockdown of either frzb or fzd7a resulted in complete loss of lower jaw structures. Further, we found that bapx1 was specifically downregulated in the wnt9a/frzb/fzd7a morphants, while general neural crest markers were unaffected. In addition, expression of wnt9a and frzb was also absent in the edn-/- mutant. Notably, over-expression of bapx1 was sufficient to partially rescue mandibular elements in the wnt9a/frzb/fzd7a morphants, demonstrating genetic epistasis of bapx1 acting downstream of edn1 and wnt9a/frzb/fzd7a in lower jaw development. This study underscores the important role of wnt-frizzled signaling in convergence and extension in palate and craniofacial morphogenesis, distinct regulation of upper vs. lower jaw structures, and integration of wnt-frizzled with endothelin signaling to coordinate shaping of the facial form.

  2. Transcriptional and signaling regulation in neural crest stem cell-derived melanocyte development:do all roads lead to Mitf?

    Institute of Scientific and Technical Information of China (English)

    Ling Hou; William J Pavan

    2008-01-01

    Human neurocristopathies include a number of syndromes,tumors,and dysmorphologies of neural crest (NC) stem cell derivatives.In recent years,many white spotting genes have been associated with hypopigmentary disorders and deafness in neurocristopathies resulting from NC stem cell-derived melanocyte deficiency during development.These include PAX3,SOX10,MITF,SNAI2,EDNRB,EDN3,KIT,and KITL.Recent studies have revealed surprising new insights into a central role of MITF in the complex network of interacting genes in melanocyte development.In this perspective,we provide an overview of some of the current findings and explore complex functional roles of these genes during NC stem cell-derived melanocyte development.

  3. Phenotypic chemical screening using a zebrafish neural crest EMT reporter identifies retinoic acid as an inhibitor of epithelial morphogenesis

    Directory of Open Access Journals (Sweden)

    Laura Jimenez

    2016-04-01

    Full Text Available The epithelial-to-mesenchymal transition (EMT is a highly conserved morphogenetic program essential for embryogenesis, regeneration and cancer metastasis. In cancer cells, EMT also triggers cellular reprogramming and chemoresistance, which underlie disease relapse and decreased survival. Hence, identifying compounds that block EMT is essential to prevent or eradicate disseminated tumor cells. Here, we establish a whole-animal-based EMT reporter in zebrafish for rapid drug screening, called Tg(snai1b:GFP, which labels epithelial cells undergoing EMT to produce sox10-positive neural crest (NC cells. Time-lapse and lineage analysis of Tg(snai1b:GFP embryos reveal that cranial NC cells delaminate from two regions: an early population delaminates adjacent to the neural plate, whereas a later population delaminates from within the dorsal neural tube. Treating Tg(snai1b:GFP embryos with candidate small-molecule EMT-inhibiting compounds identified TP-0903, a multi-kinase inhibitor that blocked cranial NC cell delamination in both the lateral and medial populations. RNA sequencing (RNA-Seq analysis and chemical rescue experiments show that TP-0903 acts through stimulating retinoic acid (RA biosynthesis and RA-dependent transcription. These studies identify TP-0903 as a new therapeutic for activating RA in vivo and raise the possibility that RA-dependent inhibition of EMT contributes to its prior success in eliminating disseminated cancer cells.

  4. Phenotypic chemical screening using a zebrafish neural crest EMT reporter identifies retinoic acid as an inhibitor of epithelial morphogenesis.

    Science.gov (United States)

    Jimenez, Laura; Wang, Jindong; Morrison, Monique A; Whatcott, Clifford; Soh, Katherine K; Warner, Steven; Bearss, David; Jette, Cicely A; Stewart, Rodney A

    2016-04-01

    The epithelial-to-mesenchymal transition (EMT) is a highly conserved morphogenetic program essential for embryogenesis, regeneration and cancer metastasis. In cancer cells, EMT also triggers cellular reprogramming and chemoresistance, which underlie disease relapse and decreased survival. Hence, identifying compounds that block EMT is essential to prevent or eradicate disseminated tumor cells. Here, we establish a whole-animal-based EMT reporter in zebrafish for rapid drug screening, calledTg(snai1b:GFP), which labels epithelial cells undergoing EMT to producesox10-positive neural crest (NC) cells. Time-lapse and lineage analysis ofTg(snai1b:GFP)embryos reveal that cranial NC cells delaminate from two regions: an early population delaminates adjacent to the neural plate, whereas a later population delaminates from within the dorsal neural tube. TreatingTg(snai1b:GFP)embryos with candidate small-molecule EMT-inhibiting compounds identified TP-0903, a multi-kinase inhibitor that blocked cranial NC cell delamination in both the lateral and medial populations. RNA sequencing (RNA-Seq) analysis and chemical rescue experiments show that TP-0903 acts through stimulating retinoic acid (RA) biosynthesis and RA-dependent transcription. These studies identify TP-0903 as a new therapeutic for activating RAin vivoand raise the possibility that RA-dependent inhibition of EMT contributes to its prior success in eliminating disseminated cancer cells. © 2016. Published by The Company of Biologists Ltd.

  5. Mice with Tak1 deficiency in neural crest lineage exhibit cleft palate associated with abnormal tongue development.

    Science.gov (United States)

    Song, Zhongchen; Liu, Chao; Iwata, Junichi; Gu, Shuping; Suzuki, Akiko; Sun, Cheng; He, Wei; Shu, Rong; Li, Lu; Chai, Yang; Chen, YiPing

    2013-04-12

    Cleft palate represents one of the most common congenital birth defects in humans. TGFβ signaling, which is mediated by Smad-dependent and Smad-independent pathways, plays a crucial role in regulating craniofacial development and patterning, particularly in palate development. However, it remains largely unknown whether the Smad-independent pathway contributes to TGFβ signaling function during palatogenesis. In this study, we investigated the function of TGFβ activated kinase 1 (Tak1), a key regulator of Smad-independent TGFβ signaling in palate development. We show that Tak1 protein is expressed in both the epithelium and mesenchyme of the developing palatal shelves. Whereas deletion of Tak1 in the palatal epithelium or mesenchyme did not give rise to a cleft palate defect, inactivation of Tak1 in the neural crest lineage using the Wnt1-Cre transgenic allele resulted in failed palate elevation and subsequently the cleft palate formation. The failure in palate elevation in Wnt1-Cre;Tak1(F/F) mice results from a malformed tongue and micrognathia, resembling human Pierre Robin sequence cleft of the secondary palate. We found that the abnormal tongue development is associated with Fgf10 overexpression in the neural crest-derived tongue tissue. The failed palate elevation and cleft palate were recapitulated in an Fgf10-overexpressing mouse model. The repressive effect of the Tak1-mediated noncanonical TGFβ signaling on Fgf10 expression was further confirmed by inhibition of p38, a downstream kinase of Tak1, in the primary cell culture of developing tongue. Tak1 thus functions to regulate tongue development by controlling Fgf10 expression and could represent a candidate gene for mutation in human PRS clefting.

  6. Disruption of the ERK/MAPK pathway in neural crest cells as a potential cause of Pierre Robin sequence.

    Science.gov (United States)

    Parada, Carolina; Han, Dong; Grimaldi, Alexandre; Sarrión, Patricia; Park, Shery S; Pelikan, Richard; Sanchez-Lara, Pedro A; Chai, Yang

    2015-11-01

    Disrupted ERK1/2 signaling is associated with several developmental syndromes in humans. To understand the function of ERK2 (MAPK1) in the postmigratory neural crest populating the craniofacial region, we studied two mouse models: Wnt1-Cre;Erk2(fl/fl) and Osr2-Cre;Erk2(fl/fl). Wnt1-Cre;Erk2(fl/fl) mice exhibited cleft palate, malformed tongue, micrognathia and mandibular asymmetry. Cleft palate in these mice was associated with delay/failure of palatal shelf elevation caused by tongue malposition and micrognathia. Osr2-Cre;Erk2(fl/fl) mice, in which the Erk2 deletion is restricted to the palatal mesenchyme, did not display cleft palate, suggesting that palatal clefting in Wnt1-Cre;Erk2(fl/fl) mice is a secondary defect. Tongues in Wnt1-Cre;Erk2(fl/fl) mice exhibited microglossia, malposition, disruption of the muscle patterning and compromised tendon development. The tongue phenotype was extensively rescued after culture in isolation, indicating that it might also be a secondary defect. The primary malformations in Wnt1-Cre;Erk2(fl/fl) mice, namely micrognathia and mandibular asymmetry, are linked to an early osteogenic differentiation defect. Collectively, our study demonstrates that mutation of Erk2 in neural crest derivatives phenocopies the human Pierre Robin sequence and highlights the interconnection of palate, tongue and mandible development. Because the ERK pathway serves as a crucial point of convergence for multiple signaling pathways, our study will facilitate a better understanding of the molecular regulatory mechanisms of craniofacial development.

  7. Lack of organ specific commitment of vagal neural crest cell derivatives as shown by back-transplantation of GFP chicken tissues.

    Science.gov (United States)

    Freem, Lucy J; Delalande, Jean Marie; Campbell, Alison M; Thapar, Nikhil; Burns, Alan J

    2012-01-01

    Neural crest cells (NCC) are multipotent progenitors that migrate extensively throughout the developing embryo and generate a diverse range of cell types. Vagal NCC migrate from the hindbrain into the foregut and from there along the gastrointestinal tract to form the enteric nervous system (ENS), the intrinsic innervation of the gut, and into the developing lung buds to form the intrinsic innervation of the lungs. The aim of this study was to determine the developmental potential of vagal NCC that had already colonised the gut or the lungs. We used transgenic chicken embryos that ubiquitously express green fluorescent protein (GFP) to permanently mark and fate-map vagal NCC using intraspecies grafting. This was combined with back-transplantation of gut and lung segments, containing GFP-positive NCC, into the vagal region of a second recipient embryo to determine, using immunohistochemical staining, whether gut or lung NCC are competent of re-colonising both these organs, or whether their fate is restricted. Chick(GFP)-chick intraspecies grafting efficiently labelled NCC within the gut and lung of chick embryos. When segments of embryonic day (E)5.5 pre-umbilical midgut containing GFP-positive NCC were back-transplanted into the vagal region of E1.5 host embryos, the GFP-positive NCC remigrated to colonise both the gut and lungs and differentiated into neurons in stereotypical locations. However, GFP-positive lung NCC did not remigrate when back-transplanted. Our studies suggest that gut NCC are not restricted to colonising only this organ, since upon back-transplantation GFP-positive gut NCC colonised both the gut and the lung.

  8. In Vivo Transplantation of Enteric Neural Crest Cells into Mouse Gut; Engraftment, Functional Integration and Long-Term Safety.

    Directory of Open Access Journals (Sweden)

    Julie E Cooper

    Full Text Available Enteric neuropathies are severe gastrointestinal disorders with unsatisfactory outcomes. We aimed to investigate the potential of enteric neural stem cell therapy approaches for such disorders by transplanting mouse enteric neural crest cells (ENCCs into ganglionic and aganglionic mouse gut in vivo and analysing functional integration and long-term safety.Neurospheres generated from yellow fluorescent protein (YFP expressing ENCCs selected from postnatal Wnt1-cre;R26R-YFP/YFP murine gut were transplanted into ganglionic hindgut of wild-type littermates or aganglionic hindgut of Ednrbtm1Ywa mice (lacking functional endothelin receptor type-B. Intestines were then assessed for ENCC integration and differentiation using immunohistochemistry, cell function using calcium imaging, and long-term safety using PCR to detect off-target YFP expression.YFP+ ENCCs engrafted, proliferated and differentiated into enteric neurons and glia within recipient ganglionic gut. Transplanted cells and their projections spread along the endogenous myenteric plexus to form branching networks. Electrical point stimulation of endogenous nerve fibres resulted in calcium transients (F/F0 = 1.16 ± 0.01;43 cells, n = 6 in YFP+ transplanted ENCCs (abolished with TTX. Long-term follow-up (24 months showed transplanted ENCCs did not give rise to tumours or spread to other organs (PCR negative in extraintestinal sites. In aganglionic gut ENCCs similarly spread and differentiated to form neuronal and glial networks with projections closely associated with endogenous neural networks of the transition zone.Transplanted ENCCs successfully engrafted into recipient ganglionic and aganglionic gut showing appropriate spread, localisation and, importantly, functional integration without any long-term safety issues. This study provides key support for the development and use of enteric neural stem cell therapies.

  9. Artificial Neural Network Model of Hydrocarbon Migration and Accumulation

    Institute of Scientific and Technical Information of China (English)

    刘海滨; 吴冲龙

    2002-01-01

    Based on the dynamic simulation of the 3-D structure the sedimentary modeling, the unit entity model has been adopted to transfer the heterogeneous complex pas sage system into limited simple homogeneous entity, and then the traditional dyn amic simulation has been used to calculate the phase and the drive forces of the hyd rocarbon , and the artificial neural network(ANN) technology has been applied to resolve such problems as the direction, velocity and quantity of the hydrocarbo n migration among the unit entities. Through simulating of petroleum migration a nd accumulation in Zhu Ⅲ depression, the complex mechanism of hydrocarbon migra tion and accumulation has been opened out.

  10. Folic acid and homocysteine affect neural crest and neuroepithelial cell outgrowth and differentiation in vitro.

    NARCIS (Netherlands)

    Boot, M.J.; Steegers-Theunissen, R.P.M.; Poelmann, R.E.; Iperen, L. van; Lindemans, J.; Groot, A. de

    2003-01-01

    The beneficial effect of additional folic acid in the periconceptional period to prevent neural tube defects, orofacial clefts, and conotruncal heart defects in the offspring has been shown. Folate shortage results in homocysteine accumulation. Elevated levels of homocysteine have been related to ne

  11. Neural Crest Stem Cells Persist in the Adult Gut but Undergo Changes in Self-Renewal, Neuronal Subtype Potential, and Factor Responsiveness

    OpenAIRE

    2002-01-01

    We found neural crest stem cells (NCSCs) in the adult gut. Postnatal gut NCSCs were isolated by flow-cytometry and compared to fetal gut NCSCs. They self-renewed extensively in culture but less than fetal gut NCSCs. Postnatal gut NCSCs made neurons that expressed a variety of neurotransmitters but lost the ability to make certain subtypes of neurons that are generated during fetal development. Postnatal gut NCSCs also differed in their responsiveness to lineage determination factors, affectin...

  12. Molecular and cellular features of murine craniofacial and trunk neural crest cells as stem cell-like cells.

    Science.gov (United States)

    Hagiwara, Kunie; Obayashi, Takeshi; Sakayori, Nobuyuki; Yamanishi, Emiko; Hayashi, Ryuhei; Osumi, Noriko; Nakazawa, Toru; Nishida, Kohji

    2014-01-01

    The outstanding differentiation capacities and easier access from adult tissues, cells derived from neural crest cells (NCCs) have fascinated scientists in developmental biology and regenerative medicine. Differentiation potentials of NCCs are known to depend on their originating regions. Here, we report differential molecular features between craniofacial (cNCCs) and trunk (tNCCs) NCCs by analyzing transcription profiles and sphere forming assays of NCCs from P0-Cre/floxed-EGFP mouse embryos. We identified up-regulation of genes linked to carcinogenesis in cNCCs that were not previously reported to be related to NCCs, which was considered to be, an interesting feature in regard with carcinogenic potentials of NCCs such as melanoma and neuroblastoma. Wnt signal related genes were statistically up-regulated in cNCCs, also suggesting potential involvement of cNCCs in carcinogenesis. We also noticed intense expression of mesenchymal and neuronal markers in cNCCs and tNCCs, respectively. Consistent results were obtained from in vitro sphere-forming and differentiation assays. These results were in accordance with previous notion about differential potentials of cNCCs and tNCCs. We thus propose that sorting NCCs from P0-Cre/floxed-EGFP mice might be useful for the basic and translational research of NCCs. Furthermore, these newly-identified genes up-regulated in cNCC would provide helpful information on NC-originating tumors, developmental disorders in NCC derivatives, and potential applications of NCCs in regenerative medicine.

  13. Strict perpendicular orientation of neural crest-derived neurons in vitro is dependent on an extracellular gradient of voltage.

    Science.gov (United States)

    Pan, Linjie; Borgens, Richard Ben

    2012-07-01

    We report extraordinary perpendicular orientations of neurons dependent on the presence of an external direct current (DC) voltage gradient. We chose chick dorsal root and postganglionic sympathetic neurons to evaluate. These were cultured in observation chambers in which the cells were separated from electrode products or substrate effects and maintained at 35°C. Both types of neurons showed a rapid restructuring of their anatomy. Typically, neurites that were not perpendicular to the voltage gradient were quickly resorbed into the cell body within a few minutes. Over 3-6 hr, significant new neurite growth occurred and was patterned perpendicular to the DC electrical field (Ef). This preferred asymmetry was dependent on the Ef, as was the initial retrograde degeneration of fibers. At 400-500 mV/mm, over 90% of the cells in culture assumed this orientation. Removal of the DC Ef led to a loss of the preferred orientation, with further random growth within the chambers. This is the first report of such responses in dorsal root ganglion neurons. We also used sympathetic neurons as a meaningful comparison to analyze whether there were any qualitative or quantitative differences between these two cell types of neural crest origin. We discuss the means by which these orientations were achieved.

  14. Augmented BMPRIA-mediated BMP signaling in cranial neural crest lineage leads to cleft palate formation and delayed tooth differentiation.

    Directory of Open Access Journals (Sweden)

    Lu Li

    Full Text Available The importance of BMP receptor Ia (BMPRIa mediated signaling in the development of craniofacial organs, including the tooth and palate, has been well illuminated in several mouse models of loss of function, and by its mutations associated with juvenile polyposis syndrome and facial defects in humans. In this study, we took a gain-of-function approach to further address the role of BMPR-IA-mediated signaling in the mesenchymal compartment during tooth and palate development. We generated transgenic mice expressing a constitutively active form of BmprIa (caBmprIa in cranial neural crest (CNC cells that contributes to the dental and palatal mesenchyme. Mice bearing enhanced BMPRIa-mediated signaling in CNC cells exhibit complete cleft palate and delayed odontogenic differentiation. We showed that the cleft palate defect in the transgenic animals is attributed to an altered cell proliferation rate in the anterior palatal mesenchyme and to the delayed palatal elevation in the posterior portion associated with ectopic cartilage formation. Despite enhanced activity of BMP signaling in the dental mesenchyme, tooth development and patterning in transgenic mice appeared normal except delayed odontogenic differentiation. These data support the hypothesis that a finely tuned level of BMPRIa-mediated signaling is essential for normal palate and tooth development.

  15. Augmented Indian hedgehog signaling in cranial neural crest cells leads to craniofacial abnormalities and dysplastic temporomandibular joint in mice.

    Science.gov (United States)

    Yang, Ling; Gu, Shuping; Ye, Wenduo; Song, Yingnan; Chen, YiPing

    2016-04-01

    Extensive studies have pinpointed the crucial role of Indian hedgehog (Ihh) signaling in the development of the appendicular skeleton and the essential function of Ihh in the formation of the temporomandibular joint (TMJ). In this study, we have investigated the effect of augmented Ihh signaling in TMJ development. We took a transgenic gain-of-function approach by overexpressing Ihh in the cranial neural crest (CNC) cells using a conditional Ihh transgenic allele and the Wnt1-Cre allele. We found that Wnt1-Cre-mediated tissue-specific overexpression of Ihh in the CNC lineage caused severe craniofacial abnormalities, including cleft lip/palate, encephalocele, anophthalmos, micrognathia, and defective TMJ development. In the mutant TMJ, the glenoid fossa was completely absent, whereas the condyle and the articular disc appeared relatively normal with slightly delayed chondrocyte differentiation. Our findings thus demonstrate that augmented Ihh signaling is detrimental to craniofacial development, and that finely tuned Ihh signaling is critical for TMJ formation. Our results also provide additional evidence that the development of the condyle and articular disc is independent of the glenoid fossa.

  16. The facial neural crest controls fore- and midbrain patterning by regulating Foxg1 expression through Smad1 activity.

    Science.gov (United States)

    Aguiar, Diego P; Sghari, Soufien; Creuzet, Sophie

    2014-06-01

    The facial neural crest (FNC), a pluripotent embryonic structure forming craniofacial structures, controls the activity of brain organisers and stimulates cerebrum growth. To understand how the FNC conveys its trophic effect, we have studied the role of Smad1, which encodes an intracellular transducer, to which multiple signalling pathways converge, in the regulation of Foxg1. Foxg1 is a transcription factor essential for telencephalic specification, the mutation of which leads to microcephaly and mental retardation. Smad1 silencing, based on RNA interference (RNAi), was performed in pre-migratory FNC cells. Soon after electroporation of RNAi molecules, Smad1 inactivation abolished the expression of Foxg1 in the chick telencephalon, resulting in dramatic microcephaly and partial holoprosencephaly. In addition, the depletion of Foxg1 activity altered the expression Otx2 and Foxa2 in di/mesencephalic neuroepithelium. However, when mutated forms of Smad1 mediating Fgf and Wnt signalling were transfected into FNC cells, these defects were overcome. We also show that, downstream of Smad1 activity, Dkk1, a Wnt antagonist produced by the FNC, initiated the specification of the telencephalon by regulating Foxg1 activity. Additionally, the activity of Cerberus in FNC-derived mesenchyme synergised with Dkk1 to control Foxg1 expression and maintain the balance between Otx2 and Foxa2.

  17. A Human Neural Crest Stem Cell-Derived Dopaminergic Neuronal Model Recapitulates Biochemical Abnormalities in GBA1 Mutation Carriers

    Directory of Open Access Journals (Sweden)

    Shi-Yu Yang

    2017-03-01

    Full Text Available Numerically the most important risk factor for the development of Parkinson's disease (PD is the presence of mutations in the glucocerebrosidase GBA1 gene. In vitro and in vivo studies show that GBA1 mutations reduce glucocerebrosidase (GCase activity and are associated with increased α-synuclein levels, reflecting similar changes seen in idiopathic PD brain. We have developed a neural crest stem cell-derived dopaminergic neuronal model that recapitulates biochemical abnormalities in GBA1 mutation-associated PD. Cells showed reduced GCase protein and activity, impaired macroautophagy, and increased α-synuclein levels. Advantages of this approach include easy access to stem cells, no requirement to reprogram, and retention of the intact host genome. Treatment with a GCase chaperone increased GCase protein levels and activity, rescued the autophagic defects, and decreased α-synuclein levels. These results provide the basis for further investigation of GCase chaperones or similar drugs to slow the progression of PD.

  18. Noncanonical transforming growth factor β (TGFβ) signaling in cranial neural crest cells causes tongue muscle developmental defects.

    Science.gov (United States)

    Iwata, Jun-ichi; Suzuki, Akiko; Pelikan, Richard C; Ho, Thach-Vu; Chai, Yang

    2013-10-11

    Microglossia is a congenital birth defect in humans and adversely impacts quality of life. In vertebrates, tongue muscle derives from the cranial mesoderm, whereas tendons and connective tissues in the craniofacial region originate from cranial neural crest (CNC) cells. Loss of transforming growth factor β (TGFβ) type II receptor in CNC cells in mice (Tgfbr2(fl/fl);Wnt1-Cre) causes microglossia due to a failure of cell-cell communication between cranial mesoderm and CNC cells during tongue development. However, it is still unclear how TGFβ signaling in CNC cells regulates the fate of mesoderm-derived myoblasts during tongue development. Here we show that activation of the cytoplasmic and nuclear tyrosine kinase 1 (ABL1) cascade in Tgfbr2(fl/fl);Wnt1-Cre mice results in a failure of CNC-derived cell differentiation followed by a disruption of TGFβ-mediated induction of growth factors and reduction of myogenic cell proliferation and differentiation activities. Among the affected growth factors, the addition of fibroblast growth factor 4 (FGF4) and neutralizing antibody for follistatin (FST; an antagonist of bone morphogenetic protein (BMP)) could most efficiently restore cell proliferation, differentiation, and organization of muscle cells in the tongue of Tgfbr2(fl/fl);Wnt1-Cre mice. Thus, our data indicate that CNC-derived fibroblasts regulate the fate of mesoderm-derived myoblasts through TGFβ-mediated regulation of FGF and BMP signaling during tongue development.

  19. Interaction of adult human neural crest-derived stem cells with a nanoporous titanium surface is sufficient to induce their osteogenic differentiation

    Directory of Open Access Journals (Sweden)

    Matthias Schürmann

    2014-07-01

    Full Text Available Osteogenic differentiation of various adult stem cell populations such as neural crest-derived stem cells is of great interest in the context of bone regeneration. Ideally, exogenous differentiation should mimic an endogenous differentiation process, which is partly mediated by topological cues. To elucidate the osteoinductive potential of porous substrates with different pore diameters (30 nm, 100 nm, human neural crest-derived stem cells isolated from the inferior nasal turbinate were cultivated on the surface of nanoporous titanium covered membranes without additional chemical or biological osteoinductive cues. As controls, flat titanium without any topological features and osteogenic medium was used. Cultivation of human neural crest-derived stem cells on 30 nm pores resulted in osteogenic differentiation as demonstrated by alkaline phosphatase activity after seven days as well as by calcium deposition after 3 weeks of cultivation. In contrast, cultivation on flat titanium and on membranes equipped with 100 nm pores was not sufficient to induce osteogenic differentiation. Moreover, we demonstrate an increase of osteogenic transcripts including Osterix, Osteocalcin and up-regulation of Integrin β1 and α2 in the 30 nm pore approach only. Thus, transplantation of stem cells pre-cultivated on nanostructured implants might improve the clinical outcome by support of the graft adherence and acceleration of the regeneration process.

  20. Cranial neural crest-derived mesenchymal proliferation is regulated by Msx1-mediated p19(INK4d) expression during odontogenesis.

    Science.gov (United States)

    Han, Jun; Ito, Yoshihiro; Yeo, Jae Yong; Sucov, Henry M; Maas, Richard; Chai, Yang

    2003-09-01

    Neural crest cells are multipotential progenitors that contribute to various cell and tissue types during embryogenesis. Here, we have investigated the molecular and cellular mechanism by which the fate of neural crest cell is regulated during tooth development. Using a two- component genetic system for indelibly marking the progeny of neural crest cells, we provide in vivo evidence of a deficiency of CNC-derived dental mesenchyme in Msx1 null mutant mouse embryos. The deficiency of the CNC results from an elevated CDK inhibitor p19(INK4d) activity and the disruption of cell proliferation. Interestingly, in the absence of Msx1, the CNC-derived dental mesenchyme misdifferentiates and possesses properties consistent with a neuronal fate, possibly through a default mechanism. Attenuation of p19(INK4d) in Msx1 null mutant mandibular explants restores mitotic activity in the dental mesenchyme, demonstrating the functional significance of Msx1-mediated p19(INK4d) expression in regulating CNC cell proliferation during odontogenesis. Collectively, our results demonstrate that homeobox gene Msx1 regulates the fate of CNC cells by controlling the progression of the cell cycle. Genetic mutation of Msx1 may alternatively instruct the fate of these progenitor cells during craniofacial development.

  1. Functional constraints on SoxE proteins in neural crest development: The importance of differential expression for evolution of protein activity.

    Science.gov (United States)

    Lee, Eric M; Yuan, Tian; Ballim, Reyna D; Nguyen, Kristy; Kelsh, Robert N; Medeiros, Daniel M; McCauley, David W

    2016-10-01

    Vertebrate SoxE genes (Sox8, 9, and 10) are key regulators of neural crest cell (NCC) development. These genes arose by duplication from a single SoxE gene in the vertebrate ancestor. Although SoxE paralogs are coexpressed early in NCC development, later, Sox9 is restricted to skeletogenic lineages in the head, and Sox10 to non-skeletogenic NCC in the trunk and head. When this subfunctionalization evolved and its possible role in the evolution of the neural crest are unknown. Sea lampreys are basal vertebrates that also possess three SoxE genes, while only a single SoxE is present in the cephalochordate amphioxus. In order to address the functional divergence of SoxE genes, and to determine if differences in their biochemical functions may be linked to changes in neural crest developmental potential, we examined the ability of lamprey and amphioxus SoxE genes to regulate differentiation of NCC derivatives in zebrafish colourless (cls) mutants lacking expression of sox10. Our findings suggest that the proto-vertebrate SoxE gene possessed both melanogenic and neurogenic capabilities prior to SoxE gene duplication. Following the agnathan-gnathostome split, lamprey SoxE1 and SoxE3 largely lost their melanogenic and/or enteric neurogenic properties, while gnathostome SoxE paralogs have retained functional conservation. We posit that this difference in protein subfunctionalization is a direct consequence of the independent regulation of SoxE paralog expression between the two lineages. Specifically, we propose that the overlapping expression of gnathostome SoxE paralogs in early neural crest largely constrained the function of gnathostome SoxE proteins. In contrast, the largely non-overlapping expression of lamprey SoxE paralogs allowed them to specialize with regard to their DNA-binding and/or protein interaction properties. Restriction of developmental potential among cranial and trunk neural crest in lampreys may be related to constraints on SoxE activity among

  2. The neuro-glial properties of adipose-derived adult stromal (ADAS cells are not regulated by Notch 1 and are not derived from neural crest lineage.

    Directory of Open Access Journals (Sweden)

    Philip C Wrage

    Full Text Available We investigated whether adipose-derived adult stromal (ADAS are of neural crest origin and the extent to which Notch 1 regulates their growth and differentiation. Mouse ADAS cells cultured in media formulated for neural stem cells (NSC displayed limited capacity for self-renewal, clonogenicity, and neurosphere formation compared to NSC from the subventricular zone in the hippocampus. Although ADAS cells expressed Nestin, GFAP, NSE and Tuj1 in vitro, exposure to NSC differentiation supplements did not induce mature neuronal marker expression. In contrast, in mesenchymal stem cell (MSC media, ADAS cells retained their ability to proliferate and differentiate beyond 20 passages and expressed high levels of Nestin. In neuritizing cocktails, ADAS cells extended processes, downregulated Nestin expression, and displayed depolarization-induced Ca(2+ transients but no spontaneous or evoked neural network activity on Multi-Electrode Arrays. Deletion of Notch 1 in ADAS cell cultures grown in NSC proliferation medium did not significantly alter their proliferative potential in vitro or the differentiation-induced downregulation of Nestin. Co-culture of ADAS cells with fibroblasts that stably expressed the Notch ligand Jagged 1 or overexpression of the Notch intracellular domain (NICD did not alter ADAS cell growth, morphology, or cellular marker expression. ADAS cells did not display robust expression of neural crest transcription factors or genes (Sox, CRABP2, and TH; and lineage tracing analyses using Wnt1-Cre;Rosa26R-lacZ or -EYFP reporter mice confirmed that fewer than 2% of the ADAS cell population derived from a Wnt1-positive population during development. In summary, although media formulations optimized for MSCs or NSCs enable expansion of mouse ADAS cells in vitro, we find no evidence that these cells are of neural crest origin, that they can undergo robust terminal differentiation into functionally mature neurons, and that Notch 1 is likely to be

  3. Analysis of Neural Crest Migration and Differentiation by Cross-species Transplantation

    OpenAIRE

    Griswold, Shannon L.; Peter Y Lwigale

    2012-01-01

    Avian embryos provide a unique platform for studying many vertebrate developmental processes, due to the easy access of the embryos within the egg. Chimeric avian embryos, in which quail donor tissue is transplanted into a chick embryo in ovo, combine the power of indelible genetic labeling of cell populations with the ease of manipulation presented by the avian embryo.

  4. Dual control of pcdh8l/PCNS expression and function in Xenopus laevis neural crest cells by adam13/33 via the transcription factors tfap2α and arid3a

    Science.gov (United States)

    Khedgikar, Vikram; Abbruzzese, Genevieve; Mathavan, Ketan; Szydlo, Hannah; Cousin, Helene

    2017-01-01

    Adam13/33 is a cell surface metalloprotease critical for cranial neural crest (CNC) cell migration. It can cleave multiple substrates including itself, fibronectin, ephrinB, cadherin-11, pcdh8 and pcdh8l (this work). Cleavage of cadherin-11 produces an extracellular fragment that promotes CNC migration. In addition, the adam13 cytoplasmic domain is cleaved by gamma secretase, translocates into the nucleus and regulates multiple genes. Here, we show that adam13 interacts with the arid3a/dril1/Bright transcription factor. This interaction promotes a proteolytic cleavage of arid3a and its translocation to the nucleus where it regulates another transcription factor: tfap2α. Tfap2α in turn activates multiple genes including the protocadherin pcdh8l (PCNS). The proteolytic activity of adam13 is critical for the release of arid3a from the plasma membrane while the cytoplasmic domain appears critical for the cleavage of arid3a. In addition to this transcriptional control of pcdh8l, adam13 cleaves pcdh8l generating an extracellular fragment that also regulates cell migration. PMID:28829038

  5. The Effects of Epidermal Neural Crest Stem Cells on Local Inflammation Microenvironment in the Defected Sciatic Nerve of Rats

    Directory of Open Access Journals (Sweden)

    Yue Li

    2017-05-01

    Full Text Available Cell-based therapy is a promising strategy for the repair of peripheral nerve injuries (PNIs. epidermal neural crest stems cells (EPI-NCSCs are thought to be important donor cells for repairing PNI in different animal models. Following PNI, inflammatory response is important to regulate the repair process. However, the effects of EPI-NCSCs on regulation of local inflammation microenviroment have not been investigated extensively. In the present study, these effects were studied by using 10 mm defected sciatic nerve, which was bridged with 15 mm artificial nerve composed of EPI-NCSCs, extracellular matrix (ECM and poly (lactide-co-glycolide (PLGA. Then the expression of pro- and anti-inflammatory cytokines, polarization of macrophages, regulation of fibroblasts and shwann cells (SCs were assessed by western blot, immunohistochemistry, immunofluorescence staining at 1, 3, 7 and 21 days after bridging. The structure and the function of the bridged nerve were determined by observation under light microscope and by examination of right lateral foot retraction time (LFRT, sciatic function index (SFI, gastrocnemius wet weight and electrophysiology at 9 weeks. After bridging with EPI-NCSCs, the expression of anti-inflammatory cytokines (IL-4 and IL-13 was increased, but decreased for pro-inflammatory cytokines (IL-6 and TNF-α compared to the control bridging, which was consistent with increase of M2 macrophages and decrease of M1 macrophages at 7 days after transplantation. Likewise, myelin-formed SCs were significantly increased, but decreased for the activated fibroblasts in their number at 21 days. The recovery of structure and function of nerve bridged with EPI-NCSCs was significantly superior to that of DMEM. These results indicated that EPI-NCSCs could be able to regulate and provide more suitable inflammation microenvironment for the repair of defected sciatic nerve.

  6. Efficient genome editing of genes involved in neural crest development using the CRISPR/Cas9 system in Xenopus embryos.

    Science.gov (United States)

    Liu, Zhongzhen; Cheng, Tina Tsz Kwan; Shi, Zhaoying; Liu, Ziran; Lei, Yong; Wang, Chengdong; Shi, Weili; Chen, Xiongfeng; Qi, Xufeng; Cai, Dongqing; Feng, Bo; Deng, Yi; Chen, Yonglong; Zhao, Hui

    2016-01-01

    The RNA guided CRISPR/Cas9 nucleases have been proven to be effective for gene disruption in various animal models including Xenopus tropicalis. The neural crest (NC) is a transient cell population during embryonic development and contributes to a large variety of tissues. Currently, loss-of-function studies on NC development in X. tropicalis are largely based on morpholino antisense oligonucleotide. It is worthwhile establishing targeted gene knockout X. tropicails line using CRISPR/Cas9 system to study NC development. We utilized CRISPR/Cas9 to disrupt genes that are involved in NC formation in X. tropicalis embryos. A single sgRNA and Cas9 mRNA synthesized in vitro, were co-injected into X. tropicalis embryos at one-cell stage to induce single gene disruption. We also induced duplex mutations, large segmental deletions and inversions in X. tropicalis by injecting Cas9 and a pair of sgRNAs. The specificity of CRISPR/Cas9 was assessed in X. tropicalis embryos and the Cas9 nickase was used to reduce the off-target cleavages. Finally, we crossed the G0 mosaic frogs with targeted mutations to wild type frogs and obtained the germline transmission. Total 16 target sites in 15 genes were targeted by CRISPR/Cas9 and resulted in successful indel mutations at 14 loci with disruption efficiencies in a range from 9.3 to 57.8 %. Furthermore, we demonstrated the feasibility of generation of duplex mutations, large segmental deletions and inversions by using Cas9 and a pair of sgRNAs. We observed that CRISPR/Cas9 displays obvious off-target effects at some loci in X. tropicalis embryos. Such off-target cleavages was reduced by using the D10A Cas9 nickase. Finally, the Cas9 induced indel mutations were efficiently passed to G1 offspring. Our study proved that CRISPR/Cas9 could mediate targeted gene mutation in X. tropicalis with high efficiency. This study expands the application of CRISPR/Cas9 platform in X. tropicalis and set a basis for studying NC development using genetic

  7. Neural control of small intestinal giant migrating contractions.

    Science.gov (United States)

    Otterson, M F; Sarna, S K

    1994-04-01

    We investigated the neural mechanisms of control of giant migrating contractions (GMCs) in five conscious dogs. After control recordings, a Thiry-Vella loop was prepared from the middle segment, and the remaining two segments were reanastomosed. GMCs were stimulated by intravenous administration of fentanyl and erythromycin lactobionate, oral administration of loperamide and erythromycin stearate, and gastric or intraluminal administration of cider vinegar in the loop. In the intact state, the agents stimulated GMCs in all three segments, and they propagated uninterruptedly from the point of their origin to the terminal ileum. The propagation velocity of GMCs increased, whereas that of migrating motor complexes (MMCs) decreased distally. After Thiry-Vella loop formation, the agents stimulated GMCs independently in the three segments, and they propagated only to the end of the segment in which they started. In the intact small intestine, the GMCs produced ascending and descending inhibition of spontaneous phase II contractions but did not interrupt the caudad propagation of the ongoing MMC. After Thiry-Vella loop formation, the ascending inhibition was unaltered, but the descending inhibition occurred only in the segment containing the GMC. We conclude that the propagation of GMCs in the small intestine is controlled by the enteric nerves. The extrinsic nerves control the ascending inhibition produced by GMCs, whereas the enteric nerves control the descending inhibition.

  8. Mice with DNA repair gene Ercc1 deficiency in a neural crest lineage are a model for late-onset Hirschsprung disease.

    Science.gov (United States)

    Selfridge, Jim; Song, Liang; Brownstein, David G; Melton, David W

    2010-06-04

    The Ercc1 gene is essential for nucleotide excision repair and is also important in recombination repair and the repair of interstrand crosslinks. We have previously used a floxed Ercc1 allele with a keratinocyte-specific Cre recombinase transgene to inactivate Ercc1 in the epidermal layer of the skin and so generate a mouse model for UV-induced non-melanoma skin cancer. Now, in an attempt to generate a model for UV-induced melanoma, we have used the floxed Ercc1 allele in combination with a Cre transgene under the control of the tyrosinase gene promoter to produce mice with Ercc1-deficient melanocytes that are hypersensitive to UV irradiation. These animals developed normally, but died when 4-6 months old with severe colonic obstruction. Melanocytes are derived from the neural crest and the tyrosinase promoter is also expressed in additional neural crest-derived lineages, including the progenitors of the parasympathetic nervous system that innervates the gastrointestinal tract and controls gut peristalsis. A functional enteric nervous system developed in floxed Ercc1 mice with the tyrosinase Cre transgene, but was found to have degenerated in the colons of affected mice. We suggest that accumulating unrepaired endogenous DNA damage in the Ercc1-deficient colonic parasympathetic ganglia leads to the degeneration of this network and results in a colonic obstructive disorder that resembles late-onset Hirschsprung disease in man.

  9. Integration of multiple signaling regulates through apoptosis the differential osteogenic potential of neural crest-derived and mesoderm-derived Osteoblasts.

    Directory of Open Access Journals (Sweden)

    Shuli Li

    Full Text Available Neural crest-derived (FOb and mesoderm-derived (POb calvarial osteoblasts are characterized by distinct differences in their osteogenic potential. We have previously demonstrated that enhanced activation of endogenous FGF and Wnt signaling confers greater osteogenic potential to FOb. Apoptosis, a key player in bone formation, is the main focus of this study. In the current work, we have investigated the apoptotic activity of FOb and POb cells during differentiation. We found that lower apoptosis, as measured by caspase-3 activity is a major feature of neural crest-derived osteoblast which also have higher osteogenic capacity. Further investigation indicated TGF-β signaling as main positive regulator of apoptosis in these two populations of calvarial osteoblasts, while BMP and canonical Wnt signaling negatively regulate the process. By either inducing or inhibiting these signaling pathways we could modulate apoptotic events and improve the osteogenic potential of POb. Taken together, our findings demonstrate that integration of multiple signaling pathways contribute to imparting greater osteogenic potential to FOb by decreasing apoptosis.

  10. A retinoic acid responsive Hoxa3 transgene expressed in embryonic pharyngeal endoderm, cardiac neural crest and a subdomain of the second heart field.

    Directory of Open Access Journals (Sweden)

    Nata Y S-G Diman

    Full Text Available A transgenic mouse line harbouring a β-galacdosidase reporter gene controlled by the proximal 2 kb promoter of Hoxa3 was previously generated to investigate the regulatory cues governing Hoxa3 expression in the mouse. Examination of transgenic embryos from embryonic day (E 8.0 to E15.5 revealed regionally restricted reporter activity in the developing heart. Indeed, transgene expression specifically delineated cells from three distinct lineages: a subpopulation of the second heart field contributing to outflow tract myocardium, the cardiac neural crest cells and the pharyngeal endoderm. Manipulation of the Retinoic Acid (RA signaling pathway showed that RA is required for correct expression of the transgene. Therefore, this transgenic line may serve as a cardiosensor line of particular interest for further analysis of outflow tract development.

  11. A Retinoic Acid Responsive Hoxa3 Transgene Expressed in Embryonic Pharyngeal Endoderm, Cardiac Neural Crest and a Subdomain of the Second Heart Field

    Science.gov (United States)

    Diman, Nata Y. S.-G.; Remacle, Sophie; Bertrand, Nicolas; Picard, Jacques J.; Zaffran, Stéphane; Rezsohazy, René

    2011-01-01

    A transgenic mouse line harbouring a β-galacdosidase reporter gene controlled by the proximal 2 kb promoter of Hoxa3 was previously generated to investigate the regulatory cues governing Hoxa3 expression in the mouse. Examination of transgenic embryos from embryonic day (E) 8.0 to E15.5 revealed regionally restricted reporter activity in the developing heart. Indeed, transgene expression specifically delineated cells from three distinct lineages: a subpopulation of the second heart field contributing to outflow tract myocardium, the cardiac neural crest cells and the pharyngeal endoderm. Manipulation of the Retinoic Acid (RA) signaling pathway showed that RA is required for correct expression of the transgene. Therefore, this transgenic line may serve as a cardiosensor line of particular interest for further analysis of outflow tract development. PMID:22110697

  12. In vitro and in vivo effects on neural crest stem cell differentiation by conditional activation of Runx1 short isoform and its effect on neuropathic pain behavior

    DEFF Research Database (Denmark)

    Kanaykina, Nadezda; Abelson, Klas; King, Dale

    2010-01-01

    cord. Moreover, mice lacking Runx1 exhibit specific defects in thermal and neuropathic pain. We investigated whether conditional activation of Runx1 short isoform (Runx1a), which lacks a transcription activation domain, influences differentiation of neural crest stem cells (NCSCs) in vitro and in vivo......INTRODUCTION: Runx1, a Runt domain transcription factor, controls the differentiation of nociceptors that express the neurotrophin receptor Ret, regulates the expression of many ion channels and receptors, and controls the lamina-specific innervation pattern of nociceptive afferents in the spinal...... during development and whether postnatal Runx1a activation affects the sensitivity to neuropathic pain. METHODS: We activated ectopic expression of Runx1a in cultured NCSCs using the Tet-ON gene regulatory system during the formation of neurospheres and analyzed the proportion of neurons and glial cells...

  13. In vitro cementoblast-like differentiation of postmigratory neural crest-derived p75{sup +} stem cells with dental follicle cell conditioned medium

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Xiujie; Liu, Luchuan; Deng, Manjing; Liu, Rui; Zhang, Li; Nie, Xin, E-mail: dr.xinnie@gmail.com

    2015-09-10

    Cranial neural crest-derived cells (CNCCs) play important role in epithelial–mesenchymal interactions during tooth morphogenesis. However, the heterogeneity of CNCCs and their tendency to spontaneously differentiate along smooth muscle or osteoblast lineages in vitro limit further understanding of their biological properties. We studied the differentiation properties of isolated rat embryonic postmigratory CNCCs, expressing p75 neurotrophin receptor (p75NTR). These p75NTR positive (p75{sup +}) CNCCs, isolated using fluorescence activated cell sorter, exhibited fibroblast-like morphology and characteristics of mesenchymal stem cells. Incubation of p75{sup +} CNCCs in dental follicle cell conditioned medium (DFCCM) combined with dentin non-collagenous proteins (dNCPs), altered their morphological features to cementoblast-like appearance. These cells also showed low proliferative activity, high ALP activity and significantly increased calcified nodule formation. Markers related to mineralization or specific to cementoblast lineage were highly expressed in dNCPs/DFCCM-treated p75{sup +} cells, suggesting their differentiation along cementoblast-like lineage. p75{sup +} stem cells selected from postmigratory CNCCs represent a pure stem cell population and could be used as a stem cell model for in vitro studies due to their intrinsic ability to differentiate to neuronal cells and transform from neuroectoderm to ectomesenchyme. They can provide a potential stem cell resource for tooth engineering studies and help to further investigate mechanisms of epithelial–mesenchymal interactions in tooth morphogenesis. - Highlights: • Cranial neural crest-derived cells (CNCCs) take part in tooth morphogenesis. • positive (p75{sup +}) CNCCs are fibroblast-like and resemble mesenchymal stem cells. • p75{sup +} CNCCs in dental follicle cell medium (DFCCM/dNCP) appear like cementoblasts. • DFCCM/dNCP-treated p75{sup +} cells express cementoblast specific mineralization

  14. Dysregulation of Wnt-Signaling and a Candidate Set of miRNAs Underlie the Effect of Metformin on Neural Crest Cell Development.

    Science.gov (United States)

    Banerjee, Poulomi; Dutta, Sunit; Pal, Rajarshi

    2016-02-01

    Neural crest cells (NCC) are a population of epithelial cells that arise from the dorsal tube and undergo epithelial-mesenchymal transition (EMT) eventually generating tissues from peripheral nervous system, melanocytes, craniofacial cartilage, and bone. The antidiabetic drug metformin reportedly inhibits EMT in physiological conditions like cancer and fibrosis. We hypothesize that perturbation of EMT may also contribute to developmental disabilities associated with neural crest (NC) development. To understand the molecular network underlying metformin action during NC formation, we first differentiated murine embryonic stem (ES) cells into NCC and characterized them by demonstrating spatiotemporal regulation of key markers. Metformin treatment prompted a delay in delamination of NCC by inhibiting key markers like Sox-1, Sox-9, HNK-1, and p-75. We then revealed that metformin impedes Wnt axis, a major signaling pathway active during NC formation via DVL-3 inhibition and impairment in nuclear translocation of β-catenin. Concomitantly we identified and tested a candidate set of miRNAs that play a crucial role in NC cell fate determination. Further studies involving loss and gain of function confirmed that NCC specifiers like Sox-1 and Sox-9 are direct targets of miR-200 and miR-145, respectively and that they are essentially modulated by metformin. Our in vitro findings were strongly supported by in vivo studies in zebrafish. Given that metformin is a widely used drug, for the first time we demonstrate that it can induce a delayed onset of developmental EMT during NC formation by interfering with canonical Wnt signaling and mysregulation of miR-145 and miR-200.

  15. Correction of Hirschsprung-Associated Mutations in Human Induced Pluripotent Stem Cells Via Clustered Regularly Interspaced Short Palindromic Repeats/Cas9, Restores Neural Crest Cell Function.

    Science.gov (United States)

    Lai, Frank Pui-Ling; Lau, Sin-Ting; Wong, John Kwong-Leong; Gui, Hongsheng; Wang, Reeson Xu; Zhou, Tingwen; Lai, Wing Hon; Tse, Hung-Fat; Tam, Paul Kwong-Hang; Garcia-Barcelo, Maria-Mercedes; Ngan, Elly Sau-Wai

    2017-07-01

    Hirschsprung disease is caused by failure of enteric neural crest cells (ENCCs) to fully colonize the bowel, leading to bowel obstruction and megacolon. Heterozygous mutations in the coding region of the RET gene cause a severe form of Hirschsprung disease (total colonic aganglionosis). However, 80% of HSCR patients have short-segment Hirschsprung disease (S-HSCR), which has not been associated with genetic factors. We sought to identify mutations associated with S-HSCR, and used the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing system to determine how mutations affect ENCC function. We created induced pluripotent stem cell (iPSC) lines from 1 patient with total colonic aganglionosis (with the G731del mutation in RET) and from 2 patients with S-HSCR (without a RET mutation), as well as RET(+/-) and RET(-/-) iPSCs. IMR90-iPSC cells were used as the control cell line. Migration and differentiation capacities of iPSC-derived ENCCs were analyzed in differentiation and migration assays. We searched for mutation(s) associated with S-HSCR by combining genetic and transcriptome data from patient blood- and iPSC-derived ENCCs, respectively. Mutations in the iPSCs were corrected using the CRISPR/Cas9 system. ENCCs derived from all iPSC lines, but not control iPSCs, had defects in migration and neuronal lineage differentiation. RET mutations were associated with differentiation and migration defects of ENCCs in vitro. Genetic and transcriptome analyses associated a mutation in the vinculin gene (VCL M209L) with S-HSCR. CRISPR/Cas9 correction of the RET G731del and VCL M209L mutations in iPSCs restored the differentiation and migration capacities of ENCCs. We identified mutations in VCL associated with S-HSCR. Correction of this mutation in iPSC using CRISPR/Cas9 editing, as well as the RET G731del mutation that causes Hirschsprung disease with total colonic aganglionosis, restored ENCC function. Our study demonstrates how human i

  16. EGF–FGF{sub 2} stimulates the proliferation and improves the neuronal commitment of mouse epidermal neural crest stem cells (EPI-NCSCs)

    Energy Technology Data Exchange (ETDEWEB)

    Bressan, Raul Bardini; Melo, Fernanda Rosene; Almeida, Patricia Alves; Bittencourt, Denise Avani; Visoni, Silvia; Jeremias, Talita Silva [Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário – Trindade, 88040-900 Florianópolis SC (Brazil); Costa, Ana Paula; Leal, Rodrigo Bainy [Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário – Trindade, 88040-900 Florianópolis SC (Brazil); Trentin, Andrea Gonçalves, E-mail: andrea.trentin@ufsc.br [Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário – Trindade, 88040-900 Florianópolis SC (Brazil)

    2014-09-10

    Epidermal neural crest stem cells (EPI-NCSCs), which reside in the bulge of hair follicles, are attractive candidates for several applications in cell therapy, drug screening and tissue engineering. As suggested remnants of the embryonic neural crest (NC) in an adult location, EPI-NCSCs are able to generate a wide variety of cell types and are readily accessible by a minimally invasive procedure. Since the combination of epidermal growth factor (EGF) and fibroblast growth factor type 2 (FGF{sub 2}) is mitogenic and promotes the neuronal commitment of various stem cell populations, we examined its effects in the proliferation and neuronal potential of mouse EPI-NCSCs. By using a recognized culture protocol of bulge whiskers follicles, we were able to isolate a population of EPI-NCSCs, characterized by the migratory potential, cell morphology and expression of phenotypic markers of NC cells. EPI-NCSCs expressed neuronal, glial and smooth muscle markers and exhibited the NC-like fibroblastic morphology. The treatment with the combination EGF and FGF{sub 2}, however, increased their proliferation rate and promoted the acquisition of a neuronal-like morphology accompanied by reorganization of neural cytoskeletal proteins βIII-tubulin and nestin, as well as upregulation of the pan neuronal marker βIII-tubulin and down regulation of the undifferentiated NC, glial and smooth muscle cell markers. Moreover, the treatment enhanced the response of EPI-NCSCs to neurogenic stimulation, as evidenced by induction of GAP43, and increased expression of Mash-1 in neuron-like cell, both neuronal-specific proteins. Together, the results suggest that the combination of EGF–FGF2 stimulates the proliferation and improves the neuronal potential of EPI-NCSCs similarly to embryonic NC cells, ES cells and neural progenitor/stem cells of the central nervous system and highlights the advantage of using EGF–FGF{sub 2} in neuronal differentiation protocols. - Highlights: • EPI

  17. Surface topography during neural stem cell differentiation regulates cell migration and cell morphology.

    Science.gov (United States)

    Czeisler, Catherine; Short, Aaron; Nelson, Tyler; Gygli, Patrick; Ortiz, Cristina; Catacutan, Fay Patsy; Stocker, Ben; Cronin, James; Lannutti, John; Winter, Jessica; Otero, José Javier

    2016-12-01

    We sought to determine the contribution of scaffold topography to the migration and morphology of neural stem cells by mimicking anatomical features of scaffolds found in vivo. We mimicked two types of central nervous system scaffolds encountered by neural stem cells during development in vitro by constructing different diameter electrospun polycaprolactone (PCL) fiber mats, a substrate that we have shown to be topographically similar to brain scaffolds. We compared the effects of large fibers (made to mimic blood vessel topography) with those of small-diameter fibers (made to mimic radial glial process topography) on the migration and differentiation of neural stem cells. Neural stem cells showed differential migratory and morphological reactions with laminin in different topographical contexts. We demonstrate, for the first time, that neural stem cell biological responses to laminin are dependent on topographical context. Large-fiber topography without laminin prevented cell migration, which was partially reversed by treatment with rock inhibitor. Cell morphology complexity assayed by fractal dimension was inhibited in nocodazole- and cytochalasin-D-treated neural precursor cells in large-fiber topography, but was not changed in small-fiber topography with these inhibitors. These data indicate that cell morphology has different requirements on cytoskeletal proteins dependent on the topographical environment encountered by the cell. We propose that the physical structure of distinct scaffolds induces unique signaling cascades that regulate migration and morphology in embryonic neural precursor cells. J. Comp. Neurol. 524:3485-3502, 2016. © 2016 Wiley Periodicals, Inc.

  18. Neonatal lethality of neural crest cell-specific Rest knockout mice is associated with gastrointestinal distension caused by aberrations of myenteric plexus.

    Science.gov (United States)

    Aoki, Hitomi; Hara, Akira; Oomori, Yoshiyuki; Shimizu, Yasutake; Yamada, Yasuhiro; Kunisada, Takahiro

    2014-10-01

    RE1-silencing transcription factor (REST), also known as NRSF (neuron-restrictive silencer factor), is a well-known transcriptional repressor of neural genes. Rest null mice have embryonic lethality which prevents further investigations of the functions of the Rest gene in vivo. We studied neonatal but not embryonic lethality that was characterized by gastrointestinal tract dilation in the neural crest cell (NCC)-specific Rest conditional knockout (CKO) mice. While no histological abnormalities except the thinning of the digestive tract as a consequence of the gas accumulation were found in the digestive tract of the mutant mice, they do not have proper gastric retention after oral dye administration and the reduction of acetylcholinesterase (AChE) activity in NCC-derived myenteric plexus in the stomach was detected. High CO2 concentration in the dilated digestive tract of the Rest CKO mice indicates a failure of gut function by underdeveloped cholinergic transmission in the enteric nervous system. The observed gastrointestinal distension phenotype provides a model for understanding the genetic and molecular basis of NCC defects in humans.

  19. Mouse Dac, a novel nuclear factor with homology to Drosophila dachshund shows a dynamic expression in the neural crest, the eye, the neocortex, and the limb bud.

    Science.gov (United States)

    Caubit, X; Thangarajah, R; Theil, T; Wirth, J; Nothwang, H G; Rüther, U; Krauss, S

    1999-01-01

    Dac is a novel nuclear factor in mouse and humans that shares homology with Drosophila dachshund (dac). Alignment with available sequences defines a conserved box of 117 amino acids that shares weak homology with the proto-oncogene Ski and Sno. Dac expression is found in various neuroectodermal and mesenchymal tissues. At early developmental stages Dac is expressed in lateral mesoderm and in neural crest cells. In the neural plate/tube Dac expression is initially seen in the prosencephalon and gets gradually restricted to the presumptive neocortex and the distal portion of the outgrowing optic vesicle. Furthermore, Dac transcripts are detected in the mesenchyme underlying the Apical Ectodermal Ridge (AER) of the extending limb bud, the dorsal root ganglia and chain ganglia, and the mesenchyme of the growing genitalia. Dac expression in the Gli 3 mutant extra toes (Xt/Xt) shows little difference compared to the expression in wild-type limb buds. In contrast, a significant expansion of Dac expression are observed in the anterior mesenchyme of the limb buds of hemimelic extra toes (Hx/+) mice. FISH analysis reveals that human DAC maps to chromosome 13q22.3-23 and further fine-mapping defined a position of the DAC gene at 54cM or 13q21.1, a locus that associates with mental retardation and skeletal abnormalities.

  20. A Comparative Study of Head Development in Mexican Axolotl and Australian Lungfish: Cell Migration, Cell Fate and Morphogenesis

    OpenAIRE

    Ericsson, Rolf

    2003-01-01

    The development of the vertebrate head is a complex process involving interactions between a multitude of cell types and tissues. This thesis describes the development of the cranial neural crest and of the visceral arch muscles in the head of two species. One, the Mexican axolotl (Ambystoma mexicanum), is a basal tetrapod, whereas the other, the Australian lungfish (Neoceratodus forsteri), belongs to the Dipnoi, the extant sister group of the Tetrapoda. The migration of neural crest cells, ...

  1. Brief Report: Robo1 Regulates the Migration of Human Subventricular Zone Neural Progenitor Cells During Development.

    Science.gov (United States)

    Guerrero-Cazares, Hugo; Lavell, Emily; Chen, Linda; Schiapparelli, Paula; Lara-Velazquez, Montserrat; Capilla-Gonzalez, Vivian; Clements, Anna Christina; Drummond, Gabrielle; Noiman, Liron; Thaler, Katrina; Burke, Anne; Quiñones-Hinojosa, Alfredo

    2017-07-01

    Human neural progenitor cell (NPC) migration within the subventricular zone (SVZ) of the lateral ganglionic eminence is an active process throughout early brain development. The migration of human NPCs from the SVZ to the olfactory bulb during fetal stages resembles what occurs in adult rodents. As the human brain develops during infancy, this migratory stream is drastically reduced in cell number and becomes barely evident in adults. The mechanisms regulating human NPC migration are unknown. The Slit-Robo signaling pathway has been defined as a chemorepulsive cue involved in axon guidance and neuroblast migration in rodents. Slit and Robo proteins expressed in the rodent brain help guide neuroblast migration from the SVZ through the rostral migratory stream to the olfactory bulb. Here, we present the first study on the role that Slit and Robo proteins play in human-derived fetal neural progenitor cell migration (hfNPC). We describe that Robo1 and Robo2 isoforms are expressed in the human fetal SVZ. Furthermore, we demonstrate that Slit2 is able to induce a chemorepellent effect on the migration of hfNPCs derived from the human fetal SVZ. In addition, when Robo1 expression is inhibited, hfNPCs are unable to migrate to the olfactory bulb of mice when injected in the anterior SVZ. Our findings indicate that the migration of human NPCs from the SVZ is partially regulated by the Slit-Robo axis. This pathway could be regulated to direct the migration of NPCs in human endogenous neural cell therapy. Stem Cells 2017;35:1860-1865. © 2017 AlphaMed Press.

  2. Embryonic stem cell-derived neural progenitors transplanted to the hippocampus migrate on host vasculature

    Directory of Open Access Journals (Sweden)

    Chelsea M. Lassiter

    2016-05-01

    Full Text Available This study describes the migration of transplanted ESNPs either injected directly into the hippocampus of a mouse, seeded onto hippocampal slices, or under in vitro culture conditions. We show that transplanted mouse ESNPs associate with, and appear to migrate on the surface of the vasculature, and that human ESNPs also associate with blood vessels when seeded on hippocampal slices, and migrate towards BECs in vitro using a Boyden chamber assay. This initial adhesion to vessels is mediated, at least in part, via the integrin α6β1, as observed for SVZ neural progenitor cells. Our data are consistent with CXCL12, expressed by the astroglial-vasculature niche, playing an important role in the migration of transplanted neural progenitors within and outside of the hippocampus.

  3. Cell Motility and Invasiveness of Neurofibromin-Deficient Neural Crest Cells and Malignant Triton Tumor Lines. Addendum

    Science.gov (United States)

    2006-06-01

    potentially affect the establishment and growth of neurofibromas and café-au-lait macules, metastasis of malignant peripheral nerve sheath tumors ( MPNST ), and...influence the invasiveness of MPNST cell lines derived from spontaneous tumors in cisNf1+/-;p53+/- mice. Over the past year, we completed our...factor (PDGF) and PDGF receptor signaling pathways that influence proliferation and migration of MPNST cell lines. In addition, we have continued to

  4. In vitro cementoblast-like differentiation of postmigratory neural crest-derived p75(+) stem cells with dental follicle cell conditioned medium.

    Science.gov (United States)

    Wen, Xiujie; Liu, Luchuan; Deng, Manjing; Liu, Rui; Zhang, Li; Nie, Xin

    2015-09-10

    Cranial neural crest-derived cells (CNCCs) play important role in epithelial-mesenchymal interactions during tooth morphogenesis. However, the heterogeneity of CNCCs and their tendency to spontaneously differentiate along smooth muscle or osteoblast lineages in vitro limit further understanding of their biological properties. We studied the differentiation properties of isolated rat embryonic postmigratory CNCCs, expressing p75 neurotrophin receptor (p75NTR). These p75NTR positive (p75(+)) CNCCs, isolated using fluorescence activated cell sorter, exhibited fibroblast-like morphology and characteristics of mesenchymal stem cells. Incubation of p75(+) CNCCs in dental follicle cell conditioned medium (DFCCM) combined with dentin non-collagenous proteins (dNCPs), altered their morphological features to cementoblast-like appearance. These cells also showed low proliferative activity, high ALP activity and significantly increased calcified nodule formation. Markers related to mineralization or specific to cementoblast lineage were highly expressed in dNCPs/DFCCM-treated p75(+) cells, suggesting their differentiation along cementoblast-like lineage. p75(+) stem cells selected from postmigratory CNCCs represent a pure stem cell population and could be used as a stem cell model for in vitro studies due to their intrinsic ability to differentiate to neuronal cells and transform from neuroectoderm to ectomesenchyme. They can provide a potential stem cell resource for tooth engineering studies and help to further investigate mechanisms of epithelial-mesenchymal interactions in tooth morphogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Neural Crest Cell Implantation Restores Enteric Nervous System Function and Alters the Gastrointestinal Transcriptome in Human Tissue-Engineered Small Intestine

    Directory of Open Access Journals (Sweden)

    Christopher R. Schlieve

    2017-09-01

    Full Text Available Acquired or congenital disruption in enteric nervous system (ENS development or function can lead to significant mechanical dysmotility. ENS restoration through cellular transplantation may provide a cure for enteric neuropathies. We have previously generated human pluripotent stem cell (hPSC-derived tissue-engineered small intestine (TESI from human intestinal organoids (HIOs. However, HIO-TESI fails to develop an ENS. The purpose of our study is to restore ENS components derived exclusively from hPSCs in HIO-TESI. hPSC-derived enteric neural crest cell (ENCC supplementation of HIO-TESI establishes submucosal and myenteric ganglia, repopulates various subclasses of neurons, and restores neuroepithelial connections and neuron-dependent contractility and relaxation in ENCC-HIO-TESI. RNA sequencing identified differentially expressed genes involved in neurogenesis, gliogenesis, gastrointestinal tract development, and differentiated epithelial cell types when ENS elements are restored during in vivo development of HIO-TESI. Our findings validate an effective approach to restoring hPSC-derived ENS components in HIO-TESI and may implicate their potential for the treatment of enteric neuropathies.

  6. Neural crest cell survival is dependent on Rho kinase and is required for development of the mid face in mouse embryos.

    Directory of Open Access Journals (Sweden)

    Helen M Phillips

    Full Text Available Neural crest cells (NCC give rise to much of the tissue that forms the vertebrate head and face, including cartilage and bone, cranial ganglia and teeth. In this study we show that conditional expression of a dominant-negative (DN form of Rho kinase (Rock in mouse NCC results in severe hypoplasia of the frontonasal processes and first pharyngeal arch, ultimately resulting in reduction of the maxilla and nasal bones and severe craniofacial clefting affecting the nose, palate and lip. These defects resemble frontonasal dysplasia in humans. Disruption of the actin cytoskeleton, which leads to abnormalities in cell-matrix attachment, is seen in the RockDN;Wnt1-cre mutant embryos. This leads to elevated cell death, resulting in NCC deficiency and hypoplastic NCC-derived craniofacial structures. Rock is thus essential for survival of NCC that form the craniofacial region. We propose that reduced NCC numbers in the frontonasal processes and first pharyngeal arch, resulting from exacerbated cell death, may be the common mechanism underlying frontonasal dysplasia.

  7. ALK5-mediated transforming growth factor β signaling in neural crest cells controls craniofacial muscle development via tissue-tissue interactions.

    Science.gov (United States)

    Han, Arum; Zhao, Hu; Li, Jingyuan; Pelikan, Richard; Chai, Yang

    2014-08-01

    The development of the craniofacial muscles requires reciprocal interactions with surrounding craniofacial tissues that originate from cranial neural crest cells (CNCCs). However, the molecular mechanism involved in the tissue-tissue interactions between CNCCs and muscle progenitors during craniofacial muscle development is largely unknown. In the current study, we address how CNCCs regulate the development of the tongue and other craniofacial muscles using Wnt1-Cre; Alk5(fl/fl) mice, in which loss of Alk5 in CNCCs results in severely disrupted muscle formation. We found that Bmp4 is responsible for reduced proliferation of the myogenic progenitor cells in Wnt1-Cre; Alk5(fl/fl) mice during early myogenesis. In addition, Fgf4 and Fgf6 ligands were reduced in Wnt1-Cre; Alk5(fl/fl) mice and are critical for differentiation of the myogenic cells. Addition of Bmp4 or Fgf ligands rescues the proliferation and differentiation defects in the craniofacial muscles of Alk5 mutant mice in vitro. Taken together, our results indicate that CNCCs play critical roles in controlling craniofacial myogenic proliferation and differentiation through tissue-tissue interactions. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Mechanical roles of apical constriction, cell elongation, and cell migration during neural tube formation in Xenopus.

    Science.gov (United States)

    Inoue, Yasuhiro; Suzuki, Makoto; Watanabe, Tadashi; Yasue, Naoko; Tateo, Itsuki; Adachi, Taiji; Ueno, Naoto

    2016-12-01

    Neural tube closure is an important and necessary process during the development of the central nervous system. The formation of the neural tube structure from a flat sheet of neural epithelium requires several cell morphogenetic events and tissue dynamics to account for the mechanics of tissue deformation. Cell elongation changes cuboidal cells into columnar cells, and apical constriction then causes them to adopt apically narrow, wedge-like shapes. In addition, the neural plate in Xenopus is stratified, and the non-neural cells in the deep layer (deep cells) pull the overlying superficial cells, eventually bringing the two layers of cells to the midline. Thus, neural tube closure appears to be a complex event in which these three physical events are considered to play key mechanical roles. To test whether these three physical events are mechanically sufficient to drive neural tube formation, we employed a three-dimensional vertex model and used it to simulate the process of neural tube closure. The results suggest that apical constriction cued the bending of the neural plate by pursing the circumference of the apical surface of the neural cells. Neural cell elongation in concert with apical constriction further narrowed the apical surface of the cells and drove the rapid folding of the neural plate, but was insufficient for complete neural tube closure. Migration of the deep cells provided the additional tissue deformation necessary for closure. To validate the model, apical constriction and cell elongation were inhibited in Xenopus laevis embryos. The resulting cell and tissue shapes resembled the corresponding simulation results.

  9. EphrinB3 restricts endogenous neural stem cell migration after traumatic brain injury.

    Science.gov (United States)

    Dixon, Kirsty J; Mier, Jose; Gajavelli, Shyam; Turbic, Alisa; Bullock, Ross; Turnley, Ann M; Liebl, Daniel J

    2016-11-01

    Traumatic brain injury (TBI) leads to a series of pathological events that can have profound influences on motor, sensory and cognitive functions. Conversely, TBI can also stimulate neural stem/progenitor cell proliferation leading to increased numbers of neuroblasts migrating outside their restrictive neurogenic zone to areas of damage in support of tissue integrity. Unfortunately, the factors that regulate migration are poorly understood. Here, we examine whether ephrinB3 functions to restrict neuroblasts from migrating outside the subventricular zone (SVZ) and rostral migratory stream (RMS). We have previously shown that ephrinB3 is expressed in tissues surrounding these regions, including the overlying corpus callosum (CC), and is reduced after controlled cortical impact (CCI) injury. Our current study takes advantage of ephrinB3 knockout mice to examine the influences of ephrinB3 on neuroblast migration into CC and cortex tissues after CCI injury. Both injury and/or ephrinB3 deficiency led to increased neuroblast numbers and enhanced migration outside the SVZ/RMS zones. Application of soluble ephrinB3-Fc molecules reduced neuroblast migration into the CC after injury and limited neuroblast chain migration in cultured SVZ explants. Our findings suggest that ephrinB3 expression in tissues surrounding neurogenic regions functions to restrict neuroblast migration outside the RMS by limiting chain migration.

  10. MRI visualization of endogenous neural progenitor cell migration along the RMS in the adult mouse brain

    DEFF Research Database (Denmark)

    Vreys, Ruth; Vande Velde, Greetje; Krylychkina, Olga

    2010-01-01

    The adult rodent brain contains neural progenitor cells (NPCs), generated in the subventricular zone (SVZ), which migrate along the rostral migratory stream (RMS) towards the olfactory bulb (OB) where they differentiate into neurons. The aim of this study was to visualize endogenous NPC migration...... along the RMS with magnetic resonance imaging (MRI) in adult healthy mice. We evaluated various in situ (in vivo) labeling approaches using micron-sized iron oxide particles (MPIOs) on their efficiency to label endogenous NPCs. In situ labeling and visualization of migrating NPCs were analyzed...... by a longitudinal MRI study and validated with histology. Here, we visualized endogenous NPC migration in the mouse brain by in vivo MRI and demonstrated accumulation of MPIO-labeled NPCs in the OB over time with ex vivo MRI. Furthermore, we investigated the influence of in situ injection of MPIOs on adult...

  11. Adult Subependymal Neural Precursors, but Not Differentiated Cells, Undergo Rapid Cathodal Migration in the Presence of Direct Current Electric Fields

    OpenAIRE

    Robart Babona-Pilipos; Droujinine, Ilia A.; Popovic, Milos R.; Morshead, Cindi M.

    2011-01-01

    BACKGROUND: The existence of neural stem and progenitor cells (together termed neural precursor cells) in the adult mammalian brain has sparked great interest in utilizing these cells for regenerative medicine strategies. Endogenous neural precursors within the adult forebrain subependyma can be activated following injury, resulting in their proliferation and migration toward lesion sites where they differentiate into neural cells. The administration of growth factors and immunomodulatory age...

  12. Heart and Neural Crest Derivatives Expressed Transcript 2 (HAND2): a novel biomarker for the identification of atypical hyperplasia and Type I endometrial carcinoma.

    Science.gov (United States)

    Buell-Gutbrod, Rebecca; Cavallo, Allison; Lee, Nita; Montag, Anthony; Gwin, Katja

    2015-01-01

    Progesterone inhibits the proliferative growth effects of estrogen in the endometrium and prevents the development of endometrial hyperplasia and Type I adenocarcinoma. The exact mechanism of this action is unknown. The progesterone-induced helix-loop-helix transcription factor Heart and Neural Crest Derivatives Expressed 2 (Hand2) was recently shown to suppress production of growth factors in the endometrium. In Hand2 knockout mice, continuous proliferation of the endometrium was observed. In this study, archival paraffin-embedded tissue from 56 hysterectomy specimens was examined by immunohistochemistry for the expression and localization of Hand2, estrogen receptor (ER), progesterone receptor (PR), and Ki-67. Diagnoses included disordered proliferative endometrium, simple and complex hyperplasia with or without atypia, and endometrioid adenocarcinoma. Hand2 expression is localized to endometrial stromal nuclei. In benign endometrium, Hand2 expression was moderate to strong (10/11; 91%), with weak Hand2 expression in only 1 case (1/11; 9%). Similar Hand2 expression patterns were observed in disordered proliferative endometrium and simple hyperplasia without atypia, with moderate to strong expression in 91% of cases (10/11) and weak expression in 9% of cases (1/11). In contrast, simple and complex hyperplasia with atypia exhibited moderate to strong Hand2 expression in 8% of cases (1/12) and a loss of expression or weak expression in 92% of cases (11/12). In endometrioid adenocarcinomas, Hand2 expression was absent in all cases (22/22). Hand2 is expressed in the stroma of benign endometrium, but expression is significantly reduced or lost in atypical hyperplasia and endometrioid carcinoma. Thus, the absence of Hand2 expression may be a useful biomarker for atypical hyperplasia and endometrioid carcinoma.

  13. Distinct effects of Hoxa2 overexpression in cranial neural crest populations reveal that the mammalian hyomandibular-ceratohyal boundary maps within the styloid process.

    Science.gov (United States)

    Kitazawa, Taro; Fujisawa, Kou; Narboux-Nême, Nicolas; Arima, Yuichiro; Kawamura, Yumiko; Inoue, Tsuyoshi; Wada, Youichiro; Kohro, Takahide; Aburatani, Hiroyuki; Kodama, Tatsuhiko; Kim, Ki-Sung; Sato, Takahiro; Uchijima, Yasunobu; Maeda, Kazuhiro; Miyagawa-Tomita, Sachiko; Minoux, Maryline; Rijli, Filippo M; Levi, Giovanni; Kurihara, Yukiko; Kurihara, Hiroki

    2015-06-15

    Most gnathostomata craniofacial structures derive from pharyngeal arches (PAs), which are colonized by cranial neural crest cells (CNCCs). The anteroposterior and dorsoventral identities of CNCCs are defined by the combinatorial expression of Hox and Dlx genes. The mechanisms associating characteristic Hox/Dlx expression patterns with the topology and morphology of PAs derivatives are only partially known; a better knowledge of these processes might lead to new concepts on the origin of taxon-specific craniofacial morphologies and of certain craniofacial malformations. Here we show that ectopic expression of Hoxa2 in Hox-negative CNCCs results in distinct phenotypes in different CNCC subpopulations. Namely, while ectopic Hoxa2 expression is sufficient for the morphological and molecular transformation of the first PA (PA1) CNCC derivatives into the second PA (PA2)-like structures, this same genetic alteration does not provoke the transformation of derivatives of other CNCC subpopulations, but severely impairs their development. Ectopic Hoxa2 expression results in the transformation of the proximal Meckel's cartilage and of the malleus, two ventral PA1 CNCCs derivatives, into a supernumerary styloid process (SP), a PA2-derived mammalian-specific skeletal structure. These results, together with experiments to inactivate and ectopically activate the Edn1-Dlx5/6 pathway, indicate a dorsoventral PA2 (hyomandibular/ceratohyal) boundary passing through the middle of the SP. The present findings suggest context-dependent function of Hoxa2 in CNCC regional specification and morphogenesis, and provide novel insights into the evolution of taxa-specific patterning of PA-derived structures. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Effect of dihydrofolate reductase gene knock-down on the expression of heart and neural crest derivatives expressed transcript 2 in zebrafish cardiac development

    Institute of Scientific and Technical Information of China (English)

    SUN Shu-na; GUI Yong-hao; WANG Yue-xiang; QIAN Lin-xi; JIANG Qiu; LIU Dong; SONG Hou-yan

    2007-01-01

    Background Folic acid is very important for embryonic development and dihydrofolate reductase is one of the key enzymes in the process of folic acid performing its biological function. Therefore, the dysfunction of dihydrofolate reductase can inhibit the function of folic acid and finally cause the developmental malformations. In this study, we observed the abnormal cardiac phenotypes in dihydrofolate reductase (DHFR) gene knock-down zebrafish embryos,investigated the effect of DHFR on the expression of heart and neural crest derivatives expressed transcript 2 (HAND2)and explored the possible mechanism of DHFR knock-down inducing zebrafish cardiac malformations.Methods Morpholino oligonucleotides were microinjected into fertilized eggs to knock down the functions of DHFR or HAND2. Full length of HAND2 mRNA which was transcribed in vitro was microinjected into fertilized eggs to overexpress HAND2. The cardiac morphologies, the heart rates and the ventricular shortening fraction were observed and recorded under the microscope at 48 hours post fertilization. Whole-mount in situ hybridization and real-time PCR were performed to detect HAND2 expression.Results DHFR or HAND2 knock-down caused the cardiac malformation in zebrafish. The expression of HAND2 was obviously reduced in DHFR knock-down embryos (P<0.05). Microinjecting HAND2 mRNA into fertilized eggs can induce HAND2 overexpression. HAND2 overexpression rescued the cardiac malformation phenotypes of DHFR knock-down embryos.Conclusions DHFR plays a crucial role in cardiac development. The down-regulation of HAND2 caused by DHFR knock-down is the possible mechanism of DHFR knock-down inducing the cardiac malformation.

  15. Derivation of mesenchymal stromal cells from pluripotent stem cells through a neural crest lineage using small molecule compounds with defined media.

    Directory of Open Access Journals (Sweden)

    Makoto Fukuta

    Full Text Available Neural crest cells (NCCs are an embryonic migratory cell population with the ability to differentiate into a wide variety of cell types that contribute to the craniofacial skeleton, cornea, peripheral nervous system, and skin pigmentation. This ability suggests the promising role of NCCs as a source for cell-based therapy. Although several methods have been used to induce human NCCs (hNCCs from human pluripotent stem cells (hPSCs, such as embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs, further modifications are required to improve the robustness, efficacy, and simplicity of these methods. Chemically defined medium (CDM was used as the basal medium in the induction and maintenance steps. By optimizing the culture conditions, the combination of the GSK3β inhibitor and TGFβ inhibitor with a minimum growth factor (insulin very efficiently induced hNCCs (70-80% from hPSCs. The induced hNCCs expressed cranial NCC-related genes and stably proliferated in CDM supplemented with EGF and FGF2 up to at least 10 passages without changes being observed in the major gene expression profiles. Differentiation properties were confirmed for peripheral neurons, glia, melanocytes, and corneal endothelial cells. In addition, cells with differentiation characteristics similar to multipotent mesenchymal stromal cells (MSCs were induced from hNCCs using CDM specific for human MSCs. Our simple and robust induction protocol using small molecule compounds with defined media enabled the generation of hNCCs as an intermediate material producing terminally differentiated cells for cell-based innovative medicine.

  16. Common mechanisms linking connexin43 to neural progenitor cell migration and glioma invasion.

    Science.gov (United States)

    Naus, Christian C; Aftab, Qurratulain; Sin, Wun Chey

    2016-02-01

    Cell migration is critical for cell differentiation, tissue formation and organ development. Several mechanisms come to play in the process of cell migration, orchestrating changes in cell polarity, adhesion, process extension and motility. Recent findings have shown that gap junctions, and specifically connexin43 (Cx43), can play a significant role in these processes, impacting adhesion and cytoskeletal rearrangements. Thus Cx43 within a cell regulates its motility and migration via intracellular signaling. Furthermore, Cx43 in the host cells can impact the degree of cellular migration through that tissue. Similarities in these connexin-based processes account for both neural progenitor migration in the developing brain, and for glioma cell invasion in the mature brain. In both cases, Cx43 in the tissue ("soil") in which cells ("seeds") exist facilitates their migration and, for glioma cells, tissue invasion. Cx43 mediates these effects through channel- and non-channel-dependent mechanisms which have similarities in both paradigms of cell migration. This provides insight into developmental processes and pathological situations, as well as possible therapeutic approaches regarding specific functional domains of gap junction proteins.

  17. Effect of epidermal growth factor on the migration of neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Faliang Duan; Guoping Yang; Junwu Wei; Jinglei Wu

    2006-01-01

    BACKGROUND:Recently,researches on neural stem cells(NSCs)are focus on differentiation and migration of stem cells.How to regulate and control differentiation and migration of NSCs based on human wills is still a hot topic.OBJECTIVE:To investigate the effct of epidermal growth factor (EGF) on the migration and proliferation of NSCs and analyze duration of the effect.DESIGN:Contrast study based on cells.SETFING:Department of Neurological Surgery,the First Hospital of Wuhan.MATERIALS:Healthy SD rats aged 13-14 embryonic days.EGF(Sigma Company).METHODS:The experiment was carried out in the Animal Laboratory of Experimental Center Affiliated to the First Hospital of Wuhan from October 2004 to July 2006.NSCs selected from embryonic striatum of rats with 13-14 embryonic days were cultured;7 days later,suspended neural sphere was used to make simple cell suspension and cultured once more.Then,DMEM-F12+20 μg/L EGF was added into culture medium;14 days latar.the rats were divided into experimental group and control group.Rats in the experimental group were cultured with the same medium mentioned above;however, rats in the control group were cultured with only DMEM-F12.Migration of cells was observed under microscope every day.MAIN OUTCOME MEASURES:NSCs migration in both experimental group and control group.RESULTS:Cell spheres in primary culture were NSCs.In addition,14 days later,proliferation of stem cells were observed remarkably in EGF culture.and size of cell sphere was about that of 100 cells.In exparimental group.proliferation of cell sphere was slow down on the 14th culture day,and apophysis was erupted to neighbor cell sphere.Moreover,NSCs migrated from big cell sphere to small cell sphere during 14-17 culture days.and then,cell migration was disappeared at 17 days after culture.In control group.cell migration was not observed.CONCLUSION:EGF can induce proliferation and migration of NSCs during a special time(14-17 days).However,NSCs do not immigrate over the

  18. Nardosinone improves the proliferation, migration and selective differentiation of mouse embryonic neural stem cells.

    Directory of Open Access Journals (Sweden)

    Ze-Hui Li

    Full Text Available In this study, we investigated the impact of Nardosinone, a bioactive component in Nardostachys root, on the proliferation and differentiation of neural stem cells. The neural stem cells were isolated from cerebrums of embryonic day 14 CD1 mice. The proliferation of cells was monitored using the cell counting kit-8 assay, bromodeoxyuridine incorporation and cell cycle analysis. Cell migration and differentiation were investigated with the neurosphere assay and cell specific markers, respectively. The results showed that Nardosinone promotes cells proliferation and increases cells migration distance in a dose-dependent manner. Nardosinone also induces the selective differentiation of neural stem cells to neurons and oligodendrocytes, as indicated by the expression of microtubule-associated protein-2 and myelin basic protein, respectively. Nardosinone also increases the expression of phospho-extracellular signal-regulated kinase and phospho-cAMP response element binding protein during proliferation and differentiation. In conclusion, this study reveals the regulatory effects of Nardosinone on neural stem cells, which may have significant implications for the treatment of brain injury and neurodegenerative diseases.

  19. Defective neuroepithelial cell cohesion affects tangential branchiomotor neuron migration in the zebrafish neural tube.

    Science.gov (United States)

    Stockinger, Petra; Maître, Jean-Léon; Heisenberg, Carl-Philipp

    2011-11-01

    Facial branchiomotor neurons (FBMNs) in zebrafish and mouse embryonic hindbrain undergo a characteristic tangential migration from rhombomere (r) 4, where they are born, to r6/7. Cohesion among neuroepithelial cells (NCs) has been suggested to function in FBMN migration by inhibiting FBMNs positioned in the basal neuroepithelium such that they move apically between NCs towards the midline of the neuroepithelium instead of tangentially along the basal side of the neuroepithelium towards r6/7. However, direct experimental evaluation of this hypothesis is still lacking. Here, we have used a combination of biophysical cell adhesion measurements and high-resolution time-lapse microscopy to determine the role of NC cohesion in FBMN migration. We show that reducing NC cohesion by interfering with Cadherin 2 (Cdh2) activity results in FBMNs positioned at the basal side of the neuroepithelium moving apically towards the neural tube midline instead of tangentially towards r6/7. In embryos with strongly reduced NC cohesion, ectopic apical FBMN movement frequently results in fusion of the bilateral FBMN clusters over the apical midline of the neural tube. By contrast, reducing cohesion among FBMNs by interfering with Contactin 2 (Cntn2) expression in these cells has little effect on apical FBMN movement, but reduces the fusion of the bilateral FBMN clusters in embryos with strongly diminished NC cohesion. These data provide direct experimental evidence that NC cohesion functions in tangential FBMN migration by restricting their apical movement.

  20. Global detection of live virtual machine migration based on cellular neural networks.

    Science.gov (United States)

    Xie, Kang; Yang, Yixian; Zhang, Ling; Jing, Maohua; Xin, Yang; Li, Zhongxian

    2014-01-01

    In order to meet the demands of operation monitoring of large scale, autoscaling, and heterogeneous virtual resources in the existing cloud computing, a new method of live virtual machine (VM) migration detection algorithm based on the cellular neural networks (CNNs), is presented. Through analyzing the detection process, the parameter relationship of CNN is mapped as an optimization problem, in which improved particle swarm optimization algorithm based on bubble sort is used to solve the problem. Experimental results demonstrate that the proposed method can display the VM migration processing intuitively. Compared with the best fit heuristic algorithm, this approach reduces the processing time, and emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI) implementation allowing the VM migration detection to be performed better.

  1. Global Detection of Live Virtual Machine Migration Based on Cellular Neural Networks

    Directory of Open Access Journals (Sweden)

    Kang Xie

    2014-01-01

    Full Text Available In order to meet the demands of operation monitoring of large scale, autoscaling, and heterogeneous virtual resources in the existing cloud computing, a new method of live virtual machine (VM migration detection algorithm based on the cellular neural networks (CNNs, is presented. Through analyzing the detection process, the parameter relationship of CNN is mapped as an optimization problem, in which improved particle swarm optimization algorithm based on bubble sort is used to solve the problem. Experimental results demonstrate that the proposed method can display the VM migration processing intuitively. Compared with the best fit heuristic algorithm, this approach reduces the processing time, and emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI implementation allowing the VM migration detection to be performed better.

  2. Selective migration of neuralized embryonic stem cells to stem cell factor and media conditioned by glioma cell lines

    Science.gov (United States)

    Serfozo, Peter; Schlarman, Maggie S; Pierret, Chris; Maria, Bernard L; Kirk, Mark D

    2006-01-01

    Background Pluripotent mouse embryonic stem (ES) cells can be induced in vitro to become neural progenitors. Upon transplantation, neural progenitors migrate toward areas of damage and inflammation in the CNS. We tested whether undifferentiated and neuralized mouse ES cells migrate toward media conditioned by glioma cell lines (C6, U87 & N1321) or Stem Cell Factor (SCF). Results Cell migration assays revealed selective migration by neuralized ES cells to conditioned media as well as to synthetic SCF. Migration of undifferentiated ES cells was extensive, but not significantly different from that of controls (Unconditioned Medium). RT-PCR analysis revealed that all the three tumor cell lines tested synthesized SCF and that both undifferentiated and neuralized ES cells expressed c-kit, the receptor for SCF. Conclusion Our results demonstrate that undifferentiated ES cells are highly mobile and that neural progenitors derived from ES cells are selectively attracted toward factors produced by gliomas. Given that the glioma cell lines synthesize SCF, SCF may be one of several factors that contribute to the selective migration observed. PMID:16436212

  3. Selective migration of neuralized embryonic stem cells to stem cell factor and media conditioned by glioma cell lines

    Directory of Open Access Journals (Sweden)

    Maria Bernard L

    2006-01-01

    Full Text Available Abstract Background Pluripotent mouse embryonic stem (ES cells can be induced in vitro to become neural progenitors. Upon transplantation, neural progenitors migrate toward areas of damage and inflammation in the CNS. We tested whether undifferentiated and neuralized mouse ES cells migrate toward media conditioned by glioma cell lines (C6, U87 & N1321 or Stem Cell Factor (SCF. Results Cell migration assays revealed selective migration by neuralized ES cells to conditioned media as well as to synthetic SCF. Migration of undifferentiated ES cells was extensive, but not significantly different from that of controls (Unconditioned Medium. RT-PCR analysis revealed that all the three tumor cell lines tested synthesized SCF and that both undifferentiated and neuralized ES cells expressed c-kit, the receptor for SCF. Conclusion Our results demonstrate that undifferentiated ES cells are highly mobile and that neural progenitors derived from ES cells are selectively attracted toward factors produced by gliomas. Given that the glioma cell lines synthesize SCF, SCF may be one of several factors that contribute to the selective migration observed.

  4. Guided migration of neural stem cells derived from human embryonic stem cells by an electric field.

    Science.gov (United States)

    Feng, Jun-Feng; Liu, Jing; Zhang, Xiu-Zhen; Zhang, Lei; Jiang, Ji-Yao; Nolta, Jan; Zhao, Min

    2012-02-01

    Small direct current (DC) electric fields (EFs) guide neurite growth and migration of rodent neural stem cells (NSCs). However, this could be species dependent. Therefore, it is critical to investigate how human NSCs (hNSCs) respond to EF before any possible clinical attempt. Aiming to characterize the EF-stimulated and guided migration of hNSCs, we derived hNSCs from a well-established human embryonic stem cell line H9. Small applied DC EFs, as low as 16 mV/mm, induced significant directional migration toward the cathode. Reversal of the field polarity reversed migration of hNSCs. The galvanotactic/electrotactic response was both time and voltage dependent. The migration directedness and distance to the cathode increased with the increase of field strength. (Rho-kinase) inhibitor Y27632 is used to enhance viability of stem cells and has previously been reported to inhibit EF-guided directional migration in induced pluripotent stem cells and neurons. However, its presence did not significantly affect the directionality of hNSC migration in an EF. Cytokine receptor [C-X-C chemokine receptor type 4 (CXCR4)] is important for chemotaxis of NSCs in the brain. The blockage of CXCR4 did not affect the electrotaxis of hNSCs. We conclude that hNSCs respond to a small EF by directional migration. Applied EFs could potentially be further exploited to guide hNSCs to injured sites in the central nervous system to improve the outcome of various diseases.

  5. Hyperexpressed Netrin-1 Promoted Neural Stem Cells Migration in Mice after Focal Cerebral Ischemia

    Science.gov (United States)

    Lu, Haiyan; Song, Xiaoyan; Wang, Feng; Wang, Guodong; Wu, Yuncheng; Wang, Qiaoshu; Wang, Yongting; Yang, Guo-Yuan; Zhang, Zhijun

    2016-01-01

    Endogenous Netrin-1 (NT-1) protein was significantly increased after cerebral ischemia, which may participate in the repair after transient cerebral ischemic injury. In this work, we explored whether NT-1 can be steadily overexpressed by adeno-associated virus (AAV) and the exogenous NT-1 can promote neural stem cells migration from the subventricular zone (SVZ) region after cerebral ischemia. Adult CD-1 mice were injected stereotacticly with AAV carrying NT-1 gene (AAV-NT-1). Mice underwent 60 min of middle cerebral artery (MCA) occlusion 1 week after injection. We found that NT-1 mainly expressed in neuron and astrocyte, and the expression level of NT-1 significantly increased 1 week after AAV-NT-1 gene transfer and lasted for 28 days, even after transient middle cerebral artery occlusion (tMCAO) as well (p < 0.05). Immunohistochemistry results showed that the number of neural stem cells was greatly increased in the SVZ region of AAV-NT-1-transduced mice compared with control mice. Our study showed that overexpressed NT-1 promoted neural stem cells migration from SVZ. This result suggested that NT-1 is a promising factor for repairing and remodeling after focal cerebral ischemia.

  6. Adult subependymal neural precursors, but not differentiated cells, undergo rapid cathodal migration in the presence of direct current electric fields.

    Directory of Open Access Journals (Sweden)

    Robart Babona-Pilipos

    Full Text Available BACKGROUND: The existence of neural stem and progenitor cells (together termed neural precursor cells in the adult mammalian brain has sparked great interest in utilizing these cells for regenerative medicine strategies. Endogenous neural precursors within the adult forebrain subependyma can be activated following injury, resulting in their proliferation and migration toward lesion sites where they differentiate into neural cells. The administration of growth factors and immunomodulatory agents following injury augments this activation and has been shown to result in behavioural functional recovery following stroke. METHODS AND FINDINGS: With the goal of enhancing neural precursor migration to facilitate the repair process we report that externally applied direct current electric fields induce rapid and directed cathodal migration of pure populations of undifferentiated adult subependyma-derived neural precursors. Using time-lapse imaging microscopy in vitro we performed an extensive single-cell kinematic analysis demonstrating that this galvanotactic phenomenon is a feature of undifferentiated precursors, and not differentiated phenotypes. Moreover, we have shown that the migratory response of the neural precursors is a direct effect of the electric field and not due to chemotactic gradients. We also identified that epidermal growth factor receptor (EGFR signaling plays a role in the galvanotactic response as blocking EGFR significantly attenuates the migratory behaviour. CONCLUSIONS: These findings suggest direct current electric fields may be implemented in endogenous repair paradigms to promote migration and tissue repair following neurotrauma.

  7. Monitoring the differentiation and migration patterns of neural cells derived from human embryonic stem cells using a microfluidic culture system.

    Science.gov (United States)

    Lee, Nayeon; Park, Jae Woo; Kim, Hyung Joon; Yeon, Ju Hun; Kwon, Jihye; Ko, Jung Jae; Oh, Seung-Hun; Kim, Hyun Sook; Kim, Aeri; Han, Baek Soo; Lee, Sang Chul; Jeon, Noo Li; Song, Jihwan

    2014-06-01

    Microfluidics can provide unique experimental tools to visualize the development of neural structures within a microscale device, which is followed by guidance of neurite growth in the axonal isolation compartment. We utilized microfluidics technology to monitor the differentiation and migration of neural cells derived from human embryonic stem cells (hESCs). We co-cultured hESCs with PA6 stromal cells, and isolated neural rosette-like structures, which subsequently formed neurospheres in suspension culture. Tuj1-positive neural cells, but not nestin-positive neural precursor cells (NPCs), were able to enter the microfluidics grooves (microchannels), suggesting that neural cell-migratory capacity was dependent upon neuronal differentiation stage. We also showed that bundles of axons formed and extended into the microchannels. Taken together, these results demonstrated that microfluidics technology can provide useful tools to study neurite outgrowth and axon guidance of neural cells, which are derived from human embryonic stem cells.

  8. Transplanted Neural Progenitor Cells from Distinct Sources Migrate Differentially in an Organotypic Model of Brain Injury

    Science.gov (United States)

    Ngalula, Kapinga P.; Cramer, Nathan; Schell, Michael J.; Juliano, Sharon L.

    2015-01-01

    Brain injury is a major cause of long-term disability. The possibility exists for exogenously derived neural progenitor cells to repair damage resulting from brain injury, although more information is needed to successfully implement this promising therapy. To test the ability of neural progenitor cells (NPCs) obtained from rats to repair damaged neocortex, we transplanted neural progenitor cell suspensions into normal and injured slice cultures of the neocortex acquired from rats on postnatal day 0–3. Donor cells from E16 embryos were obtained from either the neocortex, including the ventricular zone (VZ) for excitatory cells, ganglionic eminence (GE) for inhibitory cells or a mixed population of the two. Cells were injected into the ventricular/subventricular zone (VZ/SVZ) or directly into the wounded region. Transplanted cells migrated throughout the cortical plate with GE and mixed population donor cells predominately targeting the upper cortical layers, while neocortically derived NPCs from the VZ/SVZ migrated less extensively. In the injured neocortex, transplanted cells moved predominantly into the wounded area. NPCs derived from the GE tended to be immunoreactive for GABAergic markers while those derived from the neocortex were more strongly immunoreactive for other neuronal markers such as MAP2, TUJ1, or Milli-Mark. Cells transplanted in vitro acquired the electrophysiological characteristics of neurons, including action potential generation and reception of spontaneous synaptic activity. This suggests that transplanted cells differentiate into neurons capable of functionally integrating with the host tissue. Together, our data suggest that transplantation of neural progenitor cells holds great potential as an emerging therapeutic intervention for restoring function lost to brain damage. PMID:26500604

  9. Transplanted neural progenitor cells from distinct sources migrate differentially in an organotypic model of brain injury

    Directory of Open Access Journals (Sweden)

    Kapinga eNgalula

    2015-10-01

    Full Text Available Brain injury is a major cause of long-term disability. The possibility exists for exogenously derived neural progenitor cells to repair damage resulting from brain injury, although more information is needed to successfully implement this promising therapy. To test the ability of neural progenitor cells (NPCs obtained from rats to repair damaged neocortex, we transplanted neural progenitor cell suspensions into normal and injured slice cultures of the neocortex acquired from rats on postnatal day 0-3. Donor cells from E16 embryos were obtained from either the neocortex, including the ventricular zone (VZ for excitatory cells, ganglionic eminence (GE for inhibitory cells or a mixed population of the two. Cells were injected into the ventricular/subventricular zone (VZ/SVZ or directly into the wounded region. Transplanted cells migrated throughout the cortical plate with GE and mixed population donor cells predominately targeting the upper cortical layers, while neocortically derived NPCs from the VZ/SVZ migrated less extensively. In the injured neocortex, transplanted cells moved predominantly into the wounded area. NPCs derived from the GE tended to be immunoreactive for GABAergic markers while those derived from the neocortex were more strongly immunoreactive for other neuronal markers such as MAP2, TUJ1, or Milli-Mark. Cells transplanted in vitro acquired the electrophysiological characteristics of neurons, including action potential generation and reception of spontaneous synaptic activity. This suggests that transplanted cells differentiate into neurons capable of functionally integrating with the host tissue. Together, our data suggest that transplantation of neural progenitor cells holds great potential as an emerging therapeutic intervention for restoring function lost to brain damage.

  10. GDNF is required for neural colonization of the pancreas.

    Science.gov (United States)

    Muñoz-Bravo, José Luis; Hidalgo-Figueroa, María; Pascual, Alberto; López-Barneo, José; Leal-Cerro, Alfonso; Cano, David A

    2013-09-01

    The mammalian pancreas is densely innervated by both the sympathetic and parasympathetic nervous systems, which control exocrine and endocrine secretion. During embryonic development, neural crest cells migrating in a rostrocaudal direction populate the gut, giving rise to neural progenitor cells. Recent studies in mice have shown that neural crest cells enter the pancreatic epithelium at E11.5. However, the cues that guide the migration of neural progenitors into the pancreas are poorly defined. In this study we identify glial cell line-derived neurotrophic factor (GDNF) as a key player in this process. GDNF displays a dynamic expression pattern during embryonic development that parallels the chronology of migration and differentiation of neural crest derivatives in the pancreas. Conditional inactivation of Gdnf in the pancreatic epithelium results in a dramatic loss of neuronal and glial cells and in reduced parasympathetic innervation in the pancreas. Importantly, the innervation of other regions of the gut remains unaffected. Analysis of Gdnf mutant mouse embryos and ex vivo experiments indicate that GDNF produced in the pancreas acts as a neurotrophic factor for gut-resident neural progenitor cells. Our data further show that exogenous GDNF promotes the proliferation of pancreatic progenitor cells in organ culture. In summary, our results point to GDNF as crucial for the development of the intrinsic innervation of the pancreas.

  11. Migration

    NARCIS (Netherlands)

    Gienapp, P.; Candolin, Ulrika; Wong, Bob

    2012-01-01

    This chapter examines how human-induced environmental changes affect migration. It explores how such changes affect conditions along the migration route, as well as the cues that are used in the timing of migration such as the celestial bodies and the planet's magnetic field. It emphasizes the effec

  12. Migration of neural stem cells to ischemic brain regions in ischemic stroke in rats.

    Science.gov (United States)

    Dai, Jiong; Li, Shan-Quan; Qiu, Yong-Ming; Xiong, Wen-Hao; Yin, Yu-Hua; Jia, Feng; Jiang, Ji-Yao

    2013-09-27

    An established rat model of ischemic stroke, produced by temporary middle cerebral artery occlusion and reperfusion (MCAO/R), was used in the evaluation of organ migration of intra-arterial (IA) transplantation of neural stem cells (NSCs). Immediately after transplantation, ischemic rats (n=8) transplanted with either NSCs (MCAO/R+NSC group) or NSC growth medium (MCAO/R+medium group) exhibited neurological dysfunction but rats in a sham+NSCs group (n=5) did not. During the post-operative period, neurological function improved to a similar extent in both MCAO/R groups. At 10 and 14 days post-transplantation, neurological function in the MCAO/R+NSC group was superior to that in the MCAO/R+medium group (pcells had begun differentiating into neurons and astrocytes. Rat NSCs can migrate into the ischemic region, survive, and differentiate into astrocytes and neurons, and thereby potentially improve neurologic function after cerebral ischemia. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Migration and differentiation of neural progenitor cells after recurrent laryngeal nerve avulsion in rats.

    Directory of Open Access Journals (Sweden)

    Wan Zhao

    Full Text Available To investigate migration and differentiation of neural progenitor cells (NPCs from the ependymal layer to the nucleus ambiguus (NA after recurrent laryngeal nerve (RLN avulsion. All of the animals received a CM-DiI injection in the left lateral ventricle. Forty-five adult rats were subjected to a left RLN avulsion injury, and nine rats were used as controls. 5-Bromo-2-deoxyuridine (BrdU was injected intraperitoneally. Immunohistochemical analyses were performed in the brain stems at different time points after RLN injury. After RLN avulsion, the CM-DiI+ NPCs from the ependymal layer migrated to the lesioned NA. CM-DiI+/GFAP+ astrocytes, CM-DiI+/DCX+ neuroblasts and CM-DiI+/NeuN+ neurons were observed in the migratory stream. However, the ipsilateral NA included only CM-DiI+ astrocytes, not newborn neurons. After RLN avulsion, the NPCs in the ependymal layer of the 4th ventricle or central canal attempt to restore the damaged NA. We first confirm that the migratory stream includes both neurons and glia differentiated from the NPCs. However, only differentiated astrocytes are successfully incorporated into the NA. The presence of both cell types in the migratory process may play a role in repairing RLN injuries.

  14. Migration and differentiation of neural progenitor cells after recurrent laryngeal nerve avulsion in rats.

    Science.gov (United States)

    Zhao, Wan; Xu, Wen

    2014-01-01

    To investigate migration and differentiation of neural progenitor cells (NPCs) from the ependymal layer to the nucleus ambiguus (NA) after recurrent laryngeal nerve (RLN) avulsion. All of the animals received a CM-DiI injection in the left lateral ventricle. Forty-five adult rats were subjected to a left RLN avulsion injury, and nine rats were used as controls. 5-Bromo-2-deoxyuridine (BrdU) was injected intraperitoneally. Immunohistochemical analyses were performed in the brain stems at different time points after RLN injury. After RLN avulsion, the CM-DiI+ NPCs from the ependymal layer migrated to the lesioned NA. CM-DiI+/GFAP+ astrocytes, CM-DiI+/DCX+ neuroblasts and CM-DiI+/NeuN+ neurons were observed in the migratory stream. However, the ipsilateral NA included only CM-DiI+ astrocytes, not newborn neurons. After RLN avulsion, the NPCs in the ependymal layer of the 4th ventricle or central canal attempt to restore the damaged NA. We first confirm that the migratory stream includes both neurons and glia differentiated from the NPCs. However, only differentiated astrocytes are successfully incorporated into the NA. The presence of both cell types in the migratory process may play a role in repairing RLN injuries.

  15. Dpysl2 (CRMP2) and Dpysl3 (CRMP4) phosphorylation by Cdk5 and DYRK2 is required for proper positioning of Rohon-Beard neurons and neural crest cells during neurulation in zebrafish.

    Science.gov (United States)

    Tanaka, Hideomi; Morimura, Rii; Ohshima, Toshio

    2012-10-15

    Dpysl2 (CRMP2) and Dpysl3 (CRMP4) are involved in neuronal polarity and axon elongation in cultured neurons. These proteins are expressed in various regions of the developing nervous system, but their roles in vivo are largely unknown. In dpysl2 and dpysl3 double morphants, Rohon-Beard (RB) primary sensory neurons that were originally located bilaterally along the midline shifted their position to a more medial location in the dorsal-most part of spinal cord. A similar phenotype was observed in the cdk5 and dyrk2 double morphants. Dpysl2 and Dpysl3 phosphorylation mimics recovered this phenotype. Cell transplantation analysis demonstrated that this ectopic RB cell positioning was non-cell autonomous and correlated with the abnormal position of neural crest cells (NCCs), which also occupied the dorsal-most part of the spinal cord during the neural rod formation stage. The cell position of other interneuron and motor neurons within the central nervous system was normal in these morphants. These results suggest that the phosphorylation of Dpysl2 and Dpysl3 by Cdk5 and DYRK2 is required for the proper positioning of RB neurons and NCCs during neurulation in zebrafish embryos.

  16. Cell-permeable p38 MAP kinase promotes migration of adult neural stem/progenitor cells

    Science.gov (United States)

    Hamanoue, Makoto; Morioka, Kazuhito; Ohsawa, Ikuroh; Ohsawa, Keiko; Kobayashi, Masaaki; Tsuburaya, Kayo; Akasaka, Yoshikiyo; Mikami, Tetsuo; Ogata, Toru; Takamatsu, Ken

    2016-01-01

    Endogenous neural stem/progenitor cells (NPCs) can migrate toward sites of injury, but the migration activity of NPCs is insufficient to regenerate damaged brain tissue. In this study, we showed that p38 MAP kinase (p38) is expressed in doublecortin-positive adult NPCs. Experiments using the p38 inhibitor SB203580 revealed that endogenous p38 participates in NPC migration. To enhance NPC migration, we generated a cell-permeable wild-type p38 protein (PTD-p38WT) in which the HIV protein transduction domain (PTD) was fused to the N-terminus of p38. Treatment with PTD-p38WT significantly promoted the random migration of adult NPCs without affecting cell survival or differentiation; this effect depended on the cell permeability and kinase activity of the fusion protein. These findings indicate that PTD-p38WT is a novel and useful tool for unraveling the roles of p38, and that this protein provides a reasonable approach for regenerating the injured brain by enhancing NPC migration. PMID:27067799

  17. Why are enteric ganglia so small? Role of differential adhesion of enteric neurons and enteric neural crest cells. [v1; ref status: indexed, http://f1000r.es/59q

    Directory of Open Access Journals (Sweden)

    Benjamin N. Rollo

    2015-05-01

    Full Text Available The avian enteric nervous system (ENS consists of a vast number of unusually small ganglia compared to other peripheral ganglia. Each ENS ganglion at mid-gestation has a core of neurons and a shell of mesenchymal precursor/glia-like enteric neural crest (ENC cells. To study ENS cell ganglionation we isolated midgut ENS cells by HNK-1 fluorescence-activated cell sorting (FACS from E5 and E8 quail embryos, and from E9 chick embryos. We performed cell-cell aggregation assays which revealed a developmentally regulated functional increase in ENS cell adhesive function, requiring both Ca2+ -dependent and independent adhesion. This was consistent with N-cadherin and NCAM labelling. Neurons sorted to the core of aggregates, surrounded by outer ENC cells, showing that neurons had higher adhesion than ENC cells. The outer surface of aggregates became relatively non-adhesive, correlating with low levels of NCAM and N-cadherin on this surface of the outer non-neuronal ENC cells. Aggregation assays showed that ENS cells FACS selected for NCAM-high and enriched for enteric neurons formed larger and more coherent aggregates than unsorted ENS cells. In contrast, ENS cells of the NCAM-low FACS fraction formed small, disorganised aggregates.  This suggests a novel mechanism for control of ENS ganglion morphogenesis where i differential adhesion of ENS neurons and ENC cells controls the core/shell ganglionic structure and ii the ratio of neurons to ENC cells dictates the equilibrium ganglion size by generation of an outer non-adhesive surface.

  18. IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation

    Directory of Open Access Journals (Sweden)

    Dobkin Carl

    2011-05-01

    Full Text Available Abstract Background Although the cellular mechanisms responsible for the pathogenesis of autism are not understood, a growing number of studies have suggested that localized inflammation of the central nervous system (CNS may contribute to the development of autism. Recent evidence shows that IL-6 has a crucial role in the development and plasticity of CNS. Methods Immunohistochemistry studies were employed to detect the IL-6 expression in the cerebellum of study subjects. In vitro adenoviral gene delivery approach was used to over-express IL-6 in cultured cerebellar granule cells. Cell adhesion and migration assays, DiI labeling, TO-PRO-3 staining and immunofluorescence were used to examine cell adhesion and migration, dendritic spine morphology, cell apoptosis and synaptic protein expression respectively. Results In this study, we found that IL-6 was significantly increased in the cerebellum of autistic subjects. We investigated how IL-6 affects neural cell development and function by transfecting cultured mouse cerebellar granule cells with an IL-6 viral expression vector. We demonstrated that IL-6 over-expression in granule cells caused impairments in granule cell adhesion and migration but had little effect on the formation of dendritic spines or granule cell apoptosis. However, IL-6 over-expression stimulated the formation of granule cell excitatory synapses, without affecting inhibitory synapses. Conclusions Our results provide further evidence that aberrant IL-6 may be associated with autism. In addition, our results suggest that the elevated IL-6 in the autistic brain could alter neural cell adhesion, migration and also cause an imbalance of excitatory and inhibitory circuits. Thus, increased IL-6 expression may be partially responsible for the pathogenesis of autism.

  19. Profiling of drugs and environmental chemicals for functional impairment of neural crest migration in a novel stem cell-based test battery

    NARCIS (Netherlands)

    Zimmer, B.; Pallocca, G.; Dreser, N.; Foerster, S.; Waldmann, T.; Westerhout, J.; Julien, S.; Krause, K.H.; Van Thriel, C.; Hengstler, J.G.; Sachinidis, A.; Bosgra, S.; Leist, M.

    2014-01-01

    Developmental toxicity in vitro assays have hitherto been established as stand-alone systems, based on a limited number of toxicants. Within the embryonic stem cell-based novel alternative tests project, we developed a test battery framework that allows inclusion of any developmental toxicity assay

  20. Nogo-a regulates neural precursor migration in the embryonic mouse cortex.

    Science.gov (United States)

    Mathis, Carole; Schröter, Aileen; Thallmair, Michaela; Schwab, Martin E

    2010-10-01

    Although Nogo-A has been intensively studied for its inhibitory effect on axonal regeneration in the adult central nervous system, little is known about its function during brain development. In the embryonic mouse cortex, Nogo-A is expressed by radial precursor/glial cells and by tangentially migrating as well as postmigratory neurons. We studied radially migrating neuroblasts in wild-type and Nogo-A knockout (KO) mouse embryos. In vitro analysis showed that Nogo-A and its receptor components NgR, Lingo-1, TROY, and p75 are expressed in cells emigrating from embryonic forebrain-derived neurospheres. Live imaging revealed an increased cell motility when Nogo-A was knocked out or blocked with antibodies. Antibodies blocking NgR or Lingo-1 showed the same motility-enhancing effect supporting a direct role of surface Nogo-A on migration. Bromodeoxyuridine (BrdU) labeling of embryonic day (E)15.5 embryos demonstrated that Nogo-A influences the radial migration of neuronal precursors. At E17.5, the normal transient accumulation of radially migrating precursors within the subventricular zone was not detectable in the Nogo-A KO mouse cortex. At E19, migration to the upper cortical layers was disturbed. These findings suggest that Nogo-A and its receptor complex play a role in the interplay of adhesive and repulsive cell interactions in radial migration during cortical development.

  1. Co-culture of neural crest stem cells (NCSC and insulin producing beta-TC6 cells results in cadherin junctions and protection against cytokine-induced beta-cell death.

    Directory of Open Access Journals (Sweden)

    Anongnad Ngamjariyawat

    Full Text Available PURPOSE: Transplantation of pancreatic islets to Type 1 diabetes patients is hampered by inflammatory reactions at the transplantation site leading to dysfunction and death of insulin producing beta-cells. Recently we have shown that co-transplantation of neural crest stem cells (NCSCs together with the islet cells improves transplantation outcome. The aim of the present investigation was to describe in vitro interactions between NCSCs and insulin producing beta-TC6 cells that may mediate protection against cytokine-induced beta-cell death. PROCEDURES: Beta-TC6 and NCSC cells were cultured either alone or together, and either with or without cell culture inserts. The cultures were then exposed to the pro-inflammatory cytokines IL-1β and IFN-γ for 48 hours followed by analysis of cell death rates (flow cytometry, nitrite production (Griess reagent, protein localization (immunofluorescence and protein phosphorylation (flow cytometry. RESULTS: We observed that beta-TC6 cells co-cultured with NCSCs were protected against cytokine-induced cell death, but not when separated by cell culture inserts. This occurred in parallel with (i augmented production of nitrite from beta-TC6 cells, indicating that increased cell survival allows a sustained production of nitric oxide; (ii NCSC-derived laminin production; (iii decreased phospho-FAK staining in beta-TC6 cell focal adhesions, and (iv decreased beta-TC6 cell phosphorylation of ERK(T202/Y204, FAK(Y397 and FAK(Y576. Furthermore, co-culture also resulted in cadherin and beta-catenin accumulations at the NCSC/beta-TC6 cell junctions. Finally, the gap junction inhibitor carbenoxolone did not affect cytokine-induced beta-cell death during co-culture with NCSCs. CONCLUSION: In summary, direct contacts, but not soluble factors, promote improved beta-TC6 viability when co-cultured with NCSCs. We hypothesize that cadherin junctions between NCSC and beta-TC6 cells promote powerful signals that maintain beta

  2. Electric signals regulate directional migration of ventral midbrain derived dopaminergic neural progenitor cells via Wnt/GSK3β signaling.

    Science.gov (United States)

    Liu, Jia; Zhu, Bangfu; Zhang, Gaofeng; Wang, Jian; Tian, Weiming; Ju, Gong; Wei, Xiaoqing; Song, Bing

    2015-01-01

    Neural progenitor cell (NPC) replacement therapy is a promising treatment for neurodegenerative disorders including Parkinson's disease (PD). It requires a controlled directional migration and integration of NPCs, for example dopaminergic (DA) progenitor cells, into the damaged host brain tissue. There is, however, only limited understanding of how to regulate the directed migration of NPCs to the diseased or damaged brain tissues for repair and regeneration. The aims of this study are to explore the possibility of using a physiological level of electrical stimulation to regulate the directed migration of ventral midbrain NPCs (NPCs(vm)), and to investigate their potential regulation via GSK3β and associated downstream effectors. We tested the effects of direct-current (DC) electric fields (EFs) on the migration behavior of the NPCs(vm). A DC EF induced directional cell migration toward the cathode, namely electrotaxis. Reversal of the EF polarity triggered a sharp reversal of the NPC(vm) electrotaxis. The electrotactic response was both time and EF voltage dependent. Pharmacologically inhibiting the canonical Wnt/GSK3β pathway significantly reduced the electrotactic response of NPCs(vm), which is associated with the down-regulation of GSK3β phosphorylation, β-catenin activation and CLASP2 expression. This was further proved by RNA interference of GSK3β, which also showed a significantly reduced electrotactic response in association with reduced β-catenin activation and CLASP2 expression. In comparison, RNA interference of β-catenin slightly reduced electrotactic response and CLASP2 expression. Both pharmacological inhibition of Wnt/GSK3β and RNA interference of GSK3β/β-catenin clearly reduced the asymmetric redistribution of CLASP2 and its co-localization with α-tubulin. These results suggest that Wnt/GSK3β signaling contributes to the electrotactic response of NPCs(vm) through the coordination of GSK3β phosphorylation, β-catenin activation, CLASP2

  3. The role of CXC chemokine ligand (CXCL)12-CXC chemokine receptor (CXCR)4 signalling in the migration of neural stem cells towards a brain tumour

    NARCIS (Netherlands)

    van der Meulen, A. A. E.; Biber, K.; Lukovac, S.; Balasubramaniyan, V.; den Dunnen, W. F. A.; Boddeke, H. W. G. M.; Mooij, J. J. A.

    2009-01-01

    Aims: It has been shown that neural stem cells (NSCs) migrate towards areas of brain injury or brain tumours and that NSCs have the capacity to track infiltrating tumour cells. The possible mechanism behind the migratory behaviour of NSCs is not yet completely understood. As chemokines are involved

  4. Apoptosis is not required for mammalian neural tube closure.

    Science.gov (United States)

    Massa, Valentina; Savery, Dawn; Ybot-Gonzalez, Patricia; Ferraro, Elisabetta; Rongvaux, Anthony; Cecconi, Francesco; Flavell, Richard; Greene, Nicholas D E; Copp, Andrew J

    2009-05-19

    Apoptotic cell death occurs in many tissues during embryonic development and appears to be essential for processes including digit formation and cardiac outflow tract remodeling. Studies in the chick suggest a requirement for apoptosis during neurulation, because inhibition of caspase activity was found to prevent neural tube closure. In mice, excessive apoptosis occurs in association with failure of neural tube closure in several genetic mutants, but whether regulated apoptosis is also necessary for neural tube closure in mammals is unknown. Here we investigate the possible role of apoptotic cell death during mouse neural tube closure. We confirm the presence of apoptosis in the neural tube before and during closure, and identify a correlation with 3 main events: bending and fusion of the neural folds, postfusion remodeling of the dorsal neural tube and surface ectoderm, and emigration of neural crest cells. Both Casp3 and Apaf1 null embryos exhibit severely reduced apoptosis, yet neurulation proceeds normally in the forebrain and spine. In contrast, the mutant embryos fail to complete neural tube closure in the midbrain and hindbrain. Application of the apoptosis inhibitors z-Vad-fmk and pifithrin-alpha to neurulation-stage embryos in culture suppresses apoptosis but does not prevent initiation or progression of neural tube closure along the entire neuraxis, including the midbrain and hindbrain. Remodeling of the surface ectoderm to cover the closed tube, as well as delamination and migration of neural crest cells, also appear to be normal in the apoptosis-suppressed embryos. We conclude that apoptosis is not required for neural tube closure in the mouse embryo.

  5. Transplantation dose alters the dynamics of human neural stem cell engraftment, proliferation and migration after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Katja M. Piltti

    2015-09-01

    Full Text Available The effect of transplantation dose on the spatiotemporal dynamics of human neural stem cell (hNSC engraftment has not been quantitatively evaluated in the central nervous system. We investigated changes over time in engraftment/survival, proliferation, and migration of multipotent human central nervous system-derived neural stem cells (hCNS-SCns transplanted at doses ranging from 10,000 to 500,000 cells in spinal cord injured immunodeficient mice. Transplant dose was inversely correlated with measures of donor cell proliferation at 2 weeks post-transplant (WPT and dose-normalized engraftment at 16 WPT. Critically, mice receiving the highest cell dose exhibited an engraftment plateau, in which the total number of engrafted human cells never exceeded the initial dose. These data suggest that donor cell expansion was inversely regulated by target niche parameters and/or transplantation density. Investigation of the response of donor cells to the host microenvironment should be a key variable in defining target cell dose in pre-clinical models of CNS disease and injury.

  6. Chondroitin sulfate proteoglycans regulate the growth, differentiation and migration of multipotent neural precursor cells through the integrin signaling pathway

    Directory of Open Access Journals (Sweden)

    Lü He-Zuo

    2009-10-01

    Full Text Available Abstract Background Neural precursor cells (NPCs are defined by their ability to proliferate, self-renew, and retain the potential to differentiate into neurons and glia. Deciphering the factors that regulate their behaviors will greatly aid in their use as potential therapeutic agents or targets. Chondroitin sulfate proteoglycans (CSPGs are prominent components of the extracellular matrix (ECM in the central nervous system (CNS and are assumed to play important roles in controlling neuronal differentiation and development. Results In the present study, we demonstrated that CSPGs were constitutively expressed on the NPCs isolated from the E16 rat embryonic brain. When chondroitinase ABC was used to abolish the function of endogenous CSPGs on NPCs, it induced a series of biological responses including the proliferation, differentiation and migration of NPCs, indicating that CSPGs may play a critical role in NPC development and differentiation. Finally, we provided evidence suggesting that integrin signaling pathway may be involved in the effects of CSPGs on NPCs. Conclusion The present study investigating the influence and mechanisms of CSPGs on the differentiation and migration of NPCs should help us to understand the basic biology of NPCs during CNS development and provide new insights into developing new strategies for the treatment of the neurological disorders in the CNS.

  7. Abnormal neuronal migration: radiologic-clinic study. Alteraciones en la migracion neural: estudio clinico-radiologico

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Fernandez, M.; Menor Serrano, F.; Bordon Ferre, F.; Garcia Tena, J.; Esteban Hernandez, E.; Sanguesa Nebot, C.; Marti Bonnati, L. (Hospital Infantil La Fe, Valencia (Spain))

    1994-01-01

    We present our experience in 18 pediatric patients with abnormal neuronal migration. Seven cases of heterotopia of the gray matter, 7 agyria-pachygyria complexes, 1 case of polymicrogyria, 2 cases of schizencephaly and 1 case of hemimegalencephaly were diagnosed by means of ultrasonography, computed tomography and magnetic resonance. The clinical picture was reviewed in each case, with special attention to the occurrence of convulsions, psycho motor development and visual changes. In general, the greater the morphological change, the greater the neurological involvement in these patients. However, the two cases of schizencephaly presented mild clinical expression. Magnetic resonance increases the diagnostic yield in neuronal migration disorders. Nevertheless, either ultrasonography or, especially, computed tomography is useful as a first diagnostic approach in these malformative disorders. (Author)

  8. The effect of pulsed electric fields on the electrotactic migration of human neural progenitor cells through the involvement of intracellular calcium signaling.

    Science.gov (United States)

    Hayashi, Hisamitsu; Edin, Fredrik; Li, Hao; Liu, Wei; Rask-Andersen, Helge

    2016-12-01

    Endogenous electric fields (EFs) are required for the physiological control of the central nervous system development. Application of the direct current EFs to neural stem cells has been studied for the possibility of stem cell transplantation as one of the therapies for brain injury. EFs generated within the nervous system are often associated with action potentials and synaptic activity, apparently resulting in a pulsed current in nature. The aim of this study is to investigate the effect of pulsed EF, which can reduce the cytotoxicity, on the migration of human neural progenitor cells (hNPCs). We applied the mono-directional pulsed EF with a strength of 250mV/mm to hNPCs for 6h. The migration distance of the hNPCs exposed to pulsed EF was significantly greater compared with the control not exposed to the EF. Pulsed EFs, however, had less of an effect on the migration of the differentiated hNPCs. There was no significant change in the survival of hNPCs after exposure to the pulsed EF. To investigate the role of Ca(2+) signaling in electrotactic migration of hNPCs, pharmacological inhibition of Ca(2+) channels in the EF-exposed cells revealed that the electrotactic migration of hNPCs exposed to Ca(2+) channel blockers was significantly lower compared to the control group. The findings suggest that the pulsed EF induced migration of hNPCs is partly influenced by intracellular Ca(2+) signaling.

  9. Chemokines influence the migration and fate of neural precursor cells from the young adult and middle-aged rat subventricular zone.

    Science.gov (United States)

    Gordon, R J; Mehrabi, N F; Maucksch, C; Connor, B

    2012-01-01

    We have previously demonstrated a role for the chemokines MCP-1, MIP-1α and GRO-α in directing subventricular zone (SVZ)-derived neural precursor cell migration towards the site of cell death in the adult rodent brain. However the influence of chemokines such as MCP-1, MIP-1α and GRO-α on the differentiation of adult neural precursor cells has not previously been investigated. Further, as the majority of neurological disorders and injuries occur during ageing, it is important to investigate the effect of chemokines on adult neural precursor cell cultures obtained from the ageing brain. This study therefore examined the effect of MCP-1, MIP-1α and GRO-α on SVZ-derived neural precursor cell differentiation in vitro, and assessed whether precursor cells from the middle-aged rat brain (13 months old) follow the same migratory and differential profile as neural precursor cells obtained from the young adult rat brain (2 months old). We observed that each of the chemokines examined generated differing effects in regards to neuronal or glial differentiation. Further, both MIP-1α and GRO-α increased total cell number, suggesting an effect on precursor cell proliferation and/or survival. In agreement with cultures obtained from young adult brains, SVZ-derived neural precursor cells cultured from the middle-aged brain exhibited chemotactic migration in response to a concentration gradient. These results indicate that the chemokines MCP-1, MIP-1α and GRO-α can influence both the migration and fate choice of SVZ-derived neural precursor cells, as well as promoting cell viability. While a response to each of these chemokines is maintained in the middle-aged brain, a distinct age-related alteration in differential fate can be identified.

  10. Modelling Rho GTPase biochemistry to predict collective cell migration

    Science.gov (United States)

    Merchant, Brian; Feng, James

    The collective migration of cells, due to individual cell polarization and intercellular contact inhibition of locomotion, features prominently in embryogenesis and metastatic cancers. Existing methods for modelling collectively migrating cells tend to rely either on highly abstracted agent-based models, or on continuum approximations of the group. Both of these frameworks represent intercellular interactions such as contact inhibition of locomotion as hard-coded rules defining model cells. In contrast, we present a vertex-dynamics framework which predicts polarization and contact inhibition of locomotion naturally from an underlying model of Rho GTPase biochemistry and cortical mechanics. We simulate the interaction between many such model cells, and study how modulating Rho GTPases affects migratory characteristics of the group, in the context of long-distance collective migration of neural crest cells during embryogenesis.

  11. Neural progenitor cells orchestrate microglia migration and positioning into the developing cortex.

    Science.gov (United States)

    Arnò, Benedetta; Grassivaro, Francesca; Rossi, Chiara; Bergamaschi, Andrea; Castiglioni, Valentina; Furlan, Roberto; Greter, Melanie; Favaro, Rebecca; Comi, Giancarlo; Becher, Burkhard; Martino, Gianvito; Muzio, Luca

    2014-01-01

    Microglia are observed in the early developing forebrain and contribute to the regulation of neurogenesis through still unravelled mechanisms. In the developing cerebral cortex, microglia cluster in the ventricular/subventricular zone (VZ/SVZ), a region containing Cxcl12-expressing basal progenitors (BPs). Here we show that the ablation of BP as well as genetic loss of Cxcl12 affect microglia recruitment into the SVZ. Ectopic Cxcl12 expression or pharmacological blockage of CxcR4 further supports that Cxcl12/CxcR4 signalling is involved in microglial recruitment during cortical development. Furthermore, we found that cell death in the developing forebrain triggers microglial proliferation and that this is mediated by the release of macrophage migration inhibitory factor (MIF). Finally, we show that the depletion of microglia in mice lacking receptor for colony-stimulating factor-1 (Csf-1R) reduces BPs into the cerebral cortex.

  12. Role of low voltage activated calcium channels in neuritogenesis and active migration of embryonic neural progenitor cells.

    Science.gov (United States)

    Louhivuori, Lauri M; Louhivuori, Verna; Wigren, Henna-Kaisa; Hakala, Elina; Jansson, Linda C; Nordström, Tommy; Castrén, Maija L; Akerman, Karl E

    2013-04-15

    The central role of calcium influx and electrical activity in embryonic development raises important questions about the role and regulation of voltage-dependent calcium influx. Using cultured neural progenitor cell (NPC) preparations, we recorded barium currents through voltage-activated channels using the whole-cell configuration of the patch-clamp technique and monitored intracellular free calcium concentrations with Fura-2 digital imaging. We found that NPCs as well as expressing high-voltage-activated (HVA) calcium channels express functional low-threshold voltage-dependent calcium channels in the very early stages of differentiation (5 h to 1 day). The size of the currents recorded at -50 versus -20 mV after 1 day in differentiation was dependent on the nature of the charge carrier. Peak currents measured at -20 mV in the presence 10 mM Ca2+ instead of 10 mM Ba2+ had a tendency to be smaller, whereas the nature of the divalent species did not influence the amplitude measured at -50 mV. The T-type channel blockers mibefradil and NNC 55-0396 significantly reduced the calcium responses elicited by depolarizing with extracellular potassium, while the overall effect of the HVA calcium channel blockers was small at differentiation day 1. At differentiation day 20, the calcium responses were effectively blocked by nifedipine. Time-lapse imaging of differentiating neurospheres cultured in the presence of low-voltage-activated (LVA) blockers showed a significant decrease in the number of active migrating neuron-like cells and neurite extensions. Together, these data provide evidence that LVA calcium channels are involved in the physiology of differentiating and migrating NPCs.

  13. Bone Marrow Stromal Cells Express Neural Phenotypes in vitro and Migrate in Brain After Transplantation in vivo

    Institute of Scientific and Technical Information of China (English)

    LI-YE YANG; TIAN-HUA HUANG; LIAN MA

    2006-01-01

    Objective To investigate the differentiation of bone marrow stromal cells (BMSC) into neuron-like cells and to explore their potential use for neural transplantation. Methods BMSC from rats and adult humans were cultured in serum-containing media. Salvia miltiorrhiza was used to induce human BMSC (hBMSC) to differentiate. BMSC were identified with immunocytochemistry. Semi-quantitative RT-PCR was used to examine mRNA expression of neurofilamentl (NF1), nestin and neuron-specific enolase (NSE) in rat BMSC (rBMSC). Rat BMSC labelled by Hoschst33258 were transplanted into striatum of rats to trace migration and distribution. Results BMSC expressed NSE, NF1 and nestin mRNA, and NF1 mRNA and expression was increased with induction of Salvia miltiorrhiza. A small number of hBMSC were stained by anti-nestin, anti-GFAP and anti-S100. Salvia miltiorrhiza could induce hBMSC to differentiate into neuron-like cells.Some differentiated neuron-like cells, that expressed NSE, beta-tubulin and NF-200, showed typical neuron morphology, but some neuron-like cells also expressed alpha smooth muscle protein, making their neuron identification complicated. rBMSC could migrate and adapted in the host brains after being transplanted. Conclusion Bone marrow stromal cells could express phenotypes of neurons, and Salvia miltiorrhiza could induce hBMSC to differentiate into neuron-like cells. If BMSC could be converted into neurons instead of mesenchymal derivatives, they would be an abundant and accessible cellular source to treat a variety of neurological diseases.

  14. Electric field-controlled directed migration of neural progenitor cells in 2D and 3D environments.

    Science.gov (United States)

    Meng, Xiaoting; Li, Wenfei; Young, Fraser; Gao, Runchi; Chalmers, Laura; Zhao, Min; Song, Bing

    2012-02-16

    Endogenous electric fields (EFs) occur naturally in vivo and play a critical role during tissue/organ development and regeneration, including that of the central nervous system(1,2). These endogenous EFs are generated by cellular regulation of ionic transport combined with the electrical resistance of cells and tissues. It has been reported that applied EF treatment can promote functional repair of spinal cord injuries in animals and humans(3,4). In particular, EF-directed cell migration has been demonstrated in a wide variety of cell types(5,6), including neural progenitor cells (NPCs)(7,8). Application of direct current (DC) EFs is not a commonly available technique in most laboratories. We have described detailed protocols for the application of DC EFs to cell and tissue cultures previously(5,11). Here we present a video demonstration of standard methods based on a calculated field strength to set up 2D and 3D environments for NPCs, and to investigate cellular responses to EF stimulation in both single cell growth conditions in 2D, and the organotypic spinal cord slice in 3D. The spinal cordslice is an ideal recipient tissue for studying NPC ex vivo behaviours, post-transplantation, because the cytoarchitectonic tissue organization is well preserved within these cultures(9,10). Additionally, this ex vivo model also allows procedures that are not technically feasible to track cells in vivo using time-lapse recording at the single cell level. It is critically essential to evaluate cell behaviours in not only a 2D environment, but also in a 3D organotypic condition which mimicks the in vivo environment. This system will allow high-resolution imaging using cover glass-based dishes in tissue or organ culture with 3D tracking of single cell migration in vitro and ex vivo and can be an intermediate step before moving onto in vivo paradigms.

  15. Emergence of oligarchy in collective cell migration

    Science.gov (United States)

    Schumacher, Linus; Maini, Philip; Baker, Ruth

    Identifying the principles of collective cell migration has the potential to help prevent birth defects, improve regenerative therapies and develop model systems for cancer metastasis. In collaboration with experimental biologists, we use computational simulations of a hybrid model, comprising individual-based stochastic cell movement coupled to a reaction-diffusion equation for a chemoattractant, to explore the role of cell specialisation in the guidance of collective cell migration. In the neural crest, an important migratory cell population in vertebrate embryo development, we present evidence that just a few cells are guiding group migration in a cell-induced chemoattractant gradient that determines the switch between ``leader'' and ``follower'' behaviour in individual cells. This leads us to more generally consider under what conditions cell specialisation might become advantageous for collective migration. Alternatively, individual cell responses to locally different microenvironmental conditions could create the (artefactual) appearance of heterogeneity in a population of otherwise identical cellular agents. We explore these questions using a self-propelled particle model as a minimal description for collective cell migration in two and three dimensions.

  16. Defective neuronal migration and inhibition of bipolar to multipolar transition of migrating neural cells by Mesoderm-Specific Transcript, Mest, in the developing mouse neocortex.

    Science.gov (United States)

    Ji, Liting; Bishayee, Kausik; Sadra, Ali; Choi, Seunghyuk; Choi, Wooyul; Moon, Sungho; Jho, Eek-Hoon; Huh, Sung-Oh

    2017-07-04

    Brain developmental disorders such as lissencephaly can result from faulty neuronal migration and differentiation during the formation of the mammalian neocortex. The cerebral cortex is a modular structure, where developmentally, newborn neurons are generated as a neuro-epithelial sheet and subsequently differentiate, migrate and organize into their final positions in the cerebral cortical plate via a process involving both tangential and radial migration. The specific role of Mest, an imprinted gene, in neuronal migration has not been previously studied. In this work, we reduced expression of Mest with in utero electroporation of neuronal progenitors in the developing embryonic mouse neocortex. Reduction of Mest levels by shRNA significantly reduced the number of neurons migrating to the cortical plate. Also, Mest-knockdown disrupted the transition of bipolar neurons into multipolar neurons migrating out of the sub-ventricular zone region. The migrating neurons also adopted a more tangential migration pattern upon knockdown of the Mest message, losing their potential to attach to radial glia cells, required for radial migration. The differentiation and migration properties of neurons via Wnt-Akt signaling were affected by Mest changes. In addition, miR-335, encoded in a Mest gene intron, was identified as being responsible for blocking the default tangential migration of the neurons. Our results suggest that Mest and its intron product, miR-335, play important roles in neuronal migration with Mest regulating the morphological transition of primary neurons required in the formation of the mammalian neocortex. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Effects of PYY on the interdigestive migrating myoelectric complex in the small intestine in vivo and the neural and endocrinal mechanisms of the effects

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective To investigate the effects of peptide YY (PYY) on the interdigestive migrating myoelectric complex (MMC) in the small intestine in vivo and explore the neural and endocrinal mechanisms of the effects. Methods Sprague-Dawley rats were supplied with a venous catheter and bipolar electrodes in the duodenum and jejunum for electromyography of stomach and small intestine in wake state. PYY,phentolamine,nitro-L-arginine (L-NNA,the inhibitor of nitric oxide synthase) and atropine were served with PYY res...

  18. 神经干细胞的迁移和网络化%Migration and nerve net building of neural stem cells

    Institute of Scientific and Technical Information of China (English)

    薛杉; 张旺明; 徐如祥

    2005-01-01

    目的:从神经干细胞的迁移现象及其定向迁移的可能机制,神经网络的研究进展和神经干细胞迁移和网络化的意义等方面进行综述.资料来源:应用计算机检索Pubmed数据库1970/2004期间的相关文章,限定文章语言种类为English,检索词为"neural stem cell,migration,nerve net".资料选择:对资料进行初审,选取神经干细胞迁移和网络化的随机和非随机对照实验.排除综述类和重复的文章.资料提炼:共收集到相关文献39篇,共检出16篇文献涉及神经干细胞的迁移和网络化研究的进展,其余文献均被排除.资料综合:对于神经系统退行性病变及严重损伤,神经干细胞移植有可能替代衰老变性和死亡的神经细胞,重建神经网络,恢复失去的脑功能.神经细胞的迁移和网络化原理可以应用以解决神经干细胞移植后的存活、分化、迁移及神经网络建立的问题,实现脑功能修复重建.结论:神经干细胞在特定的情况下可以迁移到预计的地方并建立神经网络.%OBJECTIVE: A series of recent studies have demonstrated the mechanism of migration and nerve net of neural stem cells. These theories have further substantiated neural stem cell transplantation. In view of these new findings, this paper reviewed the mode of migration and information of network. The significance of these theories was discussed.DATA SOURCE: We search on Pubmed with the key words "neural stem cell", "migration", and "nerve net", limiting the language to English and publication date from 1970 to 2004. At the same time we searched on CNKI.STUDY SELECTION: We selected the randomized and non-randomized controlled studies related to migration and nerve net building of neural stem cells. Review articles and articles with repetitive studies were excluded.DATA EXTRACTION: Among 39 papers selected, 16 papers concerning the development of this topic were selected, and the others were excluded.DATA SYNTHESIS: For

  19. MicroRNA-21 can promote the differentiation of neural crest stem cells from human follicle into Schwann cells%miR-21促进毛囊神经嵴干细胞分化为许旺细胞

    Institute of Scientific and Technical Information of China (English)

    王艳华; 刘浩; 辛红; 白晓雪; 刘学娟; 倪宇昕

    2014-01-01

    BACKGROUND:MicroRNAs are a class of non-coding single-stranded smal RNA molecules containing 18–25 nucleotides that can bind to the 3’UTR of the mRNA molecules and regulate the protein expression of target genes. Studies have shown that microRNAs could regulate Schwann cel differentiation, myelination maturation and growth of the peripheral nerve. OBJECTIVE: To observe the expression of miR-21 during the differentiation of neural crest stem cels from human folicle into Schwann cels. METHODS: Hair folicle stem cels were cultured and neural crest stem cels were separated from human hair folicles by flow cytometry. Then, the neural crest stem cels were induced to differentiate into Schwann cels. qRT-PCR was used to detect the expression of miR-21 in the process of induction. Neural crest stem cels from hair folicles were divided into control group, agomir-21 group, agomir-NC group, antagomir-21 group and antagomir-NC group. The control group was without intervention. Agomir-21 group was transfected with miR-21 agonist, whereas Antagomir-21 group was transfected with miR-21 antagonist. agomir-NC group and antagomir-NC group were respectively negative controls of agomir-21 group and antagomir-21 group. Finaly, the possible target of miR-21 was searched in database. RESULTS AND CONCLUSION: Neural crest stem cels were successfuly separated from human hair folicles using flow cytometry and induced to differentiate into Schwann cels. In the process of cel differentiation, miR-21 expression was upregulated gradualy. Transfection of miR-21 agonist could enhance the stem cel differentiation into Schwann cels, whereas transfection of miR-21 antagonist could weaken the differentiation capacity of stem cels. Furthermore, we found via database searching that SOX2 maybe a target of miR-21 and participate in the regulatory role of miR-21. This study suggested that hair folicle neural crest stem cels can be used as an important source of Schwann cels and miR-21 can promote the

  20. Contralaterally transplanted human embryonic stem cell-derived neural precursor cells (ENStem-A) migrate and improve brain functions in stroke-damaged rats.

    Science.gov (United States)

    Chang, Da-Jeong; Oh, Seung-Hun; Lee, Nayeon; Choi, Chunggab; Jeon, Iksoo; Kim, Hyun Sook; Shin, Dong Ah; Lee, Seo Eun; Kim, Daehong; Song, Jihwan

    2013-11-15

    The transplantation of neural precursor cells (NPCs) is known to be a promising approach to ameliorating behavioral deficits after stroke in a rodent model of middle cerebral artery occlusion (MCAo). Previous studies have shown that transplanted NPCs migrate toward the infarct region, survive and differentiate into mature neurons to some extent. However, the spatiotemporal dynamics of NPC migration following transplantation into stroke animals have yet to be elucidated. In this study, we investigated the fates of human embryonic stem cell (hESC)-derived NPCs (ENStem-A) for 8 weeks following transplantation into the side contralateral to the infarct region using 7.0T animal magnetic resonance imaging (MRI). T2- and T2*-weighted MRI analyses indicated that the migrating cells were clearly detectable at the infarct boundary zone by 1 week, and the intensity of the MRI signals robustly increased within 4 weeks after transplantation. Afterwards, the signals were slightly increased or unchanged. At 8 weeks, we performed Prussian blue staining and immunohistochemical staining using human-specific markers, and found that high percentages of transplanted cells migrated to the infarct boundary. Most of these cells were CXCR4-positive. We also observed that the migrating cells expressed markers for various stages of neural differentiation, including Nestin, Tuj1, NeuN, TH, DARPP-32 and SV38, indicating that the transplanted cells may partially contribute to the reconstruction of the damaged neural tissues after stroke. Interestingly, we found that the extent of gliosis (glial fibrillary acidic protein-positive cells) and apoptosis (TUNEL-positive cells) were significantly decreased in the cell-transplanted group, suggesting that hESC-NPCs have a positive role in reducing glia scar formation and cell death after stroke. No tumors formed in our study. We also performed various behavioral tests, including rotarod, stepping and modified neurological severity score tests, and

  1. Systemic neutrophil depletion modulates the migration and fate of transplanted human neural stem cells to rescue functional repair.

    Science.gov (United States)

    Nguyen, Hal X; Hooshmand, Mitra J; Saiwai, Hirokazu; Maddox, Jake; Salehi, Arjang; Lakatos, Anita; Nishi, Rebecca; Salazar, Desiree; Uchida, Nobuko; Anderson, Aileen J

    2017-08-28

    The interaction of transplanted stem cells with local cellular and molecular cues in the host central nervous system (CNS) microenvironment may affect the potential for repair by therapeutic cell populations. In this regard, spinal cord injury (SCI), Alzheimer's disease, and other neurological injuries and diseases all exhibit dramatic and dynamic changes to the host microenvironment over time. Previously, we reported that delayed transplantation of CNS-derived human neural stem cells (hCNS-SCns) at 9 or 30 days post-SCI (dpi) resulted in extensive donor cell migration, predominantly neuronal and oligodendrocytic donor cell differentiation, and functional locomotor improvements. Here, we report that acute transplantation of hCNS-SCns at 0 dpi resulted in localized astroglial differentiation of donor cells near the lesion epicenter, and failure to produce functional improvement in an all-female immunodeficient mouse model. Critically, specific immunodepletion of neutrophils (polymorphonuclear leukocytes, PMN) blocked hCNS-SCns astroglial differentiation near the lesion epicenter and rescued the capacity of these cells to restore function. These data represent novel evidence that a host immune cell population can block the potential for functional repair derived from a therapeutic donor cell population, and support targeting the inflammatory microenvironment in combination with cell transplantation after SCI.SIGNIFICANCE STATEMENTThe interaction of transplanted cells with local cellular and molecular cues in the host microenvironment is a key variable that may shape the translation of neurotransplantation research to the clinical SCI human population, and few studies have investigated these events. We show that the specific immunodepletion of PMN neutrophils using anti-Ly6G inhibits donor cell astrogliosis and rescues the capacity of a donor cell population to promote locomotor improvement after SCI. Critically, our data demonstrate novel evidence that a specific

  2. Dexamethasone blocks the migration of the human neuroblastoma cell line SK-N-SH

    Directory of Open Access Journals (Sweden)

    L.A. Casulari

    2006-09-01

    Full Text Available Glucocorticoids (Gc influence the differentiation of neural crest-derived cells such as those composing sympathoadrenal tumors like pheochromocytomas, as well as neuroblastomas and gangliomas. In order to obtain further information on the effects of Gc on cells evolving from the neural crest, we have used the human neuroblastoma cell line SK-N-SH to analyze: 1 the presence and the binding characteristics of Gc receptors in these cells, 2 the effect of dexamethasone (Dex on the migration of SK-N-SH cells, and 3 the effect of Dex on the organization of the cytoskeleton of SK-N-SH cells. We show that: 1 receptors that bind [³H]-Dex with high affinity and high capacity (Kd of 9.6 nM, Bmax of 47 fmol/mg cytosolic protein, corresponding to 28,303 sites/cell are present in cytosolic preparations of SK-N-SH cells, and 2 treatment with Dex (in the range of 10 nM to 1 µM has an inhibitory effect (from 100% to 74 and 43%, respectively on the chemotaxis of SK-N-SH cells elicited by fetal bovine serum. This inhibition is completely reversed by the Gc receptor antagonist RU486 (1 µM, and 3 as demonstrated by fluorescent phalloidin-actin detection, the effect of Dex (100 nM on SK-N-SH cell migration is accompanied by modifications of the cytoskeleton organization that appear with stress fibers. These modifications did not take place in the presence of 1 µM RU486. The present data demonstrate for the first time that Dex affects the migration of neuroblastoma cells as well as their cytoskeleton organization by interacting with specific receptors. These findings provide new insights on the mechanism(s of action of Gc on cells originating in the neural crest.

  3. Dexamethasone blocks the migration of the human neuroblastoma cell line SK-N-SH

    Directory of Open Access Journals (Sweden)

    L.A. Casulari

    Full Text Available Glucocorticoids (Gc influence the differentiation of neural crest-derived cells such as those composing sympathoadrenal tumors like pheochromocytomas, as well as neuroblastomas and gangliomas. In order to obtain further information on the effects of Gc on cells evolving from the neural crest, we have used the human neuroblastoma cell line SK-N-SH to analyze: 1 the presence and the binding characteristics of Gc receptors in these cells, 2 the effect of dexamethasone (Dex on the migration of SK-N-SH cells, and 3 the effect of Dex on the organization of the cytoskeleton of SK-N-SH cells. We show that: 1 receptors that bind [³H]-Dex with high affinity and high capacity (Kd of 9.6 nM, Bmax of 47 fmol/mg cytosolic protein, corresponding to 28,303 sites/cell are present in cytosolic preparations of SK-N-SH cells, and 2 treatment with Dex (in the range of 10 nM to 1 µM has an inhibitory effect (from 100% to 74 and 43%, respectively on the chemotaxis of SK-N-SH cells elicited by fetal bovine serum. This inhibition is completely reversed by the Gc receptor antagonist RU486 (1 µM, and 3 as demonstrated by fluorescent phalloidin-actin detection, the effect of Dex (100 nM on SK-N-SH cell migration is accompanied by modifications of the cytoskeleton organization that appear with stress fibers. These modifications did not take place in the presence of 1 µM RU486. The present data demonstrate for the first time that Dex affects the migration of neuroblastoma cells as well as their cytoskeleton organization by interacting with specific receptors. These findings provide new insights on the mechanism(s of action of Gc on cells originating in the neural crest.

  4. Crested Ibis%朱鹮

    Institute of Scientific and Technical Information of China (English)

    丁长青

    2010-01-01

    @@ The Crested Ibis(Nipponia nippon,Plates Ⅰ and Ⅱ)(Ciconiiformes: Threskiomithidae)is a mediumsized wading bird,ranging in length from 57.5 to 84.0 cm,with a longish neck and legs,a red featherless face with a crested white head.Its most distinctive morphological character is the long,slender and decurved bill,perfectly adapted for probing in water and mud,or even in cracks on dry ground.The nonbreeding adult is white,with orange cinnamon tones in the tail and flight-feathers.The long bill is black with a red tip.Its red legs do not extend beyond the tail in flight(Hoyo et al.,1992).

  5. Overexpression of CD44 in neural precursor cells improves trans-endothelial migration and facilitates their invasion of perivascular tissues in vivo.

    Directory of Open Access Journals (Sweden)

    Cyrille Deboux

    Full Text Available Neural precursor (NPC based therapies are used to restore neurons or oligodendrocytes and/or provide neuroprotection in a large variety of neurological diseases. In multiple sclerosis models, intravenously (i.v -delivered NPCs reduced clinical signs via immunomodulation. We demonstrated recently that NPCs were able to cross cerebral endothelial cells in vitro and that the multifunctional signalling molecule, CD44 involved in trans-endothelial migration of lymphocytes to sites of inflammation, plays a crucial role in extravasation of syngeneic NPCs. In view of the role of CD44 in NPCs trans-endothelial migration in vitro, we questioned presently the benefit of CD44 overexpression by NPCs in vitro and in vivo, in EAE mice. We show that overexpression of CD44 by NPCs enhanced over 2 folds their trans-endothelial migration in vitro, without impinging on the proliferation or differentiation potential of the transduced cells. Moreover, CD44 overexpression by NPCs improved significantly their elongation, spreading and number of filopodia over the extracellular matrix protein laminin in vitro. We then tested the effect of CD44 overexpression after i.v. delivery in the tail vein of EAE mice. CD44 overexpression was functional invivo as it accelerated trans-endothelial migration and facilitated invasion of HA expressing perivascular sites. These in vitro and in vivo data suggest that CD44 may be crucial not only for NPC crossing the endothelial layer but also for facilitating invasion of extravascular tissues.

  6. Neural development of the neuregulin receptor ErbB4 in the cerebral cortex and the hippocampus: preferential expression by interneurons tangentially migrating from the ganglionic eminences.

    Science.gov (United States)

    Yau, Hau-Jie; Wang, Hsiao-Fang; Lai, Cary; Liu, Fu-Chin

    2003-03-01

    The receptor tyrosine kinases represent an important class of signal transduction molecules that have been shown to play critical roles in neural development. We report in the present study that the neuregulin receptor ErbB4 is preferentially expressed by interneurons that are migrating tangentially from the ventral to the dorsal rat telencephalon. ErbB4 immunoreactivity was detected in the medial ganglionic eminence as early as embryonic day (E) 13 at the inception of tangential migration. Prominent ErbB4-positive migratory streams consisting of cells double-labeled with ErbB4 and Dlx, a marker of tangentially migrating cells, were found to advance along the lower intermediate zone and the marginal zone from the ventrolateral to the dorsomedial cortex at E16-E18. After E20, the ErbB4-positive stream in the lower intermediate zone shifted towards the germinal zone and further extended via the cortex into the hippocampal primordium. ErbB4 was not expressed by Tbr1-positive glutamatergic projection neurons during development. ErbB4 was preferentially expressed by the majority of parvalbumin-positive interneurons and subsets of other GABAergic interneurons in the cerebral cortex and the hippocampus in adulthood. The early onset and preferential expression of ErbB4 in tangentially migrating interneurons suggests that neuregulin/ErbB4 signaling may regulate the development and function of telencephalic interneurons.

  7. Multi-cellular logistics of collective cell migration.

    Directory of Open Access Journals (Sweden)

    Masataka Yamao

    Full Text Available During development, the formation of biological networks (such as organs and neuronal networks is controlled by multicellular transportation phenomena based on cell migration. In multi-cellular systems, cellular locomotion is restricted by physical interactions with other cells in a crowded space, similar to passengers pushing others out of their way on a packed train. The motion of individual cells is intrinsically stochastic and may be viewed as a type of random walk. However, this walk takes place in a noisy environment because the cell interacts with its randomly moving neighbors. Despite this randomness and complexity, development is highly orchestrated and precisely regulated, following genetic (and even epigenetic blueprints. Although individual cell migration has long been studied, the manner in which stochasticity affects multi-cellular transportation within the precisely controlled process of development remains largely unknown. To explore the general principles underlying multicellular migration, we focus on the migration of neural crest cells, which migrate collectively and form streams. We introduce a mechanical model of multi-cellular migration. Simulations based on the model show that the migration mode depends on the relative strengths of the noise from migratory and non-migratory cells. Strong noise from migratory cells and weak noise from surrounding cells causes "collective migration," whereas strong noise from non-migratory cells causes "dispersive migration." Moreover, our theoretical analyses reveal that migratory cells attract each other over long distances, even without direct mechanical contacts. This effective interaction depends on the stochasticity of the migratory and non-migratory cells. On the basis of these findings, we propose that stochastic behavior at the single-cell level works effectively and precisely to achieve collective migration in multi-cellular systems.

  8. EphB–ephrin-B2 interactions are required for thymus migration during organogenesis

    Science.gov (United States)

    Foster, Katie E.; Gordon, Julie; Cardenas, Kim; Veiga-Fernandes, Henrique; Makinen, Taija; Grigorieva, Elena; Wilkinson, David G.; Blackburn, C. Clare; Richie, Ellen; Manley, Nancy R.; Adams, Ralf H.; Kioussis, Dimitris; Coles, Mark C.

    2010-01-01

    Thymus organogenesis requires coordinated interactions of multiple cell types, including neural crest (NC) cells, to orchestrate the formation, separation, and subsequent migration of the developing thymus from the third pharyngeal pouch to the thoracic cavity. The molecular mechanisms driving these processes are unclear; however, NC-derived mesenchyme has been shown to play an important role. Here, we show that, in the absence of ephrin-B2 expression on thymic NC-derived mesenchyme, the thymus remains in the cervical area instead of migrating into the thoracic cavity. Analysis of individual NC-derived thymic mesenchymal cells shows that, in the absence of ephrin-B2, their motility is impaired as a result of defective EphB receptor signaling. This implies a NC-derived cell-specific role of EphB–ephrin-B2 interactions in the collective migration of the thymic rudiment during organogenesis. PMID:20616004

  9. Physical exercise regulates neural stem cells proliferation and migration via SDF-1α/CXCR4 pathway in rats after ischemic stroke.

    Science.gov (United States)

    Luo, Jing; Hu, Xiquan; Zhang, Liying; Li, Lili; Zheng, Haiqing; Li, Menglin; Zhang, Qingjie

    2014-08-22

    Physical exercise is beneficial to functional recovery after stroke. But its underling mechanism is still unknown. It is reported that neural stem cells (NSCs) proliferation, migration and differentiation play an important role in recovery following stroke, furthermore, stromal cell derived factor-1α (SDF-1α) and its chemokine receptor type 4 (CXCR4) regulate NSCs migration. This study is aimed to examine whether physical exercise improves functional recovery by enhancing NSCs proliferation, migration and differentiation through SDF-1α/CXCR4 axis in rats after ischemic stroke. Rats that sustained transient middle cerebral artery occlusion (MCAO) were treated with physical exercise after MCAO. AMD3100 (an antagonist of CXCR4) was used to confirm the effect of SDF-1α/CXCR4 axis on exercise-mediated NSCs mobilization. We found that physical exercise improved functional recovery and reduced infarct volume. Moreover, 5-bromo-2'-deoxyuridine (BrdU), doublecortin (Dcx)-positive cells in the ipsilateral SVZ and BrdU/neuron-specific nuclear protein (NeuN)-positive cells in the ipsilateral striatum were increased by physical exercise. Simultaneously, SDF-1α-positive cells were significantly higher in physical exercise group than those in control group. Our results indicate that physical exercise improves functional recovery in ischemic rats possibly by enhancement of NSCs proliferation, migration in the SVZ and differentiation in the damaged striatum. Moreover, SDF-1α/CXCR4 pathway involves in exercise-mediated NSCs proliferation and migration but not differentiation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Computational modelling of cell chain migration reveals mechanisms that sustain follow-the-leader behaviour.

    Science.gov (United States)

    Wynn, Michelle L; Kulesa, Paul M; Schnell, Santiago

    2012-07-07

    Follow-the-leader chain migration is a striking cell migratory behaviour observed during vertebrate development, adult neurogenesis and cancer metastasis. Although cell-cell contact and extracellular matrix (ECM) cues have been proposed to promote this phenomenon, mechanisms that underlie chain migration persistence remain unclear. Here, we developed a quantitative agent-based modelling framework to test mechanistic hypotheses of chain migration persistence. We defined chain migration and its persistence based on evidence from the highly migratory neural crest model system, where cells within a chain extend and retract filopodia in short-lived cell contacts and move together as a collective. In our agent-based simulations, we began with a set of agents arranged as a chain and systematically probed the influence of model parameters to identify factors critical to the maintenance of the chain migration pattern. We discovered that chain migration persistence requires a high degree of directional bias in both lead and follower cells towards the target. Chain migration persistence was also promoted when lead cells maintained cell contact with followers, but not vice-versa. Finally, providing a path of least resistance in the ECM was not sufficient alone to drive chain persistence. Our results indicate that chain migration persistence depends on the interplay of directional cell movement and biased cell-cell contact.

  11. Design Guidelines for Low Crested Structures

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Lamberti, Alberto

    2004-01-01

    The paper presents an overview of the design guidelines for low crested structures (LCS's) to be applied in coastal protection schemes. The design guidelines are formulated as a part of the research project: Environmental Design of Low Crested Coastal Defence Structures (DELOS) within the EC 5FP ...

  12. Morbidity from iliac crest bone harvesting

    NARCIS (Netherlands)

    Kalk, WWI; Raghoebar, GM; Jansma, J; Boering, G

    1996-01-01

    Purpose: The iliac crest is the most common donor site for autogenous bone grafting in maxillofacial surgery. The aim of this study was to evaluate retrospectively the morbidity of bone harvesting from the inner table of the anterior iliac crest. Patients and Methods: Sixty-five patients were recall

  13. 基于BP神经网络对七里街测站洪峰的预报与分析%The analysis and forecast of flood crest in Qilij ie Station based on the BP neural network

    Institute of Scientific and Technical Information of China (English)

    肖恭伟; 刘国林; 曹淑敏; 孙志阳

    2016-01-01

    According to the recursion in different section of time,and the monitoring data of wa-ter level in three hydrological sites including the east reach of Jianxi,Shuiji,and Jianyang,we find that the optimal node number of hidden layer of BP neural network is 10 through complex calculation,and establish a mathematical model to forecast the water level in Qilij ie Station using the BP neural network.On this basis,we can amend the forecast results with recursion in differ-ent section of time.The caculation results show that this method improves the forecast accuracy. It can be pointed out through calculation that the correction method of recursion in different sec-tion of time is a better choice due to the coincidence between results and facts.%在分析预报误差的时间分段递推修正方法的基础上,以建溪流域东游、水吉、建阳三个水文站点的水位监测数据为基础,计算得到BP神经网络隐含层最优节点数目为10,建立了 BP 神经网络对七里街测站水位预报的数学模型。在此基础上,利用时间分段递推修正方法对预报的结果进行修正,计算结果表明,时间分段递推修正方法使得预报精度提高很多,其结果与实际更加符合。

  14. Misexpression of BRE gene in the developing chick neural tube affects neurulation and somitogenesis.

    Science.gov (United States)

    Wang, Guang; Li, Yan; Wang, Xiao-Yu; Chuai, Manli; Yeuk-Hon Chan, John; Lei, Jian; Münsterberg, Andrea; Lee, Kenneth Ka Ho; Yang, Xuesong

    2015-03-01

    The brain and reproductive expression (BRE) gene is expressed in numerous adult tissues and especially in the nervous and reproductive systems. However, little is known about BRE expression in the developing embryo or about its role in embryonic development. In this study, we used in situ hybridization to reveal the spatiotemporal expression pattern for BRE in chick embryo during development. To determine the importance of BRE in neurogenesis, we overexpressed BRE and also silenced BRE expression specifically in the neural tube. We established that overexpressing BRE in the neural tube indirectly accelerated Pax7(+) somite development and directly increased HNK-1(+) neural crest cell (NCC) migration and TuJ-1(+) neurite outgrowth. These altered morphogenetic processes were associated with changes in the cell cycle of NCCs and neural tube cells. The inverse effect was obtained when BRE expression was silenced in the neural tube. We also determined that BMP4 and Shh expression in the neural tube was affected by misexpression of BRE. This provides a possible mechanism for how altering BRE expression was able to affect somitogenesis, neurogenesis, and NCC migration. In summary, our results demonstrate that BRE plays an important role in regulating neurogenesis and indirectly somite differentiation during early chick embryo development.

  15. NeuroD1 mediates nicotine-induced migration and invasion via regulation of the nicotinic acetylcholine receptor subunits in a subset of neural and neuroendocrine carcinomas.

    Science.gov (United States)

    Osborne, Jihan K; Guerra, Marcy L; Gonzales, Joshua X; McMillan, Elizabeth A; Minna, John D; Cobb, Melanie H

    2014-06-01

    Cigarette smoking is a major risk factor for acquisition of small cell lung cancer (SCLC). A role has been demonstrated for the basic helix-loop-helix transcription factor NeuroD1 in the pathogenesis of neural and neuroendocrine lung cancer, including SCLC. In the present study we investigate the possible function of NeuroD1 in established tumors, as well as actions early on in pathogenesis, in response to nicotine. We demonstrate that nicotine up-regulates NeuroD1 in immortalized normal bronchial epithelial cells and a subset of undifferentiated carcinomas. Increased expression of NeuroD1 subsequently leads to regulation of expression and function of the nicotinic acetylcholine receptor subunit cluster of α3, α5, and β4. In addition, we find that coordinated expression of these subunits by NeuroD1 leads to enhanced nicotine-induced migration and invasion, likely through changes in intracellular calcium. These findings suggest that aspects of the pathogenesis of neural and neuroendocrine lung cancers may be affected by a nicotine- and NeuroD1-induced positive feedback loop.

  16. Polarized Macrophages Have Distinct Roles in the Differentiation and Migration of Embryonic Spinal-cord-derived Neural Stem Cells After Grafting to Injured Sites of Spinal Cord.

    Science.gov (United States)

    Zhang, Kun; Zheng, Jingjing; Bian, Ganlan; Liu, Ling; Xue, Qian; Liu, Fangfang; Yu, Caiyong; Zhang, Haifeng; Song, Bing; Chung, Sookja K; Ju, Gong; Wang, Jian

    2015-06-01

    Spinal cord injury (SCI) frequently provokes serious detrimental outcomes because neuronal regeneration is limited in the central nervous system (CNS). Thus, the creation of a permissive environment for transplantation therapy with neural stem/progenitor cells (NS/PCs) is a promising strategy to replace lost neuronal cells, promote repair, and stimulate functional plasticity after SCI. Macrophages are important SCI-associated inflammatory cells and a major source of secreted factors that modify the lesion milieu. Here, we used conditional medium (CM) from bone marrow-derived M1 or M2 polarized macrophages to culture murine NS/PCs. The NS/PCs showed enhanced astrocytic versus neuronal/oligodendrocytic differentiation in the presence of M1- versus M2-CM. Similarly, cotransplantation of NS/PCs with M1 and M2 macrophages into intact or injured murine spinal cord increased the number of engrafted NS/PC-derived astrocytes and neurons/oligodendrocytes, respectively. Furthermore, when cotransplantated with M2 macrophages, the NS/PC-derived neurons integrated into the local circuitry and enhanced locomotor recovery following SCI. Interesting, engrafted M1 macrophages promoted long-distance rostral migration of NS/PC-derived cells in a chemokine (C-X-C motif) receptor 4 (CXCR4)-dependent manner, while engrafted M2 macrophages resulted in limited cell migration of NS/PC-derived cells. Altogether, these findings suggest that the cotransplantation of NS/PCs together with polarized macrophages could constitute a promising therapeutic approach for SCI repair.

  17. New insights into directed cell migration: characteristics and mechanisms.

    Science.gov (United States)

    Gruler, H

    1995-01-01

    The present article describes how it is possible to elucidate the essential cellular machines controlling directed migration. Investigations are performed with cells like granulocytes, fibroblasts or neural crest cells and these cells are found to contain two independent types of machines, a steerer (controller without feedback) for the speed and an automatic controller (controller with feedback) for the angle of migration. The first intracellular signal is the distribution of membrane bound receptors occupied by kinesis stimulating molecules from the extracellular space. Motile force is produced by a linear motor supplied by the chemically amplified first intracellular signal (total number of occupied receptors). When properties of the cellular steering device are investigated, results show the angle of migration to be corrected by an automatic controller and an asymmetric distribution of occupied receptors to be the first intracellular signal for directed migration. Properties of the goal-seeking device are also investigated. As in many different types of technical machines, the cellular machinery operates in a cyclic manner which in the case of granulocytes a measuring cycle of 8 s and a response cycle of approximately 60 s. These cellular machines may be understood in terms of a self-ignition mechanism where the renewal of membrane bound receptors is the essential step.

  18. Sand wave migration predictor based on shape information

    NARCIS (Netherlands)

    Knaapen, M.A.F.

    2005-01-01

    [1] Migration of offshore seabed waves, which endangers the stability of pipelines and communication cables, is hard to measure. The migration rates are small compared to the measurement errors. Here, sandwave migration rates are determined from the change in the crest position deduced from long tim

  19. Stability of Low-Crested Breakwaters in Shallow Water Short Crested Waves

    DEFF Research Database (Denmark)

    Kramer, Morten Mejlhede; Burcharth, Hans Falk

    2003-01-01

    The paper presents results of 3D laboratory experiments on low-crested breakwaters. Two typical structural layouts were tested at model scale in a wave basin at Aalborg University, Denmark, to identify and quantify the influence of various hydrodynamic conditions (obliquity of short crested waves......, wave hight and wave steepness) and structural geometries (crest width and freeboard) on the stability of low-crested breakwaters. Results are given in terms of recommendations for design guidelines for structure stability. Damage parameters for the trunk and the roundhead are proposed based on analysis...

  20. High expression of adenylate cyclase-associated protein 1 accelerates the proliferation, migration and invasion of neural glioma cells.

    Science.gov (United States)

    Bao, Zhen; Qiu, Xiaojun; Wang, Donglin; Ban, Na; Fan, Shaochen; Chen, Wenjuan; Sun, Jie; Xing, Weikang; Wang, Yunfeng; Cui, Gang

    2016-04-01

    Adenylate cyclase-associated protein 1 (CAP1), a conserved member of cyclase-associated proteins was reported to be associated with the proliferation, migration or invasion of the tumors of pancreas, breast and liver, and was involved in astrocyte proliferation after acute Traumatic Brain Injury (TBI). In this study, we sought to investigate the character of CAP1 in the pathological process of human glioma by detecting human glioma specimens and cell lines. 43 of 100 specimens showed high expression of CAP1 via immunohistochemistry. With statistics analysis, we found out the expression level of CAP1 was correlated with the WHO grades of human glioma and was great positively related to Ki-67 (p<0.01). In vitro, silencing CAP1 in U251 and U87MG, the glioma cell lines with the relatively higher expression of CAP1, induced the proliferation of the cells significantly retarded, migration and invasion as well. Obviously, our results indicated that CAP1 participated in the molecular pathological process of glioma indeed, and in a certain sense, CAP1 might be a potential and promising molecular target for glioma diagnosis and therapies in the future.

  1. The effect of injectable gelatin-hydroxyphenylpropionic acid hydrogel matrices on the proliferation, migration, differentiation and oxidative stress resistance of adult neural stem cells.

    Science.gov (United States)

    Lim, Teck Chuan; Toh, Wei Seong; Wang, Li-Shan; Kurisawa, Motoichi; Spector, Myron

    2012-04-01

    Transplanted or endogenous neural stem cells often lack appropriate matrix in cavitary lesions in the central nervous system. In this study, gelatin-hydroxyphenylpropionic acid (Gtn-HPA), which could be enzymatically crosslinked with independent tuning of crosslinking degree and gelation rate, was explored as an injectable hydrogel for adult neural stem cells (aNSCs). The storage modulus of Gtn-HPA could be tuned (449-1717 Pa) to approximate adult brain tissue. Gtn-HPA was cytocompatible with aNSCs (yielding high viability >93%) and promoted aNSC adhesion. Gtn-HPA demonstrated a crosslinking-based approach for preconditioning aNSCs and increased the resistance of aNSCs to oxidative stress, improving their viability from 8-15% to 84% when challenged with 500 μM H(2)O(2). In addition, Gtn-HPA was able to modulate proliferation and migration of aNSCs in relation to the crosslinking degree. Finally, Gtn-HPA exhibited bias for neuronal cells. In mixed differentiation conditions, Gtn-HPA increased the proportion of aNSCs expressing neuronal marker β-tubulin III to a greater extent than that for astrocytic marker glial fibrillary acidic protein, indicating an enhancement in differentiation towards neuronal lineage. Between neuronal and astrocytic differentiation conditions, Gtn-HPA also selected for higher survival in the former. Overall, Gtn-HPA hydrogels are promising injectable matrices for supporting and influencing aNSCs in ways that may be beneficial for brain tissue regeneration after injuries.

  2. Up-regulation of Ras/Raf/ERK1/2 signaling in the spinal cord impairs neural cell migration, neurogenesis, synapse formation, and dendritic spine development

    Institute of Scientific and Technical Information of China (English)

    CAO Fu-jiang; ZHANG Xu; LIU Tao; LI Xia-wen; Mazar Malik; FENG Shi-qing

    2013-01-01

    Background The Ras/Raf/ERK1/2 signaling pathway controls many cellular responses such as cell proliferation,migration,differentiation,and death.In the nervous system,emerging evidence also points to a death-promoting role for ERK1/2 in both in vitro and in vivo models of neuronal death.To further investigate how Ras/Raf/ERK1/2 up-regulation may lead to the development of spinal cord injury,we developed a cellular model of Raf/ERK up-regulation by overexpressing c-Raf in cultured spinal cord neurons (SCNs) and dorsal root ganglions (DRGs).Methods DRGs and SCNs were prepared from C57BL/6J mouse pups.DRGs or SCNs were infected with Ad-Raf-1 or Ad-Null adenovirus alone.Cell adhesion assay and cell migration assay were investigated,Dil labeling was employed to examine the effect of the up-regulation of Ras/Raf/ERK1/2 signaling on the dendritic formation of spinal neurons.We used the TO-PRO-3 staining to examine the apoptotic effect of c-Raf on DRGs or SCNs.The effect on the synapse formation of neurons was measured by using immunofluorescence.Results We found that Raf/ERK up-regulation stimulates the migration of both SCNs and DRGs,and impairs the formation of excitatory synapses in SCNs.In addition,we found that Raf/ERK up-regulation inhibits the development of mature dendritic spines in SCNs.Investigating the possible mechanisms through which Raf/ERK up-regulation affects the excitatory synapse formation and dendritic spine development,we discovered that Raf/ERK up-regulation suppresses the development and maturation of SCNs.Conclusion The up-regulation of the Raf/ERK signaling pathway may contribute to the pathogenesis of spinal cord injury through both its impairment of the SCN development and causing neural circuit imbalances.

  3. Generalized crested products of Markov chains

    CERN Document Server

    D'Angeli, Daniele

    2010-01-01

    We define a finite Markov chain, called generalized crested product, which naturally appears as a generalization of the first crested product of Markov chains. A complete spectral analysis is developed and the $k$-step transition probability is given. It is important to remark that this Markov chain describes a more general version of the classical Ehrenfest diffusion model. As a particular case, one gets a generalization of the classical Insect Markov chain defined on the ultrametric space. Finally, an interpretation in terms of representation group theory is given, by showing the correspondence between the spectral decomposition of the generalized crested product and the Gelfand pairs associated with the generalized wreath product of permutation groups.

  4. Multiscale mechanisms of cell migration during development: theory and experiment.

    Science.gov (United States)

    McLennan, Rebecca; Dyson, Louise; Prather, Katherine W; Morrison, Jason A; Baker, Ruth E; Maini, Philip K; Kulesa, Paul M

    2012-08-01

    Long-distance cell migration is an important feature of embryonic development, adult morphogenesis and cancer, yet the mechanisms that drive subpopulations of cells to distinct targets are poorly understood. Here, we use the embryonic neural crest (NC) in tandem with theoretical studies to evaluate model mechanisms of long-distance cell migration. We find that a simple chemotaxis model is insufficient to explain our experimental data. Instead, model simulations predict that NC cell migration requires leading cells to respond to long-range guidance signals and trailing cells to short-range cues in order to maintain a directed, multicellular stream. Experiments confirm differences in leading versus trailing NC cell subpopulations, manifested in unique cell orientation and gene expression patterns that respond to non-linear tissue growth of the migratory domain. Ablation experiments that delete the trailing NC cell subpopulation reveal that leading NC cells distribute all along the migratory pathway and develop a leading/trailing cellular orientation and gene expression profile that is predicted by model simulations. Transplantation experiments and model predictions that move trailing NC cells to the migratory front, or vice versa, reveal that cells adopt a gene expression profile and cell behaviors corresponding to the new position within the migratory stream. These results offer a mechanistic model in which leading cells create and respond to a cell-induced chemotactic gradient and transmit guidance information to trailing cells that use short-range signals to move in a directional manner.

  5. Dynamic transcriptional signature and cell fate analysis reveals plasticity of individual neural plate border cells.

    Science.gov (United States)

    Roellig, Daniela; Tan-Cabugao, Johanna; Esaian, Sevan; Bronner, Marianne E

    2017-03-29

    The 'neural plate border' of vertebrate embryos contains precursors of neural crest and placode cells, both defining vertebrate characteristics. How these lineages segregate from neural and epidermal fates has been a matter of debate. We address this by performing a fine-scale quantitative temporal analysis of transcription factor expression in the neural plate border of chick embryos. The results reveal significant overlap of transcription factors characteristic of multiple lineages in individual border cells from gastrula through neurula stages. Cell fate analysis using a Sox2 (neural) enhancer reveals that cells that are initially Sox2+ cells can contribute not only to neural tube but also to neural crest and epidermis. Moreover, modulating levels of Sox2 or Pax7 alters the apportionment of neural tube versus neural crest fates. Our results resolve a long-standing question and suggest that many individual border cells maintain ability to contribute to multiple ectodermal lineages until or beyond neural tube closure.

  6. ADAM13 cleavage of cadherin-11 promotes CNC migration independently of the homophilic binding site.

    Science.gov (United States)

    Abbruzzese, Genevieve; Becker, Sarah F; Kashef, Jubin; Alfandari, Dominique

    2016-07-15

    The cranial neural crest (CNC) is a highly motile population of cells that is responsible for forming the face and jaw in all vertebrates and perturbing their migration can lead to craniofacial birth defects. Cell motility requires a dynamic modification of cell-cell and cell-matrix adhesion. In the CNC, cleavage of the cell adhesion molecule cadherin-11 by ADAM13 is essential for cell migration. This cleavage generates a shed extracellular fragment of cadherin-11 (EC1-3) that possesses pro-migratory activity via an unknown mechanism. Cadherin-11 plays an important role in modulating contact inhibition of locomotion (CIL) in the CNC to regulate directional cell migration. Here, we show that while the integral cadherin-11 requires the homophilic binding site to promote CNC migration in vivo, the EC1-3 fragment does not. In addition, we show that increased ADAM13 activity or expression of the EC1-3 fragment increases CNC invasiveness in vitro and blocks the repulsive CIL response in colliding cells. This activity requires the presence of an intact homophilic binding site on the EC1-3 suggesting that the cleavage fragment may function as a competitive inhibitor of cadherin-11 adhesion in CIL but not to promote cell migration in vivo.

  7. Directed migration of human neural progenitor cells to interleukin-1β is promoted by chemokines stromal cell-derived factor-1 and monocyte chemotactic factor-1 in mouse brains

    Directory of Open Access Journals (Sweden)

    Wu Yumei

    2012-07-01

    Full Text Available Abstract Background Neurogenesis, including the proliferation, migration and differentiation of neural progenitor cells (NPCs, is impaired in HIV-1 associated dementia (HAD. We previously demonstrated HIV-1-infected macrophages (HIV-MDM regulate stromal cell-derived factor 1 (SDF-1 production in astrocytes through Interleukin-1β (IL-1β. Chemokines are known to induce NPC migration; however, it remains unclear how chemokines produced in inflammation regulate NPC migration. Methods The secretion of SDF-1 and Monocyte chemotactic preotein-1 (MCP-1 in astrocytes upon IL-1β stimulation was measured by ELISA assay. Human NPCs were injected parallel along with IL-1β, SDF-1 or MCP-1 intracranially into basal ganglion 1 mm apart in SCID mice, and immunofluorescent staining was used to study the survival and migration of injected human NPCs. Results SDF-1 and MCP-1 are secreted by astrocytes upon IL-1β stimulation in a time-dependent manner. Injected human NPCs survived in SCID mice and migrated towards sites of IL-1β, SDF-1 and MCP-1 injection. Conclusions In conclusion, chemokines SDF-1 or MCP-1 secreted by astrocytes in the presence of IL-1β injection are attractive to NPCs injected into SCID mouse brains, suggesting that SDF-1 and MCP-1 play important roles in NPC migration during neuroinflammation.

  8. Slit/Robo1 signaling regulates neural tube development by balancing neuroepithelial cell proliferation and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guang; Li, Yan; Wang, Xiao-yu [Key Laboratory for Regenerative Medicine of The Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632 (China); Han, Zhe [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Chuai, Manli [College of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH (United Kingdom); Wang, Li-jing [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Ho Lee, Kenneth Ka [Stem Cell and Regeneration Thematic Research Programme, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin (Hong Kong); Geng, Jian-guo, E-mail: jgeng@umich.edu [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109 (United States); Yang, Xuesong, E-mail: yang_xuesong@126.com [Key Laboratory for Regenerative Medicine of The Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632 (China)

    2013-05-01

    Formation of the neural tube is the morphological hallmark for development of the embryonic central nervous system (CNS). Therefore, neural tube development is a crucial step in the neurulation process. Slit/Robo signaling was initially identified as a chemo-repellent that regulated axon growth cone elongation, but its role in controlling neural tube development is currently unknown. To address this issue, we investigated Slit/Robo1 signaling in the development of chick neCollege of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH, UKural tube and transgenic mice over-expressing Slit2. We disrupted Slit/Robo1 signaling by injecting R5 monoclonal antibodies into HH10 neural tubes to block the Robo1 receptor. This inhibited the normal development of the ventral body curvature and caused the spinal cord to curl up into a S-shape. Next, Slit/Robo1 signaling on one half-side of the chick embryo neural tube was disturbed by electroporation in ovo. We found that the morphology of the neural tube was dramatically abnormal after we interfered with Slit/Robo1 signaling. Furthermore, we established that silencing Robo1 inhibited cell proliferation while over-expressing Robo1 enhanced cell proliferation. We also investigated the effects of altering Slit/Robo1 expression on Sonic Hedgehog (Shh) and Pax7 expression in the developing neural tube. We demonstrated that over-expressing Robo1 down-regulated Shh expression in the ventral neural tube and resulted in the production of fewer HNK-1{sup +} migrating neural crest cells (NCCs). In addition, Robo1 over-expression enhanced Pax7 expression in the dorsal neural tube and increased the number of Slug{sup +} pre-migratory NCCs. Conversely, silencing Robo1 expression resulted in an enhanced Shh expression and more HNK-1{sup +} migrating NCCs but reduced Pax7 expression and fewer Slug{sup +} pre-migratory NCCs were observed. In conclusion, we propose that Slit/Robo1 signaling is involved in regulating neural tube

  9. Structural Stability of Low-Crested Breakwaters

    DEFF Research Database (Denmark)

    Kramer, Morten

    A more and more widespread way to protect the coast against ongoing erosion is to build so called Low Crested Structures (LCS’s). Despite a large number of coast parallel LCS’s exist, the structural performance of these structures are not fully clarified. The LCS’s dealt with are coast parallel...

  10. Diversification of crested wheatgrass stands in Utah

    Science.gov (United States)

    April Hulet

    2009-01-01

    Agropyron cristatum [L.] Gaertner (crested wheatgrass) continues to be seeded on burned wildlands. Effective control methods need to be developed to convert these seedings to more diverse native plant communities. This research was designed to determine effective ways to control A. cristatum and establish native species while...

  11. AP-2α regulates migration of GN-11 neurons via a specific genetic programme involving the Axl receptor tyrosine kinase

    Directory of Open Access Journals (Sweden)

    Orso Francesca

    2009-05-01

    Full Text Available Abstract Background Neuronal migration is a crucial process that allows neurons to reach their correct target location to allow the nervous system to function properly. AP-2α is a transcription factor essential for neural crest cell migration and its mutation results in apoptosis within this cell population, as demonstrated by genetic models. Results We down-modulated AP-2α expression in GN-11 neurons by RNA interference and observe reduced neuron migration following the activation of a specific genetic programme including the Adhesion Related Kinase (Axl gene. We prove that Axl is able to coordinate migration per se and by ChIP and promoter analysis we observe that its transcription is directly driven by AP-2α via the binding to one or more functional AP-2α binding sites present in its regulatory region. Analysis of migration in AP-2α null mouse embryo fibroblasts also reveals an essential role for AP-2α in cell movement via the activation of a distinct genetic programme. Conclusion We show that AP-2α plays an essential role in cell movement via the activation of cell-specific genetic programmes. Moreover, we demonstrate that the AP-2α regulated gene Axl is an essential player in GN-11 neuron migration.

  12. The Crest Wing Wave Energy Device

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    This report presents the results of a continuation of an experimental study of the wave energy converting abilities of the Crest Wing wave energy converter (WEC), in the following referred to as ‘Phase 2'. The Crest Wing is a WEC that uses its movement in matching the shape of an oncoming wave...... to generate power. Model tests have been performed using scale models (length scale 1:30), provided by WaveEnergyFyn, in regular and irregular wave states that can be found in Assessment of Wave Energy Devices. Best Practice as used in Denmark (Frigaard et al., 2008). The tests were carried out at Dept....... of Civil Engineering, Aalborg University (AAU) in the 3D deep water wave tank. The displacement and force applied to a power take off system, provided by WaveEnergyFyn, were measured and used to calculate mechanical power available to the power take off....

  13. Migration of amoeba cells in an electric field

    Science.gov (United States)

    Guido, Isabella; Bodenschatz, Eberhard

    2015-03-01

    Exogenous and endogenous electric fields play a role in cell physiology as a guiding mechanism for the orientation and migration of cells. Electrotaxis of living cells has been observed for several cell types, e.g. neurons, fibroblasts, leukocytes, neural crest cells, cancer cells. Dictyostelium discoideum (Dd), an intensively investigated chemotactic model organism, also exhibits a strong electrotactic behavior moving toward the cathode under the influence of electric fields. Here we report experiments on the effects of DC electric fields on the directional migration of Dd cells. We apply the electric field to cells seeded into microfluidic devices equipped with agar bridges to avoid any harmful effects of the electric field on the cells (ions formation, pH changes, etc.) and a constant flow to prevent the build-up of chemical gradient that elicits chemotaxis. Our results show that the cells linearly increase their speed over time when a constant electric field is applied for a prolonged duration (2 hours). This novel phenomenon cannot be attributed to mechanotaxis as the drag force of the electroosmotic flow is too small to produce shear forces that can reorient cells. It is independent of the cellular developmental stage and to our knowledge, it was not observed in chemotaxis. This work is supported by MaxSynBio project of the Max Planck Society.

  14. Signaling pathways and tissue interactions in neural plate border formation.

    Science.gov (United States)

    Schille, Carolin; Schambony, Alexandra

    2017-01-01

    The neural crest is a transient cell population that gives rise to various cell types of multiple tissues and organs in the vertebrate embryo. Neural crest cells arise from the neural plate border, a region localized at the lateral borders of the prospective neural plate. Temporally and spatially coordinated interaction with the adjacent tissues, the non-neural ectoderm, the neural plate and the prospective dorsolateral mesoderm, is required for neural plate border specification. Signaling molecules, namely BMP, Wnt and FGF ligands and corresponding antagonists are derived from these tissues and interact to induce the expression of neural plate border specific genes. The present mini-review focuses on the current understanding of how the NPB territory is formed and accentuates the need for coordinated interaction of BMP and Wnt signaling pathways and precise tissue communication that are required for the definition of the prospective NC in the competent ectoderm.

  15. Slit2/Robo1信号对鸡胚早期神经管及体节发育的影响%Role of Slit2/Robo1 signaling in development of neural tube and somites in early chick embryos

    Institute of Scientific and Technical Information of China (English)

    王广; 王晓钰; 李艳; 王丽京; 雷健; 张笑坛; 耿建国; 杨雪松

    2011-01-01

    目的:探讨Slit2/Robo1对鸡胚早期神经管和体节发育的影响.方法:显微注射法将质粒注射入HH10期胚胎神经管内,活体胚胎细胞电穿孔方法转染胚胎半侧神经管,以另一侧神经管为对照侧,原位杂交及免疫荧光方法观察转染10 h后神经管的发育和神经嵴细胞迁移至体节的情况.结果:下调Robo1侧神经管发育较正常对照侧异常,同时发现Slug表达和神经嵴细胞迁移至体节路线发生改变.结论:Slit2/Robo1信号可能通过影响Slug基因表达,对胚胎早期神经管闭合、神经嵴细胞正常产生及迁移方向以及体节分化有重要作用.%AIM: To investigate the effects of Slit2/Robo1 signaling on the development of neural tube and somites in early chick embryos.METHODS: Plasmid DNA was injected into the lumen of the neural tube from dorsal side of HH10 chick embryo using microinjection, and then in ovo electroporation was performed at half - side of neural tube while another side served as control.Subsequent 10 - hour incubation was carried on after transfection until the development of neural tube and neural crest cells migrating to somites were investigated using the methods of immunofluorescence and in situ hybridization.RESULTS: Blocking Slit2/Robo1 signaling resulted in abnormal development of neural tube, while the expression of Slug and neural crest cells migrating to somites pathway were abnormal as well.CONCLUSION: Slit2/Robo1 signaling can affect the expression of Slug and play an important role in the fusion of neural fold, the trajectory of generation and migration of neural crest cells, and the differentiation of somites in early chick embryos.

  16. Laboratory Experiments on Low-crested Breakwaters

    DEFF Research Database (Denmark)

    Kramer, Morten; Zanuttigh, B.; van der Meer, J.W.

    2005-01-01

    in a wave channel at small scale, and scale effects regarding wave transmission and reflection were studied in a wave channel at a large scale facility. The paper describes the experiments and associated databank with respect to objectives, test program, set-ups and measurements. Results, guidelines......New unique laboratory experiments on low-crested structures (LCSs) have been performed within the DELOS project. The experiments were carried out in three European laboratories aiming at extending and completing existing available information with respect to a wide range of engineering design...

  17. Taxonomy Icon Data: crested porcupine [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available crested porcupine Hystrix cristata Chordata/Vertebrata/Mammalia/Theria/Eutheria/etc. Hystrix_cristata..._L.png Hystrix_cristata_NL.png Hystrix_cristata_S.png Hystrix_cristata_NS.png http://biosc...iencedbc.jp/taxonomy_icon/icon.cgi?i=Hystrix+cristata&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hystrix+cristata...&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hystrix+cristata...&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hystrix+cristata&t=NS ...

  18. Slit/Robo1 signaling regulates neural tube development by balancing neuroepithelial cell proliferation and differentiation.

    Science.gov (United States)

    Wang, Guang; Li, Yan; Wang, Xiao-yu; Han, Zhe; Chuai, Manli; Wang, Li-jing; Ho Lee, Kenneth Ka; Geng, Jian-guo; Yang, Xuesong

    2013-05-01

    Formation of the neural tube is the morphological hallmark for development of the embryonic central nervous system (CNS). Therefore, neural tube development is a crucial step in the neurulation process. Slit/Robo signaling was initially identified as a chemo-repellent that regulated axon growth cone elongation, but its role in controlling neural tube development is currently unknown. To address this issue, we investigated Slit/Robo1 signaling in the development of chick neCollege of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH, UKural tube and transgenic mice over-expressing Slit2. We disrupted Slit/Robo1 signaling by injecting R5 monoclonal antibodies into HH10 neural tubes to block the Robo1 receptor. This inhibited the normal development of the ventral body curvature and caused the spinal cord to curl up into a S-shape. Next, Slit/Robo1 signaling on one half-side of the chick embryo neural tube was disturbed by electroporation in ovo. We found that the morphology of the neural tube was dramatically abnormal after we interfered with Slit/Robo1 signaling. Furthermore, we established that silencing Robo1 inhibited cell proliferation while over-expressing Robo1 enhanced cell proliferation. We also investigated the effects of altering Slit/Robo1 expression on Sonic Hedgehog (Shh) and Pax7 expression in the developing neural tube. We demonstrated that over-expressing Robo1 down-regulated Shh expression in the ventral neural tube and resulted in the production of fewer HNK-1(+) migrating neural crest cells (NCCs). In addition, Robo1 over-expression enhanced Pax7 expression in the dorsal neural tube and increased the number of Slug(+) pre-migratory NCCs. Conversely, silencing Robo1 expression resulted in an enhanced Shh expression and more HNK-1(+) migrating NCCs but reduced Pax7 expression and fewer Slug(+) pre-migratory NCCs were observed. In conclusion, we propose that Slit/Robo1 signaling is involved in regulating neural tube development by tightly

  19. Upregulated expression of Nogo-A and NgR in an experimental model of focal microgyria regulates the migration, proliferation and self-renewal of subventricular zone neural progenitors

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sixun; Shu, Haifeng; Yang, Tao; Huang, Haidong [Department of Neurosurgery, General Hospital of the People' s Liberation Army Chengdu Military Region, Chengdu, Sichuan, 610083 (China); Li, Song [Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037 (China); Zhao, Ziyi [Central Laboratory, Teaching Hospital of Chengdu University of Traditional Chinese Medicine, 610075 (China); Kuang, Yongqin, E-mail: kuangyongqin@163.com [Department of Neurosurgery, General Hospital of the People' s Liberation Army Chengdu Military Region, Chengdu, Sichuan, 610083 (China)

    2016-04-29

    Nogo-A and its receptor (NgR) were first described as myelin-associated inhibitors of neuronal regeneration in response to injury. In recent years, knowledge about the important role of the Nogo-A protein in several neuronal pathologies has grown considerably. Here, we employed a neonatal cortex freeze-lesion (NFL) model in neonatal rats and measured the expression of Nogo-A and NgR in the resulting cerebrocortical microdysgenesis 5–75 days after freezing injury. We observed marked upregulation of Nogo-A and NgR in protein levels. Furthermore, the migration of neural precursor cells (NPCs) derived from the subventricular zone (SVZ) toward the sits of injury was perturbed by treatment of NgR antagonist peptide NEP1-40. In vitro analysis showed that the knockdown of NgR by lentivirus-delivered siRNA promoted in axonal regeneration and SVZ-derived neural stem cell/progenitor cell (SVZ-NPCs) adhesion and migration, findings which were similar to the effects of NEP1-40. Taken together, our results indicate an important role for NgR in regulating the physiological processes of SVZ-NPCs. The observation of upregulated Nogo-A/NgR in lesion sites in the NFL model suggest that the effects of the perturbed Nogo-A are a key feature during the development and/or the progression of cortical malformation. - Highlights: • NFL model is an accurate experimental reproduction of focal microgyria of FCD. • The increase of the Nogo-A Levels occurs in response to freeze-induced focal lesioning. • Nogo-A/NgR may play a critical role for in the pathologic progression of FCD. • Nogo-A is associated with the migration, proliferation and self-renewal of SVZ-NPCs.

  20. p75 neurotrophin receptor positive dental pulp stem cells: new hope for patients with neurodegenerative disease and neural injury%p75 neurotrophin receptor positive dental pulp stem cells:new hope for patients with neurodegenerative disease and neural injury

    Institute of Scientific and Technical Information of China (English)

    DAI Jie-wen; YUAN Hao; SHEN Shun-yao; LU Jing-ting; ZHU Xiao-fang; YANG Tong; ZHANG Jiang-fei

    2013-01-01

    Neurodegenerative diseases and neural injury are 2 of the most feared disorders that afflict humankind by leading to permanent paralysis and loss of sensation.Cell based treatment for these diseases had gained special interest in recent years.Previous studies showed that dental pulp stem cells (DPSCs) could differentiate toward functionally active neurons both in vitro and in vivo,and could promote neuranagenesis through both cell-autonomous and paracrine neuroregenerative activities.Some of these neuroregenerative activities were unique to tooth-derived stem cells and superior to bone marrow stromal cells.However,DPSCs used in most of these studies were mixed and unfractionated dental pulp cells that contain several types of cells,and most were fibroblast cells while just contain a small portion of DPSCs.Thus,there might be weaker ability of neuranagenesis and more side effects from the fibroblast cells that cannot differentiate into neural cells.p75 neurotrophin receptor (p75NTR) positive DPSCs subpopulation was derived from migrating cranial neural crest cells and had been isolated from DPSCs,which had capacity of differentiation into neurons and repairing neural system.In this article,we hypothesize that p75NTR positive DPSCs simultaneously have greater propensity for neuronal differentiation and fewer side effects from fibroblast,and in vivo transptantation of autologous p75NTR positive DPSCs is a novel method for neuranagenesis.This will bring great hope to patients with neurodegenerative disease and neural injury.

  1. Stability of Cubipod Armoured Roundheads in Short Crested Waves

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Andersen, Thomas Lykke; Medina, Josep R.

    2011-01-01

    The paper presents a comparison of the stability of concrete cube armour and Cubipod armour in a breakwater roundhead with slope 1:1.5, exposed to both 2-D (long-crested) and 3-D (short-crested) waves. The model tests were performed at the Hydraulics and Coastal Engineering Laboratory at Aalborg ...

  2. p75 neurotrophin receptor positive dental pulp stem cells: new hope for patients with neurodegenerative disease and neural injury.

    Science.gov (United States)

    Dai, Jie-wen; Yuan, Hao; Shen, Shun-yao; Lu, Jing-ting; Zhu, Xiao-fang; Yang, Tong; Zhang, Jiang-fei; Shen, Guo-fang

    2013-08-01

    Neurodegenerative diseases and neural injury are 2 of the most feared disorders that afflict humankind by leading to permanent paralysis and loss of sensation. Cell based treatment for these diseases had gained special interest in recent years. Previous studies showed that dental pulp stem cells (DPSCs) could differentiate toward functionally active neurons both in vitro and in vivo, and could promote neuranagenesis through both cell-autonomous and paracrine neuroregenerative activities. Some of these neuroregenerative activities were unique to tooth-derived stem cells and superior to bone marrow stromal cells. However, DPSCs used in most of these studies were mixed and unfractionated dental pulp cells that contain several types of cells, and most were fibroblast cells while just contain a small portion of DPSCs. Thus, there might be weaker ability of neuranagenesis and more side effects from the fibroblast cells that cannot differentiate into neural cells. p75 neurotrophin receptor (p75NTR) positive DPSCs subpopulation was derived from migrating cranial neural crest cells and had been isolated from DPSCs, which had capacity of differentiation into neurons and repairing neural system. In this article, we hypothesize that p75NTR positive DPSCs simultaneously have greater propensity for neuronal differentiation and fewer side effects from fibroblast, and in vivo transptantation of autologous p75NTR positive DPSCs is a novel method for neuranagenesis. This will bring great hope to patients with neurodegenerative disease and neural injury.

  3. Wbp2nl has a developmental role in establishing neural and non-neural ectodermal fates.

    Science.gov (United States)

    Marchak, Alexander; Grant, Paaqua A; Neilson, Karen M; Datta Majumdar, Himani; Yaklichkin, Sergey; Johnson, Diana; Moody, Sally A

    2017-09-01

    In many animals, maternally synthesized mRNAs are critical for primary germ layer formation. In Xenopus, several maternal mRNAs are enriched in the animal blastomere progenitors of the embryonic ectoderm. We previously identified one of these, WW-domain binding protein 2 N-terminal like (wbp2nl), that others previously characterized as a sperm protein (PAWP) that promotes meiotic resumption. Herein we demonstrate that it has an additional developmental role in regionalizing the embryonic ectoderm. Knock-down of Wbp2nl in the dorsal ectoderm reduced cranial placode and neural crest gene expression domains and expanded neural plate domains; knock-down in ventral ectoderm reduced epidermal gene expression. Conversely, increasing levels of Wbp2nl in the neural plate induced ectopic epidermal and neural crest gene expression and repressed many neural plate and cranial placode genes. The effects in the neural plate appear to be mediated, at least in part, by down-regulating chd, a BMP antagonist. Because the cellular function of Wbp2nl is not known, we mutated several predicted motifs. Expressing mutated proteins in embryos showed that a putative phosphorylation site at Thr45 and an α-helix in the PH-G domain are required to ectopically induce epidermal and neural crest genes in the neural plate. An intact YAP-binding motif also is required for ectopic epidermal gene expression as well as for down-regulating chd. This work reveals novel developmental roles for a cytoplasmic protein that promotes epidermal and neural crest formation at the expense of neural ectoderm. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Syndecan 4 interacts genetically with Vangl2 to regulate neural tube closure and planar cell polarity.

    Science.gov (United States)

    Escobedo, Noelia; Contreras, Osvaldo; Muñoz, Rosana; Farías, Marjorie; Carrasco, Héctor; Hill, Charlotte; Tran, Uyen; Pryor, Sophie E; Wessely, Oliver; Copp, Andrew J; Larraín, Juan

    2013-07-01

    Syndecan 4 (Sdc4) is a cell-surface heparan sulfate proteoglycan (HSPG) that regulates gastrulation, neural tube closure and directed neural crest migration in Xenopus development. To determine whether Sdc4 participates in Wnt/PCP signaling during mouse development, we evaluated a possible interaction between a null mutation of Sdc4 and the loop-tail allele of Vangl2. Sdc4 is expressed in multiple tissues, but particularly in the non-neural ectoderm, hindgut and otic vesicles. Sdc4;Vangl2(Lp) compound mutant mice have defective spinal neural tube closure, disrupted orientation of the stereocilia bundles in the cochlea and delayed wound healing, demonstrating a strong genetic interaction. In Xenopus, co-injection of suboptimal amounts of Sdc4 and Vangl2 morpholinos resulted in a significantly greater proportion of embryos with defective neural tube closure than each individual morpholino alone. To probe the mechanism of this interaction, we overexpressed or knocked down Vangl2 function in HEK293 cells. The Sdc4 and Vangl2 proteins colocalize, and Vangl2, particularly the Vangl2(Lp) mutant form, diminishes Sdc4 protein levels. Conversely, Vangl2 knockdown enhances Sdc4 protein levels. Overall HSPG steady-state levels were regulated by Vangl2, suggesting a molecular mechanism for the genetic interaction in which Vangl2(Lp/+) enhances the Sdc4-null phenotype. This could be mediated via heparan sulfate residues, as Vangl2(Lp/+) embryos fail to initiate neural tube closure and develop craniorachischisis (usually seen only in Vangl2(Lp/Lp)) when cultured in the presence of chlorate, a sulfation inhibitor. These results demonstrate that Sdc4 can participate in the Wnt/PCP pathway, unveiling its importance during neural tube closure in mammalian embryos.

  5. Experimental evidence for mutual inter- and intrasexual selection favouring a crested auklet ornament.

    Science.gov (United States)

    Jones; Hunter

    1999-03-01

    During the breeding season, female and male crested auklets Aethia cristatella (Alcidae), display similar conspicuous crest ornaments composed of elongated forward-curving feathers on their foreheads. Based on quantifications of brief agonistic interactions at a large breeding colony, we found that crest length was strongly correlated with dominance within both sexes. Across the full range of crest length, individuals with longer crests were dominant over shorter-crested individuals in agonistic interactions involving same-sex adults. Within subadults (2-year-olds of unknown sex), there was a similar trend towards longer-crested individuals being dominant. In agonistic interactions involving individuals of different sex and age, adult males were dominant over adult females and adults were dominant over subadults, regardless of crest length. In an experiment in which we manipulated crest length using life-size realistic models, male auklets that responded were less aggressive to male models with longer crests than to models with normal or shorter crests, confirming that crest length by itself signals dominance status. In a related experiment in which we controlled intrasexual competition, both males and females responded to opposite-sex models with more frequent sexual displays when the models had long crests compared with those having short crests, suggesting that crested auklets also have mating preferences that favour long crest ornaments. Taken together, these results support the idea that the crest ornament is favoured by both intra- and intersexual selection. Copyright 1999 The Association for the Study of Animal Behaviour.

  6. Return migration.

    Science.gov (United States)

    Gmelch, G

    1980-01-01

    The author reviews the findings of the growing literature on return migration. Topics covered include typologies of return migrants, reasons for return, adaptation and readjustment of returnees, and the impact of return migration on the migrants' home societies. The focus of the study is on international return migration, migration to Northern Europe and northeastern North America, and return migration to the southern and eastern fringes of Europe and the Caribbean

  7. In vitro effect of stromal cell derived factor -1 on the migration of neural stem cells%基质细胞衍生因子1趋化神经干细胞迁移的体外效应

    Institute of Scientific and Technical Information of China (English)

    牟临杰; 丁鹏; 王崇谦; 王伟民; 李宣鹏; 王进昆

    2011-01-01

    BACKGROUND: Neural stem cell migration plays important roles in the development and repair of the central nervous system.Although recent studies have shown that the chemokines mediate neural stem cell migration, but the mechanism is unclear.OBJECTIVE: To explore the effects of stromal cell-derived factor-1 (SDF-1) on migration of fetal rat hippocampus neural stem cells in vitro.METHODS: The fetal rat hippocampal neural stem cells were isolated, cultured and identified in serum-free medium. The expression of CXCR4 in neural stem cells was detected using immunofluorescence and RT-PCR. The under-agarose cell migration assay was used to observe the effects of SDF-1(50-500 ng/ml) on neural stem cell migration, and blocking CXCR4, the receptor of SDF-1, to identify the specificity of migration.RESULTS AND CONCLUSION: Immunofluorescence results showed that neural stem cells were CXCR4 positive, and RT-PCR findings showed 643 bp specific band in agarose gel electrophoresis. The Under-Agarose cell migration assay showed that: SDF-1 (50-500 ng/ml) could accelerate the migration of neural stem cells, the migration increased with the concentration, and 500 μg/L was the best. By adding anti -CXCR4 polyclonal antibodies, the migration of neural stem cells compared with SDF-1 was significantly reduced, no significant difference with the control group (P > 0.05), pointing out anti -CXCR4 polyclonal antibodies can block the effect of the migration.%背景:神经干细胞的迁移在神经系统的发育和损伤修复中起着至关重要的作用,近来研究表明趋化因子参与神经干细胞的迁移,但关于其迁移机制目前尚不清楚.目的:观察体外条件下基质细胞衍生因子1 对胎鼠海马神经干细胞的趋化迁移作用.方法:通过无血清法体外分离、培养及鉴定胎鼠海马神经干细胞;细胞免疫荧光及RT-PCR 检测其CXCR4 是否表达;观察不同浓度基质细胞衍生因子1 对神经干细胞

  8. Crested wheatgrass control and monitoring Benton Lake Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Crested wheatgrass (CWG) was planted on Benton Lake NWR at least 30 years ago, presumably to stabilize the soil where it had been disturbed in the process of...

  9. Cryoglobulinemic vasculitis in a patient with CREST syndrome.

    Science.gov (United States)

    Hurst, Rebecca L; Berianu, Florentina; Ginsburg, William W; Klein, Christopher J; Englestad, Janean K; Kennelly, Kathleen D

    2014-10-01

    Cryoglobulinemic vasculitis is a rare entity. Although it has been reported in diffuse systemic sclerosis, it has not been reported in calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly and telangiectasia (CREST) syndrome. We report a patient with cryoglobulinemic vasculitis with CREST syndrome who did not have typical clinical features of vasculitis. This 58-year-old woman presented with mild generalized weakness and a diagnosis of CREST syndrome, which included Raynaud's syndrome, dysphagia and telangiectasias. She was positive for serum cryoglobulins, which led to a sural nerve biopsy. The biopsy results were consistent with cryoglobulinemic vasculitis. Cryoglobulinemic vasculitis has not been previously reported in CREST syndrome to our knowledge. Additionally, the patient also had limited clinical symptoms. Our patient displays the importance of checking for cryoglobulins and obtaining a nerve biopsy when the serum is positive. Both of these diagnostic tests were integral for directing appropriate treatment for this patient.

  10. Flow structure in front of the broad-crested weir

    Directory of Open Access Journals (Sweden)

    Zachoval Zbyněk

    2015-01-01

    Full Text Available The paper deals with research focused on description of flow structure in front of broad-crested weir. Based on experimental measurement, the flow structure in front of the weir (the recirculation zone of flow and tornado vortices and flow structure on the weir crest has been described. The determined flow character has been simulated using numerical model and based on comparing results the suitable model of turbulence has been recommended.

  11. CREST syndrome and periodontal surgery: a case report.

    Science.gov (United States)

    Stanford, T W; Peterson, J; Machen, R L

    1999-05-01

    CREST syndrome is a slowly progressive form of systemic scleroderma. It is characterized by calcinosis cutis, Raynaud's phenomenon, esophageal involvement, sclerodactyly, and telangiectasia. There are limited reports of dental treatment for patients with this syndrome, and no reports of periodontal surgical procedures. This paper presents a case report of periodontal surgical treatment in a 38-year-old female patient with CREST syndrome, and a discussion of the clinical manifestations of the syndrome as they relate to dental treatment.

  12. Astrocytes in Migration.

    Science.gov (United States)

    Zhan, Jiang Shan; Gao, Kai; Chai, Rui Chao; Jia, Xi Hua; Luo, Dao Peng; Ge, Guo; Jiang, Yu Wu; Fung, Yin-Wan Wendy; Li, Lina; Yu, Albert Cheung Hoi

    2017-01-01

    Cell migration is a fundamental phenomenon that underlies tissue morphogenesis, wound healing, immune response, and cancer metastasis. Great progresses have been made in research methodologies, with cell migration identified as a highly orchestrated process. Brain is considered the most complex organ in the human body, containing many types of neural cells with astrocytes playing crucial roles in monitoring normal functions of the central nervous system. Astrocytes are mostly quiescent under normal physiological conditions in the adult brain but become migratory after injury. Under most known pathological conditions in the brain, spinal cord and retina, astrocytes are activated and become hypertrophic, hyperplastic, and up-regulating GFAP based on the grades of severity. These three observations are the hallmark in glia scar formation-astrogliosis. The reactivation process is initiated with structural changes involving cell process migration and ended with cell migration. Detailed mechanisms in astrocyte migration have not been studied extensively and remain largely unknown. Here, we therefore attempt to review the mechanisms in migration of astrocytes.

  13. Comparing Effects of Four Toothpaste Types (Nasim, Crest 7, Crest Sensitivity and Daroghar3) on Rate of Enamel Abrasion

    OpenAIRE

    2016-01-01

    Introduction: Toothpaste should have the most plaque removal efficacy with the least abrasiveness. The aim of this study was to evaluate enamel abrasion induced by four toothpaste types. Methods: In this in vitro experimental study, 24 dental samples were divided into four groups of six. The initial surface roughness was measured with the roughness measuring device. Regarding abrasion test with Daroghar3, Nasim, Crest7 and Crest sensitivity toothpastes, samples were located in V8cross brus...

  14. Comparison of standard TEC models with a Neural Network based TEC model using multistation GPS TEC around the northern crest of Equatorial Ionization Anomaly in the Indian longitude sector during the low and moderate solar activity levels of the 24th solar cycle

    Science.gov (United States)

    Sur, D.; Paul, A.

    2013-09-01

    The highest Total Electron Content (TEC) values in the world normally occur at Equatorial Ionization Anomaly (EIA) region resulting in largest ionospheric range delay values observed for any potential Space Based Augmentation System (SBAS). Reliable forecasting of TEC is crucial for satellite based navigation systems. The day to day variability of the location of the anomaly peak and its intensity is very large. This imposes severe limitations on the applicability of commonly used ionospheric models to the low latitude regions. It is necessary to generate a mathematical ionospheric forecasting and mapping model for TEC based on physical ionospheric influencing parameters. A model, IRPE-TEC, has been developed based on real time low latitude total electron content data using GPS measurements from a number of stations situated around the northern crest of the EIA during 2007 through 2011 to predict the vertical TEC values during the low and moderate solar activity levels of the 24th solar cycle. This model is compared with standard ionospheric models like International Reference Ionosphere (IRI) and Parameterized Ionospheric Model (PIM) to establish its applicability in the equatorial region for accurate predictions.

  15. CREST--classification resources for environmental sequence tags.

    Directory of Open Access Journals (Sweden)

    Anders Lanzén

    Full Text Available Sequencing of taxonomic or phylogenetic markers is becoming a fast and efficient method for studying environmental microbial communities. This has resulted in a steadily growing collection of marker sequences, most notably of the small-subunit (SSU ribosomal RNA gene, and an increased understanding of microbial phylogeny, diversity and community composition patterns. However, to utilize these large datasets together with new sequencing technologies, a reliable and flexible system for taxonomic classification is critical. We developed CREST (Classification Resources for Environmental Sequence Tags, a set of resources and tools for generating and utilizing custom taxonomies and reference datasets for classification of environmental sequences. CREST uses an alignment-based classification method with the lowest common ancestor algorithm. It also uses explicit rank similarity criteria to reduce false positives and identify novel taxa. We implemented this method in a web server, a command line tool and the graphical user interfaced program MEGAN. Further, we provide the SSU rRNA reference database and taxonomy SilvaMod, derived from the publicly available SILVA SSURef, for classification of sequences from bacteria, archaea and eukaryotes. Using cross-validation and environmental datasets, we compared the performance of CREST and SilvaMod to the RDP Classifier. We also utilized Greengenes as a reference database, both with CREST and the RDP Classifier. These analyses indicate that CREST performs better than alignment-free methods with higher recall rate (sensitivity as well as precision, and with the ability to accurately identify most sequences from novel taxa. Classification using SilvaMod performed better than with Greengenes, particularly when applied to environmental sequences. CREST is freely available under a GNU General Public License (v3 from http://apps.cbu.uib.no/crest and http://lcaclassifier.googlecode.com.

  16. TGF-β-Induced Transcription Sustains Amoeboid Melanoma Migration and Dissemination

    Science.gov (United States)

    Cantelli, Gaia; Orgaz, Jose L.; Rodriguez-Hernandez, Irene; Karagiannis, Panagiotis; Maiques, Oscar; Matias-Guiu, Xavier; Nestle, Frank O.; Marti, Rosa M.; Karagiannis, Sophia N.; Sanz-Moreno, Victoria

    2015-01-01

    Summary Cell migration underlies metastatic dissemination of cancer cells, and fast “amoeboid” migration in the invasive fronts of tumors is controlled by high levels of actomyosin contractility. How amoeboid migration is regulated by extracellular signals and sustained over time by transcriptional changes is not fully understood. Transforming growth factor β (TGF-β) is well known to promote epithelial-to-mesenchymal transition (EMT) and contribute to metastasis, but melanocytes are neural crest derivatives that have undergone EMT during embryonic development. Surprisingly, we find that in melanoma, TGF-β promotes amoeboid features such as cell rounding, membrane blebbing, high levels of contractility, and increased invasion. Using genome-wide transcriptomics, we find that amoeboid melanoma cells are enriched in a TGF-β-driven signature. We observe that downstream of TGF-β, SMAD2 and its adaptor CITED1 control amoeboid behavior by regulating the expression of key genes that activate contractile forces. Moreover, CITED1 is highly upregulated during melanoma progression, and its high expression is associated with poor prognosis. CITED1 is coupled to a contractile-rounded, amoeboid phenotype in a panel of 16 melanoma cell lines, in mouse melanoma xenografts, and in 47 human melanoma patients. Its expression is also enriched in the invasive fronts of lesions. Functionally, we show how the TGF-β-SMAD2-CITED1 axis promotes different steps associated with progression: melanoma detachment from keratinocytes, 2D and 3D migration, attachment to endothelial cells, and in vivo lung metastatic initial colonization and outgrowth. We propose a novel mechanism by which TGF-β-induced transcription sustains actomyosin force in melanoma cells and thereby promotes melanoma progression independently of EMT. PMID:26526369

  17. Stromal cell derived factor 1 effects on migration of endogenous neural stem cells%基质细胞衍生因子1对内源性神经干细胞的趋化迁移作用

    Institute of Scientific and Technical Information of China (English)

    苏稳; 丁鹏; 王进昆; 张浩; 牟临杰; 王波; 刘景传; 龚光辉; 王崇谦

    2014-01-01

    背景:目前研究表明,基质细胞衍生因子1在参与趋化迁移内源性神经干细胞中起着非常重要的作用,但其具体迁移机制尚不明确。  目的:观察外源性基质细胞衍生因子1对大鼠内源性神经干细胞的趋化迁移作用及海马区神经干细胞的激活增殖情况。  方法:通过向SD大鼠海马区上大脑皮质内注射外源性基质细胞衍生因子1(注射量为5μL,质量浓度为500μg/L)建立动物模型,于3,7,14,21 d后灌注取脑,通过石蜡切片免疫组织化学检测大鼠皮质内注射区及海马区nestin阳性细胞表达情况,并设实验对照组与空白对照组。  结果与结论:石蜡切片免疫组织化学显示:实验组注射区周围及海马区nestin表达阳性细胞的数量随时间推移逐渐增多,3,7 d时注射区及海马区nestin表达阳性细胞少量表达,14 d时注射区及海马区nestin表达阳性细胞进一步增多,并向注射区形成明显的迁移趋势,21 d时注射区及海马区nestin表达阳性细胞更多。实验对照组及空白实验组未见上述表现。结果表明外源性基质细胞衍生因子1可能诱导海马区神经干细胞的增殖分化,参与内源性神经干细胞的趋化迁移过程。%BACKGROUND:Stromal cellderived factor 1 in chemotactic migration of endogenous neural stem cells plays a very important role, but the specific migration mechanism is unclear OBJECTIVE:To observe the effects of exogenous stromal cellderived factor 1 on chemotactic migration and proliferation of neural stem cells in the rat hippocampus METHODS:Exogenous stromal cellderived factor 1 (5μL, 500μ/L) was injected into the hippocampus of Sprague-Dawley rats to establish animal models. Brain tissues were taken after days 3, 7, 14 and 21 of perfusion to prepare paraffin sections. Thereafter, nestin expression in the injection region and hippocampus was detected using immunohistochemical method

  18. Conversion of neural plate explants to pre-placodal ectoderm-like tissue in vitro.

    Science.gov (United States)

    Shigetani, Yasuyo; Wakamatsu, Yoshio; Tachibana, Toshiaki; Okabe, Masataka

    2016-09-02

    Neural crest and cranial sensory placodes arise from ectodermal epithelium lying between the neural plate and non-neural ectoderm (neural border). BMP signaling is important for both an induction of the neural border and a subsequent induction of the neural crest within the neural border. In contrast, FGF signaling is important for the neural border induction and the following induction of the pre-placodal ectoderm (PPE), which later gives rise to the cranial sensory placodes. While previous studies have demonstrated that the neural plate explants could be converted to the neural crest cells by adding BMP4 in a culture medium, there is no report showing a similar conversion of the neural plate to the PPE. We therefore examined the effect of FGF2 along with BMP4 on the rostral neural plate explants and found that the explants became the simple squamous epithelia, which were characterized by the desmosomes/tonofilaments in membranes of adjacent cells. Such epithelia expressed sets of neural border markers and the PPE genes, suggesting that the neural plate explants were converted to a PPE-like tissue. This method will be useful for further studying mechanisms of PPE induction and subsequent specifications of the cranial placodes.

  19. Surface Roughness Effects on Discharge Coefficient of Broad Crested Weir

    Directory of Open Access Journals (Sweden)

    Shaker A. Jalil

    2014-06-01

    Full Text Available The aim of this study is to investigate the effects of surface roughness sizes on the discharge coefficient for a broad crested weirs. For this purpose, three models having different lengths of broad crested weirs were tested in a horizontal flume. In each model, the surface was roughed four times. Experimental results of all models showed that the logical negative effect of roughness increased on the discharge (Q for different values of length. The performance of broad crested weir improved with decrease ratio of roughness to the weir height (Ks/P and with the increase of the total Head to the Length (H/L. An empirical equation was obtained to estimate the variation of discharge coefficient Cd in terms total head to length ratio, with total head to roughness ratio.

  20. Observations of highly localized oscillons with multiple crests and troughs

    CERN Document Server

    LI, Xiaochen; Liao, Shijun

    2014-01-01

    Stable, highly localized Faraday's resonant standing waves with multiple crests and troughs were observed in the alcoholic solution partly filled in a Hele-Shaw cell vertically oscillated with a single frequency. Two types of oscillons were observed. The influence of the experimental parameters (such as the concentration of alcoholic solution, the water depth, the frequency and acceleration amplitude of oscillation) on these oscillons were investigated in details. In the same experimental parameters, all of these oscillons have the almost same wave height but rather irregular crest-to-crest distances. Our experiments highly suggest that the complicated oscillons can be regarded as combination of the two elementary oscillons discovered by Rajchenbach et al. (Physical Review Letters, 107, 2011).

  1. Flow characteristics at trapezoidal broad-crested side weir

    Directory of Open Access Journals (Sweden)

    Říha Jaromír

    2015-06-01

    Full Text Available Broad-crested side weirs have been the subject of numerous hydraulic studies; however, the flow field at the weir crest and in front of the weir in the approach channel still has not been fully described. Also, the discharge coefficient of broad-crested side weirs, whether slightly inclined towards the stream or lateral, still has yet to be clearly determined. Experimental research was carried out to describe the flow characteristics at low Froude numbers in the approach flow channel for various combinations of in- and overflow discharges. Three side weir types with different oblique angles were studied. Their flow characteristics and discharge coefficients were analyzed and assessed based on the results obtained from extensive measurements performed on a hydraulic model. The empirical relation between the angle of side weir obliqueness, Froude numbers in the up- and downstream channels, and the coefficient of obliqueness was derived.

  2. Iliac Crest Avulsion Fracture in a Young Sprinter.

    Science.gov (United States)

    Casabianca, L; Rousseau, R; Loriaut, P; Massein, A; Mirouse, G; Gerometta, A; Khiami, F

    2015-01-01

    Avulsion fracture of the iliac crest is an uncommon pathology. It usually occurs in teenagers during sport activities, more common in boys. We report a case of 16-year-old male competitive sprinter, who had an avulsion of a part of the iliac crest and the anterior-superior iliac spine during a competition. The traumatism occurred during the period of acceleration phase out of the blocks which corresponds to the maximum traction phase on the tendons. Then a total loss of function of the lower limb appears forcing him to stop the run. X-ray and CT scan confirmed the rare diagnosis of avulsion of the quasitotality of the iliac crest apophysis, corresponding to Salter 2 fracture. We performed an open reduction and internal fixation with two screws, allowing a return to sport after 3 months and his personal best record in the 100 meters at the 6th postoperative month.

  3. Iliac Crest Avulsion Fracture in a Young Sprinter

    Directory of Open Access Journals (Sweden)

    L. Casabianca

    2015-01-01

    Full Text Available Avulsion fracture of the iliac crest is an uncommon pathology. It usually occurs in teenagers during sport activities, more common in boys. We report a case of 16-year-old male competitive sprinter, who had an avulsion of a part of the iliac crest and the anterior-superior iliac spine during a competition. The traumatism occurred during the period of acceleration phase out of the blocks which corresponds to the maximum traction phase on the tendons. Then a total loss of function of the lower limb appears forcing him to stop the run. X-ray and CT scan confirmed the rare diagnosis of avulsion of the quasitotality of the iliac crest apophysis, corresponding to Salter 2 fracture. We performed an open reduction and internal fixation with two screws, allowing a return to sport after 3 months and his personal best record in the 100 meters at the 6th postoperative month.

  4. New data on thermal flow in the Kolbensei crest region

    Energy Technology Data Exchange (ETDEWEB)

    Polyak, B.G.; Smirnov, Ya.B.; Merkushov, V.N.; Paduchikh, V.I.; Podgornykh, L.V.

    1978-11-01

    Results are given for measurements made of the geothermal gradient in the bottom sediment of the Kolbensei crest region of the Greenland Sea. Data are given for thermal flow measurements made at 12 stations positioned along the axial portion of the Kolbensei crest and transversely to its course. Diagrams are given illustrating the positioning of the thermal flow stations and the thermal flow along the profile as well as the energy effect of geothermal activity along the cross-section of the crest. An analysis of the experimental data indicates that the central zone of the Middle Atlantic crest north of Iceland and the active rift zones of the island exhibit the same energy profile which is indicative of their identical deep dynamic processes. The total heat loss in the active rift zones was found to be about 10.10/sup -6/ cal/cm/sup 2/.sec, and is pooled from the conductive thermal flow and convective thermal withdrawal by magma and thermal springs. 10 references, 2 figures, 1 table.

  5. The CREST reactive-burn model for explosives

    Directory of Open Access Journals (Sweden)

    Maheswaran M-A.

    2011-01-01

    Full Text Available CREST is an innovative reactive-burn model that has been developed at AWE for simulating shock initiation and detonation propagation behaviour in explosives. The model has a different basis from other reactive-burn models in that its reaction rate is independent of local flow variables behind the shock wave e.g. pressure and temperature. The foundation for CREST, based on a detailed analysis of data from particle-velocity gauge experiments, is that the reaction rate depends only on the local shock strength and the time since the shock passed. Since a measure of shock strength is the entropy of the non-reacted explosive, which remains constant behind a shock, CREST uses an entropy-dependent reaction rate. This paper will provide an overview of the CREST model and its predictive capability. In particular, it will be shown that the model can predict a wide range of experimental phenomena for both shock initiation (e.g. the effects of porosity and initial temperature on sustained-shock and thin-flyer initiation and detonation propagation (e.g. the diameter effect curve and detonation failure cones using a single set of coefficients.

  6. Dynamic transcriptional signature and cell fate analysis reveals plasticity of individual neural plate border cells

    Science.gov (United States)

    Roellig, Daniela; Tan-Cabugao, Johanna; Esaian, Sevan; Bronner, Marianne E

    2017-01-01

    The ‘neural plate border’ of vertebrate embryos contains precursors of neural crest and placode cells, both defining vertebrate characteristics. How these lineages segregate from neural and epidermal fates has been a matter of debate. We address this by performing a fine-scale quantitative temporal analysis of transcription factor expression in the neural plate border of chick embryos. The results reveal significant overlap of transcription factors characteristic of multiple lineages in individual border cells from gastrula through neurula stages. Cell fate analysis using a Sox2 (neural) enhancer reveals that cells that are initially Sox2+ cells can contribute not only to neural tube but also to neural crest and epidermis. Moreover, modulating levels of Sox2 or Pax7 alters the apportionment of neural tube versus neural crest fates. Our results resolve a long-standing question and suggest that many individual border cells maintain ability to contribute to multiple ectodermal lineages until or beyond neural tube closure. DOI: http://dx.doi.org/10.7554/eLife.21620.001 PMID:28355135

  7. Plakophilin-3 is required for late embryonic amphibian development, exhibiting roles in ectodermal and neural tissues.

    Directory of Open Access Journals (Sweden)

    William A Munoz

    Full Text Available The p120-catenin family has undergone a significant expansion during the evolution of vertebrates, resulting in varied functions that have yet to be discerned or fully characterized. Likewise, members of the plakophilins, a related catenin subfamily, are found throughout the cell with little known about their functions outside the desmosomal plaque. While the plakophilin-3 (Pkp3 knockout mouse resulted in skin defects, we find larger, including lethal effects following its depletion in Xenopus. Pkp3, unlike some other characterized catenins in amphibians, does not have significant maternal deposits of mRNA. However, during embryogenesis, two Pkp3 protein products whose temporal expression is partially complimentary become expressed. Only the smaller of these products is found in adult Xenopus tissues, with an expression pattern exhibiting distinctions as well as overlaps with those observed in mammalian studies. We determined that Xenopus Pkp3 depletion causes a skin fragility phenotype in keeping with the mouse knockout, but more novel, Xenopus tailbud embryos are hyposensitive to touch even in embryos lacking outward discernable phenotypes, and we additionally resolved disruptions in certain peripheral neural structures, altered establishment and migration of neural crest, and defects in ectodermal multiciliated cells. The use of two distinct morpholinos, as well as rescue approaches, indicated the specificity of these effects. Our results point to the requirement of Pkp3 in amphibian embryogenesis, with functional roles in a number of tissue types.

  8. A Comparative Experimental Study of Wave Forces on a Vertical Cylinder in Long-Crested and Short-Crested Seas

    DEFF Research Database (Denmark)

    Frigaard, Peter; Burcharth, Hans F.

    1988-01-01

    An experimental study is carried out to investigate the wave forces on a slender cylinder. Special attention is given to the wave forces in the surface zone and correlation of forces along the cylinder. The experiments consider the effects of both long and short-crested irregular waves....

  9. Flexibility of neural stem cells

    Directory of Open Access Journals (Sweden)

    Eumorphia eRemboutsika

    2011-04-01

    Full Text Available Embryonic cortical neural stem cells are self-renewing progenitors that can differentiate into neurons and glia. We generated neurospheres from the developing cerebral cortex using a mouse genetic model that allows for lineage selection and found that the self-renewing neural stem cells are restricted to Sox2 expressing cells. Under normal conditions, embryonic cortical neurospheres are heterogeneous with regard to Sox2 expression and contain astrocytes, neural stem cells and neural progenitor cells sufficiently plastic to give rise to neural crest cells when transplanted into the hindbrain of E1.5 chick and E8 mouse embryos. However, when neurospheres are maintained under lineage selection, such that all cells express Sox2, neural stem cells maintain their Pax6+ cortical radial glia identity and exhibit a more restricted fate in vitro and after transplantation. These data demonstrate that Sox2 preserves the cortical identity and regulates the plasticity of self-renewing Pax6+ radial glia cells.

  10. Thin hard crest on the edge of ceramic acetabular liners accelerates wear in edge loading.

    Science.gov (United States)

    Sanders, Anthony P; Dudhiya, Parth J; Brannon, Rebecca M

    2012-01-01

    Ceramic acetabular liners may exhibit a small, sharp crest-an artifact of discontinuous machining steps--at the junction between the concave spherical surface and the interior edge. On 3 ceramic liners, this crest was found to form a 9° to 11° deviation from tangency. Edge loading wear tests were conducted directly on this crest and on a smoother region of the edge. The crest elicited 2 to 15 times greater volumetric wear on the femoral head. The propensity of the crest to rapidly (machining protocols might be a root cause of stripe wear and squeaking in ceramic acetabular bearings.

  11. Aerodynamic Characteristics of the Crest with Membrane Attachment on Cretaceous Pterodactyloid Nyctosaurus

    Institute of Scientific and Technical Information of China (English)

    XING Lida; WU Jianghao; LU Yi; L(U) Junchang; JI Qiang

    2009-01-01

    The Nyctosaurus specimen KJ1 was reconstructed under the hypothesis that there is a membrane attached to the crest;the so-called headsail crest.The aerodynamic forces and moment acting on the headsail crest were analyzed.It was shown that KJ1 might adjust the angle of the headsail crest relative to the air current as one way to generate thrust(one of the aerodynamic forces,used to overcome body drag in forward flight)and that the magnitude of the thrust and moment could vary with the gesture angle and the relative locafion between the aerodynamic center of the headsail crest and body's center of gravity.Three scenarios were tested for comparison:the crest with membrane attachment,the crest without membrane attachment and the absence of a cranial crest.It was shown that the aerodynamic characteristics(increasing.maintaining and decreasing thrusts and moment) would have almost disappear in flight for the crest without membrane attachment and Was non-existent without the cranial crest.It is suggested from aerodynamics evidence alone that Nyctosaurus specimen KJ1 had a membrane attached to the crest and used this reconstructed form for auxiliary flight control.

  12. [Internal migration].

    Science.gov (United States)

    Borisovna, L

    1991-06-01

    Very few studies have been conducted that truly permit explanation of internal migration and it repercussions on social and economic structure. It is clear however that a profound knowledge of the determinants and consequences of internal migration will be required as a basis for economic policy decisions that advance the goal of improving the level of living of the population. the basic supposition of most studies of the relationship of population and development is that socioeconomic development conditions demographic dynamics. The process of development in Mexico, which can be characterized by great heterogeneity, consequently produces great regional disparities. At the national level various studies have estimated the volume of internal migration in Mexico, but they have usually been limited to interstate migration because the main source of data, the census, is classified by states. But given the great heterogeneity within states in all the elements related to internal migration, it is clear that studies of internal migration within states are also needed. Such studies are almost nonexistent because of their technical difficulty. National level studies show that interstate migration increased significantly between 1940-80. The proportion of Mexicans living outside their states of birth increased by 558% in those years, compared to the 342% increase in the total Mexican population. Although Puebla has a high rate of increase, migration has kept it below Mexico's national growth rate. Migration between Puebla and other states and within Puebla has led to an increasing unevenness of spatial distribution. Between 1970-80, 57 of Puebla's municipios had growth rates above the state average of 2.8%/year, 6 had growth rates equal to the average, and 129 had growth rates that were below the average but not negative. 25 states with negative growth rates that were considered strongly expulsive. In 1980, 51.7% of the population was concentrated in the 57 municipios

  13. Hydraulic Evaluation of the Crest Wing Wave Energy Converter

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    This report presents the results of an experimental study of the wave energy converting abilities of the Crest Wing wave energy converter (WEC). The Crest Wing is a WEC that uses its movement in matching the shape of an oncoming wave to generate power. Model tests have been performed using a scale...... model (length scale 1:30), provided by WaveEnergyFyn, in regular and irregular wave states that can be found in Assessment of Wave Energy Devices. Best Practice as used in Denmark (Frigaard et al., 2008). The tests were carried out at Dept. of Civil Engineering, Aalborg (Frigaard et al., 2008......). The tests were carried out at Dept. of Civil Engineering, Aalborg University (AAU) in the 3D deep water wave tank. The displacement and force applied to a power take off system, provided by WaveEnergyFyn, were measured and used to calculate total power take off....

  14. Numerical analysis of divertor plasma for demo-CREST

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, M.; Maeki, K.; Hatayama, A. [Graduate School of Fundamental Science and Technology, Keio University, Yokohama (Japan); Hiwatari, R. [Central Research Institute of Electric Power Industry (CRIEPI), Tokyo (Japan); Bonnin, X. [LIMHP-CNRS, Universite Paris 13, Villetaneuse (France); Zhu, S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Schneider, R. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Greifswald (Germany); Coster, D. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany)

    2010-05-15

    The numerical analysis of the demonstration fusion reactor Demo-CREST has been carried out; this analysis focuses on impurity seeding. Several design activities for DEMO have been carried out; however, its detailed divertor plasma analysis remains to be carried out. Therefore, in this study, we discuss the possibility of neon puffing in demo-CREST to decrease the power load to the divertor plate by using the B2-EIRENE code. It has been shown that the radiation power loss by neon increases with upstream plasma density and that the peak power load to the divertor plate comes close to the allowable level by using the preliminary divertor configuration (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Environmental correlates of breeding in the Crested Caracara (Caracara Cheriway)

    Science.gov (United States)

    Morrison, J.L.; Pias, Kyle E.; Cohen, J.B.; Catlin, D.H.

    2009-01-01

    We evaluated the influence of weather on reproduction of the Crested Caracara (Caracara cheriway) in an agricultural landscape in south-central Florida. We used a mixed logistic-regression modeling approach within an information-theoretic framework to examine the influence of total rainfall, rainfall frequency, and temperature on the number of breeding pairs, timing of breeding, nest success, and productivity of Crested Caracaras during 1994-2000. The best models indicated an influence of rainfall frequency and laying period on reproduction. More individuals nested and more pairs nested earlier during years with more frequent rainfall in late summer and early fall. Pairs that nested later in each breeding season had smaller clutches, lower nest success and productivity, and higher probability of nest failure. More frequent rainfall during early spring months that are usually characterized by water deficit (March-May), more frequent rainfall during the fall drawdown period (September-November), and a shorter winter dry period showed some association with higher probability of brood reduction and lower nest success. The proportion of nests that failed was higher in "wet" years, when total rainfall during the breeding season (September-April) was >10% above the 20-year average. Rainfall may influence reproduction in Crested Caracaras indirectly through food resources. As total rainfall increased during February-April, when most pairs are feeding nestlings or dependent fledglings, the proportion of drawdown-dependent species (those that become available as rainfall decreases and wetlands become isolated and shallow) in the diet of Crested Caracaras declined, which may indicate reduced availability of foraging habitat for this primarily terrestrial raptor. ?? The American Ornithologists' Union, 2009.

  16. Medical image of the week: CREST plus ILD

    OpenAIRE

    Oliva I; Knox KS

    2013-01-01

    A 60 year old female with a history of fibromyalgia presented with dyspnea and skin changes, predominantly on the hands. Physical exam and imaging showed classic findings of limited cutaneous systemic sclerosis (scleroderma) CREST syndrome. Calcinosis cutis (Figure 1A), Raynaud’s (not shown but endorsed by the patient), Esophageal dysmotility (Figure 1B, dilated esophagus), Sclerodactyly (Figure 1C), and Teleganectasias (Figure 1D) were all present. Ground glass opacities were seen predomi...

  17. Scleroderma and CREST syndrome: a case report in dentistry.

    Science.gov (United States)

    Lauritano, D; Bussolati, A; Baldoni, M; Leonida, A

    2011-09-01

    CREST syndrome is part of the heterogeneous scleroderma group of autoimmune diseases that cause thickening, hardening and tightening of the connective tissue in different parts of the body, and it may lead to complex disorders. CREST syndrome is characterized by the coexistence of calcinosis, Raynaud's phenomenon, esophageal hypomotility, sclerodactily and telangectasia. A 72-year-old caucasian woman is referred to the S. Gerardo Hospital of Monza, with a chief complaint of oral pain and difficulties in deglutition and eating, associated with denture instability and difficulties to fit it. She had been previously diagnosed with Raynaud's phenomenon, and afterwards with CREST syndrome. Extra-oral examination underlined taut, thickened and rigid skin, pallid-red irregular maculae all over the face, telangiectasias and acrocyanosis. Intra-oral examination showed no alteration of the mucosa, but we can observe tongue rigidity and some speckled red alternating with white spots on the hard palate and in the vestibule. We undermitted the patient the dental treatment of Sjogren's syndrome. The management of the Sjogren's syndrome is symptomatic and empirical, and involves the use of saliva secretion stimulators, salivary substitutes and coadjuvants. Dental treatment and prophylaxis are important to prevent the consequences of xerostomia, such as rampant caries, based on the administration of topical fluoride in toothpastes and rinses, and supplemented by fluoride gels and varnishes. Instruction and reinforcement of oral hygiene, along with frequent dental assessment and management by the dentist are essential measures to preserve the oral health of those affected with CREST syndrome in progression to SS, complicated with Sjogren's syndrome.

  18. Bed profile downstream compound sharp crested V-notch weir

    Directory of Open Access Journals (Sweden)

    Mohammad Mahmoud Ibrahim

    2015-09-01

    Full Text Available Triangular weirs are commonly used to measure discharge in open channel flow. They represent an inexpensive, reliable methodology to monitor water allocation. A compound sharp-crested weir consisting of two triangular parts with different notch angles was used. The lower triangular part of the weir handles the normal range of discharges while the upper part measures the higher peak flows. This paper evaluates experimentally the local scour downstream compound sharp crested V-notch weir. Forty-eight (48 experimental runs were conducted. Three models of weirs with different geometries (combination of notch angles, four upstream water levels, three water levels at the tailgate, and two bed materials were used. Multiple regression equations based on energy principal and dimensional analysis theory were deduced to estimate the local scour downstream of the weir models. The developed equations were compared with the experimental data. The comparison between the local scour downstream classical V-notch weir and a compound sharp-crested weir consisting of two triangular parts with different notch angles was found to be unnoticed. The study recommended using the compound V-notch weir to pass high discharges instead of the classical V-notch weir.

  19. MR imaging findings of medial tibial crest friction

    Energy Technology Data Exchange (ETDEWEB)

    Klontzas, Michail E., E-mail: miklontzas@gmail.com; Akoumianakis, Ioannis D., E-mail: ioannis.akoumianakis@gmail.com; Vagios, Ilias, E-mail: iliasvagios@gmail.com; Karantanas, Apostolos H., E-mail: akarantanas@gmail.com

    2013-11-01

    Objective: Medial tibial condyle bone marrow edema (BME), associated with soft tissue edema (STe) surrounding the medial collateral ligament, was incidentally observed in MRI examinations of young and athletic individuals. The aim of the present study was to 1. Prospectively investigate the association between these findings and coexistence of localized pain, and 2. Explore the possible contribution of the tibial morphology to its pathogenesis. Methods: The medial tibial condyle crest was evaluated in 632 knee MRI examinations. The angle and depth were measured by two separate evaluators. The presence of STe and BME was recorded. A third evaluator blindly assessed the presence of pain at this site. Results: BME associated with STe was found in 24 patients (with no history of previous trauma, osteoarthritis, tumor or pes anserine bursitis). The mean crest angle was 151.3° (95%CI 147.4–155.3°) compared to 159.4° (95%CI 158.8–160°) in controls (Mann–Whitney test, P < 0.0001). MRI findings were highly predictive of localized pain (sensitivity 92% specificity 99%, Fisher's exact test, P < 0.0001). Conclusion: Friction at the medial tibial condyle crest is a painful syndrome. MRI is a highly specific and sensitive imaging modality for its diagnosis.

  20. Folate deficiency-induced oxidative stress contributes to neuropathy in young and aged zebrafish--implication in neural tube defects and Alzheimer's diseases.

    Science.gov (United States)

    Kao, Tseng-Ting; Chu, Chia-Yi; Lee, Gang-Hui; Hsiao, Tsun-Hsien; Cheng, Nai-Wei; Chang, Nan-Shan; Chen, Bing-Hung; Fu, Tzu-Fun

    2014-11-01

    Folate is a nutrient essential for the development, function and regeneration of nervous systems. Folate deficiency has been linked to many neurological disorders including neural tube defects in fetus and Alzheimer's diseases in the elderly. However, the etiology underlying these folate deficiency-associated diseases is not completely understood. In this study, zebrafish transgenic lines with timing and duration-controllable folate deficiency were developed by ectopically overexpressing a recombinant EGFP-γ-glutamyl hydrolase (γGH). Impeded neural crest cell migration was observed in the transgenic embryos when folate deficiency was induced in early stages, leading to defective neural tube closure and hematopoiesis. Adding reduced folate or N-acetylcysteine reversed the phenotypic anomalies, supporting the causal link between the increased oxidative stress and the folate deficiency-induced abnormalities. When folate deficiency was induced in aged fish accumulation of beta-amyloid and phosphorylated Tau protein were found in the fish brain cryo-sections. Increased autophagy and accumulation of acidic autolysosome were apparent in folate deficient neuroblastoma cells, which were reversed by reduced folate or N-acetylcysteine supplementation. Decreased expression of cathepsin B, a lysosomal protease, was also observed in cells and tissue with folate deficiency. We concluded that folate deficiency-induced oxidative stress contributed to the folate deficiency-associated neuropathogenesis in both early and late stages of life.

  1. Ethanol-induced impairment of polyamine homeostasis – A potential cause of neural tube defect and intrauterine growth restriction in fetal alcohol syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Haghighi Poodeh, Saeid, E-mail: saeid.haghighi@oulu.fi [Institute of Clinical Medicine, Department of Internal Medicine, and Biocenter Oulu, University of Oulu, Oulu (Finland); Medical Research Center, Oulu University Hospital, Oulu (Finland); Alhonen, Leena [Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Kuopio (Finland); School of Pharmacy, Biocenter Kuopio, University of Eastern Finland, Kuopio (Finland); Salonurmi, Tuire; Savolainen, Markku J. [Institute of Clinical Medicine, Department of Internal Medicine, and Biocenter Oulu, University of Oulu, Oulu (Finland); Medical Research Center, Oulu University Hospital, Oulu (Finland)

    2014-03-28

    Highlights: • Polyamine pools in embryonic and extraembryonic tissues are developmentally regulated. • Alcohol administration perturbs polyamine levels in the tissues with various patterns. • Total absence of polyamines in the embryo head at 9.5 dpc is critical for development. • The deficiency is associated with reduction in endothelial cell sprouting in the head. • Retarded migration of neural crest cells may cause development of neural tube defect. - Abstract: Introduction: Polyamines play a fundamental role during embryogenesis by regulating cell growth and proliferation and by interacting with RNA, DNA and protein. The polyamine pools are regulated by metabolism and uptake from exogenous sources. The use of certain inhibitors of polyamine synthesis causes similar defects to those seen in alcohol exposure e.g. retarded embryo growth and endothelial cell sprouting. Methods: CD-1 mice received two intraperitoneal injections of 3 g/kg ethanol at 4 h intervals 8.75 days post coitum (dpc). The fetal head, trunk, yolk sac and placenta were collected at 9.5 and 12.5 dpc and polyamine concentrations were determined. Results: No measurable quantity of polyamines could be detected in the embryo head at 9.5 dpc, 12 h after ethanol exposure. Putrescine was not detectable in the trunk of the embryo at that time, whereas polyamines in yolk sac and placenta were at control level. Polyamine deficiency was associated with slow cell growth, reduction in endothelial cell sprouting, an altered pattern of blood vessel network formation and consequently retarded migration of neural crest cells and growth restriction. Discussion: Our results indicate that the polyamine pools in embryonic and extraembryonic tissues are developmentally regulated. Alcohol administration, at the critical stage, perturbs polyamine levels with various patterns, depending on the tissue and its developmental stage. The total absence of polyamines in the embryo head at 9.5 dpc may explain why this

  2. Proliferation and migration in vivo of neural precursor cells in adult rat brain following fluid percussion injury%成年大鼠脑损伤后神经前体细胞的增殖及迁移

    Institute of Scientific and Technical Information of China (English)

    张相彤; 王忠诚; 董丽萍; 张亚卓; 戴钦舜

    2005-01-01

    BACKGROUND: Neural precursor cells exist in the central nervous system (CNS) of adult mammals, characterized fundamentally by such biological properties of multipotential differentiation and capability of maintaining their stable quantity.OBJECTIVE: To investigate the proliferation and migration of the neural precursor cells in adult rat brain following fluid percussion injury (FPI),and explore their role in the repair of CNS damage.DESIGN:Randomized controlled experiment.SETITNG: Laboratory of Pathophysiology, Beijing Institute of Neurosurgery.MATERIALS: This experiment was carried out at the Laboratory of Pathophysiology, Beijing Institute of Neurosurgery. Totally 67 adult Wistar rats were randomized into a control group (n=7) and 5 FPI groups (n=12)sampled 1, 3, 7, 14, and 30 days after FPI, respectively. Each FPI group was further divided into artificial cerebral spinal fluid (CSF) group (n=2),basic fibroblast growth factor (bFGF) group (n=5) and neurotrophin-3 (NT3) group (n=5).METHODS: Lateral fluid percussion brain injury was induced in rats in the FPI group and the rats in the control group were only subjected to craniotomy without percussion. The rats in FPI groups were given intraperitoneal injection of bromodexyuridine (BrdU) at the dosage of 50 mg/kg for three times a day in 1- and 3-day FPI groups, but only once a day in 7-and 14-day groups, with the final dose given 2 hours before sacrifice. The rats in bFGF subgroup and NT-3 subgroup were given bFGF at the total daily dose of 360 ng and NT-3 of 240 ng, respectively, while those in artificial CSF subgroup received perfusion fluid of 4 μL without bFGF or NT3 every day. The dynamic expressions of nestin and BrdU in the rat brain were determined with immunocytochemistry. BrdU labeling method was used to identify the differentiated neural progenitor cells, and nestin expression was used to identify the neural progenitor cells.MAIN OUTCOME MEASURES: Expressions of Brdu, glial fibrillary acidic protein

  3. Dbx1-expressing cells are necessary for the survival of the mammalian anterior neural and craniofacial structures.

    Directory of Open Access Journals (Sweden)

    Frédéric Causeret

    Full Text Available Development of the vertebrate forebrain and craniofacial structures are intimately linked processes, the coordinated growth of these tissues being required to ensure normal head formation. In this study, we identify five small subsets of progenitors expressing the transcription factor dbx1 in the cephalic region of developing mouse embryos at E8.5. Using genetic tracing we show that dbx1-expressing cells and their progeny have a modest contribution to the forebrain and face tissues. However, their genetic ablation triggers extensive and non cell-autonomous apoptosis as well as a decrease in proliferation in surrounding tissues, resulting in the progressive loss of most of the forebrain and frontonasal structures. Targeted ablation of the different subsets reveals that the very first dbx1-expressing progenitors are critically required for the survival of anterior neural tissues, the production and/or migration of cephalic neural crest cells and, ultimately, forebrain formation. In addition, we find that the other subsets, generated at slightly later stages, each play a specific function during head development and that their coordinated activity is required for accurate craniofacial morphogenesis. Our results demonstrate that dbx1-expressing cells have a unique function during head development, notably by controlling cell survival in a non cell-autonomous manner.

  4. Neurobiology of Monarch Butterfly Migration.

    Science.gov (United States)

    Reppert, Steven M; Guerra, Patrick A; Merlin, Christine

    2016-01-01

    Studies of the migration of the eastern North American monarch butterfly (Danaus plexippus) have revealed mechanisms behind its navigation. The main orientation mechanism uses a time-compensated sun compass during both the migration south and the remigration north. Daylight cues, such as the sun itself and polarized light, are processed through both eyes and integrated through intricate circuitry in the brain's central complex, the presumed site of the sun compass. Monarch circadian clocks have a distinct molecular mechanism, and those that reside in the antennae provide time compensation. Recent evidence shows that migrants can also use a light-dependent inclination magnetic compass for orientation in the absence of directional daylight cues. The monarch genome has been sequenced, and genetic strategies using nuclease-based technologies have been developed to edit specific genes. The monarch butterfly has emerged as a model system to study the neural, molecular, and genetic basis of long-distance animal migration.

  5. Facilitating permeability of landscapes impacted by roads for protected amphibians: patterns of movement for the great crested newt

    Directory of Open Access Journals (Sweden)

    Cátia Matos

    2017-02-01

    Full Text Available Amphibian populations are highly vulnerable to road mortality and habitat fragmentation caused by road networks. Wildlife road tunnels are considered the most promising road mitigation measure for amphibians yet generally remain inadequately monitored, resulting in mixed success rates in the short-term and uncertain conservation benefits in the long-term. We monitored a complex multi-tunnel and fence system over five years and investigated the impact of the scheme on movement patterns of two newt species, including the largest known UK population of the great crested newt (Triturus cristatus, a European Protected Species. We used a stage descriptive approach based on capture positions to quantify newt movement patterns. Newt species successfully used the mitigation but the system constituted a bottleneck to movements from the fences to the tunnels. Crossing rates varied widely among years and were skewed towards autumn dispersal rather than spring breeding migration. There was a substantial negative bias against adult male great crested newts using the system. This study indicates that road tunnels could partially mitigate wider connectivity loss and fragmentation at the landscape scale for newt species. However, the observed bottleneck effects and seasonal bias could have population-level effects which must be better understood, especially for small populations, so that improvements can be made. Current requirements for monitoring mitigation schemes post-implementation are probably too short to assess their effectiveness in maintaining connectivity and to adequately understand their population-level impacts.

  6. Facilitating permeability of landscapes impacted by roads for protected amphibians: patterns of movement for the great crested newt

    Science.gov (United States)

    Petrovan, Silviu; Ward, Alastair I.; Wheeler, Philip

    2017-01-01

    Amphibian populations are highly vulnerable to road mortality and habitat fragmentation caused by road networks. Wildlife road tunnels are considered the most promising road mitigation measure for amphibians yet generally remain inadequately monitored, resulting in mixed success rates in the short-term and uncertain conservation benefits in the long-term. We monitored a complex multi-tunnel and fence system over five years and investigated the impact of the scheme on movement patterns of two newt species, including the largest known UK population of the great crested newt (Triturus cristatus), a European Protected Species. We used a stage descriptive approach based on capture positions to quantify newt movement patterns. Newt species successfully used the mitigation but the system constituted a bottleneck to movements from the fences to the tunnels. Crossing rates varied widely among years and were skewed towards autumn dispersal rather than spring breeding migration. There was a substantial negative bias against adult male great crested newts using the system. This study indicates that road tunnels could partially mitigate wider connectivity loss and fragmentation at the landscape scale for newt species. However, the observed bottleneck effects and seasonal bias could have population-level effects which must be better understood, especially for small populations, so that improvements can be made. Current requirements for monitoring mitigation schemes post-implementation are probably too short to assess their effectiveness in maintaining connectivity and to adequately understand their population-level impacts. PMID:28265490

  7. CREST maps somatic structural variation in cancer genomes with base-pair resolution.

    Science.gov (United States)

    Wang, Jianmin; Mullighan, Charles G; Easton, John; Roberts, Stefan; Heatley, Sue L; Ma, Jing; Rusch, Michael C; Chen, Ken; Harris, Christopher C; Ding, Li; Holmfeldt, Linda; Payne-Turner, Debbie; Fan, Xian; Wei, Lei; Zhao, David; Obenauer, John C; Naeve, Clayton; Mardis, Elaine R; Wilson, Richard K; Downing, James R; Zhang, Jinghui

    2011-06-12

    We developed 'clipping reveals structure' (CREST), an algorithm that uses next-generation sequencing reads with partial alignments to a reference genome to directly map structural variations at the nucleotide level of resolution. Application of CREST to whole-genome sequencing data from five pediatric T-lineage acute lymphoblastic leukemias (T-ALLs) and a human melanoma cell line, COLO-829, identified 160 somatic structural variations. Experimental validation exceeded 80%, demonstrating that CREST had a high predictive accuracy.

  8. Hydraulic evaluation of the Crest Wing wave energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Kofoed, J.P.; Antonishen, M.

    2008-09-15

    The Crest Wing Wave Energy Converter is currently being developed by Henning Pilgaard, of WaveEnergyFyn, Denmark. It is meant to act like a carpet on the water, conforming to the shape of each wave and using that movement to generate power. The thought of making a WEC that acts like a carpet on top of the waves is not new; ongoing or past projects such as the Pelamis and Cockerel Raft were designed with this thought in mind. The real difference with the Crest Wing is that it has skirt drafts, that extend down into the water and create suction; this increases the effective mass of the WEC while minimizing the material use. Special attention was given to the design of the first and last floaters as they are meant to act as a smooth transition between wave and machine. Their purpose is to make sure that no air gets under the two middle floaters so that suction is not broken and the device continues to function well. In summary the Crest Wing functions and is able to produce power with a good overall efficiency. The configuration with relative reference PTO (Power Take Off) is superior. It has not been proven that the idea of mounting skirts on the floaters is leading to a better performance. Thus, the study leads to the conclusion that the idea of making a simple hinged raft type device is good, and it is likely that the construction cost for a device of this type can be kept down. However, the study also leaves the chance that some limited draft of skirts in combination with inlet/outlet devices, could prove beneficial. In case of further testing on this device, an effort should be made to design and construct a more easily and accurately controlled PTO model in the test setup. This could greatly improve the quality of the output of such tests. (ln)

  9. The 1992 epizootic of Newcastle disease in double-crested cormorants in North America

    Science.gov (United States)

    Glaser, L.C.; Barker, I.K.; Weseloh, D.V.C.; Ludwig, J.; Windingstad, R.M.; Key, D.W.; Bollinger, T.K.

    1999-01-01

    In the summer of 1992, morbidity and mortality in juvenile double-crested cormorants (Phalacrocorax auritus; DCC) attributable to Newcastle disease virus (NDV) was observed for the first time in seven northern USA states and one Canadian province, and recurred in three western Canadian provinces. Based on clinical signs and laboratory diagnostic findings, DCC mortality from NDV occurred in 59 of the 63 nesting colonies and two of three non-colony sites investigated. An estimate of in excess of 20,000 DCC died, with mortality rates ranging from cause for the mortality of an estimated 5,000 pelicans was determined. No evidence of NDV was found in other species nesting in proximity to affected cormorants. Although the source of the NDV infection is unknown in cormorants, the simultaneous onset of the epizootics in juvenile birds over a wide geographic area implies that the virus was acquired by adults prior to migration and was carried back to nest sites, exposing susceptible nestlings. The possible transmission of this virus from free-ranging wild birds to domestic poultry is a concern. Based on repeated epizootics in cormorants since 1990, NDV seems to be established in DCC.

  10. A preference for migration

    OpenAIRE

    Stark, Oded

    2007-01-01

    At least to some extent migration behavior is the outcome of a preference for migration. The pattern of migration as an outcome of a preference for migration depends on two key factors: imitation technology and migration feasibility. We show that these factors jointly determine the outcome of a preference for migration and we provide examples that illustrate how the prevalence and transmission of a migration-forming preference yield distinct migration patterns. In particular, the imitation of...

  11. A preference for migration

    OpenAIRE

    Stark, Oded

    2007-01-01

    At least to some extent migration behavior is the outcome of a preference for migration. The pattern of migration as an outcome of a preference for migration depends on two key factors: imitation technology and migration feasibility. We show that these factors jointly determine the outcome of a preference for migration and we provide examples that illustrate how the prevalence and transmission of a migration-forming preference yield distinct migration patterns. In particular, the imitation of...

  12. Bosnia: Migrations

    Directory of Open Access Journals (Sweden)

    Stjepan Pavičić

    2000-12-01

    Full Text Available The paper is a reprint of a very informative review of migrations in Bosnia published almost 60 years ago. The author first notes that the [Slavic] population that first settled Bosnia spoke variants of the ikavian-ţakavian dialect spoken also in neighbouring parts of Croatia (although the interrogative ča itself was not common. From the 13th century the jekavian-štokavian dialect expanded from the Southeast, from areas in modern Montenegro. This change was greatly due to immigration of Vlachs, who had adopted jekavian-štokavian. Although earlier Vlach immigrants had adopted the indigenous ikavian idiom, as well as associating themselves with Catholicism or with the Patarene Bosnian Church, later arrivals spoke jekavian-štokavian and adhered to Eastern Orthodoxy. In the 14th century the former group, living on both sides of the Neretva valley and in the Dinaric range, expanded to areas of Croatia, whereas the Eastern Vlachs had already established themselves on the left bank of the Drina river. By 1450 all Vlachs in Bosnia spoke jekavian-štokavian. In the 15–16th centuries the Ottomans favoured the settlement of Vlachs in Bosnia. The Vlachs served in Ottoman military structures, provided transportation services and were useful in the integration of conquered western and northwestern lands. In general, the establishment of Ottoman rule in Bosnia induced major changes in the population and in migration flows. The author divides this history into three periods. The first lasted from the initial Ottoman conquests to the wars of 1683–1699. At its start in the 15th century almost all Patarenes adopted Islam, especially in areas where the Bosnian Church was strong, but also in areas where Catholicism dominated, where some Catholics embraced Islam. Conversions of Catholics to Islam intensified in the 16th century and throughout the 17th, to a different degree in various regions: a in Central Bosnia conversion was almost total, b along the Sava

  13. Crested wheatgrass (Agropyron cristatum seedings in Western Colorado: What can we learn?

    Directory of Open Access Journals (Sweden)

    James Dollerschell

    2012-12-01

    Full Text Available Non-native species have been widely transported, becoming components of ecosystems worldwide. In some cases this can change thestructure and function of an ecosystem. Crested wheatgrass (Agropyron cristatum, Agropyron spp. was introduced into the Western U.S. inthe late 18th and early 19th centuries. Since introduction, it has been planted in western rangelands currently occupying millions of acres.Crested wheatgrass causes significant changes in areas where it dominates the vegetation, and restoring rangelands planted with crested wheatgrass to higher plant diversity and ecosystem function has been met with limited success. Here we revisit historical frequency monitoring data collected in western Colorado on public lands that were planted with crested wheatgrass between 1940 and 1980. We also monitored vegetation before and after mechanical treatment (removal of vegetation with the use of a dixie harrow pulled behind a tractor and re-seeding of desirable species in three areas dominated by crested wheatgrass. We looked for increasing or decreasing trends in plant species, and for plant species that persist with crested wheatgrass. We found that crested wheatgrass increased significantly (p=0.09 over time, we also found five species of grasses, two shrub species, and one forb species that were persistent in areas planted with crested wheatgrass. We found that in mechanically treated areas, the only significant trend was a reduction of native grasses (p<0.05. Our findings suggest that in areas planted with crested wheatgrass, frequency of crested wheatgrass can increase over time. Further, mechanical treatments coupled with seeding were not effective at reducing crested wheatgrass cover, or at increasing native and desirable species. These sites may have experienced a shift to a stable state.

  14. The Development of a Primary Neural Crest Assay for Neuroblastoma Oncogenesis

    Science.gov (United States)

    2015-09-01

    p53  compromised  NCCs  (Figure  3B)  that   there...establishing  the   molecular  etiology  of  this   disease  and  finding  tractable  therapeutic  targets  are  key   challenges...6E).      We  have  also  established  that  we  can  take   NCC  with  N-­‐Myc  overexpression  in  a   p53

  15. The hindbrain neural crest and the development of the enteric nervous system

    NARCIS (Netherlands)

    M.J.H. van der Sanden (Marjo)

    1994-01-01

    textabstractThe wonder of things is the beginning of knowledge, as was already stated by Aristotle, the fIrst embryologist known to history. Embryology has remained a source of wonder ever since. It all starts with the fusion of the female egg and the male sperm. Sperm cells were first described by

  16. Generation of Induced Pluripotent Stem Cells from Hair Follicle Bulge Neural Crest Stem Cells

    NARCIS (Netherlands)

    Ma, Ming-San; Czepiel, Marcin; Krause, Tina; Schaefer, Karl-Herbert; Boddeke, Erik; Copray, Sjef

    2014-01-01

    Induced pluripotent stem cells (iPSCs) are promising candidates for the study of disease models as well as for tissue engineering purposes. Part of a strategy to develop safe reprogramming technique is reducing the number of exogenous reprogramming factors. Some cells types are more prone to reprogr

  17. Generation of Induced Pluripotent Stem Cells from Hair Follicle Bulge Neural Crest Stem Cells

    NARCIS (Netherlands)

    Ma, Ming-San; Czepiel, Marcin; Krause, Tina; Schaefer, Karl-Herbert; Boddeke, Erik; Copray, Sjef

    2014-01-01

    Induced pluripotent stem cells (iPSCs) are promising candidates for the study of disease models as well as for tissue engineering purposes. Part of a strategy to develop safe reprogramming technique is reducing the number of exogenous reprogramming factors. Some cells types are more prone to

  18. The Role of Sonic Hedgehog in Craniofacial Patterning, Morphogenesis and Cranial Neural Crest Survival

    Directory of Open Access Journals (Sweden)

    Sebastian Dworkin

    2016-08-01

    Full Text Available Craniofacial defects (CFD are a significant healthcare problem worldwide. Understanding both the morphogenetic movements which underpin normal facial development, as well as the molecular factors which regulate these processes, forms the cornerstone of future diagnostic, and ultimately, preventative therapies. The soluble morphogen Sonic hedgehog (Shh, a vertebrate orthologue of Drosophila hedgehog, is a key signalling factor in the regulation of craniofacial skeleton development in vertebrates, operating within numerous tissue types in the craniofacial primordia to spatiotemporally regulate the formation of the face and jaws. This review will provide an overview of normal craniofacial skeleton development, and focus specifically on the known roles of Shh in regulating the development and progression of the first pharyngeal arch, which in turn gives rise to both the upper jaw (maxilla and lower jaw (mandible.

  19. Dual labeling of neural crest cells and blood vessels within chicken embryos using chick

    NARCIS (Netherlands)

    J.-M. Delalande (Jean-Marie); N. Thapar (Nikhil); A.J. Burns (Alan)

    2015-01-01

    textabstractAll developing organs need to be connected to both the nervous system (for sensory and motor control) as well as the vascular system (for gas exchange, fluid and nutrient supply). Consequently both the nervous and vascular systems develop alongside each other and share striking similarit

  20. Olfactory ensheathing glia are required for embryonic olfactory axon targeting and the migration of gonadotropin-releasing hormone neurons

    Directory of Open Access Journals (Sweden)

    Perrine Barraud

    2013-06-01

    Kallmann's syndrome is caused by the failure of olfactory axons and gonadotropin-releasing hormone (GnRH neurons to enter the embryonic forebrain, resulting in anosmia and sterility. Sox10 mutations have been associated with Kallmann's syndrome phenotypes, but their effect on olfactory system development is unknown. We recently showed that Sox10 is expressed by neural crest-derived olfactory ensheathing cells (OECs. Here, we demonstrate that in homozygous Sox10lacZ/lacZ mouse embryos, OEC differentiation is disrupted; olfactory axons accumulate in the ventromedial olfactory nerve layer and fewer olfactory receptor neurons express the maturation marker OMP (most likely owing to the failure of axonal targeting. Furthermore, GnRH neurons clump together in the periphery and a smaller proportion enters the forebrain. Our data suggest that human Sox10 mutations cause Kallmann's syndrome by disrupting the differentiation of OECs, which promote embryonic olfactory axon targeting and hence olfactory receptor neuron maturation, and GnRH neuron migration to the forebrain.

  1. 76 FR 15971 - Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy; Notice of Teleconference

    Science.gov (United States)

    2011-03-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy... Eagle Crest Energy as part of its on-going Section 7 Endangered Species Act consultation efforts. e....

  2. 76 FR 22699 - Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Teleconference

    Science.gov (United States)

    2011-04-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy... Eagle Crest Energy as part of its on-going Section 7 Endangered Species Act consultation efforts. e....

  3. 75 FR 3217 - Eagle Crest Energy Company; Notice of Application Ready for Environmental Analysis and Soliciting...

    Science.gov (United States)

    2010-01-20

    ... Energy Regulatory Commission Eagle Crest Energy Company; Notice of Application Ready for Environmental... filed: June 23, 2009. d. Applicant: Eagle Crest Energy Company. e. Name of Project: Eagle Mountain... Eagle Mountain Mine in Riverside County, California, near the Town of Desert Center, California,...

  4. A BMP regulatory network controls ectodermal cell fate decisions at the neural plate border.

    Science.gov (United States)

    Reichert, Sabine; Randall, Rebecca A; Hill, Caroline S

    2013-11-01

    During ectodermal patterning the neural crest and preplacodal ectoderm are specified in adjacent domains at the neural plate border. BMP signalling is required for specification of both tissues, but how it is spatially and temporally regulated to achieve this is not understood. Here, using a transgenic zebrafish BMP reporter line in conjunction with double-fluorescent in situ hybridisation, we show that, at the beginning of neurulation, the ventral-to-dorsal gradient of BMP activity evolves into two distinct domains at the neural plate border: one coinciding with the neural crest and the other abutting the epidermis. In between is a region devoid of BMP activity, which is specified as the preplacodal ectoderm. We identify the ligands required for these domains of BMP activity. We show that the BMP-interacting protein Crossveinless 2 is expressed in the BMP activity domains and is under the control of BMP signalling. We establish that Crossveinless 2 functions at this time in a positive-feedback loop to locally enhance BMP activity, and show that it is required for neural crest fate. We further demonstrate that the Distal-less transcription factors Dlx3b and Dlx4b, which are expressed in the preplacodal ectoderm, are required for the expression of a cell-autonomous BMP inhibitor, Bambi-b, which can explain the specific absence of BMP activity in the preplacodal ectoderm. Taken together, our data define a BMP regulatory network that controls cell fate decisions at the neural plate border.

  5. Medical image of the week: CREST plus ILD

    Directory of Open Access Journals (Sweden)

    Oliva I

    2013-06-01

    Full Text Available A 60 year old female with a history of fibromyalgia presented with dyspnea and skin changes, predominantly on the hands. Physical exam and imaging showed classic findings of limited cutaneous systemic sclerosis (scleroderma CREST syndrome. Calcinosis cutis (Figure 1A, Raynaud’s (not shown but endorsed by the patient, Esophageal dysmotility (Figure 1B, dilated esophagus, Sclerodactyly (Figure 1C, and Teleganectasias (Figure 1D were all present. Ground glass opacities were seen predominantly in the bilateral lower lung zones, associated with increased reticular markings (Figure 2A, and traction bronchiectasis (Figure 2B. Pulmonary involvement is noted in the majority of scleroderma patients. Interstitial lung disease (ILD is common and often portends a poor prognosis.

  6. CREST: Center for Renewable Energy Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Billo, Richard E. [Univ. of Texas, Arlington, TX (United States); Rajeshwar, Krishnan [Univ. of Texas, Arlington, TX (United States)

    2012-03-20

    The DOE project addressed an approach to the hydrogen economy by researching hydrogen generation from low cost domestic fossil fuel sources. Specifically, the CREST research team developed new processes for extracting hydrogen from southwestern lignite for the production of clean synthetic fuels such as synthetic crude oil that is free of sulfur, carbon dioxide and other pollutants that can be shipped to nearby Texas refineries and power plants for development of transportation fuels and power generation. Research was also undertaken to convert any potential by-products of this process such as CO2 to useful chemicals and gases which may be recycled and used as feedstock to the synthetic fuel process. Finally, to ensure the proposed process is functional beyond bench scale, a detailed design of a pilot plant was completed. The overall project was divided into five tasks including a management task as outlined below.

  7. Environmental Design Guidelines for Low Crested Coastal Structures

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Hawkins, Stephen J.; Zanuttigh, Barbara

    changes and beach value, which clearly exists based on EC research experiences and particularly on results obtained by DELOS Project (www.delos.unibo.it) for Low Crested Structures (LCSs), suggests the necessity of integrated approaches and thus the relevance of design guidelines covering: structure...... (Chapters 1-10) contains the description of the design methodology, from the preliminary identification of design alternatives till the selection of the sustainable scheme and its construction. The second part presents: the analysis of the performance of beach defences in DELOS study sites, which were...... methodological tools both for the engineering design of structures and for prediction of performance and environmental impacts of such structures. It is anticipated that the guidelines will provide valuable inputs to coastal zone management plans. The target audience for this set of guidelines is consulting...

  8. EU Migration Policy

    OpenAIRE

    Kleinschmidt, Harald

    2004-01-01

    I shall confine myself in this paper to international migration as migration across international borders.I do so despite the fact that,still today,international migration accounts only for a small share of migration at large.Likewise,I shall deal widh voluntary migration and shall thus exclude,deportation ...

  9. 76 FR 5580 - Eagle Crest Energy Company; Notice of Applicant-Proposed Water Pipeline Route for the Proposed...

    Science.gov (United States)

    2011-02-01

    ... Energy Regulatory Commission Eagle Crest Energy Company; Notice of Applicant-Proposed Water Pipeline Route for the Proposed Eagle Mountain Pumped Storage Hydroelectric Project and Notice of Public Meetings January 21, 2011. On June 22, 2009, Eagle Crest Energy Company (Eagle Crest or applicant) filed...

  10. Migration of birds

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report covers the migration of birds. Topics covered include why birds migrate, when birds migrate, speed, altitude, courses, distance, major flyways and...

  11. Research on Protocol Migration

    Institute of Scientific and Technical Information of China (English)

    汪芸; 顾冠群; 等

    1996-01-01

    This paper elaborates the concept and model of protocol migration in network interconnection.Migration strategies and principles are discussed and several cases are studied in detail which show the basic procedure and techniques used in protocol migration.

  12. Comparison between implants inserted into piezo split and unsplit alveolar crests.

    Science.gov (United States)

    Danza, Matteo; Guidi, Riccardo; Carinci, Francesco

    2009-11-01

    Piezoelectric surgery (PES) uses a modulated ultrasonic frequency that permits highly precise and safe hard tissue cutting. A retrospective study on a series of spiral family implants inserted with or without PES split crest was performed to verify if implants inserted into crests split using PES have a comparable outcome to those inserted into unsplit bone. In the period from May 2004 to November 2007, 86 patients (55 women and 31 men, median age 53 yrs) were operated on and 234 spiral family implants were inserted. Among these, 21 were inserted into PES split crest. Mean follow-up was 13 months (3 to 35 months). The Kaplan-Meier algorithm was used to compare the 2 groups in survival and clinical success (ie, decreased bone resorption around implant neck). Only 9 of 234 implants were lost (ie, survival rate 96.2%), all of which belonged to the unsplit group but no statistical difference was demonstrated. To detect if PES split crest produces a better clinical outcome in comparison with fixtures inserted into unsplit alveolar ridges, crestal bone loss was compared in the remaining loaded implants (234--9 lost--5 not prosthetized = 220). No statistical significant difference was detected by comparing implants inserted into PES split crests with untreated alveolar ridges, although a better trend was visible for fixtures inserted into PES split crests. PES split crests provide several advantages and clinical outcomes that are not worse in terms of bone remodeling, if compared with standard procedures.

  13. Internationalization and migration pressure.

    Science.gov (United States)

    Kultalahti, O

    1994-01-01

    The author first develops the concept of migration pressure, which is defined as the growth in the number of people wishing to migrate and the barriers preventing them from so doing. Both macro- and micro-level factors affecting migration pressure are identified. Historical trends in migration pressure in Finland are then discussed. The author then applies this concept to the analysis of current Finnish migration trends. The primary focus is on international migration.

  14. Neuronal migration mechanisms in development and disease.

    Science.gov (United States)

    Valiente, Manuel; Marín, Oscar

    2010-02-01

    Neuronal migration is a fundamental process that determines the final allocation of neurons in the nervous system, establishing the basis for the subsequent wiring of neural circuitry. From cell polarization to target identification, neuronal migration integrates multiple cellular and molecular events that enable neuronal precursors to move across the brain to reach their final destination. In this review we summarize novel findings on the key processes that govern the cell biology of migrating neurons, describing recent advances in their molecular regulation in different migratory pathways of the brain, spinal cord, and peripheral nervous system. We will also review how this basic knowledge is contributing to a better understanding of the etiology and pathophysiology of multiple neurological syndromes in which neuronal migration is disru