WorldWideScience

Sample records for neural circuit mapping

  1. Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation

    Science.gov (United States)

    Harris, Julie A.; Hirokawa, Karla E.; Sorensen, Staci A.; Gu, Hong; Mills, Maya; Ng, Lydia L.; Bohn, Phillip; Mortrud, Marty; Ouellette, Benjamin; Kidney, Jolene; Smith, Kimberly A.; Dang, Chinh; Sunkin, Susan; Bernard, Amy; Oh, Seung Wook; Madisen, Linda; Zeng, Hongkui

    2014-01-01

    Significant advances in circuit-level analyses of the brain require tools that allow for labeling, modulation of gene expression, and monitoring and manipulation of cellular activity in specific cell types and/or anatomical regions. Large-scale projects and individual laboratories have produced hundreds of gene-specific promoter-driven Cre mouse lines invaluable for enabling genetic access to subpopulations of cells in the brain. However, the potential utility of each line may not be fully realized without systematic whole brain characterization of transgene expression patterns. We established a high-throughput in situ hybridization (ISH), imaging and data processing pipeline to describe whole brain gene expression patterns in Cre driver mice. Currently, anatomical data from over 100 Cre driver lines are publicly available via the Allen Institute's Transgenic Characterization database, which can be used to assist researchers in choosing the appropriate Cre drivers for functional, molecular, or connectional studies of different regions and/or cell types in the brain. PMID:25071457

  2. Anatomical characterization of cre driver mice for neural circuit mapping and manipulation

    Directory of Open Access Journals (Sweden)

    Julie Ann Harris

    2014-07-01

    Full Text Available Significant advances in circuit-level analyses of the brain require tools that allow for labeling, modulation of gene expression, and monitoring and manipulation of cellular activity in specific cell types and/or anatomical regions. Large-scale projects and individual laboratories have produced hundreds of gene-specific promoter-driven Cre mouse lines invaluable for enabling genetic access to subpopulations of cells in the brain. However, the potential utility of each line may not be fully realized without systematic whole brain characterization of transgene expression patterns. We established a high-throughput in situ hybridization, imaging and data processing pipeline to describe whole brain gene expression patterns in Cre driver mice. Currently, anatomical data from over 100 Cre driver lines are publicly available via the Allen Institute’s Transgenic Characterization database, which can be used to assist researchers in choosing the appropriate Cre drivers for functional, molecular, or connectional studies of different regions and/or cell types in the brain.

  3. Grand Research Plan for Neural Circuits of Emotion and Memory — Current status of neural circuit studies in China

    OpenAIRE

    Zhu, Yuan-Gui; Cao, He-Qi; Dong, Er-Dan

    2013-01-01

    During recent years, major advances have been made in neuroscience, i.e., asynchronous release, three-dimensional structural data sets, saliency maps, magnesium in brain research, and new functional roles of long non-coding RNAs. Especially, the development of optogenetic technology provides access to important information about relevant neural circuits by allowing the activation of specific neurons in awake mammals and directly observing the resulting behavior. The Grand Research Plan for Ne...

  4. Grand Research Plan for Neural Circuits of Emotion and Memory--current status of neural circuit studies in China.

    Science.gov (United States)

    Zhu, Yuan-Gui; Cao, He-Qi; Dong, Er-Dan

    2013-02-01

    During recent years, major advances have been made in neuroscience, i.e., asynchronous release, three-dimensional structural data sets, saliency maps, magnesium in brain research, and new functional roles of long non-coding RNAs. Especially, the development of optogenetic technology provides access to important information about relevant neural circuits by allowing the activation of specific neurons in awake mammals and directly observing the resulting behavior. The Grand Research Plan for Neural Circuits of Emotion and Memory was launched by the National Natural Science Foundation of China. It takes emotion and memory as its main objects, making the best use of cutting-edge technologies from medical science, life science and information science. In this paper, we outline the current status of neural circuit studies in China and the technologies and methodologies being applied, as well as studies related to the impairments of emotion and memory. In this phase, we are making efforts to repair the current deficiencies by making adjustments, mainly involving four aspects of core scientific issues to investigate these circuits at multiple levels. Five research directions have been taken to solve important scientific problems while the Grand Research Plan is implemented. Future research into this area will be multimodal, incorporating a range of methods and sciences into each project. Addressing these issues will ensure a bright future, major discoveries, and a higher level of treatment for all affected by debilitating brain illnesses.

  5. Drosophila olfactory memory: single genes to complex neural circuits.

    Science.gov (United States)

    Keene, Alex C; Waddell, Scott

    2007-05-01

    A central goal of neuroscience is to understand how neural circuits encode memory and guide behaviour. Studying simple, genetically tractable organisms, such as Drosophila melanogaster, can illuminate principles of neural circuit organization and function. Early genetic dissection of D. melanogaster olfactory memory focused on individual genes and molecules. These molecular tags subsequently revealed key neural circuits for memory. Recent advances in genetic technology have allowed us to manipulate and observe activity in these circuits, and even individual neurons, in live animals. The studies have transformed D. melanogaster from a useful organism for gene discovery to an ideal model to understand neural circuit function in memory.

  6. Dynamical systems, attractors, and neural circuits.

    Science.gov (United States)

    Miller, Paul

    2016-01-01

    Biology is the study of dynamical systems. Yet most of us working in biology have limited pedagogical training in the theory of dynamical systems, an unfortunate historical fact that can be remedied for future generations of life scientists. In my particular field of systems neuroscience, neural circuits are rife with nonlinearities at all levels of description, rendering simple methodologies and our own intuition unreliable. Therefore, our ideas are likely to be wrong unless informed by good models. These models should be based on the mathematical theories of dynamical systems since functioning neurons are dynamic-they change their membrane potential and firing rates with time. Thus, selecting the appropriate type of dynamical system upon which to base a model is an important first step in the modeling process. This step all too easily goes awry, in part because there are many frameworks to choose from, in part because the sparsely sampled data can be consistent with a variety of dynamical processes, and in part because each modeler has a preferred modeling approach that is difficult to move away from. This brief review summarizes some of the main dynamical paradigms that can arise in neural circuits, with comments on what they can achieve computationally and what signatures might reveal their presence within empirical data. I provide examples of different dynamical systems using simple circuits of two or three cells, emphasizing that any one connectivity pattern is compatible with multiple, diverse functions.

  7. Neural Circuit Mechanisms of Social Behavior.

    Science.gov (United States)

    Chen, Patrick; Hong, Weizhe

    2018-04-04

    We live in a world that is largely socially constructed, and we are constantly involved in and fundamentally influenced by a broad array of complex social interactions. Social behaviors among conspecifics, either conflictive or cooperative, are exhibited by all sexually reproducing animal species and are essential for the health, survival, and reproduction of animals. Conversely, impairment in social function is a prominent feature of several neuropsychiatric disorders, such as autism spectrum disorders and schizophrenia. Despite the importance of social behaviors, many fundamental questions remain unanswered. How is social sensory information processed and integrated in the nervous system? How are different social behavioral decisions selected and modulated in brain circuits? Here we discuss conceptual issues and recent advances in our understanding of brain regions and neural circuit mechanisms underlying the regulation of social behaviors. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. A central neural circuit for itch sensation.

    Science.gov (United States)

    Mu, Di; Deng, Juan; Liu, Ke-Fei; Wu, Zhen-Yu; Shi, Yu-Feng; Guo, Wei-Min; Mao, Qun-Quan; Liu, Xing-Jun; Li, Hui; Sun, Yan-Gang

    2017-08-18

    Although itch sensation is an important protective mechanism for animals, chronic itch remains a challenging clinical problem. Itch processing has been studied extensively at the spinal level. However, how itch information is transmitted to the brain and what central circuits underlie the itch-induced scratching behavior remain largely unknown. We found that the spinoparabrachial pathway was activated during itch processing and that optogenetic suppression of this pathway impaired itch-induced scratching behaviors. Itch-mediating spinal neurons, which express the gastrin-releasing peptide receptor, are disynaptically connected to the parabrachial nucleus via glutamatergic spinal projection neurons. Blockade of synaptic output of glutamatergic neurons in the parabrachial nucleus suppressed pruritogen-induced scratching behavior. Thus, our studies reveal a central neural circuit that is critical for itch signal processing. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. Molecular annotation of integrative feeding neural circuits.

    Science.gov (United States)

    Pérez, Cristian A; Stanley, Sarah A; Wysocki, Robert W; Havranova, Jana; Ahrens-Nicklas, Rebecca; Onyimba, Frances; Friedman, Jeffrey M

    2011-02-02

    The identity of higher-order neurons and circuits playing an associative role to control feeding is unknown. We injected pseudorabies virus, a retrograde tracer, into masseter muscle, salivary gland, and tongue of BAC-transgenic mice expressing GFP in specific neural populations and identified several CNS regions that project multisynaptically to the periphery. MCH and orexin neurons were identified in the lateral hypothalamus, and Nurr1 and Cnr1 in the amygdala and insular/rhinal cortices. Cholera toxin β tracing showed that insular Nurr1(+) and Cnr1(+) neurons project to the amygdala or lateral hypothalamus, respectively. Finally, we show that cortical Cnr1(+) neurons show increased Cnr1 mRNA and c-Fos expression after fasting, consistent with a possible role for Cnr1(+) neurons in feeding. Overall, these studies define a general approach for identifying specific molecular markers for neurons in complex neural circuits. These markers now provide a means for functional studies of specific neuronal populations in feeding or other complex behaviors. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Explicit logic circuits discriminate neural states.

    Directory of Open Access Journals (Sweden)

    Lane Yoder

    Full Text Available The magnitude and apparent complexity of the brain's connectivity have left explicit networks largely unexplored. As a result, the relationship between the organization of synaptic connections and how the brain processes information is poorly understood. A recently proposed retinal network that produces neural correlates of color vision is refined and extended here to a family of general logic circuits. For any combination of high and low activity in any set of neurons, one of the logic circuits can receive input from the neurons and activate a single output neuron whenever the input neurons have the given activity state. The strength of the output neuron's response is a measure of the difference between the smallest of the high inputs and the largest of the low inputs. The networks generate correlates of known psychophysical phenomena. These results follow directly from the most cost-effective architectures for specific logic circuits and the minimal cellular capabilities of excitation and inhibition. The networks function dynamically, making their operation consistent with the speed of most brain functions. The networks show that well-known psychophysical phenomena do not require extraordinarily complex brain structures, and that a single network architecture can produce apparently disparate phenomena in different sensory systems.

  11. An Activity for Demonstrating the Concept of a Neural Circuit

    Science.gov (United States)

    Kreiner, David S.

    2012-01-01

    College students in two sections of a general psychology course participated in a demonstration of a simple neural circuit. The activity was based on a neural circuit that Jeffress proposed for localizing sounds. Students in one section responded to a questionnaire prior to participating in the activity, while students in the other section…

  12. Activity-dependent modulation of neural circuit synaptic connectivity

    Directory of Open Access Journals (Sweden)

    Charles R Tessier

    2009-07-01

    Full Text Available In many nervous systems, the establishment of neural circuits is known to proceed via a two-stage process; 1 early, activity-independent wiring to produce a rough map characterized by excessive synaptic connections, and 2 subsequent, use-dependent pruning to eliminate inappropriate connections and reinforce maintained synapses. In invertebrates, however, evidence of the activity-dependent phase of synaptic refinement has been elusive, and the dogma has long been that invertebrate circuits are “hard-wired” in a purely activity-independent manner. This conclusion has been challenged recently through the use of new transgenic tools employed in the powerful Drosophila system, which have allowed unprecedented temporal control and single neuron imaging resolution. These recent studies reveal that activity-dependent mechanisms are indeed required to refine circuit maps in Drosophila during precise, restricted windows of late-phase development. Such mechanisms of circuit refinement may be key to understanding a number of human neurological diseases, including developmental disorders such as Fragile X syndrome (FXS and autism, which are hypothesized to result from defects in synaptic connectivity and activity-dependent circuit function. This review focuses on our current understanding of activity-dependent synaptic connectivity in Drosophila, primarily through analyzing the role of the fragile X mental retardation protein (FMRP in the Drosophila FXS disease model. The particular emphasis of this review is on the expanding array of new genetically-encoded tools that are allowing cellular events and molecular players to be dissected with ever greater precision and detail.

  13. A neural circuit for angular velocity computation

    Directory of Open Access Journals (Sweden)

    Samuel B Snider

    2010-12-01

    Full Text Available In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly-tunable wing-steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuro-mechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob.

  14. Implantable neurotechnologies: a review of integrated circuit neural amplifiers.

    Science.gov (United States)

    Ng, Kian Ann; Greenwald, Elliot; Xu, Yong Ping; Thakor, Nitish V

    2016-01-01

    Neural signal recording is critical in modern day neuroscience research and emerging neural prosthesis programs. Neural recording requires the use of precise, low-noise amplifier systems to acquire and condition the weak neural signals that are transduced through electrode interfaces. Neural amplifiers and amplifier-based systems are available commercially or can be designed in-house and fabricated using integrated circuit (IC) technologies, resulting in very large-scale integration or application-specific integrated circuit solutions. IC-based neural amplifiers are now used to acquire untethered/portable neural recordings, as they meet the requirements of a miniaturized form factor, light weight and low power consumption. Furthermore, such miniaturized and low-power IC neural amplifiers are now being used in emerging implantable neural prosthesis technologies. This review focuses on neural amplifier-based devices and is presented in two interrelated parts. First, neural signal recording is reviewed, and practical challenges are highlighted. Current amplifier designs with increased functionality and performance and without penalties in chip size and power are featured. Second, applications of IC-based neural amplifiers in basic science experiments (e.g., cortical studies using animal models), neural prostheses (e.g., brain/nerve machine interfaces) and treatment of neuronal diseases (e.g., DBS for treatment of epilepsy) are highlighted. The review concludes with future outlooks of this technology and important challenges with regard to neural signal amplification.

  15. The neural circuit basis of learning

    Science.gov (United States)

    Patrick, Kaifosh William John

    The astounding capacity for learning ranks among the nervous system's most impressive features. This thesis comprises studies employing varied approaches to improve understanding, at the level of neural circuits, of the brain's capacity for learning. The first part of the thesis contains investigations of hippocampal circuitry -- both theoretical work and experimental work in the mouse Mus musculus -- as a model system for declarative memory. To begin, Chapter 2 presents a theory of hippocampal memory storage and retrieval that reflects nonlinear dendritic processing within hippocampal pyramidal neurons. As a prelude to the experimental work that comprises the remainder of this part, Chapter 3 describes an open source software platform that we have developed for analysis of data acquired with in vivo Ca2+ imaging, the main experimental technique used throughout the remainder of this part of the thesis. As a first application of this technique, Chapter 4 characterizes the content of signaling at synapses between GABAergic neurons of the medial septum and interneurons in stratum oriens of hippocampal area CA1. Chapter 5 then combines these techniques with optogenetic, pharmacogenetic, and pharmacological manipulations to uncover inhibitory circuit mechanisms underlying fear learning. The second part of this thesis focuses on the cerebellum-like electrosensory lobe in the weakly electric mormyrid fish Gnathonemus petersii, as a model system for non-declarative memory. In Chapter 6, we study how short-duration EOD motor commands are recoded into a complex temporal basis in the granule cell layer, which can be used to cancel Purkinje-like cell firing to the longer duration and temporally varying EOD-driven sensory responses. In Chapter 7, we consider not only the temporal aspects of the granule cell code, but also the encoding of body position provided from proprioceptive and efference copy sources. Together these studies clarify how the cerebellum-like circuitry of the

  16. Classes of feedforward neural networks and their circuit complexity

    NARCIS (Netherlands)

    Shawe-Taylor, John S.; Anthony, Martin H.G.; Kern, Walter

    1992-01-01

    This paper aims to place neural networks in the context of boolean circuit complexity. We define appropriate classes of feedforward neural networks with specified fan-in, accuracy of computation and depth and using techniques of communication complexity proceed to show that the classes fit into a

  17. FUZZY NEURAL NETWORK FOR OBJECT IDENTIFICATION ON INTEGRATED CIRCUIT LAYOUTS

    Directory of Open Access Journals (Sweden)

    A. A. Doudkin

    2015-01-01

    Full Text Available Fuzzy neural network model based on neocognitron is proposed to identify layout objects on images of topological layers of integrated circuits. Testing of the model on images of real chip layouts was showed a highеr degree of identification of the proposed neural network in comparison to base neocognitron.

  18. Diagnostic Neural Network Systems for the Electronic Circuits

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2014-01-01

    Neural Networks is one of the most important artificial intelligent approaches for solving the diagnostic processes. This research concerns with uses the neural networks for diagnosis of the electronic circuits. Modern electronic systems contain both the analog and digital circuits. But, diagnosis of the analog circuits suffers from great complexity due to their nonlinearity. To overcome this problem, the proposed system introduces a diagnostic system that uses the neural network to diagnose both the digital and analog circuits. So, it can face the new requirements for the modern electronic systems. A fault dictionary method was implemented in the system. Experimental results are presented on three electronic systems. They are: artificial kidney, wireless network and personal computer systems. The proposed system has improved the performance of the diagnostic systems when applied for these practical cases

  19. Complexity and competition in appetitive and aversive neural circuits

    Directory of Open Access Journals (Sweden)

    Crista L. Barberini

    2012-11-01

    Full Text Available Decision-making often involves using sensory cues to predict possible rewarding or punishing reinforcement outcomes before selecting a course of action. Recent work has revealed complexity in how the brain learns to predict rewards and punishments. Analysis of neural signaling during and after learning in the amygdala and orbitofrontal cortex, two brain areas that process appetitive and aversive stimuli, reveals a dynamic relationship between appetitive and aversive circuits. Specifically, the relationship between signaling in appetitive and aversive circuits in these areas shifts as a function of learning. Furthermore, although appetitive and aversive circuits may often drive opposite behaviors – approaching or avoiding reinforcement depending upon its valence – these circuits can also drive similar behaviors, such as enhanced arousal or attention; these processes also may influence choice behavior. These data highlight the formidable challenges ahead in dissecting how appetitive and aversive neural circuits interact to produce a complex and nuanced range of behaviors.

  20. Computational aspects of feedback in neural circuits.

    Directory of Open Access Journals (Sweden)

    Wolfgang Maass

    2007-01-01

    Full Text Available It has previously been shown that generic cortical microcircuit models can perform complex real-time computations on continuous input streams, provided that these computations can be carried out with a rapidly fading memory. We investigate the computational capability of such circuits in the more realistic case where not only readout neurons, but in addition a few neurons within the circuit, have been trained for specific tasks. This is essentially equivalent to the case where the output of trained readout neurons is fed back into the circuit. We show that this new model overcomes the limitation of a rapidly fading memory. In fact, we prove that in the idealized case without noise it can carry out any conceivable digital or analog computation on time-varying inputs. But even with noise, the resulting computational model can perform a large class of biologically relevant real-time computations that require a nonfading memory. We demonstrate these computational implications of feedback both theoretically, and through computer simulations of detailed cortical microcircuit models that are subject to noise and have complex inherent dynamics. We show that the application of simple learning procedures (such as linear regression or perceptron learning to a few neurons enables such circuits to represent time over behaviorally relevant long time spans, to integrate evidence from incoming spike trains over longer periods of time, and to process new information contained in such spike trains in diverse ways according to the current internal state of the circuit. In particular we show that such generic cortical microcircuits with feedback provide a new model for working memory that is consistent with a large set of biological constraints. Although this article examines primarily the computational role of feedback in circuits of neurons, the mathematical principles on which its analysis is based apply to a variety of dynamical systems. Hence they may also

  1. Integrating Neural Circuits Controlling Female Sexual Behavior.

    Science.gov (United States)

    Micevych, Paul E; Meisel, Robert L

    2017-01-01

    The hypothalamus is most often associated with innate behaviors such as is hunger, thirst and sex. While the expression of these behaviors important for survival of the individual or the species is nested within the hypothalamus, the desire (i.e., motivation) for them is centered within the mesolimbic reward circuitry. In this review, we will use female sexual behavior as a model to examine the interaction of these circuits. We will examine the evidence for a hypothalamic circuit that regulates consummatory aspects of reproductive behavior, i.e., lordosis behavior, a measure of sexual receptivity that involves estradiol membrane-initiated signaling in the arcuate nucleus (ARH), activating β-endorphin projections to the medial preoptic nucleus (MPN), which in turn modulate ventromedial hypothalamic nucleus (VMH) activity-the common output from the hypothalamus. Estradiol modulates not only a series of neuropeptides, transmitters and receptors but induces dendritic spines that are for estrogenic induction of lordosis behavior. Simultaneously, in the nucleus accumbens of the mesolimbic system, the mating experience produces long term changes in dopamine signaling and structure. Sexual experience sensitizes the response of nucleus accumbens neurons to dopamine signaling through the induction of a long lasting early immediate gene. While estrogen alone increases spines in the ARH, sexual experience increases dendritic spine density in the nucleus accumbens. These two circuits appear to converge onto the medial preoptic area where there is a reciprocal influence of motivational circuits on consummatory behavior and vice versa . While it has not been formally demonstrated in the human, such circuitry is generally highly conserved and thus, understanding the anatomy, neurochemistry and physiology can provide useful insight into the motivation for sexual behavior and other innate behaviors in humans.

  2. Integrating Neural Circuits Controlling Female Sexual Behavior

    Directory of Open Access Journals (Sweden)

    Paul E. Micevych

    2017-06-01

    Full Text Available The hypothalamus is most often associated with innate behaviors such as is hunger, thirst and sex. While the expression of these behaviors important for survival of the individual or the species is nested within the hypothalamus, the desire (i.e., motivation for them is centered within the mesolimbic reward circuitry. In this review, we will use female sexual behavior as a model to examine the interaction of these circuits. We will examine the evidence for a hypothalamic circuit that regulates consummatory aspects of reproductive behavior, i.e., lordosis behavior, a measure of sexual receptivity that involves estradiol membrane-initiated signaling in the arcuate nucleus (ARH, activating β-endorphin projections to the medial preoptic nucleus (MPN, which in turn modulate ventromedial hypothalamic nucleus (VMH activity—the common output from the hypothalamus. Estradiol modulates not only a series of neuropeptides, transmitters and receptors but induces dendritic spines that are for estrogenic induction of lordosis behavior. Simultaneously, in the nucleus accumbens of the mesolimbic system, the mating experience produces long term changes in dopamine signaling and structure. Sexual experience sensitizes the response of nucleus accumbens neurons to dopamine signaling through the induction of a long lasting early immediate gene. While estrogen alone increases spines in the ARH, sexual experience increases dendritic spine density in the nucleus accumbens. These two circuits appear to converge onto the medial preoptic area where there is a reciprocal influence of motivational circuits on consummatory behavior and vice versa. While it has not been formally demonstrated in the human, such circuitry is generally highly conserved and thus, understanding the anatomy, neurochemistry and physiology can provide useful insight into the motivation for sexual behavior and other innate behaviors in humans.

  3. Unraveling the central proopiomelanocortin neural circuits

    Directory of Open Access Journals (Sweden)

    Aaron J. Mercer

    2013-02-01

    Full Text Available Central proopiomelanocortin (POMC neurons form a potent anorexigenic network, but our understanding of the integration of this hypothalamic circuit throughout the central nervous system (CNS remains incomplete. POMC neurons extend projections along the rostrocaudal axis of the brain, and can signal with both POMC-derived peptides and fast amino acid neurotransmitters. Although recent experimental advances in circuit-level manipulation have been applied to POMC neurons, many pivotal questions still remain: How and where do POMC neurons integrate metabolic information? Under what conditions do POMC neurons release bioactive molecules throughout the CNS? Are GABA and glutamate or neuropeptides released from POMC neurons more crucial for modulating feeding and metabolism? Resolving the exact stoichiometry of signals evoked from POMC neurons under different metabolic conditions therefore remains an ongoing endeavor. In this review, we analyze the anatomical atlas of this network juxtaposed to the physiological signaling of POMC neurons both in vitro and in vivo. We also consider novel genetic tools to further characterize the function of the POMC circuit in vivo. Our goal is to synthesize a global view of the POMC network, and to highlight gaps that require further research to expand our knowledge on how these neurons modulate energy balance.

  4. Classical Conditioning with Pulsed Integrated Neural Networks: Circuits and System

    DEFF Research Database (Denmark)

    Lehmann, Torsten

    1998-01-01

    In this paper we investigate on-chip learning for pulsed, integrated neural networks. We discuss the implementational problems the technology imposes on learning systems and we find that abiologically inspired approach using simple circuit structures is most likely to bring success. We develop a ...... chip to solve simple classical conditioning tasks, thus verifying the design methodologies put forward in the paper....

  5. Railway track circuit fault diagnosis using recurrent neural networks

    NARCIS (Netherlands)

    de Bruin, T.D.; Verbert, K.A.J.; Babuska, R.

    2017-01-01

    Timely detection and identification of faults in railway track circuits are crucial for the safety and availability of railway networks. In this paper, the use of the long-short-term memory (LSTM) recurrent neural network is proposed to accomplish these tasks based on the commonly available

  6. A simple electronic circuit realization of the tent map

    Energy Technology Data Exchange (ETDEWEB)

    Campos-Canton, I. [Fac. de Ciencias, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, 78000 San Luis Potosi, SLP (Mexico)], E-mail: icampos@galia.fc.uaslp.mx; Campos-Canton, E. [Departamento de Fisico Matematicas, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, 78000 San Luis Potosi, SLP (Mexico)], E-mail: ecamp@uaslp.mx; Murguia, J.S. [Departamento de Fisico Matematicas, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, 78000 San Luis Potosi, SLP (Mexico)], E-mail: ondeleto@uaslp.mx; Rosu, H.C. [Division de Materiales Avanzados, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la presa San Jose 2055, 78216 San Luis Potosi, SLP (Mexico)], E-mail: hcr@ipicyt.edu.mx

    2009-10-15

    We present a very simple electronic implementation of the tent map, one of the best-known discrete dynamical systems. This is achieved by using integrated circuits and passive elements only. The experimental behavior of the tent map electronic circuit is compared with its numerical simulation counterpart. We find that the electronic circuit presents fixed points, periodicity, period doubling, chaos and intermittency that match with high accuracy the corresponding theoretical values.

  7. The neural circuits that generate tics in Tourette's syndrome.

    Science.gov (United States)

    Wang, Zhishun; Maia, Tiago V; Marsh, Rachel; Colibazzi, Tiziano; Gerber, Andrew; Peterson, Bradley S

    2011-12-01

    The purpose of this study was to examine neural activity and connectivity within cortico-striato-thalamo-cortical circuits and to reveal circuit-based neural mechanisms that govern tic generation in Tourette's syndrome. Functional magnetic resonance imaging data were acquired from 13 individuals with Tourette's syndrome and 21 healthy comparison subjects during spontaneous or simulated tics. Independent component analysis with hierarchical partner matching was used to isolate neural activity within functionally distinct regions of cortico-striato-thalamo-cortical circuits. Granger causality was used to investigate causal interactions among these regions. The Tourette's syndrome group exhibited stronger neural activity and interregional causality than healthy comparison subjects throughout all portions of the motor pathway, including the sensorimotor cortex, putamen, pallidum, and substantia nigra. Activity in these areas correlated positively with the severity of tic symptoms. Activity within the Tourette's syndrome group was stronger during spontaneous tics than during voluntary tics in the somatosensory and posterior parietal cortices, putamen, and amygdala/hippocampus complex, suggesting that activity in these regions may represent features of the premonitory urges that generate spontaneous tic behaviors. In contrast, activity was weaker in the Tourette's syndrome group than in the healthy comparison group within portions of cortico-striato-thalamo-cortical circuits that exert top-down control over motor pathways (the caudate and anterior cingulate cortex), and progressively less activity in these regions accompanied more severe tic symptoms, suggesting that faulty activity in these circuits may result in their failure to control tic behaviors or the premonitory urges that generate them. Our findings, taken together, suggest that tics are caused by the combined effects of excessive activity in motor pathways and reduced activation in control portions of cortico

  8. δ-Protocadherins: Organizers of neural circuit assembly.

    Science.gov (United States)

    Light, Sarah E W; Jontes, James D

    2017-09-01

    The δ-protocadherins comprise a small family of homophilic cell adhesion molecules within the larger cadherin superfamily. They are essential for neural development as mutations in these molecules give rise to human neurodevelopmental disorders, such as schizophrenia and epilepsy, and result in behavioral defects in animal models. Despite their importance to neural development, a detailed understanding of their mechanisms and the ways in which their loss leads to changes in neural function is lacking. However, recent results have begun to reveal roles for the δ-protocadherins in both regulation of neurogenesis and lineage-dependent circuit assembly, as well as in contact-dependent motility and selective axon fasciculation. These evolutionarily conserved mechanisms could have a profound impact on the robust assembly of the vertebrate nervous system. Future work should be focused on unraveling the molecular mechanisms of the δ-protocadherins and understanding how this family functions broadly to regulate neural development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. On the origin of reproducible sequential activity in neural circuits

    Science.gov (United States)

    Afraimovich, V. S.; Zhigulin, V. P.; Rabinovich, M. I.

    2004-12-01

    Robustness and reproducibility of sequential spatio-temporal responses is an essential feature of many neural circuits in sensory and motor systems of animals. The most common mathematical images of dynamical regimes in neural systems are fixed points, limit cycles, chaotic attractors, and continuous attractors (attractive manifolds of neutrally stable fixed points). These are not suitable for the description of reproducible transient sequential neural dynamics. In this paper we present the concept of a stable heteroclinic sequence (SHS), which is not an attractor. SHS opens the way for understanding and modeling of transient sequential activity in neural circuits. We show that this new mathematical object can be used to describe robust and reproducible sequential neural dynamics. Using the framework of a generalized high-dimensional Lotka-Volterra model, that describes the dynamics of firing rates in an inhibitory network, we present analytical results on the existence of the SHS in the phase space of the network. With the help of numerical simulations we confirm its robustness in presence of noise in spite of the transient nature of the corresponding trajectories. Finally, by referring to several recent neurobiological experiments, we discuss possible applications of this new concept to several problems in neuroscience.

  10. Functional neural circuits that underlie developmental stuttering.

    Directory of Open Access Journals (Sweden)

    Jianping Qiao

    Full Text Available The aim of this study was to identify differences in functional and effective brain connectivity between persons who stutter (PWS and typically developing (TD fluent speakers, and to assess whether those differences can serve as biomarkers to distinguish PWS from TD controls. We acquired resting-state functional magnetic resonance imaging data in 44 PWS and 50 TD controls. We then used Independent Component Analysis (ICA together with Hierarchical Partner Matching (HPM to identify networks of robust, functionally connected brain regions that were highly reproducible across participants, and we assessed whether connectivity differed significantly across diagnostic groups. We then used Granger Causality (GC to study the causal interactions (effective connectivity between the regions that ICA and HPM identified. Finally, we used a kernel support vector machine to assess how well these measures of functional connectivity and granger causality discriminate PWS from TD controls. Functional connectivity was stronger in PWS compared with TD controls in the supplementary motor area (SMA and primary motor cortices, but weaker in inferior frontal cortex (IFG, Broca's area, caudate, putamen, and thalamus. Additionally, causal influences were significantly weaker in PWS from the IFG to SMA, and from the basal ganglia to IFG through the thalamus, compared to TD controls. ICA and GC indices together yielded an accuracy of 92.7% in classifying PWS from TD controls. Our findings suggest the presence of dysfunctional circuits that support speech planning and timing cues for the initiation and execution of motor sequences in PWS. Our high accuracy of classification further suggests that these aberrant brain features may serve as robust biomarkers for PWS.

  11. Functional neural circuits that underlie developmental stuttering.

    Science.gov (United States)

    Qiao, Jianping; Wang, Zhishun; Zhao, Guihu; Huo, Yuankai; Herder, Carl L; Sikora, Chamonix O; Peterson, Bradley S

    2017-01-01

    The aim of this study was to identify differences in functional and effective brain connectivity between persons who stutter (PWS) and typically developing (TD) fluent speakers, and to assess whether those differences can serve as biomarkers to distinguish PWS from TD controls. We acquired resting-state functional magnetic resonance imaging data in 44 PWS and 50 TD controls. We then used Independent Component Analysis (ICA) together with Hierarchical Partner Matching (HPM) to identify networks of robust, functionally connected brain regions that were highly reproducible across participants, and we assessed whether connectivity differed significantly across diagnostic groups. We then used Granger Causality (GC) to study the causal interactions (effective connectivity) between the regions that ICA and HPM identified. Finally, we used a kernel support vector machine to assess how well these measures of functional connectivity and granger causality discriminate PWS from TD controls. Functional connectivity was stronger in PWS compared with TD controls in the supplementary motor area (SMA) and primary motor cortices, but weaker in inferior frontal cortex (IFG, Broca's area), caudate, putamen, and thalamus. Additionally, causal influences were significantly weaker in PWS from the IFG to SMA, and from the basal ganglia to IFG through the thalamus, compared to TD controls. ICA and GC indices together yielded an accuracy of 92.7% in classifying PWS from TD controls. Our findings suggest the presence of dysfunctional circuits that support speech planning and timing cues for the initiation and execution of motor sequences in PWS. Our high accuracy of classification further suggests that these aberrant brain features may serve as robust biomarkers for PWS.

  12. Functional neural circuits that underlie developmental stuttering

    Science.gov (United States)

    Zhao, Guihu; Huo, Yuankai; Herder, Carl L.; Sikora, Chamonix O.; Peterson, Bradley S.

    2017-01-01

    The aim of this study was to identify differences in functional and effective brain connectivity between persons who stutter (PWS) and typically developing (TD) fluent speakers, and to assess whether those differences can serve as biomarkers to distinguish PWS from TD controls. We acquired resting-state functional magnetic resonance imaging data in 44 PWS and 50 TD controls. We then used Independent Component Analysis (ICA) together with Hierarchical Partner Matching (HPM) to identify networks of robust, functionally connected brain regions that were highly reproducible across participants, and we assessed whether connectivity differed significantly across diagnostic groups. We then used Granger Causality (GC) to study the causal interactions (effective connectivity) between the regions that ICA and HPM identified. Finally, we used a kernel support vector machine to assess how well these measures of functional connectivity and granger causality discriminate PWS from TD controls. Functional connectivity was stronger in PWS compared with TD controls in the supplementary motor area (SMA) and primary motor cortices, but weaker in inferior frontal cortex (IFG, Broca’s area), caudate, putamen, and thalamus. Additionally, causal influences were significantly weaker in PWS from the IFG to SMA, and from the basal ganglia to IFG through the thalamus, compared to TD controls. ICA and GC indices together yielded an accuracy of 92.7% in classifying PWS from TD controls. Our findings suggest the presence of dysfunctional circuits that support speech planning and timing cues for the initiation and execution of motor sequences in PWS. Our high accuracy of classification further suggests that these aberrant brain features may serve as robust biomarkers for PWS. PMID:28759567

  13. Progress in understanding mood disorders: optogenetic dissection of neural circuits.

    Science.gov (United States)

    Lammel, S; Tye, K M; Warden, M R

    2014-01-01

    Major depression is characterized by a cluster of symptoms that includes hopelessness, low mood, feelings of worthlessness and inability to experience pleasure. The lifetime prevalence of major depression approaches 20%, yet current treatments are often inadequate both because of associated side effects and because they are ineffective for many people. In basic research, animal models are often used to study depression. Typically, experimental animals are exposed to acute or chronic stress to generate a variety of depression-like symptoms. Despite its clinical importance, very little is known about the cellular and neural circuits that mediate these symptoms. Recent advances in circuit-targeted approaches have provided new opportunities to study the neuropathology of mood disorders such as depression and anxiety. We review recent progress and highlight some studies that have begun tracing a functional neuronal circuit diagram that may prove essential in establishing novel treatment strategies in mood disorders. First, we shed light on the complexity of mesocorticolimbic dopamine (DA) responses to stress by discussing two recent studies reporting that optogenetic activation of midbrain DA neurons can induce or reverse depression-related behaviors. Second, we describe the role of the lateral habenula circuitry in the pathophysiology of depression. Finally, we discuss how the prefrontal cortex controls limbic and neuromodulatory circuits in mood disorders. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  14. A Neural Circuit for Acoustic Navigation combining Heterosynaptic and Non-synaptic Plasticity that learns Stable Trajectories

    DEFF Research Database (Denmark)

    Shaikh, Danish; Manoonpong, Poramate

    2017-01-01

    controllers be resolved in a manner that generates consistent and stable robot trajectories? We propose a neural circuit that minimises this conflict by learning sensorimotor mappings as neuronal transfer functions between the perceived sound direction and wheel velocities of a simulated non-holonomic mobile...

  15. Neural net generated seismic facies map and attribute facies map

    International Nuclear Information System (INIS)

    Addy, S.K.; Neri, P.

    1998-01-01

    The usefulness of 'seismic facies maps' in the analysis of an Upper Wilcox channel system in a 3-D survey shot by CGG in 1995 in Lavaca county in south Texas was discussed. A neural net-generated seismic facies map is a quick hydrocarbon exploration tool that can be applied regionally as well as on a prospect scale. The new technology is used to classify a constant interval parallel to a horizon in a 3-D seismic volume based on the shape of the wiggle traces using a neural network technology. The tool makes it possible to interpret sedimentary features of a petroleum deposit. The same technology can be used in regional mapping by making 'attribute facies maps' in which various forms of amplitude attributes, phase attributes or frequency attributes can be used

  16. The Complexity of Dynamics in Small Neural Circuits.

    Directory of Open Access Journals (Sweden)

    Diego Fasoli

    2016-08-01

    Full Text Available Mean-field approximations are a powerful tool for studying large neural networks. However, they do not describe well the behavior of networks composed of a small number of neurons. In this case, major differences between the mean-field approximation and the real behavior of the network can arise. Yet, many interesting problems in neuroscience involve the study of mesoscopic networks composed of a few tens of neurons. Nonetheless, mathematical methods that correctly describe networks of small size are still rare, and this prevents us to make progress in understanding neural dynamics at these intermediate scales. Here we develop a novel systematic analysis of the dynamics of arbitrarily small networks composed of homogeneous populations of excitatory and inhibitory firing-rate neurons. We study the local bifurcations of their neural activity with an approach that is largely analytically tractable, and we numerically determine the global bifurcations. We find that for strong inhibition these networks give rise to very complex dynamics, caused by the formation of multiple branching solutions of the neural dynamics equations that emerge through spontaneous symmetry-breaking. This qualitative change of the neural dynamics is a finite-size effect of the network, that reveals qualitative and previously unexplored differences between mesoscopic cortical circuits and their mean-field approximation. The most important consequence of spontaneous symmetry-breaking is the ability of mesoscopic networks to regulate their degree of functional heterogeneity, which is thought to help reducing the detrimental effect of noise correlations on cortical information processing.

  17. Visualization of neural networks using saliency maps

    DEFF Research Database (Denmark)

    Mørch, Niels J.S.; Kjems, Ulrik; Hansen, Lars Kai

    1995-01-01

    The saliency map is proposed as a new method for understanding and visualizing the nonlinearities embedded in feedforward neural networks, with emphasis on the ill-posed case, where the dimensionality of the input-field by far exceeds the number of examples. Several levels of approximations...

  18. Fuel Cell Equivalent Electric Circuit Parameter Mapping

    DEFF Research Database (Denmark)

    Jeppesen, Christian; Zhou, Fan; Andreasen, Søren Juhl

    In this work a simple model for a fuel cell is investigated for diagnostic purpose. The fuel cell is characterized, with respect to the electrical impedance of the fuel cell at non-faulty conditions and under variations in load current. Based on this the equivalent electrical circuit parameters can...

  19. Olfactory systems and neural circuits that modulate predator odor fear

    Directory of Open Access Journals (Sweden)

    Lorey K. Takahashi

    2014-03-01

    Full Text Available When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS and accessory olfactory systems (AOS detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray, paraventricular nucleus of the hypothalamus, and the medial amygdala appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal stress hormone secretion. The medial amygdala also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus appear prominently involve in predator odor fear behavior. The basolateral amygdala, medial hypothalamic nuclei, and medial prefrontal cortex are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator odors activate

  20. Olfactory systems and neural circuits that modulate predator odor fear

    Science.gov (United States)

    Takahashi, Lorey K.

    2014-01-01

    When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS) and accessory olfactory systems (AOS) detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray (DPAG), paraventricular nucleus (PVN) of the hypothalamus, and the medial amygdala (MeA) appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal (HPA) stress hormone secretion. The MeA also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus (VHC) appear prominently involved in predator odor fear behavior. The basolateral amygdala (BLA), medial hypothalamic nuclei, and medial prefrontal cortex (mPFC) are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator

  1. Altered topology of neural circuits in congenital prosopagnosia.

    Science.gov (United States)

    Rosenthal, Gideon; Tanzer, Michal; Simony, Erez; Hasson, Uri; Behrmann, Marlene; Avidan, Galia

    2017-08-21

    Using a novel, fMRI-based inter-subject functional correlation (ISFC) approach, which isolates stimulus-locked inter-regional correlation patterns, we compared the cortical topology of the neural circuit for face processing in participants with an impairment in face recognition, congenital prosopagnosia (CP), and matched controls. Whereas the anterior temporal lobe served as the major network hub for face processing in controls, this was not the case for the CPs. Instead, this group evinced hyper-connectivity in posterior regions of the visual cortex, mostly associated with the lateral occipital and the inferior temporal cortices. Moreover, the extent of this hyper-connectivity was correlated with the face recognition deficit. These results offer new insights into the perturbed cortical topology in CP, which may serve as the underlying neural basis of the behavioral deficits typical of this disorder. The approach adopted here has the potential to uncover altered topologies in other neurodevelopmental disorders, as well.

  2. Wireless Neural Recording With Single Low-Power Integrated Circuit

    Science.gov (United States)

    Harrison, Reid R.; Kier, Ryan J.; Chestek, Cynthia A.; Gilja, Vikash; Nuyujukian, Paul; Ryu, Stephen; Greger, Bradley; Solzbacher, Florian; Shenoy, Krishna V.

    2010-01-01

    We present benchtop and in vivo experimental results from an integrated circuit designed for wireless implantable neural recording applications. The chip, which was fabricated in a commercially available 0.6-μm 2P3M BiCMOS process, contains 100 amplifiers, a 10-bit analog-to-digital converter (ADC), 100 threshold-based spike detectors, and a 902–928 MHz frequency-shift-keying (FSK) transmitter. Neural signals from a selected amplifier are sampled by the ADC at 15.7 kSps and telemetered over the FSK wireless data link. Power, clock, and command signals are sent to the chip wirelessly over a 2.765-MHz inductive (coil-to-coil) link. The chip is capable of operating with only two off-chip components: a power/command receiving coil and a 100-nF capacitor. PMID:19497825

  3. Emotion and decision making: multiple modulatory neural circuits.

    Science.gov (United States)

    Phelps, Elizabeth A; Lempert, Karolina M; Sokol-Hessner, Peter

    2014-01-01

    Although the prevalent view of emotion and decision making is derived from the notion that there are dual systems of emotion and reason, a modulatory relationship more accurately reflects the current research in affective neuroscience and neuroeconomics. Studies show two potential mechanisms for affect's modulation of the computation of subjective value and decisions. Incidental affective states may carry over to the assessment of subjective value and the decision, and emotional reactions to the choice may be incorporated into the value calculation. In addition, this modulatory relationship is reciprocal: Changing emotion can change choices. This research suggests that the neural mechanisms mediating the relation between affect and choice vary depending on which affective component is engaged and which decision variables are assessed. We suggest that a detailed and nuanced understanding of emotion and decision making requires characterizing the multiple modulatory neural circuits underlying the different means by which emotion and affect can influence choices.

  4. Wireless neural recording with single low-power integrated circuit.

    Science.gov (United States)

    Harrison, Reid R; Kier, Ryan J; Chestek, Cynthia A; Gilja, Vikash; Nuyujukian, Paul; Ryu, Stephen; Greger, Bradley; Solzbacher, Florian; Shenoy, Krishna V

    2009-08-01

    We present benchtop and in vivo experimental results from an integrated circuit designed for wireless implantable neural recording applications. The chip, which was fabricated in a commercially available 0.6- mum 2P3M BiCMOS process, contains 100 amplifiers, a 10-bit analog-to-digital converter (ADC), 100 threshold-based spike detectors, and a 902-928 MHz frequency-shift-keying (FSK) transmitter. Neural signals from a selected amplifier are sampled by the ADC at 15.7 kSps and telemetered over the FSK wireless data link. Power, clock, and command signals are sent to the chip wirelessly over a 2.765-MHz inductive (coil-to-coil) link. The chip is capable of operating with only two off-chip components: a power/command receiving coil and a 100-nF capacitor.

  5. Metabolic neural mapping in neonatal rats

    International Nuclear Information System (INIS)

    DiRocco, R.J.; Hall, W.G.

    1981-01-01

    Functional neural mapping by 14 C-deoxyglucose autoradiography in adult rats has shown that increases in neural metabolic rate that are coupled to increased neurophysiological activity are more evident in axon terminals and dendrites than neuron cell bodies. Regions containing architectonically well-defined concentrations of terminals and dendrites (neuropil) have high metabolic rates when the neuropil is physiologically active. In neonatal rats, however, we find that regions containing well-defined groupings of neuron cell bodies have high metabolic rates in 14 C-deoxyglucose autoradiograms. The striking difference between the morphological appearance of 14 C-deoxyglucose autoradiograms obtained from neonatal and adult rats is probably related to developmental changes in morphometric features of differentiating neurons, as well as associated changes in type and locus of neural work performed

  6. Photovoltaic Pixels for Neural Stimulation: Circuit Models and Performance.

    Science.gov (United States)

    Boinagrov, David; Lei, Xin; Goetz, Georges; Kamins, Theodore I; Mathieson, Keith; Galambos, Ludwig; Harris, James S; Palanker, Daniel

    2016-02-01

    Photovoltaic conversion of pulsed light into pulsed electric current enables optically-activated neural stimulation with miniature wireless implants. In photovoltaic retinal prostheses, patterns of near-infrared light projected from video goggles onto subretinal arrays of photovoltaic pixels are converted into patterns of current to stimulate the inner retinal neurons. We describe a model of these devices and evaluate the performance of photovoltaic circuits, including the electrode-electrolyte interface. Characteristics of the electrodes measured in saline with various voltages, pulse durations, and polarities were modeled as voltage-dependent capacitances and Faradaic resistances. The resulting mathematical model of the circuit yielded dynamics of the electric current generated by the photovoltaic pixels illuminated by pulsed light. Voltages measured in saline with a pipette electrode above the pixel closely matched results of the model. Using the circuit model, our pixel design was optimized for maximum charge injection under various lighting conditions and for different stimulation thresholds. To speed discharge of the electrodes between the pulses of light, a shunt resistor was introduced and optimized for high frequency stimulation.

  7. Activity-regulated genes as mediators of neural circuit plasticity.

    Science.gov (United States)

    Leslie, Jennifer H; Nedivi, Elly

    2011-08-01

    Modifications of neuronal circuits allow the brain to adapt and change with experience. This plasticity manifests during development and throughout life, and can be remarkably long lasting. Evidence has linked activity-regulated gene expression to the long-term structural and electrophysiological adaptations that take place during developmental critical periods, learning and memory, and alterations to sensory map representations in the adult. In all these cases, the cellular response to neuronal activity integrates multiple tightly coordinated mechanisms to precisely orchestrate long-lasting, functional and structural changes in brain circuits. Experience-dependent plasticity is triggered when neuronal excitation activates cellular signaling pathways from the synapse to the nucleus that initiate new programs of gene expression. The protein products of activity-regulated genes then work via a diverse array of cellular mechanisms to modify neuronal functional properties. Synaptic strengthening or weakening can reweight existing circuit connections, while structural changes including synapse addition and elimination create new connections. Posttranscriptional regulatory mechanisms, often also dependent on activity, further modulate activity-regulated gene transcript and protein function. Thus, activity-regulated genes implement varied forms of structural and functional plasticity to fine-tune brain circuit wiring. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Knowledge synthesis with maps of neural connectivity.

    Science.gov (United States)

    Tallis, Marcelo; Thompson, Richard; Russ, Thomas A; Burns, Gully A P C

    2011-01-01

    This paper describes software for neuroanatomical knowledge synthesis based on neural connectivity data. This software supports a mature methodology developed since the early 1990s. Over this time, the Swanson laboratory at USC has generated an account of the neural connectivity of the sub-structures of the hypothalamus, amygdala, septum, hippocampus, and bed nucleus of the stria terminalis. This is based on neuroanatomical data maps drawn into a standard brain atlas by experts. In earlier work, we presented an application for visualizing and comparing anatomical macro connections using the Swanson third edition atlas as a framework for accurate registration. Here we describe major improvements to the NeuARt application based on the incorporation of a knowledge representation of experimental design. We also present improvements in the interface and features of the data mapping components within a unified web-application. As a step toward developing an accurate sub-regional account of neural connectivity, we provide navigational access between the data maps and a semantic representation of area-to-area connections that they support. We do so based on an approach called "Knowledge Engineering from Experimental Design" (KEfED) model that is based on experimental variables. We have extended the underlying KEfED representation of tract-tracing experiments by incorporating the definition of a neuronanatomical data map as a measurement variable in the study design. This paper describes the software design of a web-application that allows anatomical data sets to be described within a standard experimental context and thus indexed by non-spatial experimental design features.

  9. Knowledge synthesis with maps of neural connectivity

    Directory of Open Access Journals (Sweden)

    Marcelo eTallis

    2011-11-01

    Full Text Available This paper describes software for neuroanatomical knowledge synthesis based on high-quality neural connectivity data. This software supports a mature neuroanatomical methodology developed since the early 1990s. Over this time, the Swanson laboratory at USC has generated an account of the neural connectivity of the sub-structures of the hypothalamus, amygdala, septum, hippocampus and bed nucleus of the stria terminalis. This is based on neuroanatomical data maps drawn into a standard brain atlas by experts. In earlier work, we presented an application for visualizing and comparing anatomical macroconnections using the Swanson 3rd edition atlas as a framework for accurate registration. Here we describe major improvements to the NeuARt application based on the incorporation of a knowledge representation of experimental design. We also present improvements in the interface and features of the neuroanatomical data mapping components within a unified web-application. As a step towards developing an accurate sub-regional account of neural connectivity, we provide navigational access between the neuroanatomical data maps and a semantic representation of area-to-area connections that they support. We do so based on an approach called ’Knowledge Engineering from Experimental Design’ (KEfED model that is based on experimental variables. We have extended the underlying KEfED representation of tract-tracing experiments by incorporating the definition of a neuronanatomical data map as a measurement variable in the study design. This paper describes the software design of a web application that allows anatomical data sets to be described within a standard experimental context and thus incorporated with non-spatial data sets.

  10. Two multichannel integrated circuits for neural recording and signal processing.

    Science.gov (United States)

    Obeid, Iyad; Morizio, James C; Moxon, Karen A; Nicolelis, Miguel A L; Wolf, Patrick D

    2003-02-01

    We have developed, manufactured, and tested two analog CMOS integrated circuit "neurochips" for recording from arrays of densely packed neural electrodes. Device A is a 16-channel buffer consisting of parallel noninverting amplifiers with a gain of 2 V/V. Device B is a 16-channel two-stage analog signal processor with differential amplification and high-pass filtering. It features selectable gains of 250 and 500 V/V as well as reference channel selection. The resulting amplifiers on Device A had a mean gain of 1.99 V/V with an equivalent input noise of 10 microV(rms). Those on Device B had mean gains of 53.4 and 47.4 dB with a high-pass filter pole at 211 Hz and an equivalent input noise of 4.4 microV(rms). Both devices were tested in vivo with electrode arrays implanted in the somatosensory cortex.

  11. Copper is an endogenous modulator of neural circuit spontaneous activity.

    Science.gov (United States)

    Dodani, Sheel C; Firl, Alana; Chan, Jefferson; Nam, Christine I; Aron, Allegra T; Onak, Carl S; Ramos-Torres, Karla M; Paek, Jaeho; Webster, Corey M; Feller, Marla B; Chang, Christopher J

    2014-11-18

    For reasons that remain insufficiently understood, the brain requires among the highest levels of metals in the body for normal function. The traditional paradigm for this organ and others is that fluxes of alkali and alkaline earth metals are required for signaling, but transition metals are maintained in static, tightly bound reservoirs for metabolism and protection against oxidative stress. Here we show that copper is an endogenous modulator of spontaneous activity, a property of functional neural circuitry. Using Copper Fluor-3 (CF3), a new fluorescent Cu(+) sensor for one- and two-photon imaging, we show that neurons and neural tissue maintain basal stores of loosely bound copper that can be attenuated by chelation, which define a labile copper pool. Targeted disruption of these labile copper stores by acute chelation or genetic knockdown of the CTR1 (copper transporter 1) copper channel alters the spatiotemporal properties of spontaneous activity in developing hippocampal and retinal circuits. The data identify an essential role for copper neuronal function and suggest broader contributions of this transition metal to cell signaling.

  12. Neural Networks Integrated Circuit for Biomimetics MEMS Microrobot

    Directory of Open Access Journals (Sweden)

    Ken Saito

    2014-06-01

    Full Text Available In this paper, we will propose the neural networks integrated circuit (NNIC which is the driving waveform generator of the 4.0, 2.7, 2.5 mm, width, length, height in size biomimetics microelectromechanical systems (MEMS microrobot. The microrobot was made from silicon wafer fabricated by micro fabrication technology. The mechanical system of the robot was equipped with small size rotary type actuators, link mechanisms and six legs to realize the ant-like switching behavior. The NNIC generates the driving waveform using synchronization phenomena such as biological neural networks. The driving waveform can operate the actuators of the MEMS microrobot directly. Therefore, the NNIC bare chip realizes the robot control without using any software programs or A/D converters. The microrobot performed forward and backward locomotion, and also changes direction by inputting an external single trigger pulse. The locomotion speed of the microrobot was 26.4 mm/min when the step width was 0.88 mm. The power consumption of the system was 250 mWh when the room temperature was 298 K.

  13. Acute Stress Influences Neural Circuits of Reward Processing

    Directory of Open Access Journals (Sweden)

    Anthony John Porcelli

    2012-11-01

    Full Text Available People often make decisions under aversive conditions such as acute stress. Yet, less is known about the process in which acute stress can influence decision-making. A growing body of research has established that reward-related information associated with the outcomes of decisions exerts a powerful influence over the choices people make and that an extensive network of brain regions, prominently featuring the striatum, is involved in the processing of this reward-related information. Thus, an important step in research on the nature of acute stress’ influence over decision-making is to examine how it may modulate responses to rewards and punishments within reward-processing neural circuitry. In the current experiment, we employed a simple reward processing paradigm – where participants received monetary rewards and punishments – known to evoke robust striatal responses. Immediately prior to performing each of two task runs, participants were exposed to acute stress (i.e., cold pressor or a no stress control procedure in a between-subjects fashion. No stress group participants exhibited a pattern of activity within the dorsal striatum and orbitofrontal cortex consistent with past research on outcome processing – specifically, differential responses for monetary rewards over punishments. In contrast, acute stress group participants’ dorsal striatum and orbitofrontal cortex demonstrated decreased sensitivity to monetary outcomes and a lack of differential activity. These findings provide insight into how neural circuits may process rewards and punishments associated with simple decisions under acutely stressful conditions.

  14. A neural circuit covarying with social hierarchy in macaques.

    Science.gov (United States)

    Noonan, MaryAnn P; Sallet, Jerome; Mars, Rogier B; Neubert, Franz X; O'Reilly, Jill X; Andersson, Jesper L; Mitchell, Anna S; Bell, Andrew H; Miller, Karla L; Rushworth, Matthew F S

    2014-09-01

    Despite widespread interest in social dominance, little is known of its neural correlates in primates. We hypothesized that social status in primates might be related to individual variation in subcortical brain regions implicated in other aspects of social and emotional behavior in other mammals. To examine this possibility we used magnetic resonance imaging (MRI), which affords the taking of quantitative measurements noninvasively, both of brain structure and of brain function, across many regions simultaneously. We carried out a series of tests of structural and functional MRI (fMRI) data in 25 group-living macaques. First, a deformation-based morphometric (DBM) approach was used to show that gray matter in the amygdala, brainstem in the vicinity of the raphe nucleus, and reticular formation, hypothalamus, and septum/striatum of the left hemisphere was correlated with social status. Second, similar correlations were found in the same areas in the other hemisphere. Third, similar correlations were found in a second data set acquired several months later from a subset of the same animals. Fourth, the strength of coupling between fMRI-measured activity in the same areas was correlated with social status. The network of subcortical areas, however, had no relationship with the sizes of individuals' social networks, suggesting the areas had a simple and direct relationship with social status. By contrast a second circuit in cortex, comprising the midsuperior temporal sulcus and anterior and dorsal prefrontal cortex, covaried with both individuals' social statuses and the social network sizes they experienced. This cortical circuit may be linked to the social cognitive processes that are taxed by life in more complex social networks and that must also be used if an animal is to achieve a high social status.

  15. A neural circuit covarying with social hierarchy in macaques.

    Directory of Open Access Journals (Sweden)

    MaryAnn P Noonan

    2014-09-01

    Full Text Available Despite widespread interest in social dominance, little is known of its neural correlates in primates. We hypothesized that social status in primates might be related to individual variation in subcortical brain regions implicated in other aspects of social and emotional behavior in other mammals. To examine this possibility we used magnetic resonance imaging (MRI, which affords the taking of quantitative measurements noninvasively, both of brain structure and of brain function, across many regions simultaneously. We carried out a series of tests of structural and functional MRI (fMRI data in 25 group-living macaques. First, a deformation-based morphometric (DBM approach was used to show that gray matter in the amygdala, brainstem in the vicinity of the raphe nucleus, and reticular formation, hypothalamus, and septum/striatum of the left hemisphere was correlated with social status. Second, similar correlations were found in the same areas in the other hemisphere. Third, similar correlations were found in a second data set acquired several months later from a subset of the same animals. Fourth, the strength of coupling between fMRI-measured activity in the same areas was correlated with social status. The network of subcortical areas, however, had no relationship with the sizes of individuals' social networks, suggesting the areas had a simple and direct relationship with social status. By contrast a second circuit in cortex, comprising the midsuperior temporal sulcus and anterior and dorsal prefrontal cortex, covaried with both individuals' social statuses and the social network sizes they experienced. This cortical circuit may be linked to the social cognitive processes that are taxed by life in more complex social networks and that must also be used if an animal is to achieve a high social status.

  16. A Neural Circuit Covarying with Social Hierarchy in Macaques

    Science.gov (United States)

    Neubert, Franz X.; O'Reilly, Jill X.; Andersson, Jesper L.; Mitchell, Anna S.; Bell, Andrew H.; Miller, Karla L.; Rushworth, Matthew F. S.

    2014-01-01

    Despite widespread interest in social dominance, little is known of its neural correlates in primates. We hypothesized that social status in primates might be related to individual variation in subcortical brain regions implicated in other aspects of social and emotional behavior in other mammals. To examine this possibility we used magnetic resonance imaging (MRI), which affords the taking of quantitative measurements noninvasively, both of brain structure and of brain function, across many regions simultaneously. We carried out a series of tests of structural and functional MRI (fMRI) data in 25 group-living macaques. First, a deformation-based morphometric (DBM) approach was used to show that gray matter in the amygdala, brainstem in the vicinity of the raphe nucleus, and reticular formation, hypothalamus, and septum/striatum of the left hemisphere was correlated with social status. Second, similar correlations were found in the same areas in the other hemisphere. Third, similar correlations were found in a second data set acquired several months later from a subset of the same animals. Fourth, the strength of coupling between fMRI-measured activity in the same areas was correlated with social status. The network of subcortical areas, however, had no relationship with the sizes of individuals' social networks, suggesting the areas had a simple and direct relationship with social status. By contrast a second circuit in cortex, comprising the midsuperior temporal sulcus and anterior and dorsal prefrontal cortex, covaried with both individuals' social statuses and the social network sizes they experienced. This cortical circuit may be linked to the social cognitive processes that are taxed by life in more complex social networks and that must also be used if an animal is to achieve a high social status. PMID:25180883

  17. Neural circuit mechanisms of short-term memory

    Science.gov (United States)

    Goldman, Mark

    Memory over time scales of seconds to tens of seconds is thought to be maintained by neural activity that is triggered by a memorized stimulus and persists long after the stimulus is turned off. This presents a challenge to current models of memory-storing mechanisms, because the typical time scales associated with cellular and synaptic dynamics are two orders of magnitude smaller than this. While such long time scales can easily be achieved by bistable processes that toggle like a flip-flop between a baseline and elevated-activity state, many neuronal systems have been observed experimentally to be capable of maintaining a continuum of stable states. For example, in neural integrator networks involved in the accumulation of evidence for decision making and in motor control, individual neurons have been recorded whose activity reflects the mathematical integral of their inputs; in the absence of input, these neurons sustain activity at a level proportional to the running total of their inputs. This represents an analog form of memory whose dynamics can be conceptualized through an energy landscape with a continuum of lowest-energy states. Such continuous attractor landscapes are structurally non-robust, in seeming violation of the relative robustness of biological memory systems. In this talk, I will present and compare different biologically motivated circuit motifs for the accumulation and storage of signals in short-term memory. Challenges to generating robust memory maintenance will be highlighted and potential mechanisms for ameliorating the sensitivity of memory networks to perturbations will be discussed. Funding for this work was provided by NIH R01 MH065034, NSF IIS-1208218, Simons Foundation 324260, and a UC Davis Ophthalmology Research to Prevent Blindness Grant.

  18. Modulation of neural circuits: how stimulus context shapes innate behavior in Drosophila.

    Science.gov (United States)

    Su, Chih-Ying; Wang, Jing W

    2014-12-01

    Remarkable advances have been made in recent years in our understanding of innate behavior and the underlying neural circuits. In particular, a wealth of neuromodulatory mechanisms have been uncovered that can alter the input-output relationship of a hereditary neural circuit. It is now clear that this inbuilt flexibility allows animals to modify their behavioral responses according to environmental cues, metabolic demands and physiological states. Here, we discuss recent insights into how modulation of neural circuits impacts innate behavior, with a special focus on how environmental cues and internal physiological states shape different aspects of feeding behavior in Drosophila. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Ontogeny of neural circuits underlying spatial memory in the rat

    Directory of Open Access Journals (Sweden)

    James Alexander Ainge

    2012-03-01

    Full Text Available Spatial memory is a well characterised psychological function in both humans and rodents. The combined computations of a network of systems including place cells in the hippocampus, grid cells in the medial entorhinal cortex and head direction cells found in numerous structures in the brain have been suggested to form the neural instantiation of the cognitive map as first described by Tolman in 1948. However, while our understanding of the neural mechanisms underlying spatial representations in adults is relatively sophisticated, we know substantially less about how this network develops in young animals. In this article we review studies examining the developmental timescale that these systems follow. Electrophysiological recordings from very young rats show that directional information is at adult levels at the outset of navigational experience. The systems supporting allocentric memory, however, take longer to mature. This is consistent with behavioural studies of young rats which show that spatial memory based on head direction develops very early but that allocentric spatial memory takes longer to mature. We go on to report new data demonstrating that memory for associations between objects and their spatial locations is slower to develop than memory for objects alone. This is again consistent with previous reports suggesting that adult like spatial representations have a protracted development in rats and also suggests that the systems involved in processing non-spatial stimuli come online earlier.

  20. A Neural Circuit for Auditory Dominance over Visual Perception.

    Science.gov (United States)

    Song, You-Hyang; Kim, Jae-Hyun; Jeong, Hye-Won; Choi, Ilsong; Jeong, Daun; Kim, Kwansoo; Lee, Seung-Hee

    2017-02-22

    When conflicts occur during integration of visual and auditory information, one modality often dominates the other, but the underlying neural circuit mechanism remains unclear. Using auditory-visual discrimination tasks for head-fixed mice, we found that audition dominates vision in a process mediated by interaction between inputs from the primary visual (VC) and auditory (AC) cortices in the posterior parietal cortex (PTLp). Co-activation of the VC and AC suppresses VC-induced PTLp responses, leaving AC-induced responses. Furthermore, parvalbumin-positive (PV+) interneurons in the PTLp mainly receive AC inputs, and muscimol inactivation of the PTLp or optogenetic inhibition of its PV+ neurons abolishes auditory dominance in the resolution of cross-modal sensory conflicts without affecting either sensory perception. Conversely, optogenetic activation of PV+ neurons in the PTLp enhances the auditory dominance. Thus, our results demonstrate that AC input-specific feedforward inhibition of VC inputs in the PTLp is responsible for the auditory dominance during cross-modal integration. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. A plausible neural circuit for decision making and its formation based on reinforcement learning.

    Science.gov (United States)

    Wei, Hui; Dai, Dawei; Bu, Yijie

    2017-06-01

    A human's, or lower insects', behavior is dominated by its nervous system. Each stable behavior has its own inner steps and control rules, and is regulated by a neural circuit. Understanding how the brain influences perception, thought, and behavior is a central mandate of neuroscience. The phototactic flight of insects is a widely observed deterministic behavior. Since its movement is not stochastic, the behavior should be dominated by a neural circuit. Based on the basic firing characteristics of biological neurons and the neural circuit's constitution, we designed a plausible neural circuit for this phototactic behavior from logic perspective. The circuit's output layer, which generates a stable spike firing rate to encode flight commands, controls the insect's angular velocity when flying. The firing pattern and connection type of excitatory and inhibitory neurons are considered in this computational model. We simulated the circuit's information processing using a distributed PC array, and used the real-time average firing rate of output neuron clusters to drive a flying behavior simulation. In this paper, we also explored how a correct neural decision circuit is generated from network flow view through a bee's behavior experiment based on the reward and punishment feedback mechanism. The significance of this study: firstly, we designed a neural circuit to achieve the behavioral logic rules by strictly following the electrophysiological characteristics of biological neurons and anatomical facts. Secondly, our circuit's generality permits the design and implementation of behavioral logic rules based on the most general information processing and activity mode of biological neurons. Thirdly, through computer simulation, we achieved new understanding about the cooperative condition upon which multi-neurons achieve some behavioral control. Fourthly, this study aims in understanding the information encoding mechanism and how neural circuits achieve behavior control

  2. Seeing the whole picture: A comprehensive imaging approach to functional mapping of circuits in behaving zebrafish.

    Science.gov (United States)

    Feierstein, C E; Portugues, R; Orger, M B

    2015-06-18

    In recent years, the zebrafish has emerged as an appealing model system to tackle questions relating to the neural circuit basis of behavior. This can be attributed not just to the growing use of genetically tractable model organisms, but also in large part to the rapid advances in optical techniques for neuroscience, which are ideally suited for application to the small, transparent brain of the larval fish. Many characteristic features of vertebrate brains, from gross anatomy down to particular circuit motifs and cell-types, as well as conserved behaviors, can be found in zebrafish even just a few days post fertilization, and, at this early stage, the physical size of the brain makes it possible to analyze neural activity in a comprehensive fashion. In a recent study, we used a systematic and unbiased imaging method to record the pattern of activity dynamics throughout the whole brain of larval zebrafish during a simple visual behavior, the optokinetic response (OKR). This approach revealed the broadly distributed network of neurons that were active during the behavior and provided insights into the fine-scale functional architecture in the brain, inter-individual variability, and the spatial distribution of behaviorally relevant signals. Combined with mapping anatomical and functional connectivity, targeted electrophysiological recordings, and genetic labeling of specific populations, this comprehensive approach in zebrafish provides an unparalleled opportunity to study complete circuits in a behaving vertebrate animal. Copyright © 2014. Published by Elsevier Ltd.

  3. Deep neural mapping support vector machines.

    Science.gov (United States)

    Li, Yujian; Zhang, Ting

    2017-09-01

    The choice of kernel has an important effect on the performance of a support vector machine (SVM). The effect could be reduced by NEUROSVM, an architecture using multilayer perceptron for feature extraction and SVM for classification. In binary classification, a general linear kernel NEUROSVM can be theoretically simplified as an input layer, many hidden layers, and an SVM output layer. As a feature extractor, the sub-network composed of the input and hidden layers is first trained together with a virtual ordinary output layer by backpropagation, then with the output of its last hidden layer taken as input of the SVM classifier for further training separately. By taking the sub-network as a kernel mapping from the original input space into a feature space, we present a novel model, called deep neural mapping support vector machine (DNMSVM), from the viewpoint of deep learning. This model is also a new and general kernel learning method, where the kernel mapping is indeed an explicit function expressed as a sub-network, different from an implicit function induced by a kernel function traditionally. Moreover, we exploit a two-stage procedure of contrastive divergence learning and gradient descent for DNMSVM to jointly training an adaptive kernel mapping instead of a kernel function, without requirement of kernel tricks. As a whole of the sub-network and the SVM classifier, the joint training of DNMSVM is done by using gradient descent to optimize the objective function with the sub-network layer-wise pre-trained via contrastive divergence learning of restricted Boltzmann machines. Compared to the separate training of NEUROSVM, the joint training is a new algorithm for DNMSVM to have advantages over NEUROSVM. Experimental results show that DNMSVM can outperform NEUROSVM and RBFSVM (i.e., SVM with the kernel of radial basis function), demonstrating its effectiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Self-Organizing Neural Circuits for Sensory-Guided Motor Control

    National Research Council Canada - National Science Library

    Grossberg, Stephen

    1999-01-01

    The reported projects developed mathematical models to explain how self-organizing neural circuits that operate under continuous or intermittent sensory guidance achieve flexible and accurate control of human movement...

  5. Modulation of neural circuits: how stimulus context shapes innate behavior in Drosophila

    OpenAIRE

    Su, Chih-Ying; Wang, Jing W.

    2014-01-01

    Remarkable advances have been made in recent years in our understanding of innate behavior and the underlying neural circuits. In particular, a wealth of neuromodulatory mechanisms have been uncovered that can alter the input-output relationship of a hereditary neural circuit. It is now clear that this inbuilt flexibility allows animals to modify their behavioral responses according to environmental cues, metabolic demands and physiological states. Here, we discuss recent insights into how mo...

  6. Ultra low-power integrated circuit design for wireless neural interfaces

    CERN Document Server

    Holleman, Jeremy; Otis, Brian

    2014-01-01

    Presenting results from real prototype systems, this volume provides an overview of ultra low-power integrated circuits and systems for neural signal processing and wireless communication. Topics include analog, radio, and signal processing theory and design for ultra low-power circuits.

  7. Neural Circuits via Which Single Prolonged Stress Exposure Leads to Fear Extinction Retention Deficits

    Science.gov (United States)

    Knox, Dayan; Stanfield, Briana R.; Staib, Jennifer M.; David, Nina P.; Keller, Samantha M.; DePietro, Thomas

    2016-01-01

    Single prolonged stress (SPS) has been used to examine mechanisms via which stress exposure leads to post-traumatic stress disorder symptoms. SPS induces fear extinction retention deficits, but neural circuits critical for mediating these deficits are unknown. To address this gap, we examined the effect of SPS on neural activity in brain regions…

  8. The primary visual cortex in the neural circuit for visual orienting

    Science.gov (United States)

    Zhaoping, Li

    The primary visual cortex (V1) is traditionally viewed as remote from influencing brain's motor outputs. However, V1 provides the most abundant cortical inputs directly to the sensory layers of superior colliculus (SC), a midbrain structure to command visual orienting such as shifting gaze and turning heads. I will show physiological, anatomical, and behavioral data suggesting that V1 transforms visual input into a saliency map to guide a class of visual orienting that is reflexive or involuntary. In particular, V1 receives a retinotopic map of visual features, such as orientation, color, and motion direction of local visual inputs; local interactions between V1 neurons perform a local-to-global computation to arrive at a saliency map that highlights conspicuous visual locations by higher V1 responses. The conspicuous location are usually, but not always, where visual input statistics changes. The population V1 outputs to SC, which is also retinotopic, enables SC to locate, by lateral inhibition between SC neurons, the most salient location as the saccadic target. Experimental tests of this hypothesis will be shown. Variations of the neural circuit for visual orienting across animal species, with more or less V1 involvement, will be discussed. Supported by the Gatsby Charitable Foundation.

  9. Improved algorithms for circuit fault diagnosis based on wavelet packet and neural network

    International Nuclear Information System (INIS)

    Zhang, W-Q; Xu, C

    2008-01-01

    In this paper, two improved BP neural network algorithms of fault diagnosis for analog circuit are presented through using optimal wavelet packet transform(OWPT) or incomplete wavelet packet transform(IWPT) as preprocessor. The purpose of preprocessing is to reduce the nodes in input layer and hidden layer of BP neural network, so that the neural network gains faster training and convergence speed. At first, we apply OWPT or IWPT to the response signal of circuit under test(CUT), and then calculate the normalization energy of each frequency band. The normalization energy is used to train the BP neural network to diagnose faulty components in the analog circuit. These two algorithms need small network size, while have faster learning and convergence speed. Finally, simulation results illustrate the two algorithms are effective for fault diagnosis

  10. An improved superconducting neural circuit and its application for a neural network solving a combinatorial optimization problem

    International Nuclear Information System (INIS)

    Onomi, T; Nakajima, K

    2014-01-01

    We have proposed a superconducting Hopfield-type neural network for solving the N-Queens problem which is one of combinatorial optimization problems. The sigmoid-shape function of a neuron output is represented by the output of coupled SQUIDs gate consisting of a single-junction and a double-junction SQUIDs. One of the important factors for an improvement of the network performance is an improvement of a threshold characteristic of a neuron circuit. In this paper, we report an improved design of coupled SQUID gates for a superconducting neural network. A step-like function with a steep threshold at a rising edge is desirable for a neuron circuit to solve a combinatorial optimization problem. A neuron circuit is composed of two coupled SQUIDs gates with a cascade connection in order to obtain such characteristics. The designed neuron circuit is fabricated by a 2.5 kA/cm 2 Nb/AlOx/Nb process. The operation of a fabricated neuron circuit is experimentally demonstrated. Moreover, we discuss about the performance of the neural network using the improved neuron circuits and delayed negative self-connections.

  11. Updating Procedures Can Reorganize the Neural Circuit Supporting a Fear Memory.

    Science.gov (United States)

    Kwapis, Janine L; Jarome, Timothy J; Ferrara, Nicole C; Helmstetter, Fred J

    2017-07-01

    Established memories undergo a period of vulnerability following retrieval, a process termed 'reconsolidation.' Recent work has shown that the hypothetical process of reconsolidation is only triggered when new information is presented during retrieval, suggesting that this process may allow existing memories to be modified. Reconsolidation has received increasing attention as a possible therapeutic target for treating disorders that stem from traumatic memories, yet little is known about how this process changes the original memory. In particular, it is unknown whether reconsolidation can reorganize the neural circuit supporting an existing memory after that memory is modified with new information. Here, we show that trace fear memory undergoes a protein synthesis-dependent reconsolidation process following exposure to a single updating trial of delay conditioning. Further, this reconsolidation-dependent updating process appears to reorganize the neural circuit supporting the trace-trained memory, so that it better reflects the circuit supporting delay fear. Specifically, after a trace-to-delay update session, the amygdala is now required for extinction of the updated memory but the retrosplenial cortex is no longer required for retrieval. These results suggest that updating procedures could be used to force a complex, poorly defined memory circuit to rely on a better-defined neural circuit that may be more amenable to behavioral or pharmacological manipulation. This is the first evidence that exposure to new information can fundamentally reorganize the neural circuit supporting an existing memory.

  12. Inter-progenitor pool wiring: An evolutionarily conserved strategy that expands neural circuit diversity.

    Science.gov (United States)

    Suzuki, Takumi; Sato, Makoto

    2017-11-15

    Diversification of neuronal types is key to establishing functional variations in neural circuits. The first critical step to generate neuronal diversity is to organize the compartmental domains of developing brains into spatially distinct neural progenitor pools. Neural progenitors in each pool then generate a unique set of diverse neurons through specific spatiotemporal specification processes. In this review article, we focus on an additional mechanism, 'inter-progenitor pool wiring', that further expands the diversity of neural circuits. After diverse types of neurons are generated in one progenitor pool, a fraction of these neurons start migrating toward a remote brain region containing neurons that originate from another progenitor pool. Finally, neurons of different origins are intermingled and eventually form complex but precise neural circuits. The developing cerebral cortex of mammalian brains is one of the best examples of inter-progenitor pool wiring. However, Drosophila visual system development has revealed similar mechanisms in invertebrate brains, suggesting that inter-progenitor pool wiring is an evolutionarily conserved strategy that expands neural circuit diversity. Here, we will discuss how inter-progenitor pool wiring is accomplished in mammalian and fly brain systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. A neural command circuit for grooming movement control.

    Science.gov (United States)

    Hampel, Stefanie; Franconville, Romain; Simpson, Julie H; Seeds, Andrew M

    2015-09-07

    Animals perform many stereotyped movements, but how nervous systems are organized for controlling specific movements remains unclear. Here we use anatomical, optogenetic, behavioral, and physiological techniques to identify a circuit in Drosophila melanogaster that can elicit stereotyped leg movements that groom the antennae. Mechanosensory chordotonal neurons detect displacements of the antennae and excite three different classes of functionally connected interneurons, which include two classes of brain interneurons and different parallel descending neurons. This multilayered circuit is organized such that neurons within each layer are sufficient to specifically elicit antennal grooming. However, we find differences in the durations of antennal grooming elicited by neurons in the different layers, suggesting that the circuit is organized to both command antennal grooming and control its duration. As similar features underlie stimulus-induced movements in other animals, we infer the possibility of a common circuit organization for movement control that can be dissected in Drosophila.

  14. Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits.

    Science.gov (United States)

    Sparta, Dennis R; Stamatakis, Alice M; Phillips, Jana L; Hovelsø, Nanna; van Zessen, Ruud; Stuber, Garret D

    2011-12-08

    In vivo optogenetic strategies have redefined our ability to assay how neural circuits govern behavior. Although acutely implanted optical fibers have previously been used in such studies, long-term control over neuronal activity has been largely unachievable. Here we describe a method to construct implantable optical fibers to readily manipulate neural circuit elements with minimal tissue damage or change in light output over time (weeks to months). Implanted optical fibers readily interface with in vivo electrophysiological arrays or electrochemical detection electrodes. The procedure described here, from implant construction to the start of behavioral experimentation, can be completed in approximately 2-6 weeks. Successful use of implantable optical fibers will allow for long-term control of mammalian neural circuits in vivo, which is integral to the study of the neurobiology of behavior.

  15. An Implantable Mixed Analog/Digital Neural Stimulator Circuit

    DEFF Research Database (Denmark)

    Gudnason, Gunnar; Bruun, Erik; Haugland, Morten

    1999-01-01

    This paper describes a chip for a multichannel neural stimulator for functional electrical stimulation. The chip performs all the signal processing required in an implanted neural stimulator. The power and signal transmission to the stimulator is carried out via an inductive link. From the signals...... electrical stimulation is to restore various bodily functions (e.g. motor functions) in patients who have lost them due to injury or disease....

  16. Implantable neurotechnologies: bidirectional neural interfaces--applications and VLSI circuit implementations.

    Science.gov (United States)

    Greenwald, Elliot; Masters, Matthew R; Thakor, Nitish V

    2016-01-01

    A bidirectional neural interface is a device that transfers information into and out of the nervous system. This class of devices has potential to improve treatment and therapy in several patient populations. Progress in very large-scale integration has advanced the design of complex integrated circuits. System-on-chip devices are capable of recording neural electrical activity and altering natural activity with electrical stimulation. Often, these devices include wireless powering and telemetry functions. This review presents the state of the art of bidirectional circuits as applied to neuroprosthetic, neurorepair, and neurotherapeutic systems.

  17. Response variance in functional maps: neural darwinism revisited.

    Directory of Open Access Journals (Sweden)

    Hirokazu Takahashi

    Full Text Available The mechanisms by which functional maps and map plasticity contribute to cortical computation remain controversial. Recent studies have revisited the theory of neural Darwinism to interpret the learning-induced map plasticity and neuronal heterogeneity observed in the cortex. Here, we hypothesize that the Darwinian principle provides a substrate to explain the relationship between neuron heterogeneity and cortical functional maps. We demonstrate in the rat auditory cortex that the degree of response variance is closely correlated with the size of its representational area. Further, we show that the response variance within a given population is altered through training. These results suggest that larger representational areas may help to accommodate heterogeneous populations of neurons. Thus, functional maps and map plasticity are likely to play essential roles in Darwinian computation, serving as effective, but not absolutely necessary, structures to generate diverse response properties within a neural population.

  18. Response variance in functional maps: neural darwinism revisited.

    Science.gov (United States)

    Takahashi, Hirokazu; Yokota, Ryo; Kanzaki, Ryohei

    2013-01-01

    The mechanisms by which functional maps and map plasticity contribute to cortical computation remain controversial. Recent studies have revisited the theory of neural Darwinism to interpret the learning-induced map plasticity and neuronal heterogeneity observed in the cortex. Here, we hypothesize that the Darwinian principle provides a substrate to explain the relationship between neuron heterogeneity and cortical functional maps. We demonstrate in the rat auditory cortex that the degree of response variance is closely correlated with the size of its representational area. Further, we show that the response variance within a given population is altered through training. These results suggest that larger representational areas may help to accommodate heterogeneous populations of neurons. Thus, functional maps and map plasticity are likely to play essential roles in Darwinian computation, serving as effective, but not absolutely necessary, structures to generate diverse response properties within a neural population.

  19. Olfactory systems and neural circuits that modulate predator odor fear

    OpenAIRE

    Takahashi, Lorey K.

    2014-01-01

    When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator ...

  20. Predicting the topology of dynamic neural networks for the simulation of electronic circuits

    NARCIS (Netherlands)

    Schilders, W.H.A.

    2009-01-01

    In this paper we discuss the use of the state-space modelling MOESP algorithm to generate precise information about the number of neurons and hidden layers in dynamic neural networks developed for the behavioural modelling of electronic circuits. The Bartels–Stewart algorithm is used to transform

  1. Beyond excitation/inhibition imbalance in multidimensional models of neural circuit changes in brain disorders.

    Science.gov (United States)

    O'Donnell, Cian; Gonçalves, J Tiago; Portera-Cailliau, Carlos; Sejnowski, Terrence J

    2017-10-11

    A leading theory holds that neurodevelopmental brain disorders arise from imbalances in excitatory and inhibitory (E/I) brain circuitry. However, it is unclear whether this one-dimensional model is rich enough to capture the multiple neural circuit alterations underlying brain disorders. Here, we combined computational simulations with analysis of in vivo two-photon Ca 2+ imaging data from somatosensory cortex of Fmr1 knock-out (KO) mice, a model of Fragile-X Syndrome, to test the E/I imbalance theory. We found that: (1) The E/I imbalance model cannot account for joint alterations in the observed neural firing rates and correlations; (2) Neural circuit function is vastly more sensitive to changes in some cellular components over others; (3) The direction of circuit alterations in Fmr1 KO mice changes across development. These findings suggest that the basic E/I imbalance model should be updated to higher dimensional models that can better capture the multidimensional computational functions of neural circuits.

  2. Energy efficient neural stimulation: coupling circuit design and membrane biophysics.

    Science.gov (United States)

    Foutz, Thomas J; Ackermann, D Michael; Kilgore, Kevin L; McIntyre, Cameron C

    2012-01-01

    The delivery of therapeutic levels of electrical current to neural tissue is a well-established treatment for numerous indications such as Parkinson's disease and chronic pain. While the neuromodulation medical device industry has experienced steady clinical growth over the last two decades, much of the core technology underlying implanted pulse generators remain unchanged. In this study we propose some new methods for achieving increased energy-efficiency during neural stimulation. The first method exploits the biophysical features of excitable tissue through the use of a centered-triangular stimulation waveform. Neural activation with this waveform is achieved with a statistically significant reduction in energy compared to traditional rectangular waveforms. The second method demonstrates energy savings that could be achieved by advanced circuitry design. We show that the traditional practice of using a fixed compliance voltage for constant-current stimulation results in substantial energy loss. A portion of this energy can be recuperated by adjusting the compliance voltage to real-time requirements. Lastly, we demonstrate the potential impact of axon fiber diameter on defining the energy-optimal pulse-width for stimulation. When designing implantable pulse generators for energy efficiency, we propose that the future combination of a variable compliance system, a centered-triangular stimulus waveform, and an axon diameter specific stimulation pulse-width has great potential to reduce energy consumption and prolong battery life in neuromodulation devices.

  3. Energy efficient neural stimulation: coupling circuit design and membrane biophysics.

    Directory of Open Access Journals (Sweden)

    Thomas J Foutz

    Full Text Available The delivery of therapeutic levels of electrical current to neural tissue is a well-established treatment for numerous indications such as Parkinson's disease and chronic pain. While the neuromodulation medical device industry has experienced steady clinical growth over the last two decades, much of the core technology underlying implanted pulse generators remain unchanged. In this study we propose some new methods for achieving increased energy-efficiency during neural stimulation. The first method exploits the biophysical features of excitable tissue through the use of a centered-triangular stimulation waveform. Neural activation with this waveform is achieved with a statistically significant reduction in energy compared to traditional rectangular waveforms. The second method demonstrates energy savings that could be achieved by advanced circuitry design. We show that the traditional practice of using a fixed compliance voltage for constant-current stimulation results in substantial energy loss. A portion of this energy can be recuperated by adjusting the compliance voltage to real-time requirements. Lastly, we demonstrate the potential impact of axon fiber diameter on defining the energy-optimal pulse-width for stimulation. When designing implantable pulse generators for energy efficiency, we propose that the future combination of a variable compliance system, a centered-triangular stimulus waveform, and an axon diameter specific stimulation pulse-width has great potential to reduce energy consumption and prolong battery life in neuromodulation devices.

  4. Sensor agnostic object recognition using a map seeking circuit

    Science.gov (United States)

    Overman, Timothy L.; Hart, Michael

    2012-05-01

    Automatic object recognition capabilities are traditionally tuned to exploit the specific sensing modality they were designed to. Their successes (and shortcomings) are tied to object segmentation from the background, they typically require highly skilled personnel to train them, and they become cumbersome with the introduction of new objects. In this paper we describe a sensor independent algorithm based on the biologically inspired technology of map seeking circuits (MSC) which overcomes many of these obstacles. In particular, the MSC concept offers transparency in object recognition from a common interface to all sensor types, analogous to a USB device. It also provides a common core framework that is independent of the sensor and expandable to support high dimensionality decision spaces. Ease in training is assured by using commercially available 3D models from the video game community. The search time remains linear no matter how many objects are introduced, ensuring rapid object recognition. Here, we report results of an MSC algorithm applied to object recognition and pose estimation from high range resolution radar (1D), electrooptical imagery (2D), and LIDAR point clouds (3D) separately. By abstracting the sensor phenomenology from the underlying a prior knowledge base, MSC shows promise as an easily adaptable tool for incorporating additional sensor inputs.

  5. The Neural Circuits that Generate Tics in Gilles de la Tourette Syndrome

    Science.gov (United States)

    Wang, Zhishun; Maia, Tiago V.; Marsh, Rachel; Colibazzi, Tiziano; Gerber, Andrew; Peterson, Bradley S.

    2014-01-01

    Objective To study neural activity and connectivity within cortico-striato-thalamo-cortical circuits and to reveal circuit-based neural mechanisms that govern tic generation in Tourette syndrome. Method We acquired fMRI data from 13 participants with Tourette syndrome and 21 controls during spontaneous or simulated tics. We used independent component analysis with hierarchical partner matching to isolate neural activity within functionally distinct regions of cortico-striato-thalamo-cortical circuits. We used Granger causality to investigate causal interactions among these regions. Results We found that the Tourette group exhibited stronger neural activity and interregional causality than controls throughout all portions of the motor pathway including sensorimotor cortex, putamen, pallidum, and substania nigra. Activity in these areas correlated positively with the severity of tic symptoms. Activity within the Tourette group was stronger during spontaneous tics than during voluntary tics in somatosensory and posterior parietal cortices, putamen, and amygdala/hippocampus complex, suggesting that activity in these regions may represent features of the premonitory urges that generate spontaneous tic behaviors. In contrast, activity was weaker in the Tourette group than in controls within portions of cortico-striato-thalamo-cortical circuits that exert top-down control over motor pathways (caudate and anterior cingulate cortex), and progressively less activity in these regions accompanied more severe tic symptoms, suggesting that faulty activity in these circuits may fail to control tic behaviors or the premonitory urges that generate them. Conclusions Our findings taken together suggest that tics are caused by the combined effects of excessive activity in motor pathways and reduced activation in control portions of cortico-striato-thalamo-cortical circuits. PMID:21955933

  6. Terrain Mapping and Classification in Outdoor Environments Using Neural Networks

    OpenAIRE

    Alberto Yukinobu Hata; Denis Fernando Wolf; Gustavo Pessin; Fernando Osório

    2009-01-01

    This paper describes a three-dimensional terrain mapping and classification technique to allow the operation of mobile robots in outdoor environments using laser range finders. We propose the use of a multi-layer perceptron neural network to classify the terrain into navigable, partially navigable, and non-navigable. The maps generated by our approach can be used for path planning, navigation, and local obstacle avoidance. Experimental tests using an outdoor robot and a laser sensor demonstra...

  7. Neural network representation and learning of mappings and their derivatives

    Science.gov (United States)

    White, Halbert; Hornik, Kurt; Stinchcombe, Maxwell; Gallant, A. Ronald

    1991-01-01

    Discussed here are recent theorems proving that artificial neural networks are capable of approximating an arbitrary mapping and its derivatives as accurately as desired. This fact forms the basis for further results establishing the learnability of the desired approximations, using results from non-parametric statistics. These results have potential applications in robotics, chaotic dynamics, control, and sensitivity analysis. An example involving learning the transfer function and its derivatives for a chaotic map is discussed.

  8. Neural Circuit to Integrate Opposing Motions in the Visual Field.

    Science.gov (United States)

    Mauss, Alex S; Pankova, Katarina; Arenz, Alexander; Nern, Aljoscha; Rubin, Gerald M; Borst, Alexander

    2015-07-16

    When navigating in their environment, animals use visual motion cues as feedback signals that are elicited by their own motion. Such signals are provided by wide-field neurons sampling motion directions at multiple image points as the animal maneuvers. Each one of these neurons responds selectively to a specific optic flow-field representing the spatial distribution of motion vectors on the retina. Here, we describe the discovery of a group of local, inhibitory interneurons in the fruit fly Drosophila key for filtering these cues. Using anatomy, molecular characterization, activity manipulation, and physiological recordings, we demonstrate that these interneurons convey direction-selective inhibition to wide-field neurons with opposite preferred direction and provide evidence for how their connectivity enables the computation required for integrating opposing motions. Our results indicate that, rather than sharpening directional selectivity per se, these circuit elements reduce noise by eliminating non-specific responses to complex visual information. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Interpretation of correlated neural variability from models of feed-forward and recurrent circuits

    Science.gov (United States)

    2018-01-01

    Neural populations respond to the repeated presentations of a sensory stimulus with correlated variability. These correlations have been studied in detail, with respect to their mechanistic origin, as well as their influence on stimulus discrimination and on the performance of population codes. A number of theoretical studies have endeavored to link network architecture to the nature of the correlations in neural activity. Here, we contribute to this effort: in models of circuits of stochastic neurons, we elucidate the implications of various network architectures—recurrent connections, shared feed-forward projections, and shared gain fluctuations—on the stimulus dependence in correlations. Specifically, we derive mathematical relations that specify the dependence of population-averaged covariances on firing rates, for different network architectures. In turn, these relations can be used to analyze data on population activity. We examine recordings from neural populations in mouse auditory cortex. We find that a recurrent network model with random effective connections captures the observed statistics. Furthermore, using our circuit model, we investigate the relation between network parameters, correlations, and how well different stimuli can be discriminated from one another based on the population activity. As such, our approach allows us to relate properties of the neural circuit to information processing. PMID:29408930

  10. Interpretation of correlated neural variability from models of feed-forward and recurrent circuits.

    Directory of Open Access Journals (Sweden)

    Volker Pernice

    2018-02-01

    Full Text Available Neural populations respond to the repeated presentations of a sensory stimulus with correlated variability. These correlations have been studied in detail, with respect to their mechanistic origin, as well as their influence on stimulus discrimination and on the performance of population codes. A number of theoretical studies have endeavored to link network architecture to the nature of the correlations in neural activity. Here, we contribute to this effort: in models of circuits of stochastic neurons, we elucidate the implications of various network architectures-recurrent connections, shared feed-forward projections, and shared gain fluctuations-on the stimulus dependence in correlations. Specifically, we derive mathematical relations that specify the dependence of population-averaged covariances on firing rates, for different network architectures. In turn, these relations can be used to analyze data on population activity. We examine recordings from neural populations in mouse auditory cortex. We find that a recurrent network model with random effective connections captures the observed statistics. Furthermore, using our circuit model, we investigate the relation between network parameters, correlations, and how well different stimuli can be discriminated from one another based on the population activity. As such, our approach allows us to relate properties of the neural circuit to information processing.

  11. A simple structure wavelet transform circuit employing function link neural networks and SI filters

    Science.gov (United States)

    Mu, Li; Yigang, He

    2016-12-01

    Signal processing by means of analog circuits offers advantages from a power consumption viewpoint. Implementing wavelet transform (WT) using analog circuits is of great interest when low-power consumption becomes an important issue. In this article, a novel simple structure WT circuit in analog domain is presented by employing functional link neural network (FLNN) and switched-current (SI) filters. First, the wavelet base is approximated using FLNN algorithms for giving a filter transfer function that is suitable for simple structure WT circuit implementation. Next, the WT circuit is constructed with the wavelet filter bank, whose impulse response is the approximated wavelet and its dilations. The filter design that follows is based on a follow-the-leader feedback (FLF) structure with multiple output bilinear SI integrators and current mirrors as the main building blocks. SI filter is well suited for this application since the dilation constant across different scales of the transform can be precisely implemented and controlled by the clock frequency of the circuit with the same system architecture. Finally, to illustrate the design procedure, a seventh-order FLNN-approximated Gaussian wavelet is implemented as an example. Simulations have successfully verified that the designed simple structure WT circuit has low sensitivity, low-power consumption and litter effect to the imperfections.

  12. In search of the neural circuits of intrinsic motivation

    Directory of Open Access Journals (Sweden)

    Frederic Kaplan

    2007-10-01

    Full Text Available Children seem to acquire new know-how in a continuous and open-ended manner. In this paper, we hypothesize that an intrinsic motivation to progress in learning is at the origins of the remarkable structure of children's developmental trajectories. In this view, children engage in exploratory and playful activities for their own sake, not as steps toward other extrinsic goals. The central hypothesis of this paper is that intrinsically motivating activities correspond to expected decrease in prediction error. This motivation system pushes the infant to avoid both predictable and unpredictable situations in order to focus on the ones that are expected to maximize progress in learning. Based on a computational model and a series of robotic experiments, we show how this principle can lead to organized sequences of behavior of increasing complexity characteristic of several behavioral and developmental patterns observed in humans. We then discuss the putative circuitry underlying such an intrinsic motivation system in the brain and formulate two novel hypotheses. The first one is that tonic dopamine acts as a learning progress signal. The second is that this progress signal is directly computed through a hierarchy of microcortical circuits that act both as prediction and metaprediction systems.

  13. Nanowire electrodes for high-density stimulation and measurement of neural circuits

    Directory of Open Access Journals (Sweden)

    Jacob T. Robinson

    2013-03-01

    Full Text Available Brain-machine interfaces (BMIs that can precisely monitor and control neural activity will likely require new hardware with improved resolution and specificity. New nanofabricated electrodes with feature sizes and densities comparable to neural circuits may lead to such improvements. In this perspective, we review the recent development of vertical nanowire (NW electrodes that could provide highly parallel single-cell recording and stimulation for future BMIs. We compare the advantages of these devices and discuss some of the technical challenges that must be overcome for this technology to become a platform for next-generation closed-loop BMIs.

  14. Neural circuits involved in the renewal of extinguished fear.

    Science.gov (United States)

    Chen, Weihai; Wang, Yan; Wang, Xiaqing; Li, Hong

    2017-07-01

    The last 10 years have witnessed a substantial progress in understanding the neural mechanisms for the renewal of the extinguished fear memory. Based on the theory of fear extinction, exposure therapy has been developed as a typical cognitive behavioral therapy for posttraumatic stress disorder. Although the fear memory can be extinguished by repeated presentation of conditioned stimulus without unconditioned stimulus, the fear memory is not erased and tends to relapse outside of extinction context, which is referred to as renewal. Therefore, the renewal is regarded as a great obstruction interfering with the effect of exposure therapy. In recent years, there has been a great deal of studies in understanding the neurobiological underpinnings of fear renewal. These offer a foundation upon which novel therapeutic interventions for the renewal may be built. This review focuses on behavioral, anatomical and electrophysiological studies that interpret roles of the hippocampus, prelimbic cortex and amygdala as well as the connections between them for the renewal of the extinguished fear. Additionally, this review suggests the possible pathways for the renewal: (1) the prelimbic cortex may integrate contextual information from hippocampal inputs and project to the basolateral amygdala to mediate the renewal of extinguished fear memory; the ventral hippocampus may innervate the activities of the basolateral amygdala or the central amygdala directly for the renewal. © 2017 IUBMB Life, 69(7):470-478, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  15. Retrospective revaluation and its neural circuit in rats.

    Science.gov (United States)

    San-Galli, Aurore; Marchand, Alain R; Decorte, Laurence; Di Scala, Georges

    2011-10-01

    Contingency learning is essential for establishing predictive or causal judgements. Retrospective revaluation captures essential aspects of the updating of this knowledge, according to new experience. In the present study, retrospective revaluation and its neural substrate was investigated in a rat conditioned magazine approach. One element of a previously food-reinforced Tone-Light compound stimulus was either further reinforced (inflation) or extinguished (extinction). These treatments affected the predictive value of the alternate stimulus (target), but only when the target was a weakly salient stimulus such as a Light, and the inflation/extinction procedure concerned the more salient element, that is the Tone. As the predictive value of the Light was decreased in comparison with a relevant control group, this revaluation was interpreted as backward blocking, and not unovershadowing. This observation challenges retrospective revaluation models focused on acquisition and prediction error detection, and is better accounted for by retrieval-based associative theories such as the comparator model (Miller and Matzel) [5]. Immunohistochemical detection of the Fos protein after the test phase revealed activation of the orbitofrontal and infralimbic cortices as well as nucleus accumbens core and shell, in rats that exhibited retrospective revaluation. Our results suggest that rats integrate successive experiences at the retrieval stage of retrospective revaluation, and that prefronto-accumbal interactions are involved in this function. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. A decision-making model based on a spiking neural circuit and synaptic plasticity.

    Science.gov (United States)

    Wei, Hui; Bu, Yijie; Dai, Dawei

    2017-10-01

    To adapt to the environment and survive, most animals can control their behaviors by making decisions. The process of decision-making and responding according to cues in the environment is stable, sustainable, and learnable. Understanding how behaviors are regulated by neural circuits and the encoding and decoding mechanisms from stimuli to responses are important goals in neuroscience. From results observed in Drosophila experiments, the underlying decision-making process is discussed, and a neural circuit that implements a two-choice decision-making model is proposed to explain and reproduce the observations. Compared with previous two-choice decision making models, our model uses synaptic plasticity to explain changes in decision output given the same environment. Moreover, biological meanings of parameters of our decision-making model are discussed. In this paper, we explain at the micro-level (i.e., neurons and synapses) how observable decision-making behavior at the macro-level is acquired and achieved.

  17. Neuromodulation of the neural circuits controlling the lower urinary tract.

    Science.gov (United States)

    Gad, Parag N; Roy, Roland R; Zhong, Hui; Gerasimenko, Yury P; Taccola, Giuliano; Edgerton, V Reggie

    2016-11-01

    The inability to control timely bladder emptying is one of the most serious challenges among the many functional deficits that occur after a spinal cord injury. We previously demonstrated that electrodes placed epidurally on the dorsum of the spinal cord can be used in animals and humans to recover postural and locomotor function after complete paralysis and can be used to enable voiding in spinal rats. In the present study, we examined the neuromodulation of lower urinary tract function associated with acute epidural spinal cord stimulation, locomotion, and peripheral nerve stimulation in adult rats. Herein we demonstrate that electrically evoked potentials in the hindlimb muscles and external urethral sphincter are modulated uniquely when the rat is stepping bipedally and not voiding, immediately pre-voiding, or when voiding. We also show that spinal cord stimulation can effectively neuromodulate the lower urinary tract via frequency-dependent stimulation patterns and that neural peripheral nerve stimulation can activate the external urethral sphincter both directly and via relays in the spinal cord. The data demonstrate that the sensorimotor networks controlling bladder and locomotion are highly integrated neurophysiologically and behaviorally and demonstrate how these two functions are modulated by sensory input from the tibial and pudental nerves. A more detailed understanding of the high level of interaction between these networks could lead to the integration of multiple neurophysiological strategies to improve bladder function. These data suggest that the development of strategies to improve bladder function should simultaneously engage these highly integrated networks in an activity-dependent manner. Copyright © 2016. Published by Elsevier Inc.

  18. Neural circuit components of the Drosophila OFF motion vision pathway.

    Science.gov (United States)

    Meier, Matthias; Serbe, Etienne; Maisak, Matthew S; Haag, Jürgen; Dickson, Barry J; Borst, Alexander

    2014-02-17

    Detecting the direction of visual motion is an essential task of the early visual system. The Reichardt detector has been proven to be a faithful description of the underlying computation in insects. A series of recent studies addressed the neural implementation of the Reichardt detector in Drosophila revealing the overall layout in parallel ON and OFF channels, its input neurons from the lamina (L1→ON, and L2→OFF), and the respective output neurons to the lobula plate (ON→T4, and OFF→T5). While anatomical studies showed that T4 cells receive input from L1 via Mi1 and Tm3 cells, the neurons connecting L2 to T5 cells have not been identified so far. It is, however, known that L2 contacts, among others, two neurons, called Tm2 and L4, which show a pronounced directionality in their wiring. We characterized the visual response properties of both Tm2 and L4 neurons via Ca(2+) imaging. We found that Tm2 and L4 cells respond with an increase in activity to moving OFF edges in a direction-unselective manner. To investigate their participation in motion vision, we blocked their output while recording from downstream tangential cells in the lobula plate. Silencing of Tm2 and L4 completely abolishes the response to moving OFF edges. Our results demonstrate that both cell types are essential components of the Drosophila OFF motion vision pathway, prior to the computation of directionality in the dendrites of T5 cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Reactivating Neural Circuits with Clinically Accessible Stimulation to Restore Hand Function in Persons with Tetraplegia

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-16-1-0395 TITLE: Reactivating Neural Circuits with Clinically Accessible Stimulation to Restore Hand Function in...estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data...Clinically Accessible Stimulation to Restore Hand Function in Persons with Tetraplegia 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  20. Homology and homoplasy of swimming behaviors and neural circuits in the Nudipleura (Mollusca, Gastropoda, Opisthobranchia)

    Science.gov (United States)

    Newcomb, James M.; Sakurai, Akira; Lillvis, Joshua L.; Gunaratne, Charuni A.; Katz, Paul S.

    2012-01-01

    How neural circuit evolution relates to behavioral evolution is not well understood. Here the relationship between neural circuits and behavior is explored with respect to the swimming behaviors of the Nudipleura (Mollusca, Gastropoda, Opithobranchia). Nudipleura is a diverse monophyletic clade of sea slugs among which only a small percentage of species can swim. Swimming falls into a limited number of categories, the most prevalent of which are rhythmic left–right body flexions (LR) and rhythmic dorsal–ventral body flexions (DV). The phylogenetic distribution of these behaviors suggests a high degree of homoplasy. The central pattern generator (CPG) underlying DV swimming has been well characterized in Tritonia diomedea and in Pleurobranchaea californica. The CPG for LR swimming has been elucidated in Melibe leonina and Dendronotus iris, which are more closely related. The CPGs for the categorically distinct DV and LR swimming behaviors consist of nonoverlapping sets of homologous identified neurons, whereas the categorically similar behaviors share some homologous identified neurons, although the exact composition of neurons and synapses in the neural circuits differ. The roles played by homologous identified neurons in categorically distinct behaviors differ. However, homologous identified neurons also play different roles even in the swim CPGs of the two LR swimming species. Individual neurons can be multifunctional within a species. Some of those functions are shared across species, whereas others are not. The pattern of use and reuse of homologous neurons in various forms of swimming and other behaviors further demonstrates that the composition of neural circuits influences the evolution of behaviors. PMID:22723353

  1. Biologically based neural circuit modelling for the study of fear learning and extinction

    Science.gov (United States)

    Nair, Satish S.; Paré, Denis; Vicentic, Aleksandra

    2016-11-01

    The neuronal systems that promote protective defensive behaviours have been studied extensively using Pavlovian conditioning. In this paradigm, an initially neutral-conditioned stimulus is paired with an aversive unconditioned stimulus leading the subjects to display behavioural signs of fear. Decades of research into the neural bases of this simple behavioural paradigm uncovered that the amygdala, a complex structure comprised of several interconnected nuclei, is an essential part of the neural circuits required for the acquisition, consolidation and expression of fear memory. However, emerging evidence from the confluence of electrophysiological, tract tracing, imaging, molecular, optogenetic and chemogenetic methodologies, reveals that fear learning is mediated by multiple connections between several amygdala nuclei and their distributed targets, dynamical changes in plasticity in local circuit elements as well as neuromodulatory mechanisms that promote synaptic plasticity. To uncover these complex relations and analyse multi-modal data sets acquired from these studies, we argue that biologically realistic computational modelling, in conjunction with experiments, offers an opportunity to advance our understanding of the neural circuit mechanisms of fear learning and to address how their dysfunction may lead to maladaptive fear responses in mental disorders.

  2. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures

    Science.gov (United States)

    Zhang, Feng; Gradinaru, Viviana; Adamantidis, Antoine R; Durand, Remy; Airan, Raag D; de Lecea, Luis; Deisseroth, Karl

    2015-01-01

    Elucidation of the neural substrates underlying complex animal behaviors depends on precise activity control tools, as well as compatible readout methods. Recent developments in optogenetics have addressed this need, opening up new possibilities for systems neuroscience. Interrogation of even deep neural circuits can be conducted by directly probing the necessity and sufficiency of defined circuit elements with millisecond-scale, cell type-specific optical perturbations, coupled with suitable readouts such as electrophysiology, optical circuit dynamics measures and freely moving behavior in mammals. Here we collect in detail our strategies for delivering microbial opsin genes to deep mammalian brain structures in vivo, along with protocols for integrating the resulting optical control with compatible readouts (electrophysiological, optical and behavioral). The procedures described here, from initial virus preparation to systems-level functional readout, can be completed within 4–5 weeks. Together, these methods may help in providing circuit-level insight into the dynamics underlying complex mammalian behaviors in health and disease. PMID:20203662

  3. Circuit Models and Experimental Noise Measurements of Micropipette Amplifiers for Extracellular Neural Recordings from Live Animals

    Directory of Open Access Journals (Sweden)

    Chang Hao Chen

    2014-01-01

    Full Text Available Glass micropipettes are widely used to record neural activity from single neurons or clusters of neurons extracellularly in live animals. However, to date, there has been no comprehensive study of noise in extracellular recordings with glass micropipettes. The purpose of this work was to assess various noise sources that affect extracellular recordings and to create model systems in which novel micropipette neural amplifier designs can be tested. An equivalent circuit of the glass micropipette and the noise model of this circuit, which accurately describe the various noise sources involved in extracellular recordings, have been developed. Measurement schemes using dead brain tissue as well as extracellular recordings from neurons in the inferior colliculus, an auditory brain nucleus of an anesthetized gerbil, were used to characterize noise performance and amplification efficacy of the proposed micropipette neural amplifier. According to our model, the major noise sources which influence the signal to noise ratio are the intrinsic noise of the neural amplifier and the thermal noise from distributed pipette resistance. These two types of noise were calculated and measured and were shown to be the dominating sources of background noise for in vivo experiments.

  4. Changed Synaptic Plasticity in Neural Circuits of Depressive-Like and Escitalopram-Treated Rats

    Science.gov (United States)

    Li, Xiao-Li; Yuan, Yong-Gui; Xu, Hua; Wu, Di; Gong, Wei-Gang; Geng, Lei-Yu; Wu, Fang-Fang; Tang, Hao; Xu, Lin

    2015-01-01

    Background: Although progress has been made in the detection and characterization of neural plasticity in depression, it has not been fully understood in individual synaptic changes in the neural circuits under chronic stress and antidepressant treatment. Methods: Using electron microscopy and Western-blot analyses, the present study quantitatively examined the changes in the Gray’s Type I synaptic ultrastructures and the expression of synapse-associated proteins in the key brain regions of rats’ depressive-related neural circuit after chronic unpredicted mild stress and/or escitalopram administration. Meanwhile, their depressive behaviors were also determined by several tests. Results: The Type I synapses underwent considerable remodeling after chronic unpredicted mild stress, which resulted in the changed width of the synaptic cleft, length of the active zone, postsynaptic density thickness, and/or synaptic curvature in the subregions of medial prefrontal cortex and hippocampus, as well as the basolateral amygdaloid nucleus of the amygdala, accompanied by changed expression of several synapse-associated proteins. Chronic escitalopram administration significantly changed the above alternations in the chronic unpredicted mild stress rats but had little effect on normal controls. Also, there was a positive correlation between the locomotor activity and the maximal synaptic postsynaptic density thickness in the stratum radiatum of the Cornu Ammonis 1 region and a negative correlation between the sucrose preference and the length of the active zone in the basolateral amygdaloid nucleus region in chronic unpredicted mild stress rats. Conclusion: These findings strongly indicate that chronic stress and escitalopram can alter synaptic plasticity in the neural circuits, and the remodeled synaptic ultrastructure was correlated with the rats’ depressive behaviors, suggesting a therapeutic target for further exploration. PMID:25899067

  5. Alteration in neonatal nutrition causes perturbations in hypothalamic neural circuits controlling reproductive function.

    Science.gov (United States)

    Caron, Emilie; Ciofi, Philippe; Prevot, Vincent; Bouret, Sebastien G

    2012-08-15

    It is increasingly accepted that alterations of the early life environment may have lasting impacts on physiological functions. In particular, epidemiological and animal studies have indicated that changes in growth and nutrition during childhood and adolescence can impair reproductive function. However, the precise biological mechanisms that underlie these programming effects of neonatal nutrition on reproduction are still poorly understood. Here, we used a mouse model of divergent litter size to investigate the effects of early postnatal overnutrition and undernutrition on the maturation of hypothalamic circuits involved in reproductive function. Neonatally undernourished females display attenuated postnatal growth associated with delayed puberty and defective development of axonal projections from the arcuate nucleus to the preoptic region. These alterations persist into adulthood and specifically affect the organization of neural projections containing kisspeptin, a key neuropeptide involved in pubertal activation and fertility. Neonatal overfeeding also perturbs the development of neural projections from the arcuate nucleus to the preoptic region, but it does not result in alterations in kisspeptin projections. These studies indicate that alterations in the early nutritional environment cause lasting and deleterious effects on the organization of neural circuits involved in the control of reproduction, and that these changes are associated with lifelong functional perturbations.

  6. Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo.

    Science.gov (United States)

    Zhang, Jing; Liu, Xiaojun; Xu, Wenjing; Luo, Wenhan; Li, Ming; Chu, Fangbing; Xu, Lu; Cao, Anyuan; Guan, Jisong; Tang, Shiming; Duan, Xiaojie

    2018-04-09

    Recent developments of transparent electrode arrays provide a unique capability for simultaneous optical and electrical interrogation of neural circuits in the brain. However, none of these electrode arrays possess the stretchability highly desired for interfacing with mechanically active neural systems, such as the brain under injury, the spinal cord, and the peripheral nervous system (PNS). Here, we report a stretchable transparent electrode array from carbon nanotube (CNT) web-like thin films that retains excellent electrochemical performance and broad-band optical transparency under stretching and is highly durable under cyclic stretching deformation. We show that the CNT electrodes record well-defined neuronal response signals with negligible light-induced artifacts from cortical surfaces under optogenetic stimulation. Simultaneous two-photon calcium imaging through the transparent CNT electrodes from cortical surfaces of GCaMP-expressing mice with epilepsy shows individual activated neurons in brain regions from which the concurrent electrical recording is taken, thus providing complementary cellular information in addition to the high-temporal-resolution electrical recording. Notably, the studies on rats show that the CNT electrodes remain operational during and after brain contusion that involves the rapid deformation of both the electrode array and brain tissue. This enables real-time, continuous electrophysiological monitoring of cortical activity under traumatic brain injury. These results highlight the potential application of the stretchable transparent CNT electrode arrays in combining electrical and optical modalities to study neural circuits, especially under mechanically active conditions, which could potentially provide important new insights into the local circuit dynamics of the spinal cord and PNS as well as the mechanism underlying traumatic injuries of the nervous system.

  7. The role of zebrafish (Danio rerio in dissecting the genetics and neural circuits of executive function

    Directory of Open Access Journals (Sweden)

    Matthew O Parker

    2013-04-01

    Full Text Available Zebrafish have great potential to contribute to our understanding of behavioural genetics and thus to contribute to our understanding of the aetiology of psychiatric disease. However, progress is dependent upon the rate at which behavioural assays addressing complex behavioural phenotypes are designed, reported and validated. Here we critically review existing behavioural assays with particular focus on the use of adult zebrafish to explore executive processes and phenotypes associated with human psychiatric disease. We outline the case for using zebrafish as models to study impulse control and attention, discussing the validity of applying extant rodent assays to zebrafish and evidence for the conservation of relevant neural circuits.

  8. The road to restoring neural circuits for the treatment of Alzheimer's disease.

    Science.gov (United States)

    Canter, Rebecca G; Penney, Jay; Tsai, Li-Huei

    2016-11-10

    Alzheimer's disease is a progressive loss of memory and cognition, for which there is no cure. Although genetic studies initially suggested a primary role for amyloid-in Alzheimer's disease, treatment strategies targeted at reducing amyloid-have failed to reverse cognitive symptoms. These clinical findings suggest that cognitive decline is the result of a complex pathophysiology and that targeting amyloid-alone may not be sufficient to treat Alzheimer's disease. Instead, a broad outlook on neural-circuit-damaging processes may yield insights into new therapeutic strategies for curing memory loss in the disease.

  9. Neural dynamics of the cognitive map in the hippocampus.

    Science.gov (United States)

    Wagatsuma, Hiroaki; Yamaguchi, Yoko

    2007-06-01

    The rodent hippocampus has been thought to represent the spatial environment as a cognitive map. In the classical theory, the cognitive map has been explained as a consequence of the fact that different spatial regions are assigned to different cell populations in the framework of rate coding. Recently, the relation between place cell firing and local field oscillation theta in terms of theta phase precession was experimentally discovered and suggested as a temporal coding mechanism leading to memory formation of behavioral sequences accompanied with asymmetric Hebbian plasticity. The cognitive map theory is apparently outside of the sequence memory view. Therefore, theoretical analysis is necessary to consider the biological neural dynamics for the sequence encoding of the memory of behavioral sequences, providing the cognitive map formation. In this article, we summarize the theoretical neural dynamics of the real-time sequence encoding by theta phase precession, called theta phase coding, and review a series of theoretical models with the theta phase coding that we previously reported. With respect to memory encoding functions, instantaneous memory formation of one-time experience was first demonstrated, and then the ability of integration of memories of behavioral sequences into a network of the cognitive map was shown. In terms of memory retrieval functions, theta phase coding enables the hippocampus to represent the spatial location in the current behavioral context even with ambiguous sensory input when multiple sequences were coded. Finally, for utilization, retrieved temporal sequences in the hippocampus can be available for action selection, through the process of reverting theta rhythm-dependent activities to information in the behavioral time scale. This theoretical approach allows us to investigate how the behavioral sequences are encoded, updated, retrieved and used in the hippocampus, as the real-time interaction with the external environment. It may

  10. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates

    Science.gov (United States)

    Borton, David A.; Yin, Ming; Aceros, Juan; Nurmikko, Arto

    2013-04-01

    Objective. Neural interface technology suitable for clinical translation has the potential to significantly impact the lives of amputees, spinal cord injury victims and those living with severe neuromotor disease. Such systems must be chronically safe, durable and effective. Approach. We have designed and implemented a neural interface microsystem, housed in a compact, subcutaneous and hermetically sealed titanium enclosure. The implanted device interfaces the brain with a 510k-approved, 100-element silicon-based microelectrode array via a custom hermetic feedthrough design. Full spectrum neural signals were amplified (0.1 Hz to 7.8 kHz, 200× gain) and multiplexed by a custom application specific integrated circuit, digitized and then packaged for transmission. The neural data (24 Mbps) were transmitted by a wireless data link carried on a frequency-shift-key-modulated signal at 3.2 and 3.8 GHz to a receiver 1 m away by design as a point-to-point communication link for human clinical use. The system was powered by an embedded medical grade rechargeable Li-ion battery for 7 h continuous operation between recharge via an inductive transcutaneous wireless power link at 2 MHz. Main results. Device verification and early validation were performed in both swine and non-human primate freely-moving animal models and showed that the wireless implant was electrically stable, effective in capturing and delivering broadband neural data, and safe for over one year of testing. In addition, we have used the multichannel data from these mobile animal models to demonstrate the ability to decode neural population dynamics associated with motor activity. Significance. We have developed an implanted wireless broadband neural recording device evaluated in non-human primate and swine. The use of this new implantable neural interface technology can provide insight into how to advance human neuroprostheses beyond the present early clinical trials. Further, such tools enable mobile

  11. Design of chaotic analog noise generators with logistic map and MOS QT circuits

    International Nuclear Information System (INIS)

    Vazquez-Medina, R.; Diaz-Mendez, A.; Rio-Correa, J.L. del; Lopez-Hernandez, J.

    2009-01-01

    In this paper a method to design chaotic analog noise generators using MOS transistors is presented. Two aspects are considered, the determination of operation regime of the MOS circuit and the statistical distribution of its output signal. The operation regime is related with the transconductance linear (TL: translinear) principle. For MOS transistors this principle was originally formulated in weak inversion regime; but, strong inversion regimen is used because in 1991, Seevinck and Wiegerink made the generalization for this principle. The statistical distribution of the output signal on the circuit, which should be a uniform distribution, is related with the parameter value that rules the transfer function of the circuit, the initial condition (seed) in the circuit and its operation as chaotic generator. To show these concepts, the MOS Quadratic Translinear circuit proposed by Wiegerink in 1993 was selected and it is related with the logistic map and its properties. This circuit will operate as noise generator if it works in strong inversion regime using current-mode approach when the parameter that rules the transfer function is higher than the onset chaos value (3.5699456...) for the logistic map.

  12. The neural circuits of innate fear: detection, integration, action, and memorization

    Science.gov (United States)

    Silva, Bianca A.; Gross, Cornelius T.

    2016-01-01

    How fear is represented in the brain has generated a lot of research attention, not only because fear increases the chances for survival when appropriately expressed but also because it can lead to anxiety and stress-related disorders when inadequately processed. In this review, we summarize recent progress in the understanding of the neural circuits processing innate fear in rodents. We propose that these circuits are contained within three main functional units in the brain: a detection unit, responsible for gathering sensory information signaling the presence of a threat; an integration unit, responsible for incorporating the various sensory information and recruiting downstream effectors; and an output unit, in charge of initiating appropriate bodily and behavioral responses to the threatful stimulus. In parallel, the experience of innate fear also instructs a learning process leading to the memorization of the fearful event. Interestingly, while the detection, integration, and output units processing acute fear responses to different threats tend to be harbored in distinct brain circuits, memory encoding of these threats seems to rely on a shared learning system. PMID:27634145

  13. Distributed neural system for emotional intelligence revealed by lesion mapping.

    Science.gov (United States)

    Barbey, Aron K; Colom, Roberto; Grafman, Jordan

    2014-03-01

    Cognitive neuroscience has made considerable progress in understanding the neural architecture of human intelligence, identifying a broadly distributed network of frontal and parietal regions that support goal-directed, intelligent behavior. However, the contributions of this network to social and emotional aspects of intellectual function remain to be well characterized. Here we investigated the neural basis of emotional intelligence in 152 patients with focal brain injuries using voxel-based lesion-symptom mapping. Latent variable modeling was applied to obtain measures of emotional intelligence, general intelligence and personality from the Mayer, Salovey, Caruso Emotional Intelligence Test (MSCEIT), the Wechsler Adult Intelligence Scale and the Neuroticism-Extroversion-Openness Inventory, respectively. Regression analyses revealed that latent scores for measures of general intelligence and personality reliably predicted latent scores for emotional intelligence. Lesion mapping results further indicated that these convergent processes depend on a shared network of frontal, temporal and parietal brain regions. The results support an integrative framework for understanding the architecture of executive, social and emotional processes and make specific recommendations for the interpretation and application of the MSCEIT to the study of emotional intelligence in health and disease.

  14. Deep Neural Architectures for Mapping Scalp to Intracranial EEG.

    Science.gov (United States)

    Antoniades, Andreas; Spyrou, Loukianos; Martin-Lopez, David; Valentin, Antonio; Alarcon, Gonzalo; Sanei, Saeid; Took, Clive Cheong

    2018-03-19

    Data is often plagued by noise which encumbers machine learning of clinically useful biomarkers and electroencephalogram (EEG) data is no exemption. Intracranial EEG (iEEG) data enhances the training of deep learning models of the human brain, yet is often prohibitive due to the invasive recording process. A more convenient alternative is to record brain activity using scalp electrodes. However, the inherent noise associated with scalp EEG data often impedes the learning process of neural models, achieving substandard performance. Here, an ensemble deep learning architecture for nonlinearly mapping scalp to iEEG data is proposed. The proposed architecture exploits the information from a limited number of joint scalp-intracranial recording to establish a novel methodology for detecting the epileptic discharges from the sEEG of a general population of subjects. Statistical tests and qualitative analysis have revealed that the generated pseudo-intracranial data are highly correlated with the true intracranial data. This facilitated the detection of IEDs from the scalp recordings where such waveforms are not often visible. As a real-world clinical application, these pseudo-iEEGs are then used by a convolutional neural network for the automated classification of intracranial epileptic discharges (IEDs) and non-IED of trials in the context of epilepsy analysis. Although the aim of this work was to circumvent the unavailability of iEEG and the limitations of sEEG, we have achieved a classification accuracy of 68% an increase of 6% over the previously proposed linear regression mapping.

  15. Distributed neural system for emotional intelligence revealed by lesion mapping

    Science.gov (United States)

    Colom, Roberto; Grafman, Jordan

    2014-01-01

    Cognitive neuroscience has made considerable progress in understanding the neural architecture of human intelligence, identifying a broadly distributed network of frontal and parietal regions that support goal-directed, intelligent behavior. However, the contributions of this network to social and emotional aspects of intellectual function remain to be well characterized. Here we investigated the neural basis of emotional intelligence in 152 patients with focal brain injuries using voxel-based lesion-symptom mapping. Latent variable modeling was applied to obtain measures of emotional intelligence, general intelligence and personality from the Mayer, Salovey, Caruso Emotional Intelligence Test (MSCEIT), the Wechsler Adult Intelligence Scale and the Neuroticism-Extroversion-Openness Inventory, respectively. Regression analyses revealed that latent scores for measures of general intelligence and personality reliably predicted latent scores for emotional intelligence. Lesion mapping results further indicated that these convergent processes depend on a shared network of frontal, temporal and parietal brain regions. The results support an integrative framework for understanding the architecture of executive, social and emotional processes and make specific recommendations for the interpretation and application of the MSCEIT to the study of emotional intelligence in health and disease. PMID:23171618

  16. Real-time emulation of neural images in the outer retinal circuit.

    Science.gov (United States)

    Hasegawa, Jun; Yagi, Tetsuya

    2008-12-01

    We describe a novel real-time system that emulates the architecture and functionality of the vertebrate retina. This system reconstructs the neural images formed by the retinal neurons in real time by using a combination of analog and digital systems consisting of a neuromorphic silicon retina chip, a field-programmable gate array, and a digital computer. While the silicon retina carries out the spatial filtering of input images instantaneously, using the embedded resistive networks that emulate the receptive field structure of the outer retinal neurons, the digital computer carries out the temporal filtering of the spatially filtered images to emulate the dynamical properties of the outer retinal circuits. The emulations of the neural image, including 128 x 128 bipolar cells, are carried out at a frame rate of 62.5 Hz. The emulation of the response to the Hermann grid and a spot of light and an annulus of lights has demonstrated that the system responds as expected by previous physiological and psychophysical observations. Furthermore, the emulated dynamics of neural images in response to natural scenes revealed the complex nature of retinal neuron activity. We have concluded that the system reflects the spatiotemporal responses of bipolar cells in the vertebrate retina. The proposed emulation system is expected to aid in understanding the visual computation in the retina and the brain.

  17. Why we can talk, debate, and change our minds: neural circuits, basal ganglia operations, and transcriptional factors.

    Science.gov (United States)

    Lieberman, Philip

    2014-12-01

    Ackermann et al. disregard attested knowledge concerning aphasia, Parkinson disease, cortical-to-striatal circuits, basal ganglia, laryngeal phonation, and other matters. Their dual-pathway model cannot account for "what is special about the human brain." Their human cortical-to-laryngeal neural circuit does not exist. Basal ganglia operations, enhanced by mutations on FOXP2, confer human motor-control, linguistic, and cognitive capabilities.

  18. A computational framework for ultrastructural mapping of neural circuitry.

    Directory of Open Access Journals (Sweden)

    James R Anderson

    2009-03-01

    Full Text Available Circuitry mapping of metazoan neural systems is difficult because canonical neural regions (regions containing one or more copies of all components are large, regional borders are uncertain, neuronal diversity is high, and potential network topologies so numerous that only anatomical ground truth can resolve them. Complete mapping of a specific network requires synaptic resolution, canonical region coverage, and robust neuronal classification. Though transmission electron microscopy (TEM remains the optimal tool for network mapping, the process of building large serial section TEM (ssTEM image volumes is rendered difficult by the need to precisely mosaic distorted image tiles and register distorted mosaics. Moreover, most molecular neuronal class markers are poorly compatible with optimal TEM imaging. Our objective was to build a complete framework for ultrastructural circuitry mapping. This framework combines strong TEM-compliant small molecule profiling with automated image tile mosaicking, automated slice-to-slice image registration, and gigabyte-scale image browsing for volume annotation. Specifically we show how ultrathin molecular profiling datasets and their resultant classification maps can be embedded into ssTEM datasets and how scripted acquisition tools (SerialEM, mosaicking and registration (ir-tools, and large slice viewers (MosaicBuilder, Viking can be used to manage terabyte-scale volumes. These methods enable large-scale connectivity analyses of new and legacy data. In well-posed tasks (e.g., complete network mapping in retina, terabyte-scale image volumes that previously would require decades of assembly can now be completed in months. Perhaps more importantly, the fusion of molecular profiling, image acquisition by SerialEM, ir-tools volume assembly, and data viewers/annotators also allow ssTEM to be used as a prospective tool for discovery in nonneural systems and a practical screening methodology for neurogenetics. Finally

  19. Spiking Neural Networks with Unsupervised Learning Based on STDP Using Resistive Synaptic Devices and Analog CMOS Neuron Circuit.

    Science.gov (United States)

    Kwon, Min-Woo; Baek, Myung-Hyun; Hwang, Sungmin; Kim, Sungjun; Park, Byung-Gook

    2018-09-01

    We designed the CMOS analog integrate and fire (I&F) neuron circuit can drive resistive synaptic device. The neuron circuit consists of a current mirror for spatial integration, a capacitor for temporal integration, asymmetric negative and positive pulse generation part, a refractory part, and finally a back-propagation pulse generation part for learning of the synaptic devices. The resistive synaptic devices were fabricated using HfOx switching layer by atomic layer deposition (ALD). The resistive synaptic device had gradual set and reset characteristics and the conductance was adjusted by spike-timing-dependent-plasticity (STDP) learning rule. We carried out circuit simulation of synaptic device and CMOS neuron circuit. And we have developed an unsupervised spiking neural networks (SNNs) for 5 × 5 pattern recognition and classification using the neuron circuit and synaptic devices. The hardware-based SNNs can autonomously and efficiently control the weight updates of the synapses between neurons, without the aid of software calculations.

  20. Ontology Mapping Neural Network: An Approach to Learning and Inferring Correspondences among Ontologies

    Science.gov (United States)

    Peng, Yefei

    2010-01-01

    An ontology mapping neural network (OMNN) is proposed in order to learn and infer correspondences among ontologies. It extends the Identical Elements Neural Network (IENN)'s ability to represent and map complex relationships. The learning dynamics of simultaneous (interlaced) training of similar tasks interact at the shared connections of the…

  1. Cross-talk between the epigenome and neural circuits in drug addiction.

    Science.gov (United States)

    Mews, Philipp; Calipari, Erin S

    2017-01-01

    Drug addiction is a behavioral disorder characterized by dysregulated learning about drugs and associated cues that result in compulsive drug seeking and relapse. Learning about drug rewards and predictive cues is a complex process controlled by a computational network of neural connections interacting with transcriptional and molecular mechanisms within each cell to precisely guide behavior. The interplay between rapid, temporally specific neuronal activation, and longer-term changes in transcription is of critical importance in the expression of appropriate, or in the case of drug addiction, inappropriate behaviors. Thus, these factors and their interactions must be considered together, especially in the context of treatment. Understanding the complex interplay between epigenetic gene regulation and circuit connectivity will allow us to formulate novel therapies to normalize maladaptive reward behaviors, with a goal of modulating addictive behaviors, while leaving natural reward-associated behavior unaffected. © 2017 Elsevier B.V. All rights reserved.

  2. Shaping vulnerability to addiction - the contribution of behavior, neural circuits and molecular mechanisms.

    Science.gov (United States)

    Egervari, Gabor; Ciccocioppo, Roberto; Jentsch, J David; Hurd, Yasmin L

    2018-02-01

    Substance use disorders continue to impose increasing medical, financial and emotional burdens on society in the form of morbidity and overdose, family disintegration, loss of employment and crime, while advances in prevention and treatment options remain limited. Importantly, not all individuals exposed to abused substances effectively develop the disease. Genetic factors play a significant role in determining addiction vulnerability and interactions between innate predisposition, environmental factors and personal experiences are also critical. Thus, understanding individual differences that contribute to the initiation of substance use as well as on long-term maladaptations driving compulsive drug use and relapse propensity is of critical importance to reduce this devastating disorder. In this paper, we discuss current topics in the field of addiction regarding individual vulnerability related to behavioral endophenotypes, neural circuits, as well as genetics and epigenetic mechanisms. Expanded knowledge of these factors is of importance to improve and personalize prevention and treatment interventions in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Bridging the Gap: Towards a Cell-Type Specific Understanding of Neural Circuits Underlying Fear Behaviors

    Science.gov (United States)

    McCullough, KM; Morrison, FG; Ressler, KJ

    2016-01-01

    Fear and anxiety-related disorders are remarkably common and debilitating, and are often characterized by dysregulated fear responses. Rodent models of fear learning and memory have taken great strides towards elucidating the specific neuronal circuitries underlying the learning of fear responses. The present review addresses recent research utilizing optogenetic approaches to parse circuitries underlying fear behaviors. It also highlights the powerful advances made when optogenetic techniques are utilized in a genetically defined, cell-type specific, manner. The application of next-generation genetic and sequencing approaches in a cell-type specific context will be essential for a mechanistic understanding of the neural circuitry underlying fear behavior and for the rational design of targeted, circuit specific, pharmacologic interventions for the treatment and prevention of fear-related disorders. PMID:27470092

  4. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit.

    Science.gov (United States)

    Li, Zhuang; Yi, Chun-Xia; Katiraei, Saeed; Kooijman, Sander; Zhou, Enchen; Chung, Chih Kit; Gao, Yuanqing; van den Heuvel, José K; Meijer, Onno C; Berbée, Jimmy F P; Heijink, Marieke; Giera, Martin; Willems van Dijk, Ko; Groen, Albert K; Rensen, Patrick C N; Wang, Yanan

    2017-11-03

    Butyrate exerts metabolic benefits in mice and humans, the underlying mechanisms being still unclear. We aimed to investigate the effect of butyrate on appetite and energy expenditure, and to what extent these two components contribute to the beneficial metabolic effects of butyrate. Acute effects of butyrate on appetite and its method of action were investigated in mice following an intragastric gavage or intravenous injection of butyrate. To study the contribution of satiety to the metabolic benefits of butyrate, mice were fed a high-fat diet with butyrate, and an additional pair-fed group was included. Mechanistic involvement of the gut-brain neural circuit was investigated in vagotomised mice. Acute oral, but not intravenous, butyrate administration decreased food intake, suppressed the activity of orexigenic neurons that express neuropeptide Y in the hypothalamus, and decreased neuronal activity within the nucleus tractus solitarius and dorsal vagal complex in the brainstem. Chronic butyrate supplementation prevented diet-induced obesity, hyperinsulinaemia, hypertriglyceridaemia and hepatic steatosis, largely attributed to a reduction in food intake. Butyrate also modestly promoted fat oxidation and activated brown adipose tissue (BAT), evident from increased utilisation of plasma triglyceride-derived fatty acids. This effect was not due to the reduced food intake, but explained by an increased sympathetic outflow to BAT. Subdiaphragmatic vagotomy abolished the effects of butyrate on food intake as well as the stimulation of metabolic activity in BAT. Butyrate acts on the gut-brain neural circuit to improve energy metabolism via reducing energy intake and enhancing fat oxidation by activating BAT. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. An Integrated Circuit for Simultaneous Extracellular Electrophysiology Recording and Optogenetic Neural Manipulation.

    Science.gov (United States)

    Chen, Chang Hao; McCullagh, Elizabeth A; Pun, Sio Hang; Mak, Peng Un; Vai, Mang I; Mak, Pui In; Klug, Achim; Lei, Tim C

    2017-03-01

    The ability to record and to control action potential firing in neuronal circuits is critical to understand how the brain functions. The objective of this study is to develop a monolithic integrated circuit (IC) to record action potentials and simultaneously control action potential firing using optogenetics. A low-noise and high input impedance (or low input capacitance) neural recording amplifier is combined with a high current laser/light-emitting diode (LED) driver in a single IC. The low input capacitance of the amplifier (9.7 pF) was achieved by adding a dedicated unity gain stage optimized for high impedance metal electrodes. The input referred noise of the amplifier is [Formula: see text], which is lower than the estimated thermal noise of the metal electrode. Thus, the action potentials originating from a single neuron can be recorded with a signal-to-noise ratio of at least 6.6. The LED/laser current driver delivers a maximum current of 330 mA, which is adequate for optogenetic control. The functionality of the IC was tested with an anesthetized Mongolian gerbil and auditory stimulated action potentials were recorded from the inferior colliculus. Spontaneous firings of fifth (trigeminal) nerve fibers were also inhibited using the optogenetic protein Halorhodopsin. Moreover, a noise model of the system was derived to guide the design. A single IC to measure and control action potentials using optogenetic proteins is realized so that more complicated behavioral neuroscience research and the translational neural disorder treatments become possible in the future.

  6. Recurrent Neural Networks to Correct Satellite Image Classification Maps

    Science.gov (United States)

    Maggiori, Emmanuel; Charpiat, Guillaume; Tarabalka, Yuliya; Alliez, Pierre

    2017-09-01

    While initially devised for image categorization, convolutional neural networks (CNNs) are being increasingly used for the pixelwise semantic labeling of images. However, the proper nature of the most common CNN architectures makes them good at recognizing but poor at localizing objects precisely. This problem is magnified in the context of aerial and satellite image labeling, where a spatially fine object outlining is of paramount importance. Different iterative enhancement algorithms have been presented in the literature to progressively improve the coarse CNN outputs, seeking to sharpen object boundaries around real image edges. However, one must carefully design, choose and tune such algorithms. Instead, our goal is to directly learn the iterative process itself. For this, we formulate a generic iterative enhancement process inspired from partial differential equations, and observe that it can be expressed as a recurrent neural network (RNN). Consequently, we train such a network from manually labeled data for our enhancement task. In a series of experiments we show that our RNN effectively learns an iterative process that significantly improves the quality of satellite image classification maps.

  7. Estimating neural background input with controlled and fast perturbations: A bandwidth comparison between inhibitory opsins and neural circuits

    Directory of Open Access Journals (Sweden)

    David Eriksson

    2016-08-01

    Full Text Available To test the importance of a certain cell type or brain area it is common to make a lack of function experiment in which the neuronal population of interest is inhibited. Here we review physiological and methodological constraints for making controlled perturbations using the corticothalamic circuit as an example. The brain with its many types of cells and rich interconnectivity offers many paths through which a perturbation can spread within a short time. To understand the side effects of the perturbation one should record from those paths. We find that ephaptic effects, gap-junctions, and fast chemical synapses are so fast that they can react to the perturbation during the few milliseconds it takes for an opsin to change the membrane potential. The slow chemical synapses, astrocytes, extracellular ions and vascular signals, will continue to give their physiological input for around 20 milliseconds before they also react to the perturbation. Although we show that some pathways can react within milliseconds the strength/speed reported in this review should be seen as an upper bound since we have omitted how polysynaptic signals are attenuated. Thus the number of additional recordings that has to be made to control for the perturbation side effects is expected to be fewer than proposed here. To summarize, the reviewed literature not only suggests that it is possible to make controlled lack of function experiments, but, it also suggests that such a lack of function experiment can be used to measure the context of local neural computations.

  8. The Pleiotropic MET Receptor Network: Circuit Development and the Neural-Medical Interface of Autism.

    Science.gov (United States)

    Eagleson, Kathie L; Xie, Zhihui; Levitt, Pat

    2017-03-01

    People with autism spectrum disorder and other neurodevelopmental disorders (NDDs) are behaviorally and medically heterogeneous. The combination of polygenicity and gene pleiotropy-the influence of one gene on distinct phenotypes-raises questions of how specific genes and their protein products interact to contribute to NDDs. A preponderance of evidence supports developmental and pathophysiological roles for the MET receptor tyrosine kinase, a multifunctional receptor that mediates distinct biological responses depending upon cell context. MET influences neuron architecture and synapse maturation in the forebrain and regulates homeostasis in gastrointestinal and immune systems, both commonly disrupted in NDDs. Peak expression of synapse-enriched MET is conserved across rodent and primate forebrain, yet regional differences in primate neocortex are pronounced, with enrichment in circuits that participate in social information processing. A functional risk allele in the MET promoter, enriched in subgroups of children with autism spectrum disorder, reduces transcription and disrupts socially relevant neural circuits structurally and functionally. In mice, circuit-specific deletion of Met causes distinct atypical behaviors. MET activation increases dendritic complexity and nascent synapse number, but synapse maturation requires reductions in MET. MET mediates its specific biological effects through different intracellular signaling pathways and has a complex protein interactome that is enriched in autism spectrum disorder and other NDD candidates. The interactome is coregulated in developing human neocortex. We suggest that a gene as pleiotropic and highly regulated as MET, together with its interactome, is biologically relevant in normal and pathophysiological contexts, affecting central and peripheral phenotypes that contribute to NDD risk and clinical symptoms. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  9. Evolutionary mechanisms that generate morphology and neural-circuit diversity of the cerebellum.

    Science.gov (United States)

    Hibi, Masahiko; Matsuda, Koji; Takeuchi, Miki; Shimizu, Takashi; Murakami, Yasunori

    2017-05-01

    The cerebellum is derived from the dorsal part of the anterior-most hindbrain. The vertebrate cerebellum contains glutamatergic granule cells (GCs) and gamma-aminobutyric acid (GABA)ergic Purkinje cells (PCs). These cerebellar neurons are generated from neuronal progenitors or neural stem cells by mechanisms that are conserved among vertebrates. However, vertebrate cerebella are widely diverse with respect to their gross morphology and neural circuits. The cerebellum of cyclostomes, the basal vertebrates, has a negligible structure. Cartilaginous fishes have a cerebellum containing GCs, PCs, and deep cerebellar nuclei (DCNs), which include projection neurons. Ray-finned fish lack DCNs but have projection neurons termed eurydendroid cells (ECs) in the vicinity of the PCs. Among ray-finned fishes, the cerebellum of teleost zebrafish has a simple lobular structure, whereas that of weakly electric mormyrid fish is large and foliated. Amniotes, which include mammals, independently evolved a large, foliated cerebellum, which contains massive numbers of GCs and has functional connections with the dorsal telencephalon (neocortex). Recent studies of cyclostomes and cartilaginous fish suggest that the genetic program for cerebellum development was already encoded in the genome of ancestral vertebrates. In this review, we discuss how alterations of the genetic and cellular programs generated diversity of the cerebellum during evolution. © 2017 Japanese Society of Developmental Biologists.

  10. Information processing in micro and meso-scale neural circuits during normal and disease states

    Science.gov (United States)

    Luongo, Francisco

    Neural computation can occur at multiple spatial and temporal timescales. The sum total of all of these processes is to guide optimal behaviors within the context of the constraints imposed by the physical world. How the circuits of the brain achieves this goal represents a central question in systems neuroscience. Here I explore the many ways in which the circuits of the brain can process information at both the micro and meso scale. Understanding the way information is represented and processed in the brain could shed light on the neuropathology underlying complex neuropsychiatric diseases such as autism and schizophrenia. Chapter 2 establishes an experimental paradigm for assaying patterns of microcircuit activity and examines the role of dopaminergic modulation on prefrontal microcircuits. We find that dopamine type 2 (D2) receptor activation results in an increase in spontaneous activity while dopamine type 1 (D1) activation does not. Chapter 3 of this dissertation presents a study that illustrates how cholingergic activation normally produces what has been suggested as a neural substrate of attention; pairwise decorrelation in microcircuit activity. This study also shows that in two etiologicall distinct mouse models of autism, FMR1 knockout mice and Valproic Acid exposed mice, this ability to decorrelate in the presence of cholinergic activation is lost. This represents a putative microcircuit level biomarker of autism. Chapter 4 examines the structure/function relationship within the prefrontal microcircuit. Spontaneous activity in prefrontal microcircuits is shown to be organized according to a small world architecture. Interestingly, this architecture is important for one concrete function of neuronal microcircuits; the ability to produce temporally stereotyped patterns of activation. In the final chapter, we identify subnetworks in chronic intracranial electrocorticographic (ECoG) recordings using pairwise electrode coherence and dimensionality reduction

  11. Using a Conflict Map as an Instructional Tool To Change Student Conceptions in Simple Series Electric-Circuits.

    Science.gov (United States)

    Tsai, Chin-Chung

    2003-01-01

    Examines the effects of using a conflict map on 8th grade students' conceptual change and ideational networks about simple series electric circuits. Analyzes student interview data through a flow map method. Shows that the use of conflict maps could help students construct greater, richer, and more integrated ideational networks about electric…

  12. Differential regulation of polarized synaptic vesicle trafficking and synapse stability in neural circuit rewiring in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Naina Kurup

    2017-06-01

    Full Text Available Neural circuits are dynamic, with activity-dependent changes in synapse density and connectivity peaking during different phases of animal development. In C. elegans, young larvae form mature motor circuits through a dramatic switch in GABAergic neuron connectivity, by concomitant elimination of existing synapses and formation of new synapses that are maintained throughout adulthood. We have previously shown that an increase in microtubule dynamics during motor circuit rewiring facilitates new synapse formation. Here, we further investigate cellular control of circuit rewiring through the analysis of mutants obtained in a forward genetic screen. Using live imaging, we characterize novel mutations that alter cargo binding in the dynein motor complex and enhance anterograde synaptic vesicle movement during remodeling, providing in vivo evidence for the tug-of-war between kinesin and dynein in fast axonal transport. We also find that a casein kinase homolog, TTBK-3, inhibits stabilization of nascent synapses in their new locations, a previously unexplored facet of structural plasticity of synapses. Our study delineates temporally distinct signaling pathways that are required for effective neural circuit refinement.

  13. Navigating Monogamy: Nonapeptide Sensitivity in a Memory Neural Circuit May Shape Social Behavior and Mating Decisions

    Directory of Open Access Journals (Sweden)

    Alexander G. Ophir

    2017-07-01

    Full Text Available The role of memory in mating systems is often neglected despite the fact that most mating systems are defined in part by how animals use space. Monogamy, for example, is usually characterized by affiliative (e.g., pairbonding and defensive (e.g., mate guarding behaviors, but a high degree of spatial overlap in home range use is the easiest defining feature of monogamous animals in the wild. The nonapeptides vasopressin and oxytocin have been the focus of much attention for their importance in modulating social behavior, however this work has largely overshadowed their roles in learning and memory. To date, the understanding of memory systems and mechanisms governing social behavior have progressed relatively independently. Bridging these two areas will provide a deeper appreciation for understanding behavior, and in particular the mechanisms that mediate reproductive decision-making. Here, I argue that the ability to mate effectively as monogamous individuals is linked to the ability to track conspecifics in space. I discuss the connectivity across some well-known social and spatial memory nuclei, and propose that the nonapeptide receptors within these structures form a putative “socio-spatial memory neural circuit.” This purported circuit may function to integrate social and spatial information to shape mating decisions in a context-dependent fashion. The lateral septum and/or the nucleus accumbens, and neuromodulation therein, may act as an intermediary to relate socio-spatial information with social behavior. Identifying mechanisms responsible for relating information about the social world with mechanisms mediating mating tactics is crucial to fully appreciate the suite of factors driving reproductive decisions and social decision-making.

  14. Navigating Monogamy: Nonapeptide Sensitivity in a Memory Neural Circuit May Shape Social Behavior and Mating Decisions

    Science.gov (United States)

    Ophir, Alexander G.

    2017-01-01

    The role of memory in mating systems is often neglected despite the fact that most mating systems are defined in part by how animals use space. Monogamy, for example, is usually characterized by affiliative (e.g., pairbonding) and defensive (e.g., mate guarding) behaviors, but a high degree of spatial overlap in home range use is the easiest defining feature of monogamous animals in the wild. The nonapeptides vasopressin and oxytocin have been the focus of much attention for their importance in modulating social behavior, however this work has largely overshadowed their roles in learning and memory. To date, the understanding of memory systems and mechanisms governing social behavior have progressed relatively independently. Bridging these two areas will provide a deeper appreciation for understanding behavior, and in particular the mechanisms that mediate reproductive decision-making. Here, I argue that the ability to mate effectively as monogamous individuals is linked to the ability to track conspecifics in space. I discuss the connectivity across some well-known social and spatial memory nuclei, and propose that the nonapeptide receptors within these structures form a putative “socio-spatial memory neural circuit.” This purported circuit may function to integrate social and spatial information to shape mating decisions in a context-dependent fashion. The lateral septum and/or the nucleus accumbens, and neuromodulation therein, may act as an intermediary to relate socio-spatial information with social behavior. Identifying mechanisms responsible for relating information about the social world with mechanisms mediating mating tactics is crucial to fully appreciate the suite of factors driving reproductive decisions and social decision-making. PMID:28744194

  15. NEURAL CORRELATES FOR APATHY: FRONTAL - PREFRONTAL AND PARIETAL CORTICAL - SUBCORTICAL CIRCUITS

    Directory of Open Access Journals (Sweden)

    Rita Moretti

    2016-12-01

    Full Text Available Apathy is an uncertain nosographical entity, which includes reduced motivation, abulia, decreased empathy, and lack of emotional invovlement; it is an important and heavy-burden clinical condition which strongly impacts in every day life events, affects the common daily living abilities, reduced the inner goal directed behavior, and gives the heaviest burden on caregivers. Is a quite common comorbidity of many neurological disease, However, there is no definite consensus on the role of apathy in clinical practice, no definite data on anatomical circuits involved in its development, and no definite instrument to detect it at bedside. As a general observation, the occurrence of apathy is connected to damage of prefrontal cortex (PFC and basal ganglia; emotional affective apathy may be related to the orbitomedial PFC and ventral striatum; cognitive apathy may be associated with dysfunction of lateral PFC and dorsal caudate nuclei; deficit of autoactivation may be due to bilateral lesions of the internal portion of globus pallidus, bilateral paramedian thalamic lesions, or the dorsomedial portion of PFC. On the other hand, apathy severity has been connected to neurofibrillary tangles density in the anterior cingulate gyrus and to grey matter atrophy in the anterior cingulate (ACC and in the left medial frontal cortex, confirmed by functional imaging studies. These neural networks are linked to projects, judjing and planning, execution and selection common actions, and through the basolateral amygdala and nucleus accumbens projects to the frontostriatal and to the dorsolateral prefrontal cortex. Therefore, an alteration of these circuitry caused a lack of insight, a reduction of decision-making strategies and a reduced speedness in action decsion, major resposnible for apathy. Emergent role concerns also the parietal cortex, with its direct action motivation control.We will discuss the importance of these circuits in different pathologies

  16. CNNcon: improved protein contact maps prediction using cascaded neural networks.

    Directory of Open Access Journals (Sweden)

    Wang Ding

    Full Text Available BACKGROUNDS: Despite continuing progress in X-ray crystallography and high-field NMR spectroscopy for determination of three-dimensional protein structures, the number of unsolved and newly discovered sequences grows much faster than that of determined structures. Protein modeling methods can possibly bridge this huge sequence-structure gap with the development of computational science. A grand challenging problem is to predict three-dimensional protein structure from its primary structure (residues sequence alone. However, predicting residue contact maps is a crucial and promising intermediate step towards final three-dimensional structure prediction. Better predictions of local and non-local contacts between residues can transform protein sequence alignment to structure alignment, which can finally improve template based three-dimensional protein structure predictors greatly. METHODS: CNNcon, an improved multiple neural networks based contact map predictor using six sub-networks and one final cascade-network, was developed in this paper. Both the sub-networks and the final cascade-network were trained and tested with their corresponding data sets. While for testing, the target protein was first coded and then input to its corresponding sub-networks for prediction. After that, the intermediate results were input to the cascade-network to finish the final prediction. RESULTS: The CNNcon can accurately predict 58.86% in average of contacts at a distance cutoff of 8 Å for proteins with lengths ranging from 51 to 450. The comparison results show that the present method performs better than the compared state-of-the-art predictors. Particularly, the prediction accuracy keeps steady with the increase of protein sequence length. It indicates that the CNNcon overcomes the thin density problem, with which other current predictors have trouble. This advantage makes the method valuable to the prediction of long length proteins. As a result, the effective

  17. Uncertainty-Dependent Extinction of Fear Memory in an Amygdala-mPFC Neural Circuit Model

    Science.gov (United States)

    Li, Yuzhe; Nakae, Ken; Ishii, Shin; Naoki, Honda

    2016-01-01

    Uncertainty of fear conditioning is crucial for the acquisition and extinction of fear memory. Fear memory acquired through partial pairings of a conditioned stimulus (CS) and an unconditioned stimulus (US) is more resistant to extinction than that acquired through full pairings; this effect is known as the partial reinforcement extinction effect (PREE). Although the PREE has been explained by psychological theories, the neural mechanisms underlying the PREE remain largely unclear. Here, we developed a neural circuit model based on three distinct types of neurons (fear, persistent and extinction neurons) in the amygdala and medial prefrontal cortex (mPFC). In the model, the fear, persistent and extinction neurons encode predictions of net severity, of unconditioned stimulus (US) intensity, and of net safety, respectively. Our simulation successfully reproduces the PREE. We revealed that unpredictability of the US during extinction was represented by the combined responses of the three types of neurons, which are critical for the PREE. In addition, we extended the model to include amygdala subregions and the mPFC to address a recent finding that the ventral mPFC (vmPFC) is required for consolidating extinction memory but not for memory retrieval. Furthermore, model simulations led us to propose a novel procedure to enhance extinction learning through re-conditioning with a stronger US; strengthened fear memory up-regulates the extinction neuron, which, in turn, further inhibits the fear neuron during re-extinction. Thus, our models increased the understanding of the functional roles of the amygdala and vmPFC in the processing of uncertainty in fear conditioning and extinction. PMID:27617747

  18. Uncertainty-Dependent Extinction of Fear Memory in an Amygdala-mPFC Neural Circuit Model.

    Science.gov (United States)

    Li, Yuzhe; Nakae, Ken; Ishii, Shin; Naoki, Honda

    2016-09-01

    Uncertainty of fear conditioning is crucial for the acquisition and extinction of fear memory. Fear memory acquired through partial pairings of a conditioned stimulus (CS) and an unconditioned stimulus (US) is more resistant to extinction than that acquired through full pairings; this effect is known as the partial reinforcement extinction effect (PREE). Although the PREE has been explained by psychological theories, the neural mechanisms underlying the PREE remain largely unclear. Here, we developed a neural circuit model based on three distinct types of neurons (fear, persistent and extinction neurons) in the amygdala and medial prefrontal cortex (mPFC). In the model, the fear, persistent and extinction neurons encode predictions of net severity, of unconditioned stimulus (US) intensity, and of net safety, respectively. Our simulation successfully reproduces the PREE. We revealed that unpredictability of the US during extinction was represented by the combined responses of the three types of neurons, which are critical for the PREE. In addition, we extended the model to include amygdala subregions and the mPFC to address a recent finding that the ventral mPFC (vmPFC) is required for consolidating extinction memory but not for memory retrieval. Furthermore, model simulations led us to propose a novel procedure to enhance extinction learning through re-conditioning with a stronger US; strengthened fear memory up-regulates the extinction neuron, which, in turn, further inhibits the fear neuron during re-extinction. Thus, our models increased the understanding of the functional roles of the amygdala and vmPFC in the processing of uncertainty in fear conditioning and extinction.

  19. The malleable brain: plasticity of neural circuits and behavior - a review from students to students.

    Science.gov (United States)

    Schaefer, Natascha; Rotermund, Carola; Blumrich, Eva-Maria; Lourenco, Mychael V; Joshi, Pooja; Hegemann, Regina U; Jamwal, Sumit; Ali, Nilufar; García Romero, Ezra Michelet; Sharma, Sorabh; Ghosh, Shampa; Sinha, Jitendra K; Loke, Hannah; Jain, Vishal; Lepeta, Katarzyna; Salamian, Ahmad; Sharma, Mahima; Golpich, Mojtaba; Nawrotek, Katarzyna; Paidi, Ramesh K; Shahidzadeh, Sheila M; Piermartiri, Tetsade; Amini, Elham; Pastor, Veronica; Wilson, Yvette; Adeniyi, Philip A; Datusalia, Ashok K; Vafadari, Benham; Saini, Vedangana; Suárez-Pozos, Edna; Kushwah, Neetu; Fontanet, Paula; Turner, Anthony J

    2017-06-20

    One of the most intriguing features of the brain is its ability to be malleable, allowing it to adapt continually to changes in the environment. Specific neuronal activity patterns drive long-lasting increases or decreases in the strength of synaptic connections, referred to as long-term potentiation and long-term depression, respectively. Such phenomena have been described in a variety of model organisms, which are used to study molecular, structural, and functional aspects of synaptic plasticity. This review originated from the first International Society for Neurochemistry (ISN) and Journal of Neurochemistry (JNC) Flagship School held in Alpbach, Austria (Sep 2016), and will use its curriculum and discussions as a framework to review some of the current knowledge in the field of synaptic plasticity. First, we describe the role of plasticity during development and the persistent changes of neural circuitry occurring when sensory input is altered during critical developmental stages. We then outline the signaling cascades resulting in the synthesis of new plasticity-related proteins, which ultimately enable sustained changes in synaptic strength. Going beyond the traditional understanding of synaptic plasticity conceptualized by long-term potentiation and long-term depression, we discuss system-wide modifications and recently unveiled homeostatic mechanisms, such as synaptic scaling. Finally, we describe the neural circuits and synaptic plasticity mechanisms driving associative memory and motor learning. Evidence summarized in this review provides a current view of synaptic plasticity in its various forms, offers new insights into the underlying mechanisms and behavioral relevance, and provides directions for future research in the field of synaptic plasticity. Read the Editorial Highlight for this article on doi: 10.1111/jnc.14102. © 2017 International Society for Neurochemistry.

  20. Impact of adolescent social experiences on behavior and neural circuits implicated in mental illnesses.

    Science.gov (United States)

    Burke, Andrew R; McCormick, Cheryl M; Pellis, Sergio M; Lukkes, Jodi L

    2017-05-01

    Negative social experiences during adolescence are central features for several stress-related mental illnesses. Social play fighting behavior in rats peaks during early adolescence and is essential for the final maturation of brain and behavior. Manipulation of the rat adolescent social experience alters many neurobehavioral measurements implicated in anxiety, depression, and substance abuse. In this review, we will highlight the importance of social play and the use of three separate social stress models (isolation-rearing, social defeat, and social instability stress) to disrupt the acquisition of this adaptive behavior. Social stress during adolescence leads to the development of anxiety and depressive behavior as well as escalated drug use in adulthood. Furthermore, sex- and age-dependent effects on the hormonal stress response following adolescent social stress are also observed. Finally, manipulation of the social experience during adolescence alters stress-related neural circuits and monoaminergic systems. Overall, positive social experiences among age-matched conspecifics during rat adolescence are critical for healthy neurobehavioral maturation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Hybrid Spintronic-CMOS Spiking Neural Network with On-Chip Learning: Devices, Circuits, and Systems

    Science.gov (United States)

    Sengupta, Abhronil; Banerjee, Aparajita; Roy, Kaushik

    2016-12-01

    Over the past decade, spiking neural networks (SNNs) have emerged as one of the popular architectures to emulate the brain. In SNNs, information is temporally encoded and communication between neurons is accomplished by means of spikes. In such networks, spike-timing-dependent plasticity mechanisms require the online programing of synapses based on the temporal information of spikes transmitted by spiking neurons. In this work, we propose a spintronic synapse with decoupled spike-transmission and programing-current paths. The spintronic synapse consists of a ferromagnet-heavy-metal heterostructure where the programing current through the heavy metal generates spin-orbit torque to modulate the device conductance. Low programing energy and fast programing times demonstrate the efficacy of the proposed device as a nanoelectronic synapse. We perform a simulation study based on an experimentally benchmarked device-simulation framework to demonstrate the interfacing of such spintronic synapses with CMOS neurons and learning circuits operating in the transistor subthreshold region to form a network of spiking neurons that can be utilized for pattern-recognition problems.

  2. A wireless integrated circuit for 100-channel charge-balanced neural stimulation.

    Science.gov (United States)

    Thurgood, B K; Warren, D J; Ledbetter, N M; Clark, G A; Harrison, R R

    2009-12-01

    The authors present the design of an integrated circuit for wireless neural stimulation, along with benchtop and in - vivo experimental results. The chip has the ability to drive 100 individual stimulation electrodes with constant-current pulses of varying amplitude, duration, interphasic delay, and repetition rate. The stimulation is performed by using a biphasic (cathodic and anodic) current source, injecting and retracting charge from the nervous system. Wireless communication and power are delivered over a 2.765-MHz inductive link. Only three off-chip components are needed to operate the stimulator: a 10-nF capacitor to aid in power-supply regulation, a small capacitor (power and command reception. The chip was fabricated in a commercially available 0.6- mum 2P3M BiCMOS process. The chip was able to activate motor fibers to produce muscle twitches via a Utah Slanted Electrode Array implanted in cat sciatic nerve, and to activate sensory fibers to recruit evoked potentials in somatosensory cortex.

  3. Sex-specific neural circuits of emotion regulation in the centromedial amygdala.

    Science.gov (United States)

    Wu, Yan; Li, Huandong; Zhou, Yuan; Yu, Jian; Zhang, Yuanchao; Song, Ming; Qin, Wen; Yu, Chunshui; Jiang, Tianzi

    2016-03-23

    Sex-related differences in emotion regulation (ER) in the frequency power distribution within the human amygdala, a brain region involved in emotion processing, have been reported. However, how sex differences in ER are manifested in the brain networks which are seeded on the amygdala subregions is unclear. The goal of this study was to investigate this issue from a brain network perspective. Utilizing resting-state functional connectivity (RSFC) analysis, we found that the sex-specific functional connectivity patterns associated with ER trait level were only seeded in the centromedial amygdala (CM). Women with a higher trait-level ER had a stronger negative RSFC between the right CM and the medial superior frontal gyrus (mSFG), and stronger positive RSFC between the right CM and the anterior insula (AI) and the superior temporal gyrus (STG). But men with a higher trait-level ER was associated with weaker negative RSFC of the right CM-mSFG and positive RSFCs of the right CM-left AI, right CM-right AI/STG, and right CM-left STG. These results provide evidence for the sex-related effects in ER based on CM and indicate that men and women may differ in the neural circuits associated with emotion representation and integration.

  4. The neuropsychiatry of hyperkinetic movement disorders: insights from neuroimaging into the neural circuit bases of dysfunction.

    Science.gov (United States)

    Hayhow, Bradleigh D; Hassan, Islam; Looi, Jeffrey C L; Gaillard, Francesco; Velakoulis, Dennis; Walterfang, Mark

    2013-01-01

    Movement disorders, particularly those associated with basal ganglia disease, have a high rate of comorbid neuropsychiatric illness. We consider the pathophysiological basis of the comorbidity between movement disorders and neuropsychiatric illness by 1) reviewing the epidemiology of neuropsychiatric illness in a range of hyperkinetic movement disorders, and 2) correlating findings to evidence from studies that have utilized modern neuroimaging techniques to investigate these disorders. In addition to diseases classically associated with basal ganglia pathology, such as Huntington disease, Wilson disease, the neuroacanthocytoses, and diseases of brain iron accumulation, we include diseases associated with pathology of subcortical white matter tracts, brain stem nuclei, and the cerebellum, such as metachromatic leukodystrophy, dentatorubropallidoluysian atrophy, and the spinocerebellar ataxias. Neuropsychiatric symptoms are integral to a thorough phenomenological account of hyperkinetic movement disorders. Drawing on modern theories of cortico-subcortical circuits, we argue that these disorders can be conceptualized as disorders of complex subcortical networks with distinct functional architectures. Damage to any component of these complex information-processing networks can have variable and often profound consequences for the function of more remote neural structures, creating a diverse but nonetheless rational pattern of clinical symptomatology.

  5. Pattern recognition neural-net by spatial mapping of biology visual field

    Science.gov (United States)

    Lin, Xin; Mori, Masahiko

    2000-05-01

    The method of spatial mapping in biology vision field is applied to artificial neural networks for pattern recognition. By the coordinate transform that is called the complex-logarithm mapping and Fourier transform, the input images are transformed into scale- rotation- and shift- invariant patterns, and then fed into a multilayer neural network for learning and recognition. The results of computer simulation and an optical experimental system are described.

  6. Neural circuits containing olfactory neurons are involved in prepulse inhibition of the startle reflex in rats

    Directory of Open Access Journals (Sweden)

    Haichen eNiu

    2015-03-01

    Full Text Available Many neuropsychiatric disorders, such as schizophrenia, have been associated with abnormalities in the function of the olfactory system and prepulse inhibition (PPI of the startle reflex. However, whether these two abnormalities are related is unclear. The present study was designed to determine whether inhibiting olfactory sensory input via the infusion of zinc sulfate (ZnE, 0.17 M, 0.5 ml into the olfactory naris disrupts PPI. Furthermore, lidocaine/MK801 was bilaterally microinjected into the olfactory bulb (OB to examine whether the blockade of olfactory sensory input impairs PPI. To identify the neural projections that connect the olfaction- and PPI-related areas of the CNS, trans-synaptic retrograde tracing using a recombinant pseudorabies virus (PRV was performed. Our results demonstrated that blocking olfactory sensory input altered olfaction-related behavior. At the functional level, we demonstrated that the inhibition of olfactory sensory input impaired PPI of the startle response subsequent to a decrease in c-fos expression in relevant brain regions. Furthermore, the results of a similar and more robust experiment indicated that blocking olfactory sensory input via the microinjection of lidocaine/MK801 into the OB impaired PPI. At the circuit level, based on trans-synaptic retrograde tracing using PRV, we demonstrated that a large portion of the labeled neurons in several regions of the olfactory cortices connected to the pedunculopontine tegmental nucleus (PPTg. Thus, these data suggest that the olfactory system participates in the regulation of PPI and plays a role in the effect of PPI on the startle response in rats.

  7. Functional changes of neural circuits in stroke patients with dysphagia: A meta-analysis.

    Science.gov (United States)

    Liu, Lu; Xiao, Yuan; Zhang, Wenjing; Yao, Li; Gao, Xin; Chandan, Shah; Lui, Su

    2017-08-01

    Dysphagia is a common problem in stroke patients with unclear pathogenesis. Several recent functional magnetic resonance imaging (fMRI) studies had been carried out to explore the cerebral functional changes in dysphagic stroke patients. The aim of this study was to analysis these imaging findings using a meta-analysis. We used seed-based d mapping (SDM) to conduct a meta-analysis for dysphagic stroke patients prior to any kind of special treatment for dysphagia. A systematic search was conducted for the relevant studies. SDM meta-analysis method was used to examine regions of increased and decreased functional activation between dysphagic stroke patients and healthy controls. Finally, six studies including 81 stroke patients with dysphagia and 78 healthy controls met the inclusion standards. When compared with healthy controls, stroke patients with dysphagia showed hyperactivation in left cingulate gyrus, left precentral gyrus and right posterior cingulate gyrus, and hypoactivation in right cuneus and left middle frontal gyrus. The hyperactivity of precentral gyrus is crucial in stroke patients with dysphagia and may be associated with the severity of stroke. Besides the motor areas, the default-mode network regions (DMN) and affective network regions (AN) circuits are also involved in dysphagia after stroke. © 2017 Chinese Cochrane Center, West China Hospital of Sichuan University and John Wiley & Sons Australia, Ltd.

  8. Unbalanced Neuronal Circuits in Addiction

    OpenAIRE

    Volkow, Nora D.; Wang, Gen-Jack; Tomasi, Dardo; Baler, Ruben D.

    2013-01-01

    Through sequential waves of drug-induced neurochemical stimulation, addiction co-opts the brain's neuronal circuits that mediate reward, motivation, , to behavioral inflexibility and a severe disruption of self-control and compulsive drug intake. Brain imaging technologies have allowed neuroscientists to map out the neural landscape of addiction in the human brain and to understand how drugs modify it.

  9. Neural Networks through Shared Maps in Mobile Devices

    Directory of Open Access Journals (Sweden)

    William Raveane

    2014-12-01

    Full Text Available We introduce a hybrid system composed of a convolutional neural network and a discrete graphical model for image recognition. This system improves upon traditional sliding window techniques for analysis of an image larger than the training data by effectively processing the full input scene through the neural network in less time. The final result is then inferred from the neural network output through energy minimization to reach a more precize localization than what traditional maximum value class comparisons yield. These results are apt for applying this process in a mobile device for real time image recognition.

  10. SPATIAL DATA MINING TOOLBOX FOR MAPPING SUITABILITY OF LANDFILL SITES USING NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    S. K. M. Abujayyab

    2016-09-01

    Full Text Available Mapping the suitability of landfill sites is a complex field and is involved with multidiscipline. The purpose of this research is to create an ArcGIS spatial data mining toolbox for mapping the suitability of landfill sites at a regional scale using neural networks. The toolbox is constructed from six sub-tools to prepare, train, and process data. The employment of the toolbox is straightforward. The multilayer perceptron (MLP neural networks structure with a backpropagation learning algorithm is used. The dataset is mined from the north states in Malaysia. A total of 14 criteria are utilized to build the training dataset. The toolbox provides a platform for decision makers to implement neural networks for mapping the suitability of landfill sites in the ArcGIS environment. The result shows the ability of the toolbox to produce suitability maps for landfill sites.

  11. MapReduce Based Parallel Neural Networks in Enabling Large Scale Machine Learning

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2015-01-01

    Full Text Available Artificial neural networks (ANNs have been widely used in pattern recognition and classification applications. However, ANNs are notably slow in computation especially when the size of data is large. Nowadays, big data has received a momentum from both industry and academia. To fulfill the potentials of ANNs for big data applications, the computation process must be speeded up. For this purpose, this paper parallelizes neural networks based on MapReduce, which has become a major computing model to facilitate data intensive applications. Three data intensive scenarios are considered in the parallelization process in terms of the volume of classification data, the size of the training data, and the number of neurons in the neural network. The performance of the parallelized neural networks is evaluated in an experimental MapReduce computer cluster from the aspects of accuracy in classification and efficiency in computation.

  12. MapReduce Based Parallel Neural Networks in Enabling Large Scale Machine Learning.

    Science.gov (United States)

    Liu, Yang; Yang, Jie; Huang, Yuan; Xu, Lixiong; Li, Siguang; Qi, Man

    2015-01-01

    Artificial neural networks (ANNs) have been widely used in pattern recognition and classification applications. However, ANNs are notably slow in computation especially when the size of data is large. Nowadays, big data has received a momentum from both industry and academia. To fulfill the potentials of ANNs for big data applications, the computation process must be speeded up. For this purpose, this paper parallelizes neural networks based on MapReduce, which has become a major computing model to facilitate data intensive applications. Three data intensive scenarios are considered in the parallelization process in terms of the volume of classification data, the size of the training data, and the number of neurons in the neural network. The performance of the parallelized neural networks is evaluated in an experimental MapReduce computer cluster from the aspects of accuracy in classification and efficiency in computation.

  13. The Relation between Finger Gnosis and Mathematical Ability: Why Redeployment of Neural Circuits Best Explains the Finding

    Directory of Open Access Journals (Sweden)

    Marcie ePenner-Wilger

    2013-12-01

    Full Text Available This paper elaborates a novel hypothesis regarding the observed predictive relation between finger gnosis and mathematical ability. In brief, we suggest that these two cognitive phenomena have overlapping neural substrates, as the result of the re-use (redeployment of part of the finger gnosis circuit for the purpose of representing numbers. We offer some background on the relation and current explanations for it; an outline of our alternate hypothesis; some evidence supporting redeployment over current views; and a plan for further research.

  14. A simple miniature device for wireless stimulation of neural circuits in small behaving animals.

    Science.gov (United States)

    Zhang, Yisi; Langford, Bruce; Kozhevnikov, Alexay

    2011-10-30

    The use of wireless neural stimulation devices offers significant advantages for neural stimulation experiments in behaving animals. We demonstrate a simple, low-cost and extremely lightweight wireless neural stimulation device which is made from off-the-shelf components. The device has low power consumption and does not require a high-power RF preamplifier. Neural stimulation can be carried out in either a voltage source mode or a current source mode. Using the device, we carry out wireless stimulation in the premotor brain area HVC of a songbird and demonstrate that such stimulation causes rapid perturbations of the acoustic structure of the song. Published by Elsevier B.V.

  15. Mapping synaptic pathology within cerebral cortical circuits in subjects with schizophrenia

    Directory of Open Access Journals (Sweden)

    Robert Sweet

    2010-06-01

    Full Text Available Converging lines of evidence indicate that schizophrenia is characterized by impairments of synaptic machinery within cerebral cortical circuits. Efforts to localize these alterations in brain tissue from subjects with schizophrenia have frequently been limited to the quantification of structures that are non-selectively identified (e.g. dendritic spines labeled in Golgi preparations, axon boutons labeled with synaptophysin, or to quantification of proteins using methods unable to resolve relevant cellular compartments. Multiple label fluorescence confocal microscopy represents a means to circumvent many of these limitations, by concurrently extracting information regarding the number, morphology, and relative protein content of synaptic structures. An important adaptation required for studies of human disease is coupling this approach to stereologic methods for systematic random sampling of relevant brain regions. In this review article we consider the application of multiple label fluorescence confocal microscopy to the mapping of synaptic alterations in subjects with schizophrenia and describe the application of a novel, readily automated, iterative intensity/morphological segmentation algorithm for the extraction of information regarding synaptic structure number, size, and relative protein level from tissue sections obtained using unbiased stereological principles of sampling. In this context, we provide examples of the examination of pre- and post-synaptic structures within excitatory and inhibitory circuits of the cerebral cortex.

  16. Invertebrate diversity classification using self-organizing map neural network: with some special topological functions

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2014-06-01

    Full Text Available In present study we used self-organizing map (SOM neural network to conduct the non-supervisory clustering of invertebrate orders in rice field. Four topological functions, i.e., cossintopf, sincostopf, acossintopf, and expsintopf, established on the template in toolbox of Matlab, were used in SOM neural network learning. Results showed that clusters were different when using different topological functions because different topological functions will generate different spatial structure of neurons in neural network. We may chose these functions and results based on comparison with the practical situation.

  17. Foreground removal from Planck Sky Model temperature maps using a MLP neural network

    DEFF Research Database (Denmark)

    Nørgaard-Nielsen, Hans Ulrik; Hebert, K.

    2009-01-01

    with no systematic errors. To demonstrate the feasibility of a simple multilayer perceptron (MLP) neural network for extracting the CMB temperature signal, we have analyzed a specific data set, namely the Planck Sky Model maps, developed for evaluation of different component separation methods before including them...... in the Planck data analysis pipeline. It is found that a MLP neural network can provide a CMB map of about 80% of the sky to a very high degree uncorrelated with the foreground components. Also the derived power spectrum shows little evidence for systematic errors....

  18. Morphological self-organizing feature map neural network with applications to automatic target recognition

    Science.gov (United States)

    Zhang, Shijun; Jing, Zhongliang; Li, Jianxun

    2005-01-01

    The rotation invariant feature of the target is obtained using the multi-direction feature extraction property of the steerable filter. Combining the morphological operation top-hat transform with the self-organizing feature map neural network, the adaptive topological region is selected. Using the erosion operation, the topological region shrinkage is achieved. The steerable filter based morphological self-organizing feature map neural network is applied to automatic target recognition of binary standard patterns and real-world infrared sequence images. Compared with Hamming network and morphological shared-weight networks respectively, the higher recognition correct rate, robust adaptability, quick training, and better generalization of the proposed method are achieved.

  19. High on food: the interaction between the neural circuits for feeding and for reward.

    Science.gov (United States)

    Liu, Jing-Jing; Mukherjee, Diptendu; Haritan, Doron; Ignatowska-Jankowska, Bogna; Liu, Ji; Citri, Ami; Pang, Zhiping P

    2015-04-01

    Hunger, mostly initiated by a deficiency in energy, induces food seeking and intake. However, the drive toward food is not only regulated by physiological needs, but is motivated by the pleasure derived from ingestion of food, in particular palatable foods. Therefore, feeding is viewed as an adaptive motivated behavior that involves integrated communication between homeostatic feeding circuits and reward circuits. The initiation and termination of a feeding episode are instructed by a variety of neuronal signals, and maladaptive plasticity in almost any component of the network may lead to the development of pathological eating disorders. In this review we will summarize the latest understanding of how the feeding circuits and reward circuits in the brain interact. We will emphasize communication between the hypothalamus and the mesolimbic dopamine system and highlight complexities, discrepancies, open questions and future directions for the field.

  20. Associative memory in an analog iterated-map neural network

    Science.gov (United States)

    Marcus, C. M.; Waugh, F. R.; Westervelt, R. M.

    1990-03-01

    The behavior of an analog neural network with parallel dynamics is studied analytically and numerically for two associative-memory learning algorithms, the Hebb rule and the pseudoinverse rule. Phase diagrams in the parameter space of analog gain β and storage ratio α are presented. For both learning rules, the networks have large ``recall'' phases in which retrieval states exist and convergence to a fixed point is guaranteed by a global stability criterion. We also demonstrate numerically that using a reduced analog gain increases the probability of recall starting from a random initial state. This phenomenon is comparable to thermal annealing used to escape local minima but has the advantage of being deterministic, and therefore easily implemented in electronic hardware. Similarities and differences between analog neural networks and networks with two-state neurons at finite temperature are also discussed.

  1. Neural dynamics of the cognitive map in the hippocampus

    OpenAIRE

    Wagatsuma, Hiroaki; Yamaguchi, Yoko

    2007-01-01

    The rodent hippocampus has been thought to represent the spatial environment as a cognitive map. In the classical theory, the cognitive map has been explained as a consequence of the fact that different spatial regions are assigned to different cell populations in the framework of rate coding. Recently, the relation between place cell firing and local field oscillation theta in terms of theta phase precession was experimentally discovered and suggested as a temporal coding mechanism leading t...

  2. Developmental and Architectural Principles of the Lateral-line Neural Map

    Directory of Open Access Journals (Sweden)

    Hernan eLopez-Schier

    2013-03-01

    Full Text Available The transmission and central representation of sensory cues through the accurate construction of neural maps is essential for animals to react to environmental stimuli. Structural diversity of sensorineural maps along a continuum between discrete- and continuous-map architectures can influence behavior. The mechanosensory lateral line of fishes and amphibians, for example, detects complex hydrodynamics occurring around the animal body. It. It triggers innate fast escape reactions but also modulates complex navigation behaviors that require constant knowledge about the environment. The aim of this article is to summarize recent work in the zebrafish that has shed light on the development and structure of the lateralis neural map, which is helping to understand how individual sensory modalities generate appropriate behavioral responses to the sensory context.

  3. An integrated multichannel neural recording analog front-end ASIC with area-efficient driven right leg circuit.

    Science.gov (United States)

    Tao Tang; Wang Ling Goh; Lei Yao; Jia Hao Cheong; Yuan Gao

    2017-07-01

    This paper describes an integrated multichannel neural recording analog front end (AFE) with a novel area-efficient driven right leg (DRL) circuit to improve the system common mode rejection ratio (CMRR). The proposed AFE consists of an AC-coupled low-noise programmable-gain amplifier, an area-efficient DRL block and a 10-bit SAR ADC. Compared to conventional DRL circuit, the proposed capacitor-less DRL design achieves 90% chip area reduction with enhanced CMRR performance, making it ideal for multichannel biomedical recording applications. The AFE circuit has been designed in a standard 0.18-μm CMOS process. Post-layout simulation results show that the AFE provides two gain settings of 54dB/60dB while consuming 1 μA per channel under a supply voltage of 1 V. The input-referred noise of the AFE integrated from 1 Hz to 10k Hz is only 4 μVrms and the CMRR is 110 dB.

  4. An investigation of the neural circuits underlying reaching and reach-to-grasp movements: from planning to execution.

    Directory of Open Access Journals (Sweden)

    Chiara eBegliomini

    2014-09-01

    Full Text Available Experimental evidence suggests the existence of a sophisticated brain circuit specifically dedicated to reach-to-grasp planning and execution, both in human and non human primates (Castiello, 2005. Studies accomplished by means of neuroimaging techniques suggest the hypothesis of a dichotomy between a reach-to-grasp circuit, involving the intraparietal area (AIP, the dorsal and ventral premotor cortices (PMd and PMv - Castiello and Begliomini, 2008; Filimon, 2010 and a reaching circuit involving the medial intraparietal area (mIP and the Superior Parieto-Occipital Cortex (SPOC (Culham et al., 2006. However, the time course characterizing the involvement of these regions during the planning and execution of these two types of movements has yet to be delineated. A functional magnetic resonance imaging (fMRI study has been conducted, including reach-to grasp and reaching only movements, performed towards either a small or a large stimulus, and Finite Impulse Response model (FIR - Henson, 2003 was adopted to monitor activation patterns from stimulus onset for a time window of 10 seconds duration. Data analysis focused on brain regions belonging either to the reaching or to the grasping network, as suggested by Castiello & Begliomini (2008.Results suggest that reaching and grasping movements planning and execution might share a common brain network, providing further confirmation to the idea that the neural underpinnings of reaching and grasping may overlap in both spatial and temporal terms (Verhagen et al., 2013.

  5. Neural circuits of disgust induced by sexual stimuli in homosexual and heterosexual men: An fMRI study

    International Nuclear Information System (INIS)

    Zhang Minming; Hu Shaohua; Xu Lijuan; Wang Qidong; Xu Xiaojun; Wei Erqing; Yan Leqin; Hu Jianbo; Wei Ning; Zhou Weihua; Huang Manli; Xu Yi

    2011-01-01

    Few studies demonstrated neural circuits related to disgust were influenced by internal sexual orientation in male. Here we used fMRI to study the neural responses to disgust in homosexual and heterosexual men to investigate that issue. Thirty-two healthy male volunteers (sixteen homosexual and sixteen heterosexual) were scanned while viewing alternating blocks of three types of erotic film: heterosexual couples (F-M), male homosexual couples (M-M), and female homosexual couples (F-F) engaged in sexual activity. All the participants rated their level of disgust and sexual arousal as well. The F-F and M-M stimuli induced disgust in homosexual and heterosexual men, respectively. The common activations related to disgusting stimuli included: bilateral frontal gyrus and occipital gyrus, right middle temporal gyrus, left superior temporal gyrus, right cerebellum, and right thalamus. Homosexual men had greater neural responses in the left medial frontal gyrus than did heterosexual men to the sexual disgusting stimuli; in contrast, heterosexual men showed significantly greater activation than homosexual men in the left cuneus. ROI analysis showed that negative correlation were found between the magnitude of MRI signals in the left medial frontal gyrus and scores of disgust in homosexual subjects (p < 0.05). This study indicated that there were regions in common as well as regions specific for each type of erotic stimuli during disgust of homosexual and heterosexual men.

  6. Neural circuits of disgust induced by sexual stimuli in homosexual and heterosexual men: An fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Minming [Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou (China); Hu Shaohua [Department of Mental Health, First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, Zhejiang Province 310003 (China); Xu Lijuan [National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing (China); Wang Qidong [Department of Radiology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou (China); Xu Xiaojun [Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou (China); Wei Erqing [College of Pharmacology, Zhejiang University (China); Yan Leqin [MD Anderson Cancer Center, Virginia Harris Cockrell Cancer Research Center, University of Texas, Austin (United States); Hu Jianbo; Wei Ning; Zhou Weihua; Huang Manli [Department of Mental Health, First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, Zhejiang Province 310003 (China); Xu Yi, E-mail: xuyi61@yahoo.com.cn [Department of Mental Health, First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, Zhejiang Province 310003 (China)

    2011-11-15

    Few studies demonstrated neural circuits related to disgust were influenced by internal sexual orientation in male. Here we used fMRI to study the neural responses to disgust in homosexual and heterosexual men to investigate that issue. Thirty-two healthy male volunteers (sixteen homosexual and sixteen heterosexual) were scanned while viewing alternating blocks of three types of erotic film: heterosexual couples (F-M), male homosexual couples (M-M), and female homosexual couples (F-F) engaged in sexual activity. All the participants rated their level of disgust and sexual arousal as well. The F-F and M-M stimuli induced disgust in homosexual and heterosexual men, respectively. The common activations related to disgusting stimuli included: bilateral frontal gyrus and occipital gyrus, right middle temporal gyrus, left superior temporal gyrus, right cerebellum, and right thalamus. Homosexual men had greater neural responses in the left medial frontal gyrus than did heterosexual men to the sexual disgusting stimuli; in contrast, heterosexual men showed significantly greater activation than homosexual men in the left cuneus. ROI analysis showed that negative correlation were found between the magnitude of MRI signals in the left medial frontal gyrus and scores of disgust in homosexual subjects (p < 0.05). This study indicated that there were regions in common as well as regions specific for each type of erotic stimuli during disgust of homosexual and heterosexual men.

  7. A Dynamic Connectome Supports the Emergence of Stable Computational Function of Neural Circuits through Reward-Based Learning.

    Science.gov (United States)

    Kappel, David; Legenstein, Robert; Habenschuss, Stefan; Hsieh, Michael; Maass, Wolfgang

    2018-01-01

    Synaptic connections between neurons in the brain are dynamic because of continuously ongoing spine dynamics, axonal sprouting, and other processes. In fact, it was recently shown that the spontaneous synapse-autonomous component of spine dynamics is at least as large as the component that depends on the history of pre- and postsynaptic neural activity. These data are inconsistent with common models for network plasticity and raise the following questions: how can neural circuits maintain a stable computational function in spite of these continuously ongoing processes, and what could be functional uses of these ongoing processes? Here, we present a rigorous theoretical framework for these seemingly stochastic spine dynamics and rewiring processes in the context of reward-based learning tasks. We show that spontaneous synapse-autonomous processes, in combination with reward signals such as dopamine, can explain the capability of networks of neurons in the brain to configure themselves for specific computational tasks, and to compensate automatically for later changes in the network or task. Furthermore, we show theoretically and through computer simulations that stable computational performance is compatible with continuously ongoing synapse-autonomous changes. After reaching good computational performance it causes primarily a slow drift of network architecture and dynamics in task-irrelevant dimensions, as observed for neural activity in motor cortex and other areas. On the more abstract level of reinforcement learning the resulting model gives rise to an understanding of reward-driven network plasticity as continuous sampling of network configurations.

  8. Synaptic plasticity, neural circuits, and the emerging role of altered short-term information processing in schizophrenia

    Science.gov (United States)

    Crabtree, Gregg W.; Gogos, Joseph A.

    2014-01-01

    Synaptic plasticity alters the strength of information flow between presynaptic and postsynaptic neurons and thus modifies the likelihood that action potentials in a presynaptic neuron will lead to an action potential in a postsynaptic neuron. As such, synaptic plasticity and pathological changes in synaptic plasticity impact the synaptic computation which controls the information flow through the neural microcircuits responsible for the complex information processing necessary to drive adaptive behaviors. As current theories of neuropsychiatric disease suggest that distinct dysfunctions in neural circuit performance may critically underlie the unique symptoms of these diseases, pathological alterations in synaptic plasticity mechanisms may be fundamental to the disease process. Here we consider mechanisms of both short-term and long-term plasticity of synaptic transmission and their possible roles in information processing by neural microcircuits in both health and disease. As paradigms of neuropsychiatric diseases with strongly implicated risk genes, we discuss the findings in schizophrenia and autism and consider the alterations in synaptic plasticity and network function observed in both human studies and genetic mouse models of these diseases. Together these studies have begun to point toward a likely dominant role of short-term synaptic plasticity alterations in schizophrenia while dysfunction in autism spectrum disorders (ASDs) may be due to a combination of both short-term and long-term synaptic plasticity alterations. PMID:25505409

  9. Neural circuits of disgust induced by sexual stimuli in homosexual and heterosexual men: an fMRI study.

    Science.gov (United States)

    Zhang, Minming; Hu, Shaohua; Xu, Lijuan; Wang, Qidong; Xu, Xiaojun; Wei, Erqing; Yan, Leqin; Hu, Jianbo; Wei, Ning; Zhou, Weihua; Huang, Manli; Xu, Yi

    2011-11-01

    Few studies demonstrated neural circuits related to disgust were influenced by internal sexual orientation in male. Here we used fMRI to study the neural responses to disgust in homosexual and heterosexual men to investigate that issue. Thirty-two healthy male volunteers (sixteen homosexual and sixteen heterosexual) were scanned while viewing alternating blocks of three types of erotic film: heterosexual couples (F-M), male homosexual couples (M-M), and female homosexual couples (F-F) engaged in sexual activity. All the participants rated their level of disgust and sexual arousal as well. The F-F and M-M stimuli induced disgust in homosexual and heterosexual men, respectively. The common activations related to disgusting stimuli included: bilateral frontal gyrus and occipital gyrus, right middle temporal gyrus, left superior temporal gyrus, right cerebellum, and right thalamus. Homosexual men had greater neural responses in the left medial frontal gyrus than did heterosexual men to the sexual disgusting stimuli; in contrast, heterosexual men showed significantly greater activation than homosexual men in the left cuneus. ROI analysis showed that negative correlation were found between the magnitude of MRI signals in the left medial frontal gyrus and scores of disgust in homosexual subjects (pmen. Crown Copyright © 2010. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Fast non-linear extraction of plasma equilibrium parameters using a neural network mapping

    International Nuclear Information System (INIS)

    Lister, J.B.; Schnurrenberger, H.

    1990-07-01

    The shaping of non-circular plasmas requires a non-linear mapping between the measured diagnostic signals and selected equilibrium parameters. The particular configuration of Neural Network known as the multi-layer perceptron provides a powerful and general technique for formulating an arbitrary continuous non-linear multi-dimensional mapping. This technique has been successfully applied to the extraction of equilibrium parameters from measurements of single-null diverted plasmas in the DIII-D tokamak; the results are compared with a purely linear mapping. The method is promising, and hardware implementation is straightforward. (author) 15 refs., 7 figs

  11. Fast non-linear extraction of plasma equilibrium parameters using a neural network mapping

    International Nuclear Information System (INIS)

    Lister, J.B.; Schnurrenberger, H.

    1991-01-01

    The shaping of non-circular plasmas requires a non-linear mapping between the measured diagnostic signals and selected equilibrium parameters. The particular configuration of neural network known as the multilayer perceptron provides a powerful and general technique for formulating an arbitrary continuous non-linear multi-dimensional mapping. This technique has been successfully applied to the extraction of equilibrium parameters from measurements of single-null diverted plasmas in the DIII-D tokamak; the results are compared with a purely linear mapping. The method is promising, and hardware implementation is straightforward. (author). 17 refs, 8 figs, 2 tab

  12. Memristor-based neural networks: Synaptic versus neuronal stochasticity

    KAUST Repository

    Naous, Rawan; Alshedivat, Maruan; Neftci, Emre; Cauwenberghs, Gert; Salama, Khaled N.

    2016-01-01

    In neuromorphic circuits, stochasticity in the cortex can be mapped into the synaptic or neuronal components. The hardware emulation of these stochastic neural networks are currently being extensively studied using resistive memories or memristors

  13. Microendophenotypes of psychiatric disorders: phenotypes of psychiatric disorders at the level of molecular dynamics, synapses, neurons, and neural circuits.

    Science.gov (United States)

    Kida, S; Kato, T

    2015-01-01

    Psychiatric disorders are caused not only by genetic factors but also by complicated factors such as environmental ones. Moreover, environmental factors are rarely quantitated as biological and biochemical indicators, making it extremely difficult to understand the pathological conditions of psychiatric disorders as well as their underlying pathogenic mechanisms. Additionally, we have actually no other option but to perform biological studies on postmortem human brains that display features of psychiatric disorders, thereby resulting in a lack of experimental materials to characterize the basic biology of these disorders. From these backgrounds, animal, tissue, or cell models that can be used in basic research are indispensable to understand biologically the pathogenic mechanisms of psychiatric disorders. In this review, we discuss the importance of microendophenotypes of psychiatric disorders, i.e., phenotypes at the level of molecular dynamics, neurons, synapses, and neural circuits, as targets of basic research on these disorders.

  14. From circuits to behaviour in the amygdala

    Science.gov (United States)

    Janak, Patricia H.; Tye, Kay M.

    2015-01-01

    The amygdala has long been associated with emotion and motivation, playing an essential part in processing both fearful and rewarding environmental stimuli. How can a single structure be crucial for such different functions? With recent technological advances that allow for causal investigations of specific neural circuit elements, we can now begin to map the complex anatomical connections of the amygdala onto behavioural function. Understanding how the amygdala contributes to a wide array of behaviours requires the study of distinct amygdala circuits. PMID:25592533

  15. Role of motoneuron-derived neurotrophin 3 in survival and axonal projection of sensory neurons during neural circuit formation.

    Science.gov (United States)

    Usui, Noriyoshi; Watanabe, Keisuke; Ono, Katsuhiko; Tomita, Koichi; Tamamaki, Nobuaki; Ikenaka, Kazuhiro; Takebayashi, Hirohide

    2012-03-01

    Sensory neurons possess the central and peripheral branches and they form unique spinal neural circuits with motoneurons during development. Peripheral branches of sensory axons fasciculate with the motor axons that extend toward the peripheral muscles from the central nervous system (CNS), whereas the central branches of proprioceptive sensory neurons directly innervate motoneurons. Although anatomically well documented, the molecular mechanism underlying sensory-motor interaction during neural circuit formation is not fully understood. To investigate the role of motoneuron on sensory neuron development, we analyzed sensory neuron phenotypes in the dorsal root ganglia (DRG) of Olig2 knockout (KO) mouse embryos, which lack motoneurons. We found an increased number of apoptotic cells in the DRG of Olig2 KO embryos at embryonic day (E) 10.5. Furthermore, abnormal axonal projections of sensory neurons were observed in both the peripheral branches at E10.5 and central branches at E15.5. To understand the motoneuron-derived factor that regulates sensory neuron development, we focused on neurotrophin 3 (Ntf3; NT-3), because Ntf3 and its receptors (Trk) are strongly expressed in motoneurons and sensory neurons, respectively. The significance of motoneuron-derived Ntf3 was analyzed using Ntf3 conditional knockout (cKO) embryos, in which we observed increased apoptosis and abnormal projection of the central branch innervating motoneuron, the phenotypes being apparently comparable with that of Olig2 KO embryos. Taken together, we show that the motoneuron is a functional source of Ntf3 and motoneuron-derived Ntf3 is an essential pre-target neurotrophin for survival and axonal projection of sensory neurons.

  16. Fluorescence-based monitoring of in vivo neural activity using a circuit-tracing pseudorabies virus.

    Directory of Open Access Journals (Sweden)

    Andrea E Granstedt

    Full Text Available The study of coordinated activity in neuronal circuits has been challenging without a method to simultaneously report activity and connectivity. Here we present the first use of pseudorabies virus (PRV, which spreads through synaptically connected neurons, to express a fluorescent calcium indicator protein and monitor neuronal activity in a living animal. Fluorescence signals were proportional to action potential number and could reliably detect single action potentials in vitro. With two-photon imaging in vivo, we observed both spontaneous and stimulated activity in neurons of infected murine peripheral autonomic submandibular ganglia (SMG. We optically recorded the SMG response in the salivary circuit to direct electrical stimulation of the presynaptic axons and to physiologically relevant sensory stimulation of the oral cavity. During a time window of 48 hours after inoculation, few spontaneous transients occurred. By 72 hours, we identified more frequent and prolonged spontaneous calcium transients, suggestive of neuronal or tissue responses to infection that influence calcium signaling. Our work establishes in vivo investigation of physiological neuronal circuit activity and subsequent effects of infection with single cell resolution.

  17. Activation in mesolimbic and visuospatial neural circuits elicited by smoking cues: evidence from functional magnetic resonance imaging.

    Science.gov (United States)

    Due, Deborah L; Huettel, Scott A; Hall, Warren G; Rubin, David C

    2002-06-01

    The authors sought to increase understanding of the brain mechanisms involved in cigarette addiction by identifying neural substrates modulated by visual smoking cues in nicotine-deprived smokers. Event-related functional magnetic resonance imaging (fMRI) was used to detect brain activation after exposure to smoking-related images in a group of nicotine-deprived smokers and a nonsmoking comparison group. Subjects viewed a pseudo-random sequence of smoking images, neutral nonsmoking images, and rare targets (photographs of animals). Subjects pressed a button whenever a rare target appeared. In smokers, the fMRI signal was greater after exposure to smoking-related images than after exposure to neutral images in mesolimbic dopamine reward circuits known to be activated by addictive drugs (right posterior amygdala, posterior hippocampus, ventral tegmental area, and medial thalamus) as well as in areas related to visuospatial attention (bilateral prefrontal and parietal cortex and right fusiform gyrus). In nonsmokers, no significant differences in fMRI signal following exposure to smoking-related and neutral images were detected. In most regions studied, both subject groups showed greater activation following presentation of rare target images than after exposure to neutral images. In nicotine-deprived smokers, both reward and attention circuits were activated by exposure to smoking-related images. Smoking cues are processed like rare targets in that they activate attentional regions. These cues are also processed like addictive drugs in that they activate mesolimbic reward regions.

  18. Modulation of neural circuits underlying temporal production by facial expressions of pain

    OpenAIRE

    Ballotta, Daniela; Lui, Fausta; Porro, Carlo Adolfo; Nichelli, Paolo Frigio; Benuzzi, Francesca

    2018-01-01

    According to the Scalar Expectancy Theory, humans are equipped with a biological internal clock, possibly modulated by attention and arousal. Both emotions and pain are arousing and can absorb attentional resources, thus causing distortions of temporal perception. The aims of the present single-event fMRI study were to investigate: a) whether observation of facial expressions of pain interferes with time production; and b) the neural network subserving this kind of temporal distortions. Thirt...

  19. Functional Specificity and Sex Differences in the Neural Circuits Supporting the Inhibition of Automatic Imitation.

    Science.gov (United States)

    Darda, Kohinoor M; Butler, Emily E; Ramsey, Richard

    2018-06-01

    Humans show an involuntary tendency to copy other people's actions. Although automatic imitation builds rapport and affiliation between individuals, we do not copy actions indiscriminately. Instead, copying behaviors are guided by a selection mechanism, which inhibits some actions and prioritizes others. To date, the neural underpinnings of the inhibition of automatic imitation and differences between the sexes in imitation control are not well understood. Previous studies involved small sample sizes and low statistical power, which produced mixed findings regarding the involvement of domain-general and domain-specific neural architectures. Here, we used data from Experiment 1 ( N = 28) to perform a power analysis to determine the sample size required for Experiment 2 ( N = 50; 80% power). Using independent functional localizers and an analysis pipeline that bolsters sensitivity, during imitation control we show clear engagement of the multiple-demand network (domain-general), but no sensitivity in the theory-of-mind network (domain-specific). Weaker effects were observed with regard to sex differences, suggesting that there are more similarities than differences between the sexes in terms of the neural systems engaged during imitation control. In summary, neurocognitive models of imitation require revision to reflect that the inhibition of imitation relies to a greater extent on a domain-general selection system rather than a domain-specific system that supports social cognition.

  20. Neural network feedforward control of a closed-circuit wind tunnel

    Science.gov (United States)

    Sutcliffe, Peter

    Accurate control of wind-tunnel test conditions can be dramatically enhanced using feedforward control architectures which allow operating conditions to be maintained at a desired setpoint through the use of mathematical models as the primary source of prediction. However, as the desired accuracy of the feedforward prediction increases, the model complexity also increases, so that an ever increasing computational load is incurred. This drawback can be avoided by employing a neural network that is trained offline using the output of a high fidelity wind-tunnel mathematical model, so that the neural network can rapidly reproduce the predictions of the model with a greatly reduced computational overhead. A novel neural network database generation method, developed through the use of fractional factorial arrays, was employed such that a neural network can accurately predict wind-tunnel parameters across a wide range of operating conditions whilst trained upon a highly efficient database. The subsequent network was incorporated into a Neural Network Model Predictive Control (NNMPC) framework to allow an optimised output schedule capable of providing accurate control of the wind-tunnel operating parameters. Facilitation of an optimised path through the solution space is achieved through the use of a chaos optimisation algorithm such that a more globally optimum solution is likely to be found with less computational expense than the gradient descent method. The parameters associated with the NNMPC such as the control horizon are determined through the use of a Taguchi methodology enabling the minimum number of experiments to be carried out to determine the optimal combination. The resultant NNMPC scheme was employed upon the Hessert Low Speed Wind Tunnel at the University of Notre Dame to control the test-section temperature such that it follows a pre-determined reference trajectory during changes in the test-section velocity. Experimental testing revealed that the

  1. A fuzzy neural network model to forecast the percent cloud coverage and cloud top temperature maps

    Directory of Open Access Journals (Sweden)

    Y. Tulunay

    2008-12-01

    Full Text Available Atmospheric processes are highly nonlinear. A small group at the METU in Ankara has been working on a fuzzy data driven generic model of nonlinear processes. The model developed is called the Middle East Technical University Fuzzy Neural Network Model (METU-FNN-M. The METU-FNN-M consists of a Fuzzy Inference System (METU-FIS, a data driven Neural Network module (METU-FNN of one hidden layer and several neurons, and a mapping module, which employs the Bezier Surface Mapping technique. In this paper, the percent cloud coverage (%CC and cloud top temperatures (CTT are forecast one month ahead of time at 96 grid locations. The probable influence of cosmic rays and sunspot numbers on cloudiness is considered by using the METU-FNN-M.

  2. Foreground removal from Planck Sky Model temperature maps using a MLP neural network

    Science.gov (United States)

    Nørgaard-Nielsen, H. U.; Hebert, K.

    2009-08-01

    Unfortunately, the Cosmic Microwave Background (CMB) radiation is contaminated by emission originating in the Milky Way (synchrotron, free-free and dust emission). Since the cosmological information is statistically in nature, it is essential to remove this foreground emission and leave the CMB with no systematic errors. To demonstrate the feasibility of a simple multilayer perceptron (MLP) neural network for extracting the CMB temperature signal, we have analyzed a specific data set, namely the Planck Sky Model maps, developed for evaluation of different component separation methods before including them in the Planck data analysis pipeline. It is found that a MLP neural network can provide a CMB map of about 80 % of the sky to a very high degree uncorrelated with the foreground components. Also the derived power spectrum shows little evidence for systematic errors.

  3. Earthquake-induced landslide-susceptibility mapping using an artificial neural network

    Directory of Open Access Journals (Sweden)

    S. Lee

    2006-01-01

    Full Text Available The purpose of this study was to apply and verify landslide-susceptibility analysis techniques using an artificial neural network and a Geographic Information System (GIS applied to Baguio City, Philippines. The 16 July 1990 earthquake-induced landslides were studied. Landslide locations were identified from interpretation of aerial photographs and field survey, and a spatial database was constructed from topographic maps, geology, land cover and terrain mapping units. Factors that influence landslide occurrence, such as slope, aspect, curvature and distance from drainage were calculated from the topographic database. Lithology and distance from faults were derived from the geology database. Land cover was identified from the topographic database. Terrain map units were interpreted from aerial photographs. These factors were used with an artificial neural network to analyze landslide susceptibility. Each factor weight was determined by a back-propagation exercise. Landslide-susceptibility indices were calculated using the back-propagation weights, and susceptibility maps were constructed from GIS data. The susceptibility map was compared with known landslide locations and verified. The demonstrated prediction accuracy was 93.20%.

  4. Neural reuse of action perception circuits for language, concepts and communication.

    Science.gov (United States)

    Pulvermüller, Friedemann

    2018-01-01

    Neurocognitive and neurolinguistics theories make explicit statements relating specialized cognitive and linguistic processes to specific brain loci. These linking hypotheses are in need of neurobiological justification and explanation. Recent mathematical models of human language mechanisms constrained by fundamental neuroscience principles and established knowledge about comparative neuroanatomy offer explanations for where, when and how language is processed in the human brain. In these models, network structure and connectivity along with action- and perception-induced correlation of neuronal activity co-determine neurocognitive mechanisms. Language learning leads to the formation of action perception circuits (APCs) with specific distributions across cortical areas. Cognitive and linguistic processes such as speech production, comprehension, verbal working memory and prediction are modelled by activity dynamics in these APCs, and combinatorial and communicative-interactive knowledge is organized in the dynamics within, and connections between APCs. The network models and, in particular, the concept of distributionally-specific circuits, can account for some previously not well understood facts about the cortical 'hubs' for semantic processing and the motor system's role in language understanding and speech sound recognition. A review of experimental data evaluates predictions of the APC model and alternative theories, also providing detailed discussion of some seemingly contradictory findings. Throughout, recent disputes about the role of mirror neurons and grounded cognition in language and communication are assessed critically. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  5. Modulation of neural circuits underlying temporal production by facial expressions of pain.

    Science.gov (United States)

    Ballotta, Daniela; Lui, Fausta; Porro, Carlo Adolfo; Nichelli, Paolo Frigio; Benuzzi, Francesca

    2018-01-01

    According to the Scalar Expectancy Theory, humans are equipped with a biological internal clock, possibly modulated by attention and arousal. Both emotions and pain are arousing and can absorb attentional resources, thus causing distortions of temporal perception. The aims of the present single-event fMRI study were to investigate: a) whether observation of facial expressions of pain interferes with time production; and b) the neural network subserving this kind of temporal distortions. Thirty healthy volunteers took part in the study. Subjects were asked to perform a temporal production task and a concurrent gender discrimination task, while viewing faces of unknown people with either pain-related or neutral expressions. Behavioural data showed temporal underestimation (i.e., longer produced intervals) during implicit pain expression processing; this was accompanied by increased activity of right middle temporal gyrus, a region known to be active during the perception of emotional and painful faces. Psycho-Physiological Interaction analyses showed that: 1) the activity of middle temporal gyrus was positively related to that of areas previously reported to play a role in timing: left primary motor cortex, middle cingulate cortex, supplementary motor area, right anterior insula, inferior frontal gyrus, bilateral cerebellum and basal ganglia; 2) the functional connectivity of supplementary motor area with several frontal regions, anterior cingulate cortex and right angular gyrus was correlated to the produced interval during painful expression processing. Our data support the hypothesis that observing emotional expressions distorts subjective time perception through the interaction of the neural network subserving processing of facial expressions with the brain network involved in timing. Within this frame, middle temporal gyrus appears to be the key region of the interplay between the two neural systems.

  6. Modulation of neural circuits underlying temporal production by facial expressions of pain.

    Directory of Open Access Journals (Sweden)

    Daniela Ballotta

    Full Text Available According to the Scalar Expectancy Theory, humans are equipped with a biological internal clock, possibly modulated by attention and arousal. Both emotions and pain are arousing and can absorb attentional resources, thus causing distortions of temporal perception. The aims of the present single-event fMRI study were to investigate: a whether observation of facial expressions of pain interferes with time production; and b the neural network subserving this kind of temporal distortions. Thirty healthy volunteers took part in the study. Subjects were asked to perform a temporal production task and a concurrent gender discrimination task, while viewing faces of unknown people with either pain-related or neutral expressions. Behavioural data showed temporal underestimation (i.e., longer produced intervals during implicit pain expression processing; this was accompanied by increased activity of right middle temporal gyrus, a region known to be active during the perception of emotional and painful faces. Psycho-Physiological Interaction analyses showed that: 1 the activity of middle temporal gyrus was positively related to that of areas previously reported to play a role in timing: left primary motor cortex, middle cingulate cortex, supplementary motor area, right anterior insula, inferior frontal gyrus, bilateral cerebellum and basal ganglia; 2 the functional connectivity of supplementary motor area with several frontal regions, anterior cingulate cortex and right angular gyrus was correlated to the produced interval during painful expression processing. Our data support the hypothesis that observing emotional expressions distorts subjective time perception through the interaction of the neural network subserving processing of facial expressions with the brain network involved in timing. Within this frame, middle temporal gyrus appears to be the key region of the interplay between the two neural systems.

  7. Modulation of neural circuits underlying temporal production by facial expressions of pain

    Science.gov (United States)

    Lui, Fausta; Porro, Carlo Adolfo; Nichelli, Paolo Frigio; Benuzzi, Francesca

    2018-01-01

    According to the Scalar Expectancy Theory, humans are equipped with a biological internal clock, possibly modulated by attention and arousal. Both emotions and pain are arousing and can absorb attentional resources, thus causing distortions of temporal perception. The aims of the present single-event fMRI study were to investigate: a) whether observation of facial expressions of pain interferes with time production; and b) the neural network subserving this kind of temporal distortions. Thirty healthy volunteers took part in the study. Subjects were asked to perform a temporal production task and a concurrent gender discrimination task, while viewing faces of unknown people with either pain-related or neutral expressions. Behavioural data showed temporal underestimation (i.e., longer produced intervals) during implicit pain expression processing; this was accompanied by increased activity of right middle temporal gyrus, a region known to be active during the perception of emotional and painful faces. Psycho-Physiological Interaction analyses showed that: 1) the activity of middle temporal gyrus was positively related to that of areas previously reported to play a role in timing: left primary motor cortex, middle cingulate cortex, supplementary motor area, right anterior insula, inferior frontal gyrus, bilateral cerebellum and basal ganglia; 2) the functional connectivity of supplementary motor area with several frontal regions, anterior cingulate cortex and right angular gyrus was correlated to the produced interval during painful expression processing. Our data support the hypothesis that observing emotional expressions distorts subjective time perception through the interaction of the neural network subserving processing of facial expressions with the brain network involved in timing. Within this frame, middle temporal gyrus appears to be the key region of the interplay between the two neural systems. PMID:29447256

  8. Single-Cell Memory Regulates a Neural Circuit for Sensory Behavior.

    Science.gov (United States)

    Kobayashi, Kyogo; Nakano, Shunji; Amano, Mutsuki; Tsuboi, Daisuke; Nishioka, Tomoki; Ikeda, Shingo; Yokoyama, Genta; Kaibuchi, Kozo; Mori, Ikue

    2016-01-05

    Unveiling the molecular and cellular mechanisms underlying memory has been a challenge for the past few decades. Although synaptic plasticity is proven to be essential for memory formation, the significance of "single-cell memory" still remains elusive. Here, we exploited a primary culture system for the analysis of C. elegans neurons and show that a single thermosensory neuron has an ability to form, retain, and reset a temperature memory. Genetic and proteomic analyses found that the expression of the single-cell memory exhibits inter-individual variability, which is controlled by the evolutionarily conserved CaMKI/IV and Raf pathway. The variable responses of a sensory neuron influenced the neural activity of downstream interneurons, suggesting that modulation of the sensory neurons ultimately determines the behavioral output in C. elegans. Our results provide proof of single-cell memory and suggest that the individual differences in neural responses at the single-cell level can confer individuality. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Unbalanced neuronal circuits in addiction.

    Science.gov (United States)

    Volkow, Nora D; Wang, Gen-Jack; Tomasi, Dardo; Baler, Ruben D

    2013-08-01

    Through sequential waves of drug-induced neurochemical stimulation, addiction co-opts the brain's neuronal circuits that mediate reward, motivation to behavioral inflexibility and a severe disruption of self-control and compulsive drug intake. Brain imaging technologies have allowed neuroscientists to map out the neural landscape of addiction in the human brain and to understand how drugs modify it. Published by Elsevier Ltd.

  10. A Framework for Quantitative Modeling of Neural Circuits Involved in Sleep-to-Wake Transition

    Directory of Open Access Journals (Sweden)

    Siamak eSorooshyari

    2015-02-01

    Full Text Available Identifying the neuronal circuits and dynamics of sleep-to-wake transition is essential to understanding brain regulation of behavioral states, including sleep-wake cycles, arousal, and hyperarousal. Recent work by different laboratories has used optogenetics to determine the role of individual neuromodulators in state transitions. The optogenetically-driven data does not yet provide a multi-dimensional schematic of the mechanisms underlying changes in vigilance states. This work presents a modeling framework to interpret, assist, and drive research on the sleep-regulatory network. We identify feedback, redundancy, and gating hierarchy as three fundamental aspects of this model. The presented model is expected to expand as additional data on the contribution of each transmitter to a vigilance state becomes available. Incorporation of conductance-based models of neuronal ensembles into this model and existing models of cortical excitability will provide more comprehensive insight into sleep dynamics as well as sleep and arousal-related disorders.

  11. Neural circuits in the brain that are activated when mitigating criminal sentences.

    Science.gov (United States)

    Yamada, Makiko; Camerer, Colin F; Fujie, Saori; Kato, Motoichiro; Matsuda, Tetsuya; Takano, Harumasa; Ito, Hiroshi; Suhara, Tetsuya; Takahashi, Hidehiko

    2012-03-27

    In sentencing guilty defendants, jurors and judges weigh 'mitigating circumstances', which create sympathy for a defendant. Here we use functional magnetic resonance imaging to measure neural activity in ordinary citizens who are potential jurors, as they decide on mitigation of punishment for murder. We found that sympathy activated regions associated with mentalising and moral conflict (dorsomedial prefrontal cortex, precuneus and temporo-parietal junction). Sentencing also activated precuneus and anterior cingulate cortex, suggesting that mitigation is based on negative affective responses to murder, sympathy for mitigating circumstances and cognitive control to choose numerical punishments. Individual differences on the inclination to mitigate, the sentence reduction per unit of judged sympathy, correlated with activity in the right middle insula, an area known to represent interoception of visceral states. These results could help the legal system understand how potential jurors actually decide, and contribute to growing knowledge about whether emotion and cognition are integrated sensibly in difficult judgments.

  12. How linear response shaped models of neural circuits and the quest for alternatives.

    Science.gov (United States)

    Herfurth, Tim; Tchumatchenko, Tatjana

    2017-10-01

    In the past decades, many mathematical approaches to solve complex nonlinear systems in physics have been successfully applied to neuroscience. One of these tools is the concept of linear response functions. However, phenomena observed in the brain emerge from fundamentally nonlinear interactions and feedback loops rather than from a composition of linear filters. Here, we review the successes achieved by applying the linear response formalism to topics, such as rhythm generation and synchrony and by incorporating it into models that combine linear and nonlinear transformations. We also discuss the challenges encountered in the linear response applications and argue that new theoretical concepts are needed to tackle feedback loops and non-equilibrium dynamics which are experimentally observed in neural networks but are outside of the validity regime of the linear response formalism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Sex differences in the neural circuit that mediates female sexual receptivity

    Science.gov (United States)

    Flanagan-Cato, Loretta M.

    2011-01-01

    Female sexual behavior in rodents, typified by the lordosis posture, is hormone-dependent and sex-specific. Ovarian hormones control this behavior via receptors in the hypothalamic ventromedial nucleus (VMH). This review considers the sex differences in the morphology, neurochemistry and neural circuitry of the VMH to gain insights into the mechanisms that control lordosis. The VMH is larger in males compared with females, due to more synaptic connections. Another sex difference is the responsiveness to estradiol, with males exhibiting muted, and in some cases reverse, effects compared with females. The lack of lordosis in males may be explained by differences in synaptic organization or estrogen responsiveness, or both, in the VMH. However, given that damage to other brain regions unmasks lordosis behavior in males, a male-typical VMH is unlikely the main factor that prevents lordosis. In females, key questions remain regarding the mechanisms whereby ovarian hormones modulate VMH function to promote lordosis. PMID:21338620

  14. Neural circuit of verbal humor comprehension in schizophrenia - an fMRI study

    Directory of Open Access Journals (Sweden)

    Przemysław Adamczyk

    2017-01-01

    Full Text Available Individuals with schizophrenia exhibit problems with understanding the figurative meaning of language. This study evaluates neural correlates of diminished humor comprehension observed in schizophrenia. The study included chronic schizophrenia (SCH outpatients (n = 20, and sex, age and education level matched healthy controls (n = 20. The fMRI punchline based humor comprehension task consisted of 60 stories of which 20 had funny, 20 nonsensical and 20 neutral (not funny punchlines. After the punchlines were presented, the participants were asked to indicate whether the story was comprehensible and how funny it was. Three contrasts were analyzed in both groups reflecting stages of humor processing: abstract vs neutral stories - incongruity detection; funny vs abstract - incongruity resolution and elaboration; and funny vs neutral – complete humor processing. Additionally, parametric modulation analysis was performed using both subjective ratings separately. Between-group comparisons revealed that the SCH subjects had attenuated activation in the right posterior superior temporal gyrus (BA 41 in case of irresolvable incongruity processing of nonsensical puns; in the left dorsomedial middle and superior frontal gyri (BA 8/9 in case of incongruity resolution and elaboration processing of funny puns; and in the interhemispheric dorsal anterior cingulate cortex (BA 24 in case of complete processing of funny puns. Additionally, during comprehensibility ratings the SCH group showed a suppressed activity in the left dorsomedial middle and superior frontal gyri (BA 8/9 and revealed weaker activation during funniness ratings in the left dorsal anterior cingulate cortex (BA 24. Interestingly, these differences in the SCH group were accompanied behaviorally by a protraction of time in both types of rating responses and by indicating funny punchlines less comprehensible. Summarizing, our results indicate neural substrates of humor comprehension

  15. Neural circuit of verbal humor comprehension in schizophrenia - an fMRI study.

    Science.gov (United States)

    Adamczyk, Przemysław; Wyczesany, Miroslaw; Domagalik, Aleksandra; Daren, Artur; Cepuch, Kamil; Błądziński, Piotr; Cechnicki, Andrzej; Marek, Tadeusz

    2017-01-01

    Individuals with schizophrenia exhibit problems with understanding the figurative meaning of language. This study evaluates neural correlates of diminished humor comprehension observed in schizophrenia. The study included chronic schizophrenia (SCH) outpatients (n = 20), and sex, age and education level matched healthy controls (n = 20). The fMRI punchline based humor comprehension task consisted of 60 stories of which 20 had funny, 20 nonsensical and 20 neutral (not funny) punchlines. After the punchlines were presented, the participants were asked to indicate whether the story was comprehensible and how funny it was. Three contrasts were analyzed in both groups reflecting stages of humor processing: abstract vs neutral stories - incongruity detection; funny vs abstract - incongruity resolution and elaboration; and funny vs neutral - complete humor processing. Additionally, parametric modulation analysis was performed using both subjective ratings separately. Between-group comparisons revealed that the SCH subjects had attenuated activation in the right posterior superior temporal gyrus (BA 41) in case of irresolvable incongruity processing of nonsensical puns; in the left dorsomedial middle and superior frontal gyri (BA 8/9) in case of incongruity resolution and elaboration processing of funny puns; and in the interhemispheric dorsal anterior cingulate cortex (BA 24) in case of complete processing of funny puns. Additionally, during comprehensibility ratings the SCH group showed a suppressed activity in the left dorsomedial middle and superior frontal gyri (BA 8/9) and revealed weaker activation during funniness ratings in the left dorsal anterior cingulate cortex (BA 24). Interestingly, these differences in the SCH group were accompanied behaviorally by a protraction of time in both types of rating responses and by indicating funny punchlines less comprehensible. Summarizing, our results indicate neural substrates of humor comprehension processing

  16. Neural imaginaries and clinical epistemology: Rhetorically mapping the adolescent brain in the clinical encounter.

    Science.gov (United States)

    Buchbinder, Mara

    2015-10-01

    The social work of brain images has taken center stage in recent theorizing of the intersections between neuroscience and society. However, neuroimaging is only one of the discursive modes through which public representations of neurobiology travel. This article adopts an expanded view toward the social implications of neuroscientific thinking to examine how neural imaginaries are constructed in the absence of visual evidence. Drawing on ethnographic fieldwork conducted over 18 months (2008-2009) in a United States multidisciplinary pediatric pain clinic, I examine the pragmatic clinical work undertaken to represent ambiguous symptoms in neurobiological form. Focusing on one physician, I illustrate how, by rhetorically mapping the brain as a therapeutic tool, she engaged in a distinctive form of representation that I call neural imagining. In shifting my focus away from the purely material dimensions of brain images, I juxtapose the cultural work of brain scanning technologies with clinical neural imaginaries in which the teenage brain becomes a space of possibility, not to map things as they are, but rather, things as we hope they might be. These neural imaginaries rely upon a distinctive clinical epistemology that privileges the creative work of the imagination over visualization technologies in revealing the truths of the body. By creating a therapeutic space for adolescents to exercise their imaginative faculties and a discursive template for doing so, neural imagining relocates adolescents' agency with respect to epistemologies of bodily knowledge and the role of visualization practices therein. In doing so, it provides a more hopeful alternative to the dominant popular and scientific representations of the teenage brain that view it primarily through the lens of pathology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Remediation of Childhood Math Anxiety and Associated Neural Circuits through Cognitive Tutoring.

    Science.gov (United States)

    Supekar, Kaustubh; Iuculano, Teresa; Chen, Lang; Menon, Vinod

    2015-09-09

    Math anxiety is a negative emotional reaction that is characterized by feelings of stress and anxiety in situations involving mathematical problem solving. High math-anxious individuals tend to avoid situations involving mathematics and are less likely to pursue science, technology, engineering, and math-related careers than those with low math anxiety. Math anxiety during childhood, in particular, has adverse long-term consequences for academic and professional success. Identifying cognitive interventions and brain mechanisms by which math anxiety can be ameliorated in children is therefore critical. Here we investigate whether an intensive 8 week one-to-one cognitive tutoring program designed to improve mathematical skills reduces childhood math anxiety, and we identify the neurobiological mechanisms by which math anxiety can be reduced in affected children. Forty-six children in grade 3, a critical early-onset period for math anxiety, participated in the cognitive tutoring program. High math-anxious children showed a significant reduction in math anxiety after tutoring. Remarkably, tutoring remediated aberrant functional responses and connectivity in emotion-related circuits anchored in the basolateral amygdala. Crucially, children with greater tutoring-induced decreases in amygdala reactivity had larger reductions in math anxiety. Our study demonstrates that sustained exposure to mathematical stimuli can reduce math anxiety and highlights the key role of the amygdala in this process. Our findings are consistent with models of exposure-based therapy for anxiety disorders and have the potential to inform the early treatment of a disability that, if left untreated in childhood, can lead to significant lifelong educational and socioeconomic consequences in affected individuals. Significance statement: Math anxiety during early childhood has adverse long-term consequences for academic and professional success. It is therefore important to identify ways to alleviate

  18. Mapping Speech Spectra from Throat Microphone to Close-Speaking Microphone: A Neural Network Approach

    Directory of Open Access Journals (Sweden)

    B. Yegnanarayana

    2007-01-01

    Full Text Available Speech recorded from a throat microphone is robust to the surrounding noise, but sounds unnatural unlike the speech recorded from a close-speaking microphone. This paper addresses the issue of improving the perceptual quality of the throat microphone speech by mapping the speech spectra from the throat microphone to the close-speaking microphone. A neural network model is used to capture the speaker-dependent functional relationship between the feature vectors (cepstral coefficients of the two speech signals. A method is proposed to ensure the stability of the all-pole synthesis filter. Objective evaluations indicate the effectiveness of the proposed mapping scheme. The advantage of this method is that the model gives a smooth estimate of the spectra of the close-speaking microphone speech. No distortions are perceived in the reconstructed speech. This mapping technique is also used for bandwidth extension of telephone speech.

  19. Gamma band oscillations: a key to understanding schizophrenia symptoms and neural circuit abnormalities.

    Science.gov (United States)

    McNally, James M; McCarley, Robert W

    2016-05-01

    We review our current understanding of abnormal γ band oscillations in schizophrenia, their association with symptoms and the underlying cortical circuit abnormality, with a particular focus on the role of fast-spiking parvalbumin gamma-aminobutyric acid (GABA) neurons in the disease state. Clinical electrophysiological studies of schizophrenia patients and pharmacological models of the disorder show an increase in spontaneous γ band activity (not stimulus-evoked) measures. These findings provide a crucial link between preclinical and clinical work examining the role of γ band activity in schizophrenia. MRI-based experiments measuring cortical GABA provides evidence supporting impaired GABAergic neurotransmission in schizophrenia patients, which is correlated with γ band activity level. Several studies suggest that stimulation of the cortical circuitry, directly or via subcortical structures, has the potential to modulate cortical γ activity, and improve cognitive function. Abnormal γ band activity is observed in patients with schizophrenia and disease models in animals, and is suggested to underlie the psychosis and cognitive/perceptual deficits. Convergent evidence from both clinical and preclinical studies suggest the central factor in γ band abnormalities is impaired GABAergic neurotransmission, particularly in a subclass of neurons which express parvalbumin. Rescue of γ band abnormalities presents an intriguing option for therapeutic intervention.

  20. Disrupted insula-based neural circuit organization and conflict interference in trauma-exposed youth

    Directory of Open Access Journals (Sweden)

    Hilary A. Marusak

    2015-01-01

    Full Text Available Childhood trauma exposure is a potent risk factor for psychopathology. Emerging research suggests that aberrant saliency processing underlies the link between early trauma exposure and later cognitive and socioemotional deficits that are hallmark of several psychiatric disorders. Here, we examine brain and behavioral responses during a face categorization conflict task, and relate these to intrinsic connectivity of the salience network (SN. The results demonstrate a unique pattern of SN dysfunction in youth exposed to trauma (n = 14 relative to comparison youth (n = 19 matched on age, sex, IQ, and sociodemographic risk. We find that trauma-exposed youth are more susceptible to conflict interference and this correlates with higher fronto-insular responses during conflict. Resting-state functional connectivity data collected in the same participants reveal increased connectivity of the insula to SN seed regions that is associated with diminished reward sensitivity, a critical risk/resilience trait following stress. In addition to altered intrinsic connectivity of the SN, we observed altered connectivity between the SN and default mode network (DMN in trauma-exposed youth. These data uncover network-level disruptions in brain organization following one of the strongest predictors of illness, early life trauma, and demonstrate the relevance of observed neural effects for behavior and specific symptom dimensions. SN dysfunction may serve as a diathesis that contributes to illness and negative outcomes following childhood trauma.

  1. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches

    Science.gov (United States)

    Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Thibodeaux, David N.; Zhao, Hanzhi T.; Yu, Hang

    2016-01-01

    Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574312

  2. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches.

    Science.gov (United States)

    Ma, Ying; Shaik, Mohammed A; Kim, Sharon H; Kozberg, Mariel G; Thibodeaux, David N; Zhao, Hanzhi T; Yu, Hang; Hillman, Elizabeth M C

    2016-10-05

    Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Authors.

  3. [Lower urinary tract dysfunction and neuropathological findings of the neural circuits controlling micturition in familial amyotrophic lateral sclerosis with L106V mutation in the SOD1 gene].

    Science.gov (United States)

    Hineno, Akiyo; Oyanagi, Kiyomitsu; Nakamura, Akinori; Shimojima, Yoshio; Yoshida, Kunihiro; Ikeda, Shu-Ichi

    2016-01-01

    We report lower urinary tract dysfunction and neuropathological findings of the neural circuits controlling micturition in the patients with familial amyotrophic lateral sclerosis having L106V mutation in the SOD1 gene. Ten of 20 patients showed lower urinary tract dysfunction and 5 patients developed within 1 year after the onset of weakness. In 8 patients with an artificial respirator, 6 patients showed lower urinary tract dysfunction. Lower urinary tract dysfunction and respiratory failure requiring an artificial respirator occurred simultaneously in 3 patients. Neuronal loss and gliosis were observed in the neural circuits controlling micturition, such as frontal lobe, thalamus, hypothalamus, striatum, periaqueductal gray, ascending spinal tract, lateral corticospinal tract, intermediolateral nucleus and Onufrowicz' nucleus. Lower urinary tract dysfunction, especially storage symptoms, developed about 1 year after the onset of weakness, and the dysfunction occurred simultaneously with artificial respirator use in the patients.

  4. Distribution of language-related Cntnap2 protein in neural circuits critical for vocal learning.

    Science.gov (United States)

    Condro, Michael C; White, Stephanie A

    2014-01-01

    Variants of the contactin associated protein-like 2 (Cntnap2) gene are risk factors for language-related disorders including autism spectrum disorder, specific language impairment, and stuttering. Songbirds are useful models for study of human speech disorders due to their shared capacity for vocal learning, which relies on similar cortico-basal ganglia circuitry and genetic factors. Here we investigate Cntnap2 protein expression in the brain of the zebra finch, a songbird species in which males, but not females, learn their courtship songs. We hypothesize that Cntnap2 has overlapping functions in vocal learning species, and expect to find protein expression in song-related areas of the zebra finch brain. We further expect that the distribution of this membrane-bound protein may not completely mirror its mRNA distribution due to the distinct subcellular localization of the two molecular species. We find that Cntnap2 protein is enriched in several song control regions relative to surrounding tissues, particularly within the adult male, but not female, robust nucleus of the arcopallium (RA), a cortical song control region analogous to human layer 5 primary motor cortex. The onset of this sexually dimorphic expression coincides with the onset of sensorimotor learning in developing males. Enrichment in male RA appears due to expression in projection neurons within the nucleus, as well as to additional expression in nerve terminals of cortical projections to RA from the lateral magnocellular nucleus of the nidopallium. Cntnap2 protein expression in zebra finch brain supports the hypothesis that this molecule affects neural connectivity critical for vocal learning across taxonomic classes. Copyright © 2013 Wiley Periodicals, Inc.

  5. Identification of Common Neural Circuit Disruptions in Cognitive Control Across Psychiatric Disorders.

    Science.gov (United States)

    McTeague, Lisa M; Huemer, Julia; Carreon, David M; Jiang, Ying; Eickhoff, Simon B; Etkin, Amit

    2017-07-01

    Cognitive deficits are a common feature of psychiatric disorders. The authors investigated the nature of disruptions in neural circuitry underlying cognitive control capacities across psychiatric disorders through a transdiagnostic neuroimaging meta-analysis. A PubMed search was conducted for whole-brain functional neuroimaging articles published through June 2015 that compared activation in patients with axis I disorders and matched healthy control participants during cognitive control tasks. Tasks that probed performance or conflict monitoring, response inhibition or selection, set shifting, verbal fluency, and recognition or working memory were included. Activation likelihood estimation meta-analyses were conducted on peak voxel coordinates. The 283 experiments submitted to meta-analysis included 5,728 control participants and 5,493 patients with various disorders (schizophrenia, bipolar or unipolar depression, anxiety disorders, and substance use disorders). Transdiagnostically abnormal activation was evident in the left prefrontal cortex as well as the anterior insula, the right ventrolateral prefrontal cortex, the right intraparietal sulcus, and the midcingulate/presupplementary motor area. Disruption was also observed in a more anterior cluster in the dorsal cingulate cortex, which overlapped with a network of structural perturbation that the authors previously reported in a transdiagnostic meta-analysis of gray matter volume. These findings demonstrate a common pattern of disruption across major psychiatric disorders that parallels the "multiple-demand network" observed in intact cognition. This network interfaces with the anterior-cingulo-insular or "salience network" demonstrated to be transdiagnostically vulnerable to gray matter reduction. Thus, networks intrinsic to adaptive, flexible cognition are vulnerable to broad-spectrum psychopathology. Dysfunction in these networks may reflect an intermediate transdiagnostic phenotype, which could be leveraged

  6. Thermoacoustic and thermoreflectance imaging of biased integrated circuits: Voltage and temperature maps

    Energy Technology Data Exchange (ETDEWEB)

    Hernández-Rosales, E.; Cedeño, E. [Gleb Wataghin Physics Institute, University of Campinas - Unicamp, 13083-859 Campinas, SP (Brazil); Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Colonia Irrigación, CP 11500, México, DF (Mexico); Hernandez-Wong, J. [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Colonia Irrigación, CP 11500, México, DF (Mexico); CONACYT, México, DF, México (Mexico); Rojas-Trigos, J. B.; Marin, E. [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Colonia Irrigación, CP 11500, México, DF (Mexico); Gandra, F. C. G.; Mansanares, A. M., E-mail: manoel@ifi.unicamp.br [Gleb Wataghin Physics Institute, University of Campinas - Unicamp, 13083-859 Campinas, SP (Brazil)

    2016-07-25

    In this work a combined thermoacoustic and thermoreflectance set-up was designed for imaging biased microelectronic circuits. In particular, it was used with polycrystalline silicon resistive tracks grown on a monocrystalline Si substrate mounted on a test chip. Thermoreflectance images, obtained by scanning a probe laser beam on the sample surface, clearly show the regions periodically heated by Joule effect, which are associated to the electric current distribution in the circuit. The thermoacoustic signal, detected by a pyroelectric/piezoelectric sensor beneath the chip, also discloses the Joule contribution of the whole sample. However, additional information emerges when a non-modulated laser beam is focused on the sample surface in a raster scan mode allowing imaging of the sample. The distribution of this supplementary signal is related to the voltage distribution along the circuit.

  7. Image Fusion Based on the Self-Organizing Feature Map Neural Networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhaoli; SUN Shenghe

    2001-01-01

    This paper presents a new image datafusion scheme based on the self-organizing featuremap (SOFM) neural networks.The scheme consists ofthree steps:(1) pre-processing of the images,whereweighted median filtering removes part of the noisecomponents corrupting the image,(2) pixel clusteringfor each image using two-dimensional self-organizingfeature map neural networks,and (3) fusion of the im-ages obtained in Step (2) utilizing fuzzy logic,whichsuppresses the residual noise components and thusfurther improves the image quality.It proves thatsuch a three-step combination offers an impressive ef-fectiveness and performance improvement,which isconfirmed by simulations involving three image sen-sors (each of which has a different noise structure).

  8. Fractional Snow Cover Mapping by Artificial Neural Networks and Support Vector Machines

    Science.gov (United States)

    Çiftçi, B. B.; Kuter, S.; Akyürek, Z.; Weber, G.-W.

    2017-11-01

    Snow is an important land cover whose distribution over space and time plays a significant role in various environmental processes. Hence, snow cover mapping with high accuracy is necessary to have a real understanding for present and future climate, water cycle, and ecological changes. This study aims to investigate and compare the design and use of artificial neural networks (ANNs) and support vector machines (SVMs) algorithms for fractional snow cover (FSC) mapping from satellite data. ANN and SVM models with different model building settings are trained by using Moderate Resolution Imaging Spectroradiometer surface reflectance values of bands 1-7, normalized difference snow index and normalized difference vegetation index as predictor variables. Reference FSC maps are generated from higher spatial resolution Landsat ETM+ binary snow cover maps. Results on the independent test data set indicate that the developed ANN model with hyperbolic tangent transfer function in the output layer and the SVM model with radial basis function kernel produce high FSC mapping accuracies with the corresponding values of R = 0.93 and R = 0.92, respectively.

  9. A Top-down Approach to Genetic Circuit Synthesis and Optimized Technology Mapping

    DEFF Research Database (Denmark)

    Baig, Hasan; Madsen, Jan

    2017-01-01

    Genetic logic circuits are becoming popular as an emerging field of technology. They are composed of genetic parts of DNA and work inside a living cell to perform a dedicated boolean function triggered by the presence or absence of certain proteins or other species....

  10. Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce.

    Science.gov (United States)

    Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan

    2016-01-01

    A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network's initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data.

  11. Forward and reverse mapping for milling process using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Rashmi L. Malghan

    2018-02-01

    Full Text Available The data set presented is related to the milling process of AA6061-4.5%Cu-5%SiCp composite. The data primarily concentrates on predicting values of some machining responses, such as cutting force, surface finish and power utilization utilizing using forward back propagation neural network based approach, i.e. ANN based on three process parameters, such as spindle speed, feed rate and depth of cut.The comparing reverse model is likewise created to prescribe the ideal settings of processing parameters for accomplishing the desired responses as indicated by the necessities of the end clients. These modelling approaches are very proficient to foresee the benefits of machining responses and also process parameter settings in light of the experimental technique. Keywords: ANN, Forward mapping, Reverse mapping, Milling process

  12. Comparison between artificial neural networks and maximum likelihood classification in digital soil mapping

    Directory of Open Access Journals (Sweden)

    César da Silva Chagas

    2013-04-01

    Full Text Available Soil surveys are the main source of spatial information on soils and have a range of different applications, mainly in agriculture. The continuity of this activity has however been severely compromised, mainly due to a lack of governmental funding. The purpose of this study was to evaluate the feasibility of two different classifiers (artificial neural networks and a maximum likelihood algorithm in the prediction of soil classes in the northwest of the state of Rio de Janeiro. Terrain attributes such as elevation, slope, aspect, plan curvature and compound topographic index (CTI and indices of clay minerals, iron oxide and Normalized Difference Vegetation Index (NDVI, derived from Landsat 7 ETM+ sensor imagery, were used as discriminating variables. The two classifiers were trained and validated for each soil class using 300 and 150 samples respectively, representing the characteristics of these classes in terms of the discriminating variables. According to the statistical tests, the accuracy of the classifier based on artificial neural networks (ANNs was greater than of the classic Maximum Likelihood Classifier (MLC. Comparing the results with 126 points of reference showed that the resulting ANN map (73.81 % was superior to the MLC map (57.94 %. The main errors when using the two classifiers were caused by: a the geological heterogeneity of the area coupled with problems related to the geological map; b the depth of lithic contact and/or rock exposure, and c problems with the environmental correlation model used due to the polygenetic nature of the soils. This study confirms that the use of terrain attributes together with remote sensing data by an ANN approach can be a tool to facilitate soil mapping in Brazil, primarily due to the availability of low-cost remote sensing data and the ease by which terrain attributes can be obtained.

  13. Mapping brain circuits of reward and motivation: in the footsteps of Ann Kelley.

    Science.gov (United States)

    Richard, Jocelyn M; Castro, Daniel C; Difeliceantonio, Alexandra G; Robinson, Mike J F; Berridge, Kent C

    2013-11-01

    Ann Kelley was a scientific pioneer in reward neuroscience. Her many notable discoveries included demonstrations of accumbens/striatal circuitry roles in eating behavior and in food reward, explorations of limbic interactions with hypothalamic regulatory circuits, and additional interactions of motivation circuits with learning functions. Ann Kelley's accomplishments inspired other researchers to follow in her footsteps, including our own laboratory group. Here we describe results from several lines of our research that sprang in part from earlier findings by Kelley and colleagues. We describe hedonic hotspots for generating intense pleasure 'liking', separate identities of 'wanting' versus 'liking' systems, a novel role for dorsal neostriatum in generating motivation to eat, a limbic keyboard mechanism in nucleus accumbens for generating intense desire versus intense dread, and dynamic limbic transformations of learned memories into motivation. We describe how origins for each of these themes can be traced to fundamental contributions by Ann Kelley. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Transcranial magnetic stimulation and connectivity mapping: tools for studying the neural bases of brain disorders.

    Science.gov (United States)

    Hampson, M; Hoffman, R E

    2010-01-01

    There has been an increasing emphasis on characterizing pathophysiology underlying psychiatric and neurological disorders in terms of altered neural connectivity and network dynamics. Transcranial magnetic stimulation (TMS) provides a unique opportunity for investigating connectivity in the human brain. TMS allows researchers and clinicians to directly stimulate cortical regions accessible to electromagnetic coils positioned on the scalp. The induced activation can then propagate through long-range connections to other brain areas. Thus, by identifying distal regions activated during TMS, researchers can infer connectivity patterns in the healthy human brain and can examine how those patterns may be disrupted in patients with different brain disorders. Conversely, connectivity maps derived using neuroimaging methods can identify components of a dysfunctional network. Nodes in this dysfunctional network accessible as targets for TMS by virtue of their proximity to the scalp may then permit TMS-induced alterations of components of the network not directly accessible to TMS via propagated effects. Thus TMS can provide a portal for accessing and altering neural dynamics in networks that are widely distributed anatomically. Finally, when long-term modulation of network dynamics is induced by trains of repetitive TMS, changes in functional connectivity patterns can be studied in parallel with changes in patient symptoms. These correlational data can elucidate neural mechanisms underlying illness and recovery. In this review, we focus on the application of these approaches to the study of psychiatric and neurological illnesses.

  15. Transcranial magnetic stimulation and connectivity mapping: tools for studying the neural bases of brain disorders.

    Directory of Open Access Journals (Sweden)

    Michelle Hampson

    2010-08-01

    Full Text Available There has been an increasing emphasis on characterizing pathophysiology underlying psychiatric and neurological disorders in terms of altered neural connectivity and network dynamics. Transcranial magnetic stimulation (TMS provides a unique opportunity for investigating connectivity in the human brain. TMS allows researchers and clinicians to directly stimulate cortical regions accessible to electromagnetic coils positioned on the scalp. The induced activation can then propagate through long-range connections to other brain areas. Thus, by identifying distal regions activated during TMS, researchers can infer connectivity patterns in the healthy human brain and can examine how those patterns may be disrupted in patients with different brain disorders. Conversely, connectivity maps derived using neuroimaging methods can identify components of a dysfunctional network. Nodes in this dysfunctional network accessible as targets for TMS by virtue of their proximity to the scalp may then permit TMS-induced alterations of components of the network not directly accessible to TMS via propagated effects. Thus TMS can provide a portal for accessing and altering neural dynamics in networks that are widely distributed anatomically. Finally, when long-term modulation of network dynamics is induced by trains of repetitive TMS, changes in functional connectivity patterns can be studied in parallel with changes in patient symptoms. These correlational data can elucidate neural mechanisms underlying illness and recovery. In this review, we focus on the application of these approaches to the study of psychiatric and neurological illnesses.

  16. Differential receptive field organizations give rise to nearly identical neural correlations across three parallel sensory maps in weakly electric fish.

    Science.gov (United States)

    Hofmann, Volker; Chacron, Maurice J

    2017-09-01

    Understanding how neural populations encode sensory information thereby leading to perception and behavior (i.e., the neural code) remains an important problem in neuroscience. When investigating the neural code, one must take into account the fact that neural activities are not independent but are actually correlated with one another. Such correlations are seen ubiquitously and have a strong impact on neural coding. Here we investigated how differences in the antagonistic center-surround receptive field (RF) organization across three parallel sensory maps influence correlations between the activities of electrosensory pyramidal neurons. Using a model based on known anatomical differences in receptive field center size and overlap, we initially predicted large differences in correlated activity across the maps. However, in vivo electrophysiological recordings showed that, contrary to modeling predictions, electrosensory pyramidal neurons across all three segments displayed nearly identical correlations. To explain this surprising result, we incorporated the effects of RF surround in our model. By systematically varying both the RF surround gain and size relative to that of the RF center, we found that multiple RF structures gave rise to similar levels of correlation. In particular, incorporating known physiological differences in RF structure between the three maps in our model gave rise to similar levels of correlation. Our results show that RF center overlap alone does not determine correlations which has important implications for understanding how RF structure influences correlated neural activity.

  17. Transformation of a Spatial Map across the Hippocampal-Lateral Septal Circuit.

    Science.gov (United States)

    Tingley, David; Buzsáki, György

    2018-05-15

    The hippocampus constructs a map of the environment. How this "cognitive map" is utilized by other brain regions to guide behavior remains unexplored. To examine how neuronal firing patterns in the hippocampus are transmitted and transformed, we recorded neurons in its principal subcortical target, the lateral septum (LS). We observed that LS neurons carry reliable spatial information in the phase of action potentials, relative to hippocampal theta oscillations, while the firing rates of LS neurons remained uninformative. Furthermore, this spatial phase code had an anatomical microstructure within the LS and was bound to the hippocampal spatial code by synchronous gamma frequency cell assemblies. Using a data-driven model, we show that rate-independent spatial tuning arises through the dynamic weighting of CA1 and CA3 cell assemblies. Our findings demonstrate that transformation of the hippocampal spatial map depends on higher-order theta-dependent neuronal sequences. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. The Maps Inside your Head

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    How do our brains make sense of a complex and unpredictable world? In this talk, I will discuss a physicist's approach to the neural topography of information processing in the brain. First I will review the brain's architecture, and how neural circuits map out the sensory and cognitive worlds. Then I will describe how highly complex sensory and cognitive tasks are carried out by the cooperative action of many specialized neurons and circuits, each of which has a simple function. I will illustrate my remarks with one sensory example and one cognitive example. For the sensory examples, I will consider the sense of smell ("olfaction"), whereby humans and other animals distinguish vast arrays of odor mixtures using very limited neural resources. For the cognitive example, I will consider the "sense of place", that is, how animals mentally represent their physical location. Both examples demonstrate that brains have evolved neural circuits that exploit sophisticated principles of mathematics - principles that sci...

  19. Neural signatures of Trail Making Test performance: Evidence from lesion-mapping and neuroimaging studies.

    Science.gov (United States)

    Varjacic, Andreja; Mantini, Dante; Demeyere, Nele; Gillebert, Celine R

    2018-03-27

    The Trail Making Test (TMT) is an extensively used neuropsychological instrument for the assessment of set-switching ability across a wide range of neurological conditions. However, the exact nature of the cognitive processes and associated brain regions contributing to the performance on the TMT remains unclear. In this review, we first introduce the TMT by discussing its administration and scoring approaches. We then examine converging evidence and divergent findings concerning the brain regions related to TMT performance, as identified by lesion-symptom mapping studies conducted in brain-injured patients and functional magnetic resonance imaging studies conducted in healthy participants. After addressing factors that may account for the heterogeneity in the brain regions reported by these studies, we identify future research endeavours that may permit disentangling the different processes contributing to TMT performance and relating them to specific brain circuits. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Mapping Common Aphasia Assessments to Underlying Cognitive Processes and Their Neural Substrates.

    Science.gov (United States)

    Lacey, Elizabeth H; Skipper-Kallal, Laura M; Xing, Shihui; Fama, Mackenzie E; Turkeltaub, Peter E

    2017-05-01

    Understanding the relationships between clinical tests, the processes they measure, and the brain networks underlying them, is critical in order for clinicians to move beyond aphasia syndrome classification toward specification of individual language process impairments. To understand the cognitive, language, and neuroanatomical factors underlying scores of commonly used aphasia tests. Twenty-five behavioral tests were administered to a group of 38 chronic left hemisphere stroke survivors and a high-resolution magnetic resonance image was obtained. Test scores were entered into a principal components analysis to extract the latent variables (factors) measured by the tests. Multivariate lesion-symptom mapping was used to localize lesions associated with the factor scores. The principal components analysis yielded 4 dissociable factors, which we labeled Word Finding/Fluency, Comprehension, Phonology/Working Memory Capacity, and Executive Function. While many tests loaded onto the factors in predictable ways, some relied heavily on factors not commonly associated with the tests. Lesion symptom mapping demonstrated discrete brain structures associated with each factor, including frontal, temporal, and parietal areas extending beyond the classical language network. Specific functions mapped onto brain anatomy largely in correspondence with modern neural models of language processing. An extensive clinical aphasia assessment identifies 4 independent language functions, relying on discrete parts of the left middle cerebral artery territory. A better understanding of the processes underlying cognitive tests and the link between lesion and behavior may lead to improved aphasia diagnosis, and may yield treatments better targeted to an individual's specific pattern of deficits and preserved abilities.

  1. Localization and Classification of Paddy Field Pests using a Saliency Map and Deep Convolutional Neural Network

    Science.gov (United States)

    Liu, Ziyi; Gao, Junfeng; Yang, Guoguo; Zhang, Huan; He, Yong

    2016-01-01

    We present a pipeline for the visual localization and classification of agricultural pest insects by computing a saliency map and applying deep convolutional neural network (DCNN) learning. First, we used a global contrast region-based approach to compute a saliency map for localizing pest insect objects. Bounding squares containing targets were then extracted, resized to a fixed size, and used to construct a large standard database called Pest ID. This database was then utilized for self-learning of local image features which were, in turn, used for classification by DCNN. DCNN learning optimized the critical parameters, including size, number and convolutional stride of local receptive fields, dropout ratio and the final loss function. To demonstrate the practical utility of using DCNN, we explored different architectures by shrinking depth and width, and found effective sizes that can act as alternatives for practical applications. On the test set of paddy field images, our architectures achieved a mean Accuracy Precision (mAP) of 0.951, a significant improvement over previous methods. PMID:26864172

  2. A NEW RECOGNITION TECHNIQUE NAMED SOMP BASED ON PALMPRINT USING NEURAL NETWORK BASED SELF ORGANIZING MAPS

    Directory of Open Access Journals (Sweden)

    A. S. Raja

    2012-08-01

    Full Text Available The word biometrics refers to the use of physiological or biological characteristics of human to recognize and verify the identity of an individual. Palmprint has become a new class of human biometrics for passive identification with uniqueness and stability. This is considered to be reliable due to the lack of expressions and the lesser effect of aging. In this manuscript a new Palmprint based biometric system based on neural networks self organizing maps (SOM is presented. The method is named as SOMP. The paper shows that the proposed SOMP method improves the performance and robustness of recognition. The proposed method is applied to a variety of datasets and the results are shown.

  3. Artificial neural network with self-organizing mapping for reactor stability monitoring

    International Nuclear Information System (INIS)

    Okumura, Motofumi; Tsuji, Masashi; Shimazu, Yoichiro; Narabayashi, Tadashi

    2008-01-01

    In BWR stability monitoring damping ratio has been used as a stability index. A method for estimating the damping ratio by applying Principal Component Analysis (PCA) to neutron detector signals measured with local power range monitors (LPRMs) had been developed; In this method, measured fluctuating signal is decomposed into some independent components and the signal component directly related to stability is extracted among them to determine the damping ratio. For online monitoring, it is necessary to select stability related signal component efficiently. The self-organizing map (SOM) is one of the artificial neural networks and has the characteristics such that online learning is possible without supervised learning within a relatively short time. In the present study, the SOM was applied to extract the relevant signal component more quickly and more accurately, and the availability was confirmed through the feasibility study. (author)

  4. Mapping visual stimuli to perceptual decisions via sparse decoding of mesoscopic neural activity.

    Science.gov (United States)

    Sajda, Paul

    2010-01-01

    In this talk I will describe our work investigating sparse decoding of neural activity, given a realistic mapping of the visual scene to neuronal spike trains generated by a model of primary visual cortex (V1). We use a linear decoder which imposes sparsity via an L1 norm. The decoder can be viewed as a decoding neuron (linear summation followed by a sigmoidal nonlinearity) in which there are relatively few non-zero synaptic weights. We find: (1) the best decoding performance is for a representation that is sparse in both space and time, (2) decoding of a temporal code results in better performance than a rate code and is also a better fit to the psychophysical data, (3) the number of neurons required for decoding increases monotonically as signal-to-noise in the stimulus decreases, with as little as 1% of the neurons required for decoding at the highest signal-to-noise levels, and (4) sparse decoding results in a more accurate decoding of the stimulus and is a better fit to psychophysical performance than a distributed decoding, for example one imposed by an L2 norm. We conclude that sparse coding is well-justified from a decoding perspective in that it results in a minimum number of neurons and maximum accuracy when sparse representations can be decoded from the neural dynamics.

  5. Deterministic hopping in a Josephson circuit described by a one-dimensional mapping

    International Nuclear Information System (INIS)

    Miracky, R.F.; Devoret, M.H.; Clarke, J.

    1985-01-01

    Analog simulations of the hopping noise of a current-biased Josephson tunnel junction shunted with an inductor in series with a resistor reveal a 1/ω spectral density over two decades of frequency ω for a narrow range of bias currents. The amplitude of the low-frequency part of the spectrum decreases when white noise, representing Nyquist noise in the resistor at a few degrees Kelvin, is added to the simulation. We explain the shape of the power spectrum and its dependence on bias current and added white noise in terms of a deterministic process, involving a one-dimensional mapping, that is analogous to that found in Pomeau-Manneville intermittency. Moreover, we are able to establish a detailed relationship between the origin of the mapping and the differential equation describing the dynamics of the system

  6. Dynamic neural network modeling of HF radar current maps for forecasting oil spill trajectories

    International Nuclear Information System (INIS)

    Tissot, P.; Perez, J.; Kelly, F.J.; Bonner, J.; Michaud, P.

    2001-01-01

    This paper examined the concept of dynamic neural network (NN) modeling for short-term forecasts of coastal high-frequency (HF) radar current maps offshore of Galveston Texas. HF radar technology is emerging as a viable and affordable way to measure surface currents in real time and the number of users applying the technology is increasing. A 25 megahertz, two site, Seasonde HF radar system was used to map ocean and bay surface currents along the coast of Texas where wind and river discharge create complex and rapidly changing current patters that override the weaker tidal flow component. The HF radar system is particularly useful in this type of setting because its mobility makes it a good marine spill response tool that could provide hourly current maps. This capability helps improve deployment of response resources. In addition, the NN model recently developed by the Conrad Blucher Institute can be used to forecast water levels during storm events. Forecasted currents are based on time series of current vectors from HF radar plus wind speed, wind direction, and water levels, as well as tidal forecasts. The dynamic NN model was tested to evaluate its performance and the results were compared with a baseline model which assumes the currents do not change from the time of the forecast up to the forecasted time. The NN model showed improvements over the baseline model for forecasting time equal or greater than 3 hours, but the difference was relatively small. The test demonstrated the ability of the dynamic NN model to link meteorological forcing functions with HF radar current maps. Development of the dynamic NN modeling is still ongoing. 18 refs., 1 tab., 5 figs

  7. Logarithmic r-θ mapping for hybrid optical neural network filter for multiple objects recognition within cluttered scenes

    Science.gov (United States)

    Kypraios, Ioannis; Young, Rupert C. D.; Chatwin, Chris R.; Birch, Phil M.

    2009-04-01

    θThe window unit in the design of the complex logarithmic r-θ mapping for hybrid optical neural network filter can allow multiple objects of the same class to be detected within the input image. Additionally, the architecture of the neural network unit of the complex logarithmic r-θ mapping for hybrid optical neural network filter becomes attractive for accommodating the recognition of multiple objects of different classes within the input image by modifying the output layer of the unit. We test the overall filter for multiple objects of the same and of different classes' recognition within cluttered input images and video sequences of cluttered scenes. Logarithmic r-θ mapping for hybrid optical neural network filter is shown to exhibit with a single pass over the input data simultaneously in-plane rotation, out-of-plane rotation, scale, log r-θ map translation and shift invariance, and good clutter tolerance by recognizing correctly the different objects within the cluttered scenes. We record in our results additional extracted information from the cluttered scenes about the objects' relative position, scale and in-plane rotation.

  8. A Statistically Representative Atlas for Mapping Neuronal Circuits in the Drosophila Adult Brain.

    Science.gov (United States)

    Arganda-Carreras, Ignacio; Manoliu, Tudor; Mazuras, Nicolas; Schulze, Florian; Iglesias, Juan E; Bühler, Katja; Jenett, Arnim; Rouyer, François; Andrey, Philippe

    2018-01-01

    Imaging the expression patterns of reporter constructs is a powerful tool to dissect the neuronal circuits of perception and behavior in the adult brain of Drosophila , one of the major models for studying brain functions. To date, several Drosophila brain templates and digital atlases have been built to automatically analyze and compare collections of expression pattern images. However, there has been no systematic comparison of performances between alternative atlasing strategies and registration algorithms. Here, we objectively evaluated the performance of different strategies for building adult Drosophila brain templates and atlases. In addition, we used state-of-the-art registration algorithms to generate a new group-wise inter-sex atlas. Our results highlight the benefit of statistical atlases over individual ones and show that the newly proposed inter-sex atlas outperformed existing solutions for automated registration and annotation of expression patterns. Over 3,000 images from the Janelia Farm FlyLight collection were registered using the proposed strategy. These registered expression patterns can be searched and compared with a new version of the BrainBaseWeb system and BrainGazer software. We illustrate the validity of our methodology and brain atlas with registration-based predictions of expression patterns in a subset of clock neurons. The described registration framework should benefit to brain studies in Drosophila and other insect species.

  9. A Statistically Representative Atlas for Mapping Neuronal Circuits in the Drosophila Adult Brain

    Directory of Open Access Journals (Sweden)

    Ignacio Arganda-Carreras

    2018-03-01

    Full Text Available Imaging the expression patterns of reporter constructs is a powerful tool to dissect the neuronal circuits of perception and behavior in the adult brain of Drosophila, one of the major models for studying brain functions. To date, several Drosophila brain templates and digital atlases have been built to automatically analyze and compare collections of expression pattern images. However, there has been no systematic comparison of performances between alternative atlasing strategies and registration algorithms. Here, we objectively evaluated the performance of different strategies for building adult Drosophila brain templates and atlases. In addition, we used state-of-the-art registration algorithms to generate a new group-wise inter-sex atlas. Our results highlight the benefit of statistical atlases over individual ones and show that the newly proposed inter-sex atlas outperformed existing solutions for automated registration and annotation of expression patterns. Over 3,000 images from the Janelia Farm FlyLight collection were registered using the proposed strategy. These registered expression patterns can be searched and compared with a new version of the BrainBaseWeb system and BrainGazer software. We illustrate the validity of our methodology and brain atlas with registration-based predictions of expression patterns in a subset of clock neurons. The described registration framework should benefit to brain studies in Drosophila and other insect species.

  10. A Simple and Robust Gray Image Encryption Scheme Using Chaotic Logistic Map and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Adelaïde Nicole Kengnou Telem

    2014-01-01

    Full Text Available A robust gray image encryption scheme using chaotic logistic map and artificial neural network (ANN is introduced. In the proposed method, an external secret key is used to derive the initial conditions for the logistic chaotic maps which are employed to generate weights and biases matrices of the multilayer perceptron (MLP. During the learning process with the backpropagation algorithm, ANN determines the weight matrix of the connections. The plain image is divided into four subimages which are used for the first diffusion stage. The subimages obtained previously are divided into the square subimage blocks. In the next stage, different initial conditions are employed to generate a key stream which will be used for permutation and diffusion of the subimage blocks. Some security analyses such as entropy analysis, statistical analysis, and key sensitivity analysis are given to demonstrate the key space of the proposed algorithm which is large enough to make brute force attacks infeasible. Computing validation using experimental data with several gray images has been carried out with detailed numerical analysis, in order to validate the high security of the proposed encryption scheme.

  11. Very High Resolution Tree Cover Mapping for Continental United States using Deep Convolutional Neural Networks

    Science.gov (United States)

    Ganguly, Sangram; Kalia, Subodh; Li, Shuang; Michaelis, Andrew; Nemani, Ramakrishna R.; Saatchi, Sassan A

    2017-01-01

    Uncertainties in input land cover estimates contribute to a significant bias in modeled above ground biomass (AGB) and carbon estimates from satellite-derived data. The resolution of most currently used passive remote sensing products is not sufficient to capture tree canopy cover of less than ca. 10-20 percent, limiting their utility to estimate canopy cover and AGB for trees outside of forest land. In our study, we created a first of its kind Continental United States (CONUS) tree cover map at a spatial resolution of 1-m for the 2010-2012 epoch using the USDA NAIP imagery to address the present uncertainties in AGB estimates. The process involves different tasks including data acquisition ingestion to pre-processing and running a state-of-art encoder-decoder based deep convolutional neural network (CNN) algorithm for automatically generating a tree non-tree map for almost a quarter million scenes. The entire processing chain including generation of the largest open source existing aerial satellite image training database was performed at the NEX supercomputing and storage facility. We believe the resulting forest cover product will substantially contribute to filling the gaps in ongoing carbon and ecological monitoring research and help quantifying the errors and uncertainties in derived products.

  12. Very High Resolution Tree Cover Mapping for Continental United States using Deep Convolutional Neural Networks

    Science.gov (United States)

    Ganguly, S.; Kalia, S.; Li, S.; Michaelis, A.; Nemani, R. R.; Saatchi, S.

    2017-12-01

    Uncertainties in input land cover estimates contribute to a significant bias in modeled above gound biomass (AGB) and carbon estimates from satellite-derived data. The resolution of most currently used passive remote sensing products is not sufficient to capture tree canopy cover of less than ca. 10-20 percent, limiting their utility to estimate canopy cover and AGB for trees outside of forest land. In our study, we created a first of its kind Continental United States (CONUS) tree cover map at a spatial resolution of 1-m for the 2010-2012 epoch using the USDA NAIP imagery to address the present uncertainties in AGB estimates. The process involves different tasks including data acquisition/ingestion to pre-processing and running a state-of-art encoder-decoder based deep convolutional neural network (CNN) algorithm for automatically generating a tree/non-tree map for almost a quarter million scenes. The entire processing chain including generation of the largest open source existing aerial/satellite image training database was performed at the NEX supercomputing and storage facility. We believe the resulting forest cover product will substantially contribute to filling the gaps in ongoing carbon and ecological monitoring research and help quantifying the errors and uncertainties in derived products.

  13. Collapse susceptibility mapping in karstified gypsum terrain (Sivas basin - Turkey) by conditional probability, logistic regression, artificial neural network models

    Science.gov (United States)

    Yilmaz, Isik; Keskin, Inan; Marschalko, Marian; Bednarik, Martin

    2010-05-01

    This study compares the GIS based collapse susceptibility mapping methods such as; conditional probability (CP), logistic regression (LR) and artificial neural networks (ANN) applied in gypsum rock masses in Sivas basin (Turkey). Digital Elevation Model (DEM) was first constructed using GIS software. Collapse-related factors, directly or indirectly related to the causes of collapse occurrence, such as distance from faults, slope angle and aspect, topographical elevation, distance from drainage, topographic wetness index- TWI, stream power index- SPI, Normalized Difference Vegetation Index (NDVI) by means of vegetation cover, distance from roads and settlements were used in the collapse susceptibility analyses. In the last stage of the analyses, collapse susceptibility maps were produced from CP, LR and ANN models, and they were then compared by means of their validations. Area Under Curve (AUC) values obtained from all three methodologies showed that the map obtained from ANN model looks like more accurate than the other models, and the results also showed that the artificial neural networks is a usefull tool in preparation of collapse susceptibility map and highly compatible with GIS operating features. Key words: Collapse; doline; susceptibility map; gypsum; GIS; conditional probability; logistic regression; artificial neural networks.

  14. Alterations in the neural circuits from peripheral afferents to the spinal cord: possible implications for diabetic polyneuropathy in streptozotocin-induced type 1 diabetic rats

    Directory of Open Access Journals (Sweden)

    Zhen-Zhen eKou

    2014-01-01

    Full Text Available Diabetic polyneuropathy (DPN presents as a wide variety of sensorimotor symptoms and affects approximately 50% of diabetic patients. Changes in the neural circuits may occur in the early stages in diabetes and are implicated in the development of DPN. Therefore, we aimed to detect changes in the expression of isolectin B4 (IB4, the marker for nonpeptidergic unmyelinated fibers and their cell bodies and calcitonin gene-related peptide (CGRP, the marker for peptidergic fibers and their cell bodies in the dorsal root ganglion (DRG and spinal cord of streptozotocin (STZ-induced type 1 diabetic rats showing alterations in sensory and motor function. We also used cholera toxin B subunit (CTB to show the morphological changes of the myelinated fibers and motor neurons. STZ-induced diabetic rats exhibited hyperglycemia, decreased body weight gain, mechanical allodynia and impaired locomotor activity. In the DRG and spinal dorsal horn, IB4-labeled structures decreased, but both CGRP immunostaining and CTB labeling increased from day 14 to day 28 in diabetic rats. In spinal ventral horn, CTB labeling decreased in motor neurons in diabetic rats. Treatment with intrathecal injection of insulin at the early stages of DPN could alleviate mechanical allodynia and impaired locomotor activity in diabetic rats. The results suggest that the alterations of the neural circuits between spinal nerve and spinal cord via the DRG and ventral root might be involved in DPN.

  15. A Neural Circuit Mechanism for the Involvements of Dopamine in Effort-Related Choices: Decay of Learned Values, Secondary Effects of Depletion, and Calculation of Temporal Difference Error

    Science.gov (United States)

    2018-01-01

    Abstract Dopamine has been suggested to be crucially involved in effort-related choices. Key findings are that dopamine depletion (i) changed preference for a high-cost, large-reward option to a low-cost, small-reward option, (ii) but not when the large-reward option was also low-cost or the small-reward option gave no reward, (iii) while increasing the latency in all the cases but only transiently, and (iv) that antagonism of either dopamine D1 or D2 receptors also specifically impaired selection of the high-cost, large-reward option. The underlying neural circuit mechanisms remain unclear. Here we show that findings i–iii can be explained by the dopaminergic representation of temporal-difference reward-prediction error (TD-RPE), whose mechanisms have now become clarified, if (1) the synaptic strengths storing the values of actions mildly decay in time and (2) the obtained-reward-representing excitatory input to dopamine neurons increases after dopamine depletion. The former is potentially caused by background neural activity–induced weak synaptic plasticity, and the latter is assumed to occur through post-depletion increase of neural activity in the pedunculopontine nucleus, where neurons representing obtained reward exist and presumably send excitatory projections to dopamine neurons. We further show that finding iv, which is nontrivial given the suggested distinct functions of the D1 and D2 corticostriatal pathways, can also be explained if we additionally assume a proposed mechanism of TD-RPE calculation, in which the D1 and D2 pathways encode the values of actions with a temporal difference. These results suggest a possible circuit mechanism for the involvements of dopamine in effort-related choices and, simultaneously, provide implications for the mechanisms of TD-RPE calculation. PMID:29468191

  16. Temperature control system with computer mapping for engine cooling circuits; Kennfeldgesteuertes Temperaturregelsystem fuer Motorkuehlkreislaeufe

    Energy Technology Data Exchange (ETDEWEB)

    Saur, R.; Leu, P.; Lemberger, H.; Heumer, G.

    1996-07-01

    Thermomanagement of the vehicles powered by internal combustion engines is one of the prerequisites needed to fulfil the German automobil industry`s commitment to reduce fuel consumption by 25% as compared with 1990 before the year 2005. Thermomanagement improves comfort, and reduces fuel consumption and toxic emissions. BMW and Behr Thermot-Tronik have jointly developed the first component of such a thermomanagement system: An engine cooling system with computer mapping. BMW is the first manufacturer worldwide to install this system as standard equipment, as it is doing in its refinde eight-cylinder engine series (M62). (orig.) [Deutsch] Die Verpflichtung der deutschen Automobilindustrie, den Kraftstoffverbrauch bis zum Jahre 2005 zur Basis des Jahres 1990 um 25% zu reduzieren, fuehrt unter anderem zwingend zum Thermomanagement der mit Verbrennungsmotoren betriebenen Fahrzeuge. Ein Thermomanagement verbessert den Komfort, reduziert den Verbrauch und vermindert die Schadstoffemissionen. BMW und Behr Thermot-Tronik haben gemeinsam den ersten Baustein des Thermomanagements - das kennfeldgesteuerte Motorkuehlungssystem - entwickelt. Dieses System wird seit Januar 1996 weltweit erstmalig von BMW serienmaessig in der ueberarbeiteten Achtzylinder-Motorbaureihe (M62) eingesetzt. (orig.)

  17. Landslide Susceptibility Mapping of Tegucigalpa, Honduras Using Artificial Neural Network, Bayesian Network and Decision Trees

    Science.gov (United States)

    Garcia Urquia, E. L.; Braun, A.; Yamagishi, H.

    2016-12-01

    Tegucigalpa, the capital city of Honduras, experiences rainfall-induced landslides on a yearly basis. The high precipitation regime and the rugged topography the city has been built in couple with the lack of a proper urban expansion plan to contribute to the occurrence of landslides during the rainy season. Thousands of inhabitants live at risk of losing their belongings due to the construction of precarious shelters in landslide-prone areas on mountainous terrains and next to the riverbanks. Therefore, the city is in the need for landslide susceptibility and hazard maps to aid in the regulation of future development. Major challenges in the context of highly dynamic urbanizing areas are the overlap of natural and anthropogenic slope destabilizing factors, as well as the availability and accuracy of data. Data-driven multivariate techniques have proven to be powerful in discovering interrelations between factors, identifying important factors in large datasets, capturing non-linear problems and coping with noisy and incomplete data. This analysis focuses on the creation of a landslide susceptibility map using different methods from the field of data mining, Artificial Neural Networks (ANN), Bayesian Networks (BN) and Decision Trees (DT). The input dataset of the study contains geomorphological and hydrological factors derived from a digital elevation model with a 10 m resolution, lithological factors derived from a geological map, and anthropogenic factors, such as information on the development stage of the neighborhoods in Tegucigalpa and road density. Moreover, a landslide inventory map that was developed in 2014 through aerial photo interpretation was used as target variable in the analysis. The analysis covers an area of roughly 100 km2, while 8.95 km2 are occupied by landslides. In a first step, the dataset was explored by assessing and improving the data quality, identifying unimportant variables and finding interrelations. Then, based on a training

  18. A feed-forward Hopfield neural network algorithm (FHNNA) with a colour satellite image for water quality mapping

    Science.gov (United States)

    Asal Kzar, Ahmed; Mat Jafri, M. Z.; Hwee San, Lim; Al-Zuky, Ali A.; Mutter, Kussay N.; Hassan Al-Saleh, Anwar

    2016-06-01

    There are many techniques that have been given for water quality problem, but the remote sensing techniques have proven their success, especially when the artificial neural networks are used as mathematical models with these techniques. Hopfield neural network is one type of artificial neural networks which is common, fast, simple, and efficient, but it when it deals with images that have more than two colours such as remote sensing images. This work has attempted to solve this problem via modifying the network that deals with colour remote sensing images for water quality mapping. A Feed-forward Hopfield Neural Network Algorithm (FHNNA) was modified and used with a satellite colour image from type of Thailand earth observation system (THEOS) for TSS mapping in the Penang strait, Malaysia, through the classification of TSS concentrations. The new algorithm is based essentially on three modifications: using HNN as feed-forward network, considering the weights of bitplanes, and non-self-architecture or zero diagonal of weight matrix, in addition, it depends on a validation data. The achieved map was colour-coded for visual interpretation. The efficiency of the new algorithm has found out by the higher correlation coefficient (R=0.979) and the lower root mean square error (RMSE=4.301) between the validation data that were divided into two groups. One used for the algorithm and the other used for validating the results. The comparison was with the minimum distance classifier. Therefore, TSS mapping of polluted water in Penang strait, Malaysia, can be performed using FHNNA with remote sensing technique (THEOS). It is a new and useful application of HNN, so it is a new model with remote sensing techniques for water quality mapping which is considered important environmental problem.

  19. Postnatal Developmental Trajectories of Neural Circuits in the Primate Prefrontal Cortex: Identifying Sensitive Periods for Vulnerability to Schizophrenia

    Science.gov (United States)

    Hoftman, Gil D.; Lewis, David A.

    2011-01-01

    Schizophrenia is a disorder of cognitive neurodevelopment with characteristic abnormalities in working memory attributed, at least in part, to alterations in the circuitry of the dorsolateral prefrontal cortex. Various environmental exposures from conception through adolescence increase risk for the illness, possibly by altering the developmental trajectories of prefrontal cortical circuits. Macaque monkeys provide an excellent model system for studying the maturation of prefrontal cortical circuits. Here, we review the development of glutamatergic and γ-aminobutyric acid (GABA)-ergic circuits in macaque monkey prefrontal cortex and discuss how these trajectories may help to identify sensitive periods during which environmental exposures, such as those associated with increased risk for schizophrenia, might lead to the types of abnormalities in prefrontal cortical function present in schizophrenia. PMID:21505116

  20. Comparison of stationary and oscillatory dynamics described by differential equations and Boolean maps in transcriptional regulatory circuits

    Science.gov (United States)

    Ye, Weiming; Li, Pengfei; Huang, Xuhui; Xia, Qinzhi; Mi, Yuanyuan; Chen, Runsheng; Hu, Gang

    2010-10-01

    Exploring the principle and relationship of gene transcriptional regulations (TR) has been becoming a generally researched issue. So far, two major mathematical methods, ordinary differential equation (ODE) method and Boolean map (BM) method have been widely used for these purposes. It is commonly believed that simplified BMs are reasonable approximations of more realistic ODEs, and both methods may reveal qualitatively the same essential features though the dynamical details of both systems may show some differences. In this Letter we exhaustively enumerated all the 3-gene networks and many autonomous randomly constructed TR networks with more genes by using both the ODE and BM methods. In comparison we found that both methods provide practically identical results in most of cases of steady solutions. However, to our great surprise, most of network structures showing periodic cycles with the BM method possess only stationary states in ODE descriptions. These observations strongly suggest that many periodic oscillations and other complicated oscillatory states revealed by the BM rule may be related to the computational errors of variable and time discretizations and rarely have correspondence in realistic biology transcriptional regulatory circuits.

  1. Artificial neural network with self-organizing mapping for reactor stability monitoring

    International Nuclear Information System (INIS)

    Okumura, Motofumi; Tsuji, Masashi; Shimazu, Yoichiro

    2009-01-01

    In boiling water reactor (BWR) stability monitoring, damping ratio has been used as a stability index. A method for estimating the damping ratio by applying Principal Component Analysis (PCA) to neutron detector signals measured with local power range monitors (LPRMs) had been developed; in this method, measured fluctuating signal is decomposed into some independent components and the signal components directly related to stability are extracted among them to determine the damping ratio. For online monitoring, it is necessary to select stability related signal components efficiently. The self-organizing map (SOM) is one of the artificial neural networks (ANNs) and has the characteristics such that online learning is possible without supervised learning within a relatively short time. In the present study, the SOM was applied to extract the relevant signal components more quickly and more accurately, and the availability was confirmed through the feasibility study. For realizing online stability monitoring only with ANNs, another type of ANN that performs online processing of PCA was combined with SOM. And stability monitoring performance was investigated. (author)

  2. Mapping quorum sensing onto neural networks to understand collective decision making in heterogeneous microbial communities

    Science.gov (United States)

    Yusufaly, Tahir I.; Boedicker, James Q.

    2017-08-01

    Microbial communities frequently communicate via quorum sensing (QS), where cells produce, secrete, and respond to a threshold level of an autoinducer (AI) molecule, thereby modulating gene expression. However, the biology of QS remains incompletely understood in heterogeneous communities, where variant bacterial strains possess distinct QS systems that produce chemically unique AIs. AI molecules bind to ‘cognate’ receptors, but also to ‘non-cognate’ receptors found in other strains, resulting in inter-strain crosstalk. Understanding these interactions is a prerequisite for deciphering the consequences of crosstalk in real ecosystems, where multiple AIs are regularly present in the same environment. As a step towards this goal, we map crosstalk in a heterogeneous community of variant QS strains onto an artificial neural network model. This formulation allows us to systematically analyze how crosstalk regulates the community’s capacity for flexible decision making, as quantified by the Boltzmann entropy of all QS gene expression states of the system. In a mean-field limit of complete cross-inhibition between variant strains, the model is exactly solvable, allowing for an analytical formula for the number of variants that maximize capacity as a function of signal kinetics and activation parameters. An analysis of previous experimental results on the Staphylococcus aureus two-component Agr system indicates that the observed combination of variant numbers, gene expression rates and threshold concentrations lies near this critical regime of parameter space where capacity peaks. The results are suggestive of a potential evolutionary driving force for diversification in certain QS systems.

  3. Spatial interpolation and radiological mapping of ambient gamma dose rate by using artificial neural networks and fuzzy logic methods.

    Science.gov (United States)

    Yeşilkanat, Cafer Mert; Kobya, Yaşar; Taşkın, Halim; Çevik, Uğur

    2017-09-01

    The aim of this study was to determine spatial risk dispersion of ambient gamma dose rate (AGDR) by using both artificial neural network (ANN) and fuzzy logic (FL) methods, compare the performances of methods, make dose estimations for intermediate stations with no previous measurements and create dose rate risk maps of the study area. In order to determine the dose distribution by using artificial neural networks, two main networks and five different network structures were used; feed forward ANN; Multi-layer perceptron (MLP), Radial basis functional neural network (RBFNN), Quantile regression neural network (QRNN) and recurrent ANN; Jordan networks (JN), Elman networks (EN). In the evaluation of estimation performance obtained for the test data, all models appear to give similar results. According to the cross-validation results obtained for explaining AGDR distribution, Pearson's r coefficients were calculated as 0.94, 0.91, 0.89, 0.91, 0.91 and 0.92 and RMSE values were calculated as 34.78, 43.28, 63.92, 44.86, 46.77 and 37.92 for MLP, RBFNN, QRNN, JN, EN and FL, respectively. In addition, spatial risk maps showing distributions of AGDR of the study area were created by all models and results were compared with geological, topological and soil structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Self-Organizing Maps Neural Networks Applied to the Classification of Ethanol Samples According to the Region of Commercialization

    Directory of Open Access Journals (Sweden)

    Aline Regina Walkoff

    2017-10-01

    Full Text Available Physical-chemical analysis data were collected, from 998 ethanol samples of automotive ethanol commercialized in the northern, midwestern and eastern regions of the state of Paraná. The data presented self-organizing maps (SOM neural networks, which classified them according to those regions. The self-organizing maps best configuration had a 45 x 45 topology and 5000 training epochs, with a final learning rate of 6.7x10-4, a final neighborhood relationship of 3x10-2 and a mean quantization error of 2x10-2. This neural network provided a topological map depicting three separated groups, each one corresponding to samples of a same region of commercialization. Four maps of weights, one for each parameter, were presented. The network established the pH was the most important variable for classification and electrical conductivity the least one. The self-organizing maps application allowed the segmentation of alcohol samples, therefore identifying them according to the region of commercialization. DOI: http://dx.doi.org/10.17807/orbital.v9i4.982

  5. Single-shot T2 mapping using overlapping-echo detachment planar imaging and a deep convolutional neural network.

    Science.gov (United States)

    Cai, Congbo; Wang, Chao; Zeng, Yiqing; Cai, Shuhui; Liang, Dong; Wu, Yawen; Chen, Zhong; Ding, Xinghao; Zhong, Jianhui

    2018-04-24

    An end-to-end deep convolutional neural network (CNN) based on deep residual network (ResNet) was proposed to efficiently reconstruct reliable T 2 mapping from single-shot overlapping-echo detachment (OLED) planar imaging. The training dataset was obtained from simulations that were carried out on SPROM (Simulation with PRoduct Operator Matrix) software developed by our group. The relationship between the original OLED image containing two echo signals and the corresponding T 2 mapping was learned by ResNet training. After the ResNet was trained, it was applied to reconstruct the T 2 mapping from simulation and in vivo human brain data. Although the ResNet was trained entirely on simulated data, the trained network was generalized well to real human brain data. The results from simulation and in vivo human brain experiments show that the proposed method significantly outperforms the echo-detachment-based method. Reliable T 2 mapping with higher accuracy is achieved within 30 ms after the network has been trained, while the echo-detachment-based OLED reconstruction method took approximately 2 min. The proposed method will facilitate real-time dynamic and quantitative MR imaging via OLED sequence, and deep convolutional neural network has the potential to reconstruct maps from complex MRI sequences efficiently. © 2018 International Society for Magnetic Resonance in Medicine.

  6. Bootstrapped neural nets versus regression kriging in the digital mapping of pedological attributes: the automatic and time-consuming perspectives

    Science.gov (United States)

    Langella, Giuliano; Basile, Angelo; Bonfante, Antonello; Manna, Piero; Terribile, Fabio

    2013-04-01

    Digital soil mapping procedures are widespread used to build two-dimensional continuous maps about several pedological attributes. Our work addressed a regression kriging (RK) technique and a bootstrapped artificial neural network approach in order to evaluate and compare (i) the accuracy of prediction, (ii) the susceptibility of being included in automatic engines (e.g. to constitute web processing services), and (iii) the time cost needed for calibrating models and for making predictions. Regression kriging is maybe the most widely used geostatistical technique in the digital soil mapping literature. Here we tried to apply the EBLUP regression kriging as it is deemed to be the most statistically sound RK flavor by pedometricians. An unusual multi-parametric and nonlinear machine learning approach was accomplished, called BAGAP (Bootstrap aggregating Artificial neural networks with Genetic Algorithms and Principal component regression). BAGAP combines a selected set of weighted neural nets having specified characteristics to yield an ensemble response. The purpose of applying these two particular models is to ascertain whether and how much a more cumbersome machine learning method could be much promising in making more accurate/precise predictions. Being aware of the difficulty to handle objects based on EBLUP-RK as well as BAGAP when they are embedded in environmental applications, we explore the susceptibility of them in being wrapped within Web Processing Services. Two further kinds of aspects are faced for an exhaustive evaluation and comparison: automaticity and time of calculation with/without high performance computing leverage.

  7. Detecting the single line to ground short circuit fault in the submarine’s power system using the artificial neural network

    Directory of Open Access Journals (Sweden)

    Behniafar Ali

    2013-01-01

    Full Text Available The electric marine instruments are newly inserted in the trade and industry, for which the existence of an equipped and reliable power system is necessitated. One of the features of such a power system is that it cannot have an earth system causing the protection relays not to be able to detect the single line to ground short circuit fault. While on the other hand, the occurrence of another similar fault at the same time can lead to the double line fault and thereby the tripping of relays and shortening of vital loads. This in turn endangers the personals' security and causes the loss of military plans. From the above considerations, it is inferred that detecting the single line to ground fault in the marine instruments is of a special importance. In this way, this paper intends to detect the single line to ground fault in the power systems of the marine instruments using the wavelet transform and Multi-Layer Perceptron (MLP neural network. In the numerical analysis, several different types of short circuit faults are simulated on several marine power systems and the proposed approach is applied to detect the single line to ground fault. The results are of a high quality and preciseness and perfectly demonstrate the effectiveness of the proposed approach.

  8. Visual motion imagery neurofeedback based on the hMT+/V5 complex: evidence for a feedback-specific neural circuit involving neocortical and cerebellar regions

    Science.gov (United States)

    Banca, Paula; Sousa, Teresa; Catarina Duarte, Isabel; Castelo-Branco, Miguel

    2015-12-01

    Objective. Current approaches in neurofeedback/brain-computer interface research often focus on identifying, on a subject-by-subject basis, the neural regions that are best suited for self-driven modulation. It is known that the hMT+/V5 complex, an early visual cortical region, is recruited during explicit and implicit motion imagery, in addition to real motion perception. This study tests the feasibility of training healthy volunteers to regulate the level of activation in their hMT+/V5 complex using real-time fMRI neurofeedback and visual motion imagery strategies. Approach. We functionally localized the hMT+/V5 complex to further use as a target region for neurofeedback. An uniform strategy based on motion imagery was used to guide subjects to neuromodulate hMT+/V5. Main results. We found that 15/20 participants achieved successful neurofeedback. This modulation led to the recruitment of a specific network as further assessed by psychophysiological interaction analysis. This specific circuit, including hMT+/V5, putative V6 and medial cerebellum was activated for successful neurofeedback runs. The putamen and anterior insula were recruited for both successful and non-successful runs. Significance. Our findings indicate that hMT+/V5 is a region that can be modulated by focused imagery and that a specific cortico-cerebellar circuit is recruited during visual motion imagery leading to successful neurofeedback. These findings contribute to the debate on the relative potential of extrinsic (sensory) versus intrinsic (default-mode) brain regions in the clinical application of neurofeedback paradigms. This novel circuit might be a good target for future neurofeedback approaches that aim, for example, the training of focused attention in disorders such as ADHD.

  9. Investigating Circadian Rhythmicity in Pain Sensitivity Using a Neural Circuit Model for Spinal Cord Processing of Pain

    DEFF Research Database (Denmark)

    Crodelle, Jennifer; Piltz, Sofia Helena; Booth, Victoria

    2017-01-01

    Primary processing of painful stimulation occurs in the dorsal horn of the spinal cord. In this article, we introduce mathematical models of the neural circuitry in the dorsal horn responsible for processing nerve fiber inputs from noxious stimulation of peripheral tissues and generating the resu......Primary processing of painful stimulation occurs in the dorsal horn of the spinal cord. In this article, we introduce mathematical models of the neural circuitry in the dorsal horn responsible for processing nerve fiber inputs from noxious stimulation of peripheral tissues and generating...... the resultant pain signal. The differential equation models describe the average firing rates of excitatory and inhibitory interneuron populations, as well as the wide dynamic range (WDR) neurons whose output correlates with the pain signal. The temporal profile of inputs on the different afferent nerve fibers...

  10. Forgetting the best when predicting the worst: Preliminary observations on neural circuit function in adolescent social anxiety

    Directory of Open Access Journals (Sweden)

    Johanna M. Jarcho

    2015-06-01

    Full Text Available Social anxiety disorder typically begins in adolescence, a sensitive period for brain development, when increased complexity and salience of peer relationships requires novel forms of social learning. Disordered social learning in adolescence may explain how brain dysfunction promotes social anxiety. Socially anxious adolescents (n = 15 and adults (n = 19 and non-anxious adolescents (n = 24 and adults (n = 32 predicted, then received, social feedback from high and low-value peers while undergoing functional magnetic resonance imaging (fMRI. A surprise recall task assessed memory biases for feedback. Neural correlates of social evaluation prediction errors (PEs were assessed by comparing engagement to expected and unexpected positive and negative feedback. For socially anxious adolescents, but not adults or healthy participants of either age group, PEs elicited heightened striatal activity and negative fronto-striatal functional connectivity. This occurred selectively to unexpected positive feedback from high-value peers and corresponded with impaired memory for social feedback. While impaired memory also occurred in socially-anxious adults, this impairment was unrelated to brain-based PE activity. Thus, social anxiety in adolescence may relate to altered neural correlates of PEs that contribute to impaired learning about social feedback. Small samples necessitate replication. Nevertheless, results suggest that the relationship between learning and fronto-striatal function may attenuate as development progresses.

  11. A neuroplasticity-inspired neural circuit for acoustic navigation with obstacle avoidance that learns smooth motion paths

    DEFF Research Database (Denmark)

    Shaikh, Danish; Manoonpong, Poramate

    2018-01-01

    steered the robot towards an acoustic target. The architecture mapped sound direction information, extracted by a model of the peripheral auditory system of lizards, to appropriate wheel velocities. An obstacle avoidance behaviour using distance information overrode the wheel velocities during navigation...

  12. The Neural Correlates of Moral Thinking: A Meta-Analysis

    OpenAIRE

    Douglas J. Bryant; Wang F; Kelley Deardeuff; Emily Zoccoli; Chang S. Nam

    2016-01-01

    We conducted a meta-analysis to evaluate current research that aims to map the neural correlates of two typical conditions of moral judgment: right-wrong moral judgments and decision-making in moral dilemmas. Utilizing the activation likelihood estimation (ALE) method, we conducted a meta-analysis using neuroimaging data obtained from twenty-one previous studies that measured responses in one or the other of these conditions. We found that across the studies (n = 400), distinct neural circuit...

  13. Ab initio and template-based prediction of multi-class distance maps by two-dimensional recursive neural networks

    Directory of Open Access Journals (Sweden)

    Martin Alberto JM

    2009-01-01

    Full Text Available Abstract Background Prediction of protein structures from their sequences is still one of the open grand challenges of computational biology. Some approaches to protein structure prediction, especially ab initio ones, rely to some extent on the prediction of residue contact maps. Residue contact map predictions have been assessed at the CASP competition for several years now. Although it has been shown that exact contact maps generally yield correct three-dimensional structures, this is true only at a relatively low resolution (3–4 Å from the native structure. Another known weakness of contact maps is that they are generally predicted ab initio, that is not exploiting information about potential homologues of known structure. Results We introduce a new class of distance restraints for protein structures: multi-class distance maps. We show that Cα trace reconstructions based on 4-class native maps are significantly better than those from residue contact maps. We then build two predictors of 4-class maps based on recursive neural networks: one ab initio, or relying on the sequence and on evolutionary information; one template-based, or in which homology information to known structures is provided as a further input. We show that virtually any level of sequence similarity to structural templates (down to less than 10% yields more accurate 4-class maps than the ab initio predictor. We show that template-based predictions by recursive neural networks are consistently better than the best template and than a number of combinations of the best available templates. We also extract binary residue contact maps at an 8 Å threshold (as per CASP assessment from the 4-class predictors and show that the template-based version is also more accurate than the best template and consistently better than the ab initio one, down to very low levels of sequence identity to structural templates. Furthermore, we test both ab-initio and template-based 8

  14. Foreground removal from WMAP 5 yr temperature maps using an MLP neural network

    DEFF Research Database (Denmark)

    Nørgaard-Nielsen, Hans Ulrik

    2010-01-01

    CMB signal makes it essential to minimize the systematic errors in the CMB temperature determinations. Methods. The feasibility of using simple neural networks to extract the CMB signal from detailed simulated data has already been demonstrated. Here, simple neural networks are applied to the WMAP 5...... yr temperature data without using any auxiliary data. Results. A simple multilayer perceptron neural network with two hidden layers provides temperature estimates over more than 75 per cent of the sky with random errors significantly below those previously extracted from these data. Also......, the systematic errors, i.e. errors correlated with the Galactic foregrounds, are very small. Conclusions. With these results the neural network method is well prepared for dealing with the high-quality CMB data from the ESA Planck Surveyor satellite. © ESO, 2010....

  15. Assessment of Convolution Neural Networks for Surficial Geology Mapping in the South Rae Geological Region, Northwest Territories, Canada

    Directory of Open Access Journals (Sweden)

    Rasim Latifovic

    2018-02-01

    Full Text Available Mapping of surficial geology is an important requirement for broadening the geoscience database of northern Canada. Surficial geology maps are an integral data source for mineral and energy exploration. Moreover, they provide information such as the location of gravels and sands, which are important for infrastructure development. Currently, surficial geology maps are produced through expert interpretation of aerial photography and field data. However, interpretation is known to be subjective, labour-intensive and difficult to repeat. The expert knowledge required for interpretation can be challenging to maintain and transfer. In this research, we seek to assess the potential of deep neural networks to aid surficial geology mapping by providing an objective surficial materials initial layer that experts can modify to speed map development and improve consistency between mapped areas. Such an approach may also harness expert knowledge in a way that is transferable to unmapped areas. For this purpose, we assess the ability of convolution neural networks (CNN to predict surficial geology classes under two sampling scenarios. In the first scenario, a CNN uses samples collected over the area to be mapped. In the second, a CNN trained over one area is then applied to locations where the available samples were not used in training the network. The latter case is important, as a collection of in situ training data can be costly. The evaluation of the CNN was carried out using aerial photos, Landsat reflectance, and high-resolution digital elevation data over five areas within the South Rae geological region of Northwest Territories, Canada. The results are encouraging, with the CNN generating average accuracy of 76% when locally trained. For independent test areas (i.e., trained over one area and applied over other, accuracy dropped to 59–70% depending on the classes selected for mapping. In the South Rae region, significant confusion was found

  16. Conflict Resolution as Near-Threshold Decision-Making: A Spiking Neural Circuit Model with Two-Stage Competition for Antisaccadic Task.

    Directory of Open Access Journals (Sweden)

    Chung-Chuan Lo

    2016-08-01

    Full Text Available Automatic responses enable us to react quickly and effortlessly, but they often need to be inhibited so that an alternative, voluntary action can take place. To investigate the brain mechanism of controlled behavior, we investigated a biologically-based network model of spiking neurons for inhibitory control. In contrast to a simple race between pro- versus anti-response, our model incorporates a sensorimotor remapping module, and an action-selection module endowed with a "Stop" process through tonic inhibition. Both are under the modulation of rule-dependent control. We tested the model by applying it to the well known antisaccade task in which one must suppress the urge to look toward a visual target that suddenly appears, and shift the gaze diametrically away from the target instead. We found that the two-stage competition is crucial for reproducing the complex behavior and neuronal activity observed in the antisaccade task across multiple brain regions. Notably, our model demonstrates two types of errors: fast and slow. Fast errors result from failing to inhibit the quick automatic responses and therefore exhibit very short response times. Slow errors, in contrast, are due to incorrect decisions in the remapping process and exhibit long response times comparable to those of correct antisaccade responses. The model thus reveals a circuit mechanism for the empirically observed slow errors and broad distributions of erroneous response times in antisaccade. Our work suggests that selecting between competing automatic and voluntary actions in behavioral control can be understood in terms of near-threshold decision-making, sharing a common recurrent (attractor neural circuit mechanism with discrimination in perception.

  17. Activation of adenosine low-affinity A3 receptors inhibits the enteric short interplexus neural circuit triggered by histamine.

    Science.gov (United States)

    Bozarov, Andrey; Wang, Yu-Zhong; Yu, Jun Ge; Wunderlich, Jacqueline; Hassanain, Hamdy H; Alhaj, Mazin; Cooke, Helen J; Grants, Iveta; Ren, Tianhua; Christofi, Fievos L

    2009-12-01

    We tested the novel hypothesis that endogenous adenosine (eADO) activates low-affinity A3 receptors in a model of neurogenic diarrhea in the guinea pig colon. Dimaprit activation of H2 receptors was used to trigger a cyclic coordinated response of contraction and Cl(-) secretion. Contraction-relaxation was monitored by sonomicrometry (via intracrystal distance) simultaneously with short-circuit current (I(sc), Cl(-) secretion). The short interplexus reflex coordinated response was attenuated or abolished by antagonists at H2 (cimetidine), 5-hydroxytryptamine 4 receptor (RS39604), neurokinin-1 receptor (GR82334), or nicotinic (mecamylamine) receptors. The A1 agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA) abolished coordinated responses, and A1 antagonists could restore normal responses. A1-selective antagonists alone [8-cyclopentyltheophylline (CPT), 1,3-dipropyl-8-(2-amino-4-chlorophenyl)xanthine (PACPX), or 8-cyclopentyl-N(3)-[3-(4-(fluorosulfonyl)benzoyloxy)propyl]-xanthine (FSCPX)] caused a concentration-dependent augmentation of crypt cell secretion or contraction and acted at nanomolar concentrations. The A3 agonist N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) abolished coordinated responses and the A3 antagonist 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS1191) could restore and further augment responses. The IB-MECA effect was resistant to knockdown of adenosine A1 receptor with the irreversible antagonist FSCPX; the IC(50) for IB-MECA was 0.8 microM. MRS1191 alone could augment or unmask coordinated responses to dimaprit, and IB-MECA suppressed them. MRS1191 augmented distension-evoked reflex I(sc) responses. Adenosine deaminase mimicked actions of adenosine receptor antagonists. A3 receptor immunoreactivity was differentially expressed in enteric neurons of different parts of colon. After tetrodotoxin, IB-MECA caused circular muscle relaxation. The data support the novel concept that

  18. Npas4 regulates excitatory-inhibitory balance within neural circuits through cell-type-specific gene programs.

    Science.gov (United States)

    Spiegel, Ivo; Mardinly, Alan R; Gabel, Harrison W; Bazinet, Jeremy E; Couch, Cameron H; Tzeng, Christopher P; Harmin, David A; Greenberg, Michael E

    2014-05-22

    The nervous system adapts to experience by inducing a transcriptional program that controls important aspects of synaptic plasticity. Although the molecular mechanisms of experience-dependent plasticity are well characterized in excitatory neurons, the mechanisms that regulate this process in inhibitory neurons are only poorly understood. Here, we describe a transcriptional program that is induced by neuronal activity in inhibitory neurons. We find that, while neuronal activity induces expression of early-response transcription factors such as Npas4 in both excitatory and inhibitory neurons, Npas4 activates distinct programs of late-response genes in inhibitory and excitatory neurons. These late-response genes differentially regulate synaptic input to these two types of neurons, promoting inhibition onto excitatory neurons while inducing excitation onto inhibitory neurons. These findings suggest that the functional outcomes of activity-induced transcriptional responses are adapted in a cell-type-specific manner to achieve a circuit-wide homeostatic response. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Neural circuit architecture defects in a Drosophila model of Fragile X syndrome are alleviated by minocycline treatment and genetic removal of matrix metalloproteinase

    Directory of Open Access Journals (Sweden)

    Saul S. Siller

    2011-09-01

    Fragile X syndrome (FXS, caused by loss of the fragile X mental retardation 1 (FMR1 product (FMRP, is the most common cause of inherited intellectual disability and autism spectrum disorders. FXS patients suffer multiple behavioral symptoms, including hyperactivity, disrupted circadian cycles, and learning and memory deficits. Recently, a study in the mouse FXS model showed that the tetracycline derivative minocycline effectively remediates the disease state via a proposed matrix metalloproteinase (MMP inhibition mechanism. Here, we use the well-characterized Drosophila FXS model to assess the effects of minocycline treatment on multiple neural circuit morphological defects and to investigate the MMP hypothesis. We first treat Drosophila Fmr1 (dfmr1 null animals with minocycline to assay the effects on mutant synaptic architecture in three disparate locations: the neuromuscular junction (NMJ, clock neurons in the circadian activity circuit and Kenyon cells in the mushroom body learning and memory center. We find that minocycline effectively restores normal synaptic structure in all three circuits, promising therapeutic potential for FXS treatment. We next tested the MMP hypothesis by assaying the effects of overexpressing the sole Drosophila tissue inhibitor of MMP (TIMP in dfmr1 null mutants. We find that TIMP overexpression effectively prevents defects in the NMJ synaptic architecture in dfmr1 mutants. Moreover, co-removal of dfmr1 similarly rescues TIMP overexpression phenotypes, including cellular tracheal defects and lethality. To further test the MMP hypothesis, we generated dfmr1;mmp1 double null mutants. Null mmp1 mutants are 100% lethal and display cellular tracheal defects, but co-removal of dfmr1 allows adult viability and prevents tracheal defects. Conversely, co-removal of mmp1 ameliorates the NMJ synaptic architecture defects in dfmr1 null mutants, despite the lack of detectable difference in MMP1 expression or gelatinase activity between the single

  20. Mapping face categorization in the human ventral occipitotemporal cortex with direct neural intracranial recordings.

    Science.gov (United States)

    Rossion, Bruno; Jacques, Corentin; Jonas, Jacques

    2018-02-26

    The neural basis of face categorization has been widely investigated with functional magnetic resonance imaging (fMRI), identifying a set of face-selective local regions in the ventral occipitotemporal cortex (VOTC). However, indirect recording of neural activity with fMRI is associated with large fluctuations of signal across regions, often underestimating face-selective responses in the anterior VOTC. While direct recording of neural activity with subdural grids of electrodes (electrocorticography, ECoG) or depth electrodes (stereotactic electroencephalography, SEEG) offers a unique opportunity to fill this gap in knowledge, these studies rather reveal widely distributed face-selective responses. Moreover, intracranial recordings are complicated by interindividual variability in neuroanatomy, ambiguity in definition, and quantification of responses of interest, as well as limited access to sulci with ECoG. Here, we propose to combine SEEG in large samples of individuals with fast periodic visual stimulation to objectively define, quantify, and characterize face categorization across the whole VOTC. This approach reconciles the wide distribution of neural face categorization responses with their (right) hemispheric and regional specialization, and reveals several face-selective regions in anterior VOTC sulci. We outline the challenges of this research program to understand the neural basis of face categorization and high-level visual recognition in general. © 2018 New York Academy of Sciences.

  1. An Improved Neural Network for Regional Giant Panda Habitat Suitability Mapping: A Case Study in Ya’an Prefecture

    Directory of Open Access Journals (Sweden)

    Jingwei Song

    2014-06-01

    Full Text Available Expert knowledge is a combination of prior information and subjective opinions based on long-experience; as such it is often not sufficiently objective to produce convincing results in animal habitat suitability index mapping. In this study, an animal habitat assessment method based on a learning neural network is proposed to reduce the level of subjectivity in animal habitat assessments. Based on two hypotheses, this method substitutes habitat suitability index with apparent density and has advantages over conventional ones such as those based on analytical hierarchy process or multivariate regression approaches. Besides, this method is integrated with a learning neural network and is suitable for building non-linear transferring functions to fit complex relationships between multiple factors influencing habitat suitability. Once the neural network is properly trained, new earth observation data can be integrated for rapid habitat suitability monitoring which could save time and resources needed for traditional data collecting approaches through extensive field surveys. Giant panda (Ailuropoda melanoleuca natural habitat in Ya’an prefecture and corresponding landsat images, DEM and ground observations are tested for validity of using the methodology reported. Results show that the method scores well in key efficiency and performance indicators and could be extended for habitat assessments, particularly of other large, rare and widely distributed animal species.

  2. The Reference Ability Neural Network Study: Life-time stability of reference-ability neural networks derived from task maps of young adults.

    Science.gov (United States)

    Habeck, C; Gazes, Y; Razlighi, Q; Steffener, J; Brickman, A; Barulli, D; Salthouse, T; Stern, Y

    2016-01-15

    Analyses of large test batteries administered to individuals ranging from young to old have consistently yielded a set of latent variables representing reference abilities (RAs) that capture the majority of the variance in age-related cognitive change: Episodic Memory, Fluid Reasoning, Perceptual Processing Speed, and Vocabulary. In a previous paper (Stern et al., 2014), we introduced the Reference Ability Neural Network Study, which administers 12 cognitive neuroimaging tasks (3 for each RA) to healthy adults age 20-80 in order to derive unique neural networks underlying these 4 RAs and investigate how these networks may be affected by aging. We used a multivariate approach, linear indicator regression, to derive a unique covariance pattern or Reference Ability Neural Network (RANN) for each of the 4 RAs. The RANNs were derived from the neural task data of 64 younger adults of age 30 and below. We then prospectively applied the RANNs to fMRI data from the remaining sample of 227 adults of age 31 and above in order to classify each subject-task map into one of the 4 possible reference domains. Overall classification accuracy across subjects in the sample age 31 and above was 0.80±0.18. Classification accuracy by RA domain was also good, but variable; memory: 0.72±0.32; reasoning: 0.75±0.35; speed: 0.79±0.31; vocabulary: 0.94±0.16. Classification accuracy was not associated with cross-sectional age, suggesting that these networks, and their specificity to the respective reference domain, might remain intact throughout the age range. Higher mean brain volume was correlated with increased overall classification accuracy; better overall performance on the tasks in the scanner was also associated with classification accuracy. For the RANN network scores, we observed for each RANN that a higher score was associated with a higher corresponding classification accuracy for that reference ability. Despite the absence of behavioral performance information in the

  3. Foreground removal from CMB temperature maps using an MLP neural network

    DEFF Research Database (Denmark)

    Nørgaard-Nielsen, Hans Ulrik; Jørgensen, H.E.

    2008-01-01

    the CMB temperature signal from the combined signal CMB and the foregrounds has been investigated. As a specific example, we have analysed simulated data, as expected from the ESA Planck CMB mission. A simple multilayer perceptron neural network with 2 hidden layers can provide temperature estimates over...... CMB signal it is essential to minimize the systematic errors in the CMB temperature determinations. Following the available knowledge of the spectral behavior of the Galactic foregrounds simple power law-like spectra have been assumed. The feasibility of using a simple neural network for extracting...

  4. Foreground removal from WMAP 5 yr temperature maps using an MLP neural network

    Science.gov (United States)

    Nørgaard-Nielsen, H. U.

    2010-09-01

    Aims: One of the main obstacles for extracting the cosmic microwave background (CMB) signal from observations in the mm/sub-mm range is the foreground contamination by emission from Galactic component: mainly synchrotron, free-free, and thermal dust emission. The statistical nature of the intrinsic CMB signal makes it essential to minimize the systematic errors in the CMB temperature determinations. Methods: The feasibility of using simple neural networks to extract the CMB signal from detailed simulated data has already been demonstrated. Here, simple neural networks are applied to the WMAP 5 yr temperature data without using any auxiliary data. Results: A simple multilayer perceptron neural network with two hidden layers provides temperature estimates over more than 75 per cent of the sky with random errors significantly below those previously extracted from these data. Also, the systematic errors, i.e. errors correlated with the Galactic foregrounds, are very small. Conclusions: With these results the neural network method is well prepared for dealing with the high - quality CMB data from the ESA Planck Surveyor satellite. unknown author type, collab

  5. Transcranial Magnetic Stimulation and Connectivity Mapping: Tools for Studying the Neural Bases of Brain Disorders

    OpenAIRE

    Hampson, M.; Hoffman, R. E.

    2010-01-01

    There has been an increasing emphasis on characterizing pathophysiology underlying psychiatric and neurological disorders in terms of altered neural connectivity and network dynamics. Transcranial magnetic stimulation (TMS) provides a unique opportunity for investigating connectivity in the human brain. TMS allows researchers and clinicians to directly stimulate cortical regions accessible to electromagnetic coils positioned on the scalp. The induced activation can then propagate through...

  6. Estimating missing hourly climatic data using artificial neural network for energy balance based ET mapping applications

    Science.gov (United States)

    Remote sensing based evapotranspiration (ET) mapping has become an important tool for water resources management at a regional scale. Accurate hourly climatic data and reference ET are crucial input for successfully implementing remote sensing based ET models such as Mapping ET with internal calibra...

  7. Ischemia Detection Using Supervised Learning for Hierarchical Neural Networks Based on Kohonen-Maps

    National Research Council Canada - National Science Library

    Vladutu, L

    2001-01-01

    .... The motivation for developing the Supervising Network - Self Organizing Map (sNet-SOM) model is to design computationally effective solutions for the particular problem of ischemia detection and other similar applications...

  8. Real-space mapping of topological invariants using artificial neural networks

    Science.gov (United States)

    Carvalho, D.; García-Martínez, N. A.; Lado, J. L.; Fernández-Rossier, J.

    2018-03-01

    Topological invariants allow one to characterize Hamiltonians, predicting the existence of topologically protected in-gap modes. Those invariants can be computed by tracing the evolution of the occupied wave functions under twisted boundary conditions. However, those procedures do not allow one to calculate a topological invariant by evaluating the system locally, and thus require information about the wave functions in the whole system. Here we show that artificial neural networks can be trained to identify the topological order by evaluating a local projection of the density matrix. We demonstrate this for two different models, a one-dimensional topological superconductor and a two-dimensional quantum anomalous Hall state, both with spatially modulated parameters. Our neural network correctly identifies the different topological domains in real space, predicting the location of in-gap states. By combining a neural network with a calculation of the electronic states that uses the kernel polynomial method, we show that the local evaluation of the invariant can be carried out by evaluating a local quantity, in particular for systems without translational symmetry consisting of tens of thousands of atoms. Our results show that supervised learning is an efficient methodology to characterize the local topology of a system.

  9. Ordination of self-organizing feature map neural networks and its application to the study of plant communities

    Institute of Scientific and Technical Information of China (English)

    Jintun ZHANG; Dongping MENG; Yuexiang XI

    2009-01-01

    A self-organizing feature map (SOFM) neural network is a powerful tool in analyzing and solving complex, non-linear problems. According to its features, a SOFM is entirely compatible with ordination studies of plant communities. In our present work, mathematical principles, and ordination techniques and procedures are introduced. A SOFM ordination was applied to the study of plant communities in the middle of the Taihang mountains. The ordination was carried out by using the NNTool box in MATLAB. The results of 68 quadrats of plant communities were distributed in SOFM space. The ordination axes showed the ecological gradients clearly and provided the relationships between communities with ecological meaning. The results are consistent with the reality of vegetation in the study area. This suggests that SOFM ordination is an effective technique in plant ecology. During ordination procedures, it is easy to carry out clustering of communities and so it is beneficial for combining classification and ordination in vegetation studies.

  10. Comparative study of landslides susceptibility mapping methods: Multi-Criteria Decision Making (MCDM) and Artificial Neural Network (ANN)

    Science.gov (United States)

    Salleh, S. A.; Rahman, A. S. A. Abd; Othman, A. N.; Mohd, W. M. N. Wan

    2018-02-01

    As different approach produces different results, it is crucial to determine the methods that are accurate in order to perform analysis towards the event. This research aim is to compare the Rank Reciprocal (MCDM) and Artificial Neural Network (ANN) analysis techniques in determining susceptible zones of landslide hazard. The study is based on data obtained from various sources such as local authority; Dewan Bandaraya Kuala Lumpur (DBKL), Jabatan Kerja Raya (JKR) and other agencies. The data were analysed and processed using Arc GIS. The results were compared by quantifying the risk ranking and area differential. It was also compared with the zonation map classified by DBKL. The results suggested that ANN method gives better accuracy compared to MCDM with 18.18% higher accuracy assessment of the MCDM approach. This indicated that ANN provides more reliable results and it is probably due to its ability to learn from the environment thus portraying realistic and accurate result.

  11. Premature Ventricular Contraction Coupling Interval Variability Destabilizes Cardiac Neuronal and Electrophysiological Control: Insights from Simultaneous Cardio-Neural Mapping

    Science.gov (United States)

    Hamon, David; Rajendran, Pradeep S.; Chui, Ray W.; Ajijola, Olujimi A.; Irie, Tadanobu; Talebi, Ramin; Salavatian, Siamak; Vaseghi, Marmar; Bradfield, Jason S.; Armour, J. Andrew; Ardell, Jeffrey L.; Shivkumar, Kalyanam

    2017-01-01

    Background Variability in premature ventricular contraction (PVC) coupling interval (CI) increases the risk of cardiomyopathy and sudden death. The autonomic nervous system regulates cardiac electrical and mechanical indices, and its dysregulation plays an important role in cardiac disease pathogenesis. The impact of PVCs on the intrinsic cardiac nervous system (ICNS), a neural network on the heart, remains unknown. The objective was to determine the effect of PVCs and CI on ICNS function in generating cardiac neuronal and electrical instability using a novel cardio-neural mapping approach. Methods and Results In a porcine model (n=8) neuronal activity was recorded from a ventricular ganglion using a microelectrode array, and cardiac electrophysiological mapping was performed. Neurons were functionally classified based on their response to afferent and efferent cardiovascular stimuli, with neurons that responded to both defined as convergent (local reflex processors). Dynamic changes in neuronal activity were then evaluated in response to right ventricular outflow tract PVCs with fixed short, fixed long, and variable CI. PVC delivery elicited a greater neuronal response than all other stimuli (P<0.001). Compared to fixed short and long CI, PVCs with variable CI had a greater impact on neuronal response (P<0.05 versus short CI), particularly on convergent neurons (P<0.05), as well as neurons receiving sympathetic (P<0.05) and parasympathetic input (P<0.05). The greatest cardiac electrical instability was also observed following variable (short) CI PVCs. Conclusions Variable CI PVCs affect critical populations of ICNS neurons and alter cardiac repolarization. These changes may be critical for arrhythmogenesis and remodeling leading to cardiomyopathy. PMID:28408652

  12. Foreground removal from CMB temperature maps using an MLP neural network

    Science.gov (United States)

    Nørgaard-Nielsen, H. U.; Jørgensen, H. E.

    2008-12-01

    One of the main obstacles for extracting the Cosmic Microwave Background (CMB) signal from observations in the mm-submm range is the foreground contamination by emission from Galactic components: mainly synchrotron, free-free and thermal dust emission. Due to the statistical nature of the intrinsic CMB signal it is essential to minimize the systematic errors in the CMB temperature determinations. Following the available knowledge of the spectral behavior of the Galactic foregrounds simple power law-like spectra have been assumed. The feasibility of using a simple neural network for extracting the CMB temperature signal from the combined signal CMB and the foregrounds has been investigated. As a specific example, we have analysed simulated data, as expected from the ESA Planck CMB mission. A simple multilayer perceptron neural network with 2 hidden layers can provide temperature estimates over more than 80 per cent of the sky that are to a high degree uncorrelated with the foreground signals. A single network will be able to cover the dynamic range of the Planck noise level over the entire sky.

  13. Foreground removal from WMAP 7 yr polarization maps using an MLP neural network

    DEFF Research Database (Denmark)

    Nørgaard-Nielsen, Hans Ulrik

    2012-01-01

    . As a concrete example, the WMAP 7-year polarization data, the most reliable determination of the polarization properties of the CMB, has been analyzed. The analysis has adopted the frequency maps, noise models, window functions and the foreground models as provided by the WMAP Team, and no auxiliary data...

  14. Detecting tactical patterns in basketball: comparison of merge self-organising maps and dynamic controlled neural networks.

    Science.gov (United States)

    Kempe, Matthias; Grunz, Andreas; Memmert, Daniel

    2015-01-01

    The soaring amount of data, especially spatial-temporal data, recorded in recent years demands for advanced analysis methods. Neural networks derived from self-organizing maps established themselves as a useful tool to analyse static and temporal data. In this study, we applied the merge self-organising map (MSOM) to spatio-temporal data. To do so, we investigated the ability of MSOM's to analyse spatio-temporal data and compared its performance to the common dynamical controlled network (DyCoN) approach to analyse team sport position data. The position data of 10 players were recorded via the Ubisense tracking system during a basketball game. Furthermore, three different pre-selected plays were recorded for classification. Following data preparation, the different nets were trained with the data of the first half. The training success of both networks was evaluated by achieved entropy. The second half of the basketball game was presented to both nets for automatic classification. Both approaches were able to present the trained data extremely well and to detect the pre-selected plays correctly. In conclusion, MSOMs are a useful tool to analyse spatial-temporal data, especially in team sports. By their direct inclusion of different time length of tactical patterns, they open up new opportunities within team sports.

  15. Radiation dose rate map interpolation in nuclear plants using neural networks and virtual reality techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mol, Antonio Carlos A., E-mail: mol@ien.gov.br [Comissao Nacional de Energia Nuclear, Instituto de Engenharia Nuclear Rua Helio de Almeida, 75, Ilha do Fundao, P.O. Box 68550, 21941-906 Rio de Janeiro, RJ (Brazil); Instituto Nacional de Ciencia e Tecnologia de Reatores Nucleares Inovadores/CNPq (Brazil); Pereira, Claudio Marcio N.A., E-mail: cmnap@ien.gov.br [Comissao Nacional de Energia Nuclear, Instituto de Engenharia Nuclear Rua Helio de Almeida, 75, Ilha do Fundao, P.O. Box 68550, 21941-906 Rio de Janeiro, RJ (Brazil); Instituto Nacional de Ciencia e Tecnologia de Reatores Nucleares Inovadores/CNPq (Brazil); Freitas, Victor Goncalves G. [Universidade Federal do Rio de Janeiro, Programa de Engenharia Nuclear, Rio de Janeiro, RJ (Brazil); Jorge, Carlos Alexandre F., E-mail: calexandre@ien.gov.br [Comissao Nacional de Energia Nuclear, Instituto de Engenharia Nuclear Rua Helio de Almeida, 75, Ilha do Fundao, P.O. Box 68550, 21941-906 Rio de Janeiro, RJ (Brazil)

    2011-02-15

    This paper reports the most recent development results of a simulation tool for assessment of radiation dose exposition by nuclear plant's personnel, using artificial intelligence and virtual reality technologies. The main purpose of this tool is to support training of nuclear plants' personnel, to optimize working tasks for minimisation of received dose. A finer grid of measurement points was considered within the nuclear plant's room, for different power operating conditions. Further, an intelligent system was developed, based on neural networks, to interpolate dose rate values among measured points. The intelligent dose prediction system is thus able to improve the simulation of dose received by personnel. This work describes the improvements implemented in this simulation tool.

  16. Radiation dose rate map interpolation in nuclear plants using neural networks and virtual reality techniques

    International Nuclear Information System (INIS)

    Mol, Antonio Carlos A.; Pereira, Claudio Marcio N.A.; Freitas, Victor Goncalves G.; Jorge, Carlos Alexandre F.

    2011-01-01

    This paper reports the most recent development results of a simulation tool for assessment of radiation dose exposition by nuclear plant's personnel, using artificial intelligence and virtual reality technologies. The main purpose of this tool is to support training of nuclear plants' personnel, to optimize working tasks for minimisation of received dose. A finer grid of measurement points was considered within the nuclear plant's room, for different power operating conditions. Further, an intelligent system was developed, based on neural networks, to interpolate dose rate values among measured points. The intelligent dose prediction system is thus able to improve the simulation of dose received by personnel. This work describes the improvements implemented in this simulation tool.

  17. Oscillator circuits

    CERN Document Server

    Graf, Rudolf F

    1996-01-01

    This series of circuits provides designers with a quick source for oscillator circuits. Why waste time paging through huge encyclopedias when you can choose the topic you need and select any of the specialized circuits sorted by application?This book in the series has 250-300 practical, ready-to-use circuit designs, with schematics and brief explanations of circuit operation. The original source for each circuit is listed in an appendix, making it easy to obtain additional information.Ready-to-use circuits.Grouped by application for easy look-up.Circuit source listing

  18. Measuring circuits

    CERN Document Server

    Graf, Rudolf F

    1996-01-01

    This series of circuits provides designers with a quick source for measuring circuits. Why waste time paging through huge encyclopedias when you can choose the topic you need and select any of the specialized circuits sorted by application?This book in the series has 250-300 practical, ready-to-use circuit designs, with schematics and brief explanations of circuit operation. The original source for each circuit is listed in an appendix, making it easy to obtain additional information.Ready-to-use circuits.Grouped by application for easy look-up.Circuit source listings

  19. Preliminary results of neural networks and zernike polynomials for classification of videokeratography maps.

    Science.gov (United States)

    Carvalho, Luis Alberto

    2005-02-01

    Our main goal in this work was to develop an artificial neural network (NN) that could classify specific types of corneal shapes using Zernike coefficients as input. Other authors have implemented successful NN systems in the past and have demonstrated their efficiency using different parameters. Our claim is that, given the increasing popularity of Zernike polynomials among the eye care community, this may be an interesting choice to add complementing value and precision to existing methods. By using a simple and well-documented corneal surface representation scheme, which relies on corneal elevation information, one can generate simple NN input parameters that are independent of curvature definition and that are also efficient. We have used the Matlab Neural Network Toolbox (MathWorks, Natick, MA) to implement a three-layer feed-forward NN with 15 inputs and 5 outputs. A database from an EyeSys System 2000 (EyeSys Vision, Houston, TX) videokeratograph installed at the Escola Paulista de Medicina-Sao Paulo was used. This database contained an unknown number of corneal types. From this database, two specialists selected 80 corneas that could be clearly classified into five distinct categories: (1) normal, (2) with-the-rule astigmatism, (3) against-the-rule astigmatism, (4) keratoconus, and (5) post-laser-assisted in situ keratomileusis. The corneal height (SAG) information of the 80 data files was fit with the first 15 Vision Science and it Applications (VSIA) standard Zernike coefficients, which were individually used to feed the 15 neurons of the input layer. The five output neurons were associated with the five typical corneal shapes. A group of 40 cases was randomly selected from the larger group of 80 corneas and used as the training set. The NN responses were statistically analyzed in terms of sensitivity [true positive/(true positive + false negative)], specificity [true negative/(true negative + false positive)], and precision [(true positive + true

  20. Network-level accident-mapping: Distance based pattern matching using artificial neural network.

    Science.gov (United States)

    Deka, Lipika; Quddus, Mohammed

    2014-04-01

    The objective of an accident-mapping algorithm is to snap traffic accidents onto the correct road segments. Assigning accidents onto the correct segments facilitate to robustly carry out some key analyses in accident research including the identification of accident hot-spots, network-level risk mapping and segment-level accident risk modelling. Existing risk mapping algorithms have some severe limitations: (i) they are not easily 'transferable' as the algorithms are specific to given accident datasets; (ii) they do not perform well in all road-network environments such as in areas of dense road network; and (iii) the methods used do not perform well in addressing inaccuracies inherent in and type of road environment. The purpose of this paper is to develop a new accident mapping algorithm based on the common variables observed in most accident databases (e.g. road name and type, direction of vehicle movement before the accident and recorded accident location). The challenges here are to: (i) develop a method that takes into account uncertainties inherent to the recorded traffic accident data and the underlying digital road network data, (ii) accurately determine the type and proportion of inaccuracies, and (iii) develop a robust algorithm that can be adapted for any accident set and road network of varying complexity. In order to overcome these challenges, a distance based pattern-matching approach is used to identify the correct road segment. This is based on vectors containing feature values that are common in the accident data and the network data. Since each feature does not contribute equally towards the identification of the correct road segments, an ANN approach using the single-layer perceptron is used to assist in "learning" the relative importance of each feature in the distance calculation and hence the correct link identification. The performance of the developed algorithm was evaluated based on a reference accident dataset from the UK confirming that

  1. Mapping and signaling of neural pathways involved in the regulation of hydromineral homeostasis

    Directory of Open Access Journals (Sweden)

    J. Antunes-Rodrigues

    2013-04-01

    Full Text Available Several forebrain and brainstem neurochemical circuitries interact with peripheral neural and humoral signals to collaboratively maintain both the volume and osmolality of extracellular fluids. Although much progress has been made over the past decades in the understanding of complex mechanisms underlying neuroendocrine control of hydromineral homeostasis, several issues still remain to be clarified. The use of techniques such as molecular biology, neuronal tracing, electrophysiology, immunohistochemistry, and microinfusions has significantly improved our ability to identify neuronal phenotypes and their signals, including those related to neuron-glia interactions. Accordingly, neurons have been shown to produce and release a large number of chemical mediators (neurotransmitters, neurohormones and neuromodulators into the interstitial space, which include not only classic neurotransmitters, such as acetylcholine, amines (noradrenaline, serotonin and amino acids (glutamate, GABA, but also gaseous (nitric oxide, carbon monoxide and hydrogen sulfide and lipid-derived (endocannabinoids mediators. This efferent response, initiated within the neuronal environment, recruits several peripheral effectors, such as hormones (glucocorticoids, angiotensin II, estrogen, which in turn modulate central nervous system responsiveness to systemic challenges. Therefore, in this review, we shall evaluate in an integrated manner the physiological control of body fluid homeostasis from the molecular aspects to the systemic and integrated responses.

  2. Investigating Nonlinear Shoreline Multiperiod Change from Orthophoto Map Information by Using a Neural Network Model

    Directory of Open Access Journals (Sweden)

    Tienfuan Kerh

    2014-01-01

    Full Text Available The effects of extreme weather and overdevelopment may cause some coastal areas to exhibit erosion problems, which in turn may contribute to creating disasters of varying scale, particularly in regions comprising islands. This study used aerial survey information from three periods (1990, 2001, and 2010 and used graphical software to establish the spatial data of six beaches surrounding the island of Taiwan. An overlaying technique was then implemented to compare the sandy area of each beach in the aforementioned study periods. In addition, an artificial neural network model was developed based on available digitised coordinates for predicting coastline variation for 2015 and 2020. An onsite investigation was performed using a global positioning system for comparing the beaches. The results revealed that two beaches from this study may have experienced significant changes in total sandy areas under a statistical 95% confidence interval. The proposed method and the result of this study may provide a valuable reference in follow-up research and applications.

  3. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat—Turkey)

    Science.gov (United States)

    Yilmaz, Işık

    2009-06-01

    The purpose of this study is to compare the landslide susceptibility mapping methods of frequency ratio (FR), logistic regression and artificial neural networks (ANN) applied in the Kat County (Tokat—Turkey). Digital elevation model (DEM) was first constructed using GIS software. Landslide-related factors such as geology, faults, drainage system, topographical elevation, slope angle, slope aspect, topographic wetness index (TWI) and stream power index (SPI) were used in the landslide susceptibility analyses. Landslide susceptibility maps were produced from the frequency ratio, logistic regression and neural networks models, and they were then compared by means of their validations. The higher accuracies of the susceptibility maps for all three models were obtained from the comparison of the landslide susceptibility maps with the known landslide locations. However, respective area under curve (AUC) values of 0.826, 0.842 and 0.852 for frequency ratio, logistic regression and artificial neural networks showed that the map obtained from ANN model is more accurate than the other models, accuracies of all models can be evaluated relatively similar. The results obtained in this study also showed that the frequency ratio model can be used as a simple tool in assessment of landslide susceptibility when a sufficient number of data were obtained. Input process, calculations and output process are very simple and can be readily understood in the frequency ratio model, however logistic regression and neural networks require the conversion of data to ASCII or other formats. Moreover, it is also very hard to process the large amount of data in the statistical package.

  4. A shared, flexible neural map architecture reflects capacity limits in both visual short-term memory and enumeration.

    Science.gov (United States)

    Knops, André; Piazza, Manuela; Sengupta, Rakesh; Eger, Evelyn; Melcher, David

    2014-07-23

    Human cognition is characterized by severe capacity limits: we can accurately track, enumerate, or hold in mind only a small number of items at a time. It remains debated whether capacity limitations across tasks are determined by a common system. Here we measure brain activation of adult subjects performing either a visual short-term memory (vSTM) task consisting of holding in mind precise information about the orientation and position of a variable number of items, or an enumeration task consisting of assessing the number of items in those sets. We show that task-specific capacity limits (three to four items in enumeration and two to three in vSTM) are neurally reflected in the activity of the posterior parietal cortex (PPC): an identical set of voxels in this region, commonly activated during the two tasks, changed its overall response profile reflecting task-specific capacity limitations. These results, replicated in a second experiment, were further supported by multivariate pattern analysis in which we could decode the number of items presented over a larger range during enumeration than during vSTM. Finally, we simulated our results with a computational model of PPC using a saliency map architecture in which the level of mutual inhibition between nodes gives rise to capacity limitations and reflects the task-dependent precision with which objects need to be encoded (high precision for vSTM, lower precision for enumeration). Together, our work supports the existence of a common, flexible system underlying capacity limits across tasks in PPC that may take the form of a saliency map. Copyright © 2014 the authors 0270-6474/14/349857-10$15.00/0.

  5. Applying self-organizing map and modified radial based neural network for clustering and routing optimal path in wireless network

    Science.gov (United States)

    Hoomod, Haider K.; Kareem Jebur, Tuka

    2018-05-01

    Mobile ad hoc networks (MANETs) play a critical role in today’s wireless ad hoc network research and consist of active nodes that can be in motion freely. Because it consider very important problem in this network, we suggested proposed method based on modified radial basis function networks RBFN and Self-Organizing Map SOM. These networks can be improved by the use of clusters because of huge congestion in the whole network. In such a system, the performance of MANET is improved by splitting the whole network into various clusters using SOM. The performance of clustering is improved by the cluster head selection and number of clusters. Modified Radial Based Neural Network is very simple, adaptable and efficient method to increase the life time of nodes, packet delivery ratio and the throughput of the network will increase and connection become more useful because the optimal path has the best parameters from other paths including the best bitrate and best life link with minimum delays. Proposed routing algorithm depends on the group of factors and parameters to select the path between two points in the wireless network. The SOM clustering average time (1-10 msec for stall nodes) and (8-75 msec for mobile nodes). While the routing time range (92-510 msec).The proposed system is faster than the Dijkstra by 150-300%, and faster from the RBFNN (without modify) by 145-180%.

  6. Neural Network for Sparse Reconstruction

    Directory of Open Access Journals (Sweden)

    Qingfa Li

    2014-01-01

    Full Text Available We construct a neural network based on smoothing approximation techniques and projected gradient method to solve a kind of sparse reconstruction problems. Neural network can be implemented by circuits and can be seen as an important method for solving optimization problems, especially large scale problems. Smoothing approximation is an efficient technique for solving nonsmooth optimization problems. We combine these two techniques to overcome the difficulties of the choices of the step size in discrete algorithms and the item in the set-valued map of differential inclusion. In theory, the proposed network can converge to the optimal solution set of the given problem. Furthermore, some numerical experiments show the effectiveness of the proposed network in this paper.

  7. Chaotic diagonal recurrent neural network

    International Nuclear Information System (INIS)

    Wang Xing-Yuan; Zhang Yi

    2012-01-01

    We propose a novel neural network based on a diagonal recurrent neural network and chaos, and its structure and learning algorithm are designed. The multilayer feedforward neural network, diagonal recurrent neural network, and chaotic diagonal recurrent neural network are used to approach the cubic symmetry map. The simulation results show that the approximation capability of the chaotic diagonal recurrent neural network is better than the other two neural networks. (interdisciplinary physics and related areas of science and technology)

  8. Refining the Role of 5-HT in Postnatal Development of Brain Circuits

    Directory of Open Access Journals (Sweden)

    Anne Teissier

    2017-05-01

    Full Text Available Changing serotonin (5-hydroxytryptamine, 5-HT brain levels during critical periods in development has long-lasting effects on brain function, particularly on later anxiety/depression-related behaviors in adulthood. A large part of the known developmental effects of 5-HT occur during critical periods of postnatal life, when activity-dependent mechanisms remodel neural circuits. This was first demonstrated for the maturation of sensory brain maps in the barrel cortex and the visual system. More recently this has been extended to the 5-HT raphe circuits themselves and to limbic circuits. Recent studies overviewed here used new genetic models in mice and rats and combined physiological and structural approaches to provide new insights on the cellular and molecular mechanisms controlled by 5-HT during late stages of neural circuit maturation in the raphe projections, the somatosensory cortex and the visual system. Similar mechanisms appear to be also involved in the maturation of limbic circuits such as prefrontal circuits. The latter are of particular relevance to understand the impact of transient 5-HT dysfunction during postnatal life on psychiatric illnesses and emotional disorders in adult life.

  9. A Voltage Mode Memristor Bridge Synaptic Circuit with Memristor Emulators

    Directory of Open Access Journals (Sweden)

    Leon Chua

    2012-03-01

    Full Text Available A memristor bridge neural circuit which is able to perform signed synaptic weighting was proposed in our previous study, where the synaptic operation was verified via software simulation of the mathematical model of the HP memristor. This study is an extension of the previous work advancing toward the circuit implementation where the architecture of the memristor bridge synapse is built with memristor emulator circuits. In addition, a simple neural network which performs both synaptic weighting and summation is built by combining memristor emulators-based synapses and differential amplifier circuits. The feasibility of the memristor bridge neural circuit is verified via SPICE simulations.

  10. Resonance circuits for adiabatic circuits

    Directory of Open Access Journals (Sweden)

    C. Schlachta

    2003-01-01

    Full Text Available One of the possible techniques to reduces the power consumption in digital CMOS circuits is to slow down the charge transport. This slowdown can be achieved by introducing an inductor in the charging path. Additionally, the inductor can act as an energy storage element, conserving the energy that is normally dissipated during discharging. Together with the parasitic capacitances from the circuit a LCresonant circuit is formed.

  11. Electronic circuit encyclopedia 2

    International Nuclear Information System (INIS)

    Park, Sun Ho

    1992-10-01

    This book is composed of 15 chapters, which are amplification of weak signal and measurement circuit audio control and power amplification circuit, data transmission and wireless system, forwarding and isolation, signal converting circuit, counter and comparator, discriminator circuit, oscillation circuit and synthesizer, digital and circuit on computer image processing circuit, sensor drive circuit temperature sensor circuit, magnetic control and application circuit, motor driver circuit, measuring instrument and check tool and power control and stability circuit.

  12. Electronic circuit encyclopedia 2

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Ho

    1992-10-15

    This book is composed of 15 chapters, which are amplification of weak signal and measurement circuit audio control and power amplification circuit, data transmission and wireless system, forwarding and isolation, signal converting circuit, counter and comparator, discriminator circuit, oscillation circuit and synthesizer, digital and circuit on computer image processing circuit, sensor drive circuit temperature sensor circuit, magnetic control and application circuit, motor driver circuit, measuring instrument and check tool and power control and stability circuit.

  13. Commonalities and differences in the neural representations of English, Portuguese, and Mandarin sentences: When knowledge of the brain-language mappings for two languages is better than one.

    Science.gov (United States)

    Yang, Ying; Wang, Jing; Bailer, Cyntia; Cherkassky, Vladimir; Just, Marcel Adam

    2017-12-01

    This study extended cross-language semantic decoding (based on a concept's fMRI signature) to the decoding of sentences across three different languages (English, Portuguese and Mandarin). A classifier was trained on either the mapping between words and activation patterns in one language or the mappings in two languages (using an equivalent amount of training data), and then tested on its ability to decode the semantic content of a third language. The model trained on two languages was reliably more accurate than a classifier trained on one language for all three pairs of languages. This two-language advantage was selective to abstract concept domains such as social interactions and mental activity. Representational Similarity Analyses (RSA) of the inter-sentence neural similarities resulted in similar clustering of sentences in all the three languages, indicating a shared neural concept space among languages. These findings identify semantic domains that are common across these three languages versus those that are more language or culture-specific. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Pattern Classification with Memristive Crossbar Circuits

    Science.gov (United States)

    2016-03-31

    Pattern Classification with Memristive Crossbar Circuits Dmitri B. Strukov Department of Electrical and Computer Engineering Department UC Santa...pattern classification ; deep learning; convolutional neural network networks. Introduction Deep-learning convolutional neural networks (DLCNN), which...the best classification performances on a variety of benchmark tasks [1]. The major challenge in building fast and energy- efficient networks of this

  15. Neuromorphic Silicon Neuron Circuits

    Science.gov (United States)

    Indiveri, Giacomo; Linares-Barranco, Bernabé; Hamilton, Tara Julia; van Schaik, André; Etienne-Cummings, Ralph; Delbruck, Tobi; Liu, Shih-Chii; Dudek, Piotr; Häfliger, Philipp; Renaud, Sylvie; Schemmel, Johannes; Cauwenberghs, Gert; Arthur, John; Hynna, Kai; Folowosele, Fopefolu; Saighi, Sylvain; Serrano-Gotarredona, Teresa; Wijekoon, Jayawan; Wang, Yingxue; Boahen, Kwabena

    2011-01-01

    Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain–machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin–Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips. PMID:21747754

  16. Neuromorphic silicon neuron circuits

    Directory of Open Access Journals (Sweden)

    Giacomo eIndiveri

    2011-05-01

    Full Text Available Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance based Hodgkin-Huxley models to bi-dimensional generalized adaptive Integrate and Fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.

  17. Psychological processes in chronic pain: Influences of reward and fear learning as key mechanisms - Behavioral evidence, neural circuits, and maladaptive changes.

    Science.gov (United States)

    Nees, Frauke; Becker, Susanne

    2017-09-07

    In the understanding of chronic pain, hypotheses derived from psychological theories, together with insights from physiological assessments and brain imaging, highlight the importance of mechanistically driven approaches. Physical system changes, for example following injury, can result in alterations of psychological processes and are accompanied by changes in corticolimbic circuits, which have been shown to be essential in emotional learning and memory, as well as reward processing and related behavior. In the present review, we thus highlight the importance of motivational, reward/pain relief, and fear learning processes in the context of chronic pain and discuss the potential of a mechanistic understanding of chronic pain within a clinical perspective, for example for the development of therapeutic strategies. We argue that changes in these mechanisms are not only characteristic for chronic pain, reflecting consequences of the disorder, but are also critically involved in the transition from acute to chronic pain states. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Functional magnetic resonance imaging in awake transgenic fragile X rats: evidence of dysregulation in reward processing in the mesolimbic/habenular neural circuit.

    Science.gov (United States)

    Kenkel, W M; Yee, J R; Moore, K; Madularu, D; Kulkarni, P; Gamber, K; Nedelman, M; Ferris, C F

    2016-03-22

    Anxiety and social deficits, often involving communication impairment, are fundamental clinical features of fragile X syndrome. There is growing evidence that dysregulation in reward processing is a contributing factor to the social deficits observed in many psychiatric disorders. Hence, we hypothesized that transgenic fragile X mental retardation 1 gene (fmr1) KO (FX) rats would display alterations in reward processing. To this end, awake control and FX rats were imaged for changes in blood oxygen level dependent (BOLD) signal intensity in response to the odor of almond, a stimulus to elicit the innate reward response. Subjects were 'odor naive' to this evolutionarily conserved stimulus. The resulting changes in brain activity were registered to a three-dimensional segmented, annotated rat atlas delineating 171 brain regions. Both wild-type (WT) and FX rats showed robust brain activation to a rewarding almond odor, though FX rats showed an altered temporal pattern and tended to have a higher number of voxels with negative BOLD signal change from baseline. This pattern of greater negative BOLD was especially apparent in the Papez circuit, critical to emotional processing and the mesolimbic/habenular reward circuit. WT rats showed greater positive BOLD response in the supramammillary area, whereas FX rats showed greater positive BOLD response in the dorsal lateral striatum, and greater negative BOLD response in the retrosplenial cortices, the core of the accumbens and the lateral preoptic area. When tested in a freely behaving odor-investigation paradigm, FX rats failed to show the preference for almond odor which typifies WT rats. However, FX rats showed investigation profiles similar to WT when presented with social odors. These data speak to an altered processing of this highly salient novel odor in the FX phenotype and lend further support to the notion that altered reward systems in the brain may contribute to fragile X syndrome symptomology.

  19. Single-Cell Transcriptomics and Fate Mapping of Ependymal Cells Reveals an Absence of Neural Stem Cell Function.

    Science.gov (United States)

    Shah, Prajay T; Stratton, Jo A; Stykel, Morgan Gail; Abbasi, Sepideh; Sharma, Sandeep; Mayr, Kyle A; Koblinger, Kathrin; Whelan, Patrick J; Biernaskie, Jeff

    2018-05-03

    Ependymal cells are multi-ciliated cells that form the brain's ventricular epithelium and a niche for neural stem cells (NSCs) in the ventricular-subventricular zone (V-SVZ). In addition, ependymal cells are suggested to be latent NSCs with a capacity to acquire neurogenic function. This remains highly controversial due to a lack of prospective in vivo labeling techniques that can effectively distinguish ependymal cells from neighboring V-SVZ NSCs. We describe a transgenic system that allows for targeted labeling of ependymal cells within the V-SVZ. Single-cell RNA-seq revealed that ependymal cells are enriched for cilia-related genes and share several stem-cell-associated genes with neural stem or progenitors. Under in vivo and in vitro neural-stem- or progenitor-stimulating environments, ependymal cells failed to demonstrate any suggestion of latent neural-stem-cell function. These findings suggest remarkable stability of ependymal cell function and provide fundamental insights into the molecular signature of the V-SVZ niche. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Whole-brain activity mapping onto a zebrafish brain atlas

    Science.gov (United States)

    Randlett, Owen; Wee, Caroline L.; Naumann, Eva A.; Nnaemeka, Onyeka; Schoppik, David; Fitzgerald, James E.; Portugues, Ruben; Lacoste, Alix M.B.; Riegler, Clemens; Engert, Florian; Schier, Alexander F.

    2015-01-01

    In order to localize the neural circuits involved in generating behaviors, it is necessary to assign activity onto anatomical maps of the nervous system. Using brain registration across hundreds of larval zebrafish, we have built an expandable open source atlas containing molecular labels and anatomical region definitions, the Z-Brain. Using this platform and immunohistochemical detection of phosphorylated-Extracellular signal-regulated kinase (ERK/MAPK) as a readout of neural activity, we have developed a system to create and contextualize whole brain maps of stimulus- and behavior-dependent neural activity. This MAP-Mapping (Mitogen Activated Protein kinase – Mapping) assay is technically simple, fast, inexpensive, and data analysis is completely automated. Since MAP-Mapping is performed on fish that are freely swimming, it is applicable to nearly any stimulus or behavior. We demonstrate the utility of our high-throughput approach using hunting/feeding, pharmacological, visual and noxious stimuli. The resultant maps outline hundreds of areas associated with behaviors. PMID:26778924

  1. Frontolimbic neural circuit changes in emotional processing and inhibitory control associated with clinical improvement following transference-focused psychotherapy in borderline personality disorder.

    Science.gov (United States)

    Perez, David L; Vago, David R; Pan, Hong; Root, James; Tuescher, Oliver; Fuchs, Benjamin H; Leung, Lorene; Epstein, Jane; Cain, Nicole M; Clarkin, John F; Lenzenweger, Mark F; Kernberg, Otto F; Levy, Kenneth N; Silbersweig, David A; Stern, Emily

    2016-01-01

    Borderline personality disorder (BPD) is characterized by self-regulation deficits, including impulsivity and affective lability. Transference-focused psychotherapy (TFP) is an evidence-based treatment proven to reduce symptoms across multiple cognitive-emotional domains in BPD. This pilot study aimed to investigate neural activation associated with, and predictive of, clinical improvement in emotional and behavioral regulation in BPD following TFP. BPD subjects (n = 10) were scanned pre- and post-TFP treatment using a within-subjects design. A disorder-specific emotional-linguistic go/no-go functional magnetic resonance imaging paradigm was used to probe the interaction between negative emotional processing and inhibitory control. Analyses demonstrated significant treatment-related effects with relative increased dorsal prefrontal (dorsal anterior cingulate, dorsolateral prefrontal, and frontopolar cortices) activation, and relative decreased ventrolateral prefrontal cortex and hippocampal activation following treatment. Clinical improvement in constraint correlated positively with relative increased left dorsal anterior cingulate cortex activation. Clinical improvement in affective lability correlated positively with left posterior-medial orbitofrontal cortex/ventral striatum activation, and negatively with right amygdala/parahippocampal activation. Post-treatment improvements in constraint were predicted by pre-treatment right dorsal anterior cingulate cortex hypoactivation, and pre-treatment left posterior-medial orbitofrontal cortex/ventral striatum hypoactivation predicted improvements in affective lability. These preliminary findings demonstrate potential TFP-associated alterations in frontolimbic circuitry and begin to identify neural mechanisms associated with a psychodynamically oriented psychotherapy. © 2015 The Authors. Psychiatry and Clinical Neurosciences © 2015 Japanese Society of Psychiatry and Neurology.

  2. Relative performances of artificial neural network and regression mapping tools in evaluation of spinal loads and muscle forces during static lifting.

    Science.gov (United States)

    Arjmand, N; Ekrami, O; Shirazi-Adl, A; Plamondon, A; Parnianpour, M

    2013-05-31

    Two artificial neural networks (ANNs) are constructed, trained, and tested to map inputs of a complex trunk finite element (FE) model to its outputs for spinal loads and muscle forces. Five input variables (thorax flexion angle, load magnitude, its anterior and lateral positions, load handling technique, i.e., one- or two-handed static lifting) and four model outputs (L4-L5 and L5-S1 disc compression and anterior-posterior shear forces) for spinal loads and 76 model outputs (forces in individual trunk muscles) are considered. Moreover, full quadratic regression equations mapping input-outputs of the model developed here for muscle forces and previously for spine loads are used to compare the relative accuracy of these two mapping tools (ANN and regression equations). Results indicate that the ANNs are more accurate in mapping input-output relationships of the FE model (RMSE= 20.7 N for spinal loads and RMSE= 4.7 N for muscle forces) as compared to regression equations (RMSE= 120.4 N for spinal loads and RMSE=43.2 N for muscle forces). Quadratic regression equations map up to second order variations of outputs with inputs while ANNs capture higher order variations too. Despite satisfactory achievement in estimating overall muscle forces by the ANN, some inadequacies are noted including assigning force to antagonistic muscles with no activity in the optimization algorithm of the FE model or predicting slightly different forces in bilateral pair muscles in symmetric lifting activities. Using these user-friendly tools spine loads and trunk muscle forces during symmetric and asymmetric static lifts can be easily estimated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Mapping real-time air pollution health risk for environmental management: Combining mobile and stationary air pollution monitoring with neural network models.

    Science.gov (United States)

    Adams, Matthew D; Kanaroglou, Pavlos S

    2016-03-01

    Air pollution poses health concerns at the global scale. The challenge of managing air pollution is significant because of the many air pollutants, insufficient funds for monitoring and abatement programs, and political and social challenges in defining policy to limit emissions. Some governments provide citizens with air pollution health risk information to allow them to limit their exposure. However, many regions still have insufficient air pollution monitoring networks to provide real-time mapping. Where available, these risk mapping systems either provide absolute concentration data or the concentrations are used to derive an Air Quality Index, which provides the air pollution risk for a mix of air pollutants with a single value. When risk information is presented as a single value for an entire region it does not inform on the spatial variation within the region. Without an understanding of the local variation residents can only make a partially informed decision when choosing daily activities. The single value is typically provided because of a limited number of active monitoring units in the area. In our work, we overcome this issue by leveraging mobile air pollution monitoring techniques, meteorological information and land use information to map real-time air pollution health risks. We propose an approach that can provide improved health risk information to the public by applying neural network models within a framework that is inspired by land use regression. Mobile air pollution monitoring campaigns were conducted across Hamilton from 2005 to 2013. These mobile air pollution data were modelled with a number of predictor variables that included information on the surrounding land use characteristics, the meteorological conditions, air pollution concentrations from fixed location monitors, and traffic information during the time of collection. Fine particulate matter and nitrogen dioxide were both modelled. During the model fitting process we reserved

  4. A comparison of multiple regression and neural network techniques for mapping in situ pCO2 data

    International Nuclear Information System (INIS)

    Lefevre, Nathalie; Watson, Andrew J.; Watson, Adam R.

    2005-01-01

    Using about 138,000 measurements of surface pCO 2 in the Atlantic subpolar gyre (50-70 deg N, 60-10 deg W) during 1995-1997, we compare two methods of interpolation in space and time: a monthly distribution of surface pCO 2 constructed using multiple linear regressions on position and temperature, and a self-organizing neural network approach. Both methods confirm characteristics of the region found in previous work, i.e. the subpolar gyre is a sink for atmospheric CO 2 throughout the year, and exhibits a strong seasonal variability with the highest undersaturations occurring in spring and summer due to biological activity. As an annual average the surface pCO 2 is higher than estimates based on available syntheses of surface pCO 2 . This supports earlier suggestions that the sink of CO 2 in the Atlantic subpolar gyre has decreased over the last decade instead of increasing as previously assumed. The neural network is able to capture a more complex distribution than can be well represented by linear regressions, but both techniques agree relatively well on the average values of pCO 2 and derived fluxes. However, when both techniques are used with a subset of the data, the neural network predicts the remaining data to a much better accuracy than the regressions, with a residual standard deviation ranging from 3 to 11 μatm. The subpolar gyre is a net sink of CO 2 of 0.13 Gt-C/yr using the multiple linear regressions and 0.15 Gt-C/yr using the neural network, on average between 1995 and 1997. Both calculations were made with the NCEP monthly wind speeds converted to 10 m height and averaged between 1995 and 1997, and using the gas exchange coefficient of Wanninkhof

  5. Empirical validation of statistical parametric mapping for group imaging of fast neural activity using electrical impedance tomography.

    Science.gov (United States)

    Packham, B; Barnes, G; Dos Santos, G Sato; Aristovich, K; Gilad, O; Ghosh, A; Oh, T; Holder, D

    2016-06-01

    Electrical impedance tomography (EIT) allows for the reconstruction of internal conductivity from surface measurements. A change in conductivity occurs as ion channels open during neural activity, making EIT a potential tool for functional brain imaging. EIT images can have  >10 000 voxels, which means statistical analysis of such images presents a substantial multiple testing problem. One way to optimally correct for these issues and still maintain the flexibility of complicated experimental designs is to use random field theory. This parametric method estimates the distribution of peaks one would expect by chance in a smooth random field of a given size. Random field theory has been used in several other neuroimaging techniques but never validated for EIT images of fast neural activity, such validation can be achieved using non-parametric techniques. Both parametric and non-parametric techniques were used to analyze a set of 22 images collected from 8 rats. Significant group activations were detected using both techniques (corrected p  <  0.05). Both parametric and non-parametric analyses yielded similar results, although the latter was less conservative. These results demonstrate the first statistical analysis of such an image set and indicate that such an analysis is an approach for EIT images of neural activity.

  6. Neural circuits of eye movements during performance of the visual exploration task, which is similar to the responsive search score task, in schizophrenia patients and normal subjects

    International Nuclear Information System (INIS)

    Nemoto, Yasundo; Matsuda, Tetsuya; Matsuura, Masato

    2004-01-01

    Abnormal exploratory eye movements have been studied as a biological marker for schizophrenia. Using functional MRI (fMRI), we investigated brain activations of 12 healthy and 8 schizophrenic subjects during performance of a visual exploration task that is similar to the responsive search score task to clarify the neural basis of the abnormal exploratory eye movement. Performance data, such as the number of eye movements, the reaction time, and the percentage of correct answers showed no significant differences between the two groups. Only the normal subjects showed activations at the bilateral thalamus and the left anterior medial frontal cortex during the visual exploration tasks. In contrast, only the schizophrenic subjects showed activations at the right anterior cingulate gyms during the same tasks. The activation at the different locations between the two groups, the left anterior medial frontal cortex in normal subjects and the right anterior cingulate gyrus in schizophrenia subjects, was explained by the feature of the visual tasks. Hypoactivation at the bilateral thalamus supports a dysfunctional filtering theory of schizophrenia. (author)

  7. Disturbed neural circuits in a subtype of chronic catatonic schizophrenia demonstrated by F-18-FDG-PET and F-18-DOPA-PET

    International Nuclear Information System (INIS)

    Lauer, M.; Beckmann, H.; Stoeber, G.; Schirrmeister, H.; Gerhard, A.; Ellitok, E.; Reske, S.N.

    2001-01-01

    Permanent verbal, visual scenic and coenaestetic hallucinations are the most prominent psychopathological symptoms aside from psychomotor disorders in speech-sluggish catatonia, a subtype of chronic catatonic schizophrenia according to Karl Leonhard. These continuous hallucinations serve as an excellent paradigm for the investigation of the assumed functional disturbances of cortical circuits in schizophrenia. Data from positron emission tomography (F-18-FDG-PET and F-18-DOPA-PET) from three patients with this rare phenotype were available (two cases of simple speech-sluggish catatonia, one case of a combined speech-prompt/speech-sluggish subtype) and were compared with a control collective. During their permanent hallucinations, all catatonic patients showed a clear bitemporal hypometabolism in the F-18-FDG-PET. Both patients with the simple speech-sluggish catatonia showed an additional bilateral thalamic hypermetabolism and an additional bilateral hypometabolism of the frontal cortex, especially on the left side. In contrast, the patient with the combined speech-prompt/speech-sluggish catatonia showed a bilateral thalamic hypo-metabolism combined with a bifrontal cortical hypermetabolism. However, the left/right ratio of the frontal cortex also showed a lateralization effect with a clear relative hypometabolism of the left frontal cortex. The F-18-DOPA-PET of both schizophrenic patients with simple speech-sluggish catatonia showed a normal F-18-DOPA storage in the striatum, whereas in the right putamen of the patient with the combined form a higher right/left ratio in F-DOPA storage was discernible, indicating an additional lateralized influence of the dopaminergic system in this subtype of chronic catatonic schizophrenia. (author)

  8. Stereopsis and 3D surface perception by spiking neurons in laminar cortical circuits: a method for converting neural rate models into spiking models.

    Science.gov (United States)

    Cao, Yongqiang; Grossberg, Stephen

    2012-02-01

    A laminar cortical model of stereopsis and 3D surface perception is developed and simulated. The model shows how spiking neurons that interact in hierarchically organized laminar circuits of the visual cortex can generate analog properties of 3D visual percepts. The model describes how monocular and binocular oriented filtering interact with later stages of 3D boundary formation and surface filling-in in the LGN and cortical areas V1, V2, and V4. It proposes how interactions between layers 4, 3B, and 2/3 in V1 and V2 contribute to stereopsis, and how binocular and monocular information combine to form 3D boundary and surface representations. The model suggests how surface-to-boundary feedback from V2 thin stripes to pale stripes helps to explain how computationally complementary boundary and surface formation properties lead to a single consistent percept, eliminate redundant 3D boundaries, and trigger figure-ground perception. The model also shows how false binocular boundary matches may be eliminated by Gestalt grouping properties. In particular, the disparity filter, which helps to solve the correspondence problem by eliminating false matches, is realized using inhibitory interneurons as part of the perceptual grouping process by horizontal connections in layer 2/3 of cortical area V2. The 3D sLAMINART model simulates 3D surface percepts that are consciously seen in 18 psychophysical experiments. These percepts include contrast variations of dichoptic masking and the correspondence problem, the effect of interocular contrast differences on stereoacuity, Panum's limiting case, the Venetian blind illusion, stereopsis with polarity-reversed stereograms, da Vinci stereopsis, and perceptual closure. The model hereby illustrates a general method of unlumping rate-based models that use the membrane equations of neurophysiology into models that use spiking neurons, and which may be embodied in VLSI chips that use spiking neurons to minimize heat production. Copyright

  9. Genome-wide association mapping in dogs enables identification of the homeobox gene, NKX2-8, as a genetic component of neural tube defects in humans.

    Directory of Open Access Journals (Sweden)

    Noa Safra

    Full Text Available Neural tube defects (NTDs is a general term for central nervous system malformations secondary to a failure of closure or development of the neural tube. The resulting pathologies may involve the brain, spinal cord and/or vertebral column, in addition to associated structures such as soft tissue or skin. The condition is reported among the more common birth defects in humans, leading to significant infant morbidity and mortality. The etiology remains poorly understood but genetic, nutritional, environmental factors, or a combination of these, are known to play a role in the development of NTDs. The variable conditions associated with NTDs occur naturally in dogs, and have been previously reported in the Weimaraner breed. Taking advantage of the strong linkage-disequilibrium within dog breeds we performed genome-wide association analysis and mapped a genomic region for spinal dysraphism, a presumed NTD, using 4 affected and 96 unaffected Weimaraners. The associated region on canine chromosome 8 (pgenome  =3.0 × 10(-5, after 100,000 permutations, encodes 18 genes, including NKX2-8, a homeobox gene which is expressed in the developing neural tube. Sequencing NKX2-8 in affected Weimaraners revealed a G to AA frameshift mutation within exon 2 of the gene, resulting in a premature stop codon that is predicted to produce a truncated protein. The exons of NKX2-8 were sequenced in human patients with spina bifida and rare variants (rs61755040 and rs10135525 were found to be significantly over-represented (p=0.036. This is the first documentation of a potential role for NKX2-8 in the etiology of NTDs, made possible by investigating the molecular basis of naturally occurring mutations in dogs.

  10. Profile of the biodiesel B100 commercialized in the region of Londrina: application of artificial neural networks of the type self organizing maps

    Directory of Open Access Journals (Sweden)

    Vilson Machado de Campos Filho

    2015-10-01

    Full Text Available The 97 samples were grouped according to the year of analysis. For each year, letters from A to D were attributed, between 2010 and 2013; A (33 B (25 C (24 and D (15. The parameters of compliance previously analyzed are those established by the National Agency of Petroleum, Natural Gas and Biofuels (ANP, through resolution ANP 07/2008. The parameters analyzed were density, flash point, peroxide and acid value. The observed values were presented to Artificial Neural Network (ANN Self Organizing MAP (SOM in order to classify, by physical-chemical properties, each sample from year of production. The ANN was trained on different days and randomly divided samples into two groups, training and test set. It was found that SOM network differentiated samples by the year and the compliance parameters, allowing to identify that the density and the flash point were the most significant compliance parameters, so good for the distinction and classification of these samples.

  11. Whole-brain activity mapping onto a zebrafish brain atlas.

    Science.gov (United States)

    Randlett, Owen; Wee, Caroline L; Naumann, Eva A; Nnaemeka, Onyeka; Schoppik, David; Fitzgerald, James E; Portugues, Ruben; Lacoste, Alix M B; Riegler, Clemens; Engert, Florian; Schier, Alexander F

    2015-11-01

    In order to localize the neural circuits involved in generating behaviors, it is necessary to assign activity onto anatomical maps of the nervous system. Using brain registration across hundreds of larval zebrafish, we have built an expandable open-source atlas containing molecular labels and definitions of anatomical regions, the Z-Brain. Using this platform and immunohistochemical detection of phosphorylated extracellular signal–regulated kinase (ERK) as a readout of neural activity, we have developed a system to create and contextualize whole-brain maps of stimulus- and behavior-dependent neural activity. This mitogen-activated protein kinase (MAP)-mapping assay is technically simple, and data analysis is completely automated. Because MAP-mapping is performed on freely swimming fish, it is applicable to studies of nearly any stimulus or behavior. Here we demonstrate our high-throughput approach using pharmacological, visual and noxious stimuli, as well as hunting and feeding. The resultant maps outline hundreds of areas associated with behaviors.

  12. Controllable circuit

    DEFF Research Database (Denmark)

    2010-01-01

    A switch-mode power circuit comprises a controllable element and a control unit. The controllable element is configured to control a current in response to a control signal supplied to the controllable element. The control unit is connected to the controllable element and provides the control...

  13. Circuit Training.

    Science.gov (United States)

    Nelson, Jane B.

    1998-01-01

    Describes a research-based activity for high school physics students in which they build an LC circuit and find its resonant frequency of oscillation using an oscilloscope. Includes a diagram of the apparatus and an explanation of the procedures. (DDR)

  14. A Comparison of Spectral Angle Mapper and Artificial Neural Network Classifiers Combined with Landsat TM Imagery Analysis for Obtaining Burnt Area Mapping

    Directory of Open Access Journals (Sweden)

    Marko Scholze

    2010-03-01

    Full Text Available Satellite remote sensing, with its unique synoptic coverage capabilities, can provide accurate and immediately valuable information on fire analysis and post-fire assessment, including estimation of burnt areas. In this study the potential for burnt area mapping of the combined use of Artificial Neural Network (ANN and Spectral Angle Mapper (SAM classifiers with Landsat TM satellite imagery was evaluated in a Mediterranean setting. As a case study one of the most catastrophic forest fires, which occurred near the capital of Greece during the summer of 2007, was used. The accuracy of the two algorithms in delineating the burnt area from the Landsat TM imagery, acquired shortly after the fire suppression, was determined by the classification accuracy results of the produced thematic maps. In addition, the derived burnt area estimates from the two classifiers were compared with independent estimates available for the study region, obtained from the analysis of higher spatial resolution satellite data. In terms of the overall classification accuracy, ANN outperformed (overall accuracy 90.29%, Kappa coefficient 0.878 the SAM classifier (overall accuracy 83.82%, Kappa coefficient 0.795. Total burnt area estimates from the two classifiers were found also to be in close agreement with the other available estimates for the study region, with a mean absolute percentage difference of ~1% for ANN and ~6.5% for SAM. The study demonstrates the potential of the examined here algorithms in detecting burnt areas in a typical Mediterranean setting.

  15. Human Detection System by Fusing Depth Map-Based Method and Convolutional Neural Network-Based Method

    Directory of Open Access Journals (Sweden)

    Anh Vu Le

    2017-01-01

    Full Text Available In this paper, the depth images and the colour images provided by Kinect sensors are used to enhance the accuracy of human detection. The depth-based human detection method is fast but less accurate. On the other hand, the faster region convolutional neural network-based human detection method is accurate but requires a rather complex hardware configuration. To simultaneously leverage the advantages and relieve the drawbacks of each method, one master and one client system is proposed. The final goal is to make a novel Robot Operation System (ROS-based Perception Sensor Network (PSN system, which is more accurate and ready for the real time application. The experimental results demonstrate the outperforming of the proposed method compared with other conventional methods in the challenging scenarios.

  16. Mapping the neural substrates involved in maternal responsiveness and lamb olfactory memory in parturient ewes using Fos imaging.

    Science.gov (United States)

    Keller, Matthieu; Meurisse, Maryse; Lévy, Frédéric

    2004-12-01

    In sheep, recognition of the familiar lamb by the mother depends on the learning of its olfactory signature after parturition. The authors quantified Fos changes in order to identify brain regions activated during lamb odor memory formation. Brain activation was compared with those measured in anosmic ewes displaying maternal behavior but not individual lamb recognition. In intact ewes, parturition induced significant increase in Fos expression in olfactory cortical regions and in cortical amygdala, whereas in anosmic mothers, Fos expression was very low. In contrast, no difference was observed between intact and anosmic ewes in hypothalamic areas and medial amygdala, suggesting a differentiation between the neural network controlling maternal responsiveness and that involved in olfactory lamb memory.

  17. Functional mapping of the neural basis for the encoding and retrieval of human episodic memory using H215O PET

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Nam, Hyun Woo; Lee, Dong Soo; Lee, Sang Kun; Jang, Myoung Jin; Ahn, Ji Young; Park, Kwang Suk; Chung, June Key; Lee, Myung Chul

    2000-01-01

    Episodic memory is described as an 'autobiographical' memory responsible for storing a record of the events in our lives. We performed functional brain activation study using H 2 1 5O PET to reveal the neural basis of the encoding and the retrieval of episodic memory in human normal volunteers. Four repeated H 2 1 5O PET scans with two reference and two activation tasks were performed on 6 normal volunteers to activate brain areas engaged in encoding and retrieval with verbal materials. Images from the same subject were spatially registered and normalized using linear and nonlinear transformation. Using the means and variances for every condition which were adjusted with analysis of covariance, t-statistic analysis were performed voxel-wise. Encoding of episodic memory activated the opercular and triangular parts of left inferior frontal gyrus, right prefrontal cortex, medial frontal area, cingulate gyrus, posterior middle and inferior temporal gyri, and cerebellum, and both primary visual and visual association areas. Retrieval of episodic memory activated the triangular part of left inferior frontal gyrus and inferior temporal gyrus, right prefrontal cortex and medial temporal ares, and both cerebellum and primary visual and visual association areas. The activations in the opercular part of left inferior frontal gyrus and the right prefrontal cortex meant the essential role of these areas in the encoding and retrieval of episodic memeory. We could localize the neural basis of the encoding and retrieval of episodic memory using H 2 1 5O PET, which was partly consistent with the hypothesis of hemispheric encoding/retrieval asymmetry.=20

  18. A non-penalty recurrent neural network for solving a class of constrained optimization problems.

    Science.gov (United States)

    Hosseini, Alireza

    2016-01-01

    In this paper, we explain a methodology to analyze convergence of some differential inclusion-based neural networks for solving nonsmooth optimization problems. For a general differential inclusion, we show that if its right hand-side set valued map satisfies some conditions, then solution trajectory of the differential inclusion converges to optimal solution set of its corresponding in optimization problem. Based on the obtained methodology, we introduce a new recurrent neural network for solving nonsmooth optimization problems. Objective function does not need to be convex on R(n) nor does the new neural network model require any penalty parameter. We compare our new method with some penalty-based and non-penalty based models. Moreover for differentiable cases, we implement circuit diagram of the new neural network. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Can modular psychological concepts like affect and emotion be assigned to a distinct subset of regional neural circuits?. Comment on "The quartet theory of human emotions: An integrative and neurofunctional model" by S. Koelsch et al.

    Science.gov (United States)

    Fehr, Thorsten; Herrmann, Manfred

    2015-06-01

    The proposed Quartet Theory of Human Emotions by Koelsch and co-workers [11] adumbrates evidence from various scientific sources to integrate and assign the psychological concepts of 'affect' and 'emotion' to four brain circuits or to four neuronal core systems for affect-processing in the brain. The authors differentiate between affect and emotion and assign several facultative, or to say modular, psychological domains and principles of information processing, such as learning and memory, antecedents of affective activity, emotion satiation, cognitive complexity, subjective quality feelings, degree of conscious appraisal, to different affect systems. Furthermore, they relate orbito-frontal brain structures to moral affects as uniquely human, and the hippocampus to attachment-related affects. An additional feature of the theory describes 'emotional effector-systems' for motor-related processes (e.g., emotion-related actions), physiological arousal, attention and memory that are assumed to be cross-linked with the four proposed affect systems. Thus, higher principles of emotional information processing, but also modular affect-related issues, such as moral and attachment related affects, are thought to be handled by these four different physiological sub-systems that are on the other side assumed to be highly interwoven at both physiological and functional levels. The authors also state that the proposed sub-systems have many features in common, such as the selection and modulation of biological processes related to behaviour, perception, attention and memory. The latter aspect challenges an ongoing discussion about the mind-body problem: To which degree do the proposed sub-systems 'sufficiently' cover the processing of complex modular or facultative emotional/affective and/or cognitive phenomena? There are current models and scientific positions that almost completely reject the idea that modular psychological phenomena are handled by a distinct selection of

  20. Neural correlates of consciousness

    African Journals Online (AJOL)

    neural cells.1 Under this approach, consciousness is believed to be a product of the ... possible only when the 40 Hz electrical hum is sustained among the brain circuits, ... expect the brain stem ascending reticular activating system. (ARAS) and the ... related synchrony of cortical neurons.11 Indeed, stimulation of brainstem ...

  1. Theoretical exploration of the neural bases of behavioural disinhibition, apathy and executive dysfunction in preclinical Alzheimer's disease in people with Down's syndrome: potential involvement of multiple frontal-subcortical neuronal circuits.

    Science.gov (United States)

    Ball, S L; Holland, A J; Watson, P C; Huppert, F A

    2010-04-01

    planning, response inhibition and working memory) and an object memory task, (also thought to place high demands on working memory), while 'apathy' score significantly predicted performance on two different tasks, those measuring spatial reversal and prospective memory (p decline was associated only with performance on a delayed recall task while antidepressant medication use was associated with better performance on a working memory task (p underlying neural circuitry and supports the involvement of multiple frontal-subcortical circuits in the early stages of DAT in DS. However, the prominence of disinhibition in the behavioural profile (which more closely resembles that of disinhibited subtype of DFT than that of AD in the general population) leads us to postulate that the serotonergically mediated orbitofrontal circuit may be disproportionately affected. A speculative theory is developed regarding the biological basis for observed changes and discussion is focused on how this understanding may aid us in the development of treatments directly targeting underlying abnormalities.

  2. Mapping the brain's orchestration during speech comprehension: task-specific facilitation of regional synchrony in neural networks

    Directory of Open Access Journals (Sweden)

    Keil Andreas

    2004-10-01

    Full Text Available Abstract Background How does the brain convert sounds and phonemes into comprehensible speech? In the present magnetoencephalographic study we examined the hypothesis that the coherence of electromagnetic oscillatory activity within and across brain areas indicates neurophysiological processes linked to speech comprehension. Results Amplitude-modulated (sinusoidal 41.5 Hz auditory verbal and nonverbal stimuli served to drive steady-state oscillations in neural networks involved in speech comprehension. Stimuli were presented to 12 subjects in the following conditions (a an incomprehensible string of words, (b the same string of words after being introduced as a comprehensible sentence by proper articulation, and (c nonverbal stimulations that included a 600-Hz tone, a scale, and a melody. Coherence, defined as correlated activation of magnetic steady state fields across brain areas and measured as simultaneous activation of current dipoles in source space (Minimum-Norm-Estimates, increased within left- temporal-posterior areas when the sound string was perceived as a comprehensible sentence. Intra-hemispheric coherence was larger within the left than the right hemisphere for the sentence (condition (b relative to all other conditions, and tended to be larger within the right than the left hemisphere for nonverbal stimuli (condition (c, tone and melody relative to the other conditions, leading to a more pronounced hemispheric asymmetry for nonverbal than verbal material. Conclusions We conclude that coherent neuronal network activity may index encoding of verbal information on the sentence level and can be used as a tool to investigate auditory speech comprehension.

  3. Estimating temporal and spatial variation of ocean surface pCO2 in the North Pacific using a self-organizing map neural network technique

    Directory of Open Access Journals (Sweden)

    S. Nakaoka

    2013-09-01

    Full Text Available This study uses a neural network technique to produce maps of the partial pressure of oceanic carbon dioxide (pCO2sea in the North Pacific on a 0.25° latitude × 0.25° longitude grid from 2002 to 2008. The pCO2sea distribution was computed using a self-organizing map (SOM originally utilized to map the pCO2sea in the North Atlantic. Four proxy parameters – sea surface temperature (SST, mixed layer depth, chlorophyll a concentration, and sea surface salinity (SSS – are used during the training phase to enable the network to resolve the nonlinear relationships between the pCO2sea distribution and biogeochemistry of the basin. The observed pCO2sea data were obtained from an extensive dataset generated by the volunteer observation ship program operated by the National Institute for Environmental Studies (NIES. The reconstructed pCO2sea values agreed well with the pCO2sea measurements, with the root-mean-square error ranging from 17.6 μatm (for the NIES dataset used in the SOM to 20.2 μatm (for independent dataset. We confirmed that the pCO2sea estimates could be improved by including SSS as one of the training parameters and by taking into account secular increases of pCO2sea that have tracked increases in atmospheric CO2. Estimated pCO2sea values accurately reproduced pCO2sea data at several time series locations in the North Pacific. The distributions of pCO2sea revealed by 7 yr averaged monthly pCO2sea maps were similar to Lamont-Doherty Earth Observatory pCO2sea climatology, allowing, however, for a more detailed analysis of biogeochemical conditions. The distributions of pCO2sea anomalies over the North Pacific during the winter clearly showed regional contrasts between El Niño and La Niña years related to changes of SST and vertical mixing.

  4. Inherently stochastic spiking neurons for probabilistic neural computation

    KAUST Repository

    Al-Shedivat, Maruan; Naous, Rawan; Neftci, Emre; Cauwenberghs, Gert; Salama, Khaled N.

    2015-01-01

    . Our analysis and simulations show that the proposed neuron circuit satisfies a neural computability condition that enables probabilistic neural sampling and spike-based Bayesian learning and inference. Our findings constitute an important step towards

  5. Neural electrical activity and neural network growth.

    Science.gov (United States)

    Gafarov, F M

    2018-05-01

    The development of central and peripheral neural system depends in part on the emergence of the correct functional connectivity in its input and output pathways. Now it is generally accepted that molecular factors guide neurons to establish a primary scaffold that undergoes activity-dependent refinement for building a fully functional circuit. However, a number of experimental results obtained recently shows that the neuronal electrical activity plays an important role in the establishing of initial interneuronal connections. Nevertheless, these processes are rather difficult to study experimentally, due to the absence of theoretical description and quantitative parameters for estimation of the neuronal activity influence on growth in neural networks. In this work we propose a general framework for a theoretical description of the activity-dependent neural network growth. The theoretical description incorporates a closed-loop growth model in which the neural activity can affect neurite outgrowth, which in turn can affect neural activity. We carried out the detailed quantitative analysis of spatiotemporal activity patterns and studied the relationship between individual cells and the network as a whole to explore the relationship between developing connectivity and activity patterns. The model, developed in this work will allow us to develop new experimental techniques for studying and quantifying the influence of the neuronal activity on growth processes in neural networks and may lead to a novel techniques for constructing large-scale neural networks by self-organization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. LOGIC CIRCUIT

    Science.gov (United States)

    Strong, G.H.; Faught, M.L.

    1963-12-24

    A device for safety rod counting in a nuclear reactor is described. A Wheatstone bridge circuit is adapted to prevent de-energizing the hopper coils of a ball backup system if safety rods, sufficient in total control effect, properly enter the reactor core to effect shut down. A plurality of resistances form one arm of the bridge, each resistance being associated with a particular safety rod and weighted in value according to the control effect of the particular safety rod. Switching means are used to switch each of the resistances in and out of the bridge circuit responsive to the presence of a particular safety rod in its effective position in the reactor core and responsive to the attainment of a predetermined velocity by a particular safety rod enroute to its effective position. The bridge is unbalanced in one direction during normal reactor operation prior to the generation of a scram signal and the switching means and resistances are adapted to unbalance the bridge in the opposite direction if the safety rods produce a predetermined amount of control effect in response to the scram signal. The bridge unbalance reversal is then utilized to prevent the actuation of the ball backup system, or, conversely, a failure of the safety rods to produce the predetermined effect produces no unbalance reversal and the ball backup system is actuated. (AEC)

  7. Diffusion parameter mapping with the combined intravoxel incoherent motion and kurtosis model using artificial neural networks at 3 T.

    Science.gov (United States)

    Bertleff, Marco; Domsch, Sebastian; Weingärtner, Sebastian; Zapp, Jascha; O'Brien, Kieran; Barth, Markus; Schad, Lothar R

    2017-12-01

    Artificial neural networks (ANNs) were used for voxel-wise parameter estimation with the combined intravoxel incoherent motion (IVIM) and kurtosis model facilitating robust diffusion parameter mapping in the human brain. The proposed ANN approach was compared with conventional least-squares regression (LSR) and state-of-the-art multi-step fitting (LSR-MS) in Monte-Carlo simulations and in vivo in terms of estimation accuracy and precision, number of outliers and sensitivity in the distinction between grey (GM) and white (WM) matter. Both the proposed ANN approach and LSR-MS yielded visually increased parameter map quality. Estimations of all parameters (perfusion fraction f, diffusion coefficient D, pseudo-diffusion coefficient D*, kurtosis K) were in good agreement with the literature using ANN, whereas LSR-MS resulted in D* overestimation and LSR yielded increased values for f and D*, as well as decreased values for K. Using ANN, outliers were reduced for the parameters f (ANN, 1%; LSR-MS, 19%; LSR, 8%), D* (ANN, 21%; LSR-MS, 25%; LSR, 23%) and K (ANN, 0%; LSR-MS, 0%; LSR, 15%). Moreover, ANN enabled significant distinction between GM and WM based on all parameters, whereas LSR facilitated this distinction only based on D and LSR-MS on f, D and K. Overall, the proposed ANN approach was found to be superior to conventional LSR, posing a powerful alternative to the state-of-the-art method LSR-MS with several advantages in the estimation of IVIM-kurtosis parameters, which might facilitate increased applicability of enhanced diffusion models at clinical scan times. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Short- circuit tests of circuit breakers

    OpenAIRE

    Chorovský, P.

    2015-01-01

    This paper deals with short-circuit tests of low voltage electrical devices. In the first part of this paper, there are described basic types of short- circuit tests and their principles. Direct and indirect (synthetic) tests with more details are described in the second part. Each test and principles are explained separately. Oscilogram is obtained from short-circuit tests of circuit breakers at laboratory. The aim of this research work is to propose a test circuit for performing indirect test.

  9. Collective of mechatronics circuit

    International Nuclear Information System (INIS)

    1987-02-01

    This book is composed of three parts, which deals with mechatronics system about sensor, circuit and motor. The contents of the first part are photo sensor of collector for output, locating detection circuit with photo interrupts, photo sensor circuit with CdS cell and lamp, interface circuit with logic and LED and temperature sensor circuit. The second part deals with oscillation circuit with crystal, C-R oscillation circuit, F-V converter, timer circuit, stability power circuit, DC amp and DC-DC converter. The last part is comprised of bridge server circuit, deformation bridge server, controlling circuit of DC motor, controlling circuit with IC for PLL and driver circuit of stepping motor and driver circuit of Brushless.

  10. Collective of mechatronics circuit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-02-15

    This book is composed of three parts, which deals with mechatronics system about sensor, circuit and motor. The contents of the first part are photo sensor of collector for output, locating detection circuit with photo interrupts, photo sensor circuit with CdS cell and lamp, interface circuit with logic and LED and temperature sensor circuit. The second part deals with oscillation circuit with crystal, C-R oscillation circuit, F-V converter, timer circuit, stability power circuit, DC amp and DC-DC converter. The last part is comprised of bridge server circuit, deformation bridge server, controlling circuit of DC motor, controlling circuit with IC for PLL and driver circuit of stepping motor and driver circuit of Brushless.

  11. Mapping and correction of the CMM workspace error with the use of an electronic gyroscope and neural networks--practical application.

    Science.gov (United States)

    Swornowski, Pawel J

    2013-01-01

    The article presents the application of neural networks in determining and correction of the deformation of a coordinate measuring machine (CMM) workspace. The information about the CMM errors is acquired using an ADXRS401 electronic gyroscope. A test device (PS-20 module) was built and integrated with a commercial measurement system based on the SP25M passive scanning probe and with a PH10M module (Renishaw). The proposed solution was tested on a Kemco 600 CMM and on a DEA Global Clima CMM. In the former case, correction of the CMM errors was performed using the source code of WinIOS software owned by The Institute of Advanced Manufacturing Technology, Cracow, Poland and in the latter on an external PC. Optimum parameters of full and simplified mapping of a given layer of the CMM workspace were determined for practical applications. The proposed method can be employed for the interim check (ISO 10360-2 procedure) or to detect local CMM deformations, occurring when the CMM works at high scanning speeds (>20 mm/s). © Wiley Periodicals, Inc.

  12. Neural circuits in auditory and audiovisual memory.

    Science.gov (United States)

    Plakke, B; Romanski, L M

    2016-06-01

    Working memory is the ability to employ recently seen or heard stimuli and apply them to changing cognitive context. Although much is known about language processing and visual working memory, the neurobiological basis of auditory working memory is less clear. Historically, part of the problem has been the difficulty in obtaining a robust animal model to study auditory short-term memory. In recent years there has been neurophysiological and lesion studies indicating a cortical network involving both temporal and frontal cortices. Studies specifically targeting the role of the prefrontal cortex (PFC) in auditory working memory have suggested that dorsal and ventral prefrontal regions perform different roles during the processing of auditory mnemonic information, with the dorsolateral PFC performing similar functions for both auditory and visual working memory. In contrast, the ventrolateral PFC (VLPFC), which contains cells that respond robustly to auditory stimuli and that process both face and vocal stimuli may be an essential locus for both auditory and audiovisual working memory. These findings suggest a critical role for the VLPFC in the processing, integrating, and retaining of communication information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Circuit parties.

    Science.gov (United States)

    Guzman, R

    2000-03-01

    Circuit parties are extended celebrations, lasting from a day to a week, primarily attended by gay and bisexual men in their thirties and forties. These large-scale dance parties move from city to city and draw thousands of participants. The risks for contracting HIV during these parties include recreational drug use and unsafe sex. Limited data exists on the level of risk at these parties, and participants are skeptical of outside help because of past criticism of these events. Health care and HIV advocates can promote risk-reduction strategies with the cooperation of party planners and can counsel individuals to personally reduce their own risk. To convey the message, HIV prevention workers should emphasize positive and community-centered aspects of the parties, such as taking care of friends and avoiding overdose.

  14. Mapping of olfactory memory circuits: region-specific c-fos activation after odor-reward associative learning or after its retrieval.

    Science.gov (United States)

    Tronel, Sophie; Sara, Susan J

    2002-01-01

    Although there is growing knowledge about intracellular mechanisms underlying neuronal plasticity and memory consolidation and reconsolidation after retrieval, information concerning the interaction among brain areas during formation and retrieval of memory is relatively sparse and fragmented. Addressing this question requires simultaneous monitoring of activity in multiple brain regions during learning, the post-acquisition consolidation period, and retrieval and subsequent reconsolidation. Immunoreaction to the immediate early gene c-fos is a powerful tool to mark neuronal activation of specific populations of neurons. Using this method, we are able to report, for the first time, post-training activation of a network of closely related brain regions, particularly in the frontal cortex and the basolateral amygdala (BLA), that is specific to the learning of an odor-reward association. On the other hand, retrieval of a well-established associative memory trace does not seem to differentially activate the same regions. The amygdala, in particular, is not engaged after retrieval, whereas the lateral habenula (LHab) shows strong activation that is restricted to animals having previously learned the association. Although intracellular mechanisms may be similar during consolidation and reconsolidation, this study indicates that different brain circuits are involved in the two processes, at least with respect to a rapidly learned olfactory task.

  15. Synthetic Biology: A Unifying View and Review Using Analog Circuits.

    Science.gov (United States)

    Teo, Jonathan J Y; Woo, Sung Sik; Sarpeshkar, Rahul

    2015-08-01

    We review the field of synthetic biology from an analog circuits and analog computation perspective, focusing on circuits that have been built in living cells. This perspective is well suited to pictorially, symbolically, and quantitatively representing the nonlinear, dynamic, and stochastic (noisy) ordinary and partial differential equations that rigorously describe the molecular circuits of synthetic biology. This perspective enables us to construct a canonical analog circuit schematic that helps unify and review the operation of many fundamental circuits that have been built in synthetic biology at the DNA, RNA, protein, and small-molecule levels over nearly two decades. We review 17 circuits in the literature as particular examples of feedforward and feedback analog circuits that arise from special topological cases of the canonical analog circuit schematic. Digital circuit operation of these circuits represents a special case of saturated analog circuit behavior and is automatically incorporated as well. Many issues that have prevented synthetic biology from scaling are naturally represented in analog circuit schematics. Furthermore, the deep similarity between the Boltzmann thermodynamic equations that describe noisy electronic current flow in subthreshold transistors and noisy molecular flux in biochemical reactions has helped map analog circuit motifs in electronics to analog circuit motifs in cells and vice versa via a `cytomorphic' approach. Thus, a body of knowledge in analog electronic circuit design, analysis, simulation, and implementation may also be useful in the robust and efficient design of molecular circuits in synthetic biology, helping it to scale to more complex circuits in the future.

  16. Fermionic models with superconducting circuits

    Energy Technology Data Exchange (ETDEWEB)

    Las Heras, Urtzi; Garcia-Alvarez, Laura; Mezzacapo, Antonio; Lamata, Lucas [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); Solano, Enrique [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao (Spain)

    2015-12-01

    We propose a method for the efficient quantum simulation of fermionic systems with superconducting circuits. It consists in the suitable use of Jordan-Wigner mapping, Trotter decomposition, and multiqubit gates, be with the use of a quantum bus or direct capacitive couplings. We apply our method to the paradigmatic cases of 1D and 2D Fermi-Hubbard models, involving couplings with nearest and next-nearest neighbours. Furthermore, we propose an optimal architecture for this model and discuss the benchmarking of the simulations in realistic circuit quantum electrodynamics setups. (orig.)

  17. Multi-Connection Pattern Analysis: Decoding the representational content of neural communication.

    Science.gov (United States)

    Li, Yuanning; Richardson, Robert Mark; Ghuman, Avniel Singh

    2017-11-15

    The lack of multivariate methods for decoding the representational content of interregional neural communication has left it difficult to know what information is represented in distributed brain circuit interactions. Here we present Multi-Connection Pattern Analysis (MCPA), which works by learning mappings between the activity patterns of the populations as a factor of the information being processed. These maps are used to predict the activity from one neural population based on the activity from the other population. Successful MCPA-based decoding indicates the involvement of distributed computational processing and provides a framework for probing the representational structure of the interaction. Simulations demonstrate the efficacy of MCPA in realistic circumstances. In addition, we demonstrate that MCPA can be applied to different signal modalities to evaluate a variety of hypothesis associated with information coding in neural communications. We apply MCPA to fMRI and human intracranial electrophysiological data to provide a proof-of-concept of the utility of this method for decoding individual natural images and faces in functional connectivity data. We further use a MCPA-based representational similarity analysis to illustrate how MCPA may be used to test computational models of information transfer among regions of the visual processing stream. Thus, MCPA can be used to assess the information represented in the coupled activity of interacting neural circuits and probe the underlying principles of information transformation between regions. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Commutation circuit for an HVDC circuit breaker

    Science.gov (United States)

    Premerlani, William J.

    1981-01-01

    A commutation circuit for a high voltage DC circuit breaker incorporates a resistor capacitor combination and a charging circuit connected to the main breaker, such that a commutating capacitor is discharged in opposition to the load current to force the current in an arc after breaker opening to zero to facilitate arc interruption. In a particular embodiment, a normally open commutating circuit is connected across the contacts of a main DC circuit breaker to absorb the inductive system energy trapped by breaker opening and to limit recovery voltages to a level tolerable by the commutating circuit components.

  19. Memristor-based neural networks: Synaptic versus neuronal stochasticity

    KAUST Repository

    Naous, Rawan

    2016-11-02

    In neuromorphic circuits, stochasticity in the cortex can be mapped into the synaptic or neuronal components. The hardware emulation of these stochastic neural networks are currently being extensively studied using resistive memories or memristors. The ionic process involved in the underlying switching behavior of the memristive elements is considered as the main source of stochasticity of its operation. Building on its inherent variability, the memristor is incorporated into abstract models of stochastic neurons and synapses. Two approaches of stochastic neural networks are investigated. Aside from the size and area perspective, the impact on the system performance, in terms of accuracy, recognition rates, and learning, among these two approaches and where the memristor would fall into place are the main comparison points to be considered.

  20. Proposal for an All-Spin Artificial Neural Network: Emulating Neural and Synaptic Functionalities Through Domain Wall Motion in Ferromagnets.

    Science.gov (United States)

    Sengupta, Abhronil; Shim, Yong; Roy, Kaushik

    2016-12-01

    Non-Boolean computing based on emerging post-CMOS technologies can potentially pave the way for low-power neural computing platforms. However, existing work on such emerging neuromorphic architectures have either focused on solely mimicking the neuron, or the synapse functionality. While memristive devices have been proposed to emulate biological synapses, spintronic devices have proved to be efficient at performing the thresholding operation of the neuron at ultra-low currents. In this work, we propose an All-Spin Artificial Neural Network where a single spintronic device acts as the basic building block of the system. The device offers a direct mapping to synapse and neuron functionalities in the brain while inter-layer network communication is accomplished via CMOS transistors. To the best of our knowledge, this is the first demonstration of a neural architecture where a single nanoelectronic device is able to mimic both neurons and synapses. The ultra-low voltage operation of low resistance magneto-metallic neurons enables the low-voltage operation of the array of spintronic synapses, thereby leading to ultra-low power neural architectures. Device-level simulations, calibrated to experimental results, was used to drive the circuit and system level simulations of the neural network for a standard pattern recognition problem. Simulation studies indicate energy savings by  ∼  100× in comparison to a corresponding digital/analog CMOS neuron implementation.

  1. Bidirectional global spontaneous network activity precedes the canonical unidirectional circuit organization in the developing hippocampus.

    Science.gov (United States)

    Shi, Yulin; Ikrar, Taruna; Olivas, Nicholas D; Xu, Xiangmin

    2014-06-15

    Spontaneous network activity is believed to sculpt developing neural circuits. Spontaneous giant depolarizing potentials (GDPs) were first identified with single-cell recordings from rat CA3 pyramidal neurons, but here we identify and characterize a large-scale spontaneous network activity we term global network activation (GNA) in the developing mouse hippocampal slices, which is measured macroscopically by fast voltage-sensitive dye imaging. The initiation and propagation of GNA in the mouse is largely GABA-independent and dominated by glutamatergic transmission via AMPA receptors. Despite the fact that signal propagation in the adult hippocampus is strongly unidirectional through the canonical trisynaptic circuit (dentate gyrus [DG] to CA3 to CA1), spontaneous GNA in the developing hippocampus originates in distal CA3 and propagates both forward to CA1 and backward to DG. Photostimulation-evoked GNA also shows prominent backward propagation in the developing hippocampus from CA3 to DG. Mouse GNA is strongly correlated to electrophysiological recordings of highly localized single-cell and local field potential events. Photostimulation mapping of neural circuitry demonstrates that the enhancement of local circuit connections to excitatory pyramidal neurons occurs over the same time course as GNA and reveals the underlying pathways accounting for GNA backward propagation from CA3 to DG. The disappearance of GNA coincides with a transition to the adult-like unidirectional circuit organization at about 2 weeks of age. Taken together, our findings strongly suggest a critical link between GNA activity and maturation of functional circuit connections in the developing hippocampus. Copyright © 2013 Wiley Periodicals, Inc.

  2. Analog circuit design designing dynamic circuit response

    CERN Document Server

    Feucht, Dennis

    2010-01-01

    This second volume, Designing Dynamic Circuit Response builds upon the first volume Designing Amplifier Circuits by extending coverage to include reactances and their time- and frequency-related behavioral consequences.

  3. Trigger circuit

    International Nuclear Information System (INIS)

    Verity, P.R.; Chaplain, M.D.; Turner, G.D.J.

    1984-01-01

    A monostable trigger circuit comprises transistors TR2 and TR3 arranged with their collectors and bases interconnected. The collector of the transistor TR2 is connected to the base of transistor TR3 via a capacitor C2 the main current path of a grounded base transistor TR1 and resistive means R2,R3. The collector of transistor TR3 is connected to the base of transistor TR2 via resistive means R6, R7. In the stable state all the transistors are OFF, the capacitor C2 is charged, and the output is LOW. A positive pulse input to the base of TR2 switches it ON, which in turn lowers the voltage at points A and B and so switches TR1 ON so that C2 can discharge via R2, R3, which in turn switches TR3 ON making the output high. Thus all three transistors are latched ON. When C2 has discharged sufficiently TR1 switches OFF, followed by TR3 (making the output low again) and TR2. The components C1, C3 and R4 serve to reduce noise, and the diode D1 is optional. (author)

  4. High-throughput dual-color precision imaging for brain-wide mapping of the connectome with cytoarchitectonic landmarks at the cellular level (Conference Presentation)

    Science.gov (United States)

    Luo, Qingming; Gong, Hui; Yuan, Jing; Li, Xiangning; Li, Anan; Xu, Tonghui

    2017-02-01

    Deciphering the fine morphology and precise location of neurons and neural circuits are crucial to enhance our understanding of brain function and diseases. Traditionally, we have to map brain images to coarse axial-sampling planar reference atlases to orient neural structures. However, this means might fail to orient neural projections at single-cell resolution due to position errors resulting from individual differences at the cellular level. Here, we present a high-throughput imaging method that can automatically obtain the fine morphologies and precise locations of both neurons and circuits, employing wide-field large-volume tomography to acquire three-dimensional images of thick tissue and implementing real-time soma counterstaining to obtain cytoarchitectonic landmarks during the imaging process. The reconstruction and orientation of brain-wide neural circuits at single-neuron resolution can be accomplished for the same mouse brain without additional counterstains or image registration. Using our method, mouse brain imaging datasets of multiple type-specific neurons and circuits were successfully acquired, demonstrating the versatility. The results show that the simultaneous acquisition of labeled neural structures and cytoarchitecture reference at single-neuron resolution in the same brain greatly facilitates precise tracing of long-range projections and accurate locating of nuclei. Our method provides a novel and effective tool for application in studies on genetic dissection, brain function and the pathology of the nervous system.

  5. Correlation of Aerogravity and BHT Data to Develop a Geothermal Gradient Map of the Northern Western Desert of Egypt using an Artificial Neural Network

    Science.gov (United States)

    Mohamed, Haby S.; Abdel Zaher, Mohamed; Senosy, Mahmoud M.; Saibi, Hakim; El Nouby, Mohamed; Fairhead, J. Derek

    2015-06-01

    The northern part of the Western Desert of Egypt represents the second most promising area of hydrocarbon potential after the Gulf of Suez province. An artificial neural network (ANN) approach was used to develop a new predictive model for calculation of the geothermal gradients in this region based on gravity and corrected bottom-hole temperature (BHT) data. The best training data set was obtained with an ANN architecture composed of seven neurons in the hidden layer, which made it possible to predict the geothermal gradient with satisfactory efficiency. The BHT records of 116 deep oil wells (2,000-4,500 m) were used to evaluate the geothermal resources in the northern Western Desert. Corrections were applied to the BHT data to obtain the true formation equilibrium temperatures, which can provide useful constraints on the subsurface thermal regime. On the basis of these corrected data, the thermal gradient was computed for the linear sections of the temperature-versus-depth data at each well. The calculated geothermal gradient using temperature log data was generally 30 °C/km, with a few local high geothermal gradients in the northwestern parts of the study area explained by potential local geothermal fields. The Bouguer gravity values from the study area ranged from -60 mGal in the southern parts to 120 mGal in the northern areas, and exhibited NE-SW and E-W trends associated with geological structures. Although the northern Western Desert of Egypt has low regional temperature gradients (30 °C/km), several potential local geothermal fields were found (>40 °C/km). The heat flow at each well was also computed by combining sets of temperature gradients and thermal conductivity data. Aerogravity data were used to delineate the subsurface structures and tectonic framework of the region. The result of this study is a new geothermal gradient map of the northern Western Desert developed from gravity and BHT log data.

  6. An application of neural networks in microeconomics: input-output mapping in a power generation subsector of the US electricity industry

    NARCIS (Netherlands)

    Erbas, B.C.; Stefanou, S.E.

    2009-01-01

    The use of the artificial neural networks in economics and business goes back to 1950s, while the major bulk of the applications have been developed in more recent years. Reviewing this literature indicates that the field of business benefits from the neural networks in a wide spectrum from

  7. Active Neural Localization

    OpenAIRE

    Chaplot, Devendra Singh; Parisotto, Emilio; Salakhutdinov, Ruslan

    2018-01-01

    Localization is the problem of estimating the location of an autonomous agent from an observation and a map of the environment. Traditional methods of localization, which filter the belief based on the observations, are sub-optimal in the number of steps required, as they do not decide the actions taken by the agent. We propose "Active Neural Localizer", a fully differentiable neural network that learns to localize accurately and efficiently. The proposed model incorporates ideas of tradition...

  8. Solid-state circuits

    CERN Document Server

    Pridham, G J

    2013-01-01

    Solid-State Circuits provides an introduction to the theory and practice underlying solid-state circuits, laying particular emphasis on field effect transistors and integrated circuits. Topics range from construction and characteristics of semiconductor devices to rectification and power supplies, low-frequency amplifiers, sine- and square-wave oscillators, and high-frequency effects and circuits. Black-box equivalent circuits of bipolar transistors, physical equivalent circuits of bipolar transistors, and equivalent circuits of field effect transistors are also covered. This volume is divided

  9. Circuit analysis for dummies

    CERN Document Server

    Santiago, John

    2013-01-01

    Circuits overloaded from electric circuit analysis? Many universities require that students pursuing a degree in electrical or computer engineering take an Electric Circuit Analysis course to determine who will ""make the cut"" and continue in the degree program. Circuit Analysis For Dummies will help these students to better understand electric circuit analysis by presenting the information in an effective and straightforward manner. Circuit Analysis For Dummies gives you clear-cut information about the topics covered in an electric circuit analysis courses to help

  10. Current limiter circuit system

    Science.gov (United States)

    Witcher, Joseph Brandon; Bredemann, Michael V.

    2017-09-05

    An apparatus comprising a steady state sensing circuit, a switching circuit, and a detection circuit. The steady state sensing circuit is connected to a first, a second and a third node. The first node is connected to a first device, the second node is connected to a second device, and the steady state sensing circuit causes a scaled current to flow at the third node. The scaled current is proportional to a voltage difference between the first and second node. The switching circuit limits an amount of current that flows between the first and second device. The detection circuit is connected to the third node and the switching circuit. The detection circuit monitors the scaled current at the third node and controls the switching circuit to limit the amount of the current that flows between the first and second device when the scaled current is greater than a desired level.

  11. Mapping, Learning, Visualization, Classification, and Understanding of fMRI Data in the NeuCube Evolving Spatiotemporal Data Machine of Spiking Neural Networks.

    Science.gov (United States)

    Kasabov, Nikola K; Doborjeh, Maryam Gholami; Doborjeh, Zohreh Gholami

    2017-04-01

    This paper introduces a new methodology for dynamic learning, visualization, and classification of functional magnetic resonance imaging (fMRI) as spatiotemporal brain data. The method is based on an evolving spatiotemporal data machine of evolving spiking neural networks (SNNs) exemplified by the NeuCube architecture [1]. The method consists of several steps: mapping spatial coordinates of fMRI data into a 3-D SNN cube (SNNc) that represents a brain template; input data transformation into trains of spikes; deep, unsupervised learning in the 3-D SNNc of spatiotemporal patterns from data; supervised learning in an evolving SNN classifier; parameter optimization; and 3-D visualization and model interpretation. Two benchmark case study problems and data are used to illustrate the proposed methodology-fMRI data collected from subjects when reading affirmative or negative sentences and another one-on reading a sentence or seeing a picture. The learned connections in the SNNc represent dynamic spatiotemporal relationships derived from the fMRI data. They can reveal new information about the brain functions under different conditions. The proposed methodology allows for the first time to analyze dynamic functional and structural connectivity of a learned SNN model from fMRI data. This can be used for a better understanding of brain activities and also for online generation of appropriate neurofeedback to subjects for improved brain functions. For example, in this paper, tracing the 3-D SNN model connectivity enabled us for the first time to capture prominent brain functional pathways evoked in language comprehension. We found stronger spatiotemporal interaction between left dorsolateral prefrontal cortex and left temporal while reading a negated sentence. This observation is obviously distinguishable from the patterns generated by either reading affirmative sentences or seeing pictures. The proposed NeuCube-based methodology offers also a superior classification accuracy

  12. Deciphering the Cognitive and Neural Mechanisms Underlying ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Deciphering the Cognitive and Neural Mechanisms Underlying Auditory Learning. This project seeks to understand the brain mechanisms necessary for people to learn to perceive sounds. Neural circuits and learning. The research team will test people with and without musical training to evaluate their capacity to learn ...

  13. Deep learning with coherent nanophotonic circuits

    Science.gov (United States)

    Shen, Yichen; Harris, Nicholas C.; Skirlo, Scott; Prabhu, Mihika; Baehr-Jones, Tom; Hochberg, Michael; Sun, Xin; Zhao, Shijie; Larochelle, Hugo; Englund, Dirk; Soljačić, Marin

    2017-07-01

    Artificial neural networks are computational network models inspired by signal processing in the brain. These models have dramatically improved performance for many machine-learning tasks, including speech and image recognition. However, today's computing hardware is inefficient at implementing neural networks, in large part because much of it was designed for von Neumann computing schemes. Significant effort has been made towards developing electronic architectures tuned to implement artificial neural networks that exhibit improved computational speed and accuracy. Here, we propose a new architecture for a fully optical neural network that, in principle, could offer an enhancement in computational speed and power efficiency over state-of-the-art electronics for conventional inference tasks. We experimentally demonstrate the essential part of the concept using a programmable nanophotonic processor featuring a cascaded array of 56 programmable Mach-Zehnder interferometers in a silicon photonic integrated circuit and show its utility for vowel recognition.

  14. High-throughput mapping of brain-wide activity in awake and drug-responsive vertebrates.

    Science.gov (United States)

    Lin, Xudong; Wang, Shiqi; Yu, Xudong; Liu, Zhuguo; Wang, Fei; Li, Wai Tsun; Cheng, Shuk Han; Dai, Qiuyun; Shi, Peng

    2015-02-07

    The reconstruction of neural activity across complete neural circuits, or brain activity mapping, has great potential in both fundamental and translational neuroscience research. Larval zebrafish, a vertebrate model, has recently been demonstrated to be amenable to whole brain activity mapping in behaving animals. Here we demonstrate a microfluidic array system ("Fish-Trap") that enables high-throughput mapping of brain-wide activity in awake larval zebrafish. Unlike the commonly practiced larva-processing methods using a rigid gel or a capillary tube, which are laborious and time-consuming, the hydrodynamic design of our microfluidic chip allows automatic, gel-free, and anesthetic-free processing of tens of larvae for microscopic imaging with single-cell resolution. Notably, this system provides the capability to directly couple pharmaceutical stimuli with real-time recording of neural activity in a large number of animals, and the local and global effects of pharmacoactive drugs on the nervous system can be directly visualized and evaluated by analyzing drug-induced functional perturbation within or across different brain regions. Using this technology, we tested a set of neurotoxin peptides and obtained new insights into how to exploit neurotoxin derivatives as therapeutic agents. The novel and versatile "Fish-Trap" technology can be readily unitized to study other stimulus (optical, acoustic, or physical) associated functional brain circuits using similar experimental strategies.

  15. Modulation of anxiety circuits by serotonergic systems

    DEFF Research Database (Denmark)

    Lowry, Christopher A; Johnson, Philip L; Hay-Schmidt, Anders

    2005-01-01

    of emotionally salient events, often when both rewarding and aversive outcomes are possible. In this review, we highlight recent advances in our understanding of the neural circuits regulating anxiety states and anxiety-related behavior with an emphasis on the role of brainstem serotonergic systems in modulating...... anxiety-related circuits. In particular, we explore the possibility that the regulation of anxiety states and anxiety-related behavior by serotonergic systems is dependent on a specific, topographically organized mesolimbocortical serotonergic system that originates in the mid-rostrocaudal and caudal...

  16. Intuitive analog circuit design

    CERN Document Server

    Thompson, Marc

    2013-01-01

    Intuitive Analog Circuit Design outlines ways of thinking about analog circuits and systems that let you develop a feel for what a good, working analog circuit design should be. This book reflects author Marc Thompson's 30 years of experience designing analog and power electronics circuits and teaching graduate-level analog circuit design, and is the ideal reference for anyone who needs a straightforward introduction to the subject. In this book, Dr. Thompson describes intuitive and ""back-of-the-envelope"" techniques for designing and analyzing analog circuits, including transistor amplifi

  17. The circuit designer's companion

    CERN Document Server

    Williams, Tim

    1991-01-01

    The Circuit Designer's Companion covers the theoretical aspects and practices in analogue and digital circuit design. Electronic circuit design involves designing a circuit that will fulfill its specified function and designing the same circuit so that every production model of it will fulfill its specified function, and no other undesired and unspecified function.This book is composed of nine chapters and starts with a review of the concept of grounding, wiring, and printed circuits. The subsequent chapters deal with the passive and active components of circuitry design. These topics are foll

  18. Electronic devices and circuits

    CERN Document Server

    Pridham, Gordon John

    1972-01-01

    Electronic Devices and Circuits, Volume 3 provides a comprehensive account on electronic devices and circuits and includes introductory network theory and physics. The physics of semiconductor devices is described, along with field effect transistors, small-signal equivalent circuits of bipolar transistors, and integrated circuits. Linear and non-linear circuits as well as logic circuits are also considered. This volume is comprised of 12 chapters and begins with an analysis of the use of Laplace transforms for analysis of filter networks, followed by a discussion on the physical properties of

  19. Memristor Circuits and Systems

    KAUST Repository

    Zidan, Mohammed A.

    2015-05-01

    resistive-based memory systems and neural computing. For gateless arrays, we present multiport array structure and readout technique, which for the first time introduces a closed-form solution for the challenging crossbar sneak-paths problem. Moreover, a new adaptive threshold readout methodology is proposed, which employs the memory hierarchy locality property in order to improve the access time to the memristor crossbar. Another fast readout technique based on binary counters is presented for locality-less crossbar systems. On the other hand, for gated arrays, we present new readout technique and circuitry that combines the advantages of the gated and gateless memristor arrays, namely the high-density and low-power consumption. In general, the presented structures and readout methodologies empower much faster and power efficient access to the high-density memristive crossbar, compared to other works presented in the literature. Finally, at the circuit level, we propose novel reactance-less oscillators based on memristor devices, which find promising applications in embedded systems and bio-inspired computing. Altogether, we believe that our contributions to the emerging technology help to push it to the next level, shortening the path towards better futuristic computing systems.

  20. Electronic circuit realization of the logistic map

    Indian Academy of Sciences (India)

    at some key events of this bifurcation diagram with their computer-simulation counterparts. A list of ... Discrete-time dynamical systems are a particular type of nonlinear dynamical systems .... After the latest value is sampled and C1 charges to.

  1. Difference map and its electronic circuit realization

    Czech Academy of Sciences Publication Activity Database

    García-Martínez, M.; Campos-Cantón, I.; Campos-Cantón, E.; Čelikovský, Sergej

    2013-01-01

    Roč. 74, č. 3 (2013), s. 819-830 ISSN 0924-090X R&D Projects: GA ČR GA13-20433S Institutional support: RVO:67985556 Keywords : Chaotic behavior * Lyapunov exponent * Bifurcation parameter * Bifurcation diagram * Stability analysis Subject RIV: BC - Control Systems Theory Impact factor: 2.419, year: 2013 http://library.utia.cas.cz/separaty/2013/TR/celikovsky-0399907.pdf

  2. Neural systems for control

    National Research Council Canada - National Science Library

    Omidvar, Omid; Elliott, David L

    1997-01-01

    ... is reprinted with permission from A. Barto, "Reinforcement Learning," Handbook of Brain Theory and Neural Networks, M.A. Arbib, ed.. The MIT Press, Cambridge, MA, pp. 804-809, 1995. Chapter 4, Figures 4-5 and 7-9 and Tables 2-5, are reprinted with permission, from S. Cho, "Map Formation in Proprioceptive Cortex," International Jour...

  3. Optimal neural computations require analog processors

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1998-12-31

    This paper discusses some of the limitations of hardware implementations of neural networks. The authors start by presenting neural structures and their biological inspirations, while mentioning the simplifications leading to artificial neural networks. Further, the focus will be on hardware imposed constraints. They will present recent results for three different alternatives of parallel implementations of neural networks: digital circuits, threshold gate circuits, and analog circuits. The area and the delay will be related to the neurons` fan-in and to the precision of their synaptic weights. The main conclusion is that hardware-efficient solutions require analog computations, and suggests the following two alternatives: (i) cope with the limitations imposed by silicon, by speeding up the computation of the elementary silicon neurons; (2) investigate solutions which would allow the use of the third dimension (e.g. using optical interconnections).

  4. Electrical Circuits and Water Analogies

    Science.gov (United States)

    Smith, Frederick A.; Wilson, Jerry D.

    1974-01-01

    Briefly describes water analogies for electrical circuits and presents plans for the construction of apparatus to demonstrate these analogies. Demonstrations include series circuits, parallel circuits, and capacitors. (GS)

  5. Electric circuits essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Electric Circuits I includes units, notation, resistive circuits, experimental laws, transient circuits, network theorems, techniques of circuit analysis, sinusoidal analysis, polyph

  6. EDITORIAL: Why we need a new journal in neural engineering

    Science.gov (United States)

    Durand, Dominique M.

    2004-03-01

    The field of neural engineering crystallizes for many engineers and scientists an area of research at the interface between neuroscience and engineering. For the last 15 years or so, the discipline of neural engineering (neuroengineering) has slowly appeared at conferences as a theme or track. The first conference devoted entirely to this area was the 1st International IEEE EMBS Conference on Neural Engineering which took place in Capri, Italy in 2003. Understanding how the brain works is considered the ultimate frontier and challenge in science. The complexity of the brain is so great that understanding even the most basic functions will require that we fully exploit all the tools currently at our disposal in science and engineering and simultaneously develop new methods of analysis. While neuroscientists and engineers from varied fields such as brain anatomy, neural development and electrophysiology have made great strides in the analysis of this complex organ, there remains a great deal yet to be uncovered. The potential for applications and remedies deriving from scientific discoveries and breakthroughs is extremely high. As a result of the growing availability of micromachining technology, research into neurotechnology has grown relatively rapidly in recent years and appears to be approaching a critical mass. For example, by understanding how neuronal circuits process and store information, we could design computers with capabilities beyond current limits. By understanding how neurons develop and grow, we could develop new technologies for spinal cord repair or central nervous system repair following neurological disorders. Moreover, discoveries related to higher-level cognitive function and consciousness could have a profound influence on how humans make sense of their surroundings and interact with each other. The ability to successfully interface the brain with external electronics would have enormous implications for our society and facilitate a

  7. Piezoelectric drive circuit

    Science.gov (United States)

    Treu, C.A. Jr.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes. 7 figs.

  8. Load testing circuit

    DEFF Research Database (Denmark)

    2009-01-01

    A load testing circuit a circuit tests the load impedance of a load connected to an amplifier. The load impedance includes a first terminal and a second terminal, the load testing circuit comprising a signal generator providing a test signal of a defined bandwidth to the first terminal of the load...

  9. Short-circuit logic

    NARCIS (Netherlands)

    Bergstra, J.A.; Ponse, A.

    2010-01-01

    Short-circuit evaluation denotes the semantics of propositional connectives in which the second argument is only evaluated if the first argument does not suffice to determine the value of the expression. In programming, short-circuit evaluation is widely used. A short-circuit logic is a variant of

  10. Signal sampling circuit

    NARCIS (Netherlands)

    Louwsma, S.M.; Vertregt, Maarten

    2011-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital

  11. Signal sampling circuit

    NARCIS (Netherlands)

    Louwsma, S.M.; Vertregt, Maarten

    2010-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital

  12. Integrated neuron circuit for implementing neuromorphic system with synaptic device

    Science.gov (United States)

    Lee, Jeong-Jun; Park, Jungjin; Kwon, Min-Woo; Hwang, Sungmin; Kim, Hyungjin; Park, Byung-Gook

    2018-02-01

    In this paper, we propose and fabricate Integrate & Fire neuron circuit for implementing neuromorphic system. Overall operation of the circuit is verified by measuring discrete devices and the output characteristics of the circuit. Since the neuron circuit shows asymmetric output characteristic that can drive synaptic device with Spike-Timing-Dependent-Plasticity (STDP) characteristic, the autonomous weight update process is also verified by connecting the synaptic device and the neuron circuit. The timing difference of the pre-neuron and the post-neuron induce autonomous weight change of the synaptic device. Unlike 2-terminal devices, which is frequently used to implement neuromorphic system, proposed scheme of the system enables autonomous weight update and simple configuration by using 4-terminal synapse device and appropriate neuron circuit. Weight update process in the multi-layer neuron-synapse connection ensures implementation of the hardware-based artificial intelligence, based on Spiking-Neural- Network (SNN).

  13. Leukemia inhibitory factor (LIF) enhances MAP2 + and HUC/D + neurons and influences neurite extension during differentiation of neural progenitors derived from human embryonic stem cells.

    Science.gov (United States)

    Leukemia Inhibitory Factor (L1F), a member of the Interleukin 6 cytokine family, has a role in differentiation of Human Neural Progenitor (hNP) cells in vitro. hNP cells, derived from Human Embryonic Stem (hES) cells, have an unlimited capacity for self-renewal in monolayer cultu...

  14. Artificial Neural Network with Hardware Training and Hardware Refresh

    Science.gov (United States)

    Duong, Tuan A. (Inventor)

    2003-01-01

    A neural network circuit is provided having a plurality of circuits capable of charge storage. Also provided is a plurality of circuits each coupled to at least one of the plurality of charge storage circuits and constructed to generate an output in accordance with a neuron transfer function. Each of a plurality of circuits is coupled to one of the plurality of neuron transfer function circuits and constructed to generate a derivative of the output. A weight update circuit updates the charge storage circuits based upon output from the plurality of transfer function circuits and output from the plurality of derivative circuits. In preferred embodiments, separate training and validation networks share the same set of charge storage circuits and may operate concurrently. The validation network has a separate transfer function circuits each being coupled to the charge storage circuits so as to replicate the training network s coupling of the plurality of charge storage to the plurality of transfer function circuits. The plurality of transfer function circuits may be constructed each having a transconductance amplifier providing differential currents combined to provide an output in accordance with a transfer function. The derivative circuits may have a circuit constructed to generate a biased differential currents combined so as to provide the derivative of the transfer function.

  15. Feedback in analog circuits

    CERN Document Server

    Ochoa, Agustin

    2016-01-01

    This book describes a consistent and direct methodology to the analysis and design of analog circuits with particular application to circuits containing feedback. The analysis and design of circuits containing feedback is generally presented by either following a series of examples where each circuit is simplified through the use of insight or experience (someone else’s), or a complete nodal-matrix analysis generating lots of algebra. Neither of these approaches leads to gaining insight into the design process easily. The author develops a systematic approach to circuit analysis, the Driving Point Impedance and Signal Flow Graphs (DPI/SFG) method that does not require a-priori insight to the circuit being considered and results in factored analysis supporting the design function. This approach enables designers to account fully for loading and the bi-directional nature of elements both in the feedback path and in the amplifier itself, properties many times assumed negligible and ignored. Feedback circuits a...

  16. Delineating the Diversity of Spinal Interneurons in Locomotor Circuits.

    Science.gov (United States)

    Gosgnach, Simon; Bikoff, Jay B; Dougherty, Kimberly J; El Manira, Abdeljabbar; Lanuza, Guillermo M; Zhang, Ying

    2017-11-08

    Locomotion is common to all animals and is essential for survival. Neural circuits located in the spinal cord have been shown to be necessary and sufficient for the generation and control of the basic locomotor rhythm by activating muscles on either side of the body in a specific sequence. Activity in these neural circuits determines the speed, gait pattern, and direction of movement, so the specific locomotor pattern generated relies on the diversity of the neurons within spinal locomotor circuits. Here, we review findings demonstrating that developmental genetics can be used to identify populations of neurons that comprise these circuits and focus on recent work indicating that many of these populations can be further subdivided into distinct subtypes, with each likely to play complementary functions during locomotion. Finally, we discuss data describing the manner in which these populations interact with each other to produce efficient, task-dependent locomotion. Copyright © 2017 the authors 0270-6474/17/3710835-07$15.00/0.

  17. Integral dose delivered to normal brain with conventional intensity-modulated radiotherapy (IMRT) and helical tomotherapy IMRT during partial brain radiotherapy for high-grade gliomas with and without selective sparing of the hippocampus, limbic circuit and neural stem cell compartment

    International Nuclear Information System (INIS)

    Marsh, James C.; Ziel, Ellis G; Diaz, Aidnag Z; Turian, Julius V; Wendt, Julie A.; Gobole, Rohit

    2013-01-01

    We compared integral dose with uninvolved brain (ID brain ) during partial brain radiotherapy (PBRT) for high-grade glioma patients using helical tomotherapy (HT) and seven field traditional inverse-planned intensity-modulated radiotherapy (IMRT) with and without selective sparing (SPA) of contralateral hippocampus, neural stem cell compartment (NSC) and limbic circuit. We prepared four PBRT treatment plans for four patients with high-grade gliomas (60Gy in 30 fractions delivered to planning treatment volume (PTV60Gy)). For all plans, a structure denoted 'uninvolved brain' was created, which included all brain tissue not part of PTV or standard (STD) organs at risk (OAR). No dosimetric constraints were included for uninvolved brain. Selective SPA plans were prepared with IMRT and HT; contralateral hippocampus, NSC and limbic circuit were contoured; and dosimetric constraints were entered for these structures without compromising dose to PTV or STD OAR. We compared V100 and D95 for PTV46Gy and PTV60Gy, and ID brain for all plans. There were no significant differences in V100 and D95 for PTV46Gy and PTV60Gy. ID brain was lower in traditional IMRT versus HT plans for STD and SPA plans (mean ID brain 23.64Gy vs. 28Gy and 18.7Gy vs. 24.5Gy, respectively) and in SPA versus STD plans both with IMRT and HT (18.7Gy vs. 23.64Gy and 24.5Gy vs. 28Gy, respectively). n the setting of PBRT for high-grade gliomas, IMRT reduces ID brain compared with HT with or without selective SPA of contralateral hippocampus, limbic circuit and NSC, and the use of selective SPA reduces ID brain compared with STD PBRT delivered with either traditional IMRT or HT.

  18. Focusing on neuronal cell-type specific mechanisms for brain circuit organization, function and dysfunction

    Institute of Scientific and Technical Information of China (English)

    Lu Li

    2017-01-01

    Mammalian brain circuits consist of dynamically interconnected neurons with characteristic morphology, physiology, connectivity and genetics which are often called neuronal cell types. Neuronal cell types have been considered as building blocks of brain circuits, but knowledge of how neuron types or subtypes connect to and interact with each other to perform neural computation is still lacking. Such mechanistic insights are critical not only to our understanding of normal brain functions, such as perception, motion and cognition, but also to brain disorders including Alzheimer's disease, Schizophrenia and epilepsy, to name a few. Thus it is necessary to carry out systematic and standardized studies on neuronal cell-type specific mechanisms for brain circuit organization and function, which will provide good opportunities to bridge basic and clinical research. Here based on recent technology advancements, we discuss the strategy to target and manipulate specific populations of neuronsin vivo to provide unique insights on how neuron types or subtypes behave, interact, and generate emergent properties in a fully connected brain network. Our approach is highlighted by combining transgenic animal models, targeted electrophysiology and imaging with robotics, thus complete and standardized mapping ofin vivo properties of genetically defined neuron populations can be achieved in transgenic mouse models, which will facilitate the development of novel therapeutic strategies for brain disorders.

  19. The role of p38 MAP kinase and c-Jun N-terminal protein kinase signaling in the differentiation and apoptosis of immortalized neural stem cells

    International Nuclear Information System (INIS)

    Yang, Se-Ran; Cho, Sung-Dae; Ahn, Nam-Shik; Jung, Ji-Won; Park, Joon-Suk; Jo, Eun-Hye; Hwang, Jae-Woong; Kim, Sung-Hoon; Lee, Bong-Hee; Kang, Kyung-Sun; Lee, Yong-Soon

    2005-01-01

    The two distinct members of the mitogen-activated protein (MAP) kinase family c-Jun N-terminal protein kinase (JNK) and p38 MAP kinase, play an important role in central nervous system (CNS) development and differentiation. However, their role and functions are not completely understood in CNS. To facilitate in vitro study, we have established an immortal stem cell line using SV40 from fetal rat embryonic day 17. In these cells, MAP kinase inhibitors (SP600125, SB202190, and PD98059) were treated for 1, 24, 48, and 72 h to examine the roles of protein kinases. Early inhibition of JNK did not alter phenotypic or morphological changes of immortalized cells, however overexpression of Bax and decrease of phosphorylated AKT was observed. The prolonged inhibition of JNK induced polyploidization of immortalized cells, and resulted in differentiation and inhibition of cell proliferation. Moreover, JNK and p38 MAP kinase but not ERK1/2 was activated, and p21, p53, and Bax were overexpressed by prolonged inhibition of JNK. These results indicate that JNK and p38 MAP kinase could play dual roles on cell survival and apoptosis. Furthermore, this established cell line could facilitate study of the role of JNK and p38 MAP kinase on CNS development or differentiation/apoptosis

  20. Enhanced surrogate models for statistical design exploiting space mapping technology

    DEFF Research Database (Denmark)

    Koziel, Slawek; Bandler, John W.; Mohamed, Achmed S.

    2005-01-01

    We present advances in microwave and RF device modeling exploiting Space Mapping (SM) technology. We propose new SM modeling formulations utilizing input mappings, output mappings, frequency scaling and quadratic approximations. Our aim is to enhance circuit models for statistical analysis...

  1. Electric circuits and signals

    CERN Document Server

    Sabah, Nassir H

    2007-01-01

    Circuit Variables and Elements Overview Learning Objectives Electric Current Voltage Electric Power and Energy Assigned Positive Directions Active and Passive Circuit Elements Voltage and Current Sources The Resistor The Capacitor The Inductor Concluding Remarks Summary of Main Concepts and Results Learning Outcomes Supplementary Topics on CD Problems and Exercises Basic Circuit Connections and Laws Overview Learning Objectives Circuit Terminology Kirchhoff's Laws Voltage Division and Series Connection of Resistors Current Division and Parallel Connection of Resistors D-Y Transformation Source Equivalence and Transformation Reduced-Voltage Supply Summary of Main Concepts and Results Learning Outcomes Supplementary Topics and Examples on CD Problems and Exercises Basic Analysis of Resistive Circuits Overview Learning Objectives Number of Independent Circuit Equations Node-Voltage Analysis Special Considerations in Node-Voltage Analysis Mesh-Current Analysis Special Conside...

  2. [Shunt and short circuit].

    Science.gov (United States)

    Rangel-Abundis, Alberto

    2006-01-01

    Shunt and short circuit are antonyms. In French, the term shunt has been adopted to denote the alternative pathway of blood flow. However, in French, as well as in Spanish, the word short circuit (court-circuit and cortocircuito) is synonymous with shunt, giving rise to a linguistic and scientific inconsistency. Scientific because shunt and short circuit made reference to a phenomenon that occurs in the field of the physics. Because shunt and short circuit are antonyms, it is necessary to clarify that shunt is an alternative pathway of flow from a net of high resistance to a net of low resistance, maintaining the stream. Short circuit is the interruption of the flow, because a high resistance impeaches the flood. This concept is applied to electrical and cardiovascular physiology, as well as to the metabolic pathways.

  3. Memristor-based neural networks

    International Nuclear Information System (INIS)

    Thomas, Andy

    2013-01-01

    The synapse is a crucial element in biological neural networks, but a simple electronic equivalent has been absent. This complicates the development of hardware that imitates biological architectures in the nervous system. Now, the recent progress in the experimental realization of memristive devices has renewed interest in artificial neural networks. The resistance of a memristive system depends on its past states and exactly this functionality can be used to mimic the synaptic connections in a (human) brain. After a short introduction to memristors, we present and explain the relevant mechanisms in a biological neural network, such as long-term potentiation and spike time-dependent plasticity, and determine the minimal requirements for an artificial neural network. We review the implementations of these processes using basic electric circuits and more complex mechanisms that either imitate biological systems or could act as a model system for them. (topical review)

  4. Analog circuits cookbook

    CERN Document Server

    Hickman, Ian

    2013-01-01

    Analog Circuits Cookbook presents articles about advanced circuit techniques, components and concepts, useful IC for analog signal processing in the audio range, direct digital synthesis, and ingenious video op-amp. The book also includes articles about amplitude measurements on RF signals, linear optical imager, power supplies and devices, and RF circuits and techniques. Professionals and students of electrical engineering will find the book informative and useful.

  5. Analog circuit design

    CERN Document Server

    Dobkin, Bob

    2012-01-01

    Analog circuit and system design today is more essential than ever before. With the growth of digital systems, wireless communications, complex industrial and automotive systems, designers are being challenged to develop sophisticated analog solutions. This comprehensive source book of circuit design solutions aids engineers with elegant and practical design techniques that focus on common analog challenges. The book's in-depth application examples provide insight into circuit design and application solutions that you can apply in today's demanding designs. <

  6. Regenerative feedback resonant circuit

    Science.gov (United States)

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  7. Electrophysiological Data and the Biophysical Modelling of Local Cortical Circuits

    Directory of Open Access Journals (Sweden)

    Dimitris Pinotsis

    2014-03-01

    Full Text Available This paper shows how recordings of gamma oscillations – under different experimental conditions or from different subjects – can be combined with a class of population models called neural fields and dynamic causal modeling (DCM to distinguish among alternative hypotheses regarding cortical structure and function. This approach exploits inter-subject variability and trial-specific effects associated with modulations in the peak frequency of gamma oscillations. It draws on the computational power of Bayesian model inversion, when applied to neural field models of cortical dynamics. Bayesian model comparison allows one to adjudicate among different mechanistic hypotheses about cortical excitability, synaptic kinetics and the cardinal topographic features of local cortical circuits. It also provides optimal parameter estimates that quantify neuromodulation and the spatial dispersion of axonal connections or summation of receptive fields in the visual cortex. This paper provides an overview of a family of neural field models that have been recently implemented using the DCM toolbox of the academic freeware Statistical Parametric Mapping (SPM. The SPM software is a popular platform for analyzing neuroimaging data, used by several neuroscience communities worldwide. DCM allows for a formal (Bayesian statistical analysis of cortical network connectivity, based upon realistic biophysical models of brain responses. It is this particular feature of DCM – the unique combination of generative models with optimization techniques based upon (variational Bayesian principles – that furnishes a novel way to characterize functional brain architectures. In particular, it provides answers to questions about how the brain is wired and how it responds to different experimental manipulations. For a review of the general role of neural fields in SPM the reader can consult e.g. see [1]. Neural fields have a long and illustrious history in mathematical

  8. CMOS circuits manual

    CERN Document Server

    Marston, R M

    1995-01-01

    CMOS Circuits Manual is a user's guide for CMOS. The book emphasizes the practical aspects of CMOS and provides circuits, tables, and graphs to further relate the fundamentals with the applications. The text first discusses the basic principles and characteristics of the CMOS devices. The succeeding chapters detail the types of CMOS IC, including simple inverter, gate and logic ICs and circuits, and complex counters and decoders. The last chapter presents a miscellaneous collection of two dozen useful CMOS circuits. The book will be useful to researchers and professionals who employ CMOS circu

  9. Timergenerator circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Timer/Generator Circuits Manual is an 11-chapter text that deals mainly with waveform generator techniques and circuits. Each chapter starts with an explanation of the basic principles of its subject followed by a wide range of practical circuit designs. This work presents a total of over 300 practical circuits, diagrams, and tables.Chapter 1 outlines the basic principles and the different types of generator. Chapters 2 to 9 deal with a specific type of waveform generator, including sine, square, triangular, sawtooth, and special waveform generators pulse. These chapters also include pulse gen

  10. Electronic devices and circuits

    CERN Document Server

    Pridham, Gordon John

    1968-01-01

    Electronic Devices and Circuits, Volume 1 deals with the design and applications of electronic devices and circuits such as passive components, diodes, triodes and transistors, rectification and power supplies, amplifying circuits, electronic instruments, and oscillators. These topics are supported with introductory network theory and physics. This volume is comprised of nine chapters and begins by explaining the operation of resistive, inductive, and capacitive elements in direct and alternating current circuits. The theory for some of the expressions quoted in later chapters is presented. Th

  11. Maximum Acceleration Recording Circuit

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1995-01-01

    Coarsely digitized maximum levels recorded in blown fuses. Circuit feeds power to accelerometer and makes nonvolatile record of maximum level to which output of accelerometer rises during measurement interval. In comparison with inertia-type single-preset-trip-point mechanical maximum-acceleration-recording devices, circuit weighs less, occupies less space, and records accelerations within narrower bands of uncertainty. In comparison with prior electronic data-acquisition systems designed for same purpose, circuit simpler, less bulky, consumes less power, costs and analysis of data recorded in magnetic or electronic memory devices. Circuit used, for example, to record accelerations to which commodities subjected during transportation on trucks.

  12. MOS integrated circuit design

    CERN Document Server

    Wolfendale, E

    2013-01-01

    MOS Integral Circuit Design aims to help in the design of integrated circuits, especially large-scale ones, using MOS Technology through teaching of techniques, practical applications, and examples. The book covers topics such as design equation and process parameters; MOS static and dynamic circuits; logic design techniques, system partitioning, and layout techniques. Also featured are computer aids such as logic simulation and mask layout, as well as examples on simple MOS design. The text is recommended for electrical engineers who would like to know how to use MOS for integral circuit desi

  13. Circuits and filters handbook

    CERN Document Server

    Chen, Wai-Kai

    2003-01-01

    A bestseller in its first edition, The Circuits and Filters Handbook has been thoroughly updated to provide the most current, most comprehensive information available in both the classical and emerging fields of circuits and filters, both analog and digital. This edition contains 29 new chapters, with significant additions in the areas of computer-aided design, circuit simulation, VLSI circuits, design automation, and active and digital filters. It will undoubtedly take its place as the engineer's first choice in looking for solutions to problems encountered in the design, analysis, and behavi

  14. Security electronics circuits manual

    CERN Document Server

    MARSTON, R M

    1998-01-01

    Security Electronics Circuits Manual is an invaluable guide for engineers and technicians in the security industry. It will also prove to be a useful guide for students and experimenters, as well as providing experienced amateurs and DIY enthusiasts with numerous ideas to protect their homes, businesses and properties.As with all Ray Marston's Circuits Manuals, the style is easy-to-read and non-mathematical, with the emphasis firmly on practical applications, circuits and design ideas. The ICs and other devices used in the practical circuits are modestly priced and readily available ty

  15. Mapping of the Underlying Neural Mechanisms of Maintenance and Manipulation in Visuo-Spatial Working Memory Using An n-back Mental Rotation Task: A Functional Magnetic Resonance Imaging Study.

    Science.gov (United States)

    Lamp, Gemma; Alexander, Bonnie; Laycock, Robin; Crewther, David P; Crewther, Sheila G

    2016-01-01

    Mapping of the underlying neural mechanisms of visuo-spatial working memory (WM) has been shown to consistently elicit activity in right hemisphere dominant fronto-parietal networks. However to date, the bulk of neuroimaging literature has focused largely on the maintenance aspect of visuo-spatial WM, with a scarcity of research into the aspects of WM involving manipulation of information. Thus, this study aimed to compare maintenance-only with maintenance and manipulation of visuo-spatial stimuli (3D cube shapes) utilizing a 1-back task while functional magnetic resonance imaging (fMRI) scans were acquired. Sixteen healthy participants (9 women, M = 23.94 years, SD = 2.49) were required to perform the 1-back task with or without mentally rotating the shapes 90° on a vertical axis. When no rotation was required (maintenance-only condition), a right hemispheric lateralization was revealed across fronto-parietal areas. However, when the task involved maintaining and manipulating the same stimuli through 90° rotation, activation was primarily seen in the bilateral parietal lobe and left fusiform gyrus. The findings confirm that the well-established right lateralized fronto-parietal networks are likely to underlie simple maintenance of visuo-spatial stimuli. The results also suggest that the added demand of manipulation of information maintained online appears to require further neural recruitment of functionally related areas. In particular mental rotation of visuospatial stimuli required bilateral parietal areas, and the left fusiform gyrus potentially to maintain a categorical or object representation. It can be concluded that WM is a complex neural process involving the interaction of an increasingly large network.

  16. Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.

    Science.gov (United States)

    Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu

    2017-10-01

    This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.

  17. Training Deep Convolutional Neural Networks with Resistive Cross-Point Devices.

    Science.gov (United States)

    Gokmen, Tayfun; Onen, Murat; Haensch, Wilfried

    2017-01-01

    In a previous work we have detailed the requirements for obtaining maximal deep learning performance benefit by implementing fully connected deep neural networks (DNN) in the form of arrays of resistive devices. Here we extend the concept of Resistive Processing Unit (RPU) devices to convolutional neural networks (CNNs). We show how to map the convolutional layers to fully connected RPU arrays such that the parallelism of the hardware can be fully utilized in all three cycles of the backpropagation algorithm. We find that the noise and bound limitations imposed by the analog nature of the computations performed on the arrays significantly affect the training accuracy of the CNNs. Noise and bound management techniques are presented that mitigate these problems without introducing any additional complexity in the analog circuits and that can be addressed by the digital circuits. In addition, we discuss digitally programmable update management and device variability reduction techniques that can be used selectively for some of the layers in a CNN. We show that a combination of all those techniques enables a successful application of the RPU concept for training CNNs. The techniques discussed here are more general and can be applied beyond CNN architectures and therefore enables applicability of the RPU approach to a large class of neural network architectures.

  18. Training Deep Convolutional Neural Networks with Resistive Cross-Point Devices

    Directory of Open Access Journals (Sweden)

    Tayfun Gokmen

    2017-10-01

    Full Text Available In a previous work we have detailed the requirements for obtaining maximal deep learning performance benefit by implementing fully connected deep neural networks (DNN in the form of arrays of resistive devices. Here we extend the concept of Resistive Processing Unit (RPU devices to convolutional neural networks (CNNs. We show how to map the convolutional layers to fully connected RPU arrays such that the parallelism of the hardware can be fully utilized in all three cycles of the backpropagation algorithm. We find that the noise and bound limitations imposed by the analog nature of the computations performed on the arrays significantly affect the training accuracy of the CNNs. Noise and bound management techniques are presented that mitigate these problems without introducing any additional complexity in the analog circuits and that can be addressed by the digital circuits. In addition, we discuss digitally programmable update management and device variability reduction techniques that can be used selectively for some of the layers in a CNN. We show that a combination of all those techniques enables a successful application of the RPU concept for training CNNs. The techniques discussed here are more general and can be applied beyond CNN architectures and therefore enables applicability of the RPU approach to a large class of neural network architectures.

  19. Training Deep Convolutional Neural Networks with Resistive Cross-Point Devices

    Science.gov (United States)

    Gokmen, Tayfun; Onen, Murat; Haensch, Wilfried

    2017-01-01

    In a previous work we have detailed the requirements for obtaining maximal deep learning performance benefit by implementing fully connected deep neural networks (DNN) in the form of arrays of resistive devices. Here we extend the concept of Resistive Processing Unit (RPU) devices to convolutional neural networks (CNNs). We show how to map the convolutional layers to fully connected RPU arrays such that the parallelism of the hardware can be fully utilized in all three cycles of the backpropagation algorithm. We find that the noise and bound limitations imposed by the analog nature of the computations performed on the arrays significantly affect the training accuracy of the CNNs. Noise and bound management techniques are presented that mitigate these problems without introducing any additional complexity in the analog circuits and that can be addressed by the digital circuits. In addition, we discuss digitally programmable update management and device variability reduction techniques that can be used selectively for some of the layers in a CNN. We show that a combination of all those techniques enables a successful application of the RPU concept for training CNNs. The techniques discussed here are more general and can be applied beyond CNN architectures and therefore enables applicability of the RPU approach to a large class of neural network architectures. PMID:29066942

  20. Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors.

    Science.gov (United States)

    Engheta, Nader; Salandrino, Alessandro; Alù, Andrea

    2005-08-26

    We present the concept of circuit nanoelements in the optical domain using plasmonic and nonplasmonic nanoparticles. Three basic circuit elements, i.e., nanoinductors, nanocapacitors, and nanoresistors, are discussed in terms of small nanostructures with different material properties. Coupled nanoscale circuits and parallel and series combinations are also envisioned, which may provide road maps for the synthesis of more complex circuits in the IR and visible bands. Ideas for the optical implementation of right-handed and left-handed nanotransmission lines are also forecasted.

  1. Doubly stochastic Poisson processes in artificial neural learning.

    Science.gov (United States)

    Card, H C

    1998-01-01

    This paper investigates neuron activation statistics in artificial neural networks employing stochastic arithmetic. It is shown that a doubly stochastic Poisson process is an appropriate model for the signals in these circuits.

  2. NeuroMap: A spline-based interactive open-source software for spatiotemporal mapping of 2D and 3D MEA data

    Directory of Open Access Journals (Sweden)

    Oussama eAbdoun

    2011-01-01

    Full Text Available A major characteristic of neural networks is the complexity of their organization at various spatial scales, from microscopic local circuits to macroscopic brain-scale areas. Understanding how neural information is processed thus entails the ability to study them at multiple scales simultaneously. This is made possible using microelectrodes array (MEA technology. Indeed, high-density MEAs provide large-scale covering (several mm² of whole neural structures combined with microscopic resolution (about 50µm of unit activity. Yet, current options for spatiotemporal representation of MEA-collected data remain limited. Here we present NeuroMap, a new interactive Matlab-based software for spatiotemporal mapping of MEA data. NeuroMap uses thin plate spline interpolation, which provides several assets with respect to conventional mapping methods used currently. First, any MEA design can be considered, including 2D or 3D, regular or irregular, arrangements of electrodes. Second, spline interpolation allows the estimation of activity across the tissue with local extrema not necessarily at recording sites. Finally, this interpolation approach provides a straightforward analytical estimation of the spatial Laplacian for better current sources localization. In this software, coregistration of 2D MEA data on the anatomy of the neural tissue is made possible by fine matching of anatomical data with electrode positions using rigid deformation based correction of anatomical pictures. Overall, NeuroMap provides substantial material for detailed spatiotemporal analysis of MEA data. The package is distributed under GNU General Public License (GPL and available at http://sites.google.com/site/neuromapsoftware.

  3. NeuroMap: A Spline-Based Interactive Open-Source Software for Spatiotemporal Mapping of 2D and 3D MEA Data.

    Science.gov (United States)

    Abdoun, Oussama; Joucla, Sébastien; Mazzocco, Claire; Yvert, Blaise

    2011-01-01

    A major characteristic of neural networks is the complexity of their organization at various spatial scales, from microscopic local circuits to macroscopic brain-scale areas. Understanding how neural information is processed thus entails the ability to study them at multiple scales simultaneously. This is made possible using microelectrodes array (MEA) technology. Indeed, high-density MEAs provide large-scale coverage (several square millimeters) of whole neural structures combined with microscopic resolution (about 50 μm) of unit activity. Yet, current options for spatiotemporal representation of MEA-collected data remain limited. Here we present NeuroMap, a new interactive Matlab-based software for spatiotemporal mapping of MEA data. NeuroMap uses thin plate spline interpolation, which provides several assets with respect to conventional mapping methods used currently. First, any MEA design can be considered, including 2D or 3D, regular or irregular, arrangements of electrodes. Second, spline interpolation allows the estimation of activity across the tissue with local extrema not necessarily at recording sites. Finally, this interpolation approach provides a straightforward analytical estimation of the spatial Laplacian for better current sources localization. In this software, coregistration of 2D MEA data on the anatomy of the neural tissue is made possible by fine matching of anatomical data with electrode positions using rigid-deformation-based correction of anatomical pictures. Overall, NeuroMap provides substantial material for detailed spatiotemporal analysis of MEA data. The package is distributed under GNU General Public License and available at http://sites.google.com/site/neuromapsoftware.

  4. Calcium Imaging of Neuronal Circuits In Vivo Using a Circuit-Tracing Pseudorabies Virus

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Andrea E. Granstedt, Bernd Kuhn, Samuel S.-H. Wang and Lynn W. Enquist Corresponding author ([]()). ### INTRODUCTION Pseudorabies virus (PRV) is a neuroinvasive virus of the herpes family that has a broad host range but does not infect higher-order primates. PRV characteristically travels along chains of synaptically connected neurons and has been used extensively for elucidating neural circuits in the peripheral and central ner...

  5. Circuits on Cylinders

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Miltersen, Peter Bro; Vinay, V

    2006-01-01

    We consider the computational power of constant width polynomial size cylindrical circuits and nondeterministic branching programs. We show that every function computed by a Pi2 o MOD o AC0 circuit can also be computed by a constant width polynomial size cylindrical nondeterministic branching pro...

  6. CMOS analog circuit design

    CERN Document Server

    Allen, Phillip E

    1987-01-01

    This text presents the principles and techniques for designing analog circuits to be implemented in a CMOS technology. The level is appropriate for seniors and graduate students familiar with basic electronics, including biasing, modeling, circuit analysis, and some familiarity with frequency response. Students learn the methodology of analog integrated circuit design through a hierarchically-oriented approach to the subject that provides thorough background and practical guidance for designing CMOS analog circuits, including modeling, simulation, and testing. The authors' vast industrial experience and knowledge is reflected in the circuits, techniques, and principles presented. They even identify the many common pitfalls that lie in the path of the beginning designer--expert advice from veteran designers. The text mixes the academic and practical viewpoints in a treatment that is neither superficial nor overly detailed, providing the perfect balance.

  7. Artificial neural networks in NDT

    International Nuclear Information System (INIS)

    Abdul Aziz Mohamed

    2001-01-01

    Artificial neural networks, simply known as neural networks, have attracted considerable interest in recent years largely because of a growing recognition of the potential of these computational paradigms as powerful alternative models to conventional pattern recognition or function approximation techniques. The neural networks approach is having a profound effect on almost all fields, and has been utilised in fields Where experimental inter-disciplinary work is being carried out. Being a multidisciplinary subject with a broad knowledge base, Nondestructive Testing (NDT) or Nondestructive Evaluation (NDE) is no exception. This paper explains typical applications of neural networks in NDT/NDE. Three promising types of neural networks are highlighted, namely, back-propagation, binary Hopfield and Kohonen's self-organising maps. (Author)

  8. Advanced models of neural networks nonlinear dynamics and stochasticity in biological neurons

    CERN Document Server

    Rigatos, Gerasimos G

    2015-01-01

    This book provides a complete study on neural structures exhibiting nonlinear and stochastic dynamics, elaborating on neural dynamics by introducing advanced models of neural networks. It overviews the main findings in the modelling of neural dynamics in terms of electrical circuits and examines their stability properties with the use of dynamical systems theory. It is suitable for researchers and postgraduate students engaged with neural networks and dynamical systems theory.

  9. Neural networks

    International Nuclear Information System (INIS)

    Denby, Bruce; Lindsey, Clark; Lyons, Louis

    1992-01-01

    The 1980s saw a tremendous renewal of interest in 'neural' information processing systems, or 'artificial neural networks', among computer scientists and computational biologists studying cognition. Since then, the growth of interest in neural networks in high energy physics, fueled by the need for new information processing technologies for the next generation of high energy proton colliders, can only be described as explosive

  10. Self-organizing feature map (neural networks) as a tool to select the best indicator of road traffic pollution (soil, leaves or bark of Robinia pseudoacacia L.).

    Science.gov (United States)

    Samecka-Cymerman, A; Stankiewicz, A; Kolon, K; Kempers, A J

    2009-07-01

    Concentrations of the elements Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were measured in the leaves and bark of Robinia pseudoacacia and the soil in which it grew, in the town of Oleśnica (SW Poland) and at a control site. We selected this town because emission from motor vehicles is practically the only source of air pollution, and it seemed interesting to evaluate its influence on soil and plants. The self-organizing feature map (SOFM) yielded distinct groups of soils and R. pseudoacacia leaves and bark, depending on traffic intensity. Only the map classifying bark samples identified an additional group of highly polluted sites along the main highway from Wrocław to Warszawa. The bark of R. pseudoacacia seems to be a better bioindicator of long-term cumulative traffic pollution in the investigated area, while leaves are good indicators of short-term seasonal accumulation trends.

  11. Approximate circuits for increased reliability

    Science.gov (United States)

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-08-18

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  12. Functional mapping of the neural basis for the encoding and retrieval of human episodic memory using H{sub 2}{sup 15}O PET

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Nam, Hyun Woo; Lee, Dong Soo; Lee, Sang Kun; Jang, Myoung Jin; Ahn, Ji Young; Park, Kwang Suk; Chung, June Key; Lee, Myung Chul [Seoul National Univ., Seoul (Korea, Republic of)

    2000-02-01

    Episodic memory is described as an 'autobiographical' memory responsible for storing a record of the events in our lives. We performed functional brain activation study using H{sub 2}{sup 1}5O PET to reveal the neural basis of the encoding and the retrieval of episodic memory in human normal volunteers. Four repeated H{sub 2}{sup 1}5O PET scans with two reference and two activation tasks were performed on 6 normal volunteers to activate brain areas engaged in encoding and retrieval with verbal materials. Images from the same subject were spatially registered and normalized using linear and nonlinear transformation. Using the means and variances for every condition which were adjusted with analysis of covariance, t-statistic analysis were performed voxel-wise. Encoding of episodic memory activated the opercular and triangular parts of left inferior frontal gyrus, right prefrontal cortex, medial frontal area, cingulate gyrus, posterior middle and inferior temporal gyri, and cerebellum, and both primary visual and visual association areas. Retrieval of episodic memory activated the triangular part of left inferior frontal gyrus and inferior temporal gyrus, right prefrontal cortex and medial temporal ares, and both cerebellum and primary visual and visual association areas. The activations in the opercular part of left inferior frontal gyrus and the right prefrontal cortex meant the essential role of these areas in the encoding and retrieval of episodic memeory. We could localize the neural basis of the encoding and retrieval of episodic memory using H{sub 2}{sup 1}5O PET, which was partly consistent with the hypothesis of hemispheric encoding/retrieval asymmetry.

  13. A tweaking principle for executive control: neuronal circuit mechanism for rule-based task switching and conflict resolution.

    Science.gov (United States)

    Ardid, Salva; Wang, Xiao-Jing

    2013-12-11

    A hallmark of executive control is the brain's agility to shift between different tasks depending on the behavioral rule currently in play. In this work, we propose a "tweaking hypothesis" for task switching: a weak rule signal provides a small bias that is dramatically amplified by reverberating attractor dynamics in neural circuits for stimulus categorization and action selection, leading to an all-or-none reconfiguration of sensory-motor mapping. Based on this principle, we developed a biologically realistic model with multiple modules for task switching. We found that the model quantitatively accounts for complex task switching behavior: switch cost, congruency effect, and task-response interaction; as well as monkey's single-neuron activity associated with task switching. The model yields several testable predictions, in particular, that category-selective neurons play a key role in resolving sensory-motor conflict. This work represents a neural circuit model for task switching and sheds insights in the brain mechanism of a fundamental cognitive capability.

  14. CAD-CAM printed circuit board design

    Science.gov (United States)

    Agy, W. E.

    A step-by-step procedure for a printed circuit design achieved by CAD is presented. The operator at the interactive CRT station moves a stylus across a graphics tablet and intersperses commands which result in computer-generated pictorial forms on the screen that were drawn on the pad. Standard symbols are used for commands allowing, for instance, connections to be made of specific types in certain locations, which can be automatically edited from a materials list. An entire network of drawn lines can be referenced by a signal name for recall, and a finished circuit schematic can be checked for designs rules compliance, including fault reporting in terms of designator/pin number. A map may be present delineating the boundaries of the circuitry area, and previously completed circuitry segments can be recalled for piece-by-piece assembly of the circuit board.

  15. Commentary: Elucidating the Neural Correlates of Early Childhood Memory

    Science.gov (United States)

    Mullally, Sinead L.

    2015-01-01

    Both episodic memory and the key neural structure believed to support it, namely the hippocampus, are believed to undergo protracted periods of postnatal developmental. Critically however, the hippocampus is comprised of distinct subfields and circuits, and these circuits appear to mature at different rates (Lavenex and Banta Lavenex, 2013).…

  16. Functional reorganization of motor and limbic circuits after exercise training in a rat model of bilateral parkinsonism.

    Directory of Open Access Journals (Sweden)

    Zhuo Wang

    Full Text Available Exercise training is widely used for neurorehabilitation of Parkinson's disease (PD. However, little is known about the functional reorganization of the injured brain after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise in a rat model of dopaminergic deafferentation (bilateral, dorsal striatal 6-hydroxydopamine lesions. One week after training, cerebral perfusion was mapped during treadmill walking or at rest using [(14C]-iodoantipyrine autoradiography. Regional cerebral blood flow-related tissue radioactivity (rCBF was analyzed in three-dimensionally reconstructed brains by statistical parametric mapping. In non-exercised rats, lesions resulted in persistent motor deficits. Compared to sham-lesioned rats, lesioned rats showed altered functional brain activation during walking, including: 1. hypoactivation of the striatum and motor cortex; 2. hyperactivation of non-lesioned areas in the basal ganglia-thalamocortical circuit; 3. functional recruitment of the red nucleus, superior colliculus and somatosensory cortex; 4. hyperactivation of the ventrolateral thalamus, cerebellar vermis and deep nuclei, suggesting recruitment of the cerebellar-thalamocortical circuit; 5. hyperactivation of limbic areas (amygdala, hippocampus, ventral striatum, septum, raphe, insula. These findings show remarkable similarities to imaging findings reported in PD patients. Exercise progressively improved motor deficits in lesioned rats, while increasing activation in dorsal striatum and rostral secondary motor cortex, attenuating a hyperemia of the zona incerta and eliciting a functional reorganization of regions participating in the cerebellar-thalamocortical circuit. Both lesions and exercise increased activation in mesolimbic areas (amygdala, hippocampus, ventral striatum, laterodorsal tegmental n., ventral pallidum, as well as in related paralimbic regions (septum, raphe, insula. Exercise, but not lesioning, resulted

  17. Functional Reorganization of Motor and Limbic Circuits after Exercise Training in a Rat Model of Bilateral Parkinsonism

    Science.gov (United States)

    Wang, Zhuo; Myers, Kalisa G.; Guo, Yumei; Ocampo, Marco A.; Pang, Raina D.; Jakowec, Michael W.; Holschneider, Daniel P.

    2013-01-01

    Exercise training is widely used for neurorehabilitation of Parkinson’s disease (PD). However, little is known about the functional reorganization of the injured brain after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise in a rat model of dopaminergic deafferentation (bilateral, dorsal striatal 6-hydroxydopamine lesions). One week after training, cerebral perfusion was mapped during treadmill walking or at rest using [14C]-iodoantipyrine autoradiography. Regional cerebral blood flow-related tissue radioactivity (rCBF) was analyzed in three-dimensionally reconstructed brains by statistical parametric mapping. In non-exercised rats, lesions resulted in persistent motor deficits. Compared to sham-lesioned rats, lesioned rats showed altered functional brain activation during walking, including: 1. hypoactivation of the striatum and motor cortex; 2. hyperactivation of non-lesioned areas in the basal ganglia-thalamocortical circuit; 3. functional recruitment of the red nucleus, superior colliculus and somatosensory cortex; 4. hyperactivation of the ventrolateral thalamus, cerebellar vermis and deep nuclei, suggesting recruitment of the cerebellar-thalamocortical circuit; 5. hyperactivation of limbic areas (amygdala, hippocampus, ventral striatum, septum, raphe, insula). These findings show remarkable similarities to imaging findings reported in PD patients. Exercise progressively improved motor deficits in lesioned rats, while increasing activation in dorsal striatum and rostral secondary motor cortex, attenuating a hyperemia of the zona incerta and eliciting a functional reorganization of regions participating in the cerebellar-thalamocortical circuit. Both lesions and exercise increased activation in mesolimbic areas (amygdala, hippocampus, ventral striatum, laterodorsal tegmental n., ventral pallidum), as well as in related paralimbic regions (septum, raphe, insula). Exercise, but not lesioning, resulted in decreases

  18. Emergence of task-dependent representations in working memory circuits

    Directory of Open Access Journals (Sweden)

    Cristina eSavin

    2014-05-01

    Full Text Available A wealth of experimental evidence suggests that working memory circuits preferentially represent information that is behaviorally relevant. Still, we are missing a mechanistic account of how these representations come about. Here we provide a simple explanation for a range of experimental findings, in light of prefrontal circuits adapting to task constraints by reward-dependent learning. In particular, we model a neural network shaped by reward-modulated spike-timing dependent plasticity (r-STDP and homeostatic plasticity (intrinsic excitability and synaptic scaling. We show that the experimentally-observed neural representations naturally emerge in an initially unstructured circuit as it learns to solve several working memory tasks. These results point to a critical, and previously unappreciated, role for reward-dependent learning in shaping prefrontal cortex activity.

  19. Troubleshooting analog circuits

    CERN Document Server

    Pease, Robert A

    1991-01-01

    Troubleshooting Analog Circuits is a guidebook for solving product or process related problems in analog circuits. The book also provides advice in selecting equipment, preventing problems, and general tips. The coverage of the book includes the philosophy of troubleshooting; the modes of failure of various components; and preventive measures. The text also deals with the active components of analog circuits, including diodes and rectifiers, optically coupled devices, solar cells, and batteries. The book will be of great use to both students and practitioners of electronics engineering. Other

  20. Modern TTL circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Modern TTL Circuits Manual provides an introduction to the basic principles of Transistor-Transistor Logic (TTL). This book outlines the major features of the 74 series of integrated circuits (ICs) and introduces the various sub-groups of the TTL family.Organized into seven chapters, this book begins with an overview of the basics of digital ICs. This text then examines the symbology and mathematics of digital logic. Other chapters consider a variety of topics, including waveform generator circuitry, clocked flip-flop and counter circuits, special counter/dividers, registers, data latches, com

  1. Circuit analysis with Multisim

    CERN Document Server

    Baez-Lopez, David

    2011-01-01

    This book is concerned with circuit simulation using National Instruments Multisim. It focuses on the use and comprehension of the working techniques for electrical and electronic circuit simulation. The first chapters are devoted to basic circuit analysis.It starts by describing in detail how to perform a DC analysis using only resistors and independent and controlled sources. Then, it introduces capacitors and inductors to make a transient analysis. In the case of transient analysis, it is possible to have an initial condition either in the capacitor voltage or in the inductor current, or bo

  2. Optoelectronics circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Optoelectronics Circuits Manual covers the basic principles and characteristics of the best known types of optoelectronic devices, as well as the practical applications of many of these optoelectronic devices. The book describes LED display circuits and LED dot- and bar-graph circuits and discusses the applications of seven-segment displays, light-sensitive devices, optocouplers, and a variety of brightness control techniques. The text also tackles infrared light-beam alarms and multichannel remote control systems. The book provides practical user information and circuitry and illustrations.

  3. 'Speedy' superconducting circuits

    International Nuclear Information System (INIS)

    Holst, T.

    1994-01-01

    The most promising concept for realizing ultra-fast superconducting digital circuits is the Rapid Single Flux Quantum (RSFQ) logic. The basic physical principle behind RSFQ logic, which include the storage and transfer of individual magnetic flux quanta in Superconducting Quantum Interference Devices (SQUIDs), is explained. A Set-Reset flip-flop is used as an example of the implementation of an RSFQ based circuit. Finally, the outlook for high-temperature superconducting materials in connection with RSFQ circuits is discussed in some details. (au)

  4. Cognitive Mapping Based on Conjunctive Representations of Space and Movement

    Directory of Open Access Journals (Sweden)

    Taiping Zeng

    2017-11-01

    Full Text Available It is a challenge to build robust simultaneous localization and mapping (SLAM system in dynamical large-scale environments. Inspired by recent findings in the entorhinal–hippocampal neuronal circuits, we propose a cognitive mapping model that includes continuous attractor networks of head-direction cells and conjunctive grid cells to integrate velocity information by conjunctive encodings of space and movement. Visual inputs from the local view cells in the model provide feedback cues to correct drifting errors of the attractors caused by the noisy velocity inputs. We demonstrate the mapping performance of the proposed cognitive mapping model on an open-source dataset of 66 km car journey in a 3 km × 1.6 km urban area. Experimental results show that the proposed model is robust in building a coherent semi-metric topological map of the entire urban area using a monocular camera, even though the image inputs contain various changes caused by different light conditions and terrains. The results in this study could inspire both neuroscience and robotic research to better understand the neural computational mechanisms of spatial cognition and to build robust robotic navigation systems in large-scale environments.

  5. Hardware implementation of an adaptive resonance theory (ART) neural network using compensated operational amplifiers

    Science.gov (United States)

    Ho, Ching S.; Liou, Juin J.; Georgiopoulos, Michael; Christodoulou, Christos G.

    1994-03-01

    This paper presents an analog circuit design and implementation for an adaptive resonance theory neural network architecture called the augmented ART1 neural network (AART1-NN). Practical monolithic operational amplifiers (Op-Amps) LM741 and LM318 are selected to implement the circuit, and a simple compensation scheme is developed to adjust the Op-Amp electrical characteristics to meet the design requirement. A 7-node prototype circuit has been designed and verified using the Pspice circuit simulator run on a Sun workstation. Results simulated from the AART1-NN circuit using the LM741, LM318, and ideal Op-Amps are presented and compared.

  6. Integrated Circuits for Analog Signal Processing

    CERN Document Server

    2013-01-01

      This book presents theory, design methods and novel applications for integrated circuits for analog signal processing.  The discussion covers a wide variety of active devices, active elements and amplifiers, working in voltage mode, current mode and mixed mode.  This includes voltage operational amplifiers, current operational amplifiers, operational transconductance amplifiers, operational transresistance amplifiers, current conveyors, current differencing transconductance amplifiers, etc.  Design methods and challenges posed by nanometer technology are discussed and applications described, including signal amplification, filtering, data acquisition systems such as neural recording, sensor conditioning such as biomedical implants, actuator conditioning, noise generators, oscillators, mixers, etc.   Presents analysis and synthesis methods to generate all circuit topologies from which the designer can select the best one for the desired application; Includes design guidelines for active devices/elements...

  7. Neural Plasticity and Neurorehabilitation: Teaching the New Brain Old Tricks

    Science.gov (United States)

    Kleim, Jeffrey A.

    2011-01-01

    Following brain injury or disease there are widespread biochemical, anatomical and physiological changes that result in what might be considered a new, very different brain. This adapted brain is forced to reacquire behaviors lost as a result of the injury or disease and relies on neural plasticity within the residual neural circuits. The same…

  8. Analogue circuits simulation

    Energy Technology Data Exchange (ETDEWEB)

    Mendo, C

    1988-09-01

    Most analogue simulators have evolved from SPICE. The history and description of SPICE-like simulators are given. From a mathematical formulation of the electronic circuit the following analysis are possible: DC, AC, transient, noise, distortion, Worst Case and Statistical.

  9. Printed circuit for ATLAS

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    A printed circuit board made by scientists in the ATLAS collaboration for the transition radiaton tracker (TRT). This will read data produced when a high energy particle crosses the boundary between two materials with different electrical properties.

  10. Magnonic logic circuits

    International Nuclear Information System (INIS)

    Khitun, Alexander; Bao Mingqiang; Wang, Kang L

    2010-01-01

    We describe and analyse possible approaches to magnonic logic circuits and basic elements required for circuit construction. A distinctive feature of the magnonic circuitry is that information is transmitted by spin waves propagating in the magnetic waveguides without the use of electric current. The latter makes it possible to exploit spin wave phenomena for more efficient data transfer and enhanced logic functionality. We describe possible schemes for general computing and special task data processing. The functional throughput of the magnonic logic gates is estimated and compared with the conventional transistor-based approach. Magnonic logic circuits allow scaling down to the deep submicrometre range and THz frequency operation. The scaling is in favour of the magnonic circuits offering a significant functional advantage over the traditional approach. The disadvantages and problems of the spin wave devices are also discussed.

  11. Early life diets with prebiotics and bioactive milk fractions attenuate the impact of stress on learned helplessness behaviours and alter gene expression within neural circuits important for stress resistance.

    Science.gov (United States)

    Mika, Agnieszka; Day, Heidi E W; Martinez, Alexander; Rumian, Nicole L; Greenwood, Benjamin N; Chichlowski, Maciej; Berg, Brian M; Fleshner, Monika

    2017-02-01

    Manipulating gut microbes may improve mental health. Prebiotics are indigestible compounds that increase the growth and activity of health-promoting microorganisms, yet few studies have examined how prebiotics affect CNS function. Using an acute inescapable stressor known to produce learned helplessness behaviours such as failure to escape and exaggerated fear, we tested whether early life supplementation of a blend of two prebiotics, galactooligosaccharide (GOS) and polydextrose (PDX), and the glycoprotein lactoferrin (LAC) would attenuate behavioural and biological responses to stress later in life. Juvenile, male F344 rats were fed diets containing either GOS and PDX alone, LAC alone, or GOS, PDX and LAC. All diets altered gut bacteria, while diets containing GOS and PDX increased Lactobacillus spp. After 4 weeks, rats were exposed to inescapable stress, and either immediately killed for blood and tissues, or assessed for learned helplessness 24 h later. Diets did not attenuate stress effects on spleen weight, corticosterone and blood glucose; however, all diets differentially attenuated stress-induced learned helplessness. Notably, in situ hybridization revealed that all diets reduced stress-evoked cfos mRNA in the dorsal raphe nucleus (DRN), a structure important for learned helplessness behaviours. In addition, GOS, PDX and LAC diet attenuated stress-evoked decreases in mRNA for the 5-HT 1A autoreceptor in the DRN and increased basal BDNF mRNA within the prefrontal cortex. These data suggest early life diets containing prebiotics and/or LAC promote behavioural stress resistance and uniquely modulate gene expression in corresponding circuits. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Habenula circuit development: past, present and future

    Directory of Open Access Journals (Sweden)

    Carlo Antonio Beretta

    2012-04-01

    Full Text Available The habenular neural circuit is attracting increasing attention from researchers in fields as diverse as neuroscience, medicine, behavior, development and evolution. Recent studies have revealed that this part of the limbic system in the dorsal diencephalon is involved in reward, addiction and other behaviors and its impairment is associated with various neurological conditions and diseases. Since the initial description of the Dorsal Diencephalic Conduction system (DDC with the habenulae in its center at the end of the 19th century, increasingly sophisticated techniques have resolved much of its anatomy and have shown that these pathways relay information from different parts of the forebrain to the tegmentum, midbrain and hindbrain. The first part of this review gives a brief historical overview on how the improving experimental approaches have allowed the stepwise uncovering of much of the architecture of the habenula circuit as we know it today. Our brain distributes tasks differentially between left and right and it has become a paradigm that this functional lateralization is a universal feature of vertebrates. Moreover, task dependent differential brain activities have been linked to anatomical differences across the left-right axis in humans. A good way to further explore this fundamental issue will be to study the functional consequences of subtle changes in neural network formation, which requires that we fully understand DDC system development. As the habenular circuit is evolutionarily highly conserved, researchers have the option to perform such difficult experiments in more experimentally amenable vertebrate systems. Indeed, research in the last decade has shown that the zebrafish is well suited for the study of DDC system development and the phenomenon of functional lateralization. We will critically discuss the advantages of the zebrafish model, available techniques and others that are needed to fully understand habenular circuit

  13. Habenula circuit development: past, present, and future.

    Science.gov (United States)

    Beretta, Carlo A; Dross, Nicolas; Guiterrez-Triana, Jose A; Ryu, Soojin; Carl, Matthias

    2012-01-01

    The habenular neural circuit is attracting increasing attention from researchers in fields as diverse as neuroscience, medicine, behavior, development, and evolution. Recent studies have revealed that this part of the limbic system in the dorsal diencephalon is involved in reward, addiction, and other behaviors and its impairment is associated with various neurological conditions and diseases. Since the initial description of the dorsal diencephalic conduction system (DDC) with the habenulae in its center at the end of the nineteenth century, increasingly sophisticated techniques have resolved much of its anatomy and have shown that these pathways relay information from different parts of the forebrain to the tegmentum, midbrain, and hindbrain. The first part of this review gives a brief historical overview on how the improving experimental approaches have allowed the stepwise uncovering much of the architecture of the habenula circuit as we know it today. Our brain distributes tasks differentially between left and right and it has become a paradigm that this functional lateralization is a universal feature of vertebrates. Moreover, task dependent differential brain activities have been linked to anatomical differences across the left-right axis in humans. A good way to further explore this fundamental issue will be to study the functional consequences of subtle changes in neural network formation, which requires that we fully understand DDC system development. As the habenular circuit is evolutionarily highly conserved, researchers have the option to perform such difficult experiments in more experimentally amenable vertebrate systems. Indeed, research in the last decade has shown that the zebrafish is well suited for the study of DDC system development and the phenomenon of functional lateralization. We will critically discuss the advantages of the zebrafish model, available techniques, and others that are needed to fully understand habenular circuit development.

  14. Peak reading detector circuit

    International Nuclear Information System (INIS)

    Courtin, E.; Grund, K.; Traub, S.; Zeeb, H.

    1975-01-01

    The peak reading detector circuit serves for picking up the instants during which peaks of a given polarity occur in sequences of signals in which the extreme values, their time intervals, and the curve shape of the signals vary. The signal sequences appear in measuring the foetal heart beat frequence from amplitude-modulated ultrasonic, electrocardiagram, and blood pressure signals. In order to prevent undesired emission of output signals from, e. g., disturbing intermediate extreme values, the circuit consists of the series connections of a circuit to simulate an ideal diode, a strong unit, a discriminator for the direction of charging current, a time-delay circuit, and an electronic switch lying in the decharging circuit of the storage unit. The time-delay circuit thereby causes storing of a preliminary maximum value being used only after a certain time delay for the emission of the output signal. If a larger extreme value occurs during the delay time the preliminary maximum value is cleared and the delay time starts running anew. (DG/PB) [de

  15. Nonlinear dynamics based digital logic and circuits.

    Science.gov (United States)

    Kia, Behnam; Lindner, John F; Ditto, William L

    2015-01-01

    We discuss the role and importance of dynamics in the brain and biological neural networks and argue that dynamics is one of the main missing elements in conventional Boolean logic and circuits. We summarize a simple dynamics based computing method, and categorize different techniques that we have introduced to realize logic, functionality, and programmability. We discuss the role and importance of coupled dynamics in networks of biological excitable cells, and then review our simple coupled dynamics based method for computing. In this paper, for the first time, we show how dynamics can be used and programmed to implement computation in any given base, including but not limited to base two.

  16. GABAergic circuit dysfunctions in neurodevelopmental disorders

    Directory of Open Access Journals (Sweden)

    Bidisha eChattopadhyaya

    2012-05-01

    Full Text Available GABAergic interneurons control neuronal excitability, integration, and plasticity. Further, they regulate the generation of temporal synchrony and oscillatory behavior among networks of pyramidal neurons. Such oscillations within and across neural systems are believed to serve various complex functions, such as perception, movement initiation, and memory. Alterations in the development of GABAergic circuits have been implicated in various brain diseases with neurodevelopmental origin. Here, we highlight recent studies suggesting a role for alterations of GABA transmission in the pathophysiology of two neurodevelopmental diseases, schizophrenia and autism. We further discuss how manipulations of GABA signaling may be used for novel therapeutic interventions.

  17. Color Coding of Circuit Quantities in Introductory Circuit Analysis Instruction

    Science.gov (United States)

    Reisslein, Jana; Johnson, Amy M.; Reisslein, Martin

    2015-01-01

    Learning the analysis of electrical circuits represented by circuit diagrams is often challenging for novice students. An open research question in electrical circuit analysis instruction is whether color coding of the mathematical symbols (variables) that denote electrical quantities can improve circuit analysis learning. The present study…

  18. Project Circuits in a Basic Electric Circuits Course

    Science.gov (United States)

    Becker, James P.; Plumb, Carolyn; Revia, Richard A.

    2014-01-01

    The use of project circuits (a photoplethysmograph circuit and a simple audio amplifier), introduced in a sophomore-level electric circuits course utilizing active learning and inquiry-based methods, is described. The development of the project circuits was initiated to promote enhanced engagement and deeper understanding of course content among…

  19. Self-organizing feature map (neural networks) as a tool to select the best indicator of road traffic pollution (soil, leaves or bark of Robinia pseudoacacia L.)

    Energy Technology Data Exchange (ETDEWEB)

    Samecka-Cymerman, A., E-mail: sameckaa@biol.uni.wroc.p [Department of Ecology, Biogeochemistry and Environmental Protection, Wroclaw University, ul. Kanonia 6/8, 50-328 Wroclaw (Poland); Stankiewicz, A.; Kolon, K. [Department of Ecology, Biogeochemistry and Environmental Protection, Wroclaw University, ul. Kanonia 6/8, 50-328 Wroclaw (Poland); Kempers, A.J. [Department of Environmental Sciences, Radboud University of Nijmegen, Toernooiveld, 6525 ED Nijmegen (Netherlands)

    2009-07-15

    Concentrations of the elements Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were measured in the leaves and bark of Robinia pseudoacacia and the soil in which it grew, in the town of Olesnica (SW Poland) and at a control site. We selected this town because emission from motor vehicles is practically the only source of air pollution, and it seemed interesting to evaluate its influence on soil and plants. The self-organizing feature map (SOFM) yielded distinct groups of soils and R. pseudoacacia leaves and bark, depending on traffic intensity. Only the map classifying bark samples identified an additional group of highly polluted sites along the main highway from Wroclaw to Warszawa. The bark of R. pseudoacacia seems to be a better bioindicator of long-term cumulative traffic pollution in the investigated area, while leaves are good indicators of short-term seasonal accumulation trends. - Once trained, SOFM could be used in the future to recognize types of pollution.

  20. Prediction based chaos control via a new neural network

    International Nuclear Information System (INIS)

    Shen Liqun; Wang Mao; Liu Wanyu; Sun Guanghui

    2008-01-01

    In this Letter, a new chaos control scheme based on chaos prediction is proposed. To perform chaos prediction, a new neural network architecture for complex nonlinear approximation is proposed. And the difficulty in building and training the neural network is also reduced. Simulation results of Logistic map and Lorenz system show the effectiveness of the proposed chaos control scheme and the proposed neural network

  1. Neural correlates and neural computations in posterior parietal cortex during perceptual decision-making

    Directory of Open Access Journals (Sweden)

    Alexander eHuk

    2012-10-01

    Full Text Available A recent line of work has found remarkable success in relating perceptual decision-making and the spiking activity in the macaque lateral intraparietal area (LIP. In this review, we focus on questions about the neural computations in LIP that are not answered by demonstrations of neural correlates of psychological processes. We highlight three areas of limitations in our current understanding of the precise neural computations that might underlie neural correlates of decisions: (1 empirical questions not yet answered by existing data; (2 implementation issues related to how neural circuits could actually implement the mechanisms suggested by both physiology and psychology; and (3 ecological constraints related to the use of well-controlled laboratory tasks and whether they provide an accurate window on sensorimotor computation. These issues motivate the adoption of a more general encoding-decoding framework that will be fruitful for more detailed contemplation of how neural computations in LIP relate to the formation of perceptual decisions.

  2. Vertically integrated circuit development at Fermilab for detectors

    International Nuclear Information System (INIS)

    Yarema, R; Deptuch, G; Hoff, J; Khalid, F; Lipton, R; Shenai, A; Trimpl, M; Zimmerman, T

    2013-01-01

    Today vertically integrated circuits, (a.k.a. 3D integrated circuits) is a popular topic in many trade journals. The many advantages of these circuits have been described such as higher speed due to shorter trace lenghts, the ability to reduce cross talk by placing analog and digital circuits on different levels, higher circuit density without the going to smaller feature sizes, lower interconnect capacitance leading to lower power, reduced chip size, and different processing for the various layers to optimize performance. There are some added advantages specifically for MAPS (Monolithic Active Pixel Sensors) in High Energy Physics: four side buttable pixel arrays, 100% diode fill factor, the ability to move PMOS transistors out of the diode sensing layer, and a increase in channel density. Fermilab began investigating 3D circuits in 2006. Many different bonding processes have been described for fabricating 3D circuits [1]. Fermilab has used three different processes to fabricate several circuits for specific applications in High Energy Physics and X-ray imaging. This paper covers some of the early 3D work at Fermilab and then moves to more recent activities. The major processes we have used are discussed and some of the problems encountered are described. An overview of pertinent 3D circuit designs is presented along with test results thus far.

  3. Low latency asynchronous interface circuits

    Science.gov (United States)

    Sadowski, Greg

    2017-06-20

    In one form, a logic circuit includes an asynchronous logic circuit, a synchronous logic circuit, and an interface circuit coupled between the asynchronous logic circuit and the synchronous logic circuit. The asynchronous logic circuit has a plurality of asynchronous outputs for providing a corresponding plurality of asynchronous signals. The synchronous logic circuit has a plurality of synchronous inputs corresponding to the plurality of asynchronous outputs, a stretch input for receiving a stretch signal, and a clock output for providing a clock signal. The synchronous logic circuit provides the clock signal as a periodic signal but prolongs a predetermined state of the clock signal while the stretch signal is active. The asynchronous interface detects whether metastability could occur when latching any of the plurality of the asynchronous outputs of the asynchronous logic circuit using said clock signal, and activates the stretch signal while the metastability could occur.

  4. A Genetic Toolkit for Dissecting Dopamine Circuit Function in Drosophila

    Directory of Open Access Journals (Sweden)

    Tingting Xie

    2018-04-01

    Full Text Available Summary: The neuromodulator dopamine (DA plays a key role in motor control, motivated behaviors, and higher-order cognitive processes. Dissecting how these DA neural networks tune the activity of local neural circuits to regulate behavior requires tools for manipulating small groups of DA neurons. To address this need, we assembled a genetic toolkit that allows for an exquisite level of control over the DA neural network in Drosophila. To further refine targeting of specific DA neurons, we also created reagents that allow for the conversion of any existing GAL4 line into Split GAL4 or GAL80 lines. We demonstrated how this toolkit can be used with recently developed computational methods to rapidly generate additional reagents for manipulating small subsets or individual DA neurons. Finally, we used the toolkit to reveal a dynamic interaction between a small subset of DA neurons and rearing conditions in a social space behavioral assay. : The rapid analysis of how dopaminergic circuits regulate behavior is limited by the genetic tools available to target and manipulate small numbers of these neurons. Xie et al. present genetic tools in Drosophila that allow rational targeting of sparse dopaminergic neuronal subsets and selective knockdown of dopamine signaling. Keywords: dopamine, genetics, behavior, neural circuits, neuromodulation, Drosophila

  5. Junction and circuit fabrication

    International Nuclear Information System (INIS)

    Jackel, L.D.

    1980-01-01

    Great strides have been made in Josephson junction fabrication in the four years since the first IC SQUID meeting. Advances in lithography have allowed the production of devices with planar dimensions as small as a few hundred angstroms. Improved technology has provided ultra-high sensitivity SQUIDS, high-efficiency low-noise mixers, and complex integrated circuits. This review highlights some of the new fabrication procedures. The review consists of three parts. Part 1 is a short summary of the requirements on junctions for various applications. Part 2 reviews intergrated circuit fabrication, including tunnel junction logic circuits made at IBM and Bell Labs, and microbridge radiation sources made at SUNY at Stony Brook. Part 3 describes new junction fabrication techniques, the major emphasis of this review. This part includes a discussion of small oxide-barrier tunnel junctions, semiconductor barrier junctions, and microbridge junctions. Part 3 concludes by considering very fine lithography and limitations to miniaturization. (orig.)

  6. K-maps: a vehicle to an optimal solution in combinational logic ...

    African Journals Online (AJOL)

    K-maps: a vehicle to an optimal solution in combinational logic design problems using digital multiplexers. ... Abstract. Application of Karnaugh maps (K-Maps) for the design of combinational logic circuits and sequential logic circuits is a subject that has been widely discussed. However, the use of K-Maps in the design of ...

  7. The neural basis of financial risk taking.

    Science.gov (United States)

    Kuhnen, Camelia M; Knutson, Brian

    2005-09-01

    Investors systematically deviate from rationality when making financial decisions, yet the mechanisms responsible for these deviations have not been identified. Using event-related fMRI, we examined whether anticipatory neural activity would predict optimal and suboptimal choices in a financial decision-making task. We characterized two types of deviations from the optimal investment strategy of a rational risk-neutral agent as risk-seeking mistakes and risk-aversion mistakes. Nucleus accumbens activation preceded risky choices as well as risk-seeking mistakes, while anterior insula activation preceded riskless choices as well as risk-aversion mistakes. These findings suggest that distinct neural circuits linked to anticipatory affect promote different types of financial choices and indicate that excessive activation of these circuits may lead to investing mistakes. Thus, consideration of anticipatory neural mechanisms may add predictive power to the rational actor model of economic decision making.

  8. Neural Networks

    International Nuclear Information System (INIS)

    Smith, Patrick I.

    2003-01-01

    Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing

  9. WE-AB-204-06: Pseudo-CT Generation Using Undersampled, Single-Acquisition UTE-MDixon and Direct-Mapping Artificial Neural Networks for MR-Based Attenuation Correction and Radiation Therapy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Su, K; Kuo, J [Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio (United States); Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio (United States); Hu, L; Traughber, M [Philips Healthcare, Cleveland, Ohio (United States); Pereira, G; Traughber, B [Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, Ohio (United States); Herrmann, K [Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio (United States); Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio (United States); Muzic, R [Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio (United States); Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio (United States); Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH (United States)

    2015-06-15

    Purpose: Emerging technologies such as dedicated PET/MRI and MR-therapy systems require robust and clinically practical methods for determining photon attenuation. Herein, we propose using novel MR acquisition methods and processing for the generation of pseudo-CTs. Methods: A single acquisition, 190-second UTE-mDixon sequence with 25% (angular) sampling density and 3D radial readout was performed on nine volunteers. Three water-filled tubes were placed in the FOV for trajectory-delay correction. The MR data were reconstructed to generate three primitive images acquired at TEs of 0.1, 1.5 and 2.8 ms. In addition, three derived MR images were generated, i.e. two-point Dixon water/fat separation and R2* (1/T2*) map. Furthermore, two spatial features, i.e. local binary pattern (S-1) and relative spatial coordinates (S-2), were incorporated. A direct-mapping operator was generated using Artificial Neural Networks (ANNs) for transforming the MR features to a pseudo-CT. CT images served as the training data and, using a leave-one-out method, for performance evaluation using mean prediction deviation (MPD), mean absolute prediction deviation (MAPD), and correlation coefficient (R). Results: The errors between measured CT and pseudo-CT declined dramatically when the spatial features, i.e. S-1 and S-2, were included. The MPD, MAPD, and R were, respectively, 5±57 HU, 141±41 HU, and 0.815±0.066 for results generated by the ANN trained without the spatial features and were 32±26 HU, 115±18 HU, and 0.869±0.035 with the spatial features. The estimation errors of the pseudo-CT were smaller when both the S-1 and S-2 were used together than when either the S-1 or the S-2 was used. Pseudo-CT generation (256×256×256 voxels) by ANN took < 0.5 s using a computer having an Intel i7 3.4GHz CPU and 16 GB RAM. Conclusion: The proposed direct-mapping ANN approach is a technically accurate, clinically practical method for pseudo-CT generation and can potentially help improve the

  10. WE-AB-204-06: Pseudo-CT Generation Using Undersampled, Single-Acquisition UTE-MDixon and Direct-Mapping Artificial Neural Networks for MR-Based Attenuation Correction and Radiation Therapy Planning

    International Nuclear Information System (INIS)

    Su, K; Kuo, J; Hu, L; Traughber, M; Pereira, G; Traughber, B; Herrmann, K; Muzic, R

    2015-01-01

    Purpose: Emerging technologies such as dedicated PET/MRI and MR-therapy systems require robust and clinically practical methods for determining photon attenuation. Herein, we propose using novel MR acquisition methods and processing for the generation of pseudo-CTs. Methods: A single acquisition, 190-second UTE-mDixon sequence with 25% (angular) sampling density and 3D radial readout was performed on nine volunteers. Three water-filled tubes were placed in the FOV for trajectory-delay correction. The MR data were reconstructed to generate three primitive images acquired at TEs of 0.1, 1.5 and 2.8 ms. In addition, three derived MR images were generated, i.e. two-point Dixon water/fat separation and R2* (1/T2*) map. Furthermore, two spatial features, i.e. local binary pattern (S-1) and relative spatial coordinates (S-2), were incorporated. A direct-mapping operator was generated using Artificial Neural Networks (ANNs) for transforming the MR features to a pseudo-CT. CT images served as the training data and, using a leave-one-out method, for performance evaluation using mean prediction deviation (MPD), mean absolute prediction deviation (MAPD), and correlation coefficient (R). Results: The errors between measured CT and pseudo-CT declined dramatically when the spatial features, i.e. S-1 and S-2, were included. The MPD, MAPD, and R were, respectively, 5±57 HU, 141±41 HU, and 0.815±0.066 for results generated by the ANN trained without the spatial features and were 32±26 HU, 115±18 HU, and 0.869±0.035 with the spatial features. The estimation errors of the pseudo-CT were smaller when both the S-1 and S-2 were used together than when either the S-1 or the S-2 was used. Pseudo-CT generation (256×256×256 voxels) by ANN took < 0.5 s using a computer having an Intel i7 3.4GHz CPU and 16 GB RAM. Conclusion: The proposed direct-mapping ANN approach is a technically accurate, clinically practical method for pseudo-CT generation and can potentially help improve the

  11. Small circuits for cryptography.

    Energy Technology Data Exchange (ETDEWEB)

    Torgerson, Mark Dolan; Draelos, Timothy John; Schroeppel, Richard Crabtree; Miller, Russell D.; Anderson, William Erik

    2005-10-01

    This report examines a number of hardware circuit design issues associated with implementing certain functions in FPGA and ASIC technologies. Here we show circuit designs for AES and SHA-1 that have an extremely small hardware footprint, yet show reasonably good performance characteristics as compared to the state of the art designs found in the literature. Our AES performance numbers are fueled by an optimized composite field S-box design for the Stratix chipset. Our SHA-1 designs use register packing and feedback functionalities of the Stratix LE, which reduce the logic element usage by as much as 72% as compared to other SHA-1 designs.

  12. Silicon integrated circuit process

    International Nuclear Information System (INIS)

    Lee, Jong Duck

    1985-12-01

    This book introduces the process of silicon integrated circuit. It is composed of seven parts, which are oxidation process, diffusion process, ion implantation process such as ion implantation equipment, damage, annealing and influence on manufacture of integrated circuit and device, chemical vapor deposition process like silicon Epitaxy LPCVD and PECVD, photolithography process, including a sensitizer, spin, harden bake, reflection of light and problems related process, infrared light bake, wet-etch, dry etch, special etch and problems of etching, metal process like metal process like metal-silicon connection, aluminum process, credibility of aluminum and test process.

  13. Primer printed circuit boards

    CERN Document Server

    Argyle, Andrew

    2009-01-01

    Step-by-step instructions for making your own PCBs at home. Making your own printed circuit board (PCB) might seem a daunting task, but once you master the steps, it's easy to attain professional-looking results. Printed circuit boards, which connect chips and other components, are what make almost all modern electronic devices possible. PCBs are made from sheets of fiberglass clad with copper, usually in multiplelayers. Cut a computer motherboard in two, for instance, and you'll often see five or more differently patterned layers. Making boards at home is relatively easy

  14. Silicon integrated circuit process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Duck

    1985-12-15

    This book introduces the process of silicon integrated circuit. It is composed of seven parts, which are oxidation process, diffusion process, ion implantation process such as ion implantation equipment, damage, annealing and influence on manufacture of integrated circuit and device, chemical vapor deposition process like silicon Epitaxy LPCVD and PECVD, photolithography process, including a sensitizer, spin, harden bake, reflection of light and problems related process, infrared light bake, wet-etch, dry etch, special etch and problems of etching, metal process like metal process like metal-silicon connection, aluminum process, credibility of aluminum and test process.

  15. Circuit design for reliability

    CERN Document Server

    Cao, Yu; Wirth, Gilson

    2015-01-01

    This book presents physical understanding, modeling and simulation, on-chip characterization, layout solutions, and design techniques that are effective to enhance the reliability of various circuit units.  The authors provide readers with techniques for state of the art and future technologies, ranging from technology modeling, fault detection and analysis, circuit hardening, and reliability management. Provides comprehensive review on various reliability mechanisms at sub-45nm nodes; Describes practical modeling and characterization techniques for reliability; Includes thorough presentation of robust design techniques for major VLSI design units; Promotes physical understanding with first-principle simulations.

  16. Electronic circuits fundamentals & applications

    CERN Document Server

    Tooley, Mike

    2015-01-01

    Electronics explained in one volume, using both theoretical and practical applications.New chapter on Raspberry PiCompanion website contains free electronic tools to aid learning for students and a question bank for lecturersPractical investigations and questions within each chapter help reinforce learning Mike Tooley provides all the information required to get to grips with the fundamentals of electronics, detailing the underpinning knowledge necessary to appreciate the operation of a wide range of electronic circuits, including amplifiers, logic circuits, power supplies and oscillators. The

  17. Orientation-Selective Retinal Circuits in Vertebrates.

    Science.gov (United States)

    Antinucci, Paride; Hindges, Robert

    2018-01-01

    Visual information is already processed in the retina before it is transmitted to higher visual centers in the brain. This includes the extraction of salient features from visual scenes, such as motion directionality or contrast, through neurons belonging to distinct neural circuits. Some retinal neurons are tuned to the orientation of elongated visual stimuli. Such 'orientation-selective' neurons are present in the retinae of most, if not all, vertebrate species analyzed to date, with species-specific differences in frequency and degree of tuning. In some cases, orientation-selective neurons have very stereotyped functional and morphological properties suggesting that they represent distinct cell types. In this review, we describe the retinal cell types underlying orientation selectivity found in various vertebrate species, and highlight their commonalities and differences. In addition, we discuss recent studies that revealed the cellular, synaptic and circuit mechanisms at the basis of retinal orientation selectivity. Finally, we outline the significance of these findings in shaping our current understanding of how this fundamental neural computation is implemented in the visual systems of vertebrates.

  18. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  19. Track Circuit Fault Diagnosis Method based on Least Squares Support Vector

    Science.gov (United States)

    Cao, Yan; Sun, Fengru

    2018-01-01

    In order to improve the troubleshooting efficiency and accuracy of the track circuit, track circuit fault diagnosis method was researched. Firstly, the least squares support vector machine was applied to design the multi-fault classifier of the track circuit, and then the measured track data as training samples was used to verify the feasibility of the methods. Finally, the results based on BP neural network fault diagnosis methods and the methods used in this paper were compared. Results shows that the track fault classifier based on least squares support vector machine can effectively achieve the five track circuit fault diagnosis with less computing time.

  20. Artificial immune system algorithm in VLSI circuit configuration

    Science.gov (United States)

    Mansor, Mohd. Asyraf; Sathasivam, Saratha; Kasihmuddin, Mohd Shareduwan Mohd

    2017-08-01

    In artificial intelligence, the artificial immune system is a robust bio-inspired heuristic method, extensively used in solving many constraint optimization problems, anomaly detection, and pattern recognition. This paper discusses the implementation and performance of artificial immune system (AIS) algorithm integrated with Hopfield neural networks for VLSI circuit configuration based on 3-Satisfiability problems. Specifically, we emphasized on the clonal selection technique in our binary artificial immune system algorithm. We restrict our logic construction to 3-Satisfiability (3-SAT) clauses in order to outfit with the transistor configuration in VLSI circuit. The core impetus of this research is to find an ideal hybrid model to assist in the VLSI circuit configuration. In this paper, we compared the artificial immune system (AIS) algorithm (HNN-3SATAIS) with the brute force algorithm incorporated with Hopfield neural network (HNN-3SATBF). Microsoft Visual C++ 2013 was used as a platform for training, simulating and validating the performances of the proposed network. The results depict that the HNN-3SATAIS outperformed HNN-3SATBF in terms of circuit accuracy and CPU time. Thus, HNN-3SATAIS can be used to detect an early error in the VLSI circuit design.

  1. What and Where in auditory sensory processing: A high-density electrical mapping study of distinct neural processes underlying sound object recognition and sound localization

    Directory of Open Access Journals (Sweden)

    Victoria M Leavitt

    2011-06-01

    Full Text Available Functionally distinct dorsal and ventral auditory pathways for sound localization (where and sound object recognition (what have been described in non-human primates. A handful of studies have explored differential processing within these streams in humans, with highly inconsistent findings. Stimuli employed have included simple tones, noise bursts and speech sounds, with simulated left-right spatial manipulations, and in some cases participants were not required to actively discriminate the stimuli. Our contention is that these paradigms were not well suited to dissociating processing within the two streams. Our aim here was to determine how early in processing we could find evidence for dissociable pathways using better titrated what and where task conditions. The use of more compelling tasks should allow us to amplify differential processing within the dorsal and ventral pathways. We employed high-density electrical mapping using a relatively large and environmentally realistic stimulus set (seven animal calls delivered from seven free-field spatial locations; with stimulus configuration identical across the where and what tasks. Topographic analysis revealed distinct dorsal and ventral auditory processing networks during the where and what tasks with the earliest point of divergence seen during the N1 component of the auditory evoked response, beginning at approximately 100 ms. While this difference occurred during the N1 timeframe, it was not a simple modulation of N1 amplitude as it displayed a wholly different topographic distribution to that of the N1. Global dissimilarity measures using topographic modulation analysis confirmed that this difference between tasks was driven by a shift in the underlying generator configuration. Minimum norm source reconstruction revealed distinct activations that corresponded well with activity within putative dorsal and ventral auditory structures.

  2. Mapping out Map Libraries

    Directory of Open Access Journals (Sweden)

    Ferjan Ormeling

    2008-09-01

    Full Text Available Discussing the requirements for map data quality, map users and their library/archives environment, the paper focuses on the metadata the user would need for a correct and efficient interpretation of the map data. For such a correct interpretation, knowledge of the rules and guidelines according to which the topographers/cartographers work (such as the kind of data categories to be collected, and the degree to which these rules and guidelines were indeed followed are essential. This is not only valid for the old maps stored in our libraries and archives, but perhaps even more so for the new digital files as the format in which we now have to access our geospatial data. As this would be too much to ask from map librarians/curators, some sort of web 2.0 environment is sought where comments about data quality, completeness and up-to-dateness from knowledgeable map users regarding the specific maps or map series studied can be collected and tagged to scanned versions of these maps on the web. In order not to be subject to the same disadvantages as Wikipedia, where the ‘communis opinio’ rather than scholarship, seems to be decisive, some checking by map curators of this tagged map use information would still be needed. Cooperation between map curators and the International Cartographic Association ( ICA map and spatial data use commission to this end is suggested.

  3. On optical detection of densely labeled synapses in neuropil and mapping connectivity with combinatorially multiplexed fluorescent synaptic markers.

    Directory of Open Access Journals (Sweden)

    Yuriy Mishchenko

    Full Text Available We propose a new method for mapping neural connectivity optically, by utilizing Cre/Lox system Brainbow to tag synapses of different neurons with random mixtures of different fluorophores, such as GFP, YFP, etc., and then detecting patterns of fluorophores at different synapses using light microscopy (LM. Such patterns will immediately report the pre- and post-synaptic cells at each synaptic connection, without tracing neural projections from individual synapses to corresponding cell bodies. We simulate fluorescence from a population of densely labeled synapses in a block of hippocampal neuropil, completely reconstructed from electron microscopy data, and show that high-end LM is able to detect such patterns with over 95% accuracy. We conclude, therefore, that with the described approach neural connectivity in macroscopically large neural circuits can be mapped with great accuracy, in scalable manner, using fast optical tools, and straightforward image processing. Relying on an electron microscopy dataset, we also derive and explicitly enumerate the conditions that should be met to allow synaptic connectivity studies with high-resolution optical tools.

  4. Computer model of a reverberant and parallel circuit coupling

    Science.gov (United States)

    Kalil, Camila de Andrade; de Castro, Maria Clícia Stelling; Cortez, Célia Martins

    2017-11-01

    The objective of the present study was to deepen the knowledge about the functioning of the neural circuits by implementing a signal transmission model using the Graph Theory in a small network of neurons composed of an interconnected reverberant and parallel circuit, in order to investigate the processing of the signals in each of them and the effects on the output of the network. For this, a program was developed in C language and simulations were done using neurophysiological data obtained in the literature.

  5. Transsynaptic Mapping of Second-Order Taste Neurons in Flies by trans-Tango.

    Science.gov (United States)

    Talay, Mustafa; Richman, Ethan B; Snell, Nathaniel J; Hartmann, Griffin G; Fisher, John D; Sorkaç, Altar; Santoyo, Juan F; Chou-Freed, Cambria; Nair, Nived; Johnson, Mark; Szymanski, John R; Barnea, Gilad

    2017-11-15

    Mapping neural circuits across defined synapses is essential for understanding brain function. Here we describe trans-Tango, a technique for anterograde transsynaptic circuit tracing and manipulation. At the core of trans-Tango is a synthetic signaling pathway that is introduced into all neurons in the animal. This pathway converts receptor activation at the cell surface into reporter expression through site-specific proteolysis. Specific labeling is achieved by presenting a tethered ligand at the synapses of genetically defined neurons, thereby activating the pathway in their postsynaptic partners and providing genetic access to these neurons. We first validated trans-Tango in the Drosophila olfactory system and then implemented it in the gustatory system, where projections beyond the first-order receptor neurons are not fully characterized. We identified putative second-order neurons within the sweet circuit that include projection neurons targeting known neuromodulation centers in the brain. These experiments establish trans-Tango as a flexible platform for transsynaptic circuit analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. ESD analog circuits and design

    CERN Document Server

    Voldman, Steven H

    2014-01-01

    A comprehensive and in-depth review of analog circuit layout, schematic architecture, device, power network and ESD design This book will provide a balanced overview of analog circuit design layout, analog circuit schematic development, architecture of chips, and ESD design.  It will start at an introductory level and will bring the reader right up to the state-of-the-art. Two critical design aspects for analog and power integrated circuits are combined. The first design aspect covers analog circuit design techniques to achieve the desired circuit performance. The second and main aspect pres

  7. Unstable oscillators based hyperchaotic circuit

    DEFF Research Database (Denmark)

    Murali, K.; Tamasevicius, A.; G. Mykolaitis, A.

    1999-01-01

    A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations in the circ...... in the circuit. The performance of the circuit is investigated by means of numerical integration of appropriate differential equations, PSPICE simulations, and hardware experiment.......A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations...

  8. The test of VLSI circuits

    Science.gov (United States)

    Baviere, Ph.

    Tests which have proven effective for evaluating VLSI circuits for space applications are described. It is recommended that circuits be examined after each manfacturing step to gain fast feedback on inadequacies in the production system. Data from failure modes which occur during operational lifetimes of circuits also permit redefinition of the manufacturing and quality control process to eliminate the defects identified. Other tests include determination of the operational envelope of the circuits, examination of the circuit response to controlled inputs, and the performance and functional speeds of ROM and RAM memories. Finally, it is desirable that all new circuits be designed with testing in mind.

  9. Electronic Circuit Analysis Language (ECAL)

    Science.gov (United States)

    Chenghang, C.

    1983-03-01

    The computer aided design technique is an important development in computer applications and it is an important component of computer science. The special language for electronic circuit analysis is the foundation of computer aided design or computer aided circuit analysis (abbreviated as CACD and CACA) of simulated circuits. Electronic circuit analysis language (ECAL) is a comparatively simple and easy to use circuit analysis special language which uses the FORTRAN language to carry out the explanatory executions. It is capable of conducting dc analysis, ac analysis, and transient analysis of a circuit. Futhermore, the results of the dc analysis can be used directly as the initial conditions for the ac and transient analyses.

  10. An integrated circuit switch

    Science.gov (United States)

    Bonin, E. L.

    1969-01-01

    Multi-chip integrated circuit switch consists of a GaAs photon-emitting diode in close proximity with S1 phototransistor. A high current gain is obtained when the transistor has a high forward common-emitter current gain.

  11. Automatic sweep circuit

    International Nuclear Information System (INIS)

    Keefe, D.J.

    1980-01-01

    An automatically sweeping circuit for searching for an evoked response in an output signal in time with respect to a trigger input is described. Digital counters are used to activate a detector at precise intervals, and monitoring is repeated for statistical accuracy. If the response is not found then a different time window is examined until the signal is found

  12. Automatic sweep circuit

    Science.gov (United States)

    Keefe, Donald J.

    1980-01-01

    An automatically sweeping circuit for searching for an evoked response in an output signal in time with respect to a trigger input. Digital counters are used to activate a detector at precise intervals, and monitoring is repeated for statistical accuracy. If the response is not found then a different time window is examined until the signal is found.

  13. "Printed-circuit" rectenna

    Science.gov (United States)

    Dickinson, R. M.

    1977-01-01

    Rectifying antenna is less bulky structure for absorbing transmitted microwave power and converting it into electrical current. Printed-circuit approach, using microstrip technology and circularly polarized antenna, makes polarization orientation unimportant and allows much smaller arrays for given performance. Innovation is particularly useful with proposed electric vehicles powered by beam microwaves.

  14. Het onzichtbare circuit

    NARCIS (Netherlands)

    Nauta, Bram

    2013-01-01

    De chip, of geïntegreerde schakeling, heeft in een razend tempo ons leven ingrijpend veranderd. Het lijkt zo vanzelfsprekend dat er weer een nieuwe generatie smartphones, tablets of computers is. Maar dat is het niet. Prof.dr.ir. Bram Nauta, hoogleraar Integrated Circuit Design, laat in zijn rede

  15. Voltage regulating circuit

    NARCIS (Netherlands)

    2005-01-01

    A voltage regulating circuit comprising a rectifier (2) for receiving an AC voltage (Vmains) and for generating a rectified AC voltage (vrec), and a capacitor (3) connected in parallel with said rectified AC voltage for providing a DC voltage (VDC) over a load (5), characterized by a unidirectional

  16. Streaming Reduction Circuit

    NARCIS (Netherlands)

    Gerards, Marco Egbertus Theodorus; Kuper, Jan; Kokkeler, Andre B.J.; Molenkamp, Egbert

    2009-01-01

    Reduction circuits are used to reduce rows of floating point values to single values. Binary floating point operators often have deep pipelines, which may cause hazards when many consecutive rows have to be reduced. We present an algorithm by which any number of consecutive rows of arbitrary lengths

  17. A Magnetic Circuit Demonstration.

    Science.gov (United States)

    Vanderkooy, John; Lowe, June

    1995-01-01

    Presents a demonstration designed to illustrate Faraday's, Ampere's, and Lenz's laws and to reinforce the concepts through the analysis of a two-loop magnetic circuit. Can be made dramatic and challenging for sophisticated students but is suitable for an introductory course in electricity and magnetism. (JRH)

  18. Recent Advances in Neural Recording Microsystems

    Directory of Open Access Journals (Sweden)

    Benoit Gosselin

    2011-04-01

    Full Text Available The accelerating pace of research in neuroscience has created a considerable demand for neural interfacing microsystems capable of monitoring the activity of large groups of neurons. These emerging tools have revealed a tremendous potential for the advancement of knowledge in brain research and for the development of useful clinical applications. They can extract the relevant control signals directly from the brain enabling individuals with severe disabilities to communicate their intentions to other devices, like computers or various prostheses. Such microsystems are self-contained devices composed of a neural probe attached with an integrated circuit for extracting neural signals from multiple channels, and transferring the data outside the body. The greatest challenge facing development of such emerging devices into viable clinical systems involves addressing their small form factor and low-power consumption constraints, while providing superior resolution. In this paper, we survey the recent progress in the design and the implementation of multi-channel neural recording Microsystems, with particular emphasis on the design of recording and telemetry electronics. An overview of the numerous neural signal modalities is given and the existing microsystem topologies are covered. We present energy-efficient sensory circuits to retrieve weak signals from neural probes and we compare them. We cover data management and smart power scheduling approaches, and we review advances in low-power telemetry. Finally, we conclude by summarizing the remaining challenges and by highlighting the emerging trends in the field.

  19. Compiling quantum circuits to realistic hardware architectures using temporal planners

    Science.gov (United States)

    Venturelli, Davide; Do, Minh; Rieffel, Eleanor; Frank, Jeremy

    2018-04-01

    To run quantum algorithms on emerging gate-model quantum hardware, quantum circuits must be compiled to take into account constraints on the hardware. For near-term hardware, with only limited means to mitigate decoherence, it is critical to minimize the duration of the circuit. We investigate the application of temporal planners to the problem of compiling quantum circuits to newly emerging quantum hardware. While our approach is general, we focus on compiling to superconducting hardware architectures with nearest neighbor constraints. Our initial experiments focus on compiling Quantum Alternating Operator Ansatz (QAOA) circuits whose high number of commuting gates allow great flexibility in the order in which the gates can be applied. That freedom makes it more challenging to find optimal compilations but also means there is a greater potential win from more optimized compilation than for less flexible circuits. We map this quantum circuit compilation problem to a temporal planning problem, and generated a test suite of compilation problems for QAOA circuits of various sizes to a realistic hardware architecture. We report compilation results from several state-of-the-art temporal planners on this test set. This early empirical evaluation demonstrates that temporal planning is a viable approach to quantum circuit compilation.

  20. Central neural pathways for thermoregulation

    Science.gov (United States)

    Morrison, Shaun F.; Nakamura, Kazuhiro

    2010-01-01

    Central neural circuits orchestrate a homeostatic repertoire to maintain body temperature during environmental temperature challenges and to alter body temperature during the inflammatory response. This review summarizes the functional organization of the neural pathways through which cutaneous thermal receptors alter thermoregulatory effectors: the cutaneous circulation for heat loss, the brown adipose tissue, skeletal muscle and heart for thermogenesis and species-dependent mechanisms (sweating, panting and saliva spreading) for evaporative heat loss. These effectors are regulated by parallel but distinct, effector-specific neural pathways that share a common peripheral thermal sensory input. The thermal afferent circuits include cutaneous thermal receptors, spinal dorsal horn neurons and lateral parabrachial nucleus neurons projecting to the preoptic area to influence warm-sensitive, inhibitory output neurons which control thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus neurons controlling cutaneous vasoconstriction. PMID:21196160

  1. Pulsed neural networks consisting of single-flux-quantum spiking neurons

    International Nuclear Information System (INIS)

    Hirose, T.; Asai, T.; Amemiya, Y.

    2007-01-01

    An inhibitory pulsed neural network was developed for brain-like information processing, by using single-flux-quantum (SFQ) circuits. It consists of spiking neuron devices that are coupled to each other through all-to-all inhibitory connections. The network selects neural activity. The operation of the neural network was confirmed by computer simulation. SFQ neuron devices can imitate the operation of the inhibition phenomenon of neural networks

  2. The LMT circuit and SPICE

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamacevicius, Arunas

    2006-01-01

    The state equations of the LMT circuit are modeled as a dedicated analogue computer circuit and solved by means of PSpice. The nonlinear part of the system is studied. Problems with the PSpice program are presented....

  3. Resistor Combinations for Parallel Circuits.

    Science.gov (United States)

    McTernan, James P.

    1978-01-01

    To help simplify both teaching and learning of parallel circuits, a high school electricity/electronics teacher presents and illustrates the use of tables of values for parallel resistive circuits in which total resistances are whole numbers. (MF)

  4. Detecting short circuits during assembly

    Science.gov (United States)

    Deboo, G. J.

    1980-01-01

    Detector circuit identifies shorts between bus bars of electronic equipment being wired. Detector sounds alarm and indicates which planes are shorted. Power and ground bus bars are scanned continuously until short circuit occurs.

  5. BR-5 primary circuit decontamination

    International Nuclear Information System (INIS)

    Efimov, I.A.; Nikulin, M.P.; Smirnov-Averin, A.P.; Tymosh, B.S.; Shereshkov, V.S.

    1976-01-01

    Results and methodology of steam-water and acid decontamination of the primary coolant circuit SBR-5 reactor in 1971 are discussed. Regeneration process in a cold trap of the primary coolant circuit is discussed

  6. Dissociable attentional and affective circuits in medication-naïve children with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Posner, Jonathan; Rauh, Virginia; Gruber, Allison; Gat, Inbal; Wang, Zhishun; Peterson, Bradley S

    2013-07-30

    Current neurocognitive models of attention-deficit/hyperactivity disorder (ADHD) suggest that neural circuits involving both attentional and affective processing make independent contributions to the phenomenology of the disorder. However, a clear dissociation of attentional and affective circuits and their behavioral correlates has yet to be shown in medication-naïve children with ADHD. Using resting-state functional connectivity MRI (rs-fcMRI) in a cohort of medication naïve children with (N=22) and without (N=20) ADHD, we demonstrate that children with ADHD have reduced connectivity in two neural circuits: one underlying executive attention (EA) and the other emotional regulation (ER). We also demonstrate a double dissociation between these two neural circuits and their behavioral correlates such that reduced connectivity in the EA circuit correlates with executive attention deficits but not with emotional lability, while on the other hand, reduced connectivity in the ER circuit correlates with emotional lability but not with executive attention deficits. These findings suggest potential avenues for future research such as examining treatment effects on these two neural circuits as well as the potential prognostic and developmental significance of disturbances in one circuit vs the other. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. MOS voltage automatic tuning circuit

    OpenAIRE

    李, 田茂; 中田, 辰則; 松本, 寛樹

    2004-01-01

    Abstract ###Automatic tuning circuit adjusts frequency performance to compensate for the process variation. Phase locked ###loop (PLL) is a suitable oscillator for the integrated circuit. It is a feedback system that compares the input ###phase with the output phase. It can make the output frequency equal to the input frequency. In this paper, PLL ###fomed of MOSFET's is presented.The presented circuit consists of XOR circuit, Low-pass filter and Relaxation ###Oscillator. On PSPICE simulation...

  8. Behavioral synthesis of asynchronous circuits

    DEFF Research Database (Denmark)

    Nielsen, Sune Fallgaard

    2005-01-01

    This thesis presents a method for behavioral synthesis of asynchronous circuits, which aims at providing a synthesis flow which uses and tranfers methods from synchronous circuits to asynchronous circuits. We move the synchronous behavioral synthesis abstraction into the asynchronous handshake...... is idle. This reduces unnecessary switching activity in the individual functional units and therefore the energy consumption of the entire circuit. A collection of behavioral synthesis algorithms have been developed allowing the designer to perform time and power constrained design space exploration...

  9. Selected collection of circuit drawings

    International Nuclear Information System (INIS)

    1977-01-01

    The many electronics circuits have been constracted in the Electronics Shop for use in nuclear experiments or other purposes of this Institute. The types of these circuits amount to about 500 items in total since 1968. This report describes the electronics circuit diagrams selected from this collection. The circuit details are not presented in this report, because these are already been published in the other technical reports. (auth.)

  10. Diode, transistor & fet circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Diode, Transistor and FET Circuits Manual is a handbook of circuits based on discrete semiconductor components such as diodes, transistors, and FETS. The book also includes diagrams and practical circuits. The book describes basic and special diode characteristics, heat wave-rectifier circuits, transformers, filter capacitors, and rectifier ratings. The text also presents practical applications of associated devices, for example, zeners, varicaps, photodiodes, or LEDs, as well as it describes bipolar transistor characteristics. The transistor can be used in three basic amplifier configuration

  11. High level cognitive information processing in neural networks

    Science.gov (United States)

    Barnden, John A.; Fields, Christopher A.

    1992-01-01

    Two related research efforts were addressed: (1) high-level connectionist cognitive modeling; and (2) local neural circuit modeling. The goals of the first effort were to develop connectionist models of high-level cognitive processes such as problem solving or natural language understanding, and to understand the computational requirements of such models. The goals of the second effort were to develop biologically-realistic model of local neural circuits, and to understand the computational behavior of such models. In keeping with the nature of NASA's Innovative Research Program, all the work conducted under the grant was highly innovative. For instance, the following ideas, all summarized, are contributions to the study of connectionist/neural networks: (1) the temporal-winner-take-all, relative-position encoding, and pattern-similarity association techniques; (2) the importation of logical combinators into connection; (3) the use of analogy-based reasoning as a bridge across the gap between the traditional symbolic paradigm and the connectionist paradigm; and (4) the application of connectionism to the domain of belief representation/reasoning. The work on local neural circuit modeling also departs significantly from the work of related researchers. In particular, its concentration on low-level neural phenomena that could support high-level cognitive processing is unusual within the area of biological local circuit modeling, and also serves to expand the horizons of the artificial neural net field.

  12. Analysis of Bernstein's factorization circuit

    NARCIS (Netherlands)

    Lenstra, A.K.; Shamir, A.; Tomlinson, J.; Tromer, E.; Zheng, Y.

    2002-01-01

    In [1], Bernstein proposed a circuit-based implementation of the matrix step of the number field sieve factorization algorithm. These circuits offer an asymptotic cost reduction under the measure "construction cost x run time". We evaluate the cost of these circuits, in agreement with [1], but argue

  13. High voltage MOSFET switching circuit

    Science.gov (United States)

    McEwan, Thomas E.

    1994-01-01

    The problem of source lead inductance in a MOSFET switching circuit is compensated for by adding an inductor to the gate circuit. The gate circuit inductor produces an inductive spike which counters the source lead inductive drop to produce a rectangular drive voltage waveform at the internal gate-source terminals of the MOSFET.

  14. Nonequilibrium landscape theory of neural networks.

    Science.gov (United States)

    Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin

    2013-11-05

    The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape-flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments.

  15. Nonequilibrium landscape theory of neural networks

    Science.gov (United States)

    Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin

    2013-01-01

    The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape–flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments. PMID:24145451

  16. Neural Control of the Lower Urinary Tract

    Science.gov (United States)

    de Groat, William C.; Griffiths, Derek; Yoshimura, Naoki

    2015-01-01

    This article summarizes anatomical, neurophysiological, pharmacological, and brain imaging studies in humans and animals that have provided insights into the neural circuitry and neurotransmitter mechanisms controlling the lower urinary tract. The functions of the lower urinary tract to store and periodically eliminate urine are regulated by a complex neural control system in the brain, spinal cord, and peripheral autonomic ganglia that coordinates the activity of smooth and striated muscles of the bladder and urethral outlet. The neural control of micturition is organized as a hierarchical system in which spinal storage mechanisms are in turn regulated by circuitry in the rostral brain stem that initiates reflex voiding. Input from the forebrain triggers voluntary voiding by modulating the brain stem circuitry. Many neural circuits controlling the lower urinary tract exhibit switch-like patterns of activity that turn on and off in an all-or-none manner. The major component of the micturition switching circuit is a spinobulbospinal parasympathetic reflex pathway that has essential connections in the periaqueductal gray and pontine micturition center. A computer model of this circuit that mimics the switching functions of the bladder and urethra at the onset of micturition is described. Micturition occurs involuntarily in infants and young children until the age of 3 to 5 years, after which it is regulated voluntarily. Diseases or injuries of the nervous system in adults can cause the re-emergence of involuntary micturition, leading to urinary incontinence. Neuroplasticity underlying these developmental and pathological changes in voiding function is discussed. PMID:25589273

  17. Integrated circuit structure

    International Nuclear Information System (INIS)

    1981-01-01

    The invention describes the fabrication of integrated circuit structures, such as read-only memory components of field-effect transistors, which may be fabricated and then maintained in inventory, and later selectively modified in accordance with a desired pattern. It is claimed that MOS depletion-mode devices in accordance with the invention can be fabricated at lower cost and at higher yields. (U.K.)

  18. Integrated Circuit Immunity

    Science.gov (United States)

    Sketoe, J. G.; Clark, Anthony

    2000-01-01

    This paper presents a DOD E3 program overview on integrated circuit immunity. The topics include: 1) EMI Immunity Testing; 2) Threshold Definition; 3) Bias Tee Function; 4) Bias Tee Calibration Set-Up; 5) EDM Test Figure; 6) EMI Immunity Levels; 7) NAND vs. and Gate Immunity; 8) TTL vs. LS Immunity Levels; 9) TP vs. OC Immunity Levels; 10) 7805 Volt Reg Immunity; and 11) Seventies Chip Set. This paper is presented in viewgraph form.

  19. Integrated coincidence circuits

    International Nuclear Information System (INIS)

    Borejko, V.F.; Grebenyuk, V.M.; Zinov, V.G.

    1976-01-01

    The description is given of two coincidence units employing integral circuits in the VISHNYA standard. The units are distinguished for the coincidence selection element which is essentially a combination of a tunnel diode and microcircuits. The output fast response of the units is at least 90 MHz in the mode of the output signal unshaped in duration and 50 MHz minimum in the mode of the output signal shaping. The resolution time of the units is dependent upon the duration of input signals

  20. Neural mechanisms underlying sensitivity to reverse-phi motion in the fly

    Science.gov (United States)

    Meier, Matthias; Serbe, Etienne; Eichner, Hubert; Borst, Alexander

    2017-01-01

    Optical illusions provide powerful tools for mapping the algorithms and circuits that underlie visual processing, revealing structure through atypical function. Of particular note in the study of motion detection has been the reverse-phi illusion. When contrast reversals accompany discrete movement, detected direction tends to invert. This occurs across a wide range of organisms, spanning humans and invertebrates. Here, we map an algorithmic account of the phenomenon onto neural circuitry in the fruit fly Drosophila melanogaster. Through targeted silencing experiments in tethered walking flies as well as electrophysiology and calcium imaging, we demonstrate that ON- or OFF-selective local motion detector cells T4 and T5 are sensitive to certain interactions between ON and OFF. A biologically plausible detector model accounts for subtle features of this particular form of illusory motion reversal, like the re-inversion of turning responses occurring at extreme stimulus velocities. In light of comparable circuit architecture in the mammalian retina, we suggest that similar mechanisms may apply even to human psychophysics. PMID:29261684