WorldWideScience

Sample records for neural activity suggesting

  1. Action Potential Modulation of Neural Spin Networks Suggests Possible Role of Spin

    CERN Document Server

    Hu, H P

    2004-01-01

    In this paper we show that nuclear spin networks in neural membranes are modulated by action potentials through J-coupling, dipolar coupling and chemical shielding tensors and perturbed by microscopically strong and fluctuating internal magnetic fields produced largely by paramagnetic oxygen. We suggest that these spin networks could be involved in brain functions since said modulation inputs information carried by the neural spike trains into them, said perturbation activates various dynamics within them and the combination of the two likely produce stochastic resonance thus synchronizing said dynamics to the neural firings. Although quantum coherence is desirable and may indeed exist, it is not required for these spin networks to serve as the subatomic components for the conventional neural networks.

  2. An auditory neural correlate suggests a mechanism underlying holistic pitch perception.

    Directory of Open Access Journals (Sweden)

    Daryl Wile

    Full Text Available Current theories of auditory pitch perception propose that cochlear place (spectral and activity timing pattern (temporal information are somehow combined within the brain to produce holistic pitch percepts, yet the neural mechanisms for integrating these two kinds of information remain obscure. To examine this process in more detail, stimuli made up of three pure tones whose components are individually resolved by the peripheral auditory system, but that nonetheless elicit a holistic, "missing fundamental" pitch percept, were played to human listeners. A technique was used to separate neural timing activity related to individual components of the tone complexes from timing activity related to an emergent feature of the complex (the envelope, and the region of the tonotopic map where information could originate from was simultaneously restricted by masking noise. Pitch percepts were mirrored to a very high degree by a simple combination of component-related and envelope-related neural responses with similar timing that originate within higher-frequency regions of the tonotopic map where stimulus components interact. These results suggest a coding scheme for holistic pitches whereby limited regions of the tonotopic map (spectral places carrying envelope- and component-related activity with similar timing patterns selectively provide a key source of neural pitch information. A similar mechanism of integration between local and emergent object properties may contribute to holistic percepts in a variety of sensory systems.

  3. Studies and Suggestions on Prewriting Activities

    Science.gov (United States)

    Zheng, Shigao; Dai, Weiping

    2012-01-01

    This paper studies and suggests the need for writing instruction by which students can experience writing as a creative process in exploring and communicating meaning. The prewriting activities generate ideas which can encourage a free flow of thoughts and help students discover both what they want to say and how to say it on paper. Through the…

  4. Expression patterns of neural genes in Euperipatoides kanangrensis suggest divergent evolution of onychophoran and euarthropod neurogenesis.

    Science.gov (United States)

    Eriksson, Bo Joakim; Stollewerk, Angelika

    2010-12-28

    One of the controversial debates on euarthropod relationships centers on the question as to whether insects, crustaceans, and myriapods (Mandibulata) share a common ancestor or whether myriapods group with the chelicerates (Myriochelata). The debate was stimulated recently by studies in chelicerates and myriapods that show that neural precursor groups (NPGs) segregate from the neuroectoderm generating the nervous system, whereas in insects and crustaceans the nervous tissue is produced by stem cells. Do the shared neural characters of myriapods and chelicerates represent derived characters that support the Myriochelata grouping? Or do they rather reflect the ancestral pattern? Analyses of neurogenesis in a group closely related to euarthropods, the onychophorans, show that, similar to insects and crustaceans, single neural precursors are formed in the neuroectoderm, potentially supporting the Myriochelata hypothesis. Here we show that the nature and the selection of onychophoran neural precursors are distinct from euarthropods. The onychophoran nervous system is generated by the massive irregular segregation of single neural precursors, contrasting with the limited number and stereotyped arrangement of NPGs/stem cells in euarthropods. Furthermore, neural genes do not show the spatiotemporal pattern that sets up the precise position of neural precursors as in euarthropods. We conclude that neurogenesis in onychophorans largely does not reflect the ancestral pattern of euarthropod neurogenesis, but shows a mixture of derived characters and ancestral characters that have been modified in the euarthropod lineage. Based on these data and additional evidence, we suggest an evolutionary sequence of arthropod neurogenesis that is in line with the Mandibulata hypothesis.

  5. Genetic control of active neural circuits

    Directory of Open Access Journals (Sweden)

    Leon Reijmers

    2009-12-01

    Full Text Available The use of molecular tools to study the neurobiology of complex behaviors has been hampered by an inability to target the desired changes to relevant groups of neurons. Specific memories and specific sensory representations are sparsely encoded by a small fraction of neurons embedded in a sea of morphologically and functionally similar cells. In this review we discuss genetics techniques that are being developed to address this difficulty. In several studies the use of promoter elements that are responsive to neural activity have been used to drive long lasting genetic alterations into neural ensembles that are activated by natural environmental stimuli. This approach has been used to examine neural activity patterns during learning and retrieval of a memory, to examine the regulation of receptor trafficking following learning and to functionally manipulate a specific memory trace. We suggest that these techniques will provide a general approach to experimentally investigate the link between patterns of environmentally activated neural firing and cognitive processes such as perception and memory.

  6. Identifying Emotions on the Basis of Neural Activation.

    Directory of Open Access Journals (Sweden)

    Karim S Kassam

    Full Text Available We attempt to determine the discriminability and organization of neural activation corresponding to the experience of specific emotions. Method actors were asked to self-induce nine emotional states (anger, disgust, envy, fear, happiness, lust, pride, sadness, and shame while in an fMRI scanner. Using a Gaussian Naïve Bayes pooled variance classifier, we demonstrate the ability to identify specific emotions experienced by an individual at well over chance accuracy on the basis of: 1 neural activation of the same individual in other trials, 2 neural activation of other individuals who experienced similar trials, and 3 neural activation of the same individual to a qualitatively different type of emotion induction. Factor analysis identified valence, arousal, sociality, and lust as dimensions underlying the activation patterns. These results suggest a structure for neural representations of emotion and inform theories of emotional processing.

  7. Myelin plasticity, neural activity, and traumatic neural injury.

    Science.gov (United States)

    Kondiles, Bethany R; Horner, Philip J

    2018-02-01

    The possibility that adult organisms exhibit myelin plasticity has recently become a topic of great interest. Many researchers are exploring the role of myelin growth and adaptation in daily functions such as memory and motor learning. Here we consider evidence for three different potential categories of myelin plasticity: the myelination of previously bare axons, remodeling of existing sheaths, and the removal of a sheath with replacement by a new internode. We also review evidence that points to the importance of neural activity as a mechanism by which oligodendrocyte precursor cells (OPCs) are cued to differentiate into myelinating oligodendrocytes, which may potentially be an important component of myelin plasticity. Finally, we discuss demyelination in the context of traumatic neural injury and present an argument for altering neural activity as a potential therapeutic target for remyelination following injury. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 108-122, 2018. © 2017 Wiley Periodicals, Inc.

  8. Activity-dependent neural plasticity from bench to bedside.

    Science.gov (United States)

    Ganguly, Karunesh; Poo, Mu-Ming

    2013-10-30

    Much progress has been made in understanding how behavioral experience and neural activity can modify the structure and function of neural circuits during development and in the adult brain. Studies of physiological and molecular mechanisms underlying activity-dependent plasticity in animal models have suggested potential therapeutic approaches for a wide range of brain disorders in humans. Physiological and electrical stimulations as well as plasticity-modifying molecular agents may facilitate functional recovery by selectively enhancing existing neural circuits or promoting the formation of new functional circuits. Here, we review the advances in basic studies of neural plasticity mechanisms in developing and adult nervous systems and current clinical treatments that harness neural plasticity, and we offer perspectives on future development of plasticity-based therapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Embedding responses in spontaneous neural activity shaped through sequential learning.

    Science.gov (United States)

    Kurikawa, Tomoki; Kaneko, Kunihiko

    2013-01-01

    Recent experimental measurements have demonstrated that spontaneous neural activity in the absence of explicit external stimuli has remarkable spatiotemporal structure. This spontaneous activity has also been shown to play a key role in the response to external stimuli. To better understand this role, we proposed a viewpoint, "memories-as-bifurcations," that differs from the traditional "memories-as-attractors" viewpoint. Memory recall from the memories-as-bifurcations viewpoint occurs when the spontaneous neural activity is changed to an appropriate output activity upon application of an input, known as a bifurcation in dynamical systems theory, wherein the input modifies the flow structure of the neural dynamics. Learning, then, is a process that helps create neural dynamical systems such that a target output pattern is generated as an attractor upon a given input. Based on this novel viewpoint, we introduce in this paper an associative memory model with a sequential learning process. Using a simple hebbian-type learning, the model is able to memorize a large number of input/output mappings. The neural dynamics shaped through the learning exhibit different bifurcations to make the requested targets stable upon an increase in the input, and the neural activity in the absence of input shows chaotic dynamics with occasional approaches to the memorized target patterns. These results suggest that these dynamics facilitate the bifurcations to each target attractor upon application of the corresponding input, which thus increases the capacity for learning. This theoretical finding about the behavior of the spontaneous neural activity is consistent with recent experimental observations in which the neural activity without stimuli wanders among patterns evoked by previously applied signals. In addition, the neural networks shaped by learning properly reflect the correlations of input and target-output patterns in a similar manner to those designed in our previous study.

  10. Embedding responses in spontaneous neural activity shaped through sequential learning.

    Directory of Open Access Journals (Sweden)

    Tomoki Kurikawa

    Full Text Available Recent experimental measurements have demonstrated that spontaneous neural activity in the absence of explicit external stimuli has remarkable spatiotemporal structure. This spontaneous activity has also been shown to play a key role in the response to external stimuli. To better understand this role, we proposed a viewpoint, "memories-as-bifurcations," that differs from the traditional "memories-as-attractors" viewpoint. Memory recall from the memories-as-bifurcations viewpoint occurs when the spontaneous neural activity is changed to an appropriate output activity upon application of an input, known as a bifurcation in dynamical systems theory, wherein the input modifies the flow structure of the neural dynamics. Learning, then, is a process that helps create neural dynamical systems such that a target output pattern is generated as an attractor upon a given input. Based on this novel viewpoint, we introduce in this paper an associative memory model with a sequential learning process. Using a simple hebbian-type learning, the model is able to memorize a large number of input/output mappings. The neural dynamics shaped through the learning exhibit different bifurcations to make the requested targets stable upon an increase in the input, and the neural activity in the absence of input shows chaotic dynamics with occasional approaches to the memorized target patterns. These results suggest that these dynamics facilitate the bifurcations to each target attractor upon application of the corresponding input, which thus increases the capacity for learning. This theoretical finding about the behavior of the spontaneous neural activity is consistent with recent experimental observations in which the neural activity without stimuli wanders among patterns evoked by previously applied signals. In addition, the neural networks shaped by learning properly reflect the correlations of input and target-output patterns in a similar manner to those designed in

  11. Neural networks with discontinuous/impact activations

    CERN Document Server

    Akhmet, Marat

    2014-01-01

    This book presents as its main subject new models in mathematical neuroscience. A wide range of neural networks models with discontinuities are discussed, including impulsive differential equations, differential equations with piecewise constant arguments, and models of mixed type. These models involve discontinuities, which are natural because huge velocities and short distances are usually observed in devices modeling the networks. A discussion of the models, appropriate for the proposed applications, is also provided. This book also: Explores questions related to the biological underpinning for models of neural networks\\ Considers neural networks modeling using differential equations with impulsive and piecewise constant argument discontinuities Provides all necessary mathematical basics for application to the theory of neural networks Neural Networks with Discontinuous/Impact Activations is an ideal book for researchers and professionals in the field of engineering mathematics that have an interest in app...

  12. A Meta-Analysis Suggests Different Neural Correlates for Implicit and Explicit Learning.

    Science.gov (United States)

    Loonis, Roman F; Brincat, Scott L; Antzoulatos, Evan G; Miller, Earl K

    2017-10-11

    A meta-analysis of non-human primates performing three different tasks (Object-Match, Category-Match, and Category-Saccade associations) revealed signatures of explicit and implicit learning. Performance improved equally following correct and error trials in the Match (explicit) tasks, but it improved more after correct trials in the Saccade (implicit) task, a signature of explicit versus implicit learning. Likewise, error-related negativity, a marker for error processing, was greater in the Match (explicit) tasks. All tasks showed an increase in alpha/beta (10-30 Hz) synchrony after correct choices. However, only the implicit task showed an increase in theta (3-7 Hz) synchrony after correct choices that decreased with learning. In contrast, in the explicit tasks, alpha/beta synchrony increased with learning and decreased thereafter. Our results suggest that explicit versus implicit learning engages different neural mechanisms that rely on different patterns of oscillatory synchrony. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Influence of neural adaptation on dynamics and equilibrium state of neural activities in a ring neural network

    Science.gov (United States)

    Takiyama, Ken

    2017-12-01

    How neural adaptation affects neural information processing (i.e. the dynamics and equilibrium state of neural activities) is a central question in computational neuroscience. In my previous works, I analytically clarified the dynamics and equilibrium state of neural activities in a ring-type neural network model that is widely used to model the visual cortex, motor cortex, and several other brain regions. The neural dynamics and the equilibrium state in the neural network model corresponded to a Bayesian computation and statistically optimal multiple information integration, respectively, under a biologically inspired condition. These results were revealed in an analytically tractable manner; however, adaptation effects were not considered. Here, I analytically reveal how the dynamics and equilibrium state of neural activities in a ring neural network are influenced by spike-frequency adaptation (SFA). SFA is an adaptation that causes gradual inhibition of neural activity when a sustained stimulus is applied, and the strength of this inhibition depends on neural activities. I reveal that SFA plays three roles: (1) SFA amplifies the influence of external input in neural dynamics; (2) SFA allows the history of the external input to affect neural dynamics; and (3) the equilibrium state corresponds to the statistically optimal multiple information integration independent of the existence of SFA. In addition, the equilibrium state in a ring neural network model corresponds to the statistically optimal integration of multiple information sources under biologically inspired conditions, independent of the existence of SFA.

  14. Neural activation in stress-related exhaustion

    DEFF Research Database (Denmark)

    Gavelin, Hanna Malmberg; Neely, Anna Stigsdotter; Andersson, Micael

    2017-01-01

    The primary purpose of this study was to investigate the association between burnout and neural activation during working memory processing in patients with stress-related exhaustion. Additionally, we investigated the neural effects of cognitive training as part of stress rehabilitation. Fifty......-five patients with clinical diagnosis of exhaustion disorder were administered the n-back task during fMRI scanning at baseline. Ten patients completed a 12-week cognitive training intervention, as an addition to stress rehabilitation. Eleven patients served as a treatment-as-usual control group. At baseline...

  15. Neural predictive control for active buffet alleviation

    Science.gov (United States)

    Pado, Lawrence E.; Lichtenwalner, Peter F.; Liguore, Salvatore L.; Drouin, Donald

    1998-06-01

    The adaptive neural control of aeroelastic response (ANCAR) and the affordable loads and dynamics independent research and development (IRAD) programs at the Boeing Company jointly examined using neural network based active control technology for alleviating undesirable vibration and aeroelastic response in a scale model aircraft vertical tail. The potential benefits of adaptive control includes reducing aeroelastic response associated with buffet and atmospheric turbulence, increasing flutter margins, and reducing response associated with nonlinear phenomenon like limit cycle oscillations. By reducing vibration levels and thus loads, aircraft structures can have lower acquisition cost, reduced maintenance, and extended lifetimes. Wind tunnel tests were undertaken on a rigid 15% scale aircraft in Boeing's mini-speed wind tunnel, which is used for testing at very low air speeds up to 80 mph. The model included a dynamically scaled flexible fail consisting of an aluminum spar with balsa wood cross sections with a hydraulically powered rudder. Neural predictive control was used to actuate the vertical tail rudder in response to strain gauge feedback to alleviate buffeting effects. First mode RMS strain reduction of 50% was achieved. The neural predictive control system was developed and implemented by the Boeing Company to provide an intelligent, adaptive control architecture for smart structures applications with automated synthesis, self-optimization, real-time adaptation, nonlinear control, and fault tolerance capabilities. It is designed to solve complex control problems though a process of automated synthesis, eliminating costly control design and surpassing it in many instances by accounting for real world non-linearities.

  16. Cultured neural networks: Optimisation of patterned network adhesiveness and characterisation of their neural activity

    NARCIS (Netherlands)

    Rutten, Wim; Ruardij, T.G.; Marani, Enrico; Roelofsen, B.H.

    2006-01-01

    One type of future, improved neural interface is the "cultured probe"?. It is a hybrid type of neural information transducer or prosthesis, for stimulation and/or recording of neural activity. It would consist of a microelectrode array (MEA) on a planar substrate, each electrode being covered and

  17. Activity Patterns of Cultured Neural Networks on Micro Electrode Arrays

    National Research Council Canada - National Science Library

    Rutten, Wim

    2001-01-01

    A hybrid neuro-electronic interface is a cell-cultured micro electrode array, acting as a neural information transducer for stimulation and/or recording of neural activity in the brain or the spinal cord...

  18. Energy-based stochastic control of neural mass models suggests time-varying effective connectivity in the resting state.

    Science.gov (United States)

    Sotero, Roberto C; Shmuel, Amir

    2012-06-01

    Several studies posit energy as a constraint on the coding and processing of information in the brain due to the high cost of resting and evoked cortical activity. This suggestion has been addressed theoretically with models of a single neuron and two coupled neurons. Neural mass models (NMMs) address mean-field based modeling of the activity and interactions between populations of neurons rather than a few neurons. NMMs have been widely employed for studying the generation of EEG rhythms, and more recently as frameworks for integrated models of neurophysiology and functional MRI (fMRI) responses. To date, the consequences of energy constraints on the activity and interactions of ensembles of neurons have not been addressed. Here we aim to study the impact of constraining energy consumption during the resting-state on NMM parameters. To this end, we first linearized the model, then used stochastic control theory by introducing a quadratic cost function, which transforms the NMM into a stochastic linear quadratic regulator (LQR). Solving the LQR problem introduces a regime in which the NMM parameters, specifically the effective connectivities between neuronal populations, must vary with time. This is in contrast to current NMMs, which assume a constant parameter set for a given condition or task. We further simulated energy-constrained stochastic control of a specific NMM, the Wilson and Cowan model of two coupled neuronal populations, one of which is excitatory and the other inhibitory. These simulations demonstrate that with varying weights of the energy-cost function, the NMM parameters show different time-varying behavior. We conclude that constraining NMMs according to energy consumption may create more realistic models. We further propose to employ linear NMMs with time-varying parameters as an alternative to traditional nonlinear NMMs with constant parameters.

  19. Neural activity when people solve verbal problems with insight.

    Directory of Open Access Journals (Sweden)

    Mark Jung-Beeman

    2004-04-01

    Full Text Available People sometimes solve problems with a unique process called insight, accompanied by an "Aha!" experience. It has long been unclear whether different cognitive and neural processes lead to insight versus noninsight solutions, or if solutions differ only in subsequent subjective feeling. Recent behavioral studies indicate distinct patterns of performance and suggest differential hemispheric involvement for insight and noninsight solutions. Subjects solved verbal problems, and after each correct solution indicated whether they solved with or without insight. We observed two objective neural correlates of insight. Functional magnetic resonance imaging (Experiment 1 revealed increased activity in the right hemisphere anterior superior temporal gyrus for insight relative to noninsight solutions. The same region was active during initial solving efforts. Scalp electroencephalogram recordings (Experiment 2 revealed a sudden burst of high-frequency (gamma-band neural activity in the same area beginning 0.3 s prior to insight solutions. This right anterior temporal area is associated with making connections across distantly related information during comprehension. Although all problem solving relies on a largely shared cortical network, the sudden flash of insight occurs when solvers engage distinct neural and cognitive processes that allow them to see connections that previously eluded them.

  20. Development of modularity in the neural activity of children's brains

    OpenAIRE

    Chen, Man; Deem, Michael W.

    2015-01-01

    We study how modularity of the human brain changes as children develop into adults. Theory suggests that modularity can enhance the response function of a networked system subject to changing external stimuli. Thus, greater cognitive performance might be achieved for more modular neural activity, and modularity might likely increase as children develop. The value of modularity calculated from fMRI data is observed to increase during childhood development and peak in young adulthood. Head moti...

  1. Neural activations correlated with reading speed during reading novels.

    Science.gov (United States)

    Fujimaki, Norio; Munetsuna, Shinji; Sasaki, Toyofumi; Hayakawa, Tomoe; Ihara, Aya; Wei, Qiang; Terazono, Yasushi; Murata, Tsutomu

    2009-12-01

    Functional magnetic resonance imaging was used to measure neural activations in subjects instructed to silently read novels at ordinary and rapid speeds. Among the 19 subjects, 8 were experts in a rapid reading technique. Subjects pressed a button to turn pages during reading, and the interval between turning pages was recorded to evaluate the reading speed. For each subject, we evaluated activations in 14 areas and at 2 instructed reading speeds. Neural activations decreased with increasing reading speed in the left middle and posterior superior temporal area, left inferior frontal area, left precentral area, and the anterior temporal areas of both hemispheres, which have been reported to be active for linguistic processes, while neural activation increased with increasing reading speed in the right intraparietal sulcus, which is considered to reflect visuo-spatial processes. Despite the considerable reading speed differences, correlation analysis showed no significant difference in activation dependence on reading speed with respect to the subject groups and instructed reading speeds. The activation reduction with speed increase in language-related areas was opposite to the previous reports for low reading speeds. The present results suggest that subjects reduced linguistic processes with reading speed increase from ordinary to rapid speed.

  2. Coding stimulus amplitude by correlated neural activity.

    Science.gov (United States)

    Metzen, Michael G; Ávila-Åkerberg, Oscar; Chacron, Maurice J

    2015-04-01

    While correlated activity is observed ubiquitously in the brain, its role in neural coding has remained controversial. Recent experimental results have demonstrated that correlated but not single-neuron activity can encode the detailed time course of the instantaneous amplitude (i.e., envelope) of a stimulus. These have furthermore demonstrated that such coding required and was optimal for a nonzero level of neural variability. However, a theoretical understanding of these results is still lacking. Here we provide a comprehensive theoretical framework explaining these experimental findings. Specifically, we use linear response theory to derive an expression relating the correlation coefficient to the instantaneous stimulus amplitude, which takes into account key single-neuron properties such as firing rate and variability as quantified by the coefficient of variation. The theoretical prediction was in excellent agreement with numerical simulations of various integrate-and-fire type neuron models for various parameter values. Further, we demonstrate a form of stochastic resonance as optimal coding of stimulus variance by correlated activity occurs for a nonzero value of noise intensity. Thus, our results provide a theoretical explanation of the phenomenon by which correlated but not single-neuron activity can code for stimulus amplitude and how key single-neuron properties such as firing rate and variability influence such coding. Correlation coding by correlated but not single-neuron activity is thus predicted to be a ubiquitous feature of sensory processing for neurons responding to weak input.

  3. Early interfaced neural activity from chronic amputated nerves

    Directory of Open Access Journals (Sweden)

    Kshitija Garde

    2009-05-01

    Full Text Available Direct interfacing of transected peripheral nerves with advanced robotic prosthetic devices has been proposed as a strategy for achieving natural motor control and sensory perception of such bionic substitutes, thus fully functionally replacing missing limbs in amputees. Multi-electrode arrays placed in the brain and peripheral nerves have been used successfully to convey neural control of prosthetic devices to the user. However, reactive gliosis, micro hemorrhages, axonopathy and excessive inflammation, currently limit their long-term use. Here we demonstrate that enticement of peripheral nerve regeneration through a non-obstructive multi-electrode array, after either acute or chronic nerve amputation, offers a viable alternative to obtain early neural recordings and to enhance long-term interfacing of nerve activity. Non restrictive electrode arrays placed in the path of regenerating nerve fibers allowed the recording of action potentials as early as 8 days post-implantation with high signal-to-noise ratio, as long as 3 months in some animals, and with minimal inflammation at the nerve tissue-metal electrode interface. Our findings suggest that regenerative on-dependent multi-electrode arrays of open design allow the early and stable interfacing of neural activity from amputated peripheral nerves and might contribute towards conveying full neural control and sensory feedback to users of robotic prosthetic devices. .

  4. Fractal analysis reveals subclasses of neurons and suggests an explanation of their spontaneous activity.

    Science.gov (United States)

    Favela, Luis H; Coey, Charles A; Griff, Edwin R; Richardson, Michael J

    2016-07-28

    The present work used fractal time series analysis (detrended fluctuation analysis; DFA) to examine the spontaneous activity of single neurons in an anesthetized animal model, specifically, the mitral cells in the rat main olfactory bulb. DFA bolstered previous research in suggesting two subclasses of mitral cells. Although there was no difference in the fractal scaling of the interspike interval series at the shorter timescales, there was a significant difference at longer timescales. Neurons in Group B exhibited fractal, power-law scaled interspike intervals, whereas neurons in Group A exhibited random variation. These results raise questions about the role of these different cells within the olfactory bulb and potential explanations of their dynamics. Specifically, self-organized criticality has been proposed as an explanation of fractal scaling in many natural systems, including neural systems. However, this theory is based on certain assumptions that do not clearly hold in the case of spontaneous neural activity, which likely reflects intrinsic cell dynamics rather than activity driven by external stimulation. Moreover, it is unclear how self-organized criticality might account for the random dynamics observed in Group A, and how these random dynamics might serve some functional role when embedded in the typical activity of the olfactory bulb. These theoretical considerations provide direction for additional experimental work. Published by Elsevier Ireland Ltd.

  5. Active voltammetric microsensors with neural signal processing.

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, M. C.

    1998-12-11

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical ''signatures'' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration, the calibration, sensing, and processing methods of these active voltammetric microsensors can

  6. Chemistry: Experiments, Demonstrations and Other Activities Suggested for Chemistry.

    Science.gov (United States)

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    This publication is a handbook used in conjunction with the course of study in chemistry developed through the New York State Education Department and The University of the State of New York. It contains experiments, demonstrations, and other activities for a chemistry course. Areas covered include the science of chemistry, the atomic structure of…

  7. Multiple faces elicit augmented neural activity

    Directory of Open Access Journals (Sweden)

    Aina ePuce

    2013-06-01

    Full Text Available How do our brains respond when we are being watched by a group of people? Despite the large volume of literature devoted to face processing, this question has received very little attention. Here we measured the effects on the face-sensitive N170 and other ERPs to viewing displays of one, two and three faces in two experiments. In Experiment 1, overall image brightness and contrast were adjusted to be constant, whereas in Experiment 2 local contrast and brightness of individual faces were not manipulated. A robust positive-negative-positive (P100-N170-P250 ERP complex and an additional late positive ERP, the P400, were elicited to all stimulus types. As the number of faces in the display increased, N170 amplitude increased for both stimulus sets, and latency increased in Experiment 2. P100 latency and P250 amplitude were affected by changes in overall brightness and contrast, but not by the number of faces in the display per se. In Experiment 1 when overall brightness and contrast were adjusted to be constant, later ERP (P250 and P400 latencies showed differences as a function of hemisphere. Hence, our data indicate that N170 increases its magnitude when multiple faces are seen, apparently impervious to basic low-level stimulus features including stimulus size. Outstanding questions remain regarding category-sensitive neural activity that is elicited to viewing multiple items of stimulus categories other than faces.

  8. Sociocultural patterning of neural activity during self-reflection

    DEFF Research Database (Denmark)

    Ma, Yina; Bang, Dan; Wang, Chenbo

    2014-01-01

    Western cultures encourage self-construals independent of social contexts whereas East Asian cultures foster interdependent self-construals that rely on how others perceive the self. How are culturally specific self-construals mediated by the human brain? Using functional MRI, we monitored neural...... that judgments of self vs. a public figure elicited greater activation in the medial prefrontal cortex (mPFC) in Danish than in Chinese participants regardless of attribute dimensions for judgments. However, self-judgments of social attributes induced greater activity in the temporoparietal junction (TPJ......) in Chinese than in Danish participants. Moreover, the group difference in TPJ activity was mediated by a measure of a cultural value (i.e., interdependence of self-construal). Our findings suggest that individuals in different sociocultural contexts may learn and/or adopt distinct strategies for self...

  9. The Effects of GABAergic Polarity Changes on Episodic Neural Network Activity in Developing Neural Systems

    Directory of Open Access Journals (Sweden)

    Wilfredo Blanco

    2017-09-01

    Full Text Available Early in development, neural systems have primarily excitatory coupling, where even GABAergic synapses are excitatory. Many of these systems exhibit spontaneous episodes of activity that have been characterized through both experimental and computational studies. As development progress the neural system goes through many changes, including synaptic remodeling, intrinsic plasticity in the ion channel expression, and a transformation of GABAergic synapses from excitatory to inhibitory. What effect each of these, and other, changes have on the network behavior is hard to know from experimental studies since they all happen in parallel. One advantage of a computational approach is that one has the ability to study developmental changes in isolation. Here, we examine the effects of GABAergic synapse polarity change on the spontaneous activity of both a mean field and a neural network model that has both glutamatergic and GABAergic coupling, representative of a developing neural network. We find some intuitive behavioral changes as the GABAergic neurons go from excitatory to inhibitory, shared by both models, such as a decrease in the duration of episodes. We also find some paradoxical changes in the activity that are only present in the neural network model. In particular, we find that during early development the inter-episode durations become longer on average, while later in development they become shorter. In addressing this unexpected finding, we uncover a priming effect that is particularly important for a small subset of neurons, called the “intermediate neurons.” We characterize these neurons and demonstrate why they are crucial to episode initiation, and why the paradoxical behavioral change result from priming of these neurons. The study illustrates how even arguably the simplest of developmental changes that occurs in neural systems can present non-intuitive behaviors. It also makes predictions about neural network behavioral changes

  10. Attenuation of β-Amyloid Deposition and Neurotoxicity by Chemogenetic Modulation of Neural Activity.

    Science.gov (United States)

    Yuan, Peng; Grutzendler, Jaime

    2016-01-13

    Aberrant neural hyperactivity has been observed in early stages of Alzheimer's disease (AD) and may be a driving force in the progression of amyloid pathology. Evidence for this includes the findings that neural activity may modulate β-amyloid (Aβ) peptide secretion and experimental stimulation of neural activity can increase amyloid deposition. However, whether long-term attenuation of neural activity prevents the buildup of amyloid plaques and associated neural pathologies remains unknown. Using viral-mediated delivery of designer receptors exclusively activated by designer drugs (DREADDs), we show in two AD-like mouse models that chronic intermittent increases or reductions of activity have opposite effects on Aβ deposition. Neural activity reduction markedly decreases Aβ aggregation in regions containing axons or dendrites of DREADD-expressing neurons, suggesting the involvement of synaptic and nonsynaptic Aβ release mechanisms. Importantly, activity attenuation is associated with a reduction in axonal dystrophy and synaptic loss around amyloid plaques. Thus, modulation of neural activity could constitute a potential therapeutic strategy for ameliorating amyloid-induced pathology in AD. A novel chemogenetic approach to upregulate and downregulate neuronal activity in Alzheimer's disease (AD) mice was implemented. This led to the first demonstration that chronic intermittent attenuation of neuronal activity in vivo significantly reduces amyloid deposition. The study also demonstrates that modulation of β-amyloid (Aβ) release can occur at both axonal and dendritic fields, suggesting the involvement of synaptic and nonsynaptic Aβ release mechanisms. Activity reductions also led to attenuation of the synaptic pathology associated with amyloid plaques. Therefore, chronic attenuation of neuronal activity could constitute a novel therapeutic approach for AD. Copyright © 2016 the authors 0270-6474/16/360632-10$15.00/0.

  11. Neural activity in the hippocampus during conflict resolution.

    Science.gov (United States)

    Sakimoto, Yuya; Okada, Kana; Hattori, Minoru; Takeda, Kozue; Sakata, Shogo

    2013-01-15

    This study examined configural association theory and conflict resolution models in relation to hippocampal neural activity during positive patterning tasks. According to configural association theory, the hippocampus is important for responses to compound stimuli in positive patterning tasks. In contrast, according to the conflict resolution model, the hippocampus is important for responses to single stimuli in positive patterning tasks. We hypothesized that if configural association theory is applicable, and not the conflict resolution model, the hippocampal theta power should be increased when compound stimuli are presented. If, on the other hand, the conflict resolution model is applicable, but not configural association theory, then the hippocampal theta power should be increased when single stimuli are presented. If both models are valid and applicable in the positive patterning task, we predict that the hippocampal theta power should be increased by presentation of both compound and single stimuli during the positive patterning task. To examine our hypotheses, we measured hippocampal theta power in rats during a positive patterning task. The results showed that hippocampal theta power increased during the presentation of a single stimulus, but did not increase during the presentation of a compound stimulus. This finding suggests that the conflict resolution model is more applicable than the configural association theory for describing neural activity during positive patterning tasks. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Neural Activity Reveals Preferences Without Choices

    Science.gov (United States)

    Smith, Alec; Bernheim, B. Douglas; Camerer, Colin

    2014-01-01

    We investigate the feasibility of inferring the choices people would make (if given the opportunity) based on their neural responses to the pertinent prospects when they are not engaged in actual decision making. The ability to make such inferences is of potential value when choice data are unavailable, or limited in ways that render standard methods of estimating choice mappings problematic. We formulate prediction models relating choices to “non-choice” neural responses and use them to predict out-of-sample choices for new items and for new groups of individuals. The predictions are sufficiently accurate to establish the feasibility of our approach. PMID:25729468

  13. Neural Activity Patterns in the Human Brain Reflect Tactile Stickiness Perception

    Science.gov (United States)

    Kim, Junsuk; Yeon, Jiwon; Ryu, Jaekyun; Park, Jang-Yeon; Chung, Soon-Cheol; Kim, Sung-Phil

    2017-01-01

    Our previous human fMRI study found brain activations correlated with tactile stickiness perception using the uni-variate general linear model (GLM) (Yeon et al., 2017). Here, we conducted an in-depth investigation on neural correlates of sticky sensations by employing a multivoxel pattern analysis (MVPA) on the same dataset. In particular, we statistically compared multi-variate neural activities in response to the three groups of sticky stimuli: A supra-threshold group including a set of sticky stimuli that evoked vivid sticky perception; an infra-threshold group including another set of sticky stimuli that barely evoked sticky perception; and a sham group including acrylic stimuli with no physically sticky property. Searchlight MVPAs were performed to search for local activity patterns carrying neural information of stickiness perception. Similar to the uni-variate GLM results, significant multi-variate neural activity patterns were identified in postcentral gyrus, subcortical (basal ganglia and thalamus), and insula areas (insula and adjacent areas). Moreover, MVPAs revealed that activity patterns in posterior parietal cortex discriminated the perceptual intensities of stickiness, which was not present in the uni-variate analysis. Next, we applied a principal component analysis (PCA) to the voxel response patterns within identified clusters so as to find low-dimensional neural representations of stickiness intensities. Follow-up clustering analyses clearly showed separate neural grouping configurations between the Supra- and Infra-threshold groups. Interestingly, this neural categorization was in line with the perceptual grouping pattern obtained from the psychophysical data. Our findings thus suggest that different stickiness intensities would elicit distinct neural activity patterns in the human brain and may provide a neural basis for the perception and categorization of tactile stickiness. PMID:28936171

  14. High baseline activity in inferior temporal cortex improves neural and behavioral discriminability during visual categorization

    Directory of Open Access Journals (Sweden)

    Nazli eEmadi

    2014-11-01

    Full Text Available Spontaneous firing is a ubiquitous property of neural activity in the brain. Recent literature suggests that this baseline activity plays a key role in perception. However, it is not known how the baseline activity contributes to neural coding and behavior. Here, by recording from the single neurons in the inferior temporal cortex of monkeys performing a visual categorization task, we thoroughly explored the relationship between baseline activity, the evoked response, and behavior. Specifically we found that a low-frequency (< 8 Hz oscillation in the spike train, prior and phase-locked to the stimulus onset, was correlated with increased gamma power and neuronal baseline activity. This enhancement of the baseline activity was then followed by an increase in the neural selectivity and the response reliability and eventually a higher behavioral performance.

  15. Active Engine Mounting Control Algorithm Using Neural Network

    Directory of Open Access Journals (Sweden)

    Fadly Jashi Darsivan

    2009-01-01

    Full Text Available This paper proposes the application of neural network as a controller to isolate engine vibration in an active engine mounting system. It has been shown that the NARMA-L2 neurocontroller has the ability to reject disturbances from a plant. The disturbance is assumed to be both impulse and sinusoidal disturbances that are induced by the engine. The performance of the neural network controller is compared with conventional PD and PID controllers tuned using Ziegler-Nichols. From the result simulated the neural network controller has shown better ability to isolate the engine vibration than the conventional controllers.

  16. Patterns recognition of electric brain activity using artificial neural networks

    Science.gov (United States)

    Musatov, V. Yu.; Pchelintseva, S. V.; Runnova, A. E.; Hramov, A. E.

    2017-04-01

    An approach for the recognition of various cognitive processes in the brain activity in the perception of ambiguous images. On the basis of developed theoretical background and the experimental data, we propose a new classification of oscillating patterns in the human EEG by using an artificial neural network approach. After learning of the artificial neural network reliably identified cube recognition processes, for example, left-handed or right-oriented Necker cube with different intensity of their edges, construct an artificial neural network based on Perceptron architecture and demonstrate its effectiveness in the pattern recognition of the EEG in the experimental.

  17. What makes your brain suggestible? Hypnotizability is associated with differential brain activity during attention outside hypnosis.

    Science.gov (United States)

    Cojan, Yann; Piguet, Camille; Vuilleumier, Patrik

    2015-08-15

    Theoretical models of hypnosis have emphasized the importance of attentional processes in accounting for hypnotic phenomena but their exact nature and brain substrates remain unresolved. Individuals vary in their susceptibility to hypnosis, a variability often attributed to differences in attentional functioning such as greater ability to filter irrelevant information and inhibit prepotent responses. However, behavioral studies of attentional performance outside the hypnotic state have provided conflicting results. We used fMRI to investigate the recruitment of attentional networks during a modified flanker task in High and Low hypnotizable participants. The task was performed in a normal (no hypnotized) state. While behavioral performance did not reliably differ between groups, components of the fronto-parietal executive network implicated in monitoring (anterior cingulate cortex; ACC), adjustment (lateral prefrontal cortex; latPFC), and implementation of attentional control (intraparietal sulcus; IPS) were differently activated depending on the hypnotizability of the subjects: the right inferior frontal gyrus (rIFG) was more recruited, whereas IPS and ACC were less recruited by High susceptible individuals compared to Low. Our results demonstrate that susceptibility to hypnosis is associated with particular executive control capabilities allowing efficient attentional focusing, and point to specific neural substrates in right prefrontal cortex. We demonstrated that outside hypnosis, low hypnotizable subjects recruited more parietal cortex and anterior cingulate regions during selective attention conditions suggesting a better detection and implementation of conflict. However, outside hypnosis the right inferior frontal gyrus (rIFG) was more recruited by highly hypnotizable subjects during selective attention conditions suggesting a better control of conflict. Furthermore, in highly hypnotizable subjects this region was more connected to the default mode network

  18. Natural lecithin promotes neural network complexity and activity.

    Science.gov (United States)

    Latifi, Shahrzad; Tamayol, Ali; Habibey, Rouhollah; Sabzevari, Reza; Kahn, Cyril; Geny, David; Eftekharpour, Eftekhar; Annabi, Nasim; Blau, Axel; Linder, Michel; Arab-Tehrany, Elmira

    2016-05-27

    Phospholipids in the brain cell membranes contain different polyunsaturated fatty acids (PUFAs), which are critical to nervous system function and structure. In particular, brain function critically depends on the uptake of the so-called "essential" fatty acids such as omega-3 (n-3) and omega-6 (n-6) PUFAs that cannot be readily synthesized by the human body. We extracted natural lecithin rich in various PUFAs from a marine source and transformed it into nanoliposomes. These nanoliposomes increased neurite outgrowth, network complexity and neural activity of cortical rat neurons in vitro. We also observed an upregulation of synapsin I (SYN1), which supports the positive role of lecithin in synaptogenesis, synaptic development and maturation. These findings suggest that lecithin nanoliposomes enhance neuronal development, which may have an impact on devising new lecithin delivery strategies for therapeutic applications.

  19. High Accuracy Human Activity Monitoring using Neural network

    OpenAIRE

    Sharma, Annapurna; Lee, Young-Dong; Chung, Wan-Young

    2011-01-01

    This paper presents the designing of a neural network for the classification of Human activity. A Triaxial accelerometer sensor, housed in a chest worn sensor unit, has been used for capturing the acceleration of the movements associated. All the three axis acceleration data were collected at a base station PC via a CC2420 2.4GHz ISM band radio (zigbee wireless compliant), processed and classified using MATLAB. A neural network approach for classification was used with an eye on theoretical a...

  20. Increased neural activity of a mushroom body neuron subtype in the brains of forager honeybees.

    Directory of Open Access Journals (Sweden)

    Taketoshi Kiya

    Full Text Available Honeybees organize a sophisticated society, and the workers transmit information about the location of food sources using a symbolic dance, known as 'dance communication'. Recent studies indicate that workers integrate sensory information during foraging flight for dance communication. The neural mechanisms that account for this remarkable ability are, however, unknown. In the present study, we established a novel method to visualize neural activity in the honeybee brain using a novel immediate early gene, kakusei, as a marker of neural activity. The kakusei transcript was localized in the nuclei of brain neurons and did not encode an open reading frame, suggesting that it functions as a non-coding nuclear RNA. Using this method, we show that neural activity of a mushroom body neuron subtype, the small-type Kenyon cells, is prominently increased in the brains of dancer and forager honeybees. In contrast, the neural activity of the two mushroom body neuron subtypes, the small-and large-type Kenyon cells, is increased in the brains of re-orienting workers, which memorize their hive location during re-orienting flights. These findings demonstrate that the small-type Kenyon cell-preferential activity is associated with foraging behavior, suggesting its involvement in information integration during foraging flight, which is an essential basis for dance communication.

  1. Spatiotemporal imaging of glutamate-induced biophotonic activities and transmission in neural circuits.

    Directory of Open Access Journals (Sweden)

    Rendong Tang

    Full Text Available The processing of neural information in neural circuits plays key roles in neural functions. Biophotons, also called ultra-weak photon emissions (UPE, may play potential roles in neural signal transmission, contributing to the understanding of the high functions of nervous system such as vision, learning and memory, cognition and consciousness. However, the experimental analysis of biophotonic activities (emissions in neural circuits has been hampered due to technical limitations. Here by developing and optimizing an in vitro biophoton imaging method, we characterize the spatiotemporal biophotonic activities and transmission in mouse brain slices. We show that the long-lasting application of glutamate to coronal brain slices produces a gradual and significant increase of biophotonic activities and achieves the maximal effect within approximately 90 min, which then lasts for a relatively long time (>200 min. The initiation and/or maintenance of biophotonic activities by glutamate can be significantly blocked by oxygen and glucose deprivation, together with the application of a cytochrome c oxidase inhibitor (sodium azide, but only partly by an action potential inhibitor (TTX, an anesthetic (procaine, or the removal of intracellular and extracellular Ca(2+. We also show that the detected biophotonic activities in the corpus callosum and thalamus in sagittal brain slices mostly originate from axons or axonal terminals of cortical projection neurons, and that the hyperphosphorylation of microtubule-associated protein tau leads to a significant decrease of biophotonic activities in these two areas. Furthermore, the application of glutamate in the hippocampal dentate gyrus results in increased biophotonic activities in its intrahippocampal projection areas. These results suggest that the glutamate-induced biophotonic activities reflect biophotonic transmission along the axons and in neural circuits, which may be a new mechanism for the processing of

  2. Positive mood enhances reward-related neural activity.

    Science.gov (United States)

    Young, Christina B; Nusslock, Robin

    2016-06-01

    Although behavioral research has shown that positive mood leads to desired outcomes in nearly every major life domain, no studies have directly examined the effects of positive mood on the neural processes underlying reward-related affect and goal-directed behavior. To address this gap, participants in the present fMRI study experienced either a positive (n = 20) or neutral (n = 20) mood induction and subsequently completed a monetary incentive delay task that assessed reward and loss processing. Consistent with prediction, positive mood elevated activity specifically during reward anticipation in corticostriatal neural regions that have been implicated in reward processing and goal-directed behavior, including the nucleus accumbens, caudate, lateral orbitofrontal cortex and putamen, as well as related paralimbic regions, including the anterior insula and ventromedial prefrontal cortex. These effects were not observed during reward outcome, loss anticipation or loss outcome. Critically, this is the first study to report that positive mood enhances reward-related neural activity. Our findings have implications for uncovering the neural mechanisms by which positive mood enhances goal-directed behavior, understanding the malleability of reward-related neural activity, and developing targeted treatments for psychiatric disorders characterized by deficits in reward processing. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  3. Understanding the Implications of Neural Population Activity on Behavior

    Science.gov (United States)

    Briguglio, John

    Learning how neural activity in the brain leads to the behavior we exhibit is one of the fundamental questions in Neuroscience. In this dissertation, several lines of work are presented to that use principles of neural coding to understand behavior. In one line of work, we formulate the efficient coding hypothesis in a non-traditional manner in order to test human perceptual sensitivity to complex visual textures. We find a striking agreement between how variable a particular texture signal is and how sensitive humans are to its presence. This reveals that the efficient coding hypothesis is still a guiding principle for neural organization beyond the sensory periphery, and that the nature of cortical constraints differs from the peripheral counterpart. In another line of work, we relate frequency discrimination acuity to neural responses from auditory cortex in mice. It has been previously observed that optogenetic manipulation of auditory cortex, in addition to changing neural responses, evokes changes in behavioral frequency discrimination. We are able to account for changes in frequency discrimination acuity on an individual basis by examining the Fisher information from the neural population with and without optogenetic manipulation. In the third line of work, we address the question of what a neural population should encode given that its inputs are responses from another group of neurons. Drawing inspiration from techniques in machine learning, we train Deep Belief Networks on fake retinal data and show the emergence of Garbor-like filters, reminiscent of responses in primary visual cortex. In the last line of work, we model the state of a cortical excitatory-inhibitory network during complex adaptive stimuli. Using a rate model with Wilson-Cowan dynamics, we demonstrate that simple non-linearities in the signal transferred from inhibitory to excitatory neurons can account for real neural recordings taken from auditory cortex. This work establishes and tests

  4. Cultured Neural Networks: Optimization of Patterned Network Adhesiveness and Characterization of their Neural Activity

    Directory of Open Access Journals (Sweden)

    W. L. C. Rutten

    2006-01-01

    Full Text Available One type of future, improved neural interface is the “cultured probe”. It is a hybrid type of neural information transducer or prosthesis, for stimulation and/or recording of neural activity. It would consist of a microelectrode array (MEA on a planar substrate, each electrode being covered and surrounded by a local circularly confined network (“island” of cultured neurons. The main purpose of the local networks is that they act as biofriendly intermediates for collateral sprouts from the in vivo system, thus allowing for an effective and selective neuron–electrode interface. As a secondary purpose, one may envisage future information processing applications of these intermediary networks. In this paper, first, progress is shown on how substrates can be chemically modified to confine developing networks, cultured from dissociated rat cortex cells, to “islands” surrounding an electrode site. Additional coating of neurophobic, polyimide-coated substrate by triblock-copolymer coating enhances neurophilic-neurophobic adhesion contrast. Secondly, results are given on neuronal activity in patterned, unconnected and connected, circular “island” networks. For connected islands, the larger the island diameter (50, 100 or 150 μm, the more spontaneous activity is seen. Also, activity may show a very high degree of synchronization between two islands. For unconnected islands, activity may start at 22 days in vitro (DIV, which is two weeks later than in unpatterned networks.

  5. Neural Activations of Guided Imagery and Music in Negative Emotional Processing: A Functional MRI Study.

    Science.gov (United States)

    Lee, Sang Eun; Han, Yeji; Park, HyunWook

    2016-01-01

    The Bonny Method of Guided Imagery and Music uses music and imagery to access and explore personal emotions associated with episodic memories. Understanding the neural mechanism of guided imagery and music (GIM) as combined stimuli for emotional processing informs clinical application. We performed functional magnetic resonance imaging (fMRI) to demonstrate neural mechanisms of GIM for negative emotional processing when personal episodic memory is recalled and re-experienced through GIM processes. Twenty-four healthy volunteers participated in the study, which used classical music and verbal instruction stimuli to evoke negative emotions. To analyze the neural mechanism, activated regions associated with negative emotional and episodic memory processing were extracted by conducting volume analyses for the contrast between GIM and guided imagery (GI) or music (M). The GIM stimuli showed increased activation over the M-only stimuli in five neural regions associated with negative emotional and episodic memory processing, including the left amygdala, left anterior cingulate gyrus, left insula, bilateral culmen, and left angular gyrus (AG). Compared with GI alone, GIM showed increased activation in three regions associated with episodic memory processing in the emotional context, including the right posterior cingulate gyrus, bilateral parahippocampal gyrus, and AG. No neural regions related to negative emotional and episodic memory processing showed more activation for M and GI than for GIM. As a combined multimodal stimulus, GIM may increase neural activations related to negative emotions and episodic memory processing. Findings suggest a neural basis for GIM with personal episodic memories affecting cortical and subcortical structures and functions. © the American Music Therapy Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Development of modularity in the neural activity of children's brains.

    Science.gov (United States)

    Chen, Man; Deem, Michael W

    2015-01-26

    We study how modularity of the human brain changes as children develop into adults. Theory suggests that modularity can enhance the response function of a networked system subject to changing external stimuli. Thus, greater cognitive performance might be achieved for more modular neural activity, and modularity might likely increase as children develop. The value of modularity calculated from functional magnetic resonance imaging (fMRI) data is observed to increase during childhood development and peak in young adulthood. Head motion is deconvolved from the fMRI data, and it is shown that the dependence of modularity on age is independent of the magnitude of head motion. A model is presented to illustrate how modularity can provide greater cognitive performance at short times, i.e. task switching. A fitness function is extracted from the model. Quasispecies theory is used to predict how the average modularity evolves with age, illustrating the increase of modularity during development from children to adults that arises from selection for rapid cognitive function in young adults. Experiments exploring the effect of modularity on cognitive performance are suggested. Modularity may be a potential biomarker for injury, rehabilitation, or disease.

  7. Neural activity predicts attitude change in cognitive dissonance.

    Science.gov (United States)

    van Veen, Vincent; Krug, Marie K; Schooler, Jonathan W; Carter, Cameron S

    2009-11-01

    When our actions conflict with our prior attitudes, we often change our attitudes to be more consistent with our actions. This phenomenon, known as cognitive dissonance, is considered to be one of the most influential theories in psychology. However, the neural basis of this phenomenon is unknown. Using a Solomon four-group design, we scanned participants with functional MRI while they argued that the uncomfortable scanner environment was nevertheless a pleasant experience. We found that cognitive dissonance engaged the dorsal anterior cingulate cortex and anterior insula; furthermore, we found that the activation of these regions tightly predicted participants' subsequent attitude change. These effects were not observed in a control group. Our findings elucidate the neural representation of cognitive dissonance, and support the role of the anterior cingulate cortex in detecting cognitive conflict and the neural prediction of attitude change.

  8. High solar activity predictions through an artificial neural network

    Science.gov (United States)

    Orozco-Del-Castillo, M. G.; Ortiz-Alemán, J. C.; Couder-Castañeda, C.; Hernández-Gómez, J. J.; Solís-Santomé, A.

    The effects of high-energy particles coming from the Sun on human health as well as in the integrity of outer space electronics make the prediction of periods of high solar activity (HSA) a task of significant importance. Since periodicities in solar indexes have been identified, long-term predictions can be achieved. In this paper, we present a method based on an artificial neural network to find a pattern in some harmonics which represent such periodicities. We used data from 1973 to 2010 to train the neural network, and different historical data for its validation. We also used the neural network along with a statistical analysis of its performance with known data to predict periods of HSA with different confidence intervals according to the three-sigma rule associated with solar cycles 24-26, which we found to occur before 2040.

  9. Death and rebirth of neural activity in sparse inhibitory networks

    Science.gov (United States)

    Angulo-Garcia, David; Luccioli, Stefano; Olmi, Simona; Torcini, Alessandro

    2017-05-01

    Inhibition is a key aspect of neural dynamics playing a fundamental role for the emergence of neural rhythms and the implementation of various information coding strategies. Inhibitory populations are present in several brain structures, and the comprehension of their dynamics is strategical for the understanding of neural processing. In this paper, we clarify the mechanisms underlying a general phenomenon present in pulse-coupled heterogeneous inhibitory networks: inhibition can induce not only suppression of neural activity, as expected, but can also promote neural re-activation. In particular, for globally coupled systems, the number of firing neurons monotonically reduces upon increasing the strength of inhibition (neuronal death). However, the random pruning of connections is able to reverse the action of inhibition, i.e. in a random sparse network a sufficiently strong synaptic strength can surprisingly promote, rather than depress, the activity of neurons (neuronal rebirth). Thus, the number of firing neurons reaches a minimum value at some intermediate synaptic strength. We show that this minimum signals a transition from a regime dominated by neurons with a higher firing activity to a phase where all neurons are effectively sub-threshold and their irregular firing is driven by current fluctuations. We explain the origin of the transition by deriving a mean field formulation of the problem able to provide the fraction of active neurons as well as the first two moments of their firing statistics. The introduction of a synaptic time scale does not modify the main aspects of the reported phenomenon. However, for sufficiently slow synapses the transition becomes dramatic, and the system passes from a perfectly regular evolution to irregular bursting dynamics. In this latter regime the model provides predictions consistent with experimental findings for a specific class of neurons, namely the medium spiny neurons in the striatum.

  10. Wakefulness suppresses retinal wave-related neural activity in visual cortex.

    Science.gov (United States)

    Mukherjee, Didhiti; Yonk, Alex J; Sokoloff, Greta; Blumberg, Mark S

    2017-08-01

    In the developing visual system before eye opening, spontaneous retinal waves trigger bursts of neural activity in downstream structures, including visual cortex. At the same ages when retinal waves provide the predominant input to the visual system, sleep is the predominant behavioral state. However, the interactions between behavioral state and retinal wave-driven activity have never been explicitly examined. Here we characterized unit activity in visual cortex during spontaneous sleep-wake cycles in 9- and 12-day-old rats. At both ages, cortical activity occurred in discrete rhythmic bursts, ~30-60 s apart, mirroring the timing of retinal waves. Interestingly, when pups spontaneously woke up and moved their limbs in the midst of a cortical burst, the activity was suppressed. Finally, experimentally evoked arousals also suppressed intraburst cortical activity. All together, these results indicate that active wake interferes with the activation of the developing visual cortex by retinal waves. They also suggest that sleep-wake processes can modulate visual cortical plasticity at earlier ages than has been previously considered.NEW & NOTEWORTHY By recording in visual cortex in unanesthetized infant rats, we show that neural activity attributable to retinal waves is specifically suppressed when pups spontaneously awaken or are experimentally aroused. These findings suggest that the relatively abundant sleep of early development plays a permissive functional role for the visual system. It follows, then, that biological or environmental factors that disrupt sleep may interfere with the development of these neural networks. Copyright © 2017 the American Physiological Society.

  11. Cognitive-affective neural plasticity following active-controlled mindfulness intervention

    DEFF Research Database (Denmark)

    Allen, Micah Galen

    Mindfulness meditation is a set of attention-based, regulatory and self-inquiry training regimes. Although the impact of mindfulness meditation training (MT) on self-regulation is well established, the neural mechanisms supporting such plasticity are poorly understood. MT is thought to act through...... prefrontal cortex (mPFC), and right anterior insula during negative valence processing. Our findings highlight the importance of active control in MT research, indicate unique neural mechanisms for progressive stages of mindfulness training, and suggest that optimal application of MT may differ depending...

  12. Neural activity associated with metaphor comprehension: spatial analysis.

    Science.gov (United States)

    Sotillo, María; Carretié, Luis; Hinojosa, José A; Tapia, Manuel; Mercado, Francisco; López-Martín, Sara; Albert, Jacobo

    2005-01-03

    Though neuropsychological data indicate that the right hemisphere (RH) plays a major role in metaphor processing, other studies suggest that, at least during some phases of this processing, a RH advantage may not exist. The present study explores, through a temporally agile neural signal--the event-related potentials (ERPs)--, and through source-localization algorithms applied to ERP recordings, whether the crucial phase of metaphor comprehension presents or not a RH advantage. Participants (n=24) were submitted to a S1-S2 experimental paradigm. S1 consisted of visually presented metaphoric sentences (e.g., "Green lung of the city"), followed by S2, which consisted of words that could (i.e., "Park") or could not (i.e., "Semaphore") be defined by S1. ERPs elicited by S2 were analyzed using temporal principal component analysis (tPCA) and source-localization algorithms. These analyses revealed that metaphorically related S2 words showed significantly higher N400 amplitudes than non-related S2 words. Source-localization algorithms showed differential activity between the two S2 conditions in the right middle/superior temporal areas. These results support the existence of an important RH contribution to (at least) one phase of metaphor processing and, furthermore, implicate the temporal cortex with respect to that contribution.

  13. Do You Believe It? Verbal Suggestions Influence the Clinical and Neural Effects of Escitalopram in Social Anxiety Disorder: A Randomized Trial.

    Science.gov (United States)

    Faria, Vanda; Gingnell, Malin; Hoppe, Johanna M; Hjorth, Olof; Alaie, Iman; Frick, Andreas; Hultberg, Sara; Wahlstedt, Kurt; Engman, Jonas; Månsson, Kristoffer N T; Carlbring, Per; Andersson, Gerhard; Reis, Margareta; Larsson, Elna-Marie; Fredrikson, Mats; Furmark, Tomas

    2017-10-01

    administration yielded significantly better outcome on the LSAS-SR (adjusted difference 21.17, 95% CI 10.69-31.65, p<0.0001) with more than three times higher response rate (50% vs. 14%; χ 2 (1)=6.91, p=0.009) and twice the effect size (d=2.24 vs. d=1.13) from pre-to posttreatment. There was no significant between-group difference on anticipatory speech anxiety (STAI-S), both groups improving with treatment. No serious adverse reactions were recorded. On fMRI outcomes, there was suggestive evidence for a differential neural response to treatment between groups in the posterior cingulate, superior temporal and inferior frontal gyri (all z thresholds exceeding 3.68, p≤0.001). Reduced social anxiety with treatment correlated significantly with enhanced posterior cingulate (z threshold 3.24, p=0.0006) and attenuated amygdala (z threshold 2.70, p=0.003) activity. The clinical and neural effects of escitalopram were markedly influenced by verbal suggestions. This points to a pronounced placebo component in SSRI-treatment of SAD and favors a biopsychosocial over a biomedical explanatory model for SSRI efficacy. The Swedish Research Council for Working Life and Social Research (grant 2011-1368), the Swedish Research Council (grant 421-2013-1366), Riksbankens Jubileumsfond - the Swedish Foundation for Humanities and Social Sciences (grant P13-1270:1). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Neural development in Onychophora (velvet worms) suggests a step-wise evolution of segmentation in the nervous system of Panarthropoda.

    Science.gov (United States)

    Mayer, Georg; Whitington, Paul M

    2009-11-01

    A fundamental question in biology is how animal segmentation arose during evolution. One particular challenge is to clarify whether segmental ganglia of the nervous system evolved once, twice, or several times within the Bilateria. As close relatives of arthropods, Onychophora play an important role in this debate since their nervous system displays a mixture of both segmental and non-segmental features. We present evidence that the onychophoran "ventral organs," previously interpreted as segmental anlagen of the nervous system, do not contribute to nerve cord formation and therefore cannot be regarded as vestiges of segmental ganglia. The early axonal pathways in the central nervous system arise by an anterior-to-posterior cascade of axonogenesis from neuronal cell bodies, which are distributed irregularly along each presumptive ventral cord. This pattern contrasts with the strictly segmental neuromeres present in arthropod embryos and makes the assumption of a secondary loss of segmentation in the nervous system during the evolution of the Onychophora less plausible. We discuss the implications of these findings for the evolution of neural segmentation in the Panarthropoda (Arthropoda+Onychophora+Tardigrada). Our data best support the hypothesis that the ancestral panarthropod had only a partially segmented nervous system, which evolved progressively into the segmental chain of ganglia seen in extant tardigrades and arthropods.

  15. Differences in Neural Activation as a Function of Risk-taking Task Parameters

    Directory of Open Access Journals (Sweden)

    Eliza eCongdon

    2013-09-01

    Full Text Available Despite evidence supporting a relationship between impulsivity and naturalistic risk-taking, the relationship of impulsivity with laboratory-based measures of risky decision-making remains unclear. One factor contributing to this gap in our understanding is the degree to which different risky decision-making tasks vary in their details. We conducted an fMRI investigation of the Angling Risk Task (ART, which is an improved behavioral measure of risky decision-making. In order to examine whether the observed pattern of neural activation was specific to the ART or generalizable, we also examined correlates of the Balloon Analogue Risk Taking (BART task in the same sample of 23 healthy adults. Exploratory analyses were conducted to examine the relationship between neural activation, performance, impulsivity and self-reported risk-taking. While activation in a valuation network was associated with reward tracking during the ART but not the BART, increased fronto-cingulate activation was seen during risky choice trials in the BART as compared to the ART. Thus, neural activation during risky decision-making trials differed between the two tasks, and this observation was likely driven by differences in task parameters, namely the absence vs. presence of ambiguity and/or stationary vs. increasing probability of loss on the ART and BART, respectively. Exploratory association analyses suggest that sensitivity of neural response to the magnitude of potential reward during the ART was associated with a suboptimal performance strategy, higher scores on a scale of dysfunctional impulsivity and a greater likelihood of engaging in risky behaviors, while this pattern was not seen for the BART. Our results suggest that the ART is decomposable and associated with distinct patterns of neural activation; this represents a preliminary step towards characterizing a behavioral measure of risky decision-making that may support a better understanding of naturalistic risk-taking.

  16. Monitoring activity in neural circuits with genetically encoded indicators

    Directory of Open Access Journals (Sweden)

    Gerard Joseph Broussard

    2014-12-01

    Full Text Available Recent developments in genetically encoded indicators of neural activity (GINAs have greatly advanced the field of systems neuroscience. As they are encoded by DNA, GINAs can be targeted to genetically defined cellular populations. Combined with fluorescence microscopy, most notably multi-photon imaging, GINAs allow chronic simultaneous optical recordings from large populations of neurons or glial cells in awake, behaving mammals, particularly rodents. This large-scale recording of neural activity at multiple temporal and spatial scales has greatly advanced our understanding of the dynamics of neural circuitry underlying behavior—a critical first step toward understanding the complexities of brain function, such as sensorimotor integration and learning.Here, we summarize the recent development and applications of the major classes of GINAs. In particular, we take an in-depth look at the design of available GINA families with a particular focus on genetically encoded calcium indicators, sensors probing synaptic activity, and genetically encoded voltage indicators. Using the family of the genetically encoded calcium indicator GCaMP as an example, we review established sensor optimization pipelines. We also discuss practical considerations for end users of GINAs about experimental methods including approaches for gene delivery, imaging system requirements, and data analysis techniques. With the growing toolbox of GINAs and with new microscopy techniques pushing beyond their current limits, the age of light can finally achieve the goal of broad and dense sampling of neuronal activity across time and brain structures to obtain a dynamic picture of brain function.

  17. Persistent activity in neural networks with dynamic synapses.

    Directory of Open Access Journals (Sweden)

    Omri Barak

    2007-02-01

    Full Text Available Persistent activity states (attractors, observed in several neocortical areas after the removal of a sensory stimulus, are believed to be the neuronal basis of working memory. One of the possible mechanisms that can underlie persistent activity is recurrent excitation mediated by intracortical synaptic connections. A recent experimental study revealed that connections between pyramidal cells in prefrontal cortex exhibit various degrees of synaptic depression and facilitation. Here we analyze the effect of synaptic dynamics on the emergence and persistence of attractor states in interconnected neural networks. We show that different combinations of synaptic depression and facilitation result in qualitatively different network dynamics with respect to the emergence of the attractor states. This analysis raises the possibility that the framework of attractor neural networks can be extended to represent time-dependent stimuli.

  18. Bioinorganic Life and Neural Activity: Toward a Chemistry of Consciousness?

    Science.gov (United States)

    Chang, Christopher J

    2017-03-21

    Identifying what elements are required for neural activity as potential path toward consciousness, which represents life with the state or quality of awareness, is a "Holy Grail" of chemistry. As life itself arises from coordinated interactions between elements across the periodic table, the majority of which are metals, new approaches for analysis, binding, and control of these primary chemical entities can help enrich our understanding of inorganic chemistry in living systems in a context that is both universal and personal.

  19. The morphology of the sella turcica in velocardiofacial syndrome suggests involvement of a neural crest developmental field

    DEFF Research Database (Denmark)

    Mølsted, Kirsten; Boers, Maria; Kjaer, Inger

    2010-01-01

    was to measure the cranial base angles in individuals with VCFS and, if possible, to discover the developmental field that may be involved in the condition. The study included 33 patients with VCFS from the Copenhagen Cleft Palate Center, Denmark. The genotype was confirmed by fluorescence in situ hybridization......, hypothyroidism, and posterior brain abnormality), suggest involvement of a specific developmental field....

  20. Dynamics of modularity of neural activity in the brain during development

    Science.gov (United States)

    Deem, Michael; Chen, Man

    2014-03-01

    Theory suggests that more modular systems can have better response functions at short times. This theory suggests that greater cognitive performance may be achieved for more modular neural activity, and that modularity of neural activity may, therefore, likely increase with development in children. We study the relationship between age and modularity of brain neural activity in developing children. The value of modularity calculated from fMRI data is observed to increase during childhood development and peak in young adulthood. We interpret these results as evidence of selection for plasticity in the cognitive function of the human brain. We present a model to illustrate how modularity can provide greater cognitive performance at short times and enhance fast, low-level, automatic cognitive processes. Conversely, high-level, effortful, conscious cognitive processes may not benefit from modularity. We use quasispecies theory to predict how the average modularity evolves with age, given a fitness function extracted from the model. We suggest further experiments exploring the effect of modularity on cognitive performance and suggest that modularity may be a potential biomarker for injury, rehabilitation, or disease.

  1. Compensatory Neural Activity in Response to Cognitive Fatigue.

    Science.gov (United States)

    Wang, Chao; Trongnetrpunya, Amy; Samuel, Immanuel Babu Henry; Ding, Mingzhou; Kluger, Benzi M

    2016-04-06

    Prolonged continuous performance of a cognitively demanding task induces cognitive fatigue and is associated with a time-related deterioration of objective performance, the degree of which is referred to cognitive fatigability. Although the neural underpinnings of cognitive fatigue are poorly understood, prior studies report changes in neural activity consistent with deterioration of task-related networks over time. While compensatory brain activity is reported to maintain motor task performance in the face of motor fatigue and cognitive performance in the face of other stressors (e.g., aging) and structural changes, there are no studies to date demonstrating compensatory activity for cognitive fatigue. High-density electroencephalography was recorded from human subjects during a 160 min continuous performance of a cognitive control task. While most time-varying neural activity showed a linear decline over time, we identified an evoked potential over the anterior frontal region which demonstrated an inverted U-shaped time-on-task profile. This evoked brain activity peaked between 60 and 100 min into the task and was positively associated with better behavioral performance only during this interval. Following the peak and during subsequent decline of this anterior frontal activity, the rate of performance decline also accelerated. These findings demonstrate that this anterior frontal brain activity, which is not part of the primary task-related activity at baseline, is recruited to compensate for fatigue-induced impairments in the primary task-related network, and that this compensation terminates as cognitive fatigue further progresses. These findings may be relevant to understanding individual differences in cognitive fatigability and developing interventions for clinical conditions afflicted by fatigue. Fatigue refers to changes in objective performance and subjective effort induced by continuous task performance. We examined the neural underpinnings of cognitive

  2. Neural activity in the hippocampus predicts individual visual short-term memory capacity.

    Science.gov (United States)

    von Allmen, David Yoh; Wurmitzer, Karoline; Martin, Ernst; Klaver, Peter

    2013-07-01

    Although the hippocampus had been traditionally thought to be exclusively involved in long-term memory, recent studies raised controversial explanations why hippocampal activity emerged during short-term memory tasks. For example, it has been argued that long-term memory processes might contribute to performance within a short-term memory paradigm when memory capacity has been exceeded. It is still unclear, though, whether neural activity in the hippocampus predicts visual short-term memory (VSTM) performance. To investigate this question, we measured BOLD activity in 21 healthy adults (age range 19-27 yr, nine males) while they performed a match-to-sample task requiring processing of object-location associations (delay period  =  900 ms; set size conditions 1, 2, 4, and 6). Based on individual memory capacity (estimated by Cowan's K-formula), two performance groups were formed (high and low performers). Within whole brain analyses, we found a robust main effect of "set size" in the posterior parietal cortex (PPC). In line with a "set size × group" interaction in the hippocampus, a subsequent Finite Impulse Response (FIR) analysis revealed divergent hippocampal activation patterns between performance groups: Low performers (mean capacity  =  3.63) elicited increased neural activity at set size two, followed by a drop in activity at set sizes four and six, whereas high performers (mean capacity  =  5.19) showed an incremental activity increase with larger set size (maximal activation at set size six). Our data demonstrated that performance-related neural activity in the hippocampus emerged below capacity limit. In conclusion, we suggest that hippocampal activity reflected successful processing of object-location associations in VSTM. Neural activity in the PPC might have been involved in attentional updating. Copyright © 2013 Wiley Periodicals, Inc.

  3. Can Neural Activity Propagate by Endogenous Electrical Field?

    Science.gov (United States)

    Qiu, Chen; Shivacharan, Rajat S.; Zhang, Mingming

    2015-01-01

    It is widely accepted that synaptic transmissions and gap junctions are the major governing mechanisms for signal traveling in the neural system. Yet, a group of neural waves, either physiological or pathological, share the same speed of ∼0.1 m/s without synaptic transmission or gap junctions, and this speed is not consistent with axonal conduction or ionic diffusion. The only explanation left is an electrical field effect. We tested the hypothesis that endogenous electric fields are sufficient to explain the propagation with in silico and in vitro experiments. Simulation results show that field effects alone can indeed mediate propagation across layers of neurons with speeds of 0.12 ± 0.09 m/s with pathological kinetics, and 0.11 ± 0.03 m/s with physiologic kinetics, both generating weak field amplitudes of ∼2–6 mV/mm. Further, the model predicted that propagation speed values are inversely proportional to the cell-to-cell distances, but do not significantly change with extracellular resistivity, membrane capacitance, or membrane resistance. In vitro recordings in mice hippocampi produced similar speeds (0.10 ± 0.03 m/s) and field amplitudes (2.5–5 mV/mm), and by applying a blocking field, the propagation speed was greatly reduced. Finally, osmolarity experiments confirmed the model's prediction that cell-to-cell distance inversely affects propagation speed. Together, these results show that despite their weak amplitude, electric fields can be solely responsible for spike propagation at ∼0.1 m/s. This phenomenon could be important to explain the slow propagation of epileptic activity and other normal propagations at similar speeds. SIGNIFICANCE STATEMENT Neural activity (waves or spikes) can propagate using well documented mechanisms such as synaptic transmission, gap junctions, or diffusion. However, the purpose of this paper is to provide an explanation for experimental data showing that neural signals can propagate by means other than synaptic

  4. Neural activity in human primary motor cortex areas 4a and 4p is modulated differentially by attention to action

    OpenAIRE

    Binkofski, F.; Fink, Gereon R.; Geyer, Stefan; Buccino, G.; Gruber, Oliver; Shah, N. Jon; Taylor, John G.; Seitz, Rüdiger J.; Zilles, Karl; Freund, Hans-Joachim

    2002-01-01

    The mechanisms underlying attention to action are poorly understood. Although distracted by something else, we often maintain the accuracy of a movement, which suggests that differential neural mechanisms for the control of attended and nonattended action exist. Using functional magnetic resonance imaging (fMRI) in normal volunteers and probabilistic cytoarchitectonic maps, we observed that neural activity in subarea 4p (posterior) within the primary motor cortex was modulated by attention to...

  5. The generation effect: activating broad neural circuits during memory encoding.

    Science.gov (United States)

    Rosner, Zachary A; Elman, Jeremy A; Shimamura, Arthur P

    2013-01-01

    The generation effect is a robust memory phenomenon in which actively producing material during encoding acts to improve later memory performance. In a functional magnetic resonance imaging (fMRI) analysis, we explored the neural basis of this effect. During encoding, participants generated synonyms from word-fragment cues (e.g., GARBAGE-W_ST_) or read other synonym pairs (e.g., GARBAGE-WASTE). Compared to simply reading target words, generating target words significantly improved later recognition memory performance. During encoding, this benefit was associated with a broad neural network that involved both prefrontal (inferior frontal gyrus, middle frontal gyrus) and posterior cortex (inferior temporal gyrus, lateral occipital cortex, parahippocampal gyrus, ventral posterior parietal cortex). These findings define the prefrontal-posterior cortical dynamics associated with the mnemonic benefits underlying the generation effect. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Local active information storage as a tool to understand distributed neural information processing

    Science.gov (United States)

    Wibral, Michael; Lizier, Joseph T.; Vögler, Sebastian; Priesemann, Viola; Galuske, Ralf

    2013-01-01

    Every act of information processing can in principle be decomposed into the component operations of information storage, transfer, and modification. Yet, while this is easily done for today's digital computers, the application of these concepts to neural information processing was hampered by the lack of proper mathematical definitions of these operations on information. Recently, definitions were given for the dynamics of these information processing operations on a local scale in space and time in a distributed system, and the specific concept of local active information storage was successfully applied to the analysis and optimization of artificial neural systems. However, no attempt to measure the space-time dynamics of local active information storage in neural data has been made to date. Here we measure local active information storage on a local scale in time and space in voltage sensitive dye imaging data from area 18 of the cat. We show that storage reflects neural properties such as stimulus preferences and surprise upon unexpected stimulus change, and in area 18 reflects the abstract concept of an ongoing stimulus despite the locally random nature of this stimulus. We suggest that LAIS will be a useful quantity to test theories of cortical function, such as predictive coding. PMID:24501593

  7. Local active information storage as a tool to understand distributed neural information processing

    Directory of Open Access Journals (Sweden)

    Michael eWibral

    2014-01-01

    Full Text Available Every act of information processing can in principle be decomposed into the component operations of information storage, transfer, and modification. Yet, while this is easily done for today’s digital computers, the application of these concepts to neural information processing was hampered by the lack of proper mathematical definitions of these operations on information. Recently, such definitions were given and the specific concept of local active information storage was successfully applied to the analysis and optimization of artificial neural systems. However, no attempt to measure local active information storage in neural data has been made to date. Here we measure local active information storage on a local scale in time and space in voltage sensitive dye imaging data from area 18 of the cat. We show that storage reflects neural properties such as stimulus preferences and surprise upon unexpected stimulus change, and in area 18 reflects the abstract concept of an ongoing stimulus despite the locally random nature of this stimulus. We suggest that LAIS will be a useful quantity to test theories of cortical function, such as predictive coding.

  8. Effect of short-term escitalopram treatment on neural activation during emotional processing.

    Science.gov (United States)

    Maron, Eduard; Wall, Matt; Norbury, Ray; Godlewska, Beata; Terbeck, Sylvia; Cowen, Philip; Matthews, Paul; Nutt, David J

    2016-01-01

    Recent functional magnetic resonance (fMRI) imaging studies have revealed that subchronic medication with escitalopram leads to significant reduction in both amygdala and medial frontal gyrus reactivity during processing of emotional faces, suggesting that escitalopram may have a distinguishable modulatory effect on neural activation as compared with other serotonin-selective antidepressants. In this fMRI study we aimed to explore whether short-term medication with escitalopram in healthy volunteers is associated with reduced neural response to emotional processing, and whether this effect is predicted by drug plasma concentration. The neural response to fearful and happy faces was measured before and on day 7 of treatment with escitalopram (10mg) in 15 healthy volunteers and compared with those in a control unmedicated group (n=14). Significantly reduced activation to fearful, but not to happy facial expressions was observed in the bilateral amygdala, cingulate and right medial frontal gyrus following escitalopram medication. This effect was not correlated with plasma drug concentration. In accordance with previous data, we showed that escitalopram exerts its rapid direct effect on emotional processing via attenuation of neural activation in pathways involving medial frontal gyrus and amygdala, an effect that seems to be distinguishable from that of other SSRIs. © The Author(s) 2015.

  9. Inactivity-induced respiratory plasticity: protecting the drive to breathe in disorders that reduce respiratory neural activity.

    Science.gov (United States)

    Strey, K A; Baertsch, N A; Baker-Herman, T L

    2013-11-01

    Multiple forms of plasticity are activated following reduced respiratory neural activity. For example, in ventilated rats, a central neural apnea elicits a rebound increase in phrenic and hypoglossal burst amplitude upon resumption of respiratory neural activity, forms of plasticity called inactivity-induced phrenic and hypoglossal motor facilitation (iPMF and iHMF), respectively. Here, we provide a conceptual framework for plasticity following reduced respiratory neural activity to guide future investigations. We review mechanisms giving rise to iPMF and iHMF, present new data suggesting that inactivity-induced plasticity is observed in inspiratory intercostals (iIMF) and point out gaps in our knowledge. We then survey conditions relevant to human health characterized by reduced respiratory neural activity and discuss evidence that inactivity-induced plasticity is elicited during these conditions. Understanding the physiological impact and circumstances in which inactivity-induced respiratory plasticity is elicited may yield novel insights into the treatment of disorders characterized by reductions in respiratory neural activity. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. The effects of gratitude expression on neural activity.

    Science.gov (United States)

    Kini, Prathik; Wong, Joel; McInnis, Sydney; Gabana, Nicole; Brown, Joshua W

    2016-03-01

    Gratitude is a common aspect of social interaction, yet relatively little is known about the neural bases of gratitude expression, nor how gratitude expression may lead to longer-term effects on brain activity. To address these twin issues, we recruited subjects who coincidentally were entering psychotherapy for depression and/or anxiety. One group participated in a gratitude writing intervention, which required them to write letters expressing gratitude. The therapy-as-usual control group did not perform a writing intervention. After three months, subjects performed a "Pay It Forward" task in the fMRI scanner. In the task, subjects were repeatedly endowed with a monetary gift and then asked to pass it on to a charitable cause to the extent they felt grateful for the gift. Operationalizing gratitude as monetary gifts allowed us to engage the subjects and quantify the gratitude expression for subsequent analyses. We measured brain activity and found regions where activity correlated with self-reported gratitude experience during the task, even including related constructs such as guilt motivation and desire to help as statistical controls. These were mostly distinct from brain regions activated by empathy or theory of mind. Also, our between groups cross-sectional study found that a simple gratitude writing intervention was associated with significantly greater and lasting neural sensitivity to gratitude - subjects who participated in gratitude letter writing showed both behavioral increases in gratitude and significantly greater neural modulation by gratitude in the medial prefrontal cortex three months later. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Age-related shift in neural complexity related to task performance and physical activity.

    Science.gov (United States)

    Heisz, Jennifer J; Gould, Michelle; McIntosh, Anthony R

    2015-03-01

    The human brain undergoes marked structural changes with age including cortical thinning and reduced connectivity because of the degradation of myelin. Although these changes can compromise cognitive function, the brain is able to functionally reorganize to compensate for some of this structural loss. However, there are interesting individual differences in outcome: When comparing individuals of similar age, those who engage in regular physical activity are less affected by the typical age-related decline in cognitive function. This study used multiscale entropy to reveal a shift in the way the brain processes information in older adults that is related to physical activity. Specifically, older adults who were more physically active engaged in more local neural information processing. Interestingly, this shift toward local information processing was also associated with improved executive function performance in older adults, suggesting that physical activity may help to improve aspects of cognitive function in older adults by biasing the neural system toward local information processing. In the face of age-related structural decline, the neural plasticity that is enhanced through physical activity may help older adults maintain cognitive health longer into their lifespan.

  12. Long-range correlations in rabbit brain neural activity.

    Science.gov (United States)

    de la Fuente, I M; Perez-Samartin, A L; Martínez, L; Garcia, M A; Vera-Lopez, A

    2006-02-01

    We have analyzed the presence of persistence properties in rabbit brain electrical signals by means of non-equilibrium statistical physics tools. To measure long-memory properties of these experimental signals, we have first determined whether the data are fractional Gaussian noise (fGn) or fractional Brownian motion (fBm) by calculating the slope of the power spectral density plot of the series. The results show that the series correspond to fBm. Then, the data were studied by means of the bridge detrended scaled windowed variance analysis, detecting long-term correlation. Three different types of experimental signals have been studied: neural basal activity without stimulation, the response induced by a single flash light stimulus and the average of the activity evoked by 200 flash light stimulations. Analysis of the series revealed the existence of persistent behavior in all cases. Moreover, the results also exhibited an increasing correlation in the level of long-term memory from recordings without stimulation, to one sweep recording or 200 sweeps averaged recordings. Thus, brain neural electrical activity is affected not only by its most recent states, but also by previous states much more distant in the past.

  13. Time Multiplexed Active Neural Probe with 1356 Parallel Recording Sites

    Directory of Open Access Journals (Sweden)

    Bogdan C. Raducanu

    2017-10-01

    Full Text Available We present a high electrode density and high channel count CMOS (complementary metal-oxide-semiconductor active neural probe containing 1344 neuron sized recording pixels (20 µm × 20 µm and 12 reference pixels (20 µm × 80 µm, densely packed on a 50 µm thick, 100 µm wide, and 8 mm long shank. The active electrodes or pixels consist of dedicated in-situ circuits for signal source amplification, which are directly located under each electrode. The probe supports the simultaneous recording of all 1356 electrodes with sufficient signal to noise ratio for typical neuroscience applications. For enhanced performance, further noise reduction can be achieved while using half of the electrodes (678. Both of these numbers considerably surpass the state-of-the art active neural probes in both electrode count and number of recording channels. The measured input referred noise in the action potential band is 12.4 µVrms, while using 678 electrodes, with just 3 µW power dissipation per pixel and 45 µW per read-out channel (including data transmission.

  14. Adolescents' Reward-related Neural Activation: Links to Thoughts of Nonsuicidal Self-Injury.

    Science.gov (United States)

    Poon, Jennifer A; Thompson, James C; Forbes, Erika E; Chaplin, Tara M

    2018-01-19

    Adolescence is a critical developmental period marked by an increase in risk behaviors, including nonsuicidal self-injury (NSSI). Heightened reward-related brain activation and relatively limited recruitment of prefrontal regions contribute to the initiation of risky behaviors in adolescence. However, neural reward processing has not been examined among adolescents who are at risk for future engagement for NSSI specifically, but who have yet to actually engage in this behavior. In the current fMRI study (N = 71), we hypothesized that altered reward processing would be associated with adolescents' thoughts of NSSI. Results showed that NSSI youth exhibited heightened activation in the bilateral putamen in response to a monetary reward. This pattern of findings suggests that heightened neural sensitivity to reward is associated with thoughts of NSSI in early adolescence. Implications for prevention are discussed. © 2018 The American Association of Suicidology.

  15. Sensory-related neural activity regulates the structure of vascular networks in the cerebral cortex

    Science.gov (United States)

    Lacoste, Baptiste; Comin, Cesar H.; Ben-Zvi, Ayal; Kaeser, Pascal S.; Xu, Xiaoyin; Costa, Luciano da F.; Gu, Chenghua

    2014-01-01

    SUMMARY Neurovascular interactions are essential for proper brain function. While the effect of neural activity on cerebral blood flow has been extensively studied, whether neural activity influences vascular patterning remains elusive. Here, we demonstrate that neural activity promotes the formation of vascular networks in the early postnatal mouse barrel cortex. Using a combination of genetics, imaging, and computational tools to allow simultaneous analysis of neuronal and vascular components, we found that vascular density and branching were decreased in the barrel cortex when sensory input was reduced by either a complete deafferentation, a genetic impairment of neurotransmitter release at thalamocortical synapses, or a selective reduction of sensory-related neural activity by whisker plucking. In contrast, enhancement of neural activity by whisker stimulation led to an increase in vascular density and branching. The finding that neural activity is necessary and sufficient to trigger alterations of vascular networks reveals a novel feature of neurovascular interactions. PMID:25155955

  16. Sensory-related neural activity regulates the structure of vascular networks in the cerebral cortex.

    Science.gov (United States)

    Lacoste, Baptiste; Comin, Cesar H; Ben-Zvi, Ayal; Kaeser, Pascal S; Xu, Xiaoyin; Costa, Luciano da F; Gu, Chenghua

    2014-09-03

    Neurovascular interactions are essential for proper brain function. While the effect of neural activity on cerebral blood flow has been extensively studied, whether or not neural activity influences vascular patterning remains elusive. Here, we demonstrate that neural activity promotes the formation of vascular networks in the early postnatal mouse barrel cortex. Using a combination of genetics, imaging, and computational tools to allow simultaneous analysis of neuronal and vascular components, we found that vascular density and branching were decreased in the barrel cortex when sensory input was reduced by either a complete deafferentation, a genetic impairment of neurotransmitter release at thalamocortical synapses, or a selective reduction of sensory-related neural activity by whisker plucking. In contrast, enhancement of neural activity by whisker stimulation led to an increase in vascular density and branching. The finding that neural activity is necessary and sufficient to trigger alterations of vascular networks reveals an important feature of neurovascular interactions. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Suggestions to Reduce Clinical Fibromyalgia Pain and Experimentally Induced Pain Produce Parallel Effects on Perceived Pain but Divergent Functional MRI-Based Brain Activity.

    Science.gov (United States)

    Derbyshire, Stuart W G; Whalley, Matthew G; Seah, Stanley T H; Oakley, David A

    Hypnotic suggestion is an empirically validated form of pain control; however, the underlying mechanism remains unclear. Thirteen fibromyalgia patients received suggestions to alter their clinical pain, and 15 healthy controls received suggestions to alter experimental heat pain. Suggestions were delivered before and after hypnotic induction with blood oxygen level-dependent (BOLD) activity measured concurrently. Across groups, suggestion produced substantial changes in pain report (main effect of suggestion, F2, 312 = 585.8; p pain report in regions previously associated with pain, including thalamus and anterior cingulate cortex. In controls, BOLD response decreased with pain report. All changes were greater after induction. Region-of-interest analysis revealed largely linear patient responses with increasing pain report. Control responses, however, were higher after suggestion to increase or decrease pain from baseline. Based on behavioral report alone, the mechanism of suggestion could be interpreted as largely similar regardless of the induction or type of pain experience. The functional magnetic resonance imaging data, however, demonstrated larger changes in brain activity after induction and a radically different pattern of brain activity for clinical pain compared with experimental pain. These findings imply that induction has an important effect on underlying neural activity mediating the effects of suggestion, and the mechanism of suggestion in patients altering clinical pain differs from that in controls altering experimental pain. Patient responses imply that suggestions altered pain experience via corresponding changes in pain-related brain regions, whereas control responses imply suggestion engaged cognitive control.

  18. Young Adults with Autism Spectrum Disorder Show Early Atypical Neural Activity during Emotional Face Processing

    Directory of Open Access Journals (Sweden)

    Rachel C. Leung

    2018-02-01

    Full Text Available Social cognition is impaired in autism spectrum disorder (ASD. The ability to perceive and interpret affect is integral to successful social functioning and has an extended developmental course. However, the neural mechanisms underlying emotional face processing in ASD are unclear. Using magnetoencephalography (MEG, the present study explored neural activation during implicit emotional face processing in young adults with and without ASD. Twenty-six young adults with ASD and 26 healthy controls were recruited. Participants indicated the location of a scrambled pattern (target that was presented alongside a happy or angry face. Emotion-related activation sources for each emotion were estimated using the Empirical Bayes Beamformer (pcorr ≤ 0.001 in Statistical Parametric Mapping 12 (SPM12. Emotional faces elicited elevated fusiform, amygdala and anterior insula and reduced anterior cingulate cortex (ACC activity in adults with ASD relative to controls. Within group comparisons revealed that angry vs. happy faces elicited distinct neural activity in typically developing adults; there was no distinction in young adults with ASD. Our data suggest difficulties in affect processing in ASD reflect atypical recruitment of traditional emotional processing areas. These early differences may contribute to difficulties in deriving social reward from faces, ascribing salience to faces, and an immature threat processing system, which collectively could result in deficits in emotional face processing.

  19. Separating neural activity associated with emotion and implied motion: An fMRI study.

    Science.gov (United States)

    Kolesar, Tiffany A; Kornelsen, Jennifer; Smith, Stephen D

    2017-02-01

    Previous research provides evidence for an emo-motoric neural network allowing emotion to modulate activity in regions of the nervous system related to movement. However, recent research suggests that these results may be due to the movement depicted in the stimuli. The purpose of the current study was to differentiate the unique neural activity of emotion and implied motion using functional MRI. Thirteen healthy participants viewed 4 sets of images: (a) negative stimuli implying movement, (b) negative stimuli not implying movement, (c) neutral stimuli implying movement, and (d) neutral stimuli not implying movement. A main effect for implied motion was found, primarily in regions associated with multimodal integration (bilateral insula and cingulate), and visual areas that process motion (bilateral middle temporal gyrus). A main effect for emotion was found primarily in occipital and parietal regions, indicating that emotion enhances visual perception. Surprisingly, emotion also activated the left precentral gyrus, a motor region. These results demonstrate that emotion elicits activity above and beyond that evoked by the perception of implied movement, but that the neural representations of these characteristics overlap. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. The versatility of RhoA activities in neural differentiation.

    Science.gov (United States)

    Horowitz, Arie; Yang, Junning; Cai, Jingli; Iacovitti, Lorraine

    2017-01-26

    In this commentary we discuss a paper we published recently on the activities of the GTPase RhoA during neural differentiation of murine embryonic stem cells, and relate our findings to previous studies. We narrate how we found that RhoA impedes neural differentiation by inhibiting the production as well as the secretion of noggin, a soluble factor that antagonizes bone morphogenetic protein. We discuss how the questions we tried to address shaped the study, and how embryonic stem cells isolated from a genetically modified mouse model devoid of Syx, a RhoA-specific guanine exchange factor, were used to address them. We detail several signaling pathways downstream of RhoA that are hindered by the absence of Syx, and obstructed by retinoic acid, resulting in an increase of noggin production; we explain how the lower RhoA activity and, consequently, the sparser peri-junctional stress fibers in Syx -/- cells facilitated noggin secretion; and we report unpublished results showing that pharmacological inhibition of RhoA accelerates the neuronal differentiation of human embryonic stem cells. Finally, we identify signaling mechanisms in our recent study that warrant further study, and speculate on the possibility of manipulating RhoA signaling in combination with other pathways to drive the differentiation of neuronal subtypes.

  1. Tractography Activation Patterns in Dorsolateral Prefrontal Cortex Suggest Better Clinical Responses in OCD DBS.

    Science.gov (United States)

    Hartmann, Christian J; Lujan, J Luis; Chaturvedi, Ashutosh; Goodman, Wayne K; Okun, Michael S; McIntyre, Cameron C; Haq, Ihtsham U

    2015-01-01

    Medication resistant obsessive-compulsive disorder (OCD) patients can be successfully treated with Deep Brain Stimulation (DBS) which targets the anterior limb of the internal capsule (ALIC) and the nucleus accumbens (NA). Growing evidence suggests that in patients who respond to DBS, axonal fiber bundles surrounding the electrode are activated, but it is currently unknown which discrete pathways are critical for optimal benefit. Our aim was to identify axonal pathways mediating clinical effects of ALIC-NA DBS. We created computational models of ALIC-NA DBS to simulate the activation of fiber tracts and to identify connected cerebral regions. The pattern of activated axons and their cortical targets was investigated in six OCD patients who underwent ALIC-NA DBS. Modulation of the right anterior middle frontal gyrus (dorsolateral prefrontal cortex) was associated with an excellent response. In contrast, non-responders showed high activation in the orbital part of the right inferior frontal gyrus (lateral orbitofrontal cortex/anterior ventrolateral prefrontal cortex). Factor analysis followed by step-wise linear regression indicated that YBOCS improvement was inversely associated with factors that were predominantly determined by gray matter activation results. Our findings support the hypothesis that optimal therapeutic results are associated with the activation of distinct fiber pathways. This suggests that in DBS for OCD, focused stimulation of specific fiber pathways, which would allow for stimulation with lower amplitudes, may be superior to activation of a wide array of pathways, typically associated with higher stimulation amplitudes.

  2. Tractography activation patterns in dorsolateral prefrontal cortex suggest better clinical responses in OCD DBS

    Directory of Open Access Journals (Sweden)

    Christian J. Hartmann

    2016-01-01

    Full Text Available Background: Medication resistant obsessive-compulsive disorder (OCD patients can be successfully treated with Deep Brain Stimulation (DBS which targets the anterior limb of the internal capsule (ALIC and the nucleus accumbens (NA. Growing evidence suggests that in patients who respond to DBS, axonal fiber bundles surrounding the electrode are activated, but it is currently unknown which discrete pathways are critical for optimal benefit. Our aim was to identify axonal pathways mediating clinical effects of ALIC-NA DBS.Methods: We created computational models of ALIC-NA DBS to simulate the activation of fiber tracts and to identify connected cerebral regions. The pattern of activated axons and their cortical targets was investigated in six OCD patients who underwent ALIC-NA DBS. Results: Modulation of the right anterior middle frontal gyrus (dorsolateral prefrontal cortex was associated with an excellent response. In contrast, non-responders showed high activation in the orbital part of the right inferior frontal gyrus (lateral orbitofrontal cortex/anterior ventrolateral prefrontal cortex. Factor analysis followed by step-wise linear regression indicated that YBOCS improvement was inversely associated with factors that were predominantly determined by gray matter activation results.Discussion: Our findings support the hypothesis that optimal therapeutic results are associated with the activation of distinct fiber pathways. This suggests that in DBS for OCD, focused stimulation of specific fiber pathways, which would allow for stimulation with lower amplitudes, may be superior to activation of a wide array of pathways, typically associated with higher stimulation amplitudes.

  3. Cognitive emotion regulation in children: Reappraisal of emotional faces modulates neural source activity in a frontoparietal network.

    Science.gov (United States)

    Wessing, Ida; Rehbein, Maimu A; Romer, Georg; Achtergarde, Sandra; Dobel, Christian; Zwitserlood, Pienie; Fürniss, Tilman; Junghöfer, Markus

    2015-06-01

    Emotion regulation has an important role in child development and psychopathology. Reappraisal as cognitive regulation technique can be used effectively by children. Moreover, an ERP component known to reflect emotional processing called late positive potential (LPP) can be modulated by children using reappraisal and this modulation is also related to children's emotional adjustment. The present study seeks to elucidate the neural generators of such LPP effects. To this end, children aged 8-14 years reappraised emotional faces, while neural activity in an LPP time window was estimated using magnetoencephalography-based source localization. Additionally, neural activity was correlated with two indexes of emotional adjustment and age. Reappraisal reduced activity in the left dorsolateral prefrontal cortex during down-regulation and enhanced activity in the right parietal cortex during up-regulation. Activity in the visual cortex decreased with increasing age, more adaptive emotion regulation and less anxiety. Results demonstrate that reappraisal changed activity within a frontoparietal network in children. Decreasing activity in the visual cortex with increasing age is suggested to reflect neural maturation. A similar decrease with adaptive emotion regulation and less anxiety implies that better emotional adjustment may be associated with an advance in neural maturation. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Cognitive emotion regulation in children: Reappraisal of emotional faces modulates neural source activity in a frontoparietal network

    Directory of Open Access Journals (Sweden)

    Ida Wessing

    2015-06-01

    Full Text Available Emotion regulation has an important role in child development and psychopathology. Reappraisal as cognitive regulation technique can be used effectively by children. Moreover, an ERP component known to reflect emotional processing called late positive potential (LPP can be modulated by children using reappraisal and this modulation is also related to children's emotional adjustment. The present study seeks to elucidate the neural generators of such LPP effects. To this end, children aged 8–14 years reappraised emotional faces, while neural activity in an LPP time window was estimated using magnetoencephalography-based source localization. Additionally, neural activity was correlated with two indexes of emotional adjustment and age. Reappraisal reduced activity in the left dorsolateral prefrontal cortex during down-regulation and enhanced activity in the right parietal cortex during up-regulation. Activity in the visual cortex decreased with increasing age, more adaptive emotion regulation and less anxiety. Results demonstrate that reappraisal changed activity within a frontoparietal network in children. Decreasing activity in the visual cortex with increasing age is suggested to reflect neural maturation. A similar decrease with adaptive emotion regulation and less anxiety implies that better emotional adjustment may be associated with an advance in neural maturation.

  5. Intermittent reductions in respiratory neural activity elicit spinal TNF-α-independent, atypical PKC-dependent inactivity-induced phrenic motor facilitation

    Science.gov (United States)

    Baertsch, Nathan A.

    2015-01-01

    In many neural networks, mechanisms of compensatory plasticity respond to prolonged reductions in neural activity by increasing cellular excitability or synaptic strength. In the respiratory control system, a prolonged reduction in synaptic inputs to the phrenic motor pool elicits a TNF-α- and atypical PKC-dependent form of spinal plasticity known as inactivity-induced phrenic motor facilitation (iPMF). Although iPMF may be elicited by a prolonged reduction in respiratory neural activity, iPMF is more efficiently induced when reduced respiratory neural activity (neural apnea) occurs intermittently. Mechanisms giving rise to iPMF following intermittent neural apnea are unknown. The purpose of this study was to test the hypothesis that iPMF following intermittent reductions in respiratory neural activity requires spinal TNF-α and aPKC. Phrenic motor output was recorded in anesthetized and ventilated rats exposed to brief intermittent (5, ∼1.25 min), brief sustained (∼6.25 min), or prolonged sustained (30 min) neural apnea. iPMF was elicited following brief intermittent and prolonged sustained neural apnea, but not following brief sustained neural apnea. Unlike iPMF following prolonged neural apnea, spinal TNF-α was not required to initiate iPMF during intermittent neural apnea; however, aPKC was still required for its stabilization. These results suggest that different patterns of respiratory neural activity induce iPMF through distinct cellular mechanisms but ultimately converge on a similar downstream pathway. Understanding the diverse cellular mechanisms that give rise to inactivity-induced respiratory plasticity may lead to development of novel therapeutic strategies to treat devastating respiratory control disorders when endogenous compensatory mechanisms fail. PMID:25673781

  6. Splanchnic neural activity modulates ultradian and circadian rhythms in adrenocortical secretion in awake rats.

    Science.gov (United States)

    Jasper, M S; Engeland, W C

    1994-02-01

    An ultradian rhythm in adrenal secretion of corticosterone has been described in awake rats using intra-adrenal microdialysis. To determine the role of the autonomic innervation of the adrenal on the expression of the corticosterone rhythm, adrenal extracellular fluid was sampled by intra-adrenal microdialysis in intact (CTRL) and splanchnicectomized (SPLNX) rats 5-7 h before (light period) and after dark onset (dark period). Experiments conducted 1, 2, or 5 days after surgical insertion of the microdialysis probe consisted of continuous collection of dialysate at intervals of 10 min. Time domain pulse detection using PC-PULSAR showed that 5 days after surgery, SPLNX decreased interpulse interval (IPI) during the light period, but had no effect during the dark period, resulting in the loss of the diurnal rhythm in corticosterone secretion. Although diurnal modulation of both pulse amplitude and pulse frequency was observed, only the frequency was altered by SPLNX. In CTRL animals IPI increased at 5 days postsurgery, relative to 1 and 2 days, but the amplitude of normalized secretory pulses did not change. The decrease in IPI caused by SPLNX was observed 5 days, but not 1 or 2 days after surgery, suggesting that surgical stress obscures the inhibitory effect of splanchnic neural activity. Power spectral analysis showed significant periodicities in corticosterone secretion rate in individual CTRL and SPLNX animals at 1, 2, and 5 days. One day after surgery, SPLNX reduced the frequency of the ultradian rhythm detected by power spectral analysis. This finding suggests that splanchnic neural activity may increase pulse frequency in stressed rats, in opposition to the effect seen after extended recovery from surgery. In conclusion, our data suggest that the nadir of the diurnal rhythm in corticosterone secretion results in part from neural inhibitory control. Splanchnic neural innervation may also have an excitatory role in the adrenocortical stress response.

  7. Differences in neural activity when processing emotional arousal and valence in autism spectrum disorders.

    Science.gov (United States)

    Tseng, Angela; Wang, Zhishun; Huo, Yuankai; Goh, Suzanne; Russell, James A; Peterson, Bradley S

    2016-02-01

    Individuals with autism spectrum disorders (ASD) often have difficulty recognizing and interpreting facial expressions of emotion, which may impair their ability to navigate and communicate successfully in their social, interpersonal environments. Characterizing specific differences between individuals with ASD and their typically developing (TD) counterparts in the neural activity subserving their experience of emotional faces may provide distinct targets for ASD interventions. Thus we used functional magnetic resonance imaging (fMRI) and a parametric experimental design to identify brain regions in which neural activity correlated with ratings of arousal and valence for a broad range of emotional faces. Participants (51 ASD, 84 TD) were group-matched by age, sex, IQ, race, and socioeconomic status. Using task-related change in blood-oxygen-level-dependent (BOLD) fMRI signal as a measure, and covarying for age, sex, FSIQ, and ADOS scores, we detected significant differences across diagnostic groups in the neural activity subserving the dimension of arousal but not valence. BOLD-signal in TD participants correlated inversely with ratings of arousal in regions associated primarily with attentional functions, whereas BOLD-signal in ASD participants correlated positively with arousal ratings in regions commonly associated with impulse control and default-mode activity. Only minor differences were detected between groups in the BOLD signal correlates of valence ratings. Our findings provide unique insight into the emotional experiences of individuals with ASD. Although behavioral responses to face-stimuli were comparable across diagnostic groups, the corresponding neural activity for our ASD and TD groups differed dramatically. The near absence of group differences for valence correlates and the presence of strong group differences for arousal correlates suggest that individuals with ASD are not atypical in all aspects of emotion-processing. Studying these similarities

  8. Individual differences in sensitivity to reward and punishment and neural activity during reward and avoidance learning.

    Science.gov (United States)

    Kim, Sang Hee; Yoon, HeungSik; Kim, Hackjin; Hamann, Stephan

    2015-09-01

    In this functional neuroimaging study, we investigated neural activations during the process of learning to gain monetary rewards and to avoid monetary loss, and how these activations are modulated by individual differences in reward and punishment sensitivity. Healthy young volunteers performed a reinforcement learning task where they chose one of two fractal stimuli associated with monetary gain (reward trials) or avoidance of monetary loss (avoidance trials). Trait sensitivity to reward and punishment was assessed using the behavioral inhibition/activation scales (BIS/BAS). Functional neuroimaging results showed activation of the striatum during the anticipation and reception periods of reward trials. During avoidance trials, activation of the dorsal striatum and prefrontal regions was found. As expected, individual differences in reward sensitivity were positively associated with activation in the left and right ventral striatum during reward reception. Individual differences in sensitivity to punishment were negatively associated with activation in the left dorsal striatum during avoidance anticipation and also with activation in the right lateral orbitofrontal cortex during receiving monetary loss. These results suggest that learning to attain reward and learning to avoid loss are dependent on separable sets of neural regions whose activity is modulated by trait sensitivity to reward or punishment. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  9. Neural oscillations: beta band activity across motor networks.

    Science.gov (United States)

    Khanna, Preeya; Carmena, Jose M

    2015-06-01

    Local field potential (LFP) activity in motor cortical and basal ganglia regions exhibits prominent beta (15-40Hz) oscillations during reaching and grasping, muscular contraction, and attention tasks. While in vitro and computational work has revealed specific mechanisms that may give rise to the frequency and duration of this oscillation, there is still controversy about what behavioral processes ultimately drive it. Here, simultaneous behavioral and large-scale neural recording experiments from non-human primate and human subjects are reviewed in the context of specific hypotheses about how beta band activity is generated. Finally, a new experimental paradigm utilizing operant conditioning combined with motor tasks is proposed as a way to further investigate this oscillation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Social power and approach-related neural activity

    Science.gov (United States)

    Smolders, Ruud; Cremer, David De

    2012-01-01

    It has been argued that power activates a general tendency to approach whereas powerlessness activates a tendency to inhibit. The assumption is that elevated power involves reward-rich environments, freedom and, as a consequence, triggers an approach-related motivational orientation and attention to rewards. In contrast, reduced power is associated with increased threat, punishment and social constraint and thereby activates inhibition-related motivation. Moreover, approach motivation has been found to be associated with increased relative left-sided frontal brain activity, while withdrawal motivation has been associated with increased right sided activations. We measured EEG activity while subjects engaged in a task priming either high or low social power. Results show that high social power is indeed associated with greater left-frontal brain activity compared to low social power, providing the first neural evidence for the theory that high power is associated with approach-related motivation. We propose a framework accounting for differences in both approach motivation and goal-directed behaviour associated with different levels of power. PMID:19304842

  11. Modulation of Neural Activity during Guided Viewing of Visual Art

    Directory of Open Access Journals (Sweden)

    Guillermo Herrera-Arcos

    2017-11-01

    Full Text Available Mobile Brain-Body Imaging (MoBI technology was deployed to record multi-modal data from 209 participants to examine the brain’s response to artistic stimuli at the Museo de Arte Contemporáneo (MARCO in Monterrey, México. EEG signals were recorded as the subjects walked through the exhibit in guided groups of 6–8 people. Moreover, guided groups were either provided with an explanation of each art piece (Guided-E, or given no explanation (Guided-NE. The study was performed using portable Muse (InteraXon, Inc, Toronto, ON, Canada headbands with four dry electrodes located at AF7, AF8, TP9, and TP10. Each participant performed a baseline (BL control condition devoid of artistic stimuli and selected his/her favorite piece of art (FP during the guided tour. In this study, we report data related to participants’ demographic information and aesthetic preference as well as effects of art viewing on neural activity (EEG in a select subgroup of 18–30 year-old subjects (Nc = 25 that generated high-quality EEG signals, on both BL and FP conditions. Dependencies on gender, sensor placement, and presence or absence of art explanation were also analyzed. After denoising, clustering of spectral EEG models was used to identify neural patterns associated with BL and FP conditions. Results indicate statistically significant suppression of beta band frequencies (15–25 Hz in the prefrontal electrodes (AF7 and AF8 during appreciation of subjects’ favorite painting, compared to the BL condition, which was significantly different from EEG responses to non-favorite paintings (NFP. No significant differences in brain activity in relation to the presence or absence of explanation during exhibit tours were found. Moreover, a frontal to posterior asymmetry in neural activity was observed, for both BL and FP conditions. These findings provide new information about frequency-related effects of preferred art viewing in brain activity, and support the view that art

  12. Modulation of Neural Activity during Guided Viewing of Visual Art

    Science.gov (United States)

    Herrera-Arcos, Guillermo; Tamez-Duque, Jesús; Acosta-De-Anda, Elsa Y.; Kwan-Loo, Kevin; de-Alba, Mayra; Tamez-Duque, Ulises; Contreras-Vidal, Jose L.; Soto, Rogelio

    2017-01-01

    Mobile Brain-Body Imaging (MoBI) technology was deployed to record multi-modal data from 209 participants to examine the brain’s response to artistic stimuli at the Museo de Arte Contemporáneo (MARCO) in Monterrey, México. EEG signals were recorded as the subjects walked through the exhibit in guided groups of 6–8 people. Moreover, guided groups were either provided with an explanation of each art piece (Guided-E), or given no explanation (Guided-NE). The study was performed using portable Muse (InteraXon, Inc, Toronto, ON, Canada) headbands with four dry electrodes located at AF7, AF8, TP9, and TP10. Each participant performed a baseline (BL) control condition devoid of artistic stimuli and selected his/her favorite piece of art (FP) during the guided tour. In this study, we report data related to participants’ demographic information and aesthetic preference as well as effects of art viewing on neural activity (EEG) in a select subgroup of 18–30 year-old subjects (Nc = 25) that generated high-quality EEG signals, on both BL and FP conditions. Dependencies on gender, sensor placement, and presence or absence of art explanation were also analyzed. After denoising, clustering of spectral EEG models was used to identify neural patterns associated with BL and FP conditions. Results indicate statistically significant suppression of beta band frequencies (15–25 Hz) in the prefrontal electrodes (AF7 and AF8) during appreciation of subjects’ favorite painting, compared to the BL condition, which was significantly different from EEG responses to non-favorite paintings (NFP). No significant differences in brain activity in relation to the presence or absence of explanation during exhibit tours were found. Moreover, a frontal to posterior asymmetry in neural activity was observed, for both BL and FP conditions. These findings provide new information about frequency-related effects of preferred art viewing in brain activity, and support the view that art

  13. Modulation of Neural Activity during Guided Viewing of Visual Art.

    Science.gov (United States)

    Herrera-Arcos, Guillermo; Tamez-Duque, Jesús; Acosta-De-Anda, Elsa Y; Kwan-Loo, Kevin; de-Alba, Mayra; Tamez-Duque, Ulises; Contreras-Vidal, Jose L; Soto, Rogelio

    2017-01-01

    Mobile Brain-Body Imaging (MoBI) technology was deployed to record multi-modal data from 209 participants to examine the brain's response to artistic stimuli at the Museo de Arte Contemporáneo (MARCO) in Monterrey, México. EEG signals were recorded as the subjects walked through the exhibit in guided groups of 6-8 people. Moreover, guided groups were either provided with an explanation of each art piece (Guided-E), or given no explanation (Guided-NE). The study was performed using portable Muse (InteraXon, Inc, Toronto, ON, Canada) headbands with four dry electrodes located at AF7, AF8, TP9, and TP10. Each participant performed a baseline (BL) control condition devoid of artistic stimuli and selected his/her favorite piece of art (FP) during the guided tour. In this study, we report data related to participants' demographic information and aesthetic preference as well as effects of art viewing on neural activity (EEG) in a select subgroup of 18-30 year-old subjects (Nc = 25) that generated high-quality EEG signals, on both BL and FP conditions. Dependencies on gender, sensor placement, and presence or absence of art explanation were also analyzed. After denoising, clustering of spectral EEG models was used to identify neural patterns associated with BL and FP conditions. Results indicate statistically significant suppression of beta band frequencies (15-25 Hz) in the prefrontal electrodes (AF7 and AF8) during appreciation of subjects' favorite painting, compared to the BL condition, which was significantly different from EEG responses to non-favorite paintings (NFP). No significant differences in brain activity in relation to the presence or absence of explanation during exhibit tours were found. Moreover, a frontal to posterior asymmetry in neural activity was observed, for both BL and FP conditions. These findings provide new information about frequency-related effects of preferred art viewing in brain activity, and support the view that art appreciation is

  14. Suppressed expression of mitogen-activated protein kinases in hyperthermia induced defective neural tube.

    Science.gov (United States)

    Zhang, Tianliang; Leng, Zhaoting; Liu, Wenjing; Wang, Xia; Yan, Xue; Yu, Li

    2015-05-06

    Neural tube defects (NTDs) are common congenital malformations. Mitogen-activated protein kinases (MAPKs) pathway is involved in many physiological processes. HMGB1 has been showed closely associated with neurulation and NTDs induced by hyperthermia and could activate MAPKs pathway. Since hyperthermia caused increased activation of MAPKs in many systems, the present study aims to investigate whether HMGB1 contributes to hyperthermia induced NTDs through MAPKs pathway. The mRNA levels of MAPKs and HMGB1 between embryonic day 8.5 and 10 (E8.5-10) in hyperthermia induced defective neural tube were detected by real-time quantitative polymerase chain reaction (qPCR). By immunofluorescence and western blotting, the expressions of HMGB1 and phosphorylated MAPKs (ERK1/2, JNK and p38) in neural tubes after hyperthermia were studied. The mRNA levels of MAPKs and HMGB1, as well as the expressions of HMGB1 along with phosphorylated JNK, p38 and ERK, were downregulated in NTDs groups induced by hyperthermia compared with control. The findings suggested that HMGB1 may contribute to hyperthermia induced NTDs formation through decreased cell proliferation due to inhibited phosphorylated ERK1/2 MAPK. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  15. A direct comparison of appetitive and aversive anticipation: Overlapping and distinct neural activation.

    Science.gov (United States)

    Sege, Christopher T; Bradley, Margaret M; Weymar, Mathias; Lang, Peter J

    2017-05-30

    fMRI studies of reward find increased neural activity in ventral striatum and medial prefrontal cortex (mPFC), whereas other regions, including the dorsolateral prefrontal cortex (dlPFC), anterior cingulate cortex (ACC), and anterior insula, are activated when anticipating aversive exposure. Although these data suggest differential activation during anticipation of pleasant or of unpleasant exposure, they also arise in the context of different paradigms (e.g., preparation for reward vs. threat of shock) and participants. To determine overlapping and unique regions active during emotional anticipation, we compared neural activity during anticipation of pleasant or unpleasant exposure in the same participants. Cues signalled the upcoming presentation of erotic/romantic, violent, or everyday pictures while BOLD activity during the 9-s anticipatory period was measured using fMRI. Ventral striatum and a ventral mPFC subregion were activated when anticipating pleasant, but not unpleasant or neutral, pictures, whereas activation in other regions was enhanced when anticipating appetitive or aversive scenes. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Promoting physical activity participation among adolescents: The barriers and the suggestions

    Directory of Open Access Journals (Sweden)

    Niloofar Peykari

    2015-01-01

    Full Text Available Background: Physical activity is a complex behavior. To designing the effective intervention, qualitative researches may be allowed for greater understanding of the reasons behind the adolescences′ physical activity-related behaviors′. Methods: Using the grounded theory approach, including semi-structured focus group discussions (FGDs and in-depth interviews, we conducted a quantitative study to elicit the adolescents and key informants′ opinion regarding the satiation, needs, social and environmental barriers of adolescents′ physical activity. For FGDs, participants were selected from volunteered adolescent (aged 10-19 years of the populated western part of Tehran, which was selected as a research field. Key informants were invited from the health professionals and experts in the field of adolescents′ health. Results: According to findings, although the majority of participants agreed on the important role of physical activity, the lack of essential motivation and the pressure of educational assignments remove it from the daily program priorities. Lack of a safe environment for girls′ physical activity and high cost of professional sports were two first mentioned barriers. It was also suggested that future interventions should focus on improving more parents′ engagement and their direct participation in physical activities with their adolescents. Conclusions: We proposed the participatory strategies for adolescent′s physical activity promotion. Through which target groups participation during the designing, development, and implementation of health programs led to more effective interventions.

  17. Tractography activation patterns in dorsolateral prefrontal cortex suggest better clinical responses in OCD DBS

    OpenAIRE

    Christian J. Hartmann; J Luis Lujan; Ashutosh eChaturvedi; Goodman, Wayne K.; Okun, Michael S.; Cameron C. McIntyre; Haq, Ihtsham U.

    2016-01-01

    Background: Medication resistant obsessive-compulsive disorder (OCD) patients can be successfully treated with Deep Brain Stimulation (DBS) which targets the anterior limb of the internal capsule (ALIC) and the nucleus accumbens (NA). Growing evidence suggests that in patients who respond to DBS, axonal fiber bundles surrounding the electrode are activated, but it is currently unknown which discrete pathways are critical for optimal benefit. Our aim was to identify axonal pathways mediating c...

  18. Tractography Activation Patterns in Dorsolateral Prefrontal Cortex Suggest Better Clinical Responses in OCD DBS

    OpenAIRE

    Christian J. Hartmann; Lujan, J. Luis; Chaturvedi, Ashutosh; Goodman, Wayne K.; Okun, Michael S.; Cameron C. McIntyre; Haq, Ihtsham U.

    2016-01-01

    Background: Medication resistant obsessive-compulsive disorder (OCD) patients can be successfully treated with Deep Brain Stimulation (DBS) which targets the anterior limb of the internal capsule (ALIC) and the nucleus accumbens (NA). Growing evidence suggests that in patients who respond to DBS, axonal fiber bundles surrounding the electrode are activated, but it is currently unknown which discrete pathways are critical for optimal benefit. Our aim was to identify axonal pathways mediating c...

  19. Neural activity reveals perceptual grouping in working memory.

    Science.gov (United States)

    Rabbitt, Laura R; Roberts, Daniel M; McDonald, Craig G; Peterson, Matthew S

    2017-03-01

    There is extensive evidence that the contralateral delay activity (CDA), a scalp recorded event-related brain potential, provides a reliable index of the number of objects held in visual working memory. Here we present evidence that the CDA not only indexes visual object working memory, but also the number of locations held in spatial working memory. In addition, we demonstrate that the CDA can be predictably modulated by the type of encoding strategy employed. When individual locations were held in working memory, the pattern of CDA modulation mimicked previous findings for visual object working memory. Specifically, CDA amplitude increased monotonically until working memory capacity was reached. However, when participants were instructed to group individual locations to form a constellation, the CDA was prolonged and reached an asymptote at two locations. This result provides neural evidence for the formation of a unitary representation of multiple spatial locations. Published by Elsevier B.V.

  20. Decorrelation of Neural-Network Activity by Inhibitory Feedback

    Science.gov (United States)

    Einevoll, Gaute T.; Diesmann, Markus

    2012-01-01

    Correlations in spike-train ensembles can seriously impair the encoding of information by their spatio-temporal structure. An inevitable source of correlation in finite neural networks is common presynaptic input to pairs of neurons. Recent studies demonstrate that spike correlations in recurrent neural networks are considerably smaller than expected based on the amount of shared presynaptic input. Here, we explain this observation by means of a linear network model and simulations of networks of leaky integrate-and-fire neurons. We show that inhibitory feedback efficiently suppresses pairwise correlations and, hence, population-rate fluctuations, thereby assigning inhibitory neurons the new role of active decorrelation. We quantify this decorrelation by comparing the responses of the intact recurrent network (feedback system) and systems where the statistics of the feedback channel is perturbed (feedforward system). Manipulations of the feedback statistics can lead to a significant increase in the power and coherence of the population response. In particular, neglecting correlations within the ensemble of feedback channels or between the external stimulus and the feedback amplifies population-rate fluctuations by orders of magnitude. The fluctuation suppression in homogeneous inhibitory networks is explained by a negative feedback loop in the one-dimensional dynamics of the compound activity. Similarly, a change of coordinates exposes an effective negative feedback loop in the compound dynamics of stable excitatory-inhibitory networks. The suppression of input correlations in finite networks is explained by the population averaged correlations in the linear network model: In purely inhibitory networks, shared-input correlations are canceled by negative spike-train correlations. In excitatory-inhibitory networks, spike-train correlations are typically positive. Here, the suppression of input correlations is not a result of the mere existence of correlations between

  1. To compare the effect of Active Neural Mobilization during Intermittent Lumbar Traction and Intermittent Lumbar Traction followed by Active Neural Mobilization in cases of Lumbar Radiculopathy

    OpenAIRE

    Jaywant Nagulkar; Kalyani Nagulkar

    2016-01-01

    To compare the effectiveness of Active neural mobilization (ANM) during intermittent lumbar traction (ILT) and intermittent lumbar traction followed by active neural mobilization treatment in patients of low back pain (LBP) with radiculopathy.. To study the effect of ANM during ILT and ILT followed by ANM in patients of LBP with radiculopathy on VAS scale, P1 angle of SLR, P2 angle of SLR and Oswestry disability index(ODI). To compare the effect of ANM during ILT and ILT followed ...

  2. The structure of the PERK kinase domain suggests the mechanism for its activation

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Wenjun; Li, Jingzhi; Ron, David; Sha, Bingdong (UAB); (Cambridge)

    2012-08-31

    The endoplasmic reticulum (ER) unfolded protein response (UPR) is comprised of several intracellular signaling pathways that alleviate ER stress. The ER-localized transmembrane kinase PERK is one of three major ER stress transducers. Oligomerization of PERK's N-terminal ER luminal domain by ER stress promotes PERK trans-autophosphorylation of the C-terminal cytoplasmic kinase domain at multiple residues including Thr980 on the kinase activation loop. Activated PERK phosphorylates Ser51 of the {alpha}-subunit of translation initiation factor 2 (eIF2{alpha}), which inhibits initiation of protein synthesis and reduces the load of unfolded proteins entering the ER. The crystal structure of PERK's kinase domain has been determined to 2.8 {angstrom} resolution. The structure resembles the back-to-back dimer observed in the related eIF2{alpha} kinase PKR. Phosphorylation of Thr980 stabilizes both the activation loop and helix {alpha}G in the C-terminal lobe, preparing the latter for eIF2{alpha} binding. The structure suggests conservation in the mode of activation of eIF2{alpha} kinases and is consistent with a 'line-up' model for PERK activation triggered by oligomerization of its luminal domain.

  3. Enhanced food anticipatory activity associated with enhanced activation of extrahypothalamic neural pathways in serotonin2C receptor null mutant mice.

    Directory of Open Access Journals (Sweden)

    Jennifer L Hsu

    Full Text Available The ability to entrain circadian rhythms to food availability is important for survival. Food-entrained circadian rhythms are characterized by increased locomotor activity in anticipation of food availability (food anticipatory activity. However, the molecular components and neural circuitry underlying the regulation of food anticipatory activity remain unclear. Here we show that serotonin(2C receptor (5-HT2CR null mutant mice subjected to a daytime restricted feeding schedule exhibit enhanced food anticipatory activity compared to wild-type littermates, without phenotypic differences in the impact of restricted feeding on food consumption, body weight loss, or blood glucose levels. Moreover, we show that the enhanced food anticipatory activity in 5-HT2CR null mutant mice develops independent of external light cues and persists during two days of total food deprivation, indicating that food anticipatory activity in 5-HT2CR null mutant mice reflects the locomotor output of a food-entrainable oscillator. Whereas restricted feeding induces c-fos expression to a similar extent in hypothalamic nuclei of wild-type and null mutant animals, it produces enhanced expression in the nucleus accumbens and other extrahypothalamic regions of null mutant mice relative to wild-type subjects. These data suggest that 5-HT2CRs gate food anticipatory activity through mechanisms involving extrahypothalamic neural pathways.

  4. Identification of non-linear models of neural activity in bold fmri

    DEFF Research Database (Denmark)

    Jacobsen, Daniel Jakup; Madsen, Kristoffer Hougaard; Hansen, Lars Kai

    2006-01-01

    Non-linear hemodynamic models express the BOLD signal as a nonlinear, parametric functional of the temporal sequence of local neural activity. Several models have been proposed for this neural activity. We identify one such parametric model by estimating the distribution of its parameters. These ...

  5. Evidence-Based Systematic Review: Effects of Neuromuscular Electrical Stimulation on Swallowing and Neural Activation

    Science.gov (United States)

    Clark, Heather; Lazarus, Cathy; Arvedson, Joan; Schooling, Tracy; Frymark, Tobi

    2009-01-01

    Purpose: To systematically review the literature examining the effects of neuromuscular electrical stimulation (NMES) on swallowing and neural activation. The review was conducted as part of a series examining the effects of oral motor exercises (OMEs) on speech, swallowing, and neural activation. Method: A systematic search was conducted to…

  6. Neural Network Hydrological Modelling: Linear Output Activation Functions?

    Science.gov (United States)

    Abrahart, R. J.; Dawson, C. W.

    2005-12-01

    The power to represent non-linear hydrological processes is of paramount importance in neural network hydrological modelling operations. The accepted wisdom requires non-polynomial activation functions to be incorporated in the hidden units such that a single tier of hidden units can thereafter be used to provide a 'universal approximation' to whatever particular hydrological mechanism or function is of interest to the modeller. The user can select from a set of default activation functions, or in certain software packages, is able to define their own function - the most popular options being logistic, sigmoid and hyperbolic tangent. If a unit does not transform its inputs it is said to possess a 'linear activation function' and a combination of linear activation functions will produce a linear solution; whereas the use of non-linear activation functions will produce non-linear solutions in which the principle of superposition does not hold. For hidden units, speed of learning and network complexities are important issues. For the output units, it is desirable to select an activation function that is suited to the distribution of the target values: e.g. binary targets (logistic); categorical targets (softmax); continuous-valued targets with a bounded range (logistic / tanh); positive target values with no known upper bound (exponential; but beware of overflow); continuous-valued targets with no known bounds (linear). It is also standard practice in most hydrological applications to use the default software settings and to insert a set of identical non-linear activation functions in the hidden layer and output layer processing units. Mixed combinations have nevertheless been reported in several hydrological modelling papers and the full ramifications of such activities requires further investigation and assessment i.e. non-linear activation functions in the hidden units connected to linear or clipped-linear activation functions in the output unit. There are two

  7. Shipwreck rates and tree rings suggest reduced North Atlantic tropical cyclone activity during the Maunder Minimum.

    Science.gov (United States)

    Harley, G. L.; Trouet, V.; Dominguez Delmas, M.

    2014-12-01

    The observational record of North Atlantic TCs is too short to inform our understanding of decadal-scale climatic controls on TC regimes. We combined two new annual-resolution proxies of Atlantic storm activity to extend the observational TC record back to the 16th Century. A tree-growth suppression chronology (1707-2010 CE) from the Florida Keys, U.S.A. captures 91% of observed North Atlantic TCs (1850-2010 CE) and shares significant peak events with a documentary time series of Spanish shipwrecks in the Caribbean (1495-1820). Decadal-scale shipwreck rates were lowest during the Maunder Minimum (ca. 1645-1715), indicating that cooler Atlantic sea surface temperatures (SSTs) during this period reduced Caribbean TC activity. Our results support global-scale climate proxy data and suggest that cooler tropical Atlantic SSTs and a generally negative mode of the North Atlantic Oscillation during the Little Ice Age reduced TC frequency.

  8. Activity-dependent modulation of neural circuit synaptic connectivity

    Directory of Open Access Journals (Sweden)

    Charles R Tessier

    2009-07-01

    Full Text Available In many nervous systems, the establishment of neural circuits is known to proceed via a two-stage process; 1 early, activity-independent wiring to produce a rough map characterized by excessive synaptic connections, and 2 subsequent, use-dependent pruning to eliminate inappropriate connections and reinforce maintained synapses. In invertebrates, however, evidence of the activity-dependent phase of synaptic refinement has been elusive, and the dogma has long been that invertebrate circuits are “hard-wired” in a purely activity-independent manner. This conclusion has been challenged recently through the use of new transgenic tools employed in the powerful Drosophila system, which have allowed unprecedented temporal control and single neuron imaging resolution. These recent studies reveal that activity-dependent mechanisms are indeed required to refine circuit maps in Drosophila during precise, restricted windows of late-phase development. Such mechanisms of circuit refinement may be key to understanding a number of human neurological diseases, including developmental disorders such as Fragile X syndrome (FXS and autism, which are hypothesized to result from defects in synaptic connectivity and activity-dependent circuit function. This review focuses on our current understanding of activity-dependent synaptic connectivity in Drosophila, primarily through analyzing the role of the fragile X mental retardation protein (FMRP in the Drosophila FXS disease model. The particular emphasis of this review is on the expanding array of new genetically-encoded tools that are allowing cellular events and molecular players to be dissected with ever greater precision and detail.

  9. EEG-fMRI Bayesian framework for neural activity estimation: a simulation study

    Science.gov (United States)

    Croce, Pierpaolo; Basti, Alessio; Marzetti, Laura; Zappasodi, Filippo; Del Gratta, Cosimo

    2016-12-01

    Objective. Due to the complementary nature of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), and given the possibility of simultaneous acquisition, the joint data analysis can afford a better understanding of the underlying neural activity estimation. In this simulation study we want to show the benefit of the joint EEG-fMRI neural activity estimation in a Bayesian framework. Approach. We built a dynamic Bayesian framework in order to perform joint EEG-fMRI neural activity time course estimation. The neural activity is originated by a given brain area and detected by means of both measurement techniques. We have chosen a resting state neural activity situation to address the worst case in terms of the signal-to-noise ratio. To infer information by EEG and fMRI concurrently we used a tool belonging to the sequential Monte Carlo (SMC) methods: the particle filter (PF). Main results. First, despite a high computational cost, we showed the feasibility of such an approach. Second, we obtained an improvement in neural activity reconstruction when using both EEG and fMRI measurements. Significance. The proposed simulation shows the improvements in neural activity reconstruction with EEG-fMRI simultaneous data. The application of such an approach to real data allows a better comprehension of the neural dynamics.

  10. Imaging of Cellular Oxidoreductase Activity Suggests Mixotrophic Metabolisms in Thiomargarita spp.

    Science.gov (United States)

    Bailey, Jake V; Flood, Beverly E; Ricci, Elizabeth; Delherbe, Nathalie

    2017-11-07

    The largest known bacteria, Thiomargarita spp., have yet to be isolated in pure culture, but their large size allows for individual cells to be monitored in time course experiments or to be individually sorted for omics-based investigations. Here we investigated the metabolism of individual cells of Thiomargarita spp. by using a novel application of a tetrazolium-based dye that measures oxidoreductase activity. When coupled with microscopy, staining of the cells with a tetrazolium-formazan dye allows metabolic responses in Thiomargarita spp. to be to be tracked in the absence of observable cell division. Additionally, the metabolic activity of Thiomargarita sp. cells can be differentiated from the metabolism of other microbes in specimens that contain adherent bacteria. The results of our redox dye-based assay suggest that Thiomargarita is the most metabolically versatile under anoxic conditions, where it appears to express cellular oxidoreductase activity in response to the electron donors succinate, acetate, citrate, formate, thiosulfate, H2, and H2S. Under hypoxic conditions, formazan staining results suggest the metabolism of succinate and likely acetate, citrate, and H2S. Cells incubated under oxic conditions showed the weakest formazan staining response, and then only to H2S, citrate, and perhaps succinate. These results provide experimental validation of recent genomic studies of Candidatus Thiomargarita nelsonii that suggest metabolic plasticity and mixotrophic metabolism. The cellular oxidoreductase response of bacteria attached to the exterior of Thiomargarita also supports the possibility of trophic interactions between these largest of known bacteria and attached epibionts.IMPORTANCE The metabolic potential of many microorganisms that cannot be grown in the laboratory is known only from genomic data. Genomes of Thiomargarita spp. suggest that these largest of known bacteria are mixotrophs, combining lithotrophic metabolism with organic carbon

  11. SPR imaging combined with cyclic voltammetry for the detection of neural activity

    Directory of Open Access Journals (Sweden)

    Hui Li

    2014-03-01

    Full Text Available Surface plasmon resonance (SPR detects changes in refractive index at a metal-dielectric interface. In this study, SPR imaging (SPRi combined with cyclic voltammetry (CV was applied to detect neural activity in isolated bullfrog sciatic nerves. The neural activities induced by chemical and electrical stimulation led to an SPR response, and the activities were recorded in real time. The activities of different parts of the sciatic nerve were recorded and compared. The results demonstrated that SPR imaging combined with CV is a powerful tool for the investigation of neural activity.

  12. Neural interaction of speech and gesture: differential activations of metaphoric co-verbal gestures.

    Science.gov (United States)

    Kircher, Tilo; Straube, Benjamin; Leube, Dirk; Weis, Susanne; Sachs, Olga; Willmes, Klaus; Konrad, Kerstin; Green, Antonia

    2009-01-01

    Gestures are an important part of human communication. However, little is known about the neural correlates of gestures accompanying speech comprehension. The goal of this study is to investigate the neural basis of speech-gesture interaction as reflected in activation increase and decrease during observation of natural communication. Fourteen German participants watched video clips of 5 s duration depicting an actor who performed metaphoric gestures to illustrate the abstract content of spoken sentences. Furthermore, video clips of isolated gestures (without speech), isolated spoken sentences (without gestures) and gestures in the context of an unknown language (Russian) were additionally presented while functional magnetic resonance imaging (fMRI) data were acquired. Bimodal speech and gesture processing led to left hemispheric activation increases of the posterior middle temporal gyrus, the premotor cortex, the inferior frontal gyrus, and the right superior temporal sulcus. Activation reductions during the bimodal condition were located in the left superior temporal gyrus and the left posterior insula. Gesture related activation increases and decreases were dependent on language semantics and were not found in the unknown-language condition. Our results suggest that semantic integration processes for bimodal speech plus gesture comprehension are reflected in activation increases in the classical left hemispheric language areas. Speech related gestures seem to enhance language comprehension during the face-to-face communication.

  13. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition

    Science.gov (United States)

    Ordóñez, Francisco Javier; Roggen, Daniel

    2016-01-01

    Human activity recognition (HAR) tasks have traditionally been solved using engineered features obtained by heuristic processes. Current research suggests that deep convolutional neural networks are suited to automate feature extraction from raw sensor inputs. However, human activities are made of complex sequences of motor movements, and capturing this temporal dynamics is fundamental for successful HAR. Based on the recent success of recurrent neural networks for time series domains, we propose a generic deep framework for activity recognition based on convolutional and LSTM recurrent units, which: (i) is suitable for multimodal wearable sensors; (ii) can perform sensor fusion naturally; (iii) does not require expert knowledge in designing features; and (iv) explicitly models the temporal dynamics of feature activations. We evaluate our framework on two datasets, one of which has been used in a public activity recognition challenge. Our results show that our framework outperforms competing deep non-recurrent networks on the challenge dataset by 4% on average; outperforming some of the previous reported results by up to 9%. Our results show that the framework can be applied to homogeneous sensor modalities, but can also fuse multimodal sensors to improve performance. We characterise key architectural hyperparameters’ influence on performance to provide insights about their optimisation. PMID:26797612

  14. Age of acquisition modulates neural activity for both regular and irregular syntactic functions.

    Science.gov (United States)

    Hernandez, Arturo E; Hofmann, Juliane; Kotz, Sonja A

    2007-07-01

    Studies have found that neural activity is greater for irregular grammatical items than regular items. Findings with monolingual Spanish speakers have revealed a similar effect when making gender decisions for visually presented nouns. The current study extended previous studies by looking at the role of regularity in modulating differences in groups that differ in the age of acquisition of a language. Early and late learners of Spanish matched on measures of language proficiency were asked to make gender decisions to regular (-o for masculine and -a for feminine) and irregular items (which can end in e, l, n, r, s, t and z). Results revealed increased activity in left BA 44 for irregular compared to regular items in separate comparisons for both early and late learners. In addition, within-group comparisons revealed that neural activity for irregulars extended into left BA 47 for late learners and into left BA 6 for early learners. Direct comparisons between groups revealed increased activity in left BA 44/45 for irregular items indicating the need for more extensive syntactic processing in late learners. The results revealed that processing of irregular grammatical gender leads to increased activity in left BA 44 and adjacent areas in the left IFG regardless of when a language is learned. Furthermore, these findings suggest differential recruitment of brain areas associated with grammatical processing in late learners. The results are discussed with regard to a model which considers L2 learning as emerging from the competitive interplay between two languages.

  15. Neural circuits in the brain that are activated when mitigating criminal sentences.

    Science.gov (United States)

    Yamada, Makiko; Camerer, Colin F; Fujie, Saori; Kato, Motoichiro; Matsuda, Tetsuya; Takano, Harumasa; Ito, Hiroshi; Suhara, Tetsuya; Takahashi, Hidehiko

    2012-03-27

    In sentencing guilty defendants, jurors and judges weigh 'mitigating circumstances', which create sympathy for a defendant. Here we use functional magnetic resonance imaging to measure neural activity in ordinary citizens who are potential jurors, as they decide on mitigation of punishment for murder. We found that sympathy activated regions associated with mentalising and moral conflict (dorsomedial prefrontal cortex, precuneus and temporo-parietal junction). Sentencing also activated precuneus and anterior cingulate cortex, suggesting that mitigation is based on negative affective responses to murder, sympathy for mitigating circumstances and cognitive control to choose numerical punishments. Individual differences on the inclination to mitigate, the sentence reduction per unit of judged sympathy, correlated with activity in the right middle insula, an area known to represent interoception of visceral states. These results could help the legal system understand how potential jurors actually decide, and contribute to growing knowledge about whether emotion and cognition are integrated sensibly in difficult judgments.

  16. Selective neural activation in a histologically derived model of peripheral nerve

    Science.gov (United States)

    Butson, Christopher R.; Miller, Ian O.; Normann, Richard A.; Clark, Gregory A.

    2011-06-01

    Functional electrical stimulation (FES) is a general term for therapeutic methods that use electrical stimulation to aid or replace lost ability. For FES systems that communicate with the nervous system, one critical component is the electrode interface through which the machine-body information transfer must occur. In this paper, we examine the influence of inhomogeneous tissue conductivities and positions of nodes of Ranvier on activation of myelinated axons for neuromuscular control as a function of electrode configuration. To evaluate these effects, we developed a high-resolution bioelectric model of a fascicle from a stained cross-section of cat sciatic nerve. The model was constructed by digitizing a fixed specimen of peripheral nerve, extruding the image along the axis of the nerve, and assigning each anatomical component to one of several different tissue types. Electrodes were represented by current sources in monopolar, transverse bipolar, and longitudinal bipolar configurations; neural activation was determined using coupled field-neuron simulations with myelinated axon cable models. We found that the use of an isotropic tissue medium overestimated neural activation thresholds compared with the use of physiologically based, inhomogeneous tissue medium, even after controlling for mean impedance levels. Additionally, the positions of the cathodic sources relative to the nodes of Ranvier had substantial effects on activation, and these effects were modulated by the electrode configuration. Our results indicate that physiologically based tissue properties cause considerable variability in the neural response, and the inclusion of these properties is an important component in accurately predicting activation. The results are used to suggest new electrode designs to enable selective stimulation of small diameter fibers.

  17. GPS suggests low physical activity in urban Hispanic school children: a proof of concept study.

    Science.gov (United States)

    Carrel, Aaron L; Sledge, Jeffrey S; Ventura, Stephen J; Eickhoff, Jens C; Allen, David B

    2014-01-01

    Urban environments can increase risk for development of obesity, insulin resistance (IR), and type 2 diabetes mellitus (T2DM) by limiting physical activity. This study examined, in a cohort of urban Hispanic youth, the relationship between daily physical activity (PA) measured by GPS, insulin resistance and cardiovascular fitness. Hispanic middle school children (n = 141) were assessed for body mass index (BMI), IR (homeostasis model [HOMA-IR]), cardiovascular fitness (progressive aerobic cardiovascular endurance run [PACER]). PA was measured (GPS-PA) and energy expenditure estimated (GPS-EE) utilizing a global positioning mapping device worn for up to 7 days. Students (mean age 12.7 ± 1.2 years, 52% female) spent 98% of waking time in sedentary activities, 1.7% in moderate intensity PA, and 0.3% in vigorous intensity. GPS analysis revealed extremely low amounts of physical movement during waking hours. The degree of low PA confounded correlation analysis with PACER or HOMA-IR. Levels of moderate and vigorous intensity PA, measured by GPS, were extremely low in these urban Hispanic youth, possibly contributing to high rates of obesity and IR. Physical movement patterns suggest barriers to PA in play options near home, transportation to school, and in school recess time. GPS technology can objectively and accurately evaluate initiatives designed to reduce obesity and its morbidities by increasing PA.

  18. Neural activations are related to body-shape, anxiety, and outcomes in adolescent anorexia nervosa.

    Science.gov (United States)

    Xu, Jie; Harper, Jessica A; Van Enkevort, Erin A; Latimer, Kelsey; Kelley, Urszula; McAdams, Carrie J

    2017-04-01

    Anorexia nervosa (AN) is an illness that frequently begins during adolescence and involves weight loss. Two groups of adolescent girls (AN-A, weight-recovered following AN) and (HC-A, healthy comparison) completed a functional magnetic resonance imaging task involving social evaluations, allowing comparison of neural activations during self-evaluations, friend-evaluations, and perspective-taking self-evaluations. Although the two groups were not different in their whole-brain activations, anxiety and body shape concerns were correlated with neural activity in a priori regions of interest. A cluster in medial prefrontal cortex and the dorsal anterior cingulate correlated with the body shape questionnaire; subjects with more body shape concerns used this area less during self than friend evaluations. A cluster in medial prefrontal cortex and the cingulate also correlated with anxiety such that more anxiety was associated with engagement when disagreeing rather than agreeing with social terms during self-evaluations. This data suggests that differences in the utilization of frontal brain regions during social evaluations may contribute to both anxiety and body shape concerns in adolescents with AN. Clinical follow-up was obtained, allowing exploration of whether brain function early in course of disease relates to illness trajectory. The adolescents successful in recovery used the posterior cingulate and precuneus more for friend than self evaluations than the adolescents that remained ill, suggesting that neural differences related to social evaluations may provide clinical predictive value. Utilization of both MPFC and the precuneus during social and self evaluations may be a key biological component for achieving sustained weight-recovery in adolescents with AN. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Reduction in neural performance following recovery from anoxic stress is mimicked by AMPK pathway activation.

    Directory of Open Access Journals (Sweden)

    Tomas G A Money

    Full Text Available Nervous systems are energetically expensive to operate and maintain. Both synaptic and action potential signalling require a significant investment to maintain ion homeostasis. We have investigated the tuning of neural performance following a brief period of anoxia in a well-characterized visual pathway in the locust, the LGMD/DCMD looming motion-sensitive circuit. We hypothesised that the energetic cost of signalling can be dynamically modified by cellular mechanisms in response to metabolic stress. We examined whether recovery from anoxia resulted in a decrease in excitability of the electrophysiological properties in the DCMD neuron. We further examined the effect of these modifications on behavioural output. We show that recovery from anoxia affects metabolic rate, flight steering behaviour, and action potential properties. The effects of anoxia on action potentials can be mimicked by activation of the AMPK metabolic pathway. We suggest this is evidence of a coordinated cellular mechanism to reduce neural energetic demand following an anoxic stress. Together, this represents a dynamically-regulated means to link the energetic demands of neural signaling with the environmental constraints faced by the whole animal.

  20. Chemical probing suggests redox-regulation of the carbonic anhydrase activity of mycobacterial Rv1284.

    Science.gov (United States)

    Nienaber, Lisa; Cave-Freeman, Elysia; Cross, Megan; Mason, Lyndel; Bailey, Ulla-Maja; Amani, Parisa; A Davis, Rohan; Taylor, Paul; Hofmann, Andreas

    2015-07-01

    The mycobacterial enzyme Rv1284 is a member of the β-carbonic anhydrase family that is considered essential for survival of the pathogen. The active site cavity of this dimeric protein is characterized by an exceptionally small volume and harbours a catalytic zinc ion coordinated by two cysteine and one histidine residue side chains. Using the natural products polycarpine and emodin as chemical probes in crystallographic experiments and stopped-flow enzyme assays, we report that the catalytic activity can be reversibly inhibited by oxidation. Oxidative conditions lead to the removal of one of the active site cysteine residues from the coordination sphere of the catalytic metal ion by engagement in a disulfide bond with another cysteine residue close by. The subsequent loss of the metal ion, which is supported by crystallographic analysis, may thus render the protein catalytically inactive. The oxidative inhibition of Rv1284 can be reversed by exposing the protein to reducing conditions. Because the physical size of the chemical probes used in the present study substantially exceeds the active site volume, we hypothesized that these compounds exert their effects from a surface-bound location and identified Tyr120 as a critical residue for oxidative inactivation. These findings link conditions of oxidative stress to pH homeostasis of the pathogen. Because oxidative stress and acidification are defence mechanisms employed by the innate immune system of the host, we suggest that Rv1284 may be a component of the mycobacterial survival strategy. Atomic coordinates and structure factors have been deposited in the Protein Data Bank under accession numbers 4yf4, 4yf5 and 4yf6. © 2015 FEBS.

  1. Cortical Neural Activity Predicts Sensory Acuity Under Optogenetic Manipulation.

    Science.gov (United States)

    Briguglio, John J; Aizenberg, Mark; Balasubramanian, Vijay; Geffen, Maria N

    2018-02-21

    Excitatory and inhibitory neurons in the mammalian sensory cortex form interconnected circuits that control cortical stimulus selectivity and sensory acuity. Theoretical studies have predicted that suppression of inhibition in such excitatory-inhibitory networks can lead to either an increase or, paradoxically, a decrease in excitatory neuronal firing, with consequent effects on stimulus selectivity. We tested whether modulation of inhibition or excitation in the auditory cortex of male mice could evoke such a variety of effects in tone-evoked responses and in behavioral frequency discrimination acuity. We found that, indeed, the effects of optogenetic manipulation on stimulus selectivity and behavior varied in both magnitude and sign across subjects, possibly reflecting differences in circuitry or expression of optogenetic factors. Changes in neural population responses consistently predicted behavioral changes for individuals separately, including improvement and impairment in acuity. This correlation between cortical and behavioral change demonstrates that, despite the complex and varied effects that these manipulations can have on neuronal dynamics, the resulting changes in cortical activity account for accompanying changes in behavioral acuity. SIGNIFICANCE STATEMENT Excitatory and inhibitory interactions determine stimulus specificity and tuning in sensory cortex, thereby controlling perceptual discrimination acuity. Modeling has predicted that suppressing the activity of inhibitory neurons can lead to increased or, paradoxically, decreased excitatory activity depending on the architecture of the network. Here, we capitalized on differences between subjects to test whether suppressing/activating inhibition and excitation can in fact exhibit such paradoxical effects for both stimulus sensitivity and behavioral discriminability. Indeed, the same optogenetic manipulation in the auditory cortex of different mice could improve or impair frequency discrimination

  2. Menstrual cycle phase does not affect sympathetic neural activity in women with postural orthostatic tachycardia syndrome.

    Science.gov (United States)

    Stickford, Abigail S L; VanGundy, Tiffany B; Levine, Benjamin D; Fu, Qi

    2015-05-01

    Women with the postural orthostatic tachycardia syndrome (POTS) report fluctuations in orthostatic tolerance throughout the menstrual cycle. The mechanism(s) underlying blood pressure control across the menstrual cycle in women with POTS are unknown. The findings of the present study indicate that the menstrual cycle does not affect muscle sympathetic nerve activity but modulates blood pressure and vasoconstriction in POTS women during orthostatic stress. Factors other than sympathetic neural activity are likely responsible for the symptoms of orthostatic intolerance across the menstrual cycle in women with POTS. Patients with the postural orthostatic tachycardia syndrome (POTS) are primarily premenopausal women, which may be attributed to female sex hormones. We tested the hypothesis that hormonal fluctuations of the menstrual cycle alter sympathetic neural activity and orthostatic tolerance in POTS women. Ten POTS women were studied during the early follicular (EF) and mid-luteal (ML) phases of the menstrual cycle. Haemodynamics and muscle sympathetic nerve activity (MSNA) were measured when supine, during 60 deg upright tilt for 45 min or until presyncope, and during the cold pressor test (CPT) and Valsalva manoeuvres. Blood pressure and total peripheral resistance were higher during rest and tilting in the ML than EF phase; however, heart rate, stroke volume and cardiac output were similar between phases. There were no mean ± SD differences in MSNA burst frequency (8 ± 8 EF phase vs. 10 ± 10 bursts min(-1) ML phase at rest; 34 ± 15 EF phase vs. 36 ± 16 bursts min(-1) ML phase at 5 min tilt), burst incidence or total activity, nor any differences in the cardiovagal and sympathetic baroreflex sensitivities between phases under any condition. The incidence of presyncope was also the same between phases. There were no differences in haemodynamic or sympathetic responses to CPT or Valsalva. These results suggest that the menstrual cycle does

  3. Overlapping patterns of neural activity for different forms of novelty in fMRI

    Directory of Open Access Journals (Sweden)

    Colin Shaun Hawco

    2014-09-01

    Full Text Available When stimuli are presented multiple times, the neural response to repeated stimuli is reduced relative to novel stimuli (repetition suppression. Responses to different types of novelty were examined. Stimulus novelty was examined by contrasting first vs. second presentation of triads of objects during memory encoding. Semantic novelty was contrasted by comparing unrelated (semantically novel triads of objects to triads in which all three objects were related (e.g. all objects were tools. In recognition, associative novelty was examined by contrasting rearranged triads (previously seen objects in a new association with intact triads. Activity was observed in posterior regions (occipital and fusiform, with the largest extent of activity for stimulus novelty and smallest for associational novelty. Frontal activity was also observed in stimulus and semantic novelty. Additional analysis indicated that the hemodynamic response in voxels identified in the stimulus and semantic novelty contrasts was modulated by reaction time on a trial-by-trial basis. That is, the duration of the hemodynamic response was driven by reaction time. This was not the case for associative novelty. The high level of overlap across different forms of novelty suggests a similar mechanism for reduced neural activity, which may be related to reduced visual processing time. This is consistent with a facilitation model of repetition suppression, which posits a reduced peak and duration of neuronal firing for repeated stimuli.

  4. Tracking cortical entrainment in neural activity: Auditory processes in human temporal cortex

    Directory of Open Access Journals (Sweden)

    Andrew eThwaites

    2015-02-01

    Full Text Available A primary objective for cognitive neuroscience is to identify how features of the sensory environment are encoded in neural activity. Current auditory models of loudness perception can be used to make detailed predictions about the neural activity of the cortex as an individual listens to speech. We used two such models (loudness-sones and loudness-phons, varying in their psychophysiological realism, to predict the instantaneous loudness contours produced by 480 isolated words. These two sets of 480 contours were used to search for electrophysiological evidence of loudness processing in whole-brain recordings of electro- and magneto-encephalographic (EMEG activity, recorded while subjects listened to the words. The technique identified a bilateral sequence of loudness processes, predicted by the more realistic loudness-sones model, that begin in auditory cortex at ~80 ms and subsequently reappear, tracking progressively down the superior temporal sulcus (STS at lags from 230 to 330 ms. The technique was then extended to search for regions sensitive to the fundamental frequency (F0 of the voiced parts of the speech. It identified a bilateral F0 process in auditory cortex at a lag of ~90 ms, which was not followed by activity in STS. The results suggest that loudness information is being used to guide the analysis of the speech stream as it proceeds beyond auditory cortex down STS towards the temporal pole.

  5. Aberrant DR5 transport through disruption of lysosomal function suggests a novel mechanism for receptor activation

    Science.gov (United States)

    Akpinar, Birce; Safarikova, Barbora; Laukova, Jarmila; Debnath, Shubhranshu; Vaculova, Alena Hyrslova; Zhivotovsky, Boris; Olsson, Magnus

    2016-01-01

    To examine reciprocal or unilateral implications between two cell destruction processes, autophagy and apoptosis, in 5-Fluorouracil (5-FU)-treated tumor cells, a combination of chemical inhibitors, RNAi and genetic approaches were used. In contrast to cancer cells harboring obstructed apoptosis, either at the DISC or the mitochondrial level, p53-deficiency generated signs of autophagy deregulation upon chemotherapy. On the other, hand disruption of lysosomal function by chloroquine, caused a profound decrease in apoptotic markers appearing in response to 5-FU. DR5, which is essential for 5-FU-induced apoptosis, accumulated in lysosomes and autophagosomes upon chloroquine treatment. Since neither 3-MA, RNAi of critical autophagy regulators or inhibition of cathepsins reversed apoptosis in a similar manner, it is likely that not autophagy per se but rather correct receptor transport is an important factor for 5-FU cytotoxicity. We found that apoptosis generated by TRAIL, the cognate ligand for DR5, remained unchanged upon chloroquine lysosomal interference, indicating that 5-FU activates the receptor by a discrete mechanism. In support, depletion of membrane cholesterol or hampering cholesterol transport drastically reduced 5-FU cytotoxicity. We conclude that targeting of lysosomes by chloroquine deregulates DR5 trafficking and abrogates 5-FU- but not TRAIL-stimulated cell elimination, hence suggesting a novel mechanism for receptor activation. PMID:27506940

  6. Sensory Entrainment Mechanisms in Auditory Perception: Neural Synchronization Cortico-Striatal Activation

    Science.gov (United States)

    Sameiro-Barbosa, Catia M.; Geiser, Eveline

    2016-01-01

    The auditory system displays modulations in sensitivity that can align with the temporal structure of the acoustic environment. This sensory entrainment can facilitate sensory perception and is particularly relevant for audition. Systems neuroscience is slowly uncovering the neural mechanisms underlying the behaviorally observed sensory entrainment effects in the human sensory system. The present article summarizes the prominent behavioral effects of sensory entrainment and reviews our current understanding of the neural basis of sensory entrainment, such as synchronized neural oscillations, and potentially, neural activation in the cortico-striatal system. PMID:27559306

  7. Neural control and precision of flight muscle activation in Drosophila.

    Science.gov (United States)

    Lehmann, Fritz-Olaf; Bartussek, Jan

    2017-01-01

    Precision of motor commands is highly relevant in a large context of various locomotor behaviors, including stabilization of body posture, heading control and directed escape responses. While posture stability and heading control in walking and swimming animals benefit from high friction via ground reaction forces and elevated viscosity of water, respectively, flying animals have to cope with comparatively little aerodynamic friction on body and wings. Although low frictional damping in flight is the key to the extraordinary aerial performance and agility of flying birds, bats and insects, it challenges these animals with extraordinary demands on sensory integration and motor precision. Our review focuses on the dynamic precision with which Drosophila activates its flight muscular system during maneuvering flight, considering relevant studies on neural and muscular mechanisms of thoracic propulsion. In particular, we tackle the precision with which flies adjust power output of asynchronous power muscles and synchronous flight control muscles by monitoring muscle calcium and spike timing within the stroke cycle. A substantial proportion of the review is engaged in the significance of visual and proprioceptive feedback loops for wing motion control including sensory integration at the cellular level. We highlight that sensory feedback is the basis for precise heading control and body stability in flies.

  8. Channelrhodopsins: visual regeneration and neural activation by a light switch

    Science.gov (United States)

    Natasha, G; Tan, Aaron; Farhatnia, Yasmin; Rajadas, Jayakumar; Hamblin, Michael R.; Khaw, Peng T.; Seifalian, Alexander M.

    2013-01-01

    The advent of optogenetics provides a new direction for the field of neuroscience and biotechnology, serving both as a refined investigative tool and as potential cure for many medical conditions via genetic manipulation. Although still in its infancy, recent advances in optogenetics has made it possible to remotely manipulate in vivo cellular functions using light. Coined Nature Methods’ ‘Method of the Year’ in 2010, the optogenetic toolbox has the potential to control cell, tissue and even animal behaviour. This optogenetic toolbox consists of light-sensitive proteins that are able to modulate membrane potential in response to light. Channelrhodopsins (ChR) are light-gated microbial ion channels, which were first described in green algae. ChR2 (a subset of ChR) is a seven transmembrane a helix protein, which evokes membrane depolarization and mediates an action potential upon photostimulation with blue (470 nm) light. By contrast to other seven-transmembrane proteins that require second messengers to open ion channels, ChR2 form ion channels themselves, allowing ultrafast depolarization (within 50 milliseconds of illumination). It has been shown that integration of ChR2 into various tissues of mice can activate neural circuits, control heart muscle contractions, and even restore breathing after spinal cord injury. More compellingly, a plethora of evidence has indicated that artificial expression of ChR2 in retinal ganglion cells can reinstate visual perception in mice with retinal degeneration. PMID:23664865

  9. Sex differences in neural activation to facial expressions denoting contempt and disgust.

    Directory of Open Access Journals (Sweden)

    André Aleman

    Full Text Available The facial expression of contempt has been regarded to communicate feelings of moral superiority. Contempt is an emotion that is closely related to disgust, but in contrast to disgust, contempt is inherently interpersonal and hierarchical. The aim of this study was twofold. First, to investigate the hypothesis of preferential amygdala responses to contempt expressions versus disgust. Second, to investigate whether, at a neural level, men would respond stronger to biological signals of interpersonal superiority (e.g., contempt than women. We performed an experiment using functional magnetic resonance imaging (fMRI, in which participants watched facial expressions of contempt and disgust in addition to neutral expressions. The faces were presented as distractors in an oddball task in which participants had to react to one target face. Facial expressions of contempt and disgust activated a network of brain regions, including prefrontal areas (superior, middle and medial prefrontal gyrus, anterior cingulate, insula, amygdala, parietal cortex, fusiform gyrus, occipital cortex, putamen and thalamus. Contemptuous faces did not elicit stronger amygdala activation than did disgusted expressions. To limit the number of statistical comparisons, we confined our analyses of sex differences to the frontal and temporal lobes. Men displayed stronger brain activation than women to facial expressions of contempt in the medial frontal gyrus, inferior frontal gyrus, and superior temporal gyrus. Conversely, women showed stronger neural responses than men to facial expressions of disgust. In addition, the effect of stimulus sex differed for men versus women. Specifically, women showed stronger responses to male contemptuous faces (as compared to female expressions, in the insula and middle frontal gyrus. Contempt has been conceptualized as signaling perceived moral violations of social hierarchy, whereas disgust would signal violations of physical purity. Thus, our

  10. Co-speech gestures influence neural activity in brain regions associated with processing semantic information.

    Science.gov (United States)

    Dick, Anthony Steven; Goldin-Meadow, Susan; Hasson, Uri; Skipper, Jeremy I; Small, Steven L

    2009-11-01

    Everyday communication is accompanied by visual information from several sources, including co-speech gestures, which provide semantic information listeners use to help disambiguate the speaker's message. Using fMRI, we examined how gestures influence neural activity in brain regions associated with processing semantic information. The BOLD response was recorded while participants listened to stories under three audiovisual conditions and one auditory-only (speech alone) condition. In the first audiovisual condition, the storyteller produced gestures that naturally accompany speech. In the second, the storyteller made semantically unrelated hand movements. In the third, the storyteller kept her hands still. In addition to inferior parietal and posterior superior and middle temporal regions, bilateral posterior superior temporal sulcus and left anterior inferior frontal gyrus responded more strongly to speech when it was further accompanied by gesture, regardless of the semantic relation to speech. However, the right inferior frontal gyrus was sensitive to the semantic import of the hand movements, demonstrating more activity when hand movements were semantically unrelated to the accompanying speech. These findings show that perceiving hand movements during speech modulates the distributed pattern of neural activation involved in both biological motion perception and discourse comprehension, suggesting listeners attempt to find meaning, not only in the words speakers produce, but also in the hand movements that accompany speech.

  11. SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos.

    Directory of Open Access Journals (Sweden)

    Mary Y Wu

    2011-02-01

    Full Text Available Bone morphogenetic protein (BMP gradients provide positional information to direct cell fate specification, such as patterning of the vertebrate ectoderm into neural, neural crest, and epidermal tissues, with precise borders segregating these domains. However, little is known about how BMP activity is regulated spatially and temporally during vertebrate development to contribute to embryonic patterning, and more specifically to neural crest formation. Through a large-scale in vivo functional screen in Xenopus for neural crest fate, we identified an essential regulator of BMP activity, SNW1. SNW1 is a nuclear protein known to regulate gene expression. Using antisense morpholinos to deplete SNW1 protein in both Xenopus and zebrafish embryos, we demonstrate that dorsally expressed SNW1 is required for neural crest specification, and this is independent of mesoderm formation and gastrulation morphogenetic movements. By exploiting a combination of immunostaining for phosphorylated Smad1 in Xenopus embryos and a BMP-dependent reporter transgenic zebrafish line, we show that SNW1 regulates a specific domain of BMP activity in the dorsal ectoderm at the neural plate border at post-gastrula stages. We use double in situ hybridizations and immunofluorescence to show how this domain of BMP activity is spatially positioned relative to the neural crest domain and that of SNW1 expression. Further in vivo and in vitro assays using cell culture and tissue explants allow us to conclude that SNW1 acts upstream of the BMP receptors. Finally, we show that the requirement of SNW1 for neural crest specification is through its ability to regulate BMP activity, as we demonstrate that targeted overexpression of BMP to the neural plate border is sufficient to restore neural crest formation in Xenopus SNW1 morphants. We conclude that through its ability to regulate a specific domain of BMP activity in the vertebrate embryo, SNW1 is a critical regulator of neural plate

  12. Activity in part of the neural correlates of consciousness reflects integration.

    Science.gov (United States)

    Eriksson, Johan

    2017-10-01

    Integration is commonly viewed as a key process for generating conscious experiences. Accordingly, there should be increased activity within the neural correlates of consciousness when demands on integration increase. We used fMRI and "informational masking" to isolate the neural correlates of consciousness and measured how the associated brain activity changed as a function of required integration. Integration was manipulated by comparing the experience of hearing simple reoccurring tones to hearing harmonic tone triplets. The neural correlates of auditory consciousness included superior temporal gyrus, lateral and medial frontal regions, cerebellum, and also parietal cortex. Critically, only activity in left parietal cortex increased significantly as a function of increasing demands on integration. We conclude that integration can explain part of the neural activity associated with the generation conscious experiences, but that much of associated brain activity apparently reflects other processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Physical methods for generating and decoding neural activity in Hirudo verbana

    Science.gov (United States)

    Migliori, Benjamin John

    The interface between living nervous systems and hardware is an excellent proving ground for precision experimental methods and information classification systems. Nervous systems are complex (104 -- 10 15(!) connections), fragile, and highly active in intricate, constantly evolving patterns. However, despite the conveniently electrical nature of neural transmission, the interface between nervous systems and hardware poses significant experimental difficulties. As the desire for direct interfaces with neural signals continues to expand, the need for methods of generating and measuring neural activity with high spatiotemporal precision has become increasingly critical. In this thesis, I describe advances I have made in the ability to modify, generate, measure, and understand neural signals both in- and ex-vivo. I focus on methods developed for transmitting and extracting signals in the intact nervous system of Hirudo verbana (the medicinal leech), an animal with a minimally complex nervous system (10000 neurons distributed in packets along a nerve cord) that exhibits a diverse array of behaviors. To introduce artificial activity patterns, I developed a photothermal activation system in which a highly focused laser is used to irradiate carbon microparticles in contact with target neurons. The resulting local temperature increase generates an electrical current that forces the target neuron to fire neural signals, thereby providing a unique neural input mechanism. These neural signals can potentially be used to alter behavioral choice or generate specific behavioral output, and can be used endogenously in many animal models. I also describe new tools developed to expand the application of this method. In complement to this input system, I describe a new method of analyzing neural output signals involved in long-range coordination of behaviors. Leech behavioral signals are propagated between neural packets as electrical pulses in the nerve connective, a bundle of

  14. Optogenetics in Silicon: A Neural Processor for Predicting Optically Active Neural Networks.

    Science.gov (United States)

    Junwen Luo; Nikolic, Konstantin; Evans, Benjamin D; Na Dong; Xiaohan Sun; Andras, Peter; Yakovlev, Alex; Degenaar, Patrick

    2017-02-01

    We present a reconfigurable neural processor for real-time simulation and prediction of opto-neural behaviour. We combined a detailed Hodgkin-Huxley CA3 neuron integrated with a four-state Channelrhodopsin-2 (ChR2) model into reconfigurable silicon hardware. Our architecture consists of a Field Programmable Gated Array (FPGA) with a custom-built computing data-path, a separate data management system and a memory approach based router. Advancements over previous work include the incorporation of short and long-term calcium and light-dependent ion channels in reconfigurable hardware. Also, the developed processor is computationally efficient, requiring only 0.03 ms processing time per sub-frame for a single neuron and 9.7 ms for a fully connected network of 500 neurons with a given FPGA frequency of 56.7 MHz. It can therefore be utilized for exploration of closed loop processing and tuning of biologically realistic optogenetic circuitry.

  15. Neural activity during health messaging predicts reductions in smoking above and beyond self-report.

    Science.gov (United States)

    Falk, Emily B; Berkman, Elliot T; Whalen, Danielle; Lieberman, Matthew D

    2011-03-01

    The current study tested whether neural activity in response to messages designed to help smokers quit could predict smoking reduction, above and beyond self-report. Using neural activity in an a priori region of interest (a subregion of medial prefrontal cortex [MPFC]), in response to ads designed to help smokers quit smoking, we prospectively predicted reductions in smoking in a community sample of smokers (N = 28) who were attempting to quit smoking. Smoking was assessed via expired carbon monoxide (CO; a biological measure of recent smoking) at baseline and 1 month following exposure to professionally developed quitting ads. A positive relationship was observed between activity in the MPFC region of interest and successful quitting (increased activity in MPFC was associated with a greater decrease in expired CO). The addition of neural activity to a model predicting changes in CO from self-reported intentions, self-efficacy, and ability to relate to the messages significantly improved model fit, doubling the variance explained (R²self-report = .15, R²self-report + neural activity = .35, R²change = .20). Neural activity is a useful complement to existing self-report measures. In this investigation, we extend prior work predicting behavior change based on neural activity in response to persuasive media to an important health domain and discuss potential psychological interpretations of the brain-behavior link. Our results support a novel use of neuroimaging technology for understanding the psychology of behavior change and facilitating health promotion. (c) 2011 APA, all rights reserved

  16. The relation of ongoing brain activity, evoked neural responses, and cognition

    Directory of Open Access Journals (Sweden)

    Sepideh Sadaghiani

    2010-06-01

    Full Text Available Ongoing brain activity has been observed since the earliest neurophysiological recordings and is found over a wide range of temporal and spatial scales. It is characterized by remarkably large spontaneous modulations. Here, we review evidence for the functional role of these ongoing activity fluctuations and argue that they constitute an essential property of the neural architecture underlying cognition. The role of spontaneous activity fluctuations is probably best understood when considering both their spatiotemporal structure and their functional impact on cognition. We first briefly argue against a ‘segregationist’ view on ongoing activity, both in time and space, countering this view with an emphasis on integration within a hierarchical spatiotemporal organization of intrinsic activity. We then highlight the flexibility and context-sensitivity of intrinsic functional connectivity that suggest its involvement in functionally relevant information processing. This role in information processing is pursued by reviewing how ongoing brain activity interacts with afferent and efferent information exchange of the brain with its environment. We focus on the relationship between the variability of ongoing and evoked brain activity, and review recent reports that tie ongoing brain activity fluctuations to variability in human perception and behavior. Finally, these observations are discussed within the framework of the free-energy principle which – applied to human brain function - provides a theoretical account for a non-random, coordinated interaction of ongoing and evoked activity in perception and behaviour.

  17. Anisotropy of ongoing neural activity in the primate visual cortex

    Directory of Open Access Journals (Sweden)

    Maier A

    2014-09-01

    Full Text Available Alexander Maier,1 Michele A Cox,1 Kacie Dougherty,1 Brandon Moore,1 David A Leopold2 1Department of Psychology, College of Arts and Science, Vanderbilt University, Nashville, TN, USA; 2Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, National Institute of Health, Bethesda, MD, USA Abstract: The mammalian neocortex features distinct anatomical variation in its tangential and radial extents. This review consolidates previously published findings from our group in order to compare and contrast the spatial profile of neural activity coherence across these distinct cortical dimensions. We focus on studies of ongoing local field potential (LFP data obtained simultaneously from multiple sites in the primary visual cortex in two types of experiments in which electrode contacts were spaced either along the cortical surface or at different laminar positions. These studies demonstrate that across both dimensions the coherence of ongoing LFP fluctuations diminishes as a function of interelectrode distance, although the nature and spatial scale of this falloff is very different. Along the cortical surface, the overall LFP coherence declines gradually and continuously away from a given position. In contrast, across the cortical layers, LFP coherence is discontinuous and compartmentalized as a function of depth. Specifically, regions of high LFP coherence fall into discrete superficial and deep laminar zones, with an abrupt discontinuity between the granular and infragranular layers. This spatial pattern of ongoing LFP coherence is similar when animals are at rest and when they are engaged in a behavioral task. These results point to the existence of partially segregated laminar zones of cortical processing that extend tangentially within the laminar compartments and are thus oriented orthogonal to the cortical columns. We interpret these electrophysiological observations in light of the known anatomical organization of

  18. Meditation reduces pain-related neural activity in the anterior cingulate cortex, insula, secondary somatosensory cortex, and thalamus.

    Directory of Open Access Journals (Sweden)

    Hiroki eNakata

    2014-12-01

    Full Text Available Recent studies have shown that meditation inhibits or relieves pain perception. To clarify the underlying mechanisms for this phenomenon, neuroimaging methods, such as functional magnetic resonance imaging (fMRI, and neurophysiological methods, such as magnetoencephalography (MEG and electroencephalography (EEG, have been used. However, it has been difficult to interpret the results, because there is some paradoxical evidence. For example, some studies reported increased neural responses to pain stimulation during meditation in the anterior cingulate cortex (ACC and insula, whereas others showed a decrease in these regions. There have been inconsistent findings to date. Moreover, in general, since the activities of the ACC and insula are correlated with pain perception, the increase in neural activities during meditation would be related to the enhancement of pain perception rather than its reduction. These contradictions might directly contribute to the ‘mystery of meditation’. In this review, we presented previous findings for brain regions during meditation and the anatomical changes that occurred in the brain with long-term meditation training. We then discussed the findings of previous studies that examined pain-related neural activity during meditation. We also described the brain mechanisms responsible for pain relief during meditation, and possible reasons for paradoxical evidence among previous studies. By thoroughly overviewing previous findings, we hypothesized that meditation reduces pain-related neural activity in the ACC, insula, secondary somatosensory cortex, and thalamus. We suggest that the characteristics of the modulation of this activity may depend on the kind of meditation and/or number of years of experience of meditation, which were associated with paradoxical findings among previous studies that investigated pain-related neural activities during meditation.

  19. Meditation reduces pain-related neural activity in the anterior cingulate cortex, insula, secondary somatosensory cortex, and thalamus

    Science.gov (United States)

    Nakata, Hiroki; Sakamoto, Kiwako; Kakigi, Ryusuke

    2014-01-01

    Recent studies have shown that meditation inhibits or relieves pain perception. To clarify the underlying mechanisms for this phenomenon, neuroimaging methods, such as functional magnetic resonance imaging, and neurophysiological methods, such as magnetoencephalography and electroencephalography, have been used. However, it has been difficult to interpret the results, because there is some paradoxical evidence. For example, some studies reported increased neural responses to pain stimulation during meditation in the anterior cingulate cortex (ACC) and insula, whereas others showed a decrease in these regions. There have been inconsistent findings to date. Moreover, in general, since the activities of the ACC and insula are correlated with pain perception, the increase in neural activities during meditation would be related to the enhancement of pain perception rather than its reduction. These contradictions might directly contribute to the ‘mystery of meditation.’ In this review, we presented previous findings for brain regions during meditation and the anatomical changes that occurred in the brain with long-term meditation training. We then discussed the findings of previous studies that examined pain-related neural activity during meditation. We also described the brain mechanisms responsible for pain relief during meditation, and possible reasons for paradoxical evidence among previous studies. By thoroughly overviewing previous findings, we hypothesized that meditation reduces pain-related neural activity in the ACC, insula, secondary somatosensory cortex, and thalamus. We suggest that the characteristics of the modulation of this activity may depend on the kind of meditation and/or number of years of experience of meditation, which were associated with paradoxical findings among previous studies that investigated pain-related neural activities during meditation. PMID:25566158

  20. The effect of visual parameters on neural activation during nonsymbolic number comparison and its relation to math competency.

    Science.gov (United States)

    Wilkey, Eric D; Barone, Jordan C; Mazzocco, Michèle M M; Vogel, Stephan E; Price, Gavin R

    2017-10-01

    Nonsymbolic numerical comparison task performance (whereby a participant judges which of two groups of objects is numerically larger) is thought to index the efficiency of neural systems supporting numerical magnitude perception, and performance on such tasks has been related to individual differences in math competency. However, a growing body of research suggests task performance is heavily influenced by visual parameters of the stimuli (e.g. surface area and dot size of object sets) such that the correlation with math is driven by performance on trials in which number is incongruent with visual cues. Almost nothing is currently known about whether the neural correlates of nonsymbolic magnitude comparison are also affected by visual congruency. To investigate this issue, we used functional magnetic resonance imaging (fMRI) to analyze neural activity during a nonsymbolic comparison task as a function of visual congruency in a sample of typically developing high school students (n = 36). Further, we investigated the relation to math competency as measured by the preliminary scholastic aptitude test (PSAT) in 10th grade. Our results indicate that neural activity was modulated by the ratio of the dot sets being compared in brain regions previously shown to exhibit an effect of ratio (i.e. left anterior cingulate, left precentral gyrus, left intraparietal sulcus, and right superior parietal lobe) when calculated from the average of congruent and incongruent trials, as it is in most studies, and that the effect of ratio within those regions did not differ as a function of congruency condition. However, there were significant differences in other regions in overall task-related activation, as opposed to the neural ratio effect, when congruent and incongruent conditions were contrasted at the whole-brain level. Math competency negatively correlated with ratio-dependent neural response in the left insula across congruency conditions and showed distinct correlations when

  1. Trait self-esteem and neural activities related to self-evaluation and social feedback

    Science.gov (United States)

    Yang, Juan; Xu, Xiaofan; Chen, Yu; Shi, Zhenhao; Han, Shihui

    2016-01-01

    Self-esteem has been associated with neural responses to self-reflection and attitude toward social feedback but in different brain regions. The distinct associations might arise from different tasks or task-related attitudes in the previous studies. The current study aimed to clarify these by investigating the association between self-esteem and neural responses to evaluation of one’s own personality traits and of others’ opinion about one’s own personality traits. We scanned 25 college students using functional MRI during evaluation of oneself or evaluation of social feedback. Trait self-esteem was measured using the Rosenberg self-esteem scale after scanning. Whole-brain regression analyses revealed that trait self-esteem was associated with the bilateral orbitofrontal activity during evaluation of one’s own positive traits but with activities in the medial prefrontal cortex, posterior cingulate, and occipital cortices during evaluation of positive social feedback. Our findings suggest that trait self-esteem modulates the degree of both affective processes in the orbitofrontal cortex during self-reflection and cognitive processes in the medial prefrontal cortex during evaluation of social feedback. PMID:26842975

  2. Analgesic Neural Circuits Are Activated by Electroacupuncture at Two Sets of Acupoints

    Directory of Open Access Journals (Sweden)

    Man-Li Hu

    2016-01-01

    Full Text Available To investigate analgesic neural circuits activated by electroacupuncture (EA at different sets of acupoints in the brain, goats were stimulated by EA at set of Baihui-Santai acupoints or set of Housanli acupoints for 30 min. The pain threshold was measured using the potassium iontophoresis method. The levels of c-Fos were determined with Streptavidin-Biotin Complex immunohistochemistry. The results showed pain threshold induced by EA at set of Baihui-Santai acupoints was 44.74%±4.56% higher than that by EA at set of Housanli acupoints (32.64%±5.04%. Compared with blank control, EA at two sets of acupoints increased c-Fos expression in the medial septal nucleus (MSN, the arcuate nucleus (ARC, the nucleus amygdala basalis (AB, the lateral habenula nucleus (HL, the ventrolateral periaqueductal grey (vlPAG, the locus coeruleus (LC, the nucleus raphe magnus (NRM, the pituitary gland, and spinal cord dorsal horn (SDH. Compared with EA at set of Housanli points, EA at set of Baihui-Santai points induced increased c-Fos expression in AB but decrease in MSN, the paraventricular nucleus of the hypothalamus, HL, and SDH. It suggests that ARC-PAG-NRM/LC-SDH and the hypothalamus-pituitary may be the common activated neural pathways taking part in EA-induced analgesia at the two sets of acupoints.

  3. Model of brain activation predicts the neural collective influence map of the brain.

    Science.gov (United States)

    Morone, Flaviano; Roth, Kevin; Min, Byungjoon; Stanley, H Eugene; Makse, Hernán A

    2017-04-11

    Efficient complex systems have a modular structure, but modularity does not guarantee robustness, because efficiency also requires an ingenious interplay of the interacting modular components. The human brain is the elemental paradigm of an efficient robust modular system interconnected as a network of networks (NoN). Understanding the emergence of robustness in such modular architectures from the interconnections of its parts is a longstanding challenge that has concerned many scientists. Current models of dependencies in NoN inspired by the power grid express interactions among modules with fragile couplings that amplify even small shocks, thus preventing functionality. Therefore, we introduce a model of NoN to shape the pattern of brain activations to form a modular environment that is robust. The model predicts the map of neural collective influencers (NCIs) in the brain, through the optimization of the influence of the minimal set of essential nodes responsible for broadcasting information to the whole-brain NoN. Our results suggest intervention protocols to control brain activity by targeting influential neural nodes predicted by network theory.

  4. Trait self-esteem and neural activities related to self-evaluation and social feedback.

    Science.gov (United States)

    Yang, Juan; Xu, Xiaofan; Chen, Yu; Shi, Zhenhao; Han, Shihui

    2016-02-04

    Self-esteem has been associated with neural responses to self-reflection and attitude toward social feedback but in different brain regions. The distinct associations might arise from different tasks or task-related attitudes in the previous studies. The current study aimed to clarify these by investigating the association between self-esteem and neural responses to evaluation of one's own personality traits and of others' opinion about one's own personality traits. We scanned 25 college students using functional MRI during evaluation of oneself or evaluation of social feedback. Trait self-esteem was measured using the Rosenberg self-esteem scale after scanning. Whole-brain regression analyses revealed that trait self-esteem was associated with the bilateral orbitofrontal activity during evaluation of one's own positive traits but with activities in the medial prefrontal cortex, posterior cingulate, and occipital cortices during evaluation of positive social feedback. Our findings suggest that trait self-esteem modulates the degree of both affective processes in the orbitofrontal cortex during self-reflection and cognitive processes in the medial prefrontal cortex during evaluation of social feedback.

  5. Parasympathetic neural activity accounts for the lowering of exercise heart rate at high altitude

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Calbet, J A; Rådegran, G

    2001-01-01

    In chronic hypoxia, both heart rate (HR) and cardiac output (Q) are reduced during exercise. The role of parasympathetic neural activity in lowering HR is unresolved, and its influence on Q and oxygen transport at high altitude has never been studied.......In chronic hypoxia, both heart rate (HR) and cardiac output (Q) are reduced during exercise. The role of parasympathetic neural activity in lowering HR is unresolved, and its influence on Q and oxygen transport at high altitude has never been studied....

  6. When your pain signifies my gain: neural activity while evaluating outcomes based on another person?s pain

    OpenAIRE

    Fang Cui; Xiangru Zhu; Ruolei Gu; Yue-jia Luo

    2016-01-01

    The overlap between pain and reward processing pathways leds researchers to hypothesize that there are interactions between them in the human brain. Two hypotheses have been proposed. The ?competition hypothesis? posits that reward can reduce pain-related neural activity and vice versa. The ?salience hypothesis? suggests that the motivational salience of pain and reward can be mutually reinforced. However, no study has tested these two hypotheses from temporal perspective as we know. In the p...

  7. To compare the effect of Active Neural Mobilization during Intermittent Lumbar Traction and Intermittent Lumbar Traction followed by Active Neural Mobilization in cases of Lumbar Radiculopathy

    Directory of Open Access Journals (Sweden)

    Jaywant Nagulkar

    2016-08-01

    Full Text Available To compare the effectiveness of Active neural mobilization (ANM during intermittent lumbar traction (ILT and intermittent lumbar traction followed by active neural mobilization treatment in patients of low back pain (LBP with radiculopathy.. To study the effect of ANM during ILT and ILT followed by ANM in patients of LBP with radiculopathy on VAS scale, P1 angle of SLR, P2 angle of SLR and Oswestry disability index(ODI. To compare the effect of ANM during ILT and ILT followed by ANM in patients of LBP with radiculopathy on visual analog scale (VAS scale, P1 angle of SLR, P2 angle of SLR and Oswestry disability index. In this study 107 patients of LBP with radiculopathy were randomly assigned into two different groups. Group A containing 54 patients received active neural mobilization during intermittent lumber traction and group B received intermittent lumber traction followed by active neural mobilization. The data on all the outcome measures were recorded on day 0 pre-treatment and on 10th day post treatment. Data were analyzed using statistical software Intercorted STATA VERSION 9.0. Patients in both the groups showed improvement in all 4 outcome measures as compared to baseline assessment values. Patients treated in group A showed more improvement as compared to group B. This study concluded that ANM during ILT gives more relief and yields better responses in patients of LBP with radiculopathy and may help person to resume his daily activities.

  8. Detection of neural activity in the brains of Japanese honeybee workers during the formation of a "hot defensive bee ball".

    Directory of Open Access Journals (Sweden)

    Atsushi Ugajin

    Full Text Available Anti-predator behaviors are essential to survival for most animals. The neural bases of such behaviors, however, remain largely unknown. Although honeybees commonly use their stingers to counterattack predators, the Japanese honeybee (Apis cerana japonica uses a different strategy to fight against the giant hornet (Vespa mandarinia japonica. Instead of stinging the hornet, Japanese honeybees form a "hot defensive bee ball" by surrounding the hornet en masse, killing it with heat. The European honeybee (A. mellifera ligustica, on the other hand, does not exhibit this behavior, and their colonies are often destroyed by a hornet attack. In the present study, we attempted to analyze the neural basis of this behavior by mapping the active brain regions of Japanese honeybee workers during the formation of a hot defensive bee ball. First, we identified an A. cerana homolog (Acks = Apis cerana kakusei of kakusei, an immediate early gene that we previously identified from A. mellifera, and showed that Acks has characteristics similar to kakusei and can be used to visualize active brain regions in A. cerana. Using Acks as a neural activity marker, we demonstrated that neural activity in the mushroom bodies, especially in Class II Kenyon cells, one subtype of mushroom body intrinsic neurons, and a restricted area between the dorsal lobes and the optic lobes was increased in the brains of Japanese honeybee workers involved in the formation of a hot defensive bee ball. In addition, workers exposed to 46°C heat also exhibited Acks expression patterns similar to those observed in the brains of workers involved in the formation of a hot defensive bee ball, suggesting that the neural activity observed in the brains of workers involved in the hot defensive bee ball mainly reflects thermal stimuli processing.

  9. Detection of neural activity in the brains of Japanese honeybee workers during the formation of a "hot defensive bee ball".

    Science.gov (United States)

    Ugajin, Atsushi; Kiya, Taketoshi; Kunieda, Takekazu; Ono, Masato; Yoshida, Tadaharu; Kubo, Takeo

    2012-01-01

    Anti-predator behaviors are essential to survival for most animals. The neural bases of such behaviors, however, remain largely unknown. Although honeybees commonly use their stingers to counterattack predators, the Japanese honeybee (Apis cerana japonica) uses a different strategy to fight against the giant hornet (Vespa mandarinia japonica). Instead of stinging the hornet, Japanese honeybees form a "hot defensive bee ball" by surrounding the hornet en masse, killing it with heat. The European honeybee (A. mellifera ligustica), on the other hand, does not exhibit this behavior, and their colonies are often destroyed by a hornet attack. In the present study, we attempted to analyze the neural basis of this behavior by mapping the active brain regions of Japanese honeybee workers during the formation of a hot defensive bee ball. First, we identified an A. cerana homolog (Acks = Apis cerana kakusei) of kakusei, an immediate early gene that we previously identified from A. mellifera, and showed that Acks has characteristics similar to kakusei and can be used to visualize active brain regions in A. cerana. Using Acks as a neural activity marker, we demonstrated that neural activity in the mushroom bodies, especially in Class II Kenyon cells, one subtype of mushroom body intrinsic neurons, and a restricted area between the dorsal lobes and the optic lobes was increased in the brains of Japanese honeybee workers involved in the formation of a hot defensive bee ball. In addition, workers exposed to 46°C heat also exhibited Acks expression patterns similar to those observed in the brains of workers involved in the formation of a hot defensive bee ball, suggesting that the neural activity observed in the brains of workers involved in the hot defensive bee ball mainly reflects thermal stimuli processing.

  10. Task-dependent modulation of oscillatory neural activity during movements

    DEFF Research Database (Denmark)

    Herz, D. M.; Christensen, M. S.; Reck, C.

    2011-01-01

    -dependent modulation of frequency coupling within this network. To this end we recorded 122-multichannel EEG in 13 healthy subjects while they performed three simple motor tasks. EEG data source modeling using individual MR images was carried out with a multiple source beamformer approach. A bilateral motor network...... for inferring on architecture and coupling parameters of neural networks....

  11. Voltage Estimation in Active Distribution Grids Using Neural Networks

    DEFF Research Database (Denmark)

    Pertl, Michael; Heussen, Kai; Gehrke, Oliver

    2016-01-01

    the observability of distribution systems has to be improved. To increase the situational awareness of the power system operator data driven methods can be employed. These methods benefit from newly available data sources such as smart meters. This paper presents a voltage estimation method based on neural networks...

  12. Amniotic fluid paraoxonase-1 activity, thyroid hormone concentration and oxidant status in neural tube defects.

    Science.gov (United States)

    Sak, Sibel; Agacayak, Elif; Tunc, Senem Yaman; Icen, Mehmet Sait; Findik, Fatih Mehmet; Sak, Muhammet Erdal; Yalinkaya, Ahmet; Gul, Talip

    2016-09-01

    The aim of this study was to investigate the potential association between neural tube defects and paraoxonase-1 activity in amniotic fluid. We studied total oxidant status, total antioxidant capacity, paraoxonase-1 activity and thyroid hormone amniotic fluid concentration in fetuses with neural tube defects. The present study was performed at the Department of Obstetrics and Gynaecology and the Department of Clinical Biochemistry of Dicle University between September 2011 and June 2013. The study group included 37 amniotic fluid samples from pregnant women (16-20 weeks of gestation) with fetuses affected by neural tube defects. The control group consisted of 36 pregnant women who were diagnosed with a high-risk pregnancy according to first or second trimester aneuploidy screening and were later confirmed on amniocentesis to have genetically normal fetuses. Amniotic fluid paraoxonase-1 activity and total oxidant status were significantly higher (P = 0.023, P = 0.029, respectively) whereas free T4 was significantly lower (P = 0.022) in fetuses with neural tube defects compared with control subjects. In fetuses with neural tube defects, amniotic fluid paraoxonase-1 activity correlated positively with total oxidant status (r = 0.424**, P = 0.010), and amniotic fluid total antioxidant capacity correlated positively with free t4 (r = 0.381*, P = 0.022). This is the first study in the literature to show an association between paraoxonase-1 activity and thyroid hormone concentration and neural tube defects. © 2016 Japan Society of Obstetrics and Gynecology.

  13. θ-Band and β-Band Neural Activity Reflects Independent Syllable Tracking and Comprehension of Time-Compressed Speech.

    Science.gov (United States)

    Pefkou, Maria; Arnal, Luc H; Fontolan, Lorenzo; Giraud, Anne-Lise

    2017-08-16

    Recent psychophysics data suggest that speech perception is not limited by the capacity of the auditory system to encode fast acoustic variations through neural γ activity, but rather by the time given to the brain to decode them. Whether the decoding process is bounded by the capacity of θ rhythm to follow syllabic rhythms in speech, or constrained by a more endogenous top-down mechanism, e.g., involving β activity, is unknown. We addressed the dynamics of auditory decoding in speech comprehension by challenging syllable tracking and speech decoding using comprehensible and incomprehensible time-compressed auditory sentences. We recorded EEGs in human participants and found that neural activity in both θ and γ ranges was sensitive to syllabic rate. Phase patterns of slow neural activity consistently followed the syllabic rate (4-14 Hz), even when this rate went beyond the classical θ range (4-8 Hz). The power of θ activity increased linearly with syllabic rate but showed no sensitivity to comprehension. Conversely, the power of β (14-21 Hz) activity was insensitive to the syllabic rate, yet reflected comprehension on a single-trial basis. We found different long-range dynamics for θ and β activity, with β activity building up in time while more contextual information becomes available. This is consistent with the roles of θ and β activity in stimulus-driven versus endogenous mechanisms. These data show that speech comprehension is constrained by concurrent stimulus-driven θ and low-γ activity, and by endogenous β activity, but not primarily by the capacity of θ activity to track the syllabic rhythm. SIGNIFICANCE STATEMENT Speech comprehension partly depends on the ability of the auditory cortex to track syllable boundaries with θ-range neural oscillations. The reason comprehension drops when speech is accelerated could hence be because θ oscillations can no longer follow the syllabic rate. Here, we presented subjects with comprehensible and

  14. Abnormal neural activation patterns underlying working memory impairment in chronic phencyclidine-treated mice.

    Directory of Open Access Journals (Sweden)

    Yosefu Arime

    Full Text Available Working memory impairment is a hallmark feature of schizophrenia and is thought be caused by dysfunctions in the prefrontal cortex (PFC and associated brain regions. However, the neural circuit anomalies underlying this impairment are poorly understood. The aim of this study is to assess working memory performance in the chronic phencyclidine (PCP mouse model of schizophrenia, and to identify the neural substrates of working memory. To address this issue, we conducted the following experiments for mice after withdrawal from chronic administration (14 days of either saline or PCP (10 mg/kg: (1 a discrete paired-trial variable-delay task in T-maze to assess working memory, and (2 brain-wide c-Fos mapping to identify activated brain regions relevant to this task performance either 90 min or 0 min after the completion of the task, with each time point examined under working memory effort and basal conditions. Correct responses in the test phase of the task were significantly reduced across delays (5, 15, and 30 s in chronic PCP-treated mice compared with chronic saline-treated controls, suggesting delay-independent impairments in working memory in the PCP group. In layer 2-3 of the prelimbic cortex, the number of working memory effort-elicited c-Fos+ cells was significantly higher in the chronic PCP group than in the chronic saline group. The main effect of working memory effort relative to basal conditions was to induce significantly increased c-Fos+ cells in the other layers of prelimbic cortex and the anterior cingulate and infralimbic cortex regardless of the different chronic regimens. Conversely, this working memory effort had a negative effect (fewer c-Fos+ cells in the ventral hippocampus. These results shed light on some putative neural networks relevant to working memory impairments in mice chronically treated with PCP, and emphasize the importance of the layer 2-3 of the prelimbic cortex of the PFC.

  15. Complexity of VTA DA neural activities in response to PFC transection in nicotine treated rats

    Directory of Open Access Journals (Sweden)

    Akay Yasemin M

    2011-02-01

    Full Text Available Abstract Background The dopaminergic (DA neurons in the ventral tegmental area (VTA are widely implicated in the addiction and natural reward circuitry of the brain. These neurons project to several areas of the brain, including prefrontal cortex (PFC, nucleus accubens (NAc and amygdala. The functional coupling between PFC and VTA has been demonstrated, but little is known about how PFC mediates nicotinic modulation in VTA DA neurons. The objectives of this study were to investigate the effect of acute nicotine exposure on the VTA DA neuronal firing and to understand how the disruption of communication from PFC affects the firing patterns of VTA DA neurons. Methods Extracellular single-unit recordings were performed on Sprague-Dawley rats and nicotine was administered after stable recording was established as baseline. In order to test how input from PFC affects the VTA DA neuronal firing, bilateral transections were made immediate caudal to PFC to mechanically delete the interaction between VTA and PFC. Results The complexity of the recorded neural firing was subsequently assessed using a method based on the Lempel-Ziv estimator. The results were compared with those obtained when computing the entropy of neural firing. Exposure to nicotine triggered a significant increase in VTA DA neurons firing complexity when communication between PFC and VTA was present, while transection obliterated the effect of nicotine. Similar results were obtained when entropy values were estimated. Conclusions Our findings suggest that PFC plays a vital role in mediating VTA activity. We speculate that increased firing complexity with acute nicotine administration in PFC intact subjects is due to the close functional coupling between PFC and VTA. This hypothesis is supported by the fact that deletion of PFC results in minor alterations of VTA DA neural firing when nicotine is acutely administered.

  16. Abnormal neural activation patterns underlying working memory impairment in chronic phencyclidine-treated mice.

    Science.gov (United States)

    Arime, Yosefu; Akiyama, Kazufumi

    2017-01-01

    Working memory impairment is a hallmark feature of schizophrenia and is thought be caused by dysfunctions in the prefrontal cortex (PFC) and associated brain regions. However, the neural circuit anomalies underlying this impairment are poorly understood. The aim of this study is to assess working memory performance in the chronic phencyclidine (PCP) mouse model of schizophrenia, and to identify the neural substrates of working memory. To address this issue, we conducted the following experiments for mice after withdrawal from chronic administration (14 days) of either saline or PCP (10 mg/kg): (1) a discrete paired-trial variable-delay task in T-maze to assess working memory, and (2) brain-wide c-Fos mapping to identify activated brain regions relevant to this task performance either 90 min or 0 min after the completion of the task, with each time point examined under working memory effort and basal conditions. Correct responses in the test phase of the task were significantly reduced across delays (5, 15, and 30 s) in chronic PCP-treated mice compared with chronic saline-treated controls, suggesting delay-independent impairments in working memory in the PCP group. In layer 2-3 of the prelimbic cortex, the number of working memory effort-elicited c-Fos+ cells was significantly higher in the chronic PCP group than in the chronic saline group. The main effect of working memory effort relative to basal conditions was to induce significantly increased c-Fos+ cells in the other layers of prelimbic cortex and the anterior cingulate and infralimbic cortex regardless of the different chronic regimens. Conversely, this working memory effort had a negative effect (fewer c-Fos+ cells) in the ventral hippocampus. These results shed light on some putative neural networks relevant to working memory impairments in mice chronically treated with PCP, and emphasize the importance of the layer 2-3 of the prelimbic cortex of the PFC.

  17. Adolescent-specific patterns of behavior and neural activity during social reinforcement learning

    Science.gov (United States)

    Jones, Rebecca M.; Somerville, Leah H.; Li, Jian; Ruberry, Erika J.; Powers, Alisa; Mehta, Natasha; Dyke, Jonathan; Casey, BJ

    2014-01-01

    Humans are sophisticated social beings. Social cues from others are exceptionally salient, particularly during adolescence. Understanding how adolescents interpret and learn from variable social signals can provide insight into the observed shift in social sensitivity during this period. The current study tested 120 participants between the ages of 8 and 25 years on a social reinforcement learning task where the probability of receiving positive social feedback was parametrically manipulated. Seventy-eight of these participants completed the task during fMRI scanning. Modeling trial-by-trial learning, children and adults showed higher positive learning rates than adolescents, suggesting that adolescents demonstrated less differentiation in their reaction times for peers who provided more positive feedback. Forming expectations about receiving positive social reinforcement correlated with neural activity within the medial prefrontal cortex and ventral striatum across age. Adolescents, unlike children and adults, showed greater insular activity during positive prediction error learning and increased activity in the supplementary motor cortex and the putamen when receiving positive social feedback regardless of the expected outcome, suggesting that peer approval may motivate adolescents towards action. While different amounts of positive social reinforcement enhanced learning in children and adults, all positive social reinforcement equally motivated adolescents. Together, these findings indicate that sensitivity to peer approval during adolescence goes beyond simple reinforcement theory accounts and suggests possible explanations for how peers may motivate adolescent behavior. PMID:24550063

  18. Neural activations associated with feedback and retrieval success

    Science.gov (United States)

    Wiklund-Hörnqvist, Carola; Andersson, Micael; Jonsson, Bert; Nyberg, Lars

    2017-11-01

    There is substantial behavioral evidence for a phenomenon commonly called "the testing effect", i.e. superior memory performance after repeated testing compared to re-study of to-be-learned materials. However, considerably less is known about the underlying neuro-cognitive processes that are involved in the initial testing phase, and thus underlies the actual testing effect. Here, we investigated functional brain activity related to test-enhanced learning with feedback. Subjects learned foreign vocabulary across three consecutive tests with correct-answer feedback. Functional brain-activity responses were analyzed in relation to retrieval and feedback events, respectively. Results revealed up-regulated activity in fronto-striatal regions during the first successful retrieval, followed by a marked reduction in activity as a function of improved learning. Whereas feedback improved behavioral performance across consecutive tests, feedback had a negligable role after the first successful retrieval for functional brain-activity modulations. It is suggested that the beneficial effects of test-enhanced learning is regulated by feedback-induced updating of memory representations, mediated via the striatum, that might underlie the stabilization of memory commonly seen in behavioral studies of the testing effect.

  19. Electromagnetic fields induce neural differentiation of human bone marrow derived mesenchymal stem cells via ROS mediated EGFR activation.

    Science.gov (United States)

    Park, Jeong-Eun; Seo, Young-Kwon; Yoon, Hee-Hoon; Kim, Chan-Wha; Park, Jung-Keug; Jeon, Songhee

    2013-03-01

    Even though the inducing effect of electromagnetic fields (EMF) on the neural differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) is a distinctive, the underlying mechanism of differentiation remains unclear. To find out the signaling pathways involved in the neural differentiation of BM-MSCs by EMF, we examined the CREB phosphorylation and Akt or ERK activation as an upstream of CREB. In hBM-MSCs treated with ELF-EMF (50 Hz, 1 mT), the expression of neural markers such as NF-L, MAP2, and NeuroD1 increased at 6 days and phosphorylation of Akt and CREB but not ERK increased at 90 min in BM-MSCs. Moreover, EMF increased phosphorylation of epidermal growth factor receptor (EGFR) as an upstream receptor tyrosine kinase of PI3K/Akt at 90 min. It has been well documented that ELF-MF exposure may alter cellular processes by increasing intracellular reactive oxygen species (ROS) concentrations. Thus, we examined EMF-induced ROS production in BM-MSCs. Moreover, pretreatment with a ROS scavenger, N-acetylcystein, and an EGFR inhibitor, AG-1478, prevented the phosphorylation of EGFR and downstream molecules. These results suggest that EMF induce neural differentiation through activation of EGFR signaling and mild generation of ROS. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Rapid adaptive remote focusing microscope for sensing of volumetric neural activity.

    Science.gov (United States)

    Žurauskas, Mantas; Barnstedt, Oliver; Frade-Rodriguez, Maria; Waddell, Scott; Booth, Martin J

    2017-10-01

    The ability to record neural activity in the brain of a living organism at cellular resolution is of great importance for defining the neural circuit mechanisms that direct behavior. Here we present an adaptive two-photon microscope optimized for extraction of neural signals over volumes in intact Drosophila brains, even in the presence of specimen motion. High speed volume imaging was made possible through reduction of spatial resolution while maintaining the light collection efficiency of a high resolution, high numerical aperture microscope. This enabled simultaneous recording of odor-evoked calcium transients in a defined volume of mushroom body Kenyon cell bodies in a live fruit fly.

  1. Spatiotemporal consistency of local neural activities: A new imaging measure for functional MRI data.

    Science.gov (United States)

    Dong, Li; Luo, Cheng; Cao, Weifang; Zhang, Rui; Gong, Jinnan; Gong, Diankun; Yao, Dezhong

    2015-09-01

    To characterize the local consistency by integrating temporal and spatial information in the local region using functional magnetic resonance imaging (fMRI). One simulation was implemented to explain the definition of FOur-dimensional (spatiotemporal) Consistency of local neural Activities (FOCA). Then three experiments included resting state data (33 subjects), resting state reproducibility data (16 subjects), and event state data (motor execution task, 26 subjects) were designed. Finally, FOCA were respectively analyzed using statistical analysis methods, such as one-sample t-test and paired t-test, etc. During resting state (Experiment 1), the FOCA values (P 621 mm(3) ) were found to be distinct at the bilateral inferior frontal gyrus, middle frontal gyrus, angular gyrus, and precuneus/cuneus. In Experiment 2 (reproducibility), a high degree of consistency within subjects (correlation ≈0.8) and between subjects (correlation ≈0.6) of FOCA were obtained. Comparing event with resting state in Experiment 3, enhanced FOCA (P 621 mm(3) ) was observed mainly in the precentral gyrus and lingual gyrus. These findings suggest that FOCA has the potential to provide further information that will help to better understand brain function in neural imaging. © 2014 Wiley Periodicals, Inc.

  2. Adolescents' risky decision-making activates neural networks related to social cognition and cognitive control processes.

    Science.gov (United States)

    Rodrigo, María José; Padrón, Iván; de Vega, Manuel; Ferstl, Evelyn C

    2014-01-01

    This study examines by means of functional magnetic resonance imaging the neural mechanisms underlying adolescents' risk decision-making in social contexts. We hypothesize that the social context could engage brain regions associated with social cognition processes and developmental changes are also expected. Sixty participants (adolescents: 17-18, and young adults: 21-22 years old) read narratives describing typical situations of decision-making in the presence of peers. They were asked to make choices in risky situations (e.g., taking or refusing a drug) or ambiguous situations (e.g., eating a hamburger or a hotdog). Risky as compared to ambiguous scenarios activated bilateral temporoparietal junction (TPJ), bilateral middle temporal gyrus (MTG), right medial prefrontal cortex, and the precuneus bilaterally; i.e., brain regions related to social cognition processes, such as self-reflection and theory of mind (ToM). In addition, brain structures related to cognitive control were active [right anterior cingulate cortex (ACC), bilateral dorsolateral prefrontal cortex (DLPFC), bilateral orbitofrontal cortex], whereas no significant clusters were obtained in the reward system (ventral striatum). Choosing the dangerous option involved a further activation of control areas (ACC) and emotional and social cognition areas (temporal pole). Adolescents employed more neural resources than young adults in the right DLPFC and the right TPJ in risk situations. When choosing the dangerous option, young adults showed a further engagement in ToM related regions (bilateral MTG) and in motor control regions related to the planning of actions (pre-supplementary motor area). Finally, the right insula and the right superior temporal gyrus were more activated in women than in men, suggesting more emotional involvement and more intensive modeling of the others' perspective in the risky conditions. These findings call for more comprehensive developmental accounts of decision-making in

  3. Adolescents’ risky decision-making activates neural networks related to social cognition and cognitive control processes

    Directory of Open Access Journals (Sweden)

    María José eRodrigo

    2014-02-01

    Full Text Available This study examines by means of fMRI the neural mechanisms underlying adolescents’ risk decision-making in social contexts. We hypothesize that the social context could engage brain regions associated with social cognition processes and developmental changes are also expected. Sixty participants (adolescents: 17-18, and young adults: 21-22 years old read narratives describing typical situations of decision-making in the presence of peers. They were asked to make choices in risky situations (e.g., taking or refusing a drug or ambiguous situations (e.g., eating a hamburger or a hotdog. Risky as compared to ambiguous scenarios activated bilateral temporoparietal junction (TPJ, bilateral middle temporal gyrus (MTG, right medial prefrontal cortex (mPFC, and the precuneus bilaterally; i.e., brain regions related to social cognition processes, such as self-reflection and theory of mind. In addition, brain structures related to cognitive control were active (right ACC, bilateral DLPFC, bilateral OFC, whereas no significant clusters were obtained in the reward system (VS. Choosing the dangerous option involved a further activation of control areas (ACC and emotional and social cognition areas (temporal pole. Adolescents employed more neural resources than young adults in the right DLPFC and the right TPJ in risk situations. When choosing the dangerous option, young adults showed a further engagement in theory of mind related regions (bilateral middle temporal gyrus and in motor control regions related to the planning of actions (pre-supplementary motor area. Finally, the right insula and the right superior temporal gyrus were more activated in women than in men, suggesting more emotional involvement and more intensive modeling of the others’ perspective in the risky conditions. These findings call for more comprehensive developmental accounts of decision-making in social contexts that incorporate the role of emotional and social cognition processes.

  4. Neural activation in cognitive motor processes: comparing motor imagery and observation of gymnastic movements.

    Science.gov (United States)

    Munzert, Jörn; Zentgraf, Karen; Stark, Rudolf; Vaitl, Dieter

    2008-07-01

    The simulation concept suggested by Jeannerod (Neuroimage 14:S103-S109, 2001) defines the S-states of action observation and mental simulation of action as action-related mental states lacking overt execution. Within this framework, similarities and neural overlap between S-states and overt execution are interpreted as providing the common basis for the motor representations implemented within the motor system. The present brain imaging study compared activation overlap and differential activation during mental simulation (motor imagery) with that while observing gymnastic movements. The fMRI conjunction analysis revealed overlapping activation for both S-states in primary motor cortex, premotor cortex, and the supplementary motor area as well as in the intraparietal sulcus, cerebellar hemispheres, and parts of the basal ganglia. A direct contrast between the motor imagery and observation conditions revealed stronger activation for imagery in the posterior insula and the anterior cingulate gyrus. The hippocampus, the superior parietal lobe, and the cerebellar areas were differentially activated in the observation condition. In general, these data corroborate the concept of action-related S-states because of the high overlap in core motor as well as in motor-related areas. We argue that differential activity between S-states relates to task-specific and modal information processing.

  5. Active Vibration Control of the Smart Plate Using Artificial Neural Network Controller

    Directory of Open Access Journals (Sweden)

    Mohit

    2015-01-01

    Full Text Available The active vibration control (AVC of a rectangular plate with single input and single output approach is investigated using artificial neural network. The cantilever plate of finite length, breadth, and thickness having piezoelectric patches as sensors/actuators fixed at the upper and lower surface of the metal plate is considered for examination. The finite element model of the cantilever plate is utilized to formulate the whole strategy. The compact RIO and MATLAB simulation software are exercised to get the appropriate results. The cantilever plate is subjected to impulse input and uniform white noise disturbance. The neural network is trained offline and tuned with LQR controller. The various training algorithms to tune the neural network are exercised. The best efficient algorithm is finally considered to tune the neural network controller designed for active vibration control of the smart plate.

  6. Analysis of electromyographic activity in spastic biceps brachii muscle following neural mobilization.

    Science.gov (United States)

    Castilho, Jéssica; Ferreira, Luiz Alfredo Braun; Pereira, Wagner Menna; Neto, Hugo Pasini; Morelli, José Geraldo da Silva; Brandalize, Danielle; Kerppers, Ivo Ilvan; Oliveira, Claudia Santos

    2012-07-01

    Hypertonia is prevalent in anti-gravity muscles, such as the biceps brachii. Neural mobilization is one of the techniques currently used to reduce spasticity. The aim of the present study was to assess electromyographic (EMG) activity in spastic biceps brachii muscles before and after neural mobilization of the upper limb contralateral to the hemiplegia. Repeated pre-test and post-test EMG measurements were performed on six stroke victims with grade 1 or 2 spasticity (Modified Ashworth Scale). The Upper Limb Neurodynamic Test (ULNT1) was the mobilization technique employed. After neural mobilization contralateral to the lesion, electromyographic activity in the biceps brachii decreased by 17% and 11% for 90° flexion and complete extension of the elbow, respectively. However, the results were not statistically significant (p gt; 0.05). When performed using contralateral techniques, neural mobilization alters the electrical signal of spastic muscles. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. AICAR induces astroglial differentiation of neural stem cells via activating the JAK/STAT3 pathway independently of AMP-activated protein kinase.

    Science.gov (United States)

    Zang, Yi; Yu, Li-Fang; Pang, Tao; Fang, Lei-Ping; Feng, Xu; Wen, Tie-Qiao; Nan, Fa-Jun; Feng, Lin-Yin; Li, Jia

    2008-03-07

    Neural stem cell differentiation and the determination of lineage decision between neuronal and glial fates have important implications in the study of developmental, pathological, and regenerative processes. Although small molecule chemicals with the ability to control neural stem cell fate are considered extremely useful tools in this field, few were reported. AICAR is an adenosine analog and extensively used to activate AMP-activated protein kinase (AMPK), a metabolic "fuel gauge" of the biological system. In the present study, we found an unrecognized astrogliogenic activity of AICAR on not only immortalized neural stem cell line C17.2 (C17.2-NSC), but also primary neural stem cells (NSCs) derived from post-natal (P0) rat hippocampus (P0-NSC) and embryonic day 14 (E14) rat embryonic cortex (E14-NSC). However, another AMPK activator, Metformin, did not alter either the C17.2-NSC or E14-NSC undifferentiated state although both Metformin and AICAR can activate the AMPK pathway in NSC. Furthermore, overexpression of dominant-negative mutants of AMPK in C17.2-NSC was unable to block the gliogenic effects of AICAR. We also found AICAR could activate the Janus kinase (JAK) STAT3 pathway in both C17.2-NSC and E14-NSC but Metformin fails. JAK inhibitor I abolished the gliogenic effects of AICAR. Taken together, these results suggest that the astroglial differentiation effect of AICAR on neural stem cells was acting independently of AMPK and that the JAK-STAT3 pathway is essential for the gliogenic effect of AICAR.

  8. Neural and sympathetic activity associated with exploration in decision-making: Further evidence for involvement of insula

    Directory of Open Access Journals (Sweden)

    Hideki eOhira

    2014-11-01

    Full Text Available We previously reported that sympathetic activity was associated with exploration in decision-making indexed by entropy, which is a concept in information theory and indexes randomness of choices or the degree of deviation from sticking to recent experiences of gains and losses, and that activation of the anterior insula mediated this association. The current study aims to replicate and to expand these findings in a situation where contingency between options and outcomes is manipulated. Sixteen participants performed a stochastic decision-making task in which we manipulated a condition with low uncertainty of gain/loss (contingent-reward condition and a condition with high uncertainty of gain/loss (random-reward condition. Regional cerebral blood flow was measured by 15O-water positron emission tomography (PET, and cardiovascular parameters and catecholamine in the peripheral blood were measured, during the task. In the contingent-reward condition, norepinephrine as an index of sympathetic activity was positively correlated with entropy indicating exploration in decision-making. Norepinephrine was negatively correlated with neural activity in the right posterior insula, rostral anterior cingulate cortex, and dorsal pons, suggesting neural bases for detecting changes of bodily states. Furthermore, right anterior insular activity was negatively correlated with entropy, suggesting influences on exploration in decision-making. By contrast, in the random-reward condition, entropy correlated with activity in the dorsolateral prefrontal and parietal cortices but not with sympathetic activity. These findings suggest that influences of sympathetic activity on exploration in decision-making and its underlying neural mechanisms might be dependent on the degree of uncertainty of situations.

  9. Parametric characterization of neural activity in the locus coeruleus in response to vagus nerve stimulation.

    Science.gov (United States)

    Hulsey, Daniel R; Riley, Jonathan R; Loerwald, Kristofer W; Rennaker, Robert L; Kilgard, Michael P; Hays, Seth A

    2017-03-01

    Vagus nerve stimulation (VNS) has emerged as a therapy to treat a wide range of neurological disorders, including epilepsy, depression, stroke, and tinnitus. Activation of neurons in the locus coeruleus (LC) is believed to mediate many of the effects of VNS in the central nervous system. Despite the importance of the LC, there is a dearth of direct evidence characterizing neural activity in response to VNS. A detailed understanding of the brain activity evoked by VNS across a range of stimulation parameters may guide selection of stimulation regimens for therapeutic use. In this study, we recorded neural activity in the LC and the mesencephalic trigeminal nucleus (Me5) in response to VNS over a broad range of current amplitudes, pulse frequencies, train durations, inter-train intervals, and pulse widths. Brief 0.5s trains of VNS drive rapid, phasic firing of LC neurons at 0.1mA. Higher current intensities and longer pulse widths drive greater increases in LC firing rate. Varying the pulse frequency substantially affects the timing, but not the total amount, of phasic LC activity. VNS drives pulse-locked neural activity in the Me5 at current levels above 1.2mA. These results provide insight into VNS-evoked phasic neural activity in multiple neural structures and may be useful in guiding the selection of VNS parameters to enhance clinical efficacy. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Neural Activation During Cognitive Emotion Regulation in Previously Depressed Compared to Healthy Children: Evidence of Specific Alterations.

    Science.gov (United States)

    Belden, Andy C; Pagliaccio, David; Murphy, Eric R; Luby, Joan L; Barch, Deanna M

    2015-09-01

    Impairments in cognitive emotion regulation (CER) have been linked to functional neural abnormalities and the pathogenesis of major depressive disorder (MDD). Few functional magnetic resonance imaging (fMRI) studies have investigated the neural underpinnings of CER in samples with depression. As CER develops in childhood, understanding dysfunctional CER-related alterations in brain function during this period could advance knowledge of the developmental psychopathology of MDD. This study tested whether neural activity in brain regions known to support cognitive reappraisal differed between healthy 7- to 15-year-old children and same-age peers with a history of MDD (MDD-ever). A total of 64 children participated in this event-related fMRI study, which used a developmentally appropriate and validated fMRI reappraisal task. Children were instructed to passively view sad or neutral images and to decrease negative emotions using cognitive reappraisal. MDD-ever and healthy children showed similar patterns of cortical activation during reappraisal, but with a significant difference found in 1 key CER region, the left inferior frontal gyrus (IFG). In addition, individual differences in CER were associated with left IFG activity during reappraisal. Alterations in the neurocircuitry of reappraisal are evident in children with a depression history compared to healthy controls. The finding that MDD-ever children showed reappraisal-related neural responses in many regions similar to healthy controls has clinical implications. Findings suggest that identification of alterations in reappraisal in children with remitted depression, for whom much, although not all, of the neural circuitry remains intact, may be an important window of opportunity for intervention. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Neural activity in the posterior superior temporal region during eye contact perception correlates with autistic traits.

    Science.gov (United States)

    Hasegawa, Naoya; Kitamura, Hideaki; Murakami, Hiroatsu; Kameyama, Shigeki; Sasagawa, Mutsuo; Egawa, Jun; Endo, Taro; Someya, Toshiyuki

    2013-08-09

    The present study investigated the relationship between neural activity associated with gaze processing and autistic traits in typically developed subjects using magnetoencephalography. Autistic traits in 24 typically developed college students with normal intelligence were assessed using the Autism Spectrum Quotient (AQ). The Minimum Current Estimates method was applied to estimate the cortical sources of magnetic responses to gaze stimuli. These stimuli consisted of apparent motion of the eyes, displaying direct or averted gaze motion. Results revealed gaze-related brain activations in the 150-250 ms time window in the right posterior superior temporal sulcus (pSTS), and in the 150-450 ms time window in medial prefrontal regions. In addition, the mean amplitude in the 150-250 ms time window in the right pSTS region was modulated by gaze direction, and its activity in response to direct gaze stimuli correlated with AQ score. pSTS activation in response to direct gaze is thought to be related to higher-order social processes. Thus, these results suggest that brain activity linking eye contact and social signals is associated with autistic traits in a typical population. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Neural signatures of language co-activation and control in bilingual spoken word comprehension.

    Science.gov (United States)

    Chen, Peiyao; Bobb, Susan C; Hoshino, Noriko; Marian, Viorica

    2017-06-15

    To examine the neural signatures of language co-activation and control during bilingual spoken word comprehension, Korean-English bilinguals and English monolinguals were asked to make overt or covert semantic relatedness judgments on auditorily-presented English word pairs. In two critical conditions, participants heard word pairs consisting of an English-Korean interlingual homophone (e.g., the sound /mu:n/ means "moon" in English and "door" in Korean) as the prime and an English word as the target. In the homophone-related condition, the target (e.g., "lock") was related to the homophone's Korean meaning, but not related to the homophone's English meaning. In the homophone-unrelated condition, the target was unrelated to either the homophone's Korean meaning or the homophone's English meaning. In overtly responded situations, ERP results revealed that the reduced N400 effect in bilinguals for homophone-related word pairs correlated positively with the amount of their daily exposure to Korean. In covertly responded situations, ERP results showed a reduced late positive component for homophone-related word pairs in the right hemisphere, and this late positive effect was related to the neural efficiency of suppressing interference in a non-linguistic task. Together, these findings suggest 1) that the degree of language co-activation in bilingual spoken word comprehension is modulated by the amount of daily exposure to the non-target language; and 2) that bilinguals who are less influenced by cross-language activation may also have greater efficiency in suppressing interference in a non-linguistic task. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Active tension network model suggests an exotic mechanical state realized in epithelial tissues

    Science.gov (United States)

    Noll, Nicholas; Mani, Madhav; Heemskerk, Idse; Streichan, Sebastian J.; Shraiman, Boris I.

    2017-12-01

    Mechanical interactions play a crucial role in epithelial morphogenesis, yet understanding the complex mechanisms through which stress and deformation affect cell behaviour remains an open problem. Here we formulate and analyse the active tension network (ATN) model, which assumes that the mechanical balance of cells within a tissue is dominated by cortical tension and introduces tension-dependent active remodelling of the cortex. We find that ATNs exhibit unusual mechanical properties. Specifically, an ATN behaves as a fluid at short times, but at long times supports external tension like a solid. Furthermore, an ATN has an extensively degenerate equilibrium mechanical state associated with a discrete conformal--`isogonal'--deformation of cells. The ATN model predicts a constraint on equilibrium cell geometries, which we demonstrate to approximately hold in certain epithelial tissues. We further show that isogonal modes are observed in the fruit fly embryo, accounting for the striking variability of apical areas of ventral cells and helping understand the early phase of gastrulation. Living matter realizes new and exotic mechanical states, the study of which helps to understand biological phenomena.

  14. Characterisation of cell death inducing Phytophthora capsici CRN effectors suggests diverse activities in the host nucleus

    Directory of Open Access Journals (Sweden)

    Remco eStam

    2013-10-01

    Full Text Available Plant-Microbe interactions are complex associations that feature recognition of Pathogen Associated Molecular Patterns by the plant immune system and dampening of subsequent responses by pathogen encoded secreted effectors. With large effector repertoires now identified in a range of sequenced microbial genomes, much attention centres on understanding their roles in immunity or disease. These studies not only allow identification of pathogen virulence factors and strategies, they also provide an important molecular toolset suited for studying immunity in plants. The Phytophthora intracellular effector repertoire encodes a large class of proteins that translocate into host cells and exclusively target the host nucleus. Recent functional studies have implicated the CRN protein family as an important class of diverse effectors that target distinct subnuclear compartments and modify host cell signalling. Here, we characterised three necrosis inducing CRNs and show that there are differences in the levels of cell death. We show that only expression of CRN20_624 has an additive effect on PAMP induced cell death but not AVR3a induced ETI. Given their distinctive phenotypes, we assessed localisation of each CRN with a set of nuclear markers and found clear differences in CRN subnuclear distribution patterns. These assays also revealed that expression of CRN83_152 leads to a distinct change in nuclear chromatin organisation, suggesting a distinct series of events that leads to cell death upon over-expression. Taken together, our results suggest diverse functions carried by CRN C-termini, which can be exploited to identify novel processes that take place in the host nucleus and are required for immunity or susceptibility.

  15. Isolating Discriminant Neural Activity in the Presence of Eye Movements and Concurrent Task Demands

    Directory of Open Access Journals (Sweden)

    Jon Touryan

    2017-07-01

    Full Text Available A growing number of studies use the combination of eye-tracking and electroencephalographic (EEG measures to explore the neural processes that underlie visual perception. In these studies, fixation-related potentials (FRPs are commonly used to quantify early and late stages of visual processing that follow the onset of each fixation. However, FRPs reflect a mixture of bottom-up (sensory-driven and top-down (goal-directed processes, in addition to eye movement artifacts and unrelated neural activity. At present there is little consensus on how to separate this evoked response into its constituent elements. In this study we sought to isolate the neural sources of target detection in the presence of eye movements and over a range of concurrent task demands. Here, participants were asked to identify visual targets (Ts amongst a grid of distractor stimuli (Ls, while simultaneously performing an auditory N-back task. To identify the discriminant activity, we used independent components analysis (ICA for the separation of EEG into neural and non-neural sources. We then further separated the neural sources, using a modified measure-projection approach, into six regions of interest (ROIs: occipital, fusiform, temporal, parietal, cingulate, and frontal cortices. Using activity from these ROIs, we identified target from non-target fixations in all participants at a level similar to other state-of-the-art classification techniques. Importantly, we isolated the time course and spectral features of this discriminant activity in each ROI. In addition, we were able to quantify the effect of cognitive load on both fixation-locked potential and classification performance across regions. Together, our results show the utility of a measure-projection approach for separating task-relevant neural activity into meaningful ROIs within more complex contexts that include eye movements.

  16. Adaptive RBF Neural Network Control for Three-Phase Active Power Filter

    Directory of Open Access Journals (Sweden)

    Juntao Fei

    2013-05-01

    Full Text Available Abstract An adaptive radial basis function (RBF neural network control system for three-phase active power filter (APF is proposed to eliminate harmonics. Compensation current is generated to track command current so as to eliminate the harmonic current of non-linear load and improve the quality of the power system. The asymptotical stability of the APF system can be guaranteed with the proposed adaptive neural network strategy. The parameters of the neural network can be adaptively updated to achieve the desired tracking task. The simulation results demonstrate good performance, for example showing small current tracking error, reduced total harmonic distortion (THD, improved accuracy and strong robustness in the presence of parameters variation and nonlinear load. It is shown that the adaptive RBF neural network control system for three-phase APF gives better control than hysteresis control.

  17. The Ising decoder: reading out the activity of large neural ensembles.

    Science.gov (United States)

    Schaub, Michael T; Schultz, Simon R

    2012-02-01

    The Ising model has recently received much attention for the statistical description of neural spike train data. In this paper, we propose and demonstrate its use for building decoders capable of predicting, on a millisecond timescale, the stimulus represented by a pattern of neural activity. After fitting to a training dataset, the Ising decoder can be applied "online" for instantaneous decoding of test data. While such models can be fit exactly using Boltzmann learning, this approach rapidly becomes computationally intractable as neural ensemble size increases. We show that several approaches, including the Thouless-Anderson-Palmer (TAP) mean field approach from statistical physics, and the recently developed Minimum Probability Flow Learning (MPFL) algorithm, can be used for rapid inference of model parameters in large-scale neural ensembles. Use of the Ising model for decoding, unlike other problems such as functional connectivity estimation, requires estimation of the partition function. As this involves summation over all possible responses, this step can be limiting. Mean field approaches avoid this problem by providing an analytical expression for the partition function. We demonstrate these decoding techniques by applying them to simulated neural ensemble responses from a mouse visual cortex model, finding an improvement in decoder performance for a model with heterogeneous as opposed to homogeneous neural tuning and response properties. Our results demonstrate the practicality of using the Ising model to read out, or decode, spatial patterns of activity comprised of many hundreds of neurons.

  18. Genetic interactions among vestigial, hairy, and Notch suggest a role of vestigial in the differentiation of epidermal and neural cells of the wing and halter of Drosophila melanogaster.

    Science.gov (United States)

    Abu-Issa, R; Cavicchi, S

    1996-09-01

    In this paper we describe the results of genetic analysis of the vestigial locus by studying its interactions with hairy and Notch loci in Drosophila melanogaster. Different vestigial alleles in homo- and heterozygous combination with different hairy alleles show synergism in increasing both cell death and formation of ectopic bristles and produce ectopic veins. Interactions between N and vg also show synergism in increasing cell death and formation of ectopic bristles. Only synergism in cell death is seen between h and N. The interactions indicate that vg product plays a role in the differentiation of epidermal and neural cells of the wing disc by interacting with N and h products either directly or indirectly. Mechanisms of molecular interactions among the three loci are discussed.

  19. Neural regulation of interdigestive motor activity in canine jejunum.

    Science.gov (United States)

    Itoh, Z; Aizawa, I; Takeuchi, S

    1981-04-01

    The hypothesis that extrinsic innervation of the small bowel provides pathways for initiation and coordinated propagation of the interdigestive migrating contractions (IMC) was reinvestigated in dogs. Motor activity was measured by chronically implanted force transducers. After a control study, 40-cm segments of the jejunum were extrinsically denervated. All IMC migrated distally through the extrinsically denervated segments. Thiry loops were then constructed from the extrinsically denervated segments, and continuity of the intestine was restored by end-to-end anastomosis. IMC proximal to the anastomosis did not migrate through the extrinsically denervated loop but migrated to sites across the anastomosis. In the extrinsically denervated loop, bands of strong contractions, quite similar to the IMC, occurred at the orad end of the loop independent of the IMC and propagated distally to the caudad end of the loop. The duration, frequency, and migrating velocity of these bands of contraction were different from those of IMC. These results suggest that extrinsic innervation is not essential for the initiation and orad sequential propagation of periodic motor activity like IMC, even when intrinsic innervation is discontinued.

  20. Neurally released pituitary adenylate cyclase-activating polypeptide enhances guinea pig intrinsic cardiac neurone excitability.

    Science.gov (United States)

    Tompkins, John D; Ardell, Jeffrey L; Hoover, Donald B; Parsons, Rodney L

    2007-07-01

    Intracellular recordings were made in vitro from guinea-pig cardiac ganglia to determine whether endogenous neuropeptides such as pituitary adenylate cyclase-activating polypeptide (PACAP) or substance P released during tetanic neural stimulation modulate cardiac neurone excitability and/or contribute to slow excitatory postsynaptic potentials (sEPSPs). When nicotinic and muscarinic receptors were blocked by hexamethonium and atropine, 20 Hz stimulation for 10 s initiated a sEPSP in all innervated neurones. In 40% of the cells, excitability was enhanced after termination of the sEPSP. This suggested that non-cholinergic receptor-mediated mechanisms contributed to the sEPSP and modulated neuronal excitability. Exogenous PACAP and substance P initiated a slow depolarization in the neurones whereas neuronal excitability was only increased by PACAP. When ganglia were treated with the PAC1 antagonist PACAP6-38 (500 nM), the sEPSP evoked by 20 Hz stimulation was reduced by approximately 50% and an enhanced excitability occurred in only 10% of the cells. These observations suggested that PACAP released from preganglionic nerve terminals during tetanic stimulation enhanced neuronal excitability and evoked sEPSPs. After addition of 1 nM PACAP to the bath, 7 of 9 neurones exhibited a tonic firing pattern whereas in untreated preparations, the neurons had a phasic firing pattern. PACAP6-38 (500 nM) diminished the increase in excitability caused by 1 nM PACAP so that only 4 of 13 neurones exhibited a tonic firing pattern and the other 9 cells retained a phasic firing pattern. These findings indicate that PACAP can be released by tetanic neural stimulation in vitro and increase the excitability of intrinsic cardiac neurones. We hypothesize that in vivo PACAP released during preganglionic firing may modulate neurotransmission within the intrinsic cardiac ganglia.

  1. Rapid EEG desynchronization and EMG activation induced by intravenous cocaine in freely moving rats: a peripheral, nondopamine neural triggering.

    Science.gov (United States)

    Kiyatkin, Eugene A; Smirnov, Michael S

    2010-02-01

    Many important physiological, behavioral, and psychoemotional effects of intravenous (IV) cocaine (COC) are too fast and transient compared with pharmacokinetic predictions, suggesting a possible involvement of peripheral neural mechanisms in their triggering. In the present study, we examined changes in cortical electroencephalogram (EEG) and neck electromyogram (EMG) induced in freely moving rats by IV COC administration at low, reinforcing doses (0.25-1.0 mg/kg) and compared them with those induced by an auditory stimulus and IV COC methiodide, which cannot cross the blood-brain barrier. We found that COC induces rapid, strong, and prolonged EEG desynchronization, associated with decrease in alpha and increase in beta and gamma activities, and EMG activation and that both begin within 2-6 s following the start of a 10-s injection; immediate components of this effect were dose independent. The rapid COC-induced changes in EEG and EMG resembled those induced by an auditory stimulus; the latter effects had shorter onset latencies and durations and were fully blocked during urethane anesthesia. Although urethane anesthesia completely blocked COC-induced EMG activation and rapid components of EEG response, COC still induced EEG desynchronization that was much weaker, greatly delayed (approximately 60 s), and associated with tonic decreases in delta and increases in alpha, beta, and gamma activities. Surprisingly, IV saline delivered during slow-wave sleep (but not quite wakefulness) also induced a transient EEG desynchronization but without changes in EMG activity; these effects were also fully blocked during anesthesia. Peripherally acting COC methiodide fully mimicked rapid EEG and EMG effects of regular COC, but the effects at an equimolar dose were less prolonged than those with regular COC. These data suggest that in awake animals IV COC, like somato-sensory stimuli, induces cortical activation and a subsequent motor response via its action on peripheral neural

  2. Strategies influence neural activity for feedback learning across child and adolescent development.

    Science.gov (United States)

    Peters, Sabine; Koolschijn, P Cédric M P; Crone, Eveline A; Van Duijvenvoorde, Anna C K; Raijmakers, Maartje E J

    2014-09-01

    Learning from feedback is an important aspect of executive functioning that shows profound improvements during childhood and adolescence. This is accompanied by neural changes in the feedback-learning network, which includes pre-supplementary motor area (pre- SMA)/anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC), superior parietal cortex (SPC), and the basal ganglia. However, there can be considerable differences within age ranges in performance that are ascribed to differences in strategy use. This is problematic for traditional approaches of analyzing developmental data, in which age groups are assumed to be homogenous in strategy use. In this study, we used latent variable models to investigate if underlying strategy groups could be detected for a feedback-learning task and whether there were differences in neural activation patterns between strategies. In a sample of 268 participants between ages 8 to 25 years, we observed four underlying strategy groups, which were cut across age groups and varied in the optimality of executive functioning. These strategy groups also differed in neural activity during learning; especially the most optimal performing group showed more activity in DLPFC, SPC and pre-SMA/ACC compared to the other groups. However, age differences remained an important contributor to neural activation, even when correcting for strategy. These findings contribute to the debate of age versus performance predictors of neural development, and highlight the importance of studying individual differences in strategy use when studying development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. False memory for face in short-term memory and neural activity in human amygdala.

    Science.gov (United States)

    Iidaka, Tetsuya; Harada, Tokiko; Sadato, Norihiro

    2014-12-03

    Human memory is often inaccurate. Similar to words and figures, new faces are often recognized as seen or studied items in long- and short-term memory tests; however, the neural mechanisms underlying this false memory remain elusive. In a previous fMRI study using morphed faces and a standard false memory paradigm, we found that there was a U-shaped response curve of the amygdala to old, new, and lure items. This indicates that the amygdala is more active in response to items that are salient (hit and correct rejection) compared to items that are less salient (false alarm), in terms of memory retrieval. In the present fMRI study, we determined whether the false memory for faces occurs within the short-term memory range (a few seconds), and assessed which neural correlates are involved in veridical and illusory memories. Nineteen healthy participants were scanned by 3T MRI during a short-term memory task using morphed faces. The behavioral results indicated that the occurrence of false memories was within the short-term range. We found that the amygdala displayed a U-shaped response curve to memory items, similar to those observed in our previous study. These results suggest that the amygdala plays a common role in both long- and short-term false memory for faces. We made the following conclusions: First, the amygdala is involved in detecting the saliency of items, in addition to fear, and supports goal-oriented behavior by modulating memory. Second, amygdala activity and response time might be related with a subject's response criterion for similar faces. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Prediction of human actions: expertise and task-related effects on neural activation of the action observation network.

    Science.gov (United States)

    Balser, Nils; Lorey, Britta; Pilgramm, Sebastian; Stark, Rudolf; Bischoff, Matthias; Zentgraf, Karen; Williams, Andrew Mark; Munzert, Jörn

    2014-08-01

    The action observation network (AON) is supposed to play a crucial role when athletes anticipate the effect of others' actions in sports such as tennis. We used functional magnetic resonance imaging to explore whether motor expertise leads to a differential activation pattern within the AON during effect anticipation and whether spatial and motor anticipation tasks are associated with a differential activation pattern within the AON depending on participant expertise level. Expert (N=16) and novice (N=16) tennis players observed video clips depicting forehand strokes with the instruction to either indicate the predicted direction of ball flight (spatial anticipation) or to decide on an appropriate response to the observed action (motor anticipation). The experts performed better than novices on both tennis anticipation tasks, with the experts showing stronger neural activation in areas of the AON, namely, the superior parietal lobe, the intraparietal sulcus, the inferior frontal gyrus, and the cerebellum. When novices were contrasted with experts, motor anticipation resulted in stronger activation of the ventral premotor cortex, the supplementary motor area, and the superior parietal lobe than spatial anticipation task did. In experts, the comparison of motor and spatial anticipation revealed no increased activation. We suggest that the stronger activation of areas in the AON during the anticipation of action effects in experts reflects their use of the more fine-tuned motor representations they have acquired and improved during years of training. Furthermore, results suggest that the neural processing of different anticipation tasks depends on the expertise level. Copyright © 2014 Wiley Periodicals, Inc.

  5. Vascular Endothelial Growth Factor Receptor 3 Controls Neural Stem Cell Activation in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Jinah Han

    2015-02-01

    Full Text Available Neural stem cells (NSCs continuously produce new neurons within the adult mammalian hippocampus. NSCs are typically quiescent but activated to self-renew or differentiate into neural progenitor cells. The molecular mechanisms of NSC activation remain poorly understood. Here, we show that adult hippocampal NSCs express vascular endothelial growth factor receptor (VEGFR 3 and its ligand VEGF-C, which activates quiescent NSCs to enter the cell cycle and generate progenitor cells. Hippocampal NSC activation and neurogenesis are impaired by conditional deletion of Vegfr3 in NSCs. Functionally, this is associated with compromised NSC activation in response to VEGF-C and physical activity. In NSCs derived from human embryonic stem cells (hESCs, VEGF-C/VEGFR3 mediates intracellular activation of AKT and ERK pathways that control cell fate and proliferation. These findings identify VEGF-C/VEGFR3 signaling as a specific regulator of NSC activation and neurogenesis in mammals.

  6. Abnormal Task Modulation of Oscillatory Neural Activity in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Elisa C Dias

    2013-08-01

    Full Text Available Schizophrenia patients have deficits in cognitive function that are a core feature of the disorder. AX-CPT is commonly used to study cognition in schizophrenia, and patients have characteristic pattern of behavioral and ERP response. In AX-CPT subjects respond when a flashed cue A is followed by a target X, ignoring other letter combinations. Patients show reduced hit rate to go trials, and increased false alarms to sequences that require inhibition of a prepotent response. EEG recordings show reduced sensory (P1/N1, as well as later cognitive components (N2, P3, CNV. Behavioral deficits correlate most strongly with sensory dysfunction. Oscillatory analyses provide critical information regarding sensory/cognitive processing over and above standard ERP analyses. Recent analyses of induced oscillatory activity in single trials during AX-CPT in healthy volunteers showed characteristic response patterns in theta, alpha and beta frequencies tied to specific sensory and cognitive processes. Alpha and beta modulated during the trials and beta modulation over the frontal cortex correlated with reaction time. In this study, EEG data was obtained from 18 schizophrenia patients and 13 controls during AX-CPT performance, and single trial decomposition of the signal yielded power in the target wavelengths.Significant task-related event-related desynchronization (ERD was observed in both alpha and beta frequency bands over parieto-occipital cortex related to sensory encoding of the cue. This modulation was reduced in patients for beta, but not for alpha. In addition, significant beta ERD was observed over motor cortex, related to motor preparation for the response, and was also reduced in patients. These findings demonstrate impaired dynamic modulation of beta frequency rhythms in schizophrenia, and suggest that failures of oscillatory activity may underlie impaired sensory information processing in schizophrenia that in turn contributes to cognitive deficits.

  7. Computational modeling of neural activities for statistical inference

    CERN Document Server

    Kolossa, Antonio

    2016-01-01

    This authored monograph supplies empirical evidence for the Bayesian brain hypothesis by modeling event-related potentials (ERP) of the human electroencephalogram (EEG) during successive trials in cognitive tasks. The employed observer models are useful to compute probability distributions over observable events and hidden states, depending on which are present in the respective tasks. Bayesian model selection is then used to choose the model which best explains the ERP amplitude fluctuations. Thus, this book constitutes a decisive step towards a better understanding of the neural coding and computing of probabilities following Bayesian rules. The target audience primarily comprises research experts in the field of computational neurosciences, but the book may also be beneficial for graduate students who want to specialize in this field. .

  8. Activational and effort-related aspects of motivation: neural mechanisms and implications for psychopathology.

    Science.gov (United States)

    Salamone, John D; Yohn, Samantha E; López-Cruz, Laura; San Miguel, Noemí; Correa, Mercè

    2016-05-01

    Motivation has been defined as the process that allows organisms to regulate their internal and external environment, and control the probability, proximity and availability of stimuli. As such, motivation is a complex process that is critical for survival, which involves multiple behavioural functions mediated by a number of interacting neural circuits. Classical theories of motivation suggest that there are both directional and activational aspects of motivation, and activational aspects (i.e. speed and vigour of both the instigation and persistence of behaviour) are critical for enabling organisms to overcome work-related obstacles or constraints that separate them from significant stimuli. The present review discusses the role of brain dopamine and related circuits in behavioural activation, exertion of effort in instrumental behaviour, and effort-related decision-making, based upon both animal and human studies. Impairments in behavioural activation and effort-related aspects of motivation are associated with psychiatric symptoms such as anergia, fatigue, lassitude and psychomotor retardation, which cross multiple pathologies, including depression, schizophrenia, and Parkinson's disease. Therefore, this review also attempts to provide an interdisciplinary approach that integrates findings from basic behavioural neuroscience, behavioural economics, clinical neuropsychology, psychiatry, and neurology, to provide a coherent framework for future research and theory in this critical field. Although dopamine systems are a critical part of the brain circuitry regulating behavioural activation, exertion of effort, and effort-related decision-making, mesolimbic dopamine is only one part of a distributed circuitry that includes multiple neurotransmitters and brain areas. Overall, there is a striking similarity between the brain areas involved in behavioural activation and effort-related processes in rodents and in humans. Animal models of effort-related decision

  9. Active random noise control using adaptive learning rate neural networks with an immune feedback law

    Science.gov (United States)

    Sasaki, Minoru; Kuribayashi, Takumi; Ito, Satoshi

    2005-12-01

    In this paper an active random noise control using adaptive learning rate neural networks with an immune feedback law is presented. The adaptive learning rate strategy increases the learning rate by a small constant if the current partial derivative of the objective function with respect to the weight and the exponential average of the previous derivatives have the same sign, otherwise the learning rate is decreased by a proportion of its value. The use of an adaptive learning rate attempts to keep the learning step size as large as possible without leading to oscillation. In the proposed method, because of the immune feedback law change a learning rate of the neural networks individually and adaptively, it is expected that a cost function minimize rapidly and training time is decreased. Numerical simulations and experiments of active random noise control with the transfer function of the error path will be performed, to validate the convergence properties of the adaptive learning rate Neural Networks with the immune feedback law. Control results show that adaptive learning rate Neural Networks control structure can outperform linear controllers and conventional neural network controller for the active random noise control.

  10. Sustained neural activity to gaze and emotion perception in dynamic social scenes.

    Science.gov (United States)

    Ulloa, José Luis; Puce, Aina; Hugueville, Laurent; George, Nathalie

    2014-03-01

    To understand social interactions, we must decode dynamic social cues from seen faces. Here, we used magnetoencephalography (MEG) to study the neural responses underlying the perception of emotional expressions and gaze direction changes as depicted in an interaction between two agents. Subjects viewed displays of paired faces that first established a social scenario of gazing at each other (mutual attention) or gazing laterally together (deviated group attention) and then dynamically displayed either an angry or happy facial expression. The initial gaze change elicited a significantly larger M170 under the deviated than the mutual attention scenario. At around 400 ms after the dynamic emotion onset, responses at posterior MEG sensors differentiated between emotions, and between 1000 and 2200 ms, left posterior sensors were additionally modulated by social scenario. Moreover, activity on right anterior sensors showed both an early and prolonged interaction between emotion and social scenario. These results suggest that activity in right anterior sensors reflects an early integration of emotion and social attention, while posterior activity first differentiated between emotions only, supporting the view of a dual route for emotion processing. Altogether, our data demonstrate that both transient and sustained neurophysiological responses underlie social processing when observing interactions between others.

  11. What to suggest after coronary angioplasty or bypass surgery procedures: a sedentary lifestyle, moderate physical activity or sports activity?

    Science.gov (United States)

    Guiducci, Umberto

    2006-04-01

    Patients undergoing coronary percutaneous revascularization are usually sedentary individuals. It is well known that physical activity has central and peripheral benefit in subjects with or without coronary heart disease. The physiological principles of physical activity, which are essential during rehabilitation activity, have led to an evolution in the concept of sports therapy with a preventive and therapeutic efficacy even in groups of moderately advanced age. The training effect must be adequate in the ischaemic patient during baseline conditions with increased intra-ventricular pressure regimens and with arrhythmological potential. Metabolic, muscular and general adaptation in the ischaemic patient is essential for improved economy of effort. It is necessary to stratify patients to identify low to moderate risk in order to prepare training programmes and eventually sports activity. Sports activity and training programme selection must be performed by a cardiologist who understands the problemmes and potentials of physical training that can be performed even in a gym.

  12. Fundamental Active Current Adaptive Linear Neural Networks for Photovoltaic Shunt Active Power Filters

    Directory of Open Access Journals (Sweden)

    Muhammad Ammirrul Atiqi Mohd Zainuri

    2016-05-01

    Full Text Available This paper presents improvement of a harmonics extraction algorithm, known as the fundamental active current (FAC adaptive linear element (ADALINE neural network with the integration of photovoltaic (PV to shunt active power filters (SAPFs as active current source. Active PV injection in SAPFs should reduce dependency on grid supply current to supply the system. In addition, with a better and faster harmonics extraction algorithm, the SAPF should perform well, especially under dynamic PV and load conditions. The role of the actual injection current from SAPF after connecting PVs will be evaluated, and the better effect of using FAC ADALINE will be confirmed. The proposed SAPF was simulated and evaluated in MATLAB/Simulink first. Then, an experimental laboratory prototype was also developed to be tested with a PV simulator (CHROMA 62100H-600S, and the algorithm was implemented using a TMS320F28335 Digital Signal Processor (DSP. From simulation and experimental results, significant improvements in terms of total harmonic distortion (THD, time response and reduction of source power from grid have successfully been verified and achieved.

  13. Enhancing neural activity to drive respiratory plasticity following cervical spinal cord injury.

    Science.gov (United States)

    Hormigo, Kristiina M; Zholudeva, Lyandysha V; Spruance, Victoria M; Marchenko, Vitaliy; Cote, Marie-Pascale; Vinit, Stephane; Giszter, Simon; Bezdudnaya, Tatiana; Lane, Michael A

    2017-01-01

    Cervical spinal cord injury (SCI) results in permanent life-altering sensorimotor deficits, among which impaired breathing is one of the most devastating and life-threatening. While clinical and experimental research has revealed that some spontaneous respiratory improvement (functional plasticity) can occur post-SCI, the extent of the recovery is limited and significant deficits persist. Thus, increasing effort is being made to develop therapies that harness and enhance this neuroplastic potential to optimize long-term recovery of breathing in injured individuals. One strategy with demonstrated therapeutic potential is the use of treatments that increase neural and muscular activity (e.g. locomotor training, neural and muscular stimulation) and promote plasticity. With a focus on respiratory function post-SCI, this review will discuss advances in the use of neural interfacing strategies and activity-based treatments, and highlights some recent results from our own research. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Dissipativity and Synchronization of Generalized BAM Neural Networks With Multivariate Discontinuous Activations.

    Science.gov (United States)

    Wang, Dongshu; Huang, Lihong; Tang, Longkun

    2017-09-14

    This paper is concerned with the dissipativity and synchronization problems of a class of delayed bidirectional associative memory (BAM) neural networks in which neuron activations are modeled by discontinuous bivariate functions. First, the concept of the Filippov solution is extended to functional differential equations with discontinuous right-hand sides and mixed delays via functional differential inclusions. The global dissipativity of the Filippov solution to the considered BAM neural networks is proven using generalized Halanay inequalities and matrix measure approaches. Second, to realize global exponential complete synchronization of BAM neural networks with multivariate discontinuous activations, discontinuous state feedback controllers are designed using functional differential inclusions theory and nonsmooth analysis theory with generalized Lyapunov functional method. Finally, several numerical examples are provided to demonstrate the applicability and effectiveness of our proposed results.

  15. Hippocalcin Is Required for Astrocytic Differentiation through Activation of Stat3 in Hippocampal Neural Precursor Cells.

    Directory of Open Access Journals (Sweden)

    Min-Jeong Kang

    2016-10-01

    Full Text Available Hippocalcin (Hpca is a neuronal calcium sensor protein expressed in the mammalian brain. However, its function in neural stem/precursor cells has not yet been studied. Here, we clarify the function of Hpca in astrocytic differentiation in hippocampal neural precursor cells (HNPCs. When we overexpressed Hpca in HNPCs in the presence or absence of bFGF, expression levels of nerve-growth factors such as neurotrophin-3 (NT-3, neurotrophin-4/5 (NT-4/5 and brain-derived neurotrophic factor (BDNF, together with the proneural basic helix loop helix (bHLH transcription factors neuroD and neurogenin 1 (ngn1, increased significantly. In addition, there was an increase in the number of cells expressing glial fibrillary acidic protein (GFAP, an astrocyte marker, and in dendrite outgrowth, indicating astrocytic differentiation of the HNPCs. Downregulation of Hpca by transfection with Hpca siRNA reduced expression of NT-3, NT-4/5, BDNF, neuroD and ngn1 as well as levels of GFAP protein. Furthermore, overexpression of Hpca increased the phosphorylation of STAT3 (Ser727, and this effect was abolished by treatment with a STAT3 inhibitor (S3I-201, suggesting that STAT3 (Ser727 activation is involved in Hpca-mediated astrocytic differentiation. As expected, treatment with Stat3 siRNA or STAT3 inhibitor caused a complete inhibition of astrogliogenesis induced by Hpca overexpression. Taken together, this is the first report to show that Hpca, acting through Stat3, has an important role in the expression of neurotrophins and proneural bHLH transcription factors, and that it is an essential regulator of astrocytic differentiation and dendrite outgrowth in HNPCs.

  16. Mixed Mode Oscillations and Synchronous Activity in Noise Induced Modified Morris-Lecar Neural System

    Science.gov (United States)

    Upadhyay, Ranjit Kumar; Mondal, Argha; Teka, Wondimu W.

    The modified three-dimensional (3D) Morris-Lecar (M-L) model is very useful to understand the spiking activities of neurons. The present article addresses the random dynamical behavior of a modified M-L model driven by a white Gaussian noise with mean zero and unit spectral density. The applied stimulus can be expressed as a random term. Such random perturbations are represented by a white Gaussian noise current added through the electrical potential of membrane of the excitatory principal cells. The properties of the stochastic system (perturbed one) and noise induced mixed mode oscillation are analyzed. The Lyapunov spectrum is computed to present the nature of the system dynamics. The noise intensity is varied while keeping fixed the predominant parameters of the model in their ranges and also observed the changes in the dynamical behavior of the system. The dynamical synchronization is studied in the coupled M-L systems interconnected by excitatory and inhibitory neurons with noisy electrical coupling and verified with similarity functions. This result suggests the potential benefits of noise and noise induced oscillations which have been observed in real neurons and how that affects the dynamics of the neural model as well as the coupled systems. The analysis reports that the modified M-L system which has the limit cycle behavior can show a type of phase locking behavior which follows either period adding (i.e. 1:1, 2:1, 3:1, 4:1) sequences or Farey sequences. For the coupled neural systems, complete synchronization is shown for sufficient noisy coupling strength.

  17. Neural speech recognition: continuous phoneme decoding using spatiotemporal representations of human cortical activity

    Science.gov (United States)

    Moses, David A.; Mesgarani, Nima; Leonard, Matthew K.; Chang, Edward F.

    2016-10-01

    Objective. The superior temporal gyrus (STG) and neighboring brain regions play a key role in human language processing. Previous studies have attempted to reconstruct speech information from brain activity in the STG, but few of them incorporate the probabilistic framework and engineering methodology used in modern speech recognition systems. In this work, we describe the initial efforts toward the design of a neural speech recognition (NSR) system that performs continuous phoneme recognition on English stimuli with arbitrary vocabulary sizes using the high gamma band power of local field potentials in the STG and neighboring cortical areas obtained via electrocorticography. Approach. The system implements a Viterbi decoder that incorporates phoneme likelihood estimates from a linear discriminant analysis model and transition probabilities from an n-gram phonemic language model. Grid searches were used in an attempt to determine optimal parameterizations of the feature vectors and Viterbi decoder. Main results. The performance of the system was significantly improved by using spatiotemporal representations of the neural activity (as opposed to purely spatial representations) and by including language modeling and Viterbi decoding in the NSR system. Significance. These results emphasize the importance of modeling the temporal dynamics of neural responses when analyzing their variations with respect to varying stimuli and demonstrate that speech recognition techniques can be successfully leveraged when decoding speech from neural signals. Guided by the results detailed in this work, further development of the NSR system could have applications in the fields of automatic speech recognition and neural prosthetics.

  18. Performance of Deep and Shallow Neural Networks, the Universal Approximation Theorem, Activity Cliffs, and QSAR.

    Science.gov (United States)

    Winkler, David A; Le, Tu C

    2017-01-01

    Neural networks have generated valuable Quantitative Structure-Activity/Property Relationships (QSAR/QSPR) models for a wide variety of small molecules and materials properties. They have grown in sophistication and many of their initial problems have been overcome by modern mathematical techniques. QSAR studies have almost always used so-called "shallow" neural networks in which there is a single hidden layer between the input and output layers. Recently, a new and potentially paradigm-shifting type of neural network based on Deep Learning has appeared. Deep learning methods have generated impressive improvements in image and voice recognition, and are now being applied to QSAR and QSAR modelling. This paper describes the differences in approach between deep and shallow neural networks, compares their abilities to predict the properties of test sets for 15 large drug data sets (the kaggle set), discusses the results in terms of the Universal Approximation theorem for neural networks, and describes how DNN may ameliorate or remove troublesome "activity cliffs" in QSAR data sets. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Sustained neural activity patterns during working memory in the human medial temporal lobe.

    NARCIS (Netherlands)

    Axmacher, N.; Mormann, F.; Fernandez, G.; Cohen, M.X.; Elger, C.E.; Fell, J.

    2007-01-01

    In contrast to classical findings that the medial temporal lobe (MTL) specifically underlies long-term memory, previous data suggest that MTL structures may also contribute to working memory (WM). However, the neural mechanisms by which the MTL supports WM have remained unknown. Here, we exploit

  20. Where does brain neural activation in aesthetic responses to visual art occur? Meta-analytic evidence from neuroimaging studies.

    Science.gov (United States)

    Boccia, M; Barbetti, S; Piccardi, L; Guariglia, C; Ferlazzo, F; Giannini, A M; Zaidel, D W

    2016-01-01

    Here we aimed at finding the neural correlates of the general aspect of visual aesthetic experience (VAE) and those more strictly correlated with the content of the artworks. We applied a general activation likelihood estimation (ALE) meta-analysis to 47 fMRI experiments described in 14 published studies. We also performed four separate ALE analyses in order to identify the neural substrates of reactions to specific categories of artworks, namely portraits, representation of real-world-visual-scenes, abstract paintings, and body sculptures. The general ALE revealed that VAE relies on a bilateral network of areas, and the individual ALE analyses revealed different maximal activation for the artworks' categories as function of their content. Specifically, different content-dependent areas of the ventral visual stream are involved in VAE, but a few additional brain areas are involved as well. Thus, aesthetic-related neural responses to art recruit widely distributed networks in both hemispheres including content-dependent brain areas of the ventral visual stream. Together, the results suggest that aesthetic responses are not independent of sensory, perceptual, and cognitive processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Development of modularity in the neural activity of children’s brains

    Science.gov (United States)

    Chen, Man; Deem, Michael W.

    2015-01-01

    We study how modularity of the human brain changes as children develop into adults. Theory suggests that modularity can enhance the response function of a networked system subject to changing external stimuli. Thus, greater cognitive performance might be achieved for more modular neural activity, and modularity might likely increase as children develop. The value of modularity calculated from fMRI data is observed to increase during childhood development and peak in young adulthood. Head motion is deconvolved from the fMRI data, and it is shown that the dependence of modularity on age is independent of the magnitude of head motion. A model is presented to illustrate how modularity can provide greater cognitive performance at short times, i.e. task switching. A fitness function is extracted from the model. Quasispecies theory is used to predict how the average modularity evolves with age, illustrating the increase of modularity during development from children to adults that arises from selection for rapid cognitive function in young adults. Experiments exploring the effect of modularity on cognitive performance are suggested. Modularity may be a potential biomarker for injury, rehabilitation, or disease. PMID:25619207

  2. Development of modularity in the neural activity of childrenʼs brains

    Science.gov (United States)

    Chen, Man; Deem, Michael W.

    2015-02-01

    We study how modularity of the human brain changes as children develop into adults. Theory suggests that modularity can enhance the response function of a networked system subject to changing external stimuli. Thus, greater cognitive performance might be achieved for more modular neural activity, and modularity might likely increase as children develop. The value of modularity calculated from functional magnetic resonance imaging (fMRI) data is observed to increase during childhood development and peak in young adulthood. Head motion is deconvolved from the fMRI data, and it is shown that the dependence of modularity on age is independent of the magnitude of head motion. A model is presented to illustrate how modularity can provide greater cognitive performance at short times, i.e. task switching. A fitness function is extracted from the model. Quasispecies theory is used to predict how the average modularity evolves with age, illustrating the increase of modularity during development from children to adults that arises from selection for rapid cognitive function in young adults. Experiments exploring the effect of modularity on cognitive performance are suggested. Modularity may be a potential biomarker for injury, rehabilitation, or disease.

  3. Arterial pulse modulated activity is expressed in respiratory neural output

    National Research Council Canada - National Science Library

    Thomas E. Dick; Roger Shannon; Bruce G. Lindsey; Sarah C. Nuding; Lauren S. Segers; David M. Baekey; Kendall F. Morris

    2005-01-01

    .... Even though previous studies have suggested the existence of pulse modulation in respiratory neurons, they could not exclude the possibility that such cells were involved in cardiovascular rather...

  4. Beautiful friendship: Social sharing of emotions improves subjective feelings and activates the neural reward circuitry.

    Science.gov (United States)

    Wagner, Ullrich; Galli, Lisa; Schott, Björn H; Wold, Andrew; van der Schalk, Job; Manstead, Antony S R; Scherer, Klaus; Walter, Henrik

    2015-06-01

    Humans have a strong tendency to affiliate with other people, especially in emotional situations. Here, we suggest that a critical mechanism underlying this tendency is that socially sharing emotional experiences is in itself perceived as hedonically positive and thereby contributes to the regulation of individual emotions. We investigated the effect of social sharing of emotions on subjective feelings and neural activity by having pairs of friends view emotional (negative and positive) and neutral pictures either alone or with the friend. While the two friends remained physically separated throughout the experiment-with one undergoing functional magnetic resonance imaging and the other performing the task in an adjacent room-they were made aware on a trial-by-trial basis whether they were seeing pictures simultaneously with their friend (shared) or alone (unshared). Ratings of subjective feelings were improved significantly when participants viewed emotional pictures together than alone, an effect that was accompanied by activity increase in ventral striatum and medial orbitofrontal cortex, two important components of the reward circuitry. Because these effects occurred without any communication or interaction between the friends, they point to an important proximate explanation for the basic human motivation to affiliate with others, particularly in emotional situations. © The Author (2014). Published by Oxford University Press.

  5. Differential neural activity during search of specific and general autobiographical memories elicited by musical cues.

    Science.gov (United States)

    Ford, Jaclyn Hennessey; Addis, Donna Rose; Giovanello, Kelly S

    2011-07-01

    Previous neuroimaging studies that have examined autobiographical memory specificity have utilized retrieval cues associated with prior searches of the event, potentially changing the retrieval processes being investigated. In the current study, musical cues were used to naturally elicit memories from multiple levels of specificity (i.e., lifetime period, general event, and event-specific). Sixteen young adults participated in a neuroimaging study in which they retrieved autobiographical memories associated with musical cues. These musical cues led to the retrieval of highly emotional memories that had low levels of prior retrieval. Retrieval of all autobiographical memory levels was associated with activity in regions in the autobiographical memory network, specifically the ventromedial prefrontal cortex, posterior cingulate, and right medial temporal lobe. Owing to the use of music, memories from varying levels of specificity were retrieved, allowing for comparison of event memory and abstract personal knowledge, as well as comparison of specific and general event memory. Dorsolateral and dorsomedial prefrontal regions were engaged during event retrieval relative to personal knowledge retrieval, and retrieval of specific event memories was associated with increased activity in the bilateral medial temporal lobe and dorsomedial prefrontal cortex relative to retrieval of general event memories. These results suggest that the initial search processes for memories of different specificity levels preferentially engage different components of the autobiographical memory network. The potential underlying causes of these neural differences are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Modeling electrocortical activity through improved local approximations of integral neural field equations.

    NARCIS (Netherlands)

    Coombes, S.; Venkov, N.A.; Shiau, L.; Bojak, I.; Liley, D.T.; Laing, C.R.

    2007-01-01

    Neural field models of firing rate activity typically take the form of integral equations with space-dependent axonal delays. Under natural assumptions on the synaptic connectivity we show how one can derive an equivalent partial differential equation (PDE) model that properly treats the axonal

  7. Distinct neural pathways mediate alpha7 nicotinic acetylcholine receptor-dependent activation of the forebrain

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hay-Schmidt, Anders; Hansen, Henrik H

    2010-01-01

    important for cognitive function. However, the neural substrates involved in these effects remain elusive. Here we identify cortically projecting cholinergic neurons in the horizontal limb of the diagonal band of Broca (HDB) in the basal forebrain (BF) as important targets for alpha(7) nAChR activation...

  8. Differences in Feedback- and Inhibition-Related Neural Activity in Adult ADHD

    Science.gov (United States)

    Dibbets, Pauline; Evers, Lisbeth; Hurks, Petra; Marchetta, Natalie; Jolles, Jelle

    2009-01-01

    The objective of this study was to examine response inhibition- and feedback-related neural activity in adults with attention deficit hyperactivity disorder (ADHD) using event-related functional MRI. Sixteen male adults with ADHD and 13 healthy/normal controls participated in this study and performed a modified Go/NoGo task. Behaviourally,…

  9. Differential neural activity patterns for spatial relations in humans: a MEG study.

    Science.gov (United States)

    Scott, Nicole M; Leuthold, Arthur; Sera, Maria D; Georgopoulos, Apostolos P

    2016-02-01

    Children learn the words for above-below relations earlier than for left-right relations, despite treating these equally well in a simple visual categorization task. Even as adults--conflicts in congruency, such as when a stimulus is depicted in a spatially incongruent manner with respect to salient global cues--can be challenging. Here we investigated the neural correlates of encoding and maintaining in working memory above-below and left-right relational planes in 12 adults using magnetoencephalography in order to discover whether above-below relations are represented by the brain differently than left-right relations. Adults performed perfectly on the task behaviorally, so any differences in neural activity were attributed to the stimuli's cognitive attributes. In comparing above-below to left-right relations during stimulus encoding, we found the greatest differences in neural activity in areas associated with space and movement. In comparing congruent to incongruent trials, we found the greatest differential activity in premotor areas. For both contrasts, brain areas involved in the encoding phase were also involved in the maintenance phase, which provides evidence that those brain areas are particularly important in representing the relational planes or congruency types throughout the trial. When comparing neural activity associated with the relational planes during working memory, additional right posterior areas were implicated, whereas the congruent-incongruent contrast implicated additional bilateral frontal and temporal areas. These findings are consistent with the hypothesis left-right relations are represented differently than above-below relations.

  10. Higher-order cognitive training effects on processing speed-related neural activity: a randomized trial.

    Science.gov (United States)

    Motes, Michael A; Yezhuvath, Uma S; Aslan, Sina; Spence, Jeffrey S; Rypma, Bart; Chapman, Sandra B

    2017-10-12

    Higher-order cognitive training has shown to enhance performance in older adults, but the neural mechanisms underlying performance enhancement have yet to be fully disambiguated. This randomized trial examined changes in processing speed and processing speed-related neural activity in older participants (57-71 years of age) who underwent cognitive training (CT, N = 12) compared with wait-listed (WLC, N = 15) or exercise-training active (AC, N = 14) controls. The cognitive training taught cognitive control functions of strategic attention, integrative reasoning, and innovation over 12 weeks. All 3 groups worked through a functional magnetic resonance imaging processing speed task during 3 sessions (baseline, mid-training, and post-training). Although all groups showed faster reaction times (RTs) across sessions, the CT group showed a significant increase, and the WLC and AC groups showed significant decreases across sessions in the association between RT and BOLD signal change within the left prefrontal cortex (PFC). Thus, cognitive training led to a change in processing speed-related neural activity where faster processing speed was associated with reduced PFC activation, fitting previously identified neural efficiency profiles. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Specific and Nonspecific Neural Activity during Selective Processing of Visual Representations in Working Memory

    Science.gov (United States)

    Oh, Hwamee; Leung, Hoi-Chung

    2010-01-01

    In this fMRI study, we investigated prefrontal cortex (PFC) and visual association regions during selective information processing. We recorded behavioral responses and neural activity during a delayed recognition task with a cue presented during the delay period. A specific cue ("Face" or "Scene") was used to indicate which one of the two…

  12. Identification of children's activity type with accelerometer-based neural networks

    NARCIS (Netherlands)

    Vries, S.I. de; Engels, M.; Garre, F.G.

    2011-01-01

    Purpose: The study's purpose was to identify children's physical activity type using artificial neural network (ANN) models based on uniaxial or triaxial accelerometer data from the hip or the ankle. Methods: Fifty-eight children (31 boys and 27 girls, age range = 9-12 yr) performed the following

  13. Evaluation of neural networks to identify types of activity using accelerometers

    NARCIS (Netherlands)

    Vries, S.I. de; Garre, F.G.; Engbers, L.H.; Hildebrandt, V.H.; Buuren, S. van

    2011-01-01

    Purpose: To develop and evaluate two artificial neural network (ANN) models based on single-sensor accelerometer data and an ANN model based on the data of two accelerometers for the identification of types of physical activity in adults. Methods: Forty-nine subjects (21 men and 28 women; age range

  14. Distributed dynamical computation in neural circuits with propagating coherent activity patterns.

    Directory of Open Access Journals (Sweden)

    Pulin Gong

    2009-12-01

    Full Text Available Activity in neural circuits is spatiotemporally organized. Its spatial organization consists of multiple, localized coherent patterns, or patchy clusters. These patterns propagate across the circuits over time. This type of collective behavior has ubiquitously been observed, both in spontaneous activity and evoked responses; its function, however, has remained unclear. We construct a spatially extended, spiking neural circuit that generates emergent spatiotemporal activity patterns, thereby capturing some of the complexities of the patterns observed empirically. We elucidate what kind of fundamental function these patterns can serve by showing how they process information. As self-sustained objects, localized coherent patterns can signal information by propagating across the neural circuit. Computational operations occur when these emergent patterns interact, or collide with each other. The ongoing behaviors of these patterns naturally embody both distributed, parallel computation and cascaded logical operations. Such distributed computations enable the system to work in an inherently flexible and efficient way. Our work leads us to propose that propagating coherent activity patterns are the underlying primitives with which neural circuits carry out distributed dynamical computation.

  15. Integration and transmission of distributed deterministic neural activity in feed-forward networks.

    Science.gov (United States)

    Asai, Yoshiyuki; Villa, Alessandro E P

    2012-01-24

    A ten layer feed-forward network characterized by diverging/converging patterns of projection between successive layers of regular spiking (RS) neurons is activated by an external spatiotemporal input pattern fed to Layer 1 in presence of stochastic background activities fed to all layers. We used three dynamical systems to derive the external input spike trains including the temporal information, and three types of neuron models for the network, i.e. either a network formed either by neurons modeled by exponential integrate-and-fire dynamics (RS-EIF, Fourcaud-Trocmé et al., 2003), or by simple spiking neurons (RS-IZH, Izhikevich, 2004) or by multiple-timescale adaptive threshold neurons (RS-MAT, Kobayashi et al., 2009), given five intensities for the background activity. The assessment of the temporal structure embedded in the output spike trains was carried out by detecting the preferred firing sequences for the reconstruction of de-noised spike trains (Asai and Villa, 2008). We confirmed that the RS-MAT model is likely to be more efficient in integrating and transmitting the temporal structure embedded in the external input. We observed that this structure could be propagated not only up to the 10th layer but in some cases it was retained better beyond the 4th downstream layers. This study suggests that diverging/converging network structures, by the propagation of synfire activity, could play a key role in the transmission of complex temporal patterns of discharges associated to deterministic nonlinear activity. This article is part of a Special Issue entitled Neural Coding. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Simultaneous imaging of neural activity in three dimensions

    Directory of Open Access Journals (Sweden)

    Sean eQuirin

    2014-04-01

    Full Text Available We introduce a scanless optical method to image neuronal activity in three dimensions simultaneously. Using a spatial light modulator and a custom-designed phase mask, we illuminate and collect light simultaneously from different focal planes and perform calcium imaging of neuronal activity in vitro and in vivo. This method, combining structured illumination with volume projection imaging, could be used as a technological platform for brain activity mapping.

  17. Dispositional Mindfulness and Depressive Symptomatology: Correlations with Limbic and Self-Referential Neural Activity during Rest

    Science.gov (United States)

    Way, Baldwin M.; Creswell, J. David; Eisenberger, Naomi I.; Lieberman, Matthew D.

    2010-01-01

    To better understand the relationship between mindfulness and depression, we studied normal young adults (n=27) who completed measures of dispositional mindfulness and depressive symptomatology, which were then correlated with: a) Rest: resting neural activity during passive viewing of a fixation cross, relative to a simple goal-directed task (shape-matching); and b) Reactivity: neural reactivity during viewing of negative emotional faces, relative to the same shape-matching task. Dispositional mindfulness was negatively correlated with resting activity in self-referential processing areas, while depressive symptomatology was positively correlated with resting activity in similar areas. In addition, dispositional mindfulness was negatively correlated with resting activity in the amygdala, bilaterally, while depressive symptomatology was positively correlated with activity in the right amygdala. Similarly, when viewing emotional faces, amygdala reactivity was positively correlated with depressive symptomatology and negatively correlated with dispositional mindfulness, an effect that was largely attributable to differences in resting activity. These findings indicate that mindfulness is associated with intrinsic neural activity and that changes in resting amygdala activity could be a potential mechanism by which mindfulness-based depression treatments elicit therapeutic improvement. PMID:20141298

  18. Concurrent OCT imaging of stimulus evoked retinal neural activation and hemodynamic responses

    Science.gov (United States)

    Son, Taeyoon; Wang, Benquan; Lu, Yiming; Chen, Yanjun; Cao, Dingcai; Yao, Xincheng

    2017-02-01

    It is well established that major retinal diseases involve distortions of the retinal neural physiology and blood vascular structures. However, the details of distortions in retinal neurovascular coupling associated with major eye diseases are not well understood. In this study, a multi-modal optical coherence tomography (OCT) imaging system was developed to enable concurrent imaging of retinal neural activity and vascular hemodynamics. Flicker light stimulation was applied to mouse retinas to evoke retinal neural responses and hemodynamic changes. The OCT images were acquired continuously during the pre-stimulation, light-stimulation, and post-stimulation phases. Stimulus-evoked intrinsic optical signals (IOSs) and hemodynamic changes were observed over time in blood-free and blood regions, respectively. Rapid IOSs change occurred almost immediately after stimulation. Both positive and negative signals were observed in adjacent retinal areas. The hemodynamic changes showed time delays after stimulation. The signal magnitudes induced by light stimulation were observed in blood regions and did not show significant changes in blood-free regions. These differences may arise from different mechanisms in blood vessels and neural tissues in response to light stimulation. These characteristics agreed well with our previous observations in mouse retinas. Further development of the multimodal OCT may provide a new imaging method for studying how retinal structures and metabolic and neural functions are affected by age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and other diseases, which promises novel noninvasive biomarkers for early disease detection and reliable treatment evaluations of eye diseases.

  19. Complete stability of delayed recurrent neural networks with Gaussian activation functions.

    Science.gov (United States)

    Liu, Peng; Zeng, Zhigang; Wang, Jun

    2017-01-01

    This paper addresses the complete stability of delayed recurrent neural networks with Gaussian activation functions. By means of the geometrical properties of Gaussian function and algebraic properties of nonsingular M-matrix, some sufficient conditions are obtained to ensure that for an n-neuron neural network, there are exactly 3(k) equilibrium points with 0≤k≤n, among which 2(k) and 3(k)-2(k) equilibrium points are locally exponentially stable and unstable, respectively. Moreover, it concludes that all the states converge to one of the equilibrium points; i.e., the neural networks are completely stable. The derived conditions herein can be easily tested. Finally, a numerical example is given to illustrate the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Navigation of autonomous mobile robot using different activation functions of wavelet neural network

    Directory of Open Access Journals (Sweden)

    Panigrahi Pratap Kumar

    2015-03-01

    Full Text Available An autonomous mobile robot is a robot which can move and act autonomously without the help of human assistance. Navigation problem of mobile robot in unknown environment is an interesting research area. This is a problem of deducing a path for the robot from its initial position to a given goal position without collision with the obstacles. Different methods such as fuzzy logic, neural networks etc. are used to find collision free path for mobile robot. This paper examines behavior of path planning of mobile robot using three activation functions of wavelet neural network i.e. Mexican Hat, Gaussian and Morlet wavelet functions by MATLAB. The simulation result shows that WNN has faster learning speed with respect to traditional artificial neural network.

  1. Amygdala neural activity reflects spatial attention towards stimuli promising reward or threatening punishment.

    Science.gov (United States)

    Peck, Christopher J; Salzman, C Daniel

    2014-10-30

    Humans and other animals routinely identify and attend to sensory stimuli so as to rapidly acquire rewards or avoid aversive experiences. Emotional arousal, a process mediated by the amygdala, can enhance attention to stimuli in a non-spatial manner. However, amygdala neural activity was recently shown to encode spatial information about reward-predictive stimuli, and to correlate with spatial attention allocation. If representing the motivational significance of sensory stimuli within a spatial framework reflects a general principle of amygdala function, then spatially selective neural responses should also be elicited by sensory stimuli threatening aversive events. Recordings from amygdala neurons were therefore obtained while monkeys directed spatial attention towards stimuli promising reward or threatening punishment. Neural responses encoded spatial information similarly for stimuli associated with both valences of reinforcement, and responses reflected spatial attention allocation. The amygdala therefore may act to enhance spatial attention to sensory stimuli associated with rewarding or aversive experiences.

  2. Social power and approach-related neural activity

    NARCIS (Netherlands)

    M.A.S. Boksem (Maarten); R. Smolders (Ruud); D. de Cremer (David)

    2009-01-01

    textabstractIt has been argued that power activates a general tendency to approach whereas powerlessness activates a tendency to inhibit. The assumption is that elevated power involves reward-rich environments, freedom and, as a consequence, triggers an approach-related motivational orientation and

  3. Effects of furosemide on cochlear neural activity, central hyperactivity and behavioural tinnitus after cochlear trauma in guinea pig.

    Science.gov (United States)

    Mulders, Wilhelmina H A M; Barry, Kristin M; Robertson, Donald

    2014-01-01

    Cochlear trauma causes increased spontaneous activity (hyperactivity) to develop in central auditory structures, and this has been suggested as a neural substrate for tinnitus. Using a guinea pig model we have previously demonstrated that for some time after cochlear trauma, central hyperactivity is dependent on peripheral afferent drive and only later becomes generated intrinsically within central structures. Furosemide, a loop diuretic, reduces spontaneous firing of auditory afferents. We investigated in our guinea pig model the efficacy of furosemide in reducing 1) spontaneous firing of auditory afferents, using the spectrum of neural noise (SNN) from round window recording, 2) hyperactivity in inferior colliculus, using extracellular single neuron recordings and 3) tinnitus at early time-points after cochlear trauma. Tinnitus was assessed using gap prepulse inhibition of acoustic startle (GPIAS). Intraperitoneal furosemide, but not saline, caused a marked decrease in both SNN and central hyperactivity. Intracochlear perfusion with furosemide similarly reversed central hyperactivity. In animals in which GPIAS measurements suggested the presence of tinnitus (reduced GPIAS), this could be reversed with an intraperitoneal injection with furosemide but not saline. The results are consistent with furosemide reducing central hyperactivity and behavioural signs of tinnitus by acting peripherally to decrease spontaneous firing of auditory afferents. The data support the notion that hyperactivity may be involved in the generation of tinnitus and further suggest that there may be a therapeutic window after cochlear trauma using drug treatments that target peripheral spontaneous activity.

  4. Review of mesoscopic optical tomography for depth-resolved imaging of hemodynamic changes and neural activities

    Science.gov (United States)

    Tang, Qinggong; Lin, Jonathan; Tsytsarev, Vassiliy; Erzurumlu, Reha S.; Liu, Yi; Chen, Yu

    2016-01-01

    Abstract. Understanding the functional wiring of neural circuits and their patterns of activation following sensory stimulations is a fundamental task in the field of neuroscience. Furthermore, charting the activity patterns is undoubtedly important to elucidate how neural networks operate in the living brain. However, optical imaging must overcome the effects of light scattering in the tissue, which limit the light penetration depth and affect both the imaging quantitation and sensitivity. Laminar optical tomography (LOT) is a three-dimensional (3-D) in-vivo optical imaging technique that can be used for functional imaging. LOT can achieve both a resolution of 100 to 200  μm and a penetration depth of 2 to 3 mm based either on absorption or fluorescence contrast, as well as large field-of-view and high acquisition speed. These advantages make LOT suitable for 3-D depth-resolved functional imaging of the neural functions in the brain and spinal cords. We review the basic principles and instrumentations of representative LOT systems, followed by recent applications of LOT on 3-D imaging of neural activities in the rat forepaw stimulation model and mouse whisker-barrel system. PMID:27990452

  5. Convergence of inhibitory neural inputs regulate motor activity in the murine and monkey stomach.

    Science.gov (United States)

    Shaylor, Lara A; Hwang, Sung Jin; Sanders, Kenton M; Ward, Sean M

    2016-11-01

    Inhibitory motor neurons regulate several gastric motility patterns including receptive relaxation, gastric peristaltic motor patterns, and pyloric sphincter opening. Nitric oxide (NO) and purines have been identified as likely candidates that mediate inhibitory neural responses. However, the contribution from each neurotransmitter has received little attention in the distal stomach. The aims of this study were to identify the roles played by NO and purines in inhibitory motor responses in the antrums of mice and monkeys. By using wild-type mice and mutants with genetically deleted neural nitric oxide synthase (Nos1-/-) and P2Y1 receptors (P2ry1-/-) we examined the roles of NO and purines in postjunctional inhibitory responses in the distal stomach and compared these responses to those in primate stomach. Activation of inhibitory motor nerves using electrical field stimulation (EFS) produced frequency-dependent inhibitory junction potentials (IJPs) that produced muscle relaxations in both species. Stimulation of inhibitory nerves during slow waves terminated pacemaker events and associated contractions. In Nos1-/- mice IJPs and relaxations persisted whereas in P2ry1-/- mice IJPs were absent but relaxations persisted. In the gastric antrum of the non-human primate model Macaca fascicularis, similar NO and purine neural components contributed to inhibition of gastric motor activity. These data support a role of convergent inhibitory neural responses in the regulation of gastric motor activity across diverse species. Copyright © 2016 the American Physiological Society.

  6. An investigation of the relationship between activation of a social cognitive neural network and social functioning.

    Science.gov (United States)

    Pinkham, Amy E; Hopfinger, Joseph B; Ruparel, Kosha; Penn, David L

    2008-07-01

    Previous work examining the neurobiological substrates of social cognition in healthy individuals has reported modulation of a social cognitive network such that increased activation of the amygdala, fusiform gyrus, and superior temporal sulcus are evident when individuals judge a face to be untrustworthy as compared with trustworthy. We examined whether this pattern would be present in individuals with schizophrenia who are known to show reduced activation within these same neural regions when processing faces. Additionally, we sought to determine how modulation of this social cognitive network may relate to social functioning. Neural activation was measured using functional magnetic resonance imaging with blood oxygenation level dependent contrast in 3 groups of individuals--nonparanoid individuals with schizophrenia, paranoid individuals with schizophrenia, and healthy controls--while they rated faces as either trustworthy or untrustworthy. Analyses of mean percent signal change extracted from a priori regions of interest demonstrated that both controls and nonparanoid individuals with schizophrenia showed greater activation of this social cognitive network when they rated a face as untrustworthy relative to trustworthy. In contrast, paranoid individuals did not show a significant difference in levels of activation based on how they rated faces. Further, greater activation of this social cognitive network to untrustworthy faces was significantly and positively correlated with social functioning. These findings indicate that impaired modulation of neural activity while processing social stimuli may underlie deficits in social cognition and social dysfunction in schizophrenia.

  7. Sensitive red protein calcium indicators for imaging neural activity

    OpenAIRE

    Dana, Hod; Mohar, Boaz; Sun, Yi; Narayan, Sujatha; Gordus, Andrew; Hasseman, Jeremy P; Tsegaye, Getahun; Holt, Graham T.; Hu, Amy; Walpita, Deepika; Patel, Ronak; Macklin, John J.; Bargmann, Cornelia I; Ahrens, Misha B.; Schreiter, Eric R

    2016-01-01

    eLife digest Neurons encode information with brief electrical pulses called spikes. Monitoring spikes in large populations of neurons is a powerful method for studying how networks of neurons process information and produce behavior. This activity can be detected using fluorescent protein indicators, or ?probes?, which light up when neurons are active. The best existing probes produce green fluorescence. However, red fluorescent probes would allow us to see deeper into the brain, and could al...

  8. Deep Recurrent Neural Network for Mobile Human Activity Recognition with High Throughput

    OpenAIRE

    Inoue, Masaya; Inoue, Sozo; Nishida, Takeshi

    2016-01-01

    In this paper, we propose a method of human activity recognition with high throughput from raw accelerometer data applying a deep recurrent neural network (DRNN), and investigate various architectures and its combination to find the best parameter values. The "high throughput" refers to short time at a time of recognition. We investigated various parameters and architectures of the DRNN by using the training dataset of 432 trials with 6 activity classes from 7 people. The maximum recognition ...

  9. Multiple tooth-losses during development suppress age-dependent emergence of oscillatory neural activities in the oral somatosensory cortex.

    Science.gov (United States)

    Yoshimura, Hiroshi; Honjo, Makoto; Mashiyama, Yuichi; Kaneyama, Keiseki; Segami, Natsuki; Sato, Jun; Sugai, Tokio; Kato, Nobuo; Onoda, Norihiko

    2008-08-11

    Tooth and tooth-related organs play important roles in not only mastication, but also sensory perception in the oral region. In general, sensory neural inputs during the developmental period are required for the maturation of functions in the sensory cortex. However, whether maturations of oral somatosensory cortex (OSC) require certain levels of sensory input from oral regions has been unclear. The present study investigated the influence of multiple tooth-losses during the developmental period on age-dependent emergence of rhythmic activities of population neurons in the OSC. Low-frequency electrical stimulation was delivered to layer IV and field potentials were recorded from layer II/III in the OSC of rat brain slices. In control rats, N-methyl-d-aspartate (NMDA) receptor-dependent oscillation at 8-10 Hz appeared during postnatal weeks 2-3. In rats with extraction of multiple teeth at 17-18 days old, oscillation did not appear even at maturity, whereas in rats with multiple teeth extracted at 37-38 days old, oscillation appearances were maintained in maturity. Thus, emergence of oscillation in the OSC was suppressed by multiple tooth-losses during postnatal 2-3 weeks. These results suggest that sufficient neural inputs from the teeth and tooth-related organs during developmental periods are essential for maturation of neural functions in the OSC.

  10. Locking of correlated neural activity to ongoing oscillations.

    Directory of Open Access Journals (Sweden)

    Tobias Kühn

    2017-06-01

    Full Text Available Population-wide oscillations are ubiquitously observed in mesoscopic signals of cortical activity. In these network states a global oscillatory cycle modulates the propensity of neurons to fire. Synchronous activation of neurons has been hypothesized to be a separate channel of signal processing information in the brain. A salient question is therefore if and how oscillations interact with spike synchrony and in how far these channels can be considered separate. Experiments indeed showed that correlated spiking co-modulates with the static firing rate and is also tightly locked to the phase of beta-oscillations. While the dependence of correlations on the mean rate is well understood in feed-forward networks, it remains unclear why and by which mechanisms correlations tightly lock to an oscillatory cycle. We here demonstrate that such correlated activation of pairs of neurons is qualitatively explained by periodically-driven random networks. We identify the mechanisms by which covariances depend on a driving periodic stimulus. Mean-field theory combined with linear response theory yields closed-form expressions for the cyclostationary mean activities and pairwise zero-time-lag covariances of binary recurrent random networks. Two distinct mechanisms cause time-dependent covariances: the modulation of the susceptibility of single neurons (via the external input and network feedback and the time-varying variances of single unit activities. For some parameters, the effectively inhibitory recurrent feedback leads to resonant covariances even if mean activities show non-resonant behavior. Our analytical results open the question of time-modulated synchronous activity to a quantitative analysis.

  11. Altered Neural Activity during Irony Comprehension in Unaffected First-Degree Relatives of Schizophrenia Patients-An fMRI Study.

    Science.gov (United States)

    Herold, Róbert; Varga, Eszter; Hajnal, András; Hamvas, Edina; Berecz, Hajnalka; Tóth, Borbála; Tényi, Tamás

    2017-01-01

    Irony is a type of figurative language in which the literal meaning of the expression is the opposite of what the speaker intends to communicate. Even though schizophrenic patients are known as typically impaired in irony comprehension and in the underlying neural functions, to date no one has explored the neural correlates of figurative language comprehension in first-degree relatives of schizophrenic patients. In the present study, we examined the neural correlates of irony understanding in schizophrenic patients and in unaffected first-degree relatives of patients compared to healthy adults with functional MRI. Our aim was to investigate if possible alterations of the neural circuits supporting irony comprehension in first-degree relatives of patients with schizophrenia would fulfill the familiality criterion of an endophenotype. We examined 12 schizophrenic patients, 12 first-degree relatives of schizophrenia patients and 12 healthy controls with functional MRI while they were performing irony and control tasks. Different phases of irony processing were examined, such as context processing and ironic statement comprehension. Patients had significantly more difficulty understanding irony than controls or relatives. Patients also showed markedly different neural activation pattern compared to controls in both stages of irony processing. Although no significant differences were found in the performance of the irony tasks between the control group and the relative group, during the fMRI analysis, the relatives showed stronger brain activity in the left dorsolateral prefrontal cortex during the context processing phase of irony tasks than the control group. However, the controls demonstrated higher activations in the left dorsomedial prefrontal cortex and in the right inferior frontal gyrus during the ironic statement phase of the irony tasks than the relative group. Our results show that despite good task performance, first-degree relatives of schizophrenia

  12. Altered Neural Activity during Irony Comprehension in Unaffected First-Degree Relatives of Schizophrenia Patients—An fMRI Study

    Directory of Open Access Journals (Sweden)

    Róbert Herold

    2018-01-01

    Full Text Available Irony is a type of figurative language in which the literal meaning of the expression is the opposite of what the speaker intends to communicate. Even though schizophrenic patients are known as typically impaired in irony comprehension and in the underlying neural functions, to date no one has explored the neural correlates of figurative language comprehension in first-degree relatives of schizophrenic patients. In the present study, we examined the neural correlates of irony understanding in schizophrenic patients and in unaffected first-degree relatives of patients compared to healthy adults with functional MRI. Our aim was to investigate if possible alterations of the neural circuits supporting irony comprehension in first-degree relatives of patients with schizophrenia would fulfill the familiality criterion of an endophenotype. We examined 12 schizophrenic patients, 12 first-degree relatives of schizophrenia patients and 12 healthy controls with functional MRI while they were performing irony and control tasks. Different phases of irony processing were examined, such as context processing and ironic statement comprehension. Patients had significantly more difficulty understanding irony than controls or relatives. Patients also showed markedly different neural activation pattern compared to controls in both stages of irony processing. Although no significant differences were found in the performance of the irony tasks between the control group and the relative group, during the fMRI analysis, the relatives showed stronger brain activity in the left dorsolateral prefrontal cortex during the context processing phase of irony tasks than the control group. However, the controls demonstrated higher activations in the left dorsomedial prefrontal cortex and in the right inferior frontal gyrus during the ironic statement phase of the irony tasks than the relative group. Our results show that despite good task performance, first-degree relatives of

  13. Neural activity in the macaque putamen associated with saccades and behavioral outcome.

    Directory of Open Access Journals (Sweden)

    Jessica M Phillips

    Full Text Available It is now widely accepted that the basal ganglia nuclei form segregated, parallel loops with neocortical areas. The prevalent view is that the putamen is part of the motor loop, which receives inputs from sensorimotor areas, whereas the caudate, which receives inputs from frontal cortical eye fields and projects via the substantia nigra pars reticulata to the superior colliculus, belongs to the oculomotor loop. Tracer studies in monkeys and functional neuroimaging studies in human subjects, however, also suggest a potential role for the putamen in oculomotor control. To investigate the role of the putamen in saccadic eye movements, we recorded single neuron activity in the caudal putamen of two rhesus monkeys while they alternated between short blocks of pro- and anti-saccades. In each trial, the instruction cue was provided after the onset of the peripheral stimulus, thus the monkeys could either generate an immediate response to the stimulus based on the internal representation of the rule from the previous trial, or alternatively, could await the visual rule-instruction cue to guide their saccadic response. We found that a subset of putamen neurons showed saccade-related activity, that the preparatory mode (internally- versus externally-cued influenced the expression of task-selectivity in roughly one third of the task-modulated neurons, and further that a large proportion of neurons encoded the outcome of the saccade. These results suggest that the caudal putamen may be part of the neural network for goal-directed saccades, wherein the monitoring of saccadic eye movements, context and performance feedback may be processed together to ensure optimal behavioural performance and outcomes are achieved during ongoing behaviour.

  14. Post-Traumatic Stress Constrains the Dynamic Repertoire of Neural Activity.

    Science.gov (United States)

    Mišić, Bratislav; Dunkley, Benjamin T; Sedge, Paul A; Da Costa, Leodante; Fatima, Zainab; Berman, Marc G; Doesburg, Sam M; McIntosh, Anthony R; Grodecki, Richard; Jetly, Rakesh; Pang, Elizabeth W; Taylor, Margot J

    2016-01-13

    Post-traumatic stress disorder (PTSD) is an anxiety disorder arising from exposure to a traumatic event. Although primarily defined in terms of behavioral symptoms, the global neurophysiological effects of traumatic stress are increasingly recognized as a critical facet of the human PTSD phenotype. Here we use magnetoencephalographic recordings to investigate two aspects of information processing: inter-regional communication (measured by functional connectivity) and the dynamic range of neural activity (measured in terms of local signal variability). We find that both measures differentiate soldiers diagnosed with PTSD from soldiers without PTSD, from healthy civilians, and from civilians with mild traumatic brain injury, which is commonly comorbid with PTSD. Specifically, soldiers with PTSD display inter-regional hypersynchrony at high frequencies (80-150 Hz), as well as a concomitant decrease in signal variability. The two patterns are spatially correlated and most pronounced in a left temporal subnetwork, including the hippocampus and amygdala. We hypothesize that the observed hypersynchrony may effectively constrain the expression of local dynamics, resulting in less variable activity and a reduced dynamic repertoire. Thus, the re-experiencing phenomena and affective sequelae in combat-related PTSD may result from functional networks becoming "stuck" in configurations reflecting memories, emotions, and thoughts originating from the traumatizing experience. The present study investigates the effects of post-traumatic stress disorder (PTSD) in combat-exposed soldiers. We find that soldiers with PTSD exhibit hypersynchrony in a circuit of temporal lobe areas associated with learning and memory function. This rigid functional architecture is associated with a decrease in signal variability in the same areas, suggesting that the observed hypersynchrony may constrain the expression of local dynamics, resulting in a reduced dynamic range. Our findings suggest that

  15. Differential neural activation for camouflage detection task in Field ...

    Indian Academy of Sciences (India)

    Keywords. Camouflage; Field-Dependece; Field-Independence; MRI; visual perception; visual search. Abstract. It is not clearly known as to why some people identify camouflaged objects with ease compared with others. The literature suggests that Field-Independent individuals detect camouflaged object better than their ...

  16. Rapid regulation of sialidase activity in response to neural activity and sialic acid removal during memory processing in rat hippocampus.

    Science.gov (United States)

    Minami, Akira; Meguro, Yuko; Ishibashi, Sayaka; Ishii, Ami; Shiratori, Mako; Sai, Saki; Horii, Yuuki; Shimizu, Hirotaka; Fukumoto, Hokuto; Shimba, Sumika; Taguchi, Risa; Takahashi, Tadanobu; Otsubo, Tadamune; Ikeda, Kiyoshi; Suzuki, Takashi

    2017-04-07

    Sialidase cleaves sialic acids on the extracellular cell surface as well as inside the cell and is necessary for normal long-term potentiation (LTP) at mossy fiber-CA3 pyramidal cell synapses and for hippocampus-dependent spatial memory. Here, we investigated in detail the role of sialidase in memory processing. Sialidase activity measured with 4-methylumbelliferyl-α-d-N-acetylneuraminic acid (4MU-Neu5Ac) or 5-bromo-4-chloroindol-3-yl-α-d-N-acetylneuraminic acid (X-Neu5Ac) and Fast Red Violet LB was increased by high-K+-induced membrane depolarization. Sialidase activity was also increased by chemical LTP induction with forskolin and activation of BDNF signaling, non-NMDA receptors, or NMDA receptors. The increase in sialidase activity with neural excitation appears to be caused not by secreted sialidase or by an increase in sialidase expression but by a change in the subcellular localization of sialidase. Astrocytes as well as neurons are also involved in the neural activity-dependent increase in sialidase activity. Sialidase activity visualized with a benzothiazolylphenol-based sialic acid derivative (BTP3-Neu5Ac), a highly sensitive histochemical imaging probe for sialidase activity, at the CA3 stratum lucidum of rat acute hippocampal slices was immediately increased in response to LTP-inducible high-frequency stimulation on a time scale of seconds. To obtain direct evidence for sialic acid removal on the extracellular cell surface during neural excitation, the extracellular free sialic acid level in the hippocampus was monitored using in vivo microdialysis. The free sialic acid level was increased by high-K+-induced membrane depolarization. Desialylation also occurred during hippocampus-dependent memory formation in a contextual fear-conditioning paradigm. Our results show that neural activity-dependent desialylation by sialidase may be involved in hippocampal memory processing. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Auto-deleting brain machine interface: Error detection using spiking neural activity in the motor cortex.

    Science.gov (United States)

    Even-Chen, Nir; Stavisky, Sergey D; Kao, Jonathan C; Ryu, Stephen I; Shenoy, Krishna V

    2015-01-01

    Brain machine interfaces (BMIs) aim to assist people with paralysis by increasing their independence and ability to communicate, e.g., by using a cursor-based virtual keyboard. Current BMI clinical trials are hampered by modest performance that causes selection of wrong characters (errors) and thus reduces achieved typing rate. If it were possible to detect these errors without explicit knowledge of the task goal, this could be used to automatically "undo" wrong selections or even prevent upcoming wrong selections. We decoded imminent or recent errors during closed-loop BMI control from intracortical spiking neural activity. In our experiment, a non-human primate controlled a neurally-driven BMI cursor to acquire targets on a grid, which simulates a virtual keyboard. In offline analyses of this closed-loop BMI control data, we identified motor cortical neural signals indicative of task error occurrence. We were able to detect task outcomes (97% accuracy) and even predict upcoming task outcomes (86% accuracy) using neural activity alone. This novel strategy may help increase the performance and clinical viability of BMIs.

  18. When your pain signifies my gain: neural activity while evaluating outcomes based on another person's pain.

    Science.gov (United States)

    Cui, Fang; Zhu, Xiangru; Gu, Ruolei; Luo, Yue-Jia

    2016-05-19

    The overlap between pain and reward processing pathways leds researchers to hypothesize that there are interactions between them in the human brain. Two hypotheses have been proposed. The "competition hypothesis" posits that reward can reduce pain-related neural activity and vice versa. The "salience hypothesis" suggests that the motivational salience of pain and reward can be mutually reinforced. However, no study has tested these two hypotheses from temporal perspective as we know. In the present study, pictures depicted other people in painful or non-painful situations were used to indicate the valence of outcomes in a gambling task. The event-related potential results revealed an interaction between another person's pain and outcome valence in multiple time stages. Specifically, the amplitudes of the N1 and P3 were enhanced in the win condition compared with the loss condition when the outcome was indicated by painful picture. This interactions between pain and reward support the salience hypothesis but not the competition hypothesis. The present results provide evidence from human subjects that support the salience hypothesis, which claims that observing other people's pain can enhance the salience of reward.

  19. Neural effects of social environmental stress - an activation likelihood estimation meta-analysis.

    Science.gov (United States)

    Mothersill, O; Donohoe, G

    2016-07-01

    Social environmental stress, including childhood abuse and deprivation, is associated with increased rates of psychiatric disorders such as schizophrenia and depression. However, the neural mechanisms mediating risk are not completely understood. Functional magnetic resonance imaging (MRI) studies have reported effects of social environmental stress on a variety of brain regions, but interpretation of results is complicated by the variety of environmental risk factors examined and different methods employed. We examined brain regions consistently showing differences in blood oxygen level-dependent (BOLD) response in individuals exposed to higher levels of environmental stress by performing a coordinate-based meta-analysis on 54 functional MRI studies using activation likelihood estimation (ALE), including an overall sample of 3044 participants. We performed separate ALE analyses on studies examining adults (mean age ⩾18 years) and children/adolescents (mean age environmental stress across multiple studies. These clusters incorporated several brain regions, among which the right amygdala was most frequently implicated. These findings suggest that a variety of social environmental stressors is associated with differences in the BOLD response of specific brain regions such as the right amygdala in both children/adolescents and adults. What remains unknown is whether these environmental stressors have differential effects on treatment response in these brain regions.

  20. Hypnotic suggestion and cognitive neuroscience.

    Science.gov (United States)

    Oakley, David A; Halligan, Peter W

    2009-06-01

    The growing acceptance of consciousness as a legitimate field of enquiry and the availability of functional imaging has rekindled research interest in the use of hypnosis and suggestion to manipulate subjective experience and to gain insights into healthy and pathological cognitive functioning. Current research forms two strands. The first comprises studies exploring the cognitive and neural nature of hypnosis itself. The second employs hypnosis to explore known psychological processes using specifically targeted suggestions. An extension of this second approach involves using hypnotic suggestion to create clinically informed analogues of established structural and functional neuropsychological disorders. With functional imaging, this type of experimental neuropsychopathology offers a productive means of investigating brain activity involved in many symptom-based disorders and their related phenomenology.

  1. Neural activities during affective processing in people with Alzheimer's disease

    NARCIS (Netherlands)

    Lee, Tatia M. C.; Sun, Delin; Leung, Mei-Kei; Chu, Leung-Wing; Keysers, Christian

    This study examined brain activities in people with Alzheimer's disease when viewing happy, sad, and fearful facial expressions of others. A functional magnetic resonance imaging and a voxel-based morphometry methodology together with a passive viewing of emotional faces paradigm were employed to

  2. Concurrent multitasking : From neural activity to human cognition

    NARCIS (Netherlands)

    Nijboer, Menno

    2016-01-01

    Multitasking has become an important part of our daily lives. This delicate juggling act between several activities occurs when people drive, when they are working, and even when they should be paying attention in the classroom. While multitasking is typically considered as something to avoid, there

  3. Video-based convolutional neural networks for activity recognition from robot-centric videos

    Science.gov (United States)

    Ryoo, M. S.; Matthies, Larry

    2016-05-01

    In this evaluation paper, we discuss convolutional neural network (CNN)-based approaches for human activity recognition. In particular, we investigate CNN architectures designed to capture temporal information in videos and their applications to the human activity recognition problem. There have been multiple previous works to use CNN-features for videos. These include CNNs using 3-D XYT convolutional filters, CNNs using pooling operations on top of per-frame image-based CNN descriptors, and recurrent neural networks to learn temporal changes in per-frame CNN descriptors. We experimentally compare some of these different representatives CNNs while using first-person human activity videos. We especially focus on videos from a robots viewpoint, captured during its operations and human-robot interactions.

  4. Model Integrating Fuzzy Argument with Neural Network Enhancing the Performance of Active Queue Management

    Directory of Open Access Journals (Sweden)

    Nguyen Kim Quoc

    2015-08-01

    Full Text Available The bottleneck control by active queue management mechanisms at network nodes is essential. In recent years, some researchers have used fuzzy argument to improve the active queue management mechanisms to enhance the network performance. However, the projects using the fuzzy controller depend heavily on professionals and their parameters cannot be updated according to changes in the network, so the effectiveness of this mechanism is not high. Therefore, we propose a model combining the fuzzy controller with neural network (FNN to overcome the limitations above. Results of the training of the neural networks will find the optimal parameters for the adaptive fuzzy controller well to changes of the network. This improves the operational efficiency of the active queue management mechanisms at network nodes.

  5. Differential neural activation when voluntarily regulating emotions in service members with chronic mild traumatic brain injury.

    Science.gov (United States)

    Dretsch, Michael N; Daniel, Thomas A; Goodman, Adam M; Katz, Jeffrey S; Denney, Thomas; Deshpande, Gopikrishna; Robinson, Jennifer L

    2017-09-19

    The objective of this study was to characterize the functional activation of the neural correlates of voluntary regulation of emotion in soldiers both with and without chronic mild traumatic brain injury (mTBI). Using functional magnetic resonance imaging (fMRI) and a battery of cognitive and psychological health measures, we assessed differences between active-duty U.S. soldiers with chronic mTBI (n = 37) and without (Controls, n = 35). Participants were instructed to maintain (passively view), enhance, and suppress emotions associated with negative and neutral visual stimuli. The mTBI group showed significantly greater clinical symptoms, but only a mild decrement in attention. Group contrasts, while controlling for posttraumatic stress disorder (PTSD) symptoms, revealed a differential neural activation pattern compared to controls, but only during the enhance condition. Specifically, the mTBI group showed greater activation in the precentral gyrus, postcentral gyrus, inferior parietal lobe, insula, and superior temporal gyrus. Finally, the effect of PTSD symptoms during the enhance condition was associated with accentuated activation of the frontal and limbic regions implicated in both emotion regulation and PTSD. Hyperactivation of neural regions in the mTBI group during the enhance condition may reflect vigilance towards negative contextual stimuli and/or poor strategy that might result in suboptimal allocation of resources to regulate emotions.

  6. What are the odds? The neural correlates of active choice during gambling

    Directory of Open Access Journals (Sweden)

    Bettina eStuder

    2012-04-01

    Full Text Available Gambling is a widespread recreational activity and requires pitting the values of potential wins and losses against their probability of occurrence. Neuropsychological research showed that betting behavior on laboratory gambling tasks is highly sensitive to focal lesions to the ventromedial prefrontal cortex (vmPFC and insula. In the current study, we assessed the neural basis of betting choices in healthy participants, using functional magnetic resonance imaging of the Roulette Betting Task. In half of the trials participants actively chose their bets; in the other half the computer dictated the bet size. Our results highlight the impact of volitional choice upon the neural substrates of gambling: Neural activity in a distributed network - including key structures of the reward circuitry (midbrain, striatum - was higher during active compared to computer-dictated bet selection. In line with neuropsychological data, the anterior insula and vmPFC were more activated during self-directed bet selection, and responses in these areas were differentially modulated by the odds of winning in the two choice conditions. In addition, responses in the vmPFC and ventral striatum were modulated by the bet size. Convergent with electrophysiological research in macaques, our results further implicate the inferior parietal cortex (IPC in the processing of the likelihood of potential outcomes: Neural responses in the IPC bilaterally reflected the probability of winning during bet selection. Moreover, the IPC was particularly sensitive to the odds of winning in the active choice condition, where this information was used to guide bet selection. Our results indicate a neglected role of the IPC in human decision-making under risk and help to integrate neuropsychological data of risk-taking following vmPFC and insula damage with models of choice derived from human neuroimaging and monkey electrophysiology.

  7. Optimal Recognition Method of Human Activities Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Oniga Stefan

    2015-12-01

    Full Text Available The aim of this research is an exhaustive analysis of the various factors that may influence the recognition rate of the human activity using wearable sensors data. We made a total of 1674 simulations on a publically released human activity database by a group of researcher from the University of California at Berkeley. In a previous research, we analyzed the influence of the number of sensors and their placement. In the present research we have examined the influence of the number of sensor nodes, the type of sensor node, preprocessing algorithms, type of classifier and its parameters. The final purpose is to find the optimal setup for best recognition rates with lowest hardware and software costs.

  8. Environmental layout complexity affects neural activity during navigation in humans.

    Science.gov (United States)

    Slone, Edward; Burles, Ford; Iaria, Giuseppe

    2016-05-01

    Navigating large-scale surroundings is a fundamental ability. In humans, it is commonly assumed that navigational performance is affected by individual differences, such as age, sex, and cognitive strategies adopted for orientation. We recently showed that the layout of the environment itself also influences how well people are able to find their way within it, yet it remains unclear whether differences in environmental complexity are associated with changes in brain activity during navigation. We used functional magnetic resonance imaging to investigate how the brain responds to a change in environmental complexity by asking participants to perform a navigation task in two large-scale virtual environments that differed solely in interconnection density, a measure of complexity defined as the average number of directional choices at decision points. The results showed that navigation in the simpler, less interconnected environment was faster and more accurate relative to the complex environment, and such performance was associated with increased activity in a number of brain areas (i.e. precuneus, retrosplenial cortex, and hippocampus) known to be involved in mental imagery, navigation, and memory. These findings provide novel evidence that environmental complexity not only affects navigational behaviour, but also modulates activity in brain regions that are important for successful orientation and navigation. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Alternative Sensor System and MLP Neural Network for Vehicle Pedal Activity Estimation

    Directory of Open Access Journals (Sweden)

    Ahmed M. Wefky

    2010-04-01

    Full Text Available It is accepted that the activity of the vehicle pedals (i.e., throttle, brake, clutch reflects the driver’s behavior, which is at least partially related to the fuel consumption and vehicle pollutant emissions. This paper presents a solution to estimate the driver activity regardless of the type, model, and year of fabrication of the vehicle. The solution is based on an alternative sensor system (regime engine, vehicle speed, frontal inclination and linear acceleration that reflects the activity of the pedals in an indirect way, to estimate that activity by means of a multilayer perceptron neural network with a single hidden layer.

  10. Implications of the Dependence of Neuronal Activity on Neural Network States for the Design of Brain-Machine Interfaces.

    Science.gov (United States)

    Panzeri, Stefano; Safaai, Houman; De Feo, Vito; Vato, Alessandro

    2016-01-01

    Brain-machine interfaces (BMIs) can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stimulating electrodes, because trial-to-trial variability of neural activity partly arises from intrinsic factors (collectively known as the network state) that include ongoing spontaneous activity and neuromodulation, and so is shared among neurons. Here we review recent progress in characterizing the state dependence of neural responses, and in particular of how neural responses depend on endogenous slow fluctuations of network excitability. We then elaborate on how this knowledge may be used to increase the amount of information that BMIs exchange with brain. Knowledge of network state can be used to fine-tune the stimulation pattern that should reliably elicit a target neural response used to encode information in the brain, and to discount part of the trial-by-trial variability of neural responses, so that they can be decoded more accurately.

  11. Implications of the dependence of neuronal activity on neural network states for the design of brain-machine interfaces

    Directory of Open Access Journals (Sweden)

    Stefano ePanzeri

    2016-04-01

    Full Text Available Brain-machine interfaces (BMIs can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stimulating electrodes, because trial-to-trial variability of neural activity partly arises from intrinsic factors (collectively known as the network state that include ongoing spontaneous activity and neuromodulation, and so is shared among neurons. Here we review recent progress in characterizing the state dependence of neural responses, and in particular of how neural responses depend on endogenous slow fluctuations of network excitability. We then elaborate on how this knowledge may be used to increase the amount of information that BMIs exchange with brains. Knowledge of network state can be used to fine-tune the stimulation pattern that should reliably elicit a target neural response used to encode information in the brain, and to discount part of the trial-by-trial variability of neural responses, so that they can be decoded more accurately.

  12. Differences in neural activation between preterm and full term born adolescents on a sentence comprehension task: implications for educational accommodations.

    Science.gov (United States)

    Barde, Laura H F; Yeatman, Jason D; Lee, Eliana S; Glover, Gary; Feldman, Heidi M

    2012-02-15

    Adolescent survivors of preterm birth experience persistent functional problems that negatively impact academic outcomes, even when standardized measures of cognition and language suggest normal ability. In this fMRI study, we compared the neural activation supporting auditory sentence comprehension in two groups of adolescents (ages 9-16 years); sentences varied in length and syntactic difficulty. Preterms (n=18, mean gestational age 28.8 weeks) and full terms (n=14) had scores on verbal IQ, receptive vocabulary, and receptive language tests that were within or above normal limits and similar between groups. In early and late phases of the trial, we found interactions by group and length; in the late phase, we also found a group by syntactic difficulty interaction. Post hoc tests revealed that preterms demonstrated significant activation in the left and right middle frontal gyri as syntactic difficulty increased. ANCOVA showed that the interactions could not be attributed to differences in age, receptive language skill, or reaction time. Results are consistent with the hypothesis that preterm birth modulates brain-behavior relations in sentence comprehension as task demands increase. We suggest preterms' differences in neural processing may indicate a need for educational accommodations, even when formal test scores indicate normal academic achievement. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Placebo-Activated Neural Systems are Linked to Antidepressant Responses

    Science.gov (United States)

    Peciña, Marta; Bohnert, Amy S. B.; Sikora, Magdalena; Avery, Erich T.; Langenecker, Scott A.; Mickey, Brian J.; Zubieta, Jon-Kar

    2016-01-01

    Importance High placebo responses have been observed across a wide range of pathologies, severely impacting drug development. Objective Here we examined neurochemical mechanisms underlying the formation of placebo effects in patients with Major Depressive Disorder (MDD). Participants Thirty-five medication-free MDD patients. Design and Intervention We performed a single-blinded two-week cross-over randomized controlled trial of two identical oral placebos (described as having either “active” or “inactive” fast-acting antidepressant-like effects) followed by a 10-week open-label treatment with a selective serotonin reuptake inhibitor (SSRI) or in some cases, another agent as clinically indicated. The volunteers were studied with PET and the μ-opioid receptor (MOR)-selective radiotracer [11C]carfentanil after each 1-week “inactive” and “active” oral placebo treatment. In addition, 1 mL of isotonic saline was administered intravenously (i.v.) within sight of the volunteer during PET scanning every 4 min over 20 min only after the 1-week active placebo treatment, with instructions that the compound may be associated with the activation of brain systems involved in mood improvement. This challenge stimulus was utilized to test the individual capacity to acutely activate endogenous opioid neurotransmision under expectations of antidepressant effect. Setting A University Health System. Main Outcomes and Measures Changes in depressive symptoms in response to “active” placebo and antidepressant. Baseline and activation measures of MOR binding. Results Higher baseline MOR binding in the nucleus accumbens (NAc) was associated with better response to antidepressant treatment (r=0.48; p=0.02). Reductions in depressive symptoms after 1-week of “active” placebo treatment, compared to the “inactive”, were associated with increased placebo-induced μ-opioid neurotransmission in a network of regions implicated in emotion, stress regulation, and the

  14. Acute stress evokes sexually dimorphic, stressor-specific patterns of neural activation across multiple limbic brain regions in adult rats.

    Science.gov (United States)

    Sood, Ankit; Chaudhari, Karina; Vaidya, Vidita A

    2018-03-01

    Stress enhances the risk for psychiatric disorders such as anxiety and depression. Stress responses vary across sex and may underlie the heightened vulnerability to psychopathology in females. Here, we examined the influence of acute immobilization stress (AIS) and a two-day short-term forced swim stress (FS) on neural activation in multiple cortical and subcortical brain regions, implicated as targets of stress and in the regulation of neuroendocrine stress responses, in male and female rats using Fos as a neural activity marker. AIS evoked a sex-dependent pattern of neural activation within the cingulate and infralimbic subdivisions of the medial prefrontal cortex (mPFC), lateral septum (LS), habenula, and hippocampal subfields. The degree of neural activation in the mPFC, LS, and habenula was higher in males. Female rats exhibited reduced Fos positive cell numbers in the dentate gyrus hippocampal subfield, an effect not observed in males. We addressed whether the sexually dimorphic neural activation pattern noted following AIS was also observed with the short-term stress of FS. In the paraventricular nucleus of the hypothalamus and the amygdala, FS similar to AIS resulted in robust increases in neural activation in both sexes. The pattern of neural activation evoked by FS was distinct across sexes, with a heightened neural activation noted in the prelimbic mPFC subdivision and hippocampal subfields in females and differed from the pattern noted with AIS. This indicates that the sex differences in neural activation patterns observed within stress-responsive brain regions are dependent on the nature of stressor experience.

  15. A Granger causality measure for point process models of ensemble neural spiking activity.

    Directory of Open Access Journals (Sweden)

    Sanggyun Kim

    2011-03-01

    Full Text Available The ability to identify directional interactions that occur among multiple neurons in the brain is crucial to an understanding of how groups of neurons cooperate in order to generate specific brain functions. However, an optimal method of assessing these interactions has not been established. Granger causality has proven to be an effective method for the analysis of the directional interactions between multiple sets of continuous-valued data, but cannot be applied to neural spike train recordings due to their discrete nature. This paper proposes a point process framework that enables Granger causality to be applied to point process data such as neural spike trains. The proposed framework uses the point process likelihood function to relate a neuron's spiking probability to possible covariates, such as its own spiking history and the concurrent activity of simultaneously recorded neurons. Granger causality is assessed based on the relative reduction of the point process likelihood of one neuron obtained excluding one of its covariates compared to the likelihood obtained using all of its covariates. The method was tested on simulated data, and then applied to neural activity recorded from the primary motor cortex (MI of a Felis catus subject. The interactions present in the simulated data were predicted with a high degree of accuracy, and when applied to the real neural data, the proposed method identified causal relationships between many of the recorded neurons. This paper proposes a novel method that successfully applies Granger causality to point process data, and has the potential to provide unique physiological insights when applied to neural spike trains.

  16. A Granger causality measure for point process models of ensemble neural spiking activity.

    Science.gov (United States)

    Kim, Sanggyun; Putrino, David; Ghosh, Soumya; Brown, Emery N

    2011-03-01

    The ability to identify directional interactions that occur among multiple neurons in the brain is crucial to an understanding of how groups of neurons cooperate in order to generate specific brain functions. However, an optimal method of assessing these interactions has not been established. Granger causality has proven to be an effective method for the analysis of the directional interactions between multiple sets of continuous-valued data, but cannot be applied to neural spike train recordings due to their discrete nature. This paper proposes a point process framework that enables Granger causality to be applied to point process data such as neural spike trains. The proposed framework uses the point process likelihood function to relate a neuron's spiking probability to possible covariates, such as its own spiking history and the concurrent activity of simultaneously recorded neurons. Granger causality is assessed based on the relative reduction of the point process likelihood of one neuron obtained excluding one of its covariates compared to the likelihood obtained using all of its covariates. The method was tested on simulated data, and then applied to neural activity recorded from the primary motor cortex (MI) of a Felis catus subject. The interactions present in the simulated data were predicted with a high degree of accuracy, and when applied to the real neural data, the proposed method identified causal relationships between many of the recorded neurons. This paper proposes a novel method that successfully applies Granger causality to point process data, and has the potential to provide unique physiological insights when applied to neural spike trains.

  17. Neural overlap in processing music and speech

    Science.gov (United States)

    Peretz, Isabelle; Vuvan, Dominique; Lagrois, Marie-Élaine; Armony, Jorge L.

    2015-01-01

    Neural overlap in processing music and speech, as measured by the co-activation of brain regions in neuroimaging studies, may suggest that parts of the neural circuitries established for language may have been recycled during evolution for musicality, or vice versa that musicality served as a springboard for language emergence. Such a perspective has important implications for several topics of general interest besides evolutionary origins. For instance, neural overlap is an important premise for the possibility of music training to influence language acquisition and literacy. However, neural overlap in processing music and speech does not entail sharing neural circuitries. Neural separability between music and speech may occur in overlapping brain regions. In this paper, we review the evidence and outline the issues faced in interpreting such neural data, and argue that converging evidence from several methodologies is needed before neural overlap is taken as evidence of sharing. PMID:25646513

  18. Abnormal body perception and neural activity in the insula in depression: an fMRI study of the depressed "material me".

    Science.gov (United States)

    Wiebking, Christine; Bauer, André; de Greck, Moritz; Duncan, Niall W; Tempelmann, Claus; Northoff, Georg

    2010-04-01

    In addition to affective-cognitive symptoms, patients with major depressive disorder (MDD) suffer from somato-vegetative symptoms, suggesting abnormal interoceptive awareness of their "material me". While recent imaging studies have extensively investigated affective-cognitive symptoms in MDD, the neural correlates of somato-vegetative symptoms and abnormal interoception remain unclear. Since the "material me" has been especially associated with the anterior insula in healthy subjects, we hypothesized abnormalities in this region during interoceptive awareness in MDD. We therefore investigated behavioural and neural correlates of interoception in healthy and depressed subjects using the Body Perception Questionnaire (BPQ) and a well established heartbeat perception task in fMRI. MDD patients showed significantly higher scores in the BPQ and reduced neural activity during rest periods, particularly in the bilateral anterior insula. In contrast to healthy subjects, BPQ scores no longer correlated with activity during rest periods in the anterior insula. Both BPQ scores and left anterior insula signal changes correlated with depression severity. We demonstrate for the first time abnormal body perception and altered activity in the insula during rest in MDD. Our results suggest that these behavioural and neural abnormalities are closely related to these patients' somato-vegetative abnormalities and their abnormal "material me".

  19. Dance type and flight parameters are associated with different mushroom body neural activities in worker honeybee brains.

    Directory of Open Access Journals (Sweden)

    Taketoshi Kiya

    Full Text Available BACKGROUND: Honeybee foragers can transmit the information concerning the location of food sources to their nestmates using dance communication. We previously used a novel immediate early gene, termed kakusei, to demonstrate that the neural activity of a specific mushroom body (MB neuron subtype is preferentially enhanced in the forager brain. The sensory information related to this MB neuron activity, however, remained unclear. METHODOLOGY/PRINCIPAL FINDINGS: Here, we used kakusei to analyze the relationship between MB neuron activity and types of foraging behavior. The number of kakusei-positive MB neurons was higher in the round dancers that had flown a short distance than in the waggle dancers that had flown a long distance. Furthermore, the amount of kakusei transcript in the MBs inversely related to the waggle-phase duration of the waggle dance, which correlates with the flight distance. Using a narrow tunnel whose inside was vertically or axially lined, we manipulated the pattern of visual input, which is received by the foragers during flight, and analysed kakusei expression. The amount of kakusei transcript in the MBs was related to the foraging frequency but not to the tunnel pattern. In contrast, the number of kakusei-positive MB neurons was affected by the tunnel patterns, but not related to foraging frequency. CONCLUSIONS/SIGNIFICANCE: These results suggest that the MB neuron activity depends on the foraging frequency, whereas the number of active MB neurons is related to the pattern of visual input received during foraging flight. Our results suggest that the foraging frequency and visual experience during foraging are associated with different MB neural activities.

  20. Relation of obesity to neural activation in response to food commercials

    Science.gov (United States)

    Yokum, Sonja; Stice, Eric; Harris, Jennifer L.; Brownell, Kelly D.

    2014-01-01

    Adolescents view thousands of food commercials annually, but the neural response to food advertising and its association with obesity is largely unknown. This study is the first to examine how neural response to food commercials differs from other stimuli (e.g. non-food commercials and television show) and to explore how this response may differ by weight status. The blood oxygen level-dependent functional magnetic resonance imaging activation was measured in 30 adolescents ranging from lean to obese in response to food and non-food commercials imbedded in a television show. Adolescents exhibited greater activation in regions implicated in visual processing (e.g. occipital gyrus), attention (e.g. parietal lobes), cognition (e.g. temporal gyrus and posterior cerebellar lobe), movement (e.g. anterior cerebellar cortex), somatosensory response (e.g. postcentral gyrus) and reward [e.g. orbitofrontal cortex and anterior cingulate cortex (ACC)] during food commercials. Obese participants exhibited less activation during food relative to non-food commercials in neural regions implicated in visual processing (e.g. cuneus), attention (e.g. posterior cerebellar lobe), reward (e.g. ventromedial prefrontal cortex and ACC) and salience detection (e.g. precuneus). Obese participants did exhibit greater activation in a region implicated in semantic control (e.g. medial temporal gyrus). These findings may inform current policy debates regarding the impact of food advertising to minors. PMID:23576811

  1. Two-photon imaging of cerebral hemodynamics and neural activity in awake and anesthetized marmosets.

    Science.gov (United States)

    Santisakultarm, Thom P; Kersbergen, Calvin J; Bandy, Daryl K; Ide, David C; Choi, Sang-Ho; Silva, Afonso C

    2016-09-15

    Marmosets are a powerful, emerging model for human behavior and neurological disorders. However, longitudinal imaging modalities that visualize both cellular structure and function within the cortex are not available in this animal model. Hence, we implemented an approach to quantify vascular topology, hemodynamics, and neural activity in awake marmosets using two-photon microscopy (2PM). Marmosets were acclimated to a custom stereotaxic system. AAV1-GCaMP5G was injected into somatosensory cortex to optically indicate neural activity, and a cranial chamber was implanted. Longitudinal 2PM revealed vasculature and neurons 500μm below the cortical surface. Vascular response and neural activity during sensory stimulation were preserved over 5 and 3 months, respectively, before optical quality deteriorated. Vascular remodeling including increased tortuosity and branching was quantified. However, capillary connectivity from arterioles to venules remained unchanged. Further, behavioral assessment before and after surgery demonstrated no impact on cognitive and motor function. Immunohistochemistry confirmed minimal astrocyte activation with no focal damage. Over 6 months, total cortical depth visualized decreased. When under anesthesia, the most prominent isoflurane-induced vasodilation occurred in capillaries and smaller arterioles. These results demonstrate the capability to repeatedly observe cortical physiology in awake marmosets over months. This work provides a novel and insightful technique to investigate critical mechanisms in neurological disorders in awake marmosets without introducing confounds from anesthesia. Published by Elsevier B.V.

  2. Relation of obesity to neural activation in response to food commercials.

    Science.gov (United States)

    Gearhardt, Ashley N; Yokum, Sonja; Stice, Eric; Harris, Jennifer L; Brownell, Kelly D

    2014-07-01

    Adolescents view thousands of food commercials annually, but the neural response to food advertising and its association with obesity is largely unknown. This study is the first to examine how neural response to food commercials differs from other stimuli (e.g. non-food commercials and television show) and to explore how this response may differ by weight status. The blood oxygen level-dependent functional magnetic resonance imaging activation was measured in 30 adolescents ranging from lean to obese in response to food and non-food commercials imbedded in a television show. Adolescents exhibited greater activation in regions implicated in visual processing (e.g. occipital gyrus), attention (e.g. parietal lobes), cognition (e.g. temporal gyrus and posterior cerebellar lobe), movement (e.g. anterior cerebellar cortex), somatosensory response (e.g. postcentral gyrus) and reward [e.g. orbitofrontal cortex and anterior cingulate cortex (ACC)] during food commercials. Obese participants exhibited less activation during food relative to non-food commercials in neural regions implicated in visual processing (e.g. cuneus), attention (e.g. posterior cerebellar lobe), reward (e.g. ventromedial prefrontal cortex and ACC) and salience detection (e.g. precuneus). Obese participants did exhibit greater activation in a region implicated in semantic control (e.g. medial temporal gyrus). These findings may inform current policy debates regarding the impact of food advertising to minors. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  3. Emergence of gamma motor activity in an artificial neural network model of the corticospinal system.

    Science.gov (United States)

    Grandjean, Bernard; Maier, Marc A

    2017-02-01

    Muscle spindle discharge during active movement is a function of mechanical and neural parameters. Muscle length changes (and their derivatives) represent its primary mechanical, fusimotor drive its neural component. However, neither the action nor the function of fusimotor and in particular of γ-drive, have been clearly established, since γ-motor activity during voluntary, non-locomotor movements remains largely unknown. Here, using a computational approach, we explored whether γ-drive emerges in an artificial neural network model of the corticospinal system linked to a biomechanical antagonist wrist simulator. The wrist simulator included length-sensitive and γ-drive-dependent type Ia and type II muscle spindle activity. Network activity and connectivity were derived by a gradient descent algorithm to generate reciprocal, known target α-motor unit activity during wrist flexion-extension (F/E) movements. Two tasks were simulated: an alternating F/E task and a slow F/E tracking task. Emergence of γ-motor activity in the alternating F/E network was a function of α-motor unit drive: if muscle afferent (together with supraspinal) input was required for driving α-motor units, then γ-drive emerged in the form of α-γ coactivation, as predicted by empirical studies. In the slow F/E tracking network, γ-drive emerged in the form of α-γ dissociation and provided critical, bidirectional muscle afferent activity to the cortical network, containing known bidirectional target units. The model thus demonstrates the complementary aspects of spindle output and hence γ-drive: i) muscle spindle activity as a driving force of α-motor unit activity, and ii) afferent activity providing continuous sensory information, both of which crucially depend on γ-drive.

  4. Deep neural nets as a method for quantitative structure-activity relationships.

    Science.gov (United States)

    Ma, Junshui; Sheridan, Robert P; Liaw, Andy; Dahl, George E; Svetnik, Vladimir

    2015-02-23

    Neural networks were widely used for quantitative structure-activity relationships (QSAR) in the 1990s. Because of various practical issues (e.g., slow on large problems, difficult to train, prone to overfitting, etc.), they were superseded by more robust methods like support vector machine (SVM) and random forest (RF), which arose in the early 2000s. The last 10 years has witnessed a revival of neural networks in the machine learning community thanks to new methods for preventing overfitting, more efficient training algorithms, and advancements in computer hardware. In particular, deep neural nets (DNNs), i.e. neural nets with more than one hidden layer, have found great successes in many applications, such as computer vision and natural language processing. Here we show that DNNs can routinely make better prospective predictions than RF on a set of large diverse QSAR data sets that are taken from Merck's drug discovery effort. The number of adjustable parameters needed for DNNs is fairly large, but our results show that it is not necessary to optimize them for individual data sets, and a single set of recommended parameters can achieve better performance than RF for most of the data sets we studied. The usefulness of the parameters is demonstrated on additional data sets not used in the calibration. Although training DNNs is still computationally intensive, using graphical processing units (GPUs) can make this issue manageable.

  5. Acupuncture stimulation on GB34 activates neural responses associated with Parkinson's disease.

    Science.gov (United States)

    Yeo, Sujung; Lim, Sabina; Choe, Il-Hwan; Choi, Yeong-Gon; Chung, Kyung-Cheon; Jahng, Geon-Ho; Kim, Sung-Hoon

    2012-09-01

    Parkinson's disease (PD) is a degenerative brain disorder that is caused by neural defects in the substantia nigra. Numerous studies have reported that acupuncture treatment on GB34 (Yanglingquan) leads to significant improvements in patients with PD and in PD animal models. Studies using functional magnetic resonance imaging (fMRI) have shown that patients with PD, compared to healthy participants, have lower neural responses in extensive brain regions including the putamen, thalamus, and the supplementary motor area. This study investigated the reported association between acupuncture point GB34 and PD. Using fMRI, neural responses of 12 patients with PD and 12 healthy participants were examined before and after acupuncture stimulation. Acupuncture stimulation increased neural responses in regions including the substantia nigra, caudate, thalamus, and putamen, which are impaired caused by PD. Areas associated with PD were activated by the acupuncture stimulation on GB34. This shows that acupuncture treatment on GB34 may be effective in improving the symptoms of PD. Although more randomized controlled trials on the topic will be needed, this study shows that acupuncture may be helpful in the treatment of symptoms involving PD. © 2012 Blackwell Publishing Ltd.

  6. Neural activity changes underlying the working memory deficit in alpha-CaMKII heterozygous knockout mice

    Directory of Open Access Journals (Sweden)

    Naoki Matsuo

    2009-09-01

    Full Text Available The alpha-isoform of calcium/calmodulin-dependent protein kinase II (α-CaMKII is expressed abundantly in the forebrain and is considered to have an essential role in synaptic plasticity and cognitive function. Previously, we reported that mice heterozygous for a null mutation of α-CaMKII (α-CaMKII+/- have profoundly dysregulated behaviors including a severe working memory deficit, which is an endophenotype of schizophrenia and other psychiatric disorders. In addition, we found that almost all the neurons in the dentate gyrus (DG of the mutant mice failed to mature at molecular, morphological and electrophysiological levels. In the present study, to identify the brain substrates of the working memory deficit in the mutant mice, we examined the expression of the immediate early genes (IEGs, c-Fos and Arc, in the brain after a working memory version of the eight-arm radial maze test. c-Fos expression was abolished almost completely in the DG and was reduced significantly in neurons in the CA1 and CA3 areas of the hippocampus, central amygdala, and medial prefrontal cortex (mPFC. However, c-Fos expression was intact in the entorhinal and visual cortices. Immunohistochemical studies using arc promoter driven dVenus transgenic mice demonstrated that arc gene activation after the working memory task occurred in mature, but not immature neurons in the DG of wild-type mice. These results suggest crucial insights for the neural circuits underlying spatial mnemonic processing during a working memory task and suggest the involvement of α-CaMKII in the proper maturation and integration of DG neurons into these circuits.

  7. Using c-Jun to identify fear extinction learning-specific patterns of neural activity that are affected by single prolonged stress.

    Science.gov (United States)

    Knox, Dayan; Stanfield, Briana R; Staib, Jennifer M; David, Nina P; DePietro, Thomas; Chamness, Marisa; Schneider, Elizabeth K; Keller, Samantha M; Lawless, Caroline

    2017-12-29

    Neural circuits via which stress leads to disruptions in fear extinction is often explored in animal stress models. Using the single prolonged stress (SPS) model of post traumatic stress disorder and the immediate early gene (IEG) c-Fos as a measure of neural activity, we previously identified patterns of neural activity through which SPS disrupts extinction retention. However, none of these stress effects were specific to fear or extinction learning and memory. C-Jun is another IEG that is sometimes regulated in a different manner to c-Fos and could be used to identify emotional learning/memory specific patterns of neural activity that are sensitive to SPS. Animals were either fear conditioned (CS-fear) or presented with CSs only (CS-only) then subjected to extinction training and testing. C-Jun was then assayed within neural substrates critical for extinction memory. Inhibited c-Jun levels in the hippocampus (Hipp) and enhanced functional connectivity between the ventromedial prefrontal cortex (vmPFC) and basolateral amygdala (BLA) during extinction training was disrupted by SPS in the CS-fear group only. As a result, these effects were specific to emotional learning/memory. SPS also disrupted inhibited Hipp c-Jun levels, enhanced BLA c-Jun levels, and altered functional connectivity among the vmPFC, BLA, and Hipp during extinction testing in SPS rats in the CS-fear and CS-only groups. As a result, these effects were not specific to emotional learning/memory. Our findings suggest that SPS disrupts neural activity specific to extinction memory, but may also disrupt the retention of fear extinction by mechanisms that do not involve emotional learning/memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics

    Directory of Open Access Journals (Sweden)

    Jasper eAkerboom

    2013-03-01

    Full Text Available Genetically encoded calcium indicators (GECIs are powerful tools for systems neuroscience. Here we describe red, single-wavelength GECIs, RCaMPs, engineered from circular permutation of the thermostable red fluorescent protein mRuby. High-resolution crystal structures of mRuby, the red sensor RCaMP, and the recently published red GECI R-GECO1 give insight into the chromophore environments of the Ca2+-bound state of the sensors and the engineered protein domain interfaces of the different indicators. We characterized the biophysical properties and performance of RCaMP sensors in vitro and in vivo in Caenorhabditis elegans, Drosophila larvae, and larval zebrafish. Further, we demonstrate 2-color calcium imaging both within the same cell (registering mitochondrial and somatic [Ca2+] and between two populations of cells: neurons and astrocytes. Finally, we perform integrated optogenetics experiments, wherein neural activation via channelrhodopsin-2 (ChR2 or a red-shifted variant, and activity imaging via RCaMP or GCaMP, are conducted simultaneously, with the ChR2/RCaMP pair providing independently addressable spectral channels. Using this paradigm, we measure calcium responses of naturalistic and ChR2-evoked muscle contractions in vivo in crawling C. elegans. We systematically compare the RCaMP sensors to R-GECO1, in terms of action potential-evoked fluorescence increases in neurons, photobleaching, and photoswitching. R-GECO1 displays higher Ca2+ affinity and larger dynamic range than RCaMP, but exhibits significant photoactivation with blue and green light, suggesting that integrated channelrhodopsin-based optogenetics using R-GECO1 may be subject to artifact. Finally, we create and test blue, cyan and yellow variants engineered from GCaMP by rational design. This engineered set of chromatic variants facilitates new experiments in functional imaging and optogenetics.

  9. Theta band oscillations reflect more than entrainment: behavioral and neural evidence demonstrates an active chunking process.

    Science.gov (United States)

    Teng, Xiangbin; Tian, Xing; Doelling, Keith; Poeppel, David

    2017-10-17

    Parsing continuous acoustic streams into perceptual units is fundamental to auditory perception. Previous studies have uncovered a cortical entrainment mechanism in the delta and theta bands (~1-8 Hz) that correlates with formation of perceptual units in speech, music, and other quasi-rhythmic stimuli. Whether cortical oscillations in the delta-theta bands are passively entrained by regular acoustic patterns or play an active role in parsing the acoustic stream is debated. Here, we investigate cortical oscillations using novel stimuli with 1/f modulation spectra. These 1/f signals have no rhythmic structure but contain information over many timescales because of their broadband modulation characteristics. We chose 1/f modulation spectra with varying exponents of f, which simulate the dynamics of environmental noise, speech, vocalizations, and music. While undergoing magnetoencephalography (MEG) recording, participants listened to 1/f stimuli and detected embedded target tones. Tone detection performance varied across stimuli of different exponents and can be explained by local signal-to-noise ratio computed using a temporal window around 200 ms. Furthermore, theta band oscillations, surprisingly, were observed for all stimuli, but robust phase coherence was preferentially displayed by stimuli with exponents 1 and 1.5. We constructed an auditory processing model to quantify acoustic information on various timescales and correlated the model outputs with the neural results. We show that cortical oscillations reflect a chunking of segments, > 200 ms. These results suggest an active auditory segmentation mechanism, complementary to entrainment, operating on a timescale of ~200 ms to organize acoustic information. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. A fast image registration approach of neural activities in light-sheet fluorescence microscopy images

    Science.gov (United States)

    Meng, Hui; Hui, Hui; Hu, Chaoen; Yang, Xin; Tian, Jie

    2017-03-01

    The ability of fast and single-neuron resolution imaging of neural activities enables light-sheet fluorescence microscopy (LSFM) as a powerful imaging technique in functional neural connection applications. The state-of-art LSFM imaging system can record the neuronal activities of entire brain for small animal, such as zebrafish or C. elegans at single-neuron resolution. However, the stimulated and spontaneous movements in animal brain result in inconsistent neuron positions during recording process. It is time consuming to register the acquired large-scale images with conventional method. In this work, we address the problem of fast registration of neural positions in stacks of LSFM images. This is necessary to register brain structures and activities. To achieve fast registration of neural activities, we present a rigid registration architecture by implementation of Graphics Processing Unit (GPU). In this approach, the image stacks were preprocessed on GPU by mean stretching to reduce the computation effort. The present image was registered to the previous image stack that considered as reference. A fast Fourier transform (FFT) algorithm was used for calculating the shift of the image stack. The calculations for image registration were performed in different threads while the preparation functionality was refactored and called only once by the master thread. We implemented our registration algorithm on NVIDIA Quadro K4200 GPU under Compute Unified Device Architecture (CUDA) programming environment. The experimental results showed that the registration computation can speed-up to 550ms for a full high-resolution brain image. Our approach also has potential to be used for other dynamic image registrations in biomedical applications.

  11. Visual Working Memory Load-Related Changes in Neural Activity and Functional Connectivity

    OpenAIRE

    Ling Li; Jin-Xiang Zhang; Tao Jiang

    2011-01-01

    BACKGROUND: Visual working memory (VWM) helps us store visual information to prepare for subsequent behavior. The neuronal mechanisms for sustaining coherent visual information and the mechanisms for limited VWM capacity have remained uncharacterized. Although numerous studies have utilized behavioral accuracy, neural activity, and connectivity to explore the mechanism of VWM retention, little is known about the load-related changes in functional connectivity for hemi-field VWM retention. MET...

  12. Distinct neural activity associated with focused-attention meditation and loving-kindness meditation.

    Science.gov (United States)

    Lee, Tatia M C; Leung, Mei-Kei; Hou, Wai-Kai; Tang, Joey C Y; Yin, Jing; So, Kwok-Fai; Lee, Chack-Fan; Chan, Chetwyn C H

    2012-01-01

    This study examined the dissociable neural effects of ānāpānasati (focused-attention meditation, FAM) and mettā (loving-kindness meditation, LKM) on BOLD signals during cognitive (continuous performance test, CPT) and affective (emotion-processing task, EPT, in which participants viewed affective pictures) processing. Twenty-two male Chinese expert meditators (11 FAM experts, 11 LKM experts) and 22 male Chinese novice meditators (11 FAM novices, 11 LKM novices) had their brain activity monitored by a 3T MRI scanner while performing the cognitive and affective tasks in both meditation and baseline states. We examined the interaction between state (meditation vs. baseline) and expertise (expert vs. novice) separately during LKM and FAM, using a conjunction approach to reveal common regions sensitive to the expert meditative state. Additionally, exclusive masking techniques revealed distinct interactions between state and group during LKM and FAM. Specifically, we demonstrated that the practice of FAM was associated with expertise-related behavioral improvements and neural activation differences in attention task performance. However, the effect of state LKM meditation did not carry over to attention task performance. On the other hand, both FAM and LKM practice appeared to affect the neural responses to affective pictures. For viewing sad faces, the regions activated for FAM practitioners were consistent with attention-related processing; whereas responses of LKM experts to sad pictures were more in line with differentiating emotional contagion from compassion/emotional regulation processes. Our findings provide the first report of distinct neural activity associated with forms of meditation during sustained attention and emotion processing.

  13. Distinct Neural Activity Associated with Focused-Attention Meditation and Loving-Kindness Meditation

    Science.gov (United States)

    Lee, Tatia M. C.; Leung, Mei-Kei; Hou, Wai-Kai; Tang, Joey C. Y.; Yin, Jing; So, Kwok-Fai; Lee, Chack-Fan; Chan, Chetwyn C. H.

    2012-01-01

    This study examined the dissociable neural effects of ānāpānasati (focused-attention meditation, FAM) and mettā (loving-kindness meditation, LKM) on BOLD signals during cognitive (continuous performance test, CPT) and affective (emotion-processing task, EPT, in which participants viewed affective pictures) processing. Twenty-two male Chinese expert meditators (11 FAM experts, 11 LKM experts) and 22 male Chinese novice meditators (11 FAM novices, 11 LKM novices) had their brain activity monitored by a 3T MRI scanner while performing the cognitive and affective tasks in both meditation and baseline states. We examined the interaction between state (meditation vs. baseline) and expertise (expert vs. novice) separately during LKM and FAM, using a conjunction approach to reveal common regions sensitive to the expert meditative state. Additionally, exclusive masking techniques revealed distinct interactions between state and group during LKM and FAM. Specifically, we demonstrated that the practice of FAM was associated with expertise-related behavioral improvements and neural activation differences in attention task performance. However, the effect of state LKM meditation did not carry over to attention task performance. On the other hand, both FAM and LKM practice appeared to affect the neural responses to affective pictures. For viewing sad faces, the regions activated for FAM practitioners were consistent with attention-related processing; whereas responses of LKM experts to sad pictures were more in line with differentiating emotional contagion from compassion/emotional regulation processes. Our findings provide the first report of distinct neural activity associated with forms of meditation during sustained attention and emotion processing. PMID:22905090

  14. Distinct neural activity associated with focused-attention meditation and loving-kindness meditation.

    Directory of Open Access Journals (Sweden)

    Tatia M C Lee

    Full Text Available This study examined the dissociable neural effects of ānāpānasati (focused-attention meditation, FAM and mettā (loving-kindness meditation, LKM on BOLD signals during cognitive (continuous performance test, CPT and affective (emotion-processing task, EPT, in which participants viewed affective pictures processing. Twenty-two male Chinese expert meditators (11 FAM experts, 11 LKM experts and 22 male Chinese novice meditators (11 FAM novices, 11 LKM novices had their brain activity monitored by a 3T MRI scanner while performing the cognitive and affective tasks in both meditation and baseline states. We examined the interaction between state (meditation vs. baseline and expertise (expert vs. novice separately during LKM and FAM, using a conjunction approach to reveal common regions sensitive to the expert meditative state. Additionally, exclusive masking techniques revealed distinct interactions between state and group during LKM and FAM. Specifically, we demonstrated that the practice of FAM was associated with expertise-related behavioral improvements and neural activation differences in attention task performance. However, the effect of state LKM meditation did not carry over to attention task performance. On the other hand, both FAM and LKM practice appeared to affect the neural responses to affective pictures. For viewing sad faces, the regions activated for FAM practitioners were consistent with attention-related processing; whereas responses of LKM experts to sad pictures were more in line with differentiating emotional contagion from compassion/emotional regulation processes. Our findings provide the first report of distinct neural activity associated with forms of meditation during sustained attention and emotion processing.

  15. Research on image retrieval using deep convolutional neural network combining L1 regularization and PRelu activation function

    Science.gov (United States)

    QingJie, Wei; WenBin, Wang

    2017-06-01

    In this paper, the image retrieval using deep convolutional neural network combined with regularization and PRelu activation function is studied, and improves image retrieval accuracy. Deep convolutional neural network can not only simulate the process of human brain to receive and transmit information, but also contains a convolution operation, which is very suitable for processing images. Using deep convolutional neural network is better than direct extraction of image visual features for image retrieval. However, the structure of deep convolutional neural network is complex, and it is easy to over-fitting and reduces the accuracy of image retrieval. In this paper, we combine L1 regularization and PRelu activation function to construct a deep convolutional neural network to prevent over-fitting of the network and improve the accuracy of image retrieval

  16. Altered spontaneous neural activity in the occipital face area reflects behavioral deficits in developmental prosopagnosia.

    Science.gov (United States)

    Zhao, Yuanfang; Li, Jingguang; Liu, Xiqin; Song, Yiying; Wang, Ruosi; Yang, Zetian; Liu, Jia

    2016-08-01

    Individuals with developmental prosopagnosia (DP) exhibit severe difficulties in recognizing faces and to a lesser extent, also exhibit difficulties in recognizing non-face objects. We used fMRI to investigate whether these behavioral deficits could be accounted for by altered spontaneous neural activity. Two aspects of spontaneous neural activity were measured: the intensity of neural activity in a voxel indexed by the fractional amplitude of spontaneous low-frequency fluctuations (fALFF), and the connectivity of a voxel to neighboring voxels indexed by regional homogeneity (ReHo). Compared with normal adults, both the fALFF and ReHo values within the right occipital face area (rOFA) were significantly reduced in DP subjects. Follow-up studies on the normal adults revealed that these two measures indicated further functional division of labor within the rOFA. The fALFF in the rOFA was positively correlated with behavioral performance in recognition of non-face objects, whereas ReHo in the rOFA was positively correlated with processing of faces. When considered together, the altered fALFF and ReHo within the same region (rOFA) may account for the comorbid deficits in both face and object recognition in DPs, whereas the functional division of labor in these two measures helps to explain the relative independency of deficits in face recognition and object recognition in DP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Structural basis for androgen receptor interdomain and coactivator interactions suggests a transition in nuclear receptor activation function dominance.

    Science.gov (United States)

    He, Bin; Gampe, Robert T; Kole, Adam J; Hnat, Andrew T; Stanley, Thomas B; An, Gang; Stewart, Eugene L; Kalman, Rebecca I; Minges, John T; Wilson, Elizabeth M

    2004-11-05

    The androgen receptor (AR) is required for male sex development and contributes to prostate cancer cell survival. In contrast to other nuclear receptors that bind the LXXLL motifs of coactivators, the AR ligand binding domain is preferentially engaged in an interdomain interaction with the AR FXXLF motif. Reported here are crystal structures of the ligand-activated AR ligand binding domain with and without bound FXXLF and LXXLL peptides. Key residues that establish motif binding specificity are identified through comparative structure-function and mutagenesis studies. A mechanism in prostate cancer is suggested by a functional AR mutation at a specificity-determining residue that recovers coactivator LXXLL motif binding. An activation function transition hypothesis is proposed in which an evolutionary decline in LXXLL motif binding parallels expansion and functional dominance of the NH(2)-terminal transactivation domain in the steroid receptor subfamily.

  18. Roles of GSK3β in odor habituation and spontaneous neural activity of the mouse olfactory bulb.

    Science.gov (United States)

    Xu, Zhixiang; Wang, Li; Chen, Guo; Rao, Xiaoping; Xu, Fuqiang

    2013-01-01

    Glycogen synthase kinase 3β (GSK3β), a multifaceted kinase, is abundantly expressed in the brain, including the olfactory bulb (OB). In resting cells, GSK3β is constitutively active, and its over-activation is presumably involved in numerous brain diseases, such as Alzheimer's disease. However, the functions of the constitutively active GSK3β in the adult brain under physiological conditions are not well understood. Here, we studied the possible functions of GSK3β activity in the OB. Odor stimulation, or blockade of peripheral olfactory inputs caused by either transgenic knock-out or ZnSO4 irrigation to the olfactory epithelium, all affected the expression level of GSK3β in the OB. When GSK3β activity was reduced by a selective inhibitor, the spontaneous oscillatory activity was significantly decreased in the granule cell layer of the OB. Furthermore, local inhibition of GSK3β activity in the OB significantly impaired the odor habituation ability. These results suggest that GSK3β plays important roles in both spontaneous neural activity and odor information processing in the OB, deepening our understanding of the potential functions of the constitutively active GSK3β in the brain under physiological conditions.

  19. Accelerometer signal-based human activity recognition using augmented autoregressive model coefficients and artificial neural nets.

    Science.gov (United States)

    Khan, A M; Lee, Y K; Kim, T S

    2008-01-01

    Automatic recognition of human activities is one of the important and challenging research areas in proactive and ubiquitous computing. In this work, we present some preliminary results of recognizing human activities using augmented features extracted from the activity signals measured using a single triaxial accelerometer sensor and artificial neural nets. The features include autoregressive (AR) modeling coefficients of activity signals, signal magnitude areas (SMA), and title angles (TA). We have recognized four human activities using AR coefficients (ARC) only, ARC with SMA, and ARC with SMA and TA. With the last augmented features, we have achieved the recognition rate above 99% for all four activities including lying, standing, walking, and running. With our proposed technique, real time recognition of some human activities is possible.

  20. Neural activity underlying motor-action preparation and cognitive narrowing in approach-motivated goal states.

    Science.gov (United States)

    Gable, Philip A; Threadgill, A Hunter; Adams, David L

    2016-02-01

    High-approach-motivated (pre-goal) positive affect states encourage tenacious goal pursuit and narrow cognitive scope. As such, high approach-motivated states likely enhance the neural correlates of motor-action preparation to aid in goal acquisition. These neural correlates may also relate to the cognitive narrowing associated with high approach-motivated states. In the present study, we investigated motor-action preparation during pre-goal and post-goal states using an index of beta suppression over the motor cortex. The results revealed that beta suppression was greatest in pre-goal positive states, suggesting that higher levels of motor-action preparation occur during high approach-motivated positive states. Furthermore, beta and alpha suppression in the high approach-motivated positive states predicted greater cognitive narrowing. These results suggest that approach-motivated pre-goal states engage the neural substrates of motor-action preparation and cognitive narrowing. Individual differences in motor-action preparation relate to the degree of cognitive narrowing.

  1. Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liang [East Hospital, Tongji University School of Medicine, Shanghai (China); Dong, Chuanming [East Hospital, Tongji University School of Medicine, Shanghai (China); Department of Anatomy and Neurobiology, The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong (China); Sun, Chenxi; Ma, Rongjie; Yang, Danjing [East Hospital, Tongji University School of Medicine, Shanghai (China); Zhu, Hongwen, E-mail: hongwen_zhu@hotmail.com [Tianjin Hospital, Tianjin Academy of Integrative Medicine, Tianjin (China); Xu, Jun, E-mail: xunymc2000@yahoo.com [East Hospital, Tongji University School of Medicine, Shanghai (China)

    2015-08-21

    Aging of neural stem cell, which can affect brain homeostasis, may be caused by many cellular mechanisms. Autophagy dysfunction was found in aged and neurodegenerative brains. However, little is known about the relationship between autophagy and human neural stem cell (hNSC) aging. The present study used 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to treat neural precursor cells (NPCs) derived from human embryonic stem cell (hESC) line H9 and investigate related molecular mechanisms involved in this process. MPTP-treated NPCs were found to undergo premature senescence [determined by increased senescence-associated-β-galactosidase (SA-β-gal) activity, elevated intracellular reactive oxygen species level, and decreased proliferation] and were associated with impaired autophagy. Additionally, the cellular senescence phenotypes were manifested at the molecular level by a significant increase in p21 and p53 expression, a decrease in SOD2 expression, and a decrease in expression of some key autophagy-related genes such as Atg5, Atg7, Atg12, and Beclin 1. Furthermore, we found that the senescence-like phenotype of MPTP-treated hNPCs was rejuvenated through treatment with a well-known autophagy enhancer rapamycin, which was blocked by suppression of essential autophagy gene Beclin 1. Taken together, these findings reveal the critical role of autophagy in the process of hNSC aging, and this process can be reversed by activating autophagy. - Highlights: • We successfully establish hESC-derived neural precursor cells. • MPTP treatment induced senescence-like state in hESC-derived NPCs. • MPTP treatment induced impaired autophagy of hESC-derived NPCs. • MPTP-induced hESC-derived NPC senescence was rejuvenated by activating autophagy.

  2. Amplified induced neural oscillatory activity predicts musicians' benefits in categorical speech perception.

    Science.gov (United States)

    Bidelman, Gavin M

    2017-04-21

    Event-related brain potentials (ERPs) reveal musical experience refines neural encoding and confers stronger categorical perception (CP) and neural organization for speech sounds. In addition to evoked brain activity, the human EEG can be decomposed into induced (non-phase-locked) responses whose various frequency bands reflect different mechanisms of perceptual-cognitive processing. Here, we aimed to clarify which spectral properties of these neural oscillations are most prone to music-related neuroplasticity and which are linked to behavioral benefits in the categorization of speech. We recorded electrical brain activity while musicians and nonmusicians rapidly identified speech tokens from a sound continuum. Time-frequency analysis parsed evoked and induced EEG into alpha- (∼10Hz), beta- (∼20Hz), and gamma- (>30Hz) frequency bands. We found that musicians' enhanced behavioral CP was accompanied by improved evoked speech responses across the frequency spectrum, complementing previously observed enhancements in evoked potential studies (i.e., ERPs). Brain-behavior correlations implied differences in the underlying neural mechanisms supporting speech CP in each group: modulations in induced gamma power predicted the slope of musicians' speech identification functions whereas early evoked alpha activity predicted behavior in nonmusicians. Collectively, findings indicate that musical training tunes speech processing via two complementary mechanisms: (i) strengthening the formation of auditory object representations for speech signals (gamma-band) and (ii) improving network control and/or the matching of sounds to internalized memory templates (alpha/beta-band). Both neurobiological enhancements may be deployed behaviorally and account for musicians' benefits in the perceptual categorization of speech. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Behavioral activation can normalize neural hypoactivation in subthreshold depression during a monetary incentive delay task.

    Science.gov (United States)

    Mori, Asako; Okamoto, Yasumasa; Okada, Go; Takagaki, Koki; Jinnin, Ran; Takamura, Masahiro; Kobayakawa, Makoto; Yamawaki, Shigeto

    2016-01-01

    Late adolescents are under increased risk of developing depressive symptoms. Behavioral activation is an effective treatment for subthreshold depression, which can prevent the development of subthreshold depression into a major depressive disorder. However, the neural mechanisms underlying the efficacy of behavioral activation have not been clearly understood. We investigated neural responses during reward processing by individuals with subthreshold depression to clarify the neural mechanisms of behavioral activation. Late adolescent university students with subthreshold depression (n=15, age 18-19 years) as indicated by a high score on the Beck's Depression Inventory-ll (BDI-ll) and 15 age-matched controls with a low BDI-ll score participated in functional magnetic resonance imaging scanning conducted during a monetary incentive delay task on two occasions. The Individuals in the subthreshold depression group received five, weekly behavioral activation sessions between the two scanning sessions. Moreover, they did not receive any medication until the study was completed. Behavioral activation significantly reduced depressive symptoms. Moreover, compared to the changes in brain functions in the control group, the behavioral activation group showed functional changes during loss anticipation in brain structures that mediates cognitive and emotional regulation, including the left ventrolateral prefrontal cortex and angular gyrus. Replication of the study with a larger sample size is required to increase the generalizability of these results. Behavioral activation results in improved functioning of the fronto-parietal region during loss anticipation. These results increase our understanding of the mechanisms underlying specific psychotherapies. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Effects of selective serotonin reuptake inhibition on neural activity related to risky decisions and monetary rewards in healthy males.

    Science.gov (United States)

    Macoveanu, Julian; Fisher, Patrick M; Haahr, Mette E; Frokjaer, Vibe G; Knudsen, Gitte M; Siebner, Hartwig R

    2014-10-01

    Selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine are commonly prescribed antidepressant drugs targeting the dysfunctional serotonin (5-HT) system, yet little is known about the functional effects of prolonged serotonin reuptake inhibition in healthy individuals. Here we used functional MRI (fMRI) to investigate how a three-week fluoxetine intervention influences neural activity related to risk taking and reward processing. Employing a double-blinded parallel-group design, 29 healthy young males were randomly assigned to receive 3 weeks of a daily dose of 40 mg fluoxetine or placebo. Participants underwent task-related fMRI prior to and after the three-week intervention while performing a card gambling task. The task required participants to choose between two decks of cards. Choices were associated with different risk levels and potential reward magnitudes. Relative to placebo, the SSRI intervention did not alter individual risk-choice preferences, but modified neural activity during decision-making and reward processing: During the choice phase, SSRI reduced the neural response to increasing risk in lateral orbitofrontal cortex, a key structure for value-based decision-making. During the outcome phase, a midbrain region showed an independent decrease in the responsiveness to rewarding outcomes. This midbrain cluster included the raphe nuclei from which serotonergic modulatory projections originate to both cortical and subcortical regions. The findings corroborate the involvement of the normally functioning 5HT-system in decision-making under risk and processing of monetary rewards. The data suggest that prolonged SSRI treatment might reduce emotional engagement by reducing the impact of risk during decision-making or the impact of reward during outcome evaluation. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution.

    Directory of Open Access Journals (Sweden)

    Xue Han

    Full Text Available The quest to determine how precise neural activity patterns mediate computation, behavior, and pathology would be greatly aided by a set of tools for reliably activating and inactivating genetically targeted neurons, in a temporally precise and rapidly reversible fashion. Having earlier adapted a light-activated cation channel, channelrhodopsin-2 (ChR2, for allowing neurons to be stimulated by blue light, we searched for a complementary tool that would enable optical neuronal inhibition, driven by light of a second color. Here we report that targeting the codon-optimized form of the light-driven chloride pump halorhodopsin from the archaebacterium Natronomas pharaonis (hereafter abbreviated Halo to genetically-specified neurons enables them to be silenced reliably, and reversibly, by millisecond-timescale pulses of yellow light. We show that trains of yellow and blue light pulses can drive high-fidelity sequences of hyperpolarizations and depolarizations in neurons simultaneously expressing yellow light-driven Halo and blue light-driven ChR2, allowing for the first time manipulations of neural synchrony without perturbation of other parameters such as spiking rates. The Halo/ChR2 system thus constitutes a powerful toolbox for multichannel photoinhibition and photostimulation of virally or transgenically targeted neural circuits without need for exogenous chemicals, enabling systematic analysis and engineering of the brain, and quantitative bioengineering of excitable cells.

  6. Increased extracellular dopamine and 5-hydroxytryptamine levels contribute to enhanced subthalamic nucleus neural activity during exhausting exercise

    Directory of Open Access Journals (Sweden)

    Y Hu

    2015-09-01

    Full Text Available The purpose of the study was to explore the mechanism underlying the enhanced subthalamic nucleus (STN neural activity during exhausting exercise from the perspective of monoamine neurotransmitters and changes of their corresponding receptors. Rats were randomly divided into microdialysis and immunohistochemistry study groups. For microdialysis study, extracellular fluid of the STN was continuously collected with a microdialysis probe before, during and 90 min after one bout of exhausting exercise. Dopamine (DA and 5-hydroxytryptamine (5-HT levels were subsequently detected with high-performance liquid chromatography (HPLC. For immunohistochemistry study, the expression of DRD 2 and HT 2C receptors in the STN, before, immediately after and 90 min after exhaustion was detected through immunohistochemistry technique. Microdialysis study results showed that the extracellular DA and 5-HT neurotransmitters increased significantly throughout the procedure of exhausting exercise and the recovery period (P0.05. Our results suggest that the increased extracellular DA and 5-HT in the STN might be one important factor leading to the enhanced STN neural activity and the development of fatigue during exhausting exercise. This study may essentially offer useful evidence for better understanding of the mechanism of the central type of exercise-induced fatigue.

  7. A multichannel integrated circuit for electrical recording of neural activity, with independent channel programmability.

    Science.gov (United States)

    Mora Lopez, Carolina; Prodanov, Dimiter; Braeken, Dries; Gligorijevic, Ivan; Eberle, Wolfgang; Bartic, Carmen; Puers, Robert; Gielen, Georges

    2012-04-01

    Since a few decades, micro-fabricated neural probes are being used, together with microelectronic interfaces, to get more insight in the activity of neuronal networks. The need for higher temporal and spatial recording resolutions imposes new challenges on the design of integrated neural interfaces with respect to power consumption, data handling and versatility. In this paper, we present an integrated acquisition system for in vitro and in vivo recording of neural activity. The ASIC consists of 16 low-noise, fully-differential input channels with independent programmability of its amplification (from 100 to 6000 V/V) and filtering (1-6000 Hz range) capabilities. Each channel is AC-coupled and implements a fourth-order band-pass filter in order to steeply attenuate out-of-band noise and DC input offsets. The system achieves an input-referred noise density of 37 nV/√Hz, a NEF of 5.1, a CMRR > 60 dB, a THD noise ratios.

  8. Adaptive neural networks control for camera stabilization with active suspension system

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2015-08-01

    Full Text Available The camera always suffers from image instability on the moving vehicle due to unintentional vibrations caused by road roughness. This article presents an adaptive neural network approach mixed with linear quadratic regulator control for a quarter-car active suspension system to stabilize the image captured area of the camera. An active suspension system provides extra force through the actuator which allows it to suppress vertical vibration of sprung mass. First, to deal with the road disturbance and the system uncertainties, radial basis function neural network is proposed to construct the map between the state error and the compensation component, which can correct the optimal state-feedback control law. The weights matrix of radial basis function neural network is adaptively tuned online. Then, the closed-loop stability and asymptotic convergence performance is guaranteed by Lyapunov analysis. Finally, the simulation results demonstrate that the proposed controller effectively suppresses the vibration of the camera and enhances the stabilization of the entire camera, where different excitations are considered to validate the system performance.

  9. High-frequency neural activity predicts word parsing in ambiguous speech streams.

    Science.gov (United States)

    Kösem, Anne; Basirat, Anahita; Azizi, Leila; van Wassenhove, Virginie

    2016-12-01

    During speech listening, the brain parses a continuous acoustic stream of information into computational units (e.g., syllables or words) necessary for speech comprehension. Recent neuroscientific hypotheses have proposed that neural oscillations contribute to speech parsing, but whether they do so on the basis of acoustic cues (bottom-up acoustic parsing) or as a function of available linguistic representations (top-down linguistic parsing) is unknown. In this magnetoencephalography study, we contrasted acoustic and linguistic parsing using bistable speech sequences. While listening to the speech sequences, participants were asked to maintain one of the two possible speech percepts through volitional control. We predicted that the tracking of speech dynamics by neural oscillations would not only follow the acoustic properties but also shift in time according to the participant's conscious speech percept. Our results show that the latency of high-frequency activity (specifically, beta and gamma bands) varied as a function of the perceptual report. In contrast, the phase of low-frequency oscillations was not strongly affected by top-down control. Whereas changes in low-frequency neural oscillations were compatible with the encoding of prelexical segmentation cues, high-frequency activity specifically informed on an individual's conscious speech percept. Copyright © 2016 the American Physiological Society.

  10. A neural measure of behavioral engagement: Task-residual low frequency blood oxygenation level dependent activity in the precuneus

    OpenAIRE

    Zhang, Sheng; Li, Chiang-shan Ray

    2009-01-01

    Brain imaging has provided a useful tool to examine the neural processes underlying human cognition. A critical question is whether and how task engagement influences the observed regional brain activations. Here we highlighted this issue and derived a neural measure of task engagement from the task-residual low frequency blood oxygenation level dependent (BOLD) activity in the precuneus. Using independent component analysis, we identified brain regions in the default circuit – including the ...

  11. [Progress in activity-dependent structural plasticity of neural circuits in cortex].

    Science.gov (United States)

    Rao, Xiao-Ping; Xu, Zhi-Xiang; Xu, Fu-Qiang

    2012-10-01

    Neural circuits of mammalian cerebral cortex have exhibited amazing abilities of structural and functional plasticity in development, learning and memory, neurological and psychiatric diseases. With the new imaging techniques and the application of molecular biology methods, observation neural circuits' structural dynamics within the cortex in vivo at the cellular and synaptic level was possible, so there were many great progresses in the field of the activity-dependent structural plasticity over the past decade. This paper reviewed some of the aspects of the experimental results, focused on the characteristics of dendritic structural plasticity in individual growth and development, rich environment, sensory deprivation, and pathological conditions, as well as learning and memory, especially the dynamics of dendritic spines on morphology and quantity; after that, we introduced axonal structural plasticity, the molecular and cellular mechanisms of structural plasticity, and proposed some future problems to be solved at last.

  12. Neural network based semi-active control strategy for structural vibration mitigation with magnetorheological damper

    DEFF Research Database (Denmark)

    Bhowmik, Subrata

    2011-01-01

    This paper presents a neural network based semi-active control method for a rotary type magnetorheological (MR) damper. The characteristics of the MR damper are described by the classic Bouc-Wen model, and the performance of the proposed control method is evaluated in terms of a base exited shear...... frame structure. As demonstrated in the literature effective damping of flexible structures is obtained by a suitable combination of pure friction and negative damper stiffness. This damper model is rate-independent and fully described by the desired shape of the hysteresis loops or force...... mode of the structure. The neural network control is then developed to reproduce the desired force based on damper displacement and velocity as network input, and it is therefore referred to as an amplitude dependent model reference control method. An inverse model of the MR damper is needed...

  13. Neural networkbased semi-active control strategy for structural vibration mitigation with magnetorheological damper

    DEFF Research Database (Denmark)

    Bhowmik, Subrata

    2011-01-01

    This paper presents a neural network based semi-active control method for a rotary type magnetorheological (MR) damper. The characteristics of the MR damper are described by the classic Bouc-Wen model, and the performance of the proposed control method is evaluated in terms of a base exited shear...... frame structure. As demonstrated in the literature effective damping of flexible structures is obtained by a suitable combination of pure friction and negative damper stiffness. This damper model is rate-independent and fully described by the desired shape of the hysteresis loops or force...... mode of the structure. The neural network control is then developed to reproduce the desired force based on damper displacement and velocity as network input, and it is therefore referred to as an amplitude dependent model reference control method. An inverse model of the MR damper is needed...

  14. Targeted activation of primitive neural stem cells in the mouse brain.

    Science.gov (United States)

    Reeve, Rachel L; Yammine, Samantha Z; DeVeale, Brian; van der Kooy, Derek

    2016-06-01

    Primitive neural stem cells (pNSCs) are the earliest NSCs to appear in the developing forebrain. They persist into the adult forebrain where they can generate all cells in the neural lineage and therefore hold great potential for brain regeneration. Thus, pNSCs are an ideal population to target to promote endogenous NSC activation. pNSCs can be isolated from the periventricular region as leukaemia inhibitory factor-responsive cells, and comprise a rare population in the adult mouse brain. We hypothesized that the pup periventricular region gives rise to more clonal pNSC-derived neurospheres but that pup-derived pNSCs are otherwise comparable to adult-derived pNSCs, and can be used to identify selective markers and activators of endogenous pNSCs. We tested the self-renewal ability, differentiation capacity and gene expression profile of pup-derived pNSCs and found them each to be comparable to adult-derived pNSCs, including being GFAP(-) , nestin(mid) , Oct4(+) . Next, we used pup pNSCs to test pharmacological compounds to activate pNSCs to promote endogenous brain repair. We hypothesized that pNSCs could be activated by targeting the cell surface proteins C-Kit and ErbB2, which were enriched in pNSCs relative to definitive NSCs (dNSCs) in an in vitro screen. C-Kit and ErbB2 signalling inhibition had distinct effects on pNSCs and dNSCs in vitro, and when infused directly into the adult brain in vivo. Targeted activation of pNSCs with C-Kit and ErbB2 modulation is a valuable strategy to activate the earliest cell in the neural lineage to contribute to endogenous brain regeneration. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Genetic neural network modeling of the selective inhibition of the intermediate-conductance Ca2+-activated K+ channel by some triarylmethanes using topological charge indexes descriptors

    Science.gov (United States)

    Caballero, Julio; Garriga, Miguel; Fernández, Michael

    2005-11-01

    Selective inhibition of the intermediate-conductance Ca2+-activated K+ channel ( IK Ca) by some clotrimazole analogs has been successfully modeled using topological charge indexes (TCI) and genetic neural networks (GNNs). A neural network monitoring scheme evidenced a highly non-linear dependence between the IK Ca blocking activity and TCI descriptors. Suitable subsets of descriptors were selected by means of genetic algorithm. Bayesian regularization was implemented in the network training function with the aim of assuring good generalization qualities to the predictors. GNNs were able to yield a reliable predictor that explained about 97% data variance with good predictive ability. On the contrary, the best multivariate linear equation with descriptors selected by linear genetic search, only explained about 60%. In spite of when using the descriptors from the linear equations to train neural networks yielded higher fitted models, such networks were very unstable and had relative low predictive ability. However, the best GNN BRANN 2 had a Q 2 of LOO of cross-validation equal to 0.901 and at the same time exhibited outstanding stability when calculating 80 randomly constructed training/test sets partitions. Our model suggested that structural fragments of size three and seven have relevant influence on the inhibitory potency of the studied IK Ca channel blockers. Furthermore, inhibitors were well distributed regarding its activity levels in a Kohonen self-organizing map (KSOM) built using the inputs of the best neural network predictor.

  16. Neural activity during emotion recognition after combined cognitive plus social cognitive training in schizophrenia.

    Science.gov (United States)

    Hooker, Christine I; Bruce, Lori; Fisher, Melissa; Verosky, Sara C; Miyakawa, Asako; Vinogradov, Sophia

    2012-08-01

    Cognitive remediation training has been shown to improve both cognitive and social cognitive deficits in people with schizophrenia, but the mechanisms that support this behavioral improvement are largely unknown. One hypothesis is that intensive behavioral training in cognition and/or social cognition restores the underlying neural mechanisms that support targeted skills. However, there is little research on the neural effects of cognitive remediation training. This study investigated whether a 50 h (10-week) remediation intervention which included both cognitive and social cognitive training would influence neural function in regions that support social cognition. Twenty-two stable, outpatient schizophrenia participants were randomized to a treatment condition consisting of auditory-based cognitive training (AT) [Brain Fitness Program/auditory module ~60 min/day] plus social cognition training (SCT) which was focused on emotion recognition [~5-15 min per day] or a placebo condition of non-specific computer games (CG) for an equal amount of time. Pre and post intervention assessments included an fMRI task of positive and negative facial emotion recognition, and standard behavioral assessments of cognition, emotion processing, and functional outcome. There were no significant intervention-related improvements in general cognition or functional outcome. fMRI results showed the predicted group-by-time interaction. Specifically, in comparison to CG, AT+SCT participants had a greater pre-to-post intervention increase in postcentral gyrus activity during emotion recognition of both positive and negative emotions. Furthermore, among all participants, the increase in postcentral gyrus activity predicted behavioral improvement on a standardized test of emotion processing (MSCEIT: Perceiving Emotions). Results indicate that combined cognition and social cognition training impacts neural mechanisms that support social cognition skills. Copyright © 2012 Elsevier B.V. All

  17. Visual Working Memory Load-Related Changes in Neural Activity and Functional Connectivity

    Science.gov (United States)

    Li, Ling; Zhang, Jin-Xiang; Jiang, Tao

    2011-01-01

    Background Visual working memory (VWM) helps us store visual information to prepare for subsequent behavior. The neuronal mechanisms for sustaining coherent visual information and the mechanisms for limited VWM capacity have remained uncharacterized. Although numerous studies have utilized behavioral accuracy, neural activity, and connectivity to explore the mechanism of VWM retention, little is known about the load-related changes in functional connectivity for hemi-field VWM retention. Methodology/Principal Findings In this study, we recorded electroencephalography (EEG) from 14 normal young adults while they performed a bilateral visual field memory task. Subjects had more rapid and accurate responses to the left visual field (LVF) memory condition. The difference in mean amplitude between the ipsilateral and contralateral event-related potential (ERP) at parietal-occipital electrodes in retention interval period was obtained with six different memory loads. Functional connectivity between 128 scalp regions was measured by EEG phase synchronization in the theta- (4–8 Hz), alpha- (8–12 Hz), beta- (12–32 Hz), and gamma- (32–40 Hz) frequency bands. The resulting matrices were converted to graphs, and mean degree, clustering coefficient and shortest path length was computed as a function of memory load. The results showed that brain networks of theta-, alpha-, beta-, and gamma- frequency bands were load-dependent and visual-field dependent. The networks of theta- and alpha- bands phase synchrony were most predominant in retention period for right visual field (RVF) WM than for LVF WM. Furthermore, only for RVF memory condition, brain network density of theta-band during the retention interval were linked to the delay of behavior reaction time, and the topological property of alpha-band network was negative correlation with behavior accuracy. Conclusions/Significance We suggest that the differences in theta- and alpha- bands between LVF and RVF conditions in

  18. Visual working memory load-related changes in neural activity and functional connectivity.

    Directory of Open Access Journals (Sweden)

    Ling Li

    Full Text Available BACKGROUND: Visual working memory (VWM helps us store visual information to prepare for subsequent behavior. The neuronal mechanisms for sustaining coherent visual information and the mechanisms for limited VWM capacity have remained uncharacterized. Although numerous studies have utilized behavioral accuracy, neural activity, and connectivity to explore the mechanism of VWM retention, little is known about the load-related changes in functional connectivity for hemi-field VWM retention. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we recorded electroencephalography (EEG from 14 normal young adults while they performed a bilateral visual field memory task. Subjects had more rapid and accurate responses to the left visual field (LVF memory condition. The difference in mean amplitude between the ipsilateral and contralateral event-related potential (ERP at parietal-occipital electrodes in retention interval period was obtained with six different memory loads. Functional connectivity between 128 scalp regions was measured by EEG phase synchronization in the theta- (4-8 Hz, alpha- (8-12 Hz, beta- (12-32 Hz, and gamma- (32-40 Hz frequency bands. The resulting matrices were converted to graphs, and mean degree, clustering coefficient and shortest path length was computed as a function of memory load. The results showed that brain networks of theta-, alpha-, beta-, and gamma- frequency bands were load-dependent and visual-field dependent. The networks of theta- and alpha- bands phase synchrony were most predominant in retention period for right visual field (RVF WM than for LVF WM. Furthermore, only for RVF memory condition, brain network density of theta-band during the retention interval were linked to the delay of behavior reaction time, and the topological property of alpha-band network was negative correlation with behavior accuracy. CONCLUSIONS/SIGNIFICANCE: We suggest that the differences in theta- and alpha- bands between LVF and RVF

  19. Using convolutional neural networks for human activity classification on micro-Doppler radar spectrograms

    Science.gov (United States)

    Jordan, Tyler S.

    2016-05-01

    This paper presents the findings of using convolutional neural networks (CNNs) to classify human activity from micro-Doppler features. An emphasis on activities involving potential security threats such as holding a gun are explored. An automotive 24 GHz radar on chip was used to collect the data and a CNN (normally applied to image classification) was trained on the resulting spectrograms. The CNN achieves an error rate of 1.65 % on classifying running vs. walking, 17.3 % error on armed walking vs. unarmed walking, and 22 % on classifying six different actions.

  20. Detection of Neural Activity in the Brains of Japanese Honeybee Workers during the Formation of a “Hot Defensive Bee Ball”

    Science.gov (United States)

    Ugajin, Atsushi; Kiya, Taketoshi; Kunieda, Takekazu; Ono, Masato; Yoshida, Tadaharu; Kubo, Takeo

    2012-01-01

    Anti-predator behaviors are essential to survival for most animals. The neural bases of such behaviors, however, remain largely unknown. Although honeybees commonly use their stingers to counterattack predators, the Japanese honeybee (Apis cerana japonica) uses a different strategy to fight against the giant hornet (Vespa mandarinia japonica). Instead of stinging the hornet, Japanese honeybees form a “hot defensive bee ball” by surrounding the hornet en masse, killing it with heat. The European honeybee (A. mellifera ligustica), on the other hand, does not exhibit this behavior, and their colonies are often destroyed by a hornet attack. In the present study, we attempted to analyze the neural basis of this behavior by mapping the active brain regions of Japanese honeybee workers during the formation of a hot defensive bee ball. First, we identified an A. cerana homolog (Acks = Apis cerana kakusei) of kakusei, an immediate early gene that we previously identified from A. mellifera, and showed that Acks has characteristics similar to kakusei and can be used to visualize active brain regions in A. cerana. Using Acks as a neural activity marker, we demonstrated that neural activity in the mushroom bodies, especially in Class II Kenyon cells, one subtype of mushroom body intrinsic neurons, and a restricted area between the dorsal lobes and the optic lobes was increased in the brains of Japanese honeybee workers involved in the formation of a hot defensive bee ball. In addition, workers exposed to 46°C heat also exhibited Acks expression patterns similar to those observed in the brains of workers involved in the formation of a hot defensive bee ball, suggesting that the neural activity observed in the brains of workers involved in the hot defensive bee ball mainly reflects thermal stimuli processing. PMID:22431987

  1. Thinking about the thoughts of others; temporal and spatial neural activation during false belief reasoning.

    Science.gov (United States)

    Mossad, Sarah I; AuCoin-Power, Michelle; Urbain, Charline; Smith, Mary Lou; Pang, Elizabeth W; Taylor, Margot J

    2016-07-01

    Theory of Mind (ToM) is the ability to understand the perspectives, mental states and beliefs of others in order to anticipate their behaviour and is therefore crucial to social interactions. Although fMRI has been widely used to establish the neural networks implicated in ToM, little is known about the timing of ToM-related brain activity. We used magnetoencephalography (MEG) to measure the neural processes underlying ToM, as MEG provides very accurate timing and excellent spatial localization of brain processes. We recorded MEG activity during a false belief task, a reliable measure of ToM, in twenty young adults (10 females). MEG data were recorded in a 151 sensor CTF system (MISL, Coquitlam, BC) and data were co-registered to each participant's MRI (Siemens 3T) for source reconstruction. We found stronger right temporoparietal junction (rTPJ) activations in the false belief condition from 150ms to 225ms, in the right precuneus from 275ms to 375ms, in the right inferior frontal gyrus from 200ms to 300ms and the superior frontal gyrus from 300ms to 400ms. Our findings extend the literature by demonstrating the timing and duration of neural activity in the main regions involved in the "mentalizing" network, showing that activations related to false belief in adults are predominantly right lateralized and onset around 100ms. The sensitivity of MEG will allow us to determine spatial and temporal differences in the brain processes in ToM in younger populations or those who demonstrate deficits in this ability. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Touching moments: desire modulates the neural anticipation of active romantic caress.

    Science.gov (United States)

    Ebisch, Sjoerd J; Ferri, Francesca; Gallese, Vittorio

    2014-01-01

    A romantic caress is a basic expression of affiliative behavior and a primary reinforcer. Given its inherent affective valence, its performance also would imply the prediction of reward values. For example, touching a person for whom one has strong passionate feelings likely is motivated by a strong desire for physical contact and associated with the anticipation of hedonic experiences. The present study aims at investigating how the anticipatory neural processes of active romantic caress are modulated by the intensity of the desire for affective contact as reflected by passionate feelings for the other. Functional magnetic resonance imaging scanning was performed in romantically involved partners using a paradigm that allowed to isolate the specific anticipatory representations of active romantic caress, compared with control caress, while testing for the relationship between neural activity and measures of feelings of passionate love for the other. The results demonstrated that right posterior insula activity in anticipation of romantic caress significantly co-varied with the intensity of desire for union with the other. This effect was independent of the sensory-affective properties of the performed touch, like its pleasantness. Furthermore, functional connectivity analysis showed that the same posterior insula cluster interacted with brain regions related to sensory-motor functions as well as to the processing and anticipation of reward. The findings provide insight on the neural substrate mediating between the desire for and the performance of romantic caress. In particular, we propose that anticipatory activity patterns in posterior insula may modulate subsequent sensory-affective processing of skin-to-skin contact.

  3. TOUCHING MOMENTS: DESIRE MODULATES THE NEURAL ANTICIPATION OF ACTIVE ROMANTIC CARESS

    Directory of Open Access Journals (Sweden)

    Sjoerd J.H. Ebisch

    2014-02-01

    Full Text Available A romantic caress is a basic expression of affiliative behavior and a primary reinforcer. Given its inherent affective valence, its performance also would imply the prediction of reward values. For example, touching a person for whom one has strong passionate feelings likely is motivated by a strong desire for physical contact and associated with the anticipation of hedonic experiences. The present study aims at investigating how the anticipatory neural processes of active romantic caress are modulated by the intensity of the desire for affective contact as reflected by passionate feelings for the other. Functional magnetic resonance imaging scanning was performed in romantically involved partners using a paradigm that allowed to isolate the specific anticipatory representations of active romantic caress, compared with control caress, while testing for the relationship between neural activity and measures of feelings of passionate love for the other. The results demonstrated that right posterior insula activity in anticipation of romantic caress significantly co-varied with the intensity of desire for union with the other. This effect was independent of the sensory-affective properties of the performed touch, like its pleasantness. Furthermore, functional connectivity analysis showed that the same posterior insula cluster interacted with brain regions related to sensory-motor functions as well as to the processing and anticipation of reward. The findings provide insight on the neural substrate mediating between the desire for and the performance of romantic caress. In particular, we propose that anticipatory activity patterns in posterior insula may modulate subsequent sensory-affective processing of skin-to-skin contact.

  4. Touching moments: desire modulates the neural anticipation of active romantic caress

    Science.gov (United States)

    Ebisch, Sjoerd J.; Ferri, Francesca; Gallese, Vittorio

    2014-01-01

    A romantic caress is a basic expression of affiliative behavior and a primary reinforcer. Given its inherent affective valence, its performance also would imply the prediction of reward values. For example, touching a person for whom one has strong passionate feelings likely is motivated by a strong desire for physical contact and associated with the anticipation of hedonic experiences. The present study aims at investigating how the anticipatory neural processes of active romantic caress are modulated by the intensity of the desire for affective contact as reflected by passionate feelings for the other. Functional magnetic resonance imaging scanning was performed in romantically involved partners using a paradigm that allowed to isolate the specific anticipatory representations of active romantic caress, compared with control caress, while testing for the relationship between neural activity and measures of feelings of passionate love for the other. The results demonstrated that right posterior insula activity in anticipation of romantic caress significantly co-varied with the intensity of desire for union with the other. This effect was independent of the sensory-affective properties of the performed touch, like its pleasantness. Furthermore, functional connectivity analysis showed that the same posterior insula cluster interacted with brain regions related to sensory-motor functions as well as to the processing and anticipation of reward. The findings provide insight on the neural substrate mediating between the desire for and the performance of romantic caress. In particular, we propose that anticipatory activity patterns in posterior insula may modulate subsequent sensory-affective processing of skin-to-skin contact. PMID:24616676

  5. Test-to-test variability in motor activity during the suggested immobilization test in restless legs patients.

    Science.gov (United States)

    Haba-Rubio, José; Sforza, Emilia

    2006-10-01

    To evaluate the test-to-test variability of the suggested immobilization test (SIT) in patients with restless legs syndrome (RLS). Twenty patients with primary RLS (12 men and eight women; age: 53.3+/-11.3 years) were selected for the study. We compared the results of two SITs performed on two consecutive evenings prior to polysomnographic recordings. Overall, the periodic leg movement index during the SIT (SIT PLM) and the SIT PLM index associated with sensory manifestations (SIT PLM+) were not significantly different between tests. The number of PLM sequences per SIT, the mean PLM duration and the PLM interval did not significantly change between the two consecutive tests. The pattern of temporal evolution of motor activity across the SIT was very reproducible, SIT PLM showing a clear tendency to a progressive increase across the test, with the SIT PLM+ index decreasing in the second half of the test. Despite good reproducibility, there were marked intra-individual differences. Considering the proposed cut-off value of 12 for the SIT PLM index to confirm RLS, 11 patients were positive at the first test and four additional patients became positive at the second test. SIT PLM index changes did not correlate with age, severity of disease and polysomnographic measures. Quantitative analysis of motor activity during two consecutive SITs in RLS patients showed a significant inter-test intra-individual variability unrelated to demographic, clinical or polysomnographic parameters. SIT PLM index variability suggests that a single test would not be sensitive enough for diagnostic purposes in unclear cases and that new criteria need to be applied to increase its specificity and sensitivity.

  6. Altered neural activation during prepotent response inhibition in breast cancer survivors treated with chemotherapy: an fMRI study.

    Science.gov (United States)

    Kam, Julia W Y; Boyd, Lara A; Hsu, Chun L; Liu-Ambrose, Teresa; Handy, Todd C; Lim, Howard J; Hayden, Sherri; Campbell, Kristin L

    2016-09-01

    While impairments in executive functions have been reported in breast cancer survivors (BCS) who have undergone adjuvant chemotherapy, only a limited number of functional neuroimaging studies have associated alterations in cerebral activity with executive functions deficits in BCS. Using fMRI, the current study assessed the neural basis underlying a specific facet of executive function, namely prepotent response inhibition. 12 BCS who self-reported cognitive problems up to 3 years following cancer treatment and 12 female healthy comparisons (HC) performed the Stroop task. We compared their neural activation between the incongruent and neutral experimental conditions. Relative to the HC group, BCS showed lower blood-oxygen level dependent signal in several frontal regions, including the anterior cingulate cortex, a region critical for response inhibition. Our data indicates reduced neural activation in BCS during a prepotent response inhibition task, providing support for the prevailing notion of neural alterations observed in BCS treated with chemotherapy.

  7. A GENOME-WIDE EXPLORATION SUGGESTS AN OLIGOGENIC MODEL OF INHERITANCE FOR THE TAFI ACTIVITY AND ITS ANTIGEN LEVELS

    Science.gov (United States)

    Sabater-Lleal, Maria; Buil, Alfonso; Souto, Juan Carlos; Almasy, Laura; Borrell, Montserrat; Lathrop, Mark; Blangero, John; Fontcuberta, Jordi; Soria, José Manuel

    2008-01-01

    Thrombin-Activatable Fibrinolysis Inhibitor (TAFI) is a protein that attenuates fibrinolysis potently. A considerable proportion of its variability levels is genetically determined. It has been associated with arterial and venous thrombosis. We conducted a genomewide linkage scan for genes affecting variation in plasma TAFI levels in 398 subjects from 21 extended Spanish families. The data were analyzed by a variance-component linkage method. A strong linkage was found on the long arm of Chromosome 13, near the DNA marker D13S156, where the structural gene encoding for TAFI is located. In addition, other new linkage signals were detected on chromosome regions 5p and 7q. More importantly, we performed another multipoint linkage analysis of functional TAFI conditioned on TAFI antigen levels. We detected a strong linkage signal on Chromosome 19 (LOD = 3.0, p = 0.0001) suggesting a novel QTL in this region involved in the specific functional activity of TAFI, regardless of the TAFI antigen levels. One notable aspect of this study is the identification of new QTLs that reveal a clearer picture of the genetic determinants responsible for variation in TAFI levels. Another is the replication of the linkage signal of the CPB2 gene, which confirms an important genetic determinant for TAFI antigen levels. These results strongly suggest an oligogenic mode of inheritance for TAFI, in which CPB2 gene accounts for a proportion of the variation of the phenotype together with other unknown genes that may represent potential risk factors for thrombotic disease. PMID:18563448

  8. Brain Correlates of Cognitive Remediation in Schizophrenia: Activation Likelihood Analysis Shows Preliminary Evidence of Neural Target Engagement.

    Science.gov (United States)

    Ramsay, Ian S; MacDonald, Angus W

    2015-11-01

    Cognitive remediation training (CRT) for schizophrenia has been found to improve cognitive functioning and influence neural plasticity. However, with various training approaches and mixed findings, the mechanisms driving generalization of cognitive skills from CRT are unclear. In this meta-analysis of extant imaging studies examining CRT's effects, we sought to clarify whether varying approaches to CRT suggest common neural changes and whether such mechanisms are restorative or compensatory. We conducted a literature search to identify studies appropriate for inclusion in an activation likelihood estimation (ALE) meta-analysis. Our criteria required studies to consist of training-based interventions designed to improve patients' cognitive or social functioning, including generalization to untrained circumstances. Studies were also required to examine changes in pre- vs posttraining functional activation using functional magnetic resonance imaging or positron emission tomography. The literature search identified 162 articles, 9 of which were appropriate for inclusion. ALE analyses comparing pre- and posttraining brain activation showed increased activity in the lateral and medial prefrontal cortex (PFC), parietal cortex, insula, and the caudate and thalamus. Notably, activation associated with CRT in the left PFC and thalamus partially overlapped with previous meta-analytically identified areas associated with deficits in working memory, executive control, and facial emotion processing in schizophrenia. We conclude that CRT interventions from varying theoretic modalities elicit plasticity in areas that support cognitive and socioemotional processes in this early set of studies. While preliminary, these changes appear to be both restorative and compensatory, though thalamocortical areas previously associated with dysfunction may be common sources of plasticity for cognitive remediation in schizophrenia. © The Author 2015. Published by Oxford University Press on

  9. Maternal PTSD and corresponding neural activity mediate effects of child exposure to violence on child PTSD symptoms.

    Directory of Open Access Journals (Sweden)

    Daniel S Schechter

    Full Text Available The aim of this study was to examine the relationship of maternal interpersonal violence-related posttraumatic stress disorder (IPV-PTSD, associated neural activity in response to mother-child relational stimuli, and child psychopathology indicators at child ages 12-42 months and one year later. The study tested the hypothesis that decreased maternal neural activity in regions that subserve emotion regulation would be associated with child symptoms associated with emotional dysregulation at both time points. Functional magnetic resonance imaging of 42 mothers with or without violence-exposure and associated IPV-PTSD were assessed. Their child's life-events and symptoms/behaviors indicative of high-risk subsequent PTSD diagnosis on a maternal-report questionnaire were measured one year later. Maternal IPV-PTSD severity was significantly associated with decreased ventromedial prefrontal cortex (vmPFC activation in response to mother-child relational stimuli. Maternal IPV-PTSD severity and decreased vmPFC activation were then significantly associated with a child attachment disturbance at 12-42 months and symptoms/behaviors one year later, that were correlated with emotional dysregulation and risk for child PTSD. Maternal IPV-PTSD and child exposure to IPV were both predictive of child PTSD symptoms with maternal IPV-PTSD likely mediating the effects of child IPV exposure on child PTSD symptoms. These findings suggest that maternal IPV-PTSD severity and associated decreased vmPFC activity in response to mother-child relational stimuli are predictors of child psychopathology by age 12-42 months and one-year later. Significant findings in this paper may well be useful in understanding how maternal top-down cortico-limbic dysregulation promotes intergenerational transmission of IPV and related psychopathology and, thus should be targeted in treatment.

  10. Maternal PTSD and corresponding neural activity mediate effects of child exposure to violence on child PTSD symptoms

    Science.gov (United States)

    Schechter, Daniel S.; Aue, Tatjana; Gex-Fabry, Marianne; Pointet, Virginie C.; Cordero, Maria I.; Suardi, Francesca; Manini, Aurelia; Vital, Marylène; Sancho Rossignol, Ana; Rothenberg, Molly; Dayer, Alexandre G.; Ansermet, Francois; Rusconi Serpa, Sandra

    2017-01-01

    The aim of this study was to examine the relationship of maternal interpersonal violence-related posttraumatic stress disorder (IPV-PTSD), associated neural activity in response to mother-child relational stimuli, and child psychopathology indicators at child ages 12–42 months and one year later. The study tested the hypothesis that decreased maternal neural activity in regions that subserve emotion regulation would be associated with child symptoms associated with emotional dysregulation at both time points. Functional magnetic resonance imaging of 42 mothers with or without violence-exposure and associated IPV-PTSD were assessed. Their child’s life-events and symptoms/behaviors indicative of high-risk subsequent PTSD diagnosis on a maternal-report questionnaire were measured one year later. Maternal IPV-PTSD severity was significantly associated with decreased ventromedial prefrontal cortex (vmPFC) activation in response to mother-child relational stimuli. Maternal IPV-PTSD severity and decreased vmPFC activation were then significantly associated with a child attachment disturbance at 12–42 months and symptoms/behaviors one year later, that were correlated with emotional dysregulation and risk for child PTSD. Maternal IPV-PTSD and child exposure to IPV were both predictive of child PTSD symptoms with maternal IPV-PTSD likely mediating the effects of child IPV exposure on child PTSD symptoms. These findings suggest that maternal IPV-PTSD severity and associated decreased vmPFC activity in response to mother-child relational stimuli are predictors of child psychopathology by age 12–42 months and one-year later. Significant findings in this paper may well be useful in understanding how maternal top-down cortico-limbic dysregulation promotes intergenerational transmission of IPV and related psychopathology and, thus should be targeted in treatment. PMID:28767657

  11. A cry in the dark: depressed mothers show reduced neural activation to their own infant's cry.

    Science.gov (United States)

    Laurent, Heidemarie K; Ablow, Jennifer C

    2012-02-01

    This study investigated depression-related differences in primiparous mothers' neural response to their own infant's distress cues. Mothers diagnosed with major depressive disorder (n = 11) and comparison mothers with no diagnosable psychopathology (n = 11) were exposed to their own 18-months-old infant's cry sound, as well as unfamiliar infant's cry and control sound, during functional neuroimaging. Depressed mothers' response to own infant cry greater than other sounds was compared to non-depressed mothers' response in the whole brain [false discovery rate (FDR) corrected]. A continuous measure of self-reported depressive symptoms (CESD) was also tested as a predictor of maternal response. Non-depressed mothers activated to their own infant's cry greater than control sound in a distributed network of para/limbic and prefrontal regions, whereas depressed mothers as a group failed to show activation. Non-depressed compared to depressed mothers showed significantly greater striatal (caudate, nucleus accumbens) and medial thalamic activation. Additionally, mothers with lower depressive symptoms activated more strongly in left orbitofrontal, dorsal anterior cingulate and medial superior frontal regions. Non-depressed compared to depressed mothers activated uniquely to own infant greater than other infant cry in occipital fusiform areas. Disturbance of these neural networks involved in emotional response and regulation may help to explain parenting deficits in depressed mothers.

  12. The Conformation of Bound GMPPNP Suggests a Mechanism for Gating the Active Site of the SRP GTPase

    Energy Technology Data Exchange (ETDEWEB)

    Padmanabhan, S.; Freymann, D. (NWU)

    2010-03-08

    The signal recognition particle (SRP) is a phylogenetically conserved ribonucleoprotein that mediates cotranslational targeting of secreted and membrane proteins to the membrane. Targeting is regulated by GTP binding and hydrolysis events that require direct interaction between structurally homologous 'NG' GTPase domains of the SRP signal recognition subunit and its membrane-associated receptor, SR{alpha}. Structures of both the apo and GDP bound NG domains of the prokaryotic SRP54 homolog, Ffh, and the prokaryotic receptor homolog, FtsY, have been determined. The structural basis for the GTP-dependent interaction between the two proteins, however, remains unknown. We report here two structures of the NG GTPase of Ffh from Thermus aquaticus bound to the nonhydrolyzable GTP analog GMPPNP. Both structures reveal an unexpected binding mode in which the {beta}-phosphate is kinked away from the binding site and magnesium is not bound. Binding of the GTP analog in the canonical conformation found in other GTPase structures is precluded by constriction of the phosphate binding P loop. The structural difference between the Ffh complex and other GTPases suggests a specific conformational change that must accompany movement of the nucleotide from an inactive to an active binding mode. Conserved side chains of the GTPase sequence motifs unique to the SRP subfamily may function to gate formation of the active GTP bound conformation. Exposed hydrophobic residues provide an interaction surface that may allow regulation of the GTP binding conformation, and thus activation of the GTPase, during the association of SRP with its receptor.

  13. Neural activation during processing of aversive faces predicts treatment outcome in alcoholism.

    Science.gov (United States)

    Charlet, Katrin; Schlagenhauf, Florian; Richter, Anne; Naundorf, Karina; Dornhof, Lina; Weinfurtner, Christopher E J; König, Friederike; Walaszek, Bernadeta; Schubert, Florian; Müller, Christian A; Gutwinski, Stefan; Seissinger, Annette; Schmitz, Lioba; Walter, Henrik; Beck, Anne; Gallinat, Jürgen; Kiefer, Falk; Heinz, Andreas

    2014-05-01

    Neuropsychological studies reported decoding deficits of emotional facial expressions in alcohol-dependent patients, and imaging studies revealed reduced prefrontal and limbic activation during emotional face processing. However, it remains unclear whether this reduced neural activation is mediated by alcohol-associated volume reductions and whether it interacts with treatment outcome. We combined analyses of neural activation during an aversive face-cue-comparison task and local gray matter volumes (GM) using Biological Parametric Mapping in 33 detoxified alcohol-dependent patients and 33 matched healthy controls. Alcoholics displayed reduced activation toward aversive faces-neutral shapes in bilateral fusiform gyrus [FG; Brodmann areas (BA) 18/19], right middle frontal gyrus (BA46/47), right inferior parietal gyrus (BA7) and left cerebellum compared with controls, which were explained by GM differences (except for cerebellum). Enhanced functional activation in patients versus controls was found in left rostral anterior cingulate cortex (ACC) and medial frontal gyrus (BA10/11), even after GM reduction control. Increased ACC activation correlated significantly with less (previous) lifetime alcohol intake [Lifetime Drinking History (LDH)], longer abstinence and less subsequent binge drinking in patients. High LDH appear to impair treatment outcome via its neurotoxicity on ACC integrity. Thus, high activation of the rostral ACC elicited by affective faces appears to be a resilience factor predicting better treatment outcome. Although no group differences were found, increased FG activation correlated with patients' higher LDH. Because high LDH correlated with worse task performance for facial stimuli in patients, elevated activation in the fusiform 'face' area may reflect inefficient compensatory activation. Therapeutic interventions (e.g. emotion evaluation training) may enable patients to cope with social stress and to decrease relapses after detoxification.

  14. Mild blast events alter anxiety, memory, and neural activity patterns in the anterior cingulate cortex.

    Directory of Open Access Journals (Sweden)

    Kun Xie

    Full Text Available There is a general interest in understanding of whether and how exposure to emotionally traumatizing events can alter memory function and anxiety behaviors. Here we have developed a novel laboratory-version of mild blast exposure comprised of high decibel bomb explosion sound coupled with strong air blast to mice. This model allows us to isolate the effects of emotionally fearful components from those of traumatic brain injury or bodily injury typical associated with bomb blasts. We demonstrate that this mild blast exposure is capable of impairing object recognition memory, increasing anxiety in elevated O-maze test, and resulting contextual generalization. Our in vivo neural ensemble recording reveal that such mild blast exposures produced diverse firing changes in the anterior cingulate cortex, a region processing emotional memory and inhibitory control. Moreover, we show that these real-time neural ensemble patterns underwent post-event reverberations, indicating rapid consolidation of those fearful experiences. Identification of blast-induced neural activity changes in the frontal brain may allow us to better understand how mild blast experiences result in abnormal changes in memory functions and excessive fear generalization related to post-traumatic stress disorder.

  15. The effects of dynamical synapses on firing rate activity: a spiking neural network model.

    Science.gov (United States)

    Khalil, Radwa; Moftah, Marie Z; Moustafa, Ahmed A

    2017-11-01

    Accumulating evidence relates the fine-tuning of synaptic maturation and regulation of neural network activity to several key factors, including GABA A signaling and a lateral spread length between neighboring neurons (i.e., local connectivity). Furthermore, a number of studies consider short-term synaptic plasticity (STP) as an essential element in the instant modification of synaptic efficacy in the neuronal network and in modulating responses to sustained ranges of external Poisson input frequency (IF). Nevertheless, evaluating the firing activity in response to the dynamical interaction between STP (triggered by ranges of IF) and these key parameters in vitro remains elusive. Therefore, we designed a spiking neural network (SNN) model in which we incorporated the following parameters: local density of arbor essences and a lateral spread length between neighboring neurons. We also created several network scenarios based on these key parameters. Then, we implemented two classes of STP: (1) short-term synaptic depression (STD) and (2) short-term synaptic facilitation (STF). Each class has two differential forms based on the parametric value of its synaptic time constant (either for depressing or facilitating synapses). Lastly, we compared the neural firing responses before and after the treatment with STP. We found that dynamical synapses (STP) have a critical differential role on evaluating and modulating the firing rate activity in each network scenario. Moreover, we investigated the impact of changing the balance between excitation (E) and inhibition (I) on stabilizing this firing activity. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Effect of shorter pulse duration in cochlear neural activation with an 810-nm near-infrared laser.

    Science.gov (United States)

    Wang, Jingxuan; Tian, Lan; Lu, Jianren; Xia, Ming; Wei, Ying

    2017-02-01

    Optical neural stimulation in the cochlea has been presented as an alternative technique to the electrical stimulation due to its potential in spatially selectivity enhancement. So far, few studies have selected the near-infrared (NIR) laser in cochlear neural stimulation and limited optical parameter space has been examined. This paper focused on investigating the optical parameter effect on NIR stimulation of auditory neurons, especially under shorter pulse durations. The spiral ganglion neurons in the cochlea of deafened guinea pigs were stimulated with a pulsed 810-nm NIR laser in vivo. The laser radiation was delivered by an optical fiber and irradiated towards the modiolus. Optically evoked auditory brainstem responses (OABRs) with various optical parameters were recorded and investigated. The OABRs could be elicited with the cochlear deafened animals by using the 810-nm laser in a wide pulse duration ranged from 20 to 1000 μs. Results showed that the OABR intensity increased along with the increasing laser radiant exposure of limited range at each specific pulse duration. In addition, for the pulse durations from 20 to 300 μs, the OABR intensity increased monotonically along with the pulse duration broadening. While for pulse durations above 300 μs, the OABR intensity basically kept stable with the increasing pulse duration. The 810-nm NIR laser could be an effective stimulus in evoking the cochlear neuron response. Our experimental data provided evidence to optimize the pulse duration range, and the results suggested that the pulse durations from 20 to 300 μs could be the optimized range in cochlear neural activation with the 810-nm-wavelength laser.

  17. Mdm2 mediates FMRP- and Gp1 mGluR-dependent protein translation and neural network activity.

    Science.gov (United States)

    Liu, Dai-Chi; Seimetz, Joseph; Lee, Kwan Young; Kalsotra, Auinash; Chung, Hee Jung; Lu, Hua; Tsai, Nien-Pei

    2017-10-15

    Activating Group 1 (Gp1) metabotropic glutamate receptors (mGluRs), including mGluR1 and mGluR5, elicits translation-dependent neural plasticity mechanisms that are crucial to animal behavior and circuit development. Dysregulated Gp1 mGluR signaling has been observed in numerous neurological and psychiatric disorders. However, the molecular pathways underlying Gp1 mGluR-dependent plasticity mechanisms are complex and have been elusive. In this study, we identified a novel mechanism through which Gp1 mGluR mediates protein translation and neural plasticity. Using a multi-electrode array (MEA) recording system, we showed that activating Gp1 mGluR elevates neural network activity, as demonstrated by increased spontaneous spike frequency and burst activity. Importantly, we validated that elevating neural network activity requires protein translation and is dependent on fragile X mental retardation protein (FMRP), the protein that is deficient in the most common inherited form of mental retardation and autism, fragile X syndrome (FXS). In an effort to determine the mechanism by which FMRP mediates protein translation and neural network activity, we demonstrated that a ubiquitin E3 ligase, murine double minute-2 (Mdm2), is required for Gp1 mGluR-induced translation and neural network activity. Our data showed that Mdm2 acts as a translation suppressor, and FMRP is required for its ubiquitination and down-regulation upon Gp1 mGluR activation. These data revealed a novel mechanism by which Gp1 mGluR and FMRP mediate protein translation and neural network activity, potentially through de-repressing Mdm2. Our results also introduce an alternative way for understanding altered protein translation and brain circuit excitability associated with Gp1 mGluR in neurological diseases such as FXS. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Right hemisphere neural activations in the recall of waking fantasies and of dreams.

    Science.gov (United States)

    Benedetti, Francesco; Poletti, Sara; Radaelli, Daniele; Ranieri, Rebecca; Genduso, Valeria; Cavallotti, Simone; Castelnovo, Anna; Smeraldi, Enrico; Scarone, Silvio; D'Agostino, Armando

    2015-10-01

    The story-like organization of dreams is characterized by a pervasive bizarreness of events and actions that resembles psychotic thought, and largely exceeds that observed in normal waking fantasies. Little is known about the neural correlates of the confabulatory narrative construction of dreams. In this study, dreams, fantasies elicited by ambiguous pictorial stimuli, and non-imaginative first- and third-person narratives from healthy participants were recorded, and were then studied for brain blood oxygen level-dependent functional magnetic resonance imaging on a 3.0-Tesla scanner while listening to their own narrative reports and attempting a retrieval of the corresponding experience. In respect to non-bizarre reports of daytime activities, the script-driven recall of dreams and fantasies differentially activated a right hemisphere network including areas in the inferior frontal gyrus, and superior and middle temporal gyrus. Neural responses were significantly greater for fantasies than for dreams in all regions, and inversely proportional to the degree of bizarreness observed in narrative reports. The inferior frontal gyrus, superior and middle temporal gyrus have been implicated in the semantic activation, integration and selection needed to build a coherent story representation and to resolve semantic ambiguities; in deductive and inferential reasoning; in self- and other-perspective taking, theory of mind, moral and autobiographical reasoning. Their degree of activation could parallel the level of logical robustness or inconsistency experienced when integrating information and mental representations in the process of building fantasy and dream narratives. © 2015 European Sleep Research Society.

  19. Monitoring the neural activity of the state of mental silence while practicing Sahaja yoga meditation.

    Science.gov (United States)

    Hernández, Sergio E; Suero, José; Rubia, Katya; González-Mora, José L

    2015-03-01

    To identify the neural correlates of the state of mental silence as experienced through Sahaja yoga meditation. Nineteen experienced meditators underwent functional magnetic resonance imaging during three short consecutive meditation periods, contrasted with a control relaxation condition. Relative to baseline, at the beginning of the meditation sessions there was a significant increase of activation in bilateral inferior frontal and temporal regions. Activation became progressively more reduced with deeper meditation stages and in the last meditation session it became localized to the right inferior frontal cortex/ right insula and right middle/superior temporal cortex. Furthermore, right inferior frontal activation was directly associated with the subjective depth of the mental silence experience. Meditators appear to pass through an initial intense neural self-control process necessary to silence their mind. After this they experience relatively reduced brain activation concomitant with the deepening of the state of mental silence over right inferior frontal cortex, probably reflecting an effortless process of attentional contemplation associated with this state.

  20. Emergence of spatially heterogeneous burst suppression in a neural field model of electrocortical activity

    Directory of Open Access Journals (Sweden)

    Ingo eBojak

    2015-02-01

    Full Text Available Burst suppression in the electroencephalogram (EEG is a well described phenomenon that occurs during deep anaesthesia, as well as in a variety of congenital and acquired brain insults. Classically it is thought of as spatially synchronous, quasi-periodic bursts of high amplitude EEG separated by low amplitude activity. However, its characterisation as a ``global brain state'' has been challenged by recent results obtained with intracranial electrocortigraphy. Not only does it appear that burst suppression activity is highly asynchronous across cortex, but also that it may occur in isolated regions of circumscribed spatial extent. Here we outline a realistic neural field model for burst suppression by adding a slow process of synaptic resource depletion and recovery, which is able to reproduce qualitatively the empirically observed features during general anaesthesia at the whole cortex level. Simulations reveal heterogeneous bursting over the model cortex and complex spatiotemporal dynamics during simulated anaesthetic action, and provide forward predictions of neuroimaging signals for subsequent empirical comparisons and more detailed characterisation.Because burst suppression corresponds to a dynamical end-point of brain activity, theoretically accounting for its spatiotemporal emergence will vitally contribute to efforts aimed at clarifying whether a common physiological trajectory is induced by the actions of general anaesthetic agents. We have taken a first step in this direction by showing that a neural field model can qualitatively match recent experimental data that indicate spatial differentiation of burst suppression activity across cortex.

  1. Neural activity during traumatic film viewing is linked to endogenous estradiol and hormonal contraception.

    Science.gov (United States)

    Miedl, Stephan F; Wegerer, Melanie; Kerschbaum, Hubert; Blechert, Jens; Wilhelm, Frank H

    2018-01-01

    Women are at higher risk for Posttraumatic Stress Disorder (PTSD) and recent research has highlighted a modulating role of female sex hormones for cognitive and emotional processes potentially underlying PTSD symptoms. However, studies combining fMRI recordings of brain activity during trauma film viewing with assessment of female sex hormones are missing. The trauma film paradigm - a widely used experimental analogue for trauma exposure - confronts healthy participants with traumatic film clips and thus allows studying peritraumatic processing under laboratory conditions. Following this paradigm, the current fMRI study examined the role of endogenous estradiol and synthetic sex hormones for the neural processing of traumatic (i.e., depicting interpersonal violence) vs. neutral films in 53 healthy women (mean age 22.3 years; 23 using hormonal contraception, HC). As predicted, traumatic films strongly activated areas of the fear processing network, such as amygdala, insula, and dorsal anterior cingulate cortex. Estradiol levels in women not using HC were positively correlated with ventromedial prefrontal activity. Furthermore, women using HC as compared to women without HC demonstrated heightened insula and dorsal anterior cingulate cortex activity during traumatic film viewing. These experimental results highlight the effects of both gonadal hormone status and HC intake on peritraumatic processing in neural regions relevant for emotion generation and regulation that have been found to be abnormal in PTSD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Bioimpedance Harmonic Analysis as a Diagnostic Tool to Assess Regional Circulation and Neural Activity

    Science.gov (United States)

    Mudraya, I. S.; Revenko, S. V.; Khodyreva, L. A.; Markosyan, T. G.; Dudareva, A. A.; Ibragimov, A. R.; Romich, V. V.; Kirpatovsky, V. I.

    2013-04-01

    The novel technique based on harmonic analysis of bioimpedance microvariations with original hard- and software complex incorporating a high-resolution impedance converter was used to assess the neural activity and circulation in human urinary bladder and penis in patients with pelvic pain, erectile dysfunction, and overactive bladder. The therapeutic effects of shock wave therapy and Botulinum toxin detrusor injections were evaluated quantitatively according to the spectral peaks at low 0.1 Hz frequency (M for Mayer wave), respiratory (R) and cardiac (C) rhythms with their harmonics. Enhanced baseline regional neural activity identified according to M and R peaks was found to be presumably sympathetic in pelvic pain patients, and parasympathetic - in patients with overactive bladder. Total pulsatile activity and pulsatile resonances found in the bladder as well as in the penile spectrum characterised regional circulation and vascular tone. The abnormal spectral parameters characteristic of the patients with genitourinary diseases shifted to the norm in the cases of efficient therapy. Bioimpedance harmonic analysis seems to be a potent tool to assess regional peculiarities of circulatory and autonomic nervous activity in the course of patient treatment.

  3. Neural activation in speech production and reading aloud in native and non-native languages.

    Science.gov (United States)

    Berken, Jonathan A; Gracco, Vincent L; Chen, Jen-Kai; Soles, Jennika; Watkins, Kate E; Baum, Shari; Callahan, Megan; Klein, Denise

    2015-05-15

    We used fMRI to investigate neural activation in reading aloud in bilinguals differing in age of acquisition. Three groups were compared: French-English bilinguals who acquired two languages from birth (simultaneous), French-English bilinguals who learned their L2 after the age of 5 years (sequential), and English-speaking monolinguals. While the bilingual groups contrasted in age of acquisition, they were matched for language proficiency, although sequential bilinguals produced speech with a less native-like accent in their L2 than in their L1. Simultaneous bilinguals activated similar brain regions to an equivalent degree when reading in their two languages. In contrast, sequential bilinguals more strongly activated areas related to speech-motor control and orthographic to phonological mapping, the left inferior frontal gyrus, left premotor cortex, and left fusiform gyrus, when reading aloud in L2 compared to L1. In addition, the activity in these regions showed a significant positive correlation with age of acquisition. The results provide evidence for the engagement of overlapping neural substrates for processing two languages when acquired in native context from birth. However, it appears that the maturation of certain brain regions for both speech production and phonological encoding is limited by a sensitive period for L2 acquisition regardless of language proficiency. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Impaired activity-dependent neural circuit assembly and refinement in autism spectrum disorder genetic models

    Directory of Open Access Journals (Sweden)

    Caleb Andrew Doll

    2014-02-01

    Full Text Available Early-use activity during circuit-specific critical periods refines brain circuitry by the coupled processes of eliminating inappropriate synapses and strengthening maintained synapses. We theorize these activity-dependent developmental processes are specifically impaired in autism spectrum disorders (ASDs. ASD genetic models in both mouse and Drosophila have pioneered our insights into normal activity-dependent neural circuit assembly and consolidation, and how these developmental mechanisms go awry in specific genetic conditions. The monogenic Fragile X syndrome (FXS, a common cause of heritable ASD and intellectual disability, has been particularly well linked to defects in activity-dependent critical period processes. The Fragile X Mental Retardation Protein (FMRP is positively activity-regulated in expression and function, in turn regulates excitability and activity in a negative feedback loop, and appears to be required for the activity-dependent remodeling of synaptic connectivity during early-use critical periods. The Drosophila FXS model has been shown to functionally conserve the roles of human FMRP in synaptogenesis, and has been centrally important in generating our current mechanistic understanding of the FXS disease state. Recent advances in Drosophila optogenetics, transgenic calcium reporters, highly-targeted transgenic drivers for individually-identified neurons, and a vastly improved connectome of the brain are now being combined to provide unparalleled opportunities to both manipulate and monitor activity-dependent processes during critical period brain development in defined neural circuits. The field is now poised to exploit this new Drosophila transgenic toolbox for the systematic dissection of activity-dependent mechanisms in normal versus ASD brain development, particularly utilizing the well-established Drosophila FXS disease model.

  5. An Intelligent Active Video Surveillance System Based on the Integration of Virtual Neural Sensors and BDI Agents

    Science.gov (United States)

    Gregorio, Massimo De

    In this paper we present an intelligent active video surveillance system currently adopted in two different application domains: railway tunnels and outdoor storage areas. The system takes advantages of the integration of Artificial Neural Networks (ANN) and symbolic Artificial Intelligence (AI). This hybrid system is formed by virtual neural sensors (implemented as WiSARD-like systems) and BDI agents. The coupling of virtual neural sensors with symbolic reasoning for interpreting their outputs, makes this approach both very light from a computational and hardware point of view, and rather robust in performances. The system works on different scenarios and in difficult light conditions.

  6. Forecast and restoration of geomagnetic activity indices by using the software-computational neural network complex

    Science.gov (United States)

    Barkhatov, Nikolay; Revunov, Sergey

    2010-05-01

    It is known that currently used indices of geomagnetic activity to some extent reflect the physical processes occurring in the interaction of the perturbed solar wind with Earth's magnetosphere. Therefore, they are connected to each other and with the parameters of near-Earth space. The establishment of such nonlinear connections is interest. For such purposes when the physical problem is complex or has many parameters the technology of artificial neural networks is applied. Such approach for development of the automated forecast and restoration method of geomagnetic activity indices with the establishment of creative software-computational neural network complex is used. Each neural network experiments were carried out at this complex aims to search for a specific nonlinear relation between the analyzed indices and parameters. At the core of the algorithm work program a complex scheme of the functioning of artificial neural networks (ANN) of different types is contained: back propagation Elman network, feed forward network, fuzzy logic network and Kohonen layer classification network. Tools of the main window of the complex (the application) the settings used by neural networks allow you to change: the number of hidden layers, the number of neurons in the layer, the input and target data, the number of cycles of training. Process and the quality of training the ANN is a dynamic plot of changing training error. Plot of comparison of network response with the test sequence is result of the network training. The last-trained neural network with established nonlinear connection for repeated numerical experiments can be run. At the same time additional training is not executed and the previously trained network as a filter input parameters get through and output parameters with the test event are compared. At statement of the large number of different experiments provided the ability to run the program in a "batch" mode is stipulated. For this purpose the user a

  7. Questionnaires suggest a small overall effect of physical activity level and stress control over men’s lipid profile

    Directory of Open Access Journals (Sweden)

    Maria Fátima Glaner

    2013-07-01

    Full Text Available This study aimed to verify whether lipid profile (LP differs between men classified into two categories of physical activity level (PAL and stress control; and to analyze the results according to the evidence that suggests an inverse relationship among PAL, LP and stress control. The sample was composed of 109 subjects (age = 33.7±8.0 years. To evaluate the PAL we used the “Habitual Physical Activity Questionnaire”. To evaluate stress control, we used the “Profile of Individual Lifestyle” questionnaire, classifying subjects into one of the following categories: “bad PAL” or “good PAL”, “yes stress control” or “no stress control”. We obtained the LP using an enzymatic spectrophotometric method. Analysis of variance with two factors (p 0.05 between men in the “bad PAL” / “good PAL” groups and in the “yes stress control” / “no stress control” groups. There was a small chance (p > 0.05 for PAL and stress control to have an influence on LP, ranging from 14.5 (VLDL to 23.7% (LDL for PAL and from 5.1 (LDL to 10.9% (VLDL for stress control. These factors hardly explained (p > 0.05 the LP variation, which peaked at 1.7%. When under the same circumstances of this study, the overall effect of PAL and stress control may apply to all LP. These findings have important implications for studies that aim to verify whether the subjects reached “good PAL”. We suppose that these findings are due to a possible inaccuracy in the PAL and stress control assessment.

  8. Simulation suggests that rapid activation of social distancing can arrest epidemic development due to a novel strain of influenza

    Directory of Open Access Journals (Sweden)

    Kelly Heath

    2009-04-01

    Full Text Available Abstract Background Social distancing interventions such as school closure and prohibition of public gatherings are present in pandemic influenza preparedness plans. Predicting the effectiveness of intervention strategies in a pandemic is difficult. In the absence of other evidence, computer simulation can be used to help policy makers plan for a potential future influenza pandemic. We conducted simulations of a small community to determine the magnitude and timing of activation that would be necessary for social distancing interventions to arrest a future pandemic. Methods We used a detailed, individual-based model of a real community with a population of approximately 30,000. We simulated the effect of four social distancing interventions: school closure, increased isolation of symptomatic individuals in their household, workplace nonattendance, and reduction of contact in the wider community. We simulated each of the intervention measures in isolation and in several combinations; and examined the effect of delays in the activation of interventions on the final and daily attack rates. Results For an epidemic with an R0 value of 1.5, a combination of all four social distancing measures could reduce the final attack rate from 33% to below 10% if introduced within 6 weeks from the introduction of the first case. In contrast, for an R0 of 2.5 these measures must be introduced within 2 weeks of the first case to achieve a similar reduction; delays of 2, 3 and 4 weeks resulted in final attack rates of 7%, 21% and 45% respectively. For an R0 of 3.5 the combination of all four measures could reduce the final attack rate from 73% to 16%, but only if introduced without delay; delays of 1, 2 or 3 weeks resulted in final attack rates of 19%, 35% or 63% respectively. For the higher R0 values no single measure has a significant impact on attack rates. Conclusion Our results suggest a critical role of social distancing in the potential control of a future

  9. The effects of inhibitory control training for preschoolers on reasoning ability and neural activity

    DEFF Research Database (Denmark)

    Liu, Qian; Zhu, Xinyi; Ziegler, Albert

    2015-01-01

    Inhibitory control (including response inhibition and interference control) develops rapidly during the preschool period and is important for early cognitive development. This study aimed to determine the training and transfer effects on response inhibition in young children. Children in the trai......Inhibitory control (including response inhibition and interference control) develops rapidly during the preschool period and is important for early cognitive development. This study aimed to determine the training and transfer effects on response inhibition in young children. Children....... Furthermore, gender differences in the training-induced changes in neural activity were found in preschoolers....

  10. Neural activity related to discrimination and vocal production of consonant and dissonant musical intervals.

    Science.gov (United States)

    González-García, Nadia; González, Martha A; Rendón, Pablo L

    2016-07-15

    Relationships between musical pitches are described as either consonant, when associated with a pleasant and harmonious sensation, or dissonant, when associated with an inharmonious feeling. The accurate singing of musical intervals requires communication between auditory feedback processing and vocal motor control (i.e. audio-vocal integration) to ensure that each note is produced correctly. The objective of this study is to investigate the neural mechanisms through which trained musicians produce consonant and dissonant intervals. We utilized 4 musical intervals (specifically, an octave, a major seventh, a fifth, and a tritone) as the main stimuli for auditory discrimination testing, and we used the same interval tasks to assess vocal accuracy in a group of musicians (11 subjects, all female vocal students at conservatory level). The intervals were chosen so as to test for differences in recognition and production of consonant and dissonant intervals, as well as narrow and wide intervals. The subjects were studied using fMRI during performance of the interval tasks; the control condition consisted of passive listening. Singing dissonant intervals as opposed to singing consonant intervals led to an increase in activation in several regions, most notably the primary auditory cortex, the primary somatosensory cortex, the amygdala, the left putamen, and the right insula. Singing wide intervals as opposed to singing narrow intervals resulted in the activation of the right anterior insula. Moreover, we also observed a correlation between singing in tune and brain activity in the premotor cortex, and a positive correlation between training and activation of primary somatosensory cortex, primary motor cortex, and premotor cortex during singing. When singing dissonant intervals, a higher degree of training correlated with the right thalamus and the left putamen. Our results indicate that singing dissonant intervals requires greater involvement of neural mechanisms

  11. Application of an artificial neural network for evaluation of activity concentration exemption limits in NORM industry.

    Science.gov (United States)

    Wiedner, Hannah; Peyrés, Virginia; Crespo, Teresa; Mejuto, Marcos; García-Toraño, Eduardo; Maringer, Franz Josef

    2017-08-01

    NORM emits many different gamma energies that have to be analysed by an expert. Alternatively, artificial neural networks (ANNs) can be used. These mathematical software tools can generalize "knowledge" gained from training datasets, applying it to new problems. No expert knowledge of gamma-ray spectrometry is needed by the end-user. In this work an ANN was created that is able to decide from the raw gamma-ray spectrum if the activity concentrations in a sample are above or below the exemption limits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Evaluation of the legal consequences of action affects neural activity and emotional experience during the resolution of moral dilemmas.

    Science.gov (United States)

    Pletti, Carolina; Sarlo, Michela; Palomba, Daniela; Rumiati, Rino; Lotto, Lorella

    2015-03-01

    In any modern society killing is regarded as a severe violation of the legal codes that is subjected to penal judgment. Therefore, it is likely that people take legal consequences into account when deciding about the hypothetical killing of one person in classic moral dilemmas, with legal concerns contributing to decision-making. In particular, by differing for the degree of intentionality and emotional salience, Footbridge- and Trolley-type dilemmas might promote differential assignment of blame and punishment while implicating the same severity of harm. The present study was aimed at comparing the neural activity, subjective emotional reactions, and behavioral choices in two groups of participants who either took (Legal group) or did not take (No Legal group) legal consequences into account when deciding on Footbridge-type and Trolley-type moral dilemmas. Stimulus- and response-locked ERPs were measured to investigate the neural activity underlying two separate phases of the decision process. No difference in behavioral choices was found between groups. However, the No Legal group reported greater overall emotional impact, associated with lower preparation for action, suggesting greater conflict between alternative motor responses representing the different decision choices. In contrast, the Legal group showed an overall dampened affective experience during decision-making associated with greater overall action readiness and intention to act, reflecting lower conflict in responding. On these bases, we suggest that in moral dilemmas legal consequences of actions provide a sort of reference point on which people can rely to support a decision, independent of dilemma type. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia

    Science.gov (United States)

    Kim, Sung-Phil; Simeral, John D.; Hochberg, Leigh R.; Donoghue, John P.; Black, Michael J.

    2008-12-01

    Computer-mediated connections between human motor cortical neurons and assistive devices promise to improve or restore lost function in people with paralysis. Recently, a pilot clinical study of an intracortical neural interface system demonstrated that a tetraplegic human was able to obtain continuous two-dimensional control of a computer cursor using neural activity recorded from his motor cortex. This control, however, was not sufficiently accurate for reliable use in many common computer control tasks. Here, we studied several central design choices for such a system including the kinematic representation for cursor movement, the decoding method that translates neuronal ensemble spiking activity into a control signal and the cursor control task used during training for optimizing the parameters of the decoding method. In two tetraplegic participants, we found that controlling a cursor's velocity resulted in more accurate closed-loop control than controlling its position directly and that cursor velocity control was achieved more rapidly than position control. Control quality was further improved over conventional linear filters by using a probabilistic method, the Kalman filter, to decode human motor cortical activity. Performance assessment based on standard metrics used for the evaluation of a wide range of pointing devices demonstrated significantly improved cursor control with velocity rather than position decoding. Disclosure. JPD is the Chief Scientific Officer and a director of Cyberkinetics Neurotechnology Systems (CYKN); he holds stock and receives compensation. JDS has been a consultant for CYKN. LRH receives clinical trial support from CYKN.

  14. Neural Activities Underlying the Feedback Express Salience Prediction Errors for Appetitive and Aversive Stimuli.

    Science.gov (United States)

    Gu, Yan; Hu, Xueping; Pan, Weigang; Yang, Chun; Wang, Lijun; Li, Yiyuan; Chen, Antao

    2016-10-03

    Feedback information is essential for us to adapt appropriately to the environment. The feedback-related negativity (FRN), a frontocentral negative deflection after the delivery of feedback, has been found to be larger for outcomes that are worse than expected, and it reflects a reward prediction error derived from the midbrain dopaminergic projections to the anterior cingulate cortex (ACC), as stated in reinforcement learning theory. In contrast, the prediction of response-outcome (PRO) model claims that the neural activity in the mediofrontal cortex (mPFC), especially the ACC, is sensitive to the violation of expectancy, irrespective of the valence of feedback. Additionally, increasing evidence has demonstrated significant activities in the striatum, anterior insula and occipital lobe for unexpected outcomes independently of their valence. Thus, the neural mechanism of the feedback remains under dispute. Here, we investigated the feedback with monetary reward and electrical pain shock in one task via functional magnetic resonance imaging. The results revealed significant prediction-error-related activities in the bilateral fusiform gyrus, right middle frontal gyrus and left cingulate gyrus for both money and pain. This implies that some regions underlying the feedback may signal a salience prediction error rather than a reward prediction error.

  15. Prediction of enzyme activity with neural network models based on electronic and geometrical features of substrates.

    Science.gov (United States)

    Szaleniec, Maciej

    2012-01-01

    Artificial Neural Networks (ANNs) are introduced as robust and versatile tools in quantitative structure-activity relationship (QSAR) modeling. Their application to the modeling of enzyme reactivity is discussed, along with methodological issues. Methods of input variable selection, optimization of network internal structure, data set division and model validation are discussed. The application of ANNs in the modeling of enzyme activity over the last 20 years is briefly recounted. The discussed methodology is exemplified by the case of ethylbenzene dehydrogenase (EBDH). Intelligent Problem Solver and genetic algorithms are applied for input vector selection, whereas k-means clustering is used to partition the data into training and test cases. The obtained models exhibit high correlation between the predicted and experimental values (R(2) > 0.9). Sensitivity analyses and study of the response curves are used as tools for the physicochemical interpretation of the models in terms of the EBDH reaction mechanism. Neural networks are shown to be a versatile tool for the construction of robust QSAR models that can be applied to a range of aspects important in drug design and the prediction of biological activity.

  16. Computerized cognitive training restores neural activity within the reality monitoring network in schizophrenia.

    Science.gov (United States)

    Subramaniam, Karuna; Luks, Tracy L; Fisher, Melissa; Simpson, Gregory V; Nagarajan, Srikantan; Vinogradov, Sophia

    2012-02-23

    Schizophrenia patients suffer from severe cognitive deficits, such as impaired reality monitoring. Reality monitoring is the ability to distinguish the source of internal experiences from outside reality. During reality monitoring tasks, schizophrenia patients make errors identifying "I made it up" items, and even during accurate performance, they show abnormally low activation of the medial prefrontal cortex (mPFC), a region that supports self-referential cognition. We administered 80 hr of computerized training of cognitive processes to schizophrenia patients and found improvement in reality monitoring that correlated with increased mPFC activity. In contrast, patients in a computer games control condition did not show any behavioral or neural improvements. Notably, recovery in mPFC activity after training was associated with improved social functioning 6 months later. These findings demonstrate that a serious behavioral deficit in schizophrenia, and its underlying neural dysfunction, can be improved by well-designed computerized cognitive training, resulting in better quality of life. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Operant conditioning of neural activity in freely behaving monkeys with intracranial reinforcement.

    Science.gov (United States)

    Eaton, Ryan W; Libey, Tyler; Fetz, Eberhard E

    2017-03-01

    Operant conditioning of neural activity has typically been performed under controlled behavioral conditions using food reinforcement. This has limited the duration and behavioral context for neural conditioning. To reward cell activity in unconstrained primates, we sought sites in nucleus accumbens (NAc) whose stimulation reinforced operant responding. In three monkeys, NAc stimulation sustained performance of a manual target-tracking task, with response rates that increased monotonically with increasing NAc stimulation. We recorded activity of single motor cortex neurons and documented their modulation with wrist force. We conditioned increased firing rates with the monkey seated in the training booth and during free behavior in the cage using an autonomous head-fixed recording and stimulating system. Spikes occurring above baseline rates triggered single or multiple electrical pulses to the reinforcement site. Such rate-contingent, unit-triggered stimulation was made available for periods of 1-3 min separated by 3-10 min time-out periods. Feedback was presented as event-triggered clicks both in-cage and in-booth, and visual cues were provided in many in-booth sessions. In-booth conditioning produced increases in single neuron firing probability with intracranial reinforcement in 48 of 58 cells. Reinforced cell activity could rise more than five times that of non-reinforced activity. In-cage conditioning produced significant increases in 21 of 33 sessions. In-cage rate changes peaked later and lasted longer than in-booth changes, but were often comparatively smaller, between 13 and 18% above non-reinforced activity. Thus intracranial stimulation reinforced volitional increases in cortical firing rates during both free behavior and a controlled environment, although changes in the latter were more robust.NEW & NOTEWORTHY Closed-loop brain-computer interfaces (BCI) were used to operantly condition increases in muscle and neural activity in monkeys by delivering

  18. DataHigh: Graphical user interface for visualizing and interacting with high-dimensional neural activity

    Science.gov (United States)

    Cowley, Benjamin R.; Kaufman, Matthew T.; Butler, Zachary S.; Churchland, Mark M.; Ryu, Stephen I.; Shenoy, Krishna V.; Yu, Byron M.

    2014-01-01

    Objective Analyzing and interpreting the activity of a heterogeneous population of neurons can be challenging, especially as the number of neurons, experimental trials, and experimental conditions increases. One approach is to extract a set of latent variables that succinctly captures the prominent co-fluctuation patterns across the neural population. A key problem is that the number of latent variables needed to adequately describe the population activity is often greater than three, thereby preventing direct visualization of the latent space. By visualizing a small number of 2-d projections of the latent space or each latent variable individually, it is easy to miss salient features of the population activity. Approach To address this limitation, we developed a Matlab graphical user interface (called DataHigh) that allows the user to quickly and smoothly navigate through a continuum of different 2-d projections of the latent space. We also implemented a suite of additional visualization tools (including playing out population activity timecourses as a movie and displaying summary statistics, such as covariance ellipses and average timecourses) and an optional tool for performing dimensionality reduction. Main results To demonstrate the utility and versatility of DataHigh, we used it to analyze single-trial spike count and single-trial timecourse population activity recorded using a multi-electrode array, as well as trial-averaged population activity recorded using single electrodes. Significance DataHigh was developed to fulfill a need for visualization in exploratory neural data analysis, which can provide intuition that is critical for building scientific hypotheses and models of population activity. PMID:24216250

  19. The neural coding of expected and unexpected monetary performance outcomes: dissociations between active and observational learning.

    Science.gov (United States)

    Bellebaum, C; Jokisch, D; Gizewski, E R; Forsting, M; Daum, I

    2012-02-01

    Successful adaptation to the environment requires the learning of stimulus-response-outcome associations. Such associations can be learned actively by trial and error or by observing the behaviour and accompanying outcomes in other persons. The present study investigated similarities and differences in the neural mechanisms of active and observational learning from monetary feedback using functional magnetic resonance imaging. Two groups of 15 subjects each - active and observational learners - participated in the experiment. On every trial, active learners chose between two stimuli and received monetary feedback. Each observational learner observed the choices and outcomes of one active learner. Learning performance as assessed via active test trials without feedback was comparable between groups. Different activation patterns were observed for the processing of unexpected vs. expected monetary feedback in active and observational learners, particularly for positive outcomes. Activity for unexpected vs. expected reward was stronger in the right striatum in active learning, while activity in the hippocampus was bilaterally enhanced in observational and reduced in active learning. Modulation of activity by prediction error (PE) magnitude was observed in the right putamen in both types of learning, whereas PE related activations in the right anterior caudate nucleus and in the medial orbitofrontal cortex were stronger for active learning. The striatum and orbitofrontal cortex thus appear to link reward stimuli to own behavioural reactions and are less strongly involved when the behavioural outcome refers to another person's action. Alternative explanations such as differences in reward value between active and observational learning are also discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Human intracranial high-frequency activity during memory processing: neural oscillations or stochastic volatility?

    Science.gov (United States)

    Burke, John F; Ramayya, Ashwin G; Kahana, Michael J

    2015-04-01

    Intracranial high-frequency activity (HFA), which refers to fast fluctuations in electrophysiological recordings, increases during memory processing. Two views have emerged to explain this effect: (1) HFA reflects a synchronous signal, related to underlying gamma oscillations, that plays a mechanistic role in human memory and (2) HFA reflects an asynchronous signal that is a non-specific marker of brain activation. We review recent data supporting each of these views and conclude that HFA during memory processing is more consistent with an asynchronous signal. Memory-related HFA is therefore best conceptualized as a biomarker of neural activation that can functionally map memory with high spatial and temporal precision. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Perceptual Surprise Improves Action Stopping by Nonselectively Suppressing Motor Activity via a Neural Mechanism for Motor Inhibition.

    Science.gov (United States)

    Dutra, Isabella C; Waller, Darcy A; Wessel, Jan R

    2018-02-07

    Motor inhibition is a cognitive control ability that allows humans to stop actions rapidly even after initiation. Understanding and improving motor inhibition could benefit adaptive behavior in both health and disease. We recently found that presenting surprising, task-unrelated sounds when stopping is necessary improves the likelihood of successful stopping. In the current study, we investigated the neural underpinnings of this effect. Specifically, we tested whether surprise-related stopping improvements are due to a genuine increase in motor inhibition. In Experiment 1, we measured motor inhibition in primary motor cortex of male and female humans by quantifying corticospinal excitability (CSE) via transcranial magnetic stimulation and electromyography during a hybrid surprise-Go/NoGo task. Consistent with prior studies of motor inhibition, successful stopping was accompanied by nonselective suppression of CSE; that is, CSE was suppressed even in task-unrelated motor effectors. Importantly, unexpected sounds significantly increased this motor-system inhibition to a degree that was directly related to behavioral improvements in stopping. In Experiment 2, we then used scalp encephalography to investigate whether unexpected sounds increase motor-inhibition-related activity in the CNS. We used an independent stop-signal localizer task to identify a well characterized frontocentral low-frequency EEG component that indexes motor inhibition. We then investigated the activity of this component in the surprise-Go/NoGo task. Consistent with Experiment 1, this signature of motor inhibition was indeed increased when NoGo signals were followed by unexpected sounds. Together, these experiments provide converging evidence suggesting that unexpected events improve motor inhibition by automatically triggering inhibitory control. SIGNIFICANCE STATEMENT The ability to stop ongoing actions rapidly allows humans to adapt their behavior flexibly and rapidly. Action stopping is

  2. Aural localization of silent objects by active human biosonar: neural representations of virtual echo-acoustic space.

    Science.gov (United States)

    Wallmeier, Ludwig; Kish, Daniel; Wiegrebe, Lutz; Flanagin, Virginia L

    2015-03-01

    Some blind humans have developed the remarkable ability to detect and localize objects through the auditory analysis of self-generated tongue clicks. These echolocation experts show a corresponding increase in 'visual' cortex activity when listening to echo-acoustic sounds. Echolocation in real-life settings involves multiple reflections as well as active sound production, neither of which has been systematically addressed. We developed a virtualization technique that allows participants to actively perform such biosonar tasks in virtual echo-acoustic space during magnetic resonance imaging (MRI). Tongue clicks, emitted in the MRI scanner, are picked up by a microphone, convolved in real time with the binaural impulse responses of a virtual space, and presented via headphones as virtual echoes. In this manner, we investigated the brain activity during active echo-acoustic localization tasks. Our data show that, in blind echolocation experts, activations in the calcarine cortex are dramatically enhanced when a single reflector is introduced into otherwise anechoic virtual space. A pattern-classification analysis revealed that, in the blind, calcarine cortex activation patterns could discriminate left-side from right-side reflectors. This was found in both blind experts, but the effect was significant for only one of them. In sighted controls, 'visual' cortex activations were insignificant, but activation patterns in the planum temporale were sufficient to discriminate left-side from right-side reflectors. Our data suggest that blind and echolocation-trained, sighted subjects may recruit different neural substrates for the same active-echolocation task. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Sustained activity in hierarchical modular neural networks: self-organized criticality and oscillations

    Directory of Open Access Journals (Sweden)

    Sheng-Jun Wang

    2011-06-01

    Full Text Available Cerebral cortical brain networks possess a number of conspicuous features of structure and dynamics. First, these networks have an intricate, non-random organization. They are structured in a hierarchical modular fashion, from large-scale regions of the whole brain, via cortical areas and area subcompartments organized as structural and functional maps to cortical columns, and finally circuits made up of individual neurons. Second, the networks display self-organized sustained activity, which is persistent in the absence of external stimuli. At the systems level, such activity is characterized by complex rhythmical oscillations over a broadband background, while at the cellular level, neuronal discharges have been observed to display avalanches, indicating that cortical networks are at the state of self-organized criticality. We explored the relationship between hierarchical neural network organization and sustained dynamics using large-scale network modeling. It was shown that sparse random networks with balanced excitation and inhibition can sustain neural activity without external stimulation. We find that a hierarchical modular architecture can generate sustained activity better than random networks. Moreover, the system can simultaneously support rhythmical oscillations and self-organized criticality, which are not present in the respective random networks. The underlying mechanism is that each dense module cannot sustain activity on its own, but displays self-organized criticality in the presence of weak perturbations. The hierarchical modular networks provide the coupling among subsystems with self-organized criticality. These results imply that the hierarchical modular architecture of cortical networks plays an important role in shaping the ongoing spontaneous activity of the brain, potentially allowing the system to take advantage of both the sensitivityof critical state and predictability and timing of oscillations for efficient

  4. Constitutively active Notch1 converts cranial neural crest-derived frontonasal mesenchyme to perivascular cells in vivo

    Directory of Open Access Journals (Sweden)

    Sophie R. Miller

    2017-03-01

    Full Text Available Perivascular/mural cells originate from either the mesoderm or the cranial neural crest. Regardless of their origin, Notch signalling is necessary for their formation. Furthermore, in both chicken and mouse, constitutive Notch1 activation (via expression of the Notch1 intracellular domain is sufficient in vivo to convert trunk mesoderm-derived somite cells to perivascular cells, at the expense of skeletal muscle. In experiments originally designed to investigate the effect of premature Notch1 activation on the development of neural crest-derived olfactory ensheathing glial cells (OECs, we used in ovo electroporation to insert a tetracycline-inducible NotchΔE construct (encoding a constitutively active mutant of mouse Notch1 into the genome of chicken cranial neural crest cell precursors, and activated NotchΔE expression by doxycycline injection at embryonic day 4. NotchΔE-targeted cells formed perivascular cells within the frontonasal mesenchyme, and expressed a perivascular marker on the olfactory nerve. Hence, constitutively activating Notch1 is sufficient in vivo to drive not only somite cells, but also neural crest-derived frontonasal mesenchyme and perhaps developing OECs, to a perivascular cell fate. These results also highlight the plasticity of neural crest-derived mesenchyme and glia.

  5. Adaptive Neural-Sliding Mode Control of Active Suspension System for Camera Stabilization

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2015-01-01

    Full Text Available The camera always suffers from image instability on the moving vehicle due to the unintentional vibrations caused by road roughness. This paper presents a novel adaptive neural network based on sliding mode control strategy to stabilize the image captured area of the camera. The purpose is to suppress vertical displacement of sprung mass with the application of active suspension system. Since the active suspension system has nonlinear and time varying characteristics, adaptive neural network (ANN is proposed to make the controller robustness against systematic uncertainties, which release the model-based requirement of the sliding model control, and the weighting matrix is adjusted online according to Lyapunov function. The control system consists of two loops. The outer loop is a position controller designed with sliding mode strategy, while the PID controller in the inner loop is to track the desired force. The closed loop stability and asymptotic convergence performance can be guaranteed on the basis of the Lyapunov stability theory. Finally, the simulation results show that the employed controller effectively suppresses the vibration of the camera and enhances the stabilization of the entire camera, where different excitations are considered to validate the system performance.

  6. Abnormal Resting-State Neural Activity and Connectivity of Fatigue in Parkinson's Disease.

    Science.gov (United States)

    Zhang, Jie-Jin; Ding, Jian; Li, Jun-Yi; Wang, Min; Yuan, Yong-Sheng; Zhang, Li; Jiang, Si-Ming; Wang, Xi-Xi; Zhu, Lin; Zhang, Ke-Zhong

    2017-03-01

    Fatigue is a common burdensome problem in patients with Parkinson's disease (PD), but its pathophysiological mechanisms are poorly understood. This study aimed at investigating the neural substrates of fatigue in patients with PD. A total of 17 PD patients with fatigue, 32 PD patients without fatigue, and 25 matched healthy controls were recruited. The 9-item fatigue severity scale (FSS) was used for fatigue screening and severity rating. Resting-state functional magnetic resonance imaging (RS-fMRI) data were obtained from all subjects. Amplitude of low-frequency fluctuations (ALFF) was used to measure regional brain activity, and functional connectivity (FC) was applied to investigate functional connectivity at a network level. PD-related fatigue was associated with ALFF changes in right middle frontal gyrus within the attention network and in left insula as well as right midcingulate cortex within the salience network. FC analysis revealed that above three regions showing ALFF differences had altered functional connectivity mainly in the temporal, parietal, and motor cortices. Our findings do reveal that abnormal regional brain activity within attention and salience network and altered FC of above abnormal regions are involved in neural mechanism of fatigue in patients with PD. © 2017 John Wiley & Sons Ltd.

  7. Patterns of neural activity predict picture-naming performance of a patient with chronic aphasia.

    Science.gov (United States)

    Lee, Yune Sang; Zreik, Jihad T; Hamilton, Roy H

    2017-01-08

    Naming objects represents a substantial challenge for patients with chronic aphasia. This could be in part because the reorganized compensatory language networks of persons with aphasia may be less stable than the intact language systems of healthy individuals. Here, we hypothesized that the degree of stability would be instantiated by spatially differential neural patterns rather than either increased or diminished amplitudes of neural activity within a putative compensatory language system. We recruited a chronic aphasic patient (KL; 66 year-old male) who exhibited a semantic deficit (e.g., often said "milk" for "cow" and "pillow" for "blanket"). Over the course of four behavioral sessions involving a naming task performed in a mock scanner, we identified visual objects that yielded an approximately 50% success rate. We then conducted two fMRI sessions in which the patient performed a naming task for multiple exemplars of those objects. Multivoxel pattern analysis (MVPA) searchlight revealed differential activity patterns associated with correct and incorrect trials throughout intact brain regions. The most robust and largest cluster was found in the right occipito-temporal cortex encompassing fusiform cortex, lateral occipital cortex (LOC), and middle occipital cortex, which may account for the patient's propensity for semantic naming errors. None of these areas were found by a conventional univariate analysis. By using an alternative approach, we extend current evidence for compensatory naming processes that operate through spatially differential patterns within the reorganized language system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Determination of platinum by radiochemical neutron activation analysis in neural tissues from rats, monkeys and patients treated with cisplatin

    DEFF Research Database (Denmark)

    Rietz, B.; Krarup-Hansen, A.; Rorth, M.

    2001-01-01

    of the animals mentioned and in the neural tissues of human patients. For the determination of platinum in the tissues radiochemical neutron activation analysis has been used. The detection limit is 1 ng Pt g(-1). The platinum results indicate that platinum becomes accumulated in the dorsal root ganglia......Cisplatin is one of the most used antineoplastic drugs, essential for the treatment of germ cell tumours. Its use in medical treatment of cancer patients often causes chronic peripheral neuropathy in these patients. The distribution of cisplatin in neural tissues is, therefore, of great interest....... Rats and monkeys were used as animal models for the study of sensory changes in different neural tissues, like spinal cord (ventral and dorsal part), dorsal root ganglia and sural nerve. The study was combined with quantitative measurements of the content of platinum in the neural tissues...

  9. Neural Differentiation of Human Adipose Tissue-Derived Stem Cells Involves Activation of the Wnt5a/JNK Signalling

    Directory of Open Access Journals (Sweden)

    Sujeong Jang

    2015-01-01

    Full Text Available Stem cells are a powerful resource for cell-based transplantation therapies, but understanding of stem cell differentiation at the molecular level is not clear yet. We hypothesized that the Wnt pathway controls stem cell maintenance and neural differentiation. We have characterized the transcriptional expression of Wnt during the neural differentiation of hADSCs. After neural induction, the expressions of Wnt2, Wnt4, and Wnt11 were decreased, but the expression of Wnt5a was increased compared with primary hADSCs in RT-PCR analysis. In addition, the expression levels of most Fzds and LRP5/6 ligand were decreased, but not Fzd3 and Fzd5. Furthermore, Dvl1 and RYK expression levels were downregulated in NI-hADSCs. There were no changes in the expression of ß-catenin and GSK3ß. Interestingly, Wnt5a expression was highly increased in NI-hADSCs by real time RT-PCR analysis and western blot. Wnt5a level was upregulated after neural differentiation and Wnt3, Dvl2, and Naked1 levels were downregulated. Finally, we found that the JNK expression was increased after neural induction and ERK level was decreased. Thus, this study shows for the first time how a single Wnt5a ligand can activate the neural differentiation pathway through the activation of Wnt5a/JNK pathway by binding Fzd3 and Fzd5 and directing Axin/GSK-3ß in hADSCs.

  10. GABAA receptors in visual and auditory cortex and neural activity changes during basic visual stimulation

    Science.gov (United States)

    Qin, Pengmin; Duncan, Niall W.; Wiebking, Christine; Gravel, Paul; Lyttelton, Oliver; Hayes, Dave J.; Verhaeghe, Jeroen; Kostikov, Alexey; Schirrmacher, Ralf; Reader, Andrew J.; Northoff, Georg

    2012-01-01

    Recent imaging studies have demonstrated that levels of resting γ-aminobutyric acid (GABA) in the visual cortex predict the degree of stimulus-induced activity in the same region. These studies have used the presentation of discrete visual stimulus; the change from closed eyes to open also represents a simple visual stimulus, however, and has been shown to induce changes in local brain activity and in functional connectivity between regions. We thus aimed to investigate the role of the GABA system, specifically GABAA receptors, in the changes in brain activity between the eyes closed (EC) and eyes open (EO) state in order to provide detail at the receptor level to complement previous studies of GABA concentrations. We conducted an fMRI study involving two different modes of the change from EC to EO: an EO and EC block design, allowing the modeling of the haemodynamic response, followed by longer periods of EC and EO to allow the measuring of functional connectivity. The same subjects also underwent [18F]Flumazenil PET to measure GABAA receptor binding potentials. It was demonstrated that the local-to-global ratio of GABAA receptor binding potential in the visual cortex predicted the degree of changes in neural activity from EC to EO. This same relationship was also shown in the auditory cortex. Furthermore, the local-to-global ratio of GABAA receptor binding potential in the visual cortex also predicted the change in functional connectivity between the visual and auditory cortex from EC to EO. These findings contribute to our understanding of the role of GABAA receptors in stimulus-induced neural activity in local regions and in inter-regional functional connectivity. PMID:23293594

  11. GABAA receptors in visual and auditory cortex and neural activity changes during basic visual stimulation

    Directory of Open Access Journals (Sweden)

    Pengmin eQin

    2012-12-01

    Full Text Available Recent imaging studies have demonstrated that levels of resting GABA in the visual cortex predict the degree of stimulus-induced activity in the same region. These studies have used the presentation of discrete visual stimulus; the change from closed eyes to open also represents a simple visual stimulus, however, and has been shown to induce changes in local brain activity and in functional connectivity between regions. We thus aimed to investigate the role of the GABA system, specifically GABAA receptors, in the changes in brain activity between the eyes closed (EC and eyes open (EO state in order to provide detail at the receptor level to complement previous studies of GABA concentrations. We conducted an fMRI study involving two different modes of the change from EC to EO: An EO and EC block design, allowing the modelling of the haemodynamic response, followed by longer periods of EC and EO to allow the measuring of functional connectivity. The same subjects also underwent [18F]Flumazenil PET measure GABAA receptor binding potentials. It was demonstrated that the local-to-global ratio of GABAA receptor binding potential in the visual cortex predicted the degree of changes in neural activity from EC to EO. This same relationship was also shown in the auditory cortex. Furthermore, the local-to-global ratio of GABAA receptor binding potential in the visual cortex also predicts the change of functional connectivity between visual and auditory cortex from EC to EO. These findings contribute to our understanding of the role of GABAA receptors in stimulus-induced neural activity in local regions and in inter-regional functional connectivity.

  12. Striatal Activity and Reward Relativity: Neural Signals Encoding Dynamic Outcome Valuation.

    Science.gov (United States)

    Webber, Emily S; Mankin, David E; Cromwell, Howard C

    2016-01-01

    The striatum is a key brain region involved in reward processing. Striatal activity has been linked to encoding reward magnitude and integrating diverse reward outcome information. Recent work has supported the involvement of striatum in the valuation of outcomes. The present work extends this idea by examining striatal activity during dynamic shifts in value that include different levels and directions of magnitude disparity. A novel task was used to produce diverse relative reward effects on a chain of instrumental action. Rats (Rattus norvegicus) were trained to respond to cues associated with specific outcomes varying by food pellet magnitude. Animals were exposed to single-outcome sessions followed by mixed-outcome sessions, and neural activity was compared among identical outcome trials from the different behavioral contexts. Results recording striatal activity show that neural responses to different task elements reflect incentive contrast as well as other relative effects that involve generalization between outcomes or possible influences of outcome variety. The activity that was most prevalent was linked to food consumption and post-food consumption periods. Relative encoding was sensitive to magnitude disparity. A within-session analysis showed strong contrast effects that were dependent upon the outcome received in the immediately preceding trial. Significantly higher numbers of responses were found in ventral striatum linked to relative outcome effects. Our results support the idea that relative value can incorporate diverse relationships, including comparisons from specific individual outcomes to general behavioral contexts. The striatum contains these diverse relative processes, possibly enabling both a higher information yield concerning value shifts and a greater behavioral flexibility.

  13. The relationship between the neural computations for speech and music perception is context-dependent: an activation likelihood estimate study

    Directory of Open Access Journals (Sweden)

    Arianna eLaCroix

    2015-08-01

    Full Text Available The relationship between the neurobiology of speech and music has been investigated for more than a century. There remains no widespread agreement regarding how (or to what extent music perception utilizes the neural circuitry that is engaged in speech processing, particularly at the cortical level. Prominent models such as Patel’s Shared Syntactic Integration Resource Hypothesis (SSIRH and Koelsch’s neurocognitive model of music perception suggest a high degree of overlap, particularly in the frontal lobe, but also perhaps more distinct representations in the temporal lobe with hemispheric asymmetries. The present meta-analysis study used activation likelihood estimate analyses to identify the brain regions consistently activated for music as compared to speech across the functional neuroimaging (fMRI and PET literature. Eighty music and 91 speech neuroimaging studies of healthy adult control subjects were analyzed. Peak activations reported in the music and speech studies were divided into four paradigm categories: passive listening, discrimination tasks, error/anomaly detection tasks and memory-related tasks. We then compared activation likelihood estimates within each category for music versus speech, and each music condition with passive listening. We found that listening to music and to speech preferentially activate distinct temporo-parietal bilateral cortical networks. We also found music and speech to have shared resources in the left pars opercularis but speech-specific resources in the left pars triangularis. The extent to which music recruited speech-activated frontal resources was modulated by task. While there are certainly limitations to meta-analysis techniques particularly regarding sensitivity, this work suggests that the extent of shared resources between speech and music may be task-dependent and highlights the need to consider how task effects may be affecting conclusions regarding the neurobiology of speech and music.

  14. The relationship between the neural computations for speech and music perception is context-dependent: an activation likelihood estimate study

    Science.gov (United States)

    LaCroix, Arianna N.; Diaz, Alvaro F.; Rogalsky, Corianne

    2015-01-01

    The relationship between the neurobiology of speech and music has been investigated for more than a century. There remains no widespread agreement regarding how (or to what extent) music perception utilizes the neural circuitry that is engaged in speech processing, particularly at the cortical level. Prominent models such as Patel's Shared Syntactic Integration Resource Hypothesis (SSIRH) and Koelsch's neurocognitive model of music perception suggest a high degree of overlap, particularly in the frontal lobe, but also perhaps more distinct representations in the temporal lobe with hemispheric asymmetries. The present meta-analysis study used activation likelihood estimate analyses to identify the brain regions consistently activated for music as compared to speech across the functional neuroimaging (fMRI and PET) literature. Eighty music and 91 speech neuroimaging studies of healthy adult control subjects were analyzed. Peak activations reported in the music and speech studies were divided into four paradigm categories: passive listening, discrimination tasks, error/anomaly detection tasks and memory-related tasks. We then compared activation likelihood estimates within each category for music vs. speech, and each music condition with passive listening. We found that listening to music and to speech preferentially activate distinct temporo-parietal bilateral cortical networks. We also found music and speech to have shared resources in the left pars opercularis but speech-specific resources in the left pars triangularis. The extent to which music recruited speech-activated frontal resources was modulated by task. While there are certainly limitations to meta-analysis techniques particularly regarding sensitivity, this work suggests that the extent of shared resources between speech and music may be task-dependent and highlights the need to consider how task effects may be affecting conclusions regarding the neurobiology of speech and music. PMID:26321976

  15. Differences in autonomic neural activity during exercise between the second and third trimesters of pregnancy.

    Science.gov (United States)

    Nakagaki, Akemi; Inami, Takayuki; Minoura, Tetsuji; Baba, Reizo; Iwase, Satoshi; Sato, Motohiko

    2016-08-01

    To test the hypothesis that autonomic neural activity in pregnant women during exercise varies according to gestational age. This cross-sectional study involved 20 healthy women in their second (n = 13) or third (n = 7) trimester of pregnancy. Incremental cardiopulmonary exercise testing was performed with an electromagnetic cycle ergometer. Heart rate variability was analyzed by frequency analysis software. The low-frequency to high-frequency (LF/HF) ratio, an indicator of the sympathetic nervous system, was significantly higher in third trimester than in second trimester subjects (P exercise testing. In contrast, the HF/total power ratio, an indicator of rapidly acting parasympathetic activity, was significantly higher in second trimester than in third trimester subjects (P exercise testing (r = -0.49, P = 0.028). The autonomic response to exercise in pregnant women differs between the second and third trimesters. These differences should be considered when prescribing exercise to pregnant women. © 2016 Japan Society of Obstetrics and Gynecology.

  16. Neural correlates of durable memories across the adult lifespan: brain activity at encoding and retrieval.

    Science.gov (United States)

    Vidal-Piñeiro, Didac; Sneve, Markus H; Storsve, Andreas B; Roe, James M; Walhovd, Kristine B; Fjell, Anders M

    2017-12-01

    Age-related effects on brain activity during encoding and retrieval of episodic memories are well documented. However, research typically tests memory only once, shortly after encoding. Retaining information over extended periods is critical, and there are reasons to expect age-related effects on the neural correlates of durable memories. Here, we tested whether age was associated with the activity elicited by durable memories. One hundred forty-three participants (22-78 years) underwent an episodic memory experiment where item-context relationships were encoded and tested twice. Participants were scanned during encoding and the first test. Memories retained after 90 minutes but later forgotten were classified as transient, whereas memories retained after 5 weeks were classified as durable. Durable memories were associated with greater encoding activity in inferior lateral parietal and posteromedial regions and greater retrieval activity in frontal and insular regions. Older adults exhibited lower posteromedial activity during encoding and higher frontal activity during retrieval, possibly reflecting greater involvement of control processes. This demonstrates that long-lasting memories are supported by specific patterns of cortical activity that are related to age. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Anti-glycated activity prediction of polysaccharides from two guava fruits using artificial neural networks.

    Science.gov (United States)

    Yan, Chunyan; Lee, Jinsheng; Kong, Fansheng; Zhang, Dezhi

    2013-10-15

    High-efficiency ultrasonic treatment was used to extract the polysaccharides of Psidium guajava (PPG) and Psidium littorale (PPL). The aims of this study were to compare polysaccharide activities from these two guavas, as well as to investigate the relationship between ultrasonic conditions and anti-glycated activity. A mathematical model of anti-glycated activity was constructed with the artificial neural network (ANN) toolbox of MATLAB software. Response surface plots showed the correlation between ultrasonic conditions and bioactivity. The optimal ultrasonic conditions of PPL for the highest anti-glycated activity were predicted to be 256 W, 60 °C, and 12 min, and the predicted activity was 42.2%. The predicted highest anti-glycated activity of PPG was 27.2% under its optimal predicted ultrasonic condition. The experimental result showed that PPG and PPL possessed anti-glycated and antioxidant activities, and those of PPL were greater. The experimental data also indicated that ANN had good prediction and optimization capability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Chondroitinase and growth factors enhance activation and oligodendrocyte differentiation of endogenous neural precursor cells after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Soheila Karimi-Abdolrezaee

    Full Text Available The adult spinal cord harbours a population of multipotent neural precursor cells (NPCs with the ability to replace oligodendrocytes. However, despite this capacity, proliferation and endogenous remyelination is severely limited after spinal cord injury (SCI. In the post-traumatic microenvironment following SCI, endogenous spinal NPCs mainly differentiate into astrocytes which could contribute to astrogliosis that exacerbate the outcomes of SCI. These findings emphasize a key role for the post-SCI niche in modulating the behaviour of spinal NPCs after SCI. We recently reported that chondroitin sulphate proteoglycans (CSPGs in the glial scar restrict the outcomes of NPC transplantation in SCI by reducing the survival, migration and integration of engrafted NPCs within the injured spinal cord. These inhibitory effects were attenuated by administration of chondroitinase (ChABC prior to NPC transplantation. Here, in a rat model of compressive SCI, we show that perturbing CSPGs by ChABC in combination with sustained infusion of growth factors (EGF, bFGF and PDGF-AA optimize the activation and oligodendroglial differentiation of spinal NPCs after injury. Four days following SCI, we intrathecally delivered ChABC and/or GFs for seven days. We performed BrdU incorporation to label proliferating cells during the treatment period after SCI. This strategy increased the proliferation of spinal NPCs, reduced the generation of new astrocytes and promoted their differentiation along an oligodendroglial lineage, a prerequisite for remyelination. Furthermore, ChABC and GF treatments enhanced the response of non-neural cells by increasing the generation of new vascular endothelial cells and decreasing the number of proliferating macrophages/microglia after SCI. In conclusions, our data strongly suggest that optimization of the behaviour of endogenous spinal NPCs after SCI is critical not only to promote endogenous oligodendrocyte replacement, but also to reverse

  19. Rules of engagement: factors that regulate activity-dependent synaptic plasticity during neural network development.

    Science.gov (United States)

    Stoneham, Emily T; Sanders, Erin M; Sanyal, Mohima; Dumas, Theodore C

    2010-10-01

    Overproduction and pruning during development is a phenomenon that can be observed in the number of organisms in a population, the number of cells in many tissue types, and even the number of synapses on individual neurons. The sculpting of synaptic connections in the brain of a developing organism is guided by its personal experience, which on a neural level translates to specific patterns of activity. Activity-dependent plasticity at glutamatergic synapses is an integral part of neuronal network formation and maturation in developing vertebrate and invertebrate brains. As development of the rodent forebrain transitions away from an over-proliferative state, synaptic plasticity undergoes modification. Late developmental changes in synaptic plasticity signal the establishment of a more stable network and relate to pronounced perceptual and cognitive abilities. In large part, activation of glutamate-sensitive N-methyl-d-aspartate (NMDA) receptors regulates synaptic stabilization during development and is a necessary step in memory formation processes that occur in the forebrain. A developmental change in the subunits that compose NMDA receptors coincides with developmental modifications in synaptic plasticity and cognition, and thus much research in this area focuses on NMDA receptor composition. We propose that there are additional, equally important developmental processes that influence synaptic plasticity, including mechanisms that are upstream (factors that influence NMDA receptors) and downstream (intracellular processes regulated by NMDA receptors) from NMDA receptor activation. The goal of this review is to summarize what is known and what is not well understood about developmental changes in functional plasticity at glutamatergic synapses, and in the end, attempt to relate these changes to maturation of neural networks.

  20. Visual avoidance in phobia: particularities in neural activity, autonomic responding, and cognitive risk evaluations

    Directory of Open Access Journals (Sweden)

    Tatjana eAue

    2013-05-01

    Full Text Available We investigated the neural mechanisms and the autonomic and cognitive responses associated with visual avoidance behavior in spider phobia. Spider phobic and control participants imagined visiting different forest locations with the possibility of encountering spiders, snakes, or birds (neutral reference category. In each experimental trial, participants saw a picture of a forest location followed by a picture of a spider, snake, or bird, and then rated their personal risk of encountering these animals in this context, as well as their fear. The greater the visual avoidance of spiders that a phobic participant demonstrated (as measured by eye tracking, the higher were her autonomic arousal and neural activity in the amygdala, orbitofrontal cortex (OFC, anterior cingulate cortex (ACC, and precuneus at picture onset. Visual avoidance of spiders in phobics also went hand in hand with subsequently reduced cognitive risk of encounters. Control participants, in contrast, displayed a positive relationship between gaze duration toward spiders, on the one hand, and autonomic responding, as well as OFC, ACC, and precuneus activity, on the other hand. In addition, they showed reduced encounter risk estimates when they looked longer at the animal pictures. Our data are consistent with the idea that one reason for phobics to avoid phobic information may be grounded in heightened activity in the fear circuit, which signals potential threat. Because of the absence of alternative efficient regulation strategies, visual avoidance may then function to down-regulate cognitive risk evaluations for threatening information about the phobic stimuli. Control participants, in contrast, may be characterized by a different coping style, whereby paying visual attention to potentially threatening information may help them to actively down-regulate cognitive evaluations of risk.

  1. Successful dieters have increased neural activity in cortical areas involved in the control of behavior.

    Science.gov (United States)

    DelParigi, A; Chen, K; Salbe, A D; Hill, J O; Wing, R R; Reiman, E M; Tataranni, P A

    2007-03-01

    To investigate whether dietary restraint, a landmark of successful dieting, is associated with specific patterns of brain responses to the sensory experience of food and meal consumption. Cross-sectional study of the brain's response to the sensory experience of food and meal consumption in nine successful dieters (age: 38+/-7 years, body fat (%): 28+/-3) and 20 non-dieters (age: 31+/-9 years, body fat (%): 33+/-9), all women. Changes in brain activity in response to the sensory experience of food and meal consumption were assessed by using positron emission tomography and (15)O water as a radiotracer. Body fatness was assessed by dual X-ray absorptiometry. Subjective ratings of hunger and fullness were measured by visual analogue scale. Dietary restraint, disinhibition and hunger were assessed by the Three Factor Eating Questionnaire. Successful dieters had a significantly higher level of dietary restraint compared to non-dieters. In response to meal consumption, successful dieters had a greater activation in the dorsal prefrontal cortex (DPFC), dorsal striatum and anterior cerebellar lobe as compared to non-dieters. In response to the same stimulation, the orbitofrontal cortex (OFC) was significantly more activated in non-dieters as compared to successful dieters. Dietary restraint was positively correlated with the response in the DPFC and negatively with the response in the OFC. The responses in the DPFC and OFC were negatively intercorrelated. Cortical areas involved in controlling inappropriate behavioral responses, such as the DPFC, are particularly activated in successful dieters in response to meal consumption. The association between the degree of dietary restraint and the coordinated neural changes in the DPFC and OFC raises the possibility that cognitive control of food intake is achieved by modulating neural circuits controlling food reward.

  2. High glucose environment inhibits cranial neural crest survival by activating excessive autophagy in the chick embryo

    Science.gov (United States)

    Wang, Xiao-Yu; Li, Shuai; Wang, Guang; Ma, Zheng-Lai; Chuai, Manli; Cao, Liu; Yang, Xuesong

    2015-01-01

    High glucose levels induced by maternal diabetes could lead to defects in neural crest development during embryogenesis, but the cellular mechanism is still not understood. In this study, we observed a defect in chick cranial skeleton, especially parietal bone development in the presence of high glucose levels, which is derived from cranial neural crest cells (CNCC). In early chick embryo, we found that inducing high glucose levels could inhibit the development of CNCC, however, cell proliferation was not significantly involved. Nevertheless, apoptotic CNCC increased in the presence of high levels of glucose. In addition, the expression of apoptosis and autophagy relevant genes were elevated by high glucose treatment. Next, the application of beads soaked in either an autophagy stimulator (Tunicamycin) or inhibitor (Hydroxychloroquine) functionally proved that autophagy was involved in regulating the production of CNCC in the presence of high glucose levels. Our observations suggest that the ERK pathway, rather than the mTOR pathway, most likely participates in mediating the autophagy induced by high glucose. Taken together, our observations indicated that exposure to high levels of glucose could inhibit the survival of CNCC by affecting cell apoptosis, which might result from the dysregulation of the autophagic process. PMID:26671447

  3. Study of the possibility of determining mass flow of water from neutron activation measurements with flow simulations and neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Linden, P.; Pazsit, I. [Department of Reactor Physics, Chalmers University of Technology, Goeteborg (Sweden)

    1998-08-01

    Mass flow of water in a pipe can be measured in a non-intrusive way by the pulsed neutron activation (PNA) technique. From such measurements, mass flow can be estimated by various techniques of time averaging, performed on the time-resolved detector signal(s). However, time averaging methods have a few percent systematic error, which, in addition, is not a constant but varies with flow and measurement parameters. Achieving a precision better than 1% from PNA measurements is a hitherto unsolved task. In this paper a methodology is suggested to solve this task and is tested by simulation methods. The method is based on the use of artificial neural networks to determine mass flow rate from the time resolved detector signal. To achieve this, the network needs to be trained on a large number of real detector data. It is suggested that these data should be obtained by advanced numerical simulation of the PNA measurement. In this paper we use a simplified simulation model for a feasibility study of the methodology. It is shown that a neural network is capable to determine the mass flow rate with a precision of about 0.5%. (orig.) [Deutsch] Das Stroemungsverhalten von Wasser in einer Leitung kann nicht-invasiv durch gepulste Neutronenaktivierungsverfahren (PNA) gemessen werden. Durch solche Messungen kann das Stroemungsverhalten mit Hilfe verschiedener Techniken der Mittelung ueber zeitabhaengige Detektorsignale bestimmt werden. Der systematische Fehler von Zeitmittelungsmethoden liegt jedoch bei ein paar Prozent und ist zusaetzlich nicht konstant, sondern variiert mit den Stroemungs- und Messparametern. Das Erreichen einer Genauigkeit von besser als 1% ist also bei Neutronenaktivierungsverfahren ein bisher ungeloestes Problem. In der vorliegenden Arbeit wird eine Methode zur Loesung dieser Aufgabe vorgeschlagen und mit Hilfe von Simulationsverfahren getestet. Die Methode basiert auf der Verwendung von kuenstlichen, neuralen Netzwerken zur Bestimmung des

  4. Neural correlates of envy: Regional homogeneity of resting-state brain activity predicts dispositional envy.

    Science.gov (United States)

    Xiang, Yanhui; Kong, Feng; Wen, Xue; Wu, Qihan; Mo, Lei

    2016-11-15

    Envy differs from common negative emotions across cultures. Although previous studies have explored the neural basis of episodic envy via functional magnetic resonance imaging (fMRI), little is known about the neural processes associated with dispositional envy. In the present study, we used regional homogeneity (ReHo) as an index in resting-state fMRI (rs-fMRI) to identify brain regions involved in individual differences in dispositional envy, as measured by the Dispositional Envy Scale (DES). Results showed that ReHo in the inferior/middle frontal gyrus (IFG/MFG) and dorsomedial prefrontal cortex (DMPFC) positively predicted dispositional envy. Moreover, of all the personality traits measured by the Revised NEO Personality Inventory (NEO-PI-R), only neuroticism was significantly associated with dispositional envy. Furthermore, neuroticism mediated the underlying association between the ReHo of the IFG/MFG and dispositional envy. Hence, to the best of our knowledge, this study provides the first evidence that spontaneous brain activity in multiple regions related to self-evaluation, social perception, and social emotion contributes to dispositional envy. In addition, our findings reveal that neuroticism may play an important role in the cognitive processing of dispositional envy. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Effect of external auditory pacing on the neural activity of stuttering speakers.

    Science.gov (United States)

    Toyomura, Akira; Fujii, Tetsunoshin; Kuriki, Shinya

    2011-08-15

    External auditory pacing, such as metronome sound and speaking in unison with others, has a fluency-enhancing effect in stuttering speakers. The present study investigated the neural mechanism of the fluency-enhancing effect by using functional magnetic resonance imaging (fMRI). 12 stuttering speakers and 12 nonstuttering controls were scanned while performing metronome-timed speech, choral speech, and normal speech. Compared to nonstuttering controls, stuttering speakers showed a significantly greater increase in activation in the superior temporal gyrus under both metronome-timed and choral speech conditions relative to a normal speech condition. The caudate, globus pallidus, and putamen of the basal ganglia showed clearly different patterns of signal change from rest among the different conditions and between stuttering and nonstuttering speakers. The signal change of stuttering speakers was significantly lower than that of nonstuttering controls under the normal speech condition but was raised to the level of the controls, with no intergroup difference, in metronome-timed speech. In contrast, under the chorus condition the signal change of stuttering speakers remained lower than that of the controls. Correlation analysis further showed that the signal change of the basal ganglia and motor areas was negatively correlated with stuttering severity, but it was not significantly correlated with the stuttering rate during MRI scanning. These findings shed light on the specific neural processing of stuttering speakers when they time their speech to auditory stimuli, and provide additional evidence of the efficacy of external auditory pacing. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. A customizable stochastic state point process filter (SSPPF) for neural spiking activity.

    Science.gov (United States)

    Xin, Yao; Li, Will X Y; Min, Biao; Han, Yan; Cheung, Ray C C

    2013-01-01

    Stochastic State Point Process Filter (SSPPF) is effective for adaptive signal processing. In particular, it has been successfully applied to neural signal coding/decoding in recent years. Recent work has proven its efficiency in non-parametric coefficients tracking in modeling of mammal nervous system. However, existing SSPPF has only been realized in commercial software platforms which limit their computational capability. In this paper, the first hardware architecture of SSPPF has been designed and successfully implemented on field-programmable gate array (FPGA), proving a more efficient means for coefficient tracking in a well-established generalized Laguerre-Volterra model for mammalian hippocampal spiking activity research. By exploring the intrinsic parallelism of the FPGA, the proposed architecture is able to process matrices or vectors with random size, and is efficiently scalable. Experimental result shows its superior performance comparing to the software implementation, while maintaining the numerical precision. This architecture can also be potentially utilized in the future hippocampal cognitive neural prosthesis design.

  7. Detection of micro solder balls using active thermography and probabilistic neural network

    Science.gov (United States)

    He, Zhenzhi; Wei, Li; Shao, Minghui; Lu, Xingning

    2017-03-01

    Micro solder ball/bump has been widely used in electronic packaging. It has been challenging to inspect these structures as the solder balls/bumps are often embedded between the component and substrates, especially in flip-chip packaging. In this paper, a detection method for micro solder ball/bump based on the active thermography and the probabilistic neural network is investigated. A VH680 infrared imager is used to capture the thermal image of the test vehicle, SFA10 packages. The temperature curves are processed using moving average technique to remove the peak noise. And the principal component analysis (PCA) is adopted to reconstruct the thermal images. The missed solder balls can be recognized explicitly in the second principal component image. Probabilistic neural network (PNN) is then established to identify the defective bump intelligently. The hot spots corresponding to the solder balls are segmented from the PCA reconstructed image, and statistic parameters are calculated. To characterize the thermal properties of solder bump quantitatively, three representative features are selected and used as the input vector in PNN clustering. The results show that the actual outputs and the expected outputs are consistent in identification of the missed solder balls, and all the bumps were recognized accurately, which demonstrates the viability of the PNN in effective defect inspection in high-density microelectronic packaging.

  8. Robust fixed-time synchronization for uncertain complex-valued neural networks with discontinuous activation functions.

    Science.gov (United States)

    Ding, Xiaoshuai; Cao, Jinde; Alsaedi, Ahmed; Alsaadi, Fuad E; Hayat, Tasawar

    2017-06-01

    This paper is concerned with the fixed-time synchronization for a class of complex-valued neural networks in the presence of discontinuous activation functions and parameter uncertainties. Fixed-time synchronization not only claims that the considered master-slave system realizes synchronization within a finite time segment, but also requires a uniform upper bound for such time intervals for all initial synchronization errors. To accomplish the target of fixed-time synchronization, a novel feedback control procedure is designed for the slave neural networks. By means of the Filippov discontinuity theories and Lyapunov stability theories, some sufficient conditions are established for the selection of control parameters to guarantee synchronization within a fixed time, while an upper bound of the settling time is acquired as well, which allows to be modulated to predefined values independently on initial conditions. Additionally, criteria of modified controller for assurance of fixed-time anti-synchronization are also derived for the same system. An example is included to illustrate the proposed methodologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Development of a computational model on the neural activity patterns of a visual working memory in a hierarchical feedforward Network

    Science.gov (United States)

    An, Soyoung; Choi, Woochul; Paik, Se-Bum

    2015-11-01

    Understanding the mechanism of information processing in the human brain remains a unique challenge because the nonlinear interactions between the neurons in the network are extremely complex and because controlling every relevant parameter during an experiment is difficult. Therefore, a simulation using simplified computational models may be an effective approach. In the present study, we developed a general model of neural networks that can simulate nonlinear activity patterns in the hierarchical structure of a neural network system. To test our model, we first examined whether our simulation could match the previously-observed nonlinear features of neural activity patterns. Next, we performed a psychophysics experiment for a simple visual working memory task to evaluate whether the model could predict the performance of human subjects. Our studies show that the model is capable of reproducing the relationship between memory load and performance and may contribute, in part, to our understanding of how the structure of neural circuits can determine the nonlinear neural activity patterns in the human brain.

  10. DNA methyltransferase activity is required for memory-related neural plasticity in the lateral amygdala.

    Science.gov (United States)

    Maddox, Stephanie A; Watts, Casey S; Schafe, Glenn E

    2014-01-01

    We have previously shown that auditory Pavlovian fear conditioning is associated with an increase in DNA methyltransferase (DNMT) expression in the lateral amygdala (LA) and that intra-LA infusion or bath application of an inhibitor of DNMT activity impairs the consolidation of an auditory fear memory and long-term potentiation (LTP) at thalamic and cortical inputs to the LA, in vitro. In the present study, we use awake behaving neurophysiological techniques to examine the role of DNMT activity in memory-related neurophysiological changes accompanying fear memory consolidation and reconsolidation in the LA, in vivo. We show that auditory fear conditioning results in a training-related enhancement in the amplitude of short-latency auditory-evoked field potentials (AEFPs) in the LA. Intra-LA infusion of a DNMT inhibitor impairs both fear memory consolidation and, in parallel, the consolidation of training-related neural plasticity in the LA; that is, short-term memory (STM) and short-term training-related increases in AEFP amplitude in the LA are intact, while long-term memory (LTM) and long-term retention of training-related increases in AEFP amplitudes are impaired. In separate experiments, we show that intra-LA infusion of a DNMT inhibitor following retrieval of an auditory fear memory has no effect on post-retrieval STM or short-term retention of training-related changes in AEFP amplitude in the LA, but significantly impairs both post-retrieval LTM and long-term retention of AEFP amplitude changes in the LA. These findings are the first to demonstrate the necessity of DNMT activity in the consolidation and reconsolidation of memory-associated neural plasticity, in vivo. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Effects of aripiprazole on caffeine-induced hyperlocomotion and neural activation in the striatum.

    Science.gov (United States)

    Batista, Luara A; Viana, Thércia G; Silveira, Vívian T; Aguiar, Daniele C; Moreira, Fabrício A

    2016-01-01

    Aripiprazole is an antipsychotic that acts as a partial agonist at dopamine D2 receptors. In addition to its antipsychotic activity, this compound blocks the effects of some psychostimulant drugs. It has not been verified, however, if aripiprazole interferes with the effects of caffeine. Hence, this study tested the hypothesis that aripiprazole prevents caffeine-induced hyperlocomotion and investigated the effects of these drugs on neural activity in the striatum. Male Swiss mice received injections of vehicle or antipsychotic drugs followed by vehicle or caffeine. Locomotion was analyzed in a circular arena and c-Fos protein expression was quantified in the dorsolateral, dorsomedial, and ventrolateral striatum, and in the core and shell regions of nucleus accumbens. Aripiprazole (0.1, 1, and 10 mg/kg) prevented caffeine (10 mg/kg)-induced hyperlocomotion at doses that do not change basal locomotion. Haloperidol (0.01, 0.03, and 0.1 mg/kg) also decreased caffeine-induced hyperlocomotion at all doses, although at the two higher doses, this compound reduced basal locomotion. Immunohistochemistry analysis showed that aripiprazole increases c-Fos protein expression in all regions studied, whereas caffeine did not alter c-Fos protein expression. Combined treatment of aripiprazole and caffeine resulted in a decrease in the number of c-Fos positive cells as compared to the group receiving aripiprazole alone. In conclusion, aripiprazole prevents caffeine-induced hyperlocomotion and increases neural activation in the striatum. This latter effect is reduced by subsequent administration of caffeine. These results advance our understanding on the pharmacological profile of aripiprazole.

  12. Sex-specific neural activity when resolving cognitive interference in individuals with or without prior internalizing disorders.

    Science.gov (United States)

    Wang, Zhishun; Jacobs, Rachel H; Marsh, Rachel; Horga, Guillermo; Qiao, Jianping; Warner, Virginia; Weissman, Myrna M; Peterson, Bradley S

    2016-03-30

    The processing of cognitive interference is a self-regulatory capacity that is impaired in persons with internalizing disorders. This investigation was to assess sex differences in the neural correlates of cognitive interference in individuals with and without an illness history of an internalizing disorder. We compared functional magnetic resonance imaging blood-oxygenation-level-dependent responses in both males (n=63) and females (n=80) with and without this illness history during performance of the Simon task. Females deactivated superior frontal gyrus, inferior parietal lobe, and posterior cingulate cortex to a greater extent than males. Females with a prior history of internalizing disorder also deactivated these regions more compared to males with that history, and they additionally demonstrated greater activation of right inferior frontal gyrus. These group differences were represented in a significant sex-by-illness interaction in these regions. These deactivated regions compose a task-negative or default mode network, whereas the inferior frontal gyrus usually activates when performing an attention-demanding task and is a key component of a task-positive network. Our findings suggest that a prior history of internalizing disorders disproportionately influences functioning of the default mode network and is associated with an accompanying activation of the task-positive network in females during the resolution of cognitive interference. Copyright © 2016. Published by Elsevier Ireland Ltd.

  13. A common neural system is activated in hearing non-signers to process French sign language and spoken French.

    Science.gov (United States)

    Courtin, Cyril; Jobard, Gael; Vigneau, Mathieu; Beaucousin, Virginie; Razafimandimby, Annick; Hervé, Pierre-Yves; Mellet, Emmanuel; Zago, Laure; Petit, Laurent; Mazoyer, Bernard; Tzourio-Mazoyer, Nathalie

    2011-01-15

    We used functional magnetic resonance imaging to investigate the areas activated by signed narratives in non-signing subjects naïve to sign language (SL) and compared it to the activation obtained when hearing speech in their mother tongue. A subset of left hemisphere (LH) language areas activated when participants watched an audio-visual narrative in their mother tongue was activated when they observed a signed narrative. The inferior frontal (IFG) and precentral (Prec) gyri, the posterior parts of the planum temporale (pPT) and of the superior temporal sulcus (pSTS), and the occipito-temporal junction (OTJ) were activated by both languages. The activity of these regions was not related to the presence of communicative intent because no such changes were observed when the non-signers watched a muted video of a spoken narrative. Recruitment was also not triggered by the linguistic structure of SL, because the areas, except pPT, were not activated when subjects listened to an unknown spoken language. The comparison of brain reactivity for spoken and sign languages shows that SL has a special status in the brain compared to speech; in contrast to unknown oral language, the neural correlates of SL overlap LH speech comprehension areas in non-signers. These results support the idea that strong relationships exist between areas involved in human action observation and language, suggesting that the observation of hand gestures have shaped the lexico-semantic language areas as proposed by the motor theory of speech. As a whole, the present results support the theory of a gestural origin of language. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Artificial Neural Networks for Reducing Computational Effort in Active Truncated Model Testing of Mooring Lines

    DEFF Research Database (Denmark)

    Christiansen, Niels Hørbye; Voie, Per Erlend Torbergsen; Høgsberg, Jan Becker

    2015-01-01

    simultaneously, this method is very demanding in terms of numerical efficiency and computational power. Therefore, this method has not yet proved to be feasible. It has recently been shown how a hybrid method combining classical numerical models and artificial neural networks (ANN) can provide a dramatic...... model. Hence, in principal it is possible to achieve reliable experimental data for much larger water depths than what the actual depth of the test basin would suggest. However, since the computations must be faster than real time, as the numerical simulations and the physical experiment run...... reduction in computational effort when performing time domain simulation of mooring lines. The hybrid method uses a classical numerical model to generate simulation data, which are then subsequently used to train the ANN. After successful training the ANN is able to take over the simulation at a speed two...

  15. Bayesian Inference for Neural Electromagnetic Source Localization: Analysis of MEG Visual Evoked Activity

    Energy Technology Data Exchange (ETDEWEB)

    George, J.S.; Schmidt, D.M.; Wood, C.C.

    1999-02-01

    We have developed a Bayesian approach to the analysis of neural electromagnetic (MEG/EEG) data that can incorporate or fuse information from other imaging modalities and addresses the ill-posed inverse problem by sarnpliig the many different solutions which could have produced the given data. From these samples one can draw probabilistic inferences about regions of activation. Our source model assumes a variable number of variable size cortical regions of stimulus-correlated activity. An active region consists of locations on the cortical surf ace, within a sphere centered on some location in cortex. The number and radi of active regions can vary to defined maximum values. The goal of the analysis is to determine the posterior probability distribution for the set of parameters that govern the number, location, and extent of active regions. Markov Chain Monte Carlo is used to generate a large sample of sets of parameters distributed according to the posterior distribution. This sample is representative of the many different source distributions that could account for given data, and allows identification of probable (i.e. consistent) features across solutions. Examples of the use of this analysis technique with both simulated and empirical MEG data are presented.

  16. Hedgehog Controls Quiescence and Activation of Neural Stem Cells in the Adult Ventricular-Subventricular Zone

    Directory of Open Access Journals (Sweden)

    Mathieu Daynac

    2016-10-01

    Full Text Available Identifying the mechanisms controlling quiescence and activation of neural stem cells (NSCs is crucial for understanding brain repair. Here, we demonstrate that Hedgehog (Hh signaling actively regulates different pools of quiescent and proliferative NSCs in the adult ventricular-subventricular zone (V-SVZ, one of the main brain neurogenic niches. Specific deletion of the Hh receptor Patched in NSCs during adulthood upregulated Hh signaling in quiescent NSCs, progressively leading to a large accumulation of these cells in the V-SVZ. The pool of non-neurogenic astrocytes was not modified, whereas the activated NSC pool increased after a short period, before progressively becoming exhausted. We also showed that Sonic Hedgehog regulates proliferation of activated NSCs in vivo and shortens both their G1 and S-G2/M phases in culture. These data demonstrate that Hh orchestrates the balance between quiescent and activated NSCs, with important implications for understanding adult neurogenesis under normal homeostatic conditions or during injury.

  17. Sound Waves Induce Neural Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells via Ryanodine Receptor-Induced Calcium Release and Pyk2 Activation.

    Science.gov (United States)

    Choi, Yura; Park, Jeong-Eun; Jeong, Jong Seob; Park, Jung-Keug; Kim, Jongpil; Jeon, Songhee

    2016-10-01

    Mesenchymal stem cells (MSCs) have shown considerable promise as an adaptable cell source for use in tissue engineering and other therapeutic applications. The aims of this study were to develop methods to test the hypothesis that human MSCs could be differentiated using sound wave stimulation alone and to find the underlying mechanism. Human bone marrow (hBM)-MSCs were stimulated with sound waves (1 kHz, 81 dB) for 7 days and the expression of neural markers were analyzed. Sound waves induced neural differentiation of hBM-MSC at 1 kHz and 81 dB but not at 1 kHz and 100 dB. To determine the signaling pathways involved in the neural differentiation of hBM-MSCs by sound wave stimulation, we examined the Pyk2 and CREB phosphorylation. Sound wave induced an increase in the phosphorylation of Pyk2 and CREB at 45 min and 90 min, respectively, in hBM-MSCs. To find out the upstream activator of Pyk2, we examined the intracellular calcium source that was released by sound wave stimulation. When we used ryanodine as a ryanodine receptor antagonist, sound wave-induced calcium release was suppressed. Moreover, pre-treatment with a Pyk2 inhibitor, PF431396, prevented the phosphorylation of Pyk2 and suppressed sound wave-induced neural differentiation in hBM-MSCs. These results suggest that specific sound wave stimulation could be used as a neural differentiation inducer of hBM-MSCs.

  18. Global Mittag-Leffler synchronization of fractional-order neural networks with discontinuous activations.

    Science.gov (United States)

    Ding, Zhixia; Shen, Yi; Wang, Leimin

    2016-01-01

    This paper is concerned with the global Mittag-Leffler synchronization for a class of fractional-order neural networks with discontinuous activations (FNNDAs). We give the concept of Filippov solution for FNNDAs in the sense of Caputo's fractional derivation. By using a singular Gronwall inequality and the properties of fractional calculus, the existence of global solution under the framework of Filippov for FNNDAs is proved. Based on the nonsmooth analysis and control theory, some sufficient criteria for the global Mittag-Leffler synchronization of FNNDAs are derived by designing a suitable controller. The proposed results enrich and enhance the previous reports. Finally, one numerical example is given to demonstrate the effectiveness of the theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Outsourcing neural active control to passive composite mechanics: a tissue engineered cyborg ray

    Science.gov (United States)

    Gazzola, Mattia; Park, Sung Jin; Park, Kyung Soo; Park, Shirley; di Santo, Valentina; Deisseroth, Karl; Lauder, George V.; Mahadevan, L.; Parker, Kevin Kit

    2016-11-01

    Translating the blueprint that stingrays and skates provide, we create a cyborg swimming ray capable of orchestrating adaptive maneuvering and phototactic navigation. The impossibility of replicating the neural system of batoids fish is bypassed by outsourcing algorithmic functionalities to the body composite mechanics, hence casting the active control problem into a design, passive one. We present a first step in engineering multilevel "brain-body-flow" systems that couple sensory information to motor coordination and movement, leading to behavior. This work paves the way for the development of autonomous and adaptive artificial creatures able to process multiple sensory inputs and produce complex behaviors in distributed systems and may represent a path toward soft-robotic "embodied cognition".

  20. Topological defect launches 3D mound in the active nematic sheet of neural progenitors

    CERN Document Server

    Kawaguchi, Kyogo; Sano, Masaki

    2016-01-01

    Cultured stem cells have become a standard platform not only for regenerative medicine and developmental biology but also for biophysical studies. Yet, the characterization of cultured stem cells at the level of morphology and macroscopic patterns resulting from cell-to-cell interactions remain largely qualitative, even though they are the simplest features observed in everyday experiments. Here we report that neural progenitor cells (NPCs), which are multipotent stem cells that give rise to cells in the central nervous system, rapidly glide and stochastically reverse its velocity while locally aligning with neighboring cells, thus showing features of an active nematic system. Within the two-dimensional nematic pattern, we find interspaced topological defects with +1/2 and -1/2 charges. Remarkably, we identified rapid cell accumulation leading to three-dimensional mounds at the +1/2 topological defects. Single-cell level imaging around the defects allowed quantification of the evolving cell density, clarifyin...

  1. Barriers to and Suggestions for a Healthful, Active Lifestyle as Perceived by Rural and Urban Costa Rican Adolescents

    Science.gov (United States)

    Monge-Rojas, Rafael; Garita-Arce, Carlos; Sanchez-Lopez, Marta; Colon-Ramos, Uriyoan

    2009-01-01

    Objective: To assess the perceptions of rural and urban Costa Rican adolescents regarding which barriers and motivators affect their adoption of an active lifestyle. Design: Data were collected in focus group discussions. Participants: 108 male and female adolescents aged 12 to 18 from the 7th to 11th grades. Setting: Two urban and 1 rural high…

  2. Nicotinic Activity of Arecoline, the Psychoactive Element of "Betel Nuts", Suggests a Basis for Habitual Use and Anti-Inflammatory Activity.

    Directory of Open Access Journals (Sweden)

    Roger L Papke

    Full Text Available Habitual chewing of "betel nut" preparations constitutes the fourth most common human self-administration of a psychoactive substance after alcohol, caffeine, and nicotine. The primary active ingredient in these preparations is arecoline, which comes from the areca nut, the key component of all such preparations. Arecoline is known to be a relatively non-selective muscarinic partial agonist, accounting for many of the overt peripheral and central nervous system effects, but not likely to account for the addictive properties of the drug. We report that arecoline has activity on select nicotinic acetylcholine receptor (nAChR subtypes, including the two classes of nAChR most related to the addictive properties of nicotine: receptors containing α4 and β2 subunits and those which also contain α6 and β3 subunits. Arecoline is a partial agonist with about 6-10% efficacy for the α4* and α6* receptors expressed in Xenopus oocytes. Additionally, arecoline is a silent agonist of α7 nAChR; while it does not activate α7 receptors when applied alone, it produces substantial activation when co-applied with the positive allosteric modulator PNU-120696. Some α7 silent agonists are effective inhibitors of inflammation, which might account for anti-inflammatory effects of arecoline. Arecoline's activity on nAChR associated with addiction may account for the habitual use of areca nut preparations in spite of the well-documented risk to personal health associated with oral diseases and cancer. The common link between betel and tobacco suggests that partial agonist therapies with cytisine or the related compound varenicline may also be used to aid betel cessation attempts.

  3. Nicotinic Activity of Arecoline, the Psychoactive Element of "Betel Nuts", Suggests a Basis for Habitual Use and Anti-Inflammatory Activity.

    Science.gov (United States)

    Papke, Roger L; Horenstein, Nicole A; Stokes, Clare

    2015-01-01

    Habitual chewing of "betel nut" preparations constitutes the fourth most common human self-administration of a psychoactive substance after alcohol, caffeine, and nicotine. The primary active ingredient in these preparations is arecoline, which comes from the areca nut, the key component of all such preparations. Arecoline is known to be a relatively non-selective muscarinic partial agonist, accounting for many of the overt peripheral and central nervous system effects, but not likely to account for the addictive properties of the drug. We report that arecoline has activity on select nicotinic acetylcholine receptor (nAChR) subtypes, including the two classes of nAChR most related to the addictive properties of nicotine: receptors containing α4 and β2 subunits and those which also contain α6 and β3 subunits. Arecoline is a partial agonist with about 6-10% efficacy for the α4* and α6* receptors expressed in Xenopus oocytes. Additionally, arecoline is a silent agonist of α7 nAChR; while it does not activate α7 receptors when applied alone, it produces substantial activation when co-applied with the positive allosteric modulator PNU-120696. Some α7 silent agonists are effective inhibitors of inflammation, which might account for anti-inflammatory effects of arecoline. Arecoline's activity on nAChR associated with addiction may account for the habitual use of areca nut preparations in spite of the well-documented risk to personal health associated with oral diseases and cancer. The common link between betel and tobacco suggests that partial agonist therapies with cytisine or the related compound varenicline may also be used to aid betel cessation attempts.

  4. Lack of aspartoacylase activity disrupts survival and differentiation of neural progenitors and oligodendrocytes in a mouse model of Canavan disease.

    Science.gov (United States)

    Kumar, Shalini; Biancotti, Juan Carlos; Matalon, Reuben; de Vellis, Jean

    2009-11-15

    Loss of the oligodendrocyte (OL)-specific enzyme aspartoacylase (ASPA) from gene mutation results in the sponginess and loss of white matter (WM) in Canavan disease (CD). This study addresses the fate of OLs during the pathophysiology of CD in an adult ASPA knockout (KO) mouse strain. Massive arrays of neural stem/progenitor cells, immunopositive for PSA-NCAM, nestin, vimentin, and NG2, were observed within the severely affected spongy WM of the KO mouse brain. In these mice, G1-->S cell cycle progression was confirmed by an increase in cdk2-kinase activity, a reduction in mitotic inhibitors p21(Cip1) and p27(Kip1), and an increase in bromodeoxyuridine (BrdU) incorporation. Highly acetylated nuclear histones H2B and H3 were detected in adult KO mouse WM, suggesting the existence of noncompact chromatin as seen during early development. Costaining for BrdU- or Ki67-positive cells with markers for neural progenitors confirmed a continuous generation of OL lineage cells in KO WM. We observed a severe reduction in 21.5- and 18.5-kDa myelin basic protein and PLP/DM20 proteolipid proteins combined with a decrease in myelinated fibers and a perinuclear retention of myelin protein staining, indicating impairment in protein trafficking. Death of OLs, neurons, and astrocytes was identified in every region of the KO brain. Immature OLs constituted the largest population of dying cells, particularly in WM. We also report an early expression of full-length ASPA mRNA in normal mouse brain at embryonic day 12.5, when OL progenitors first appear during development. These findings support involvement of ASPA in CNS development and function.

  5. Effects of acute psychosocial stress on neural activity to emotional and neutral faces in a face recognition memory paradigm.

    Science.gov (United States)

    Li, Shijia; Weerda, Riklef; Milde, Christopher; Wolf, Oliver T; Thiel, Christiane M

    2014-12-01

    Previous studies have shown that acute psychosocial stress impairs recognition of declarative memory and that emotional material is especially sensitive to this effect. Animal studies suggest a central role of the amygdala which modulates memory processes in hippocampus, prefrontal cortex and other brain areas. We used functional magnetic resonance imaging (fMRI) to investigate neural correlates of stress-induced modulation of emotional recognition memory in humans. Twenty-seven healthy, right-handed, non-smoker male volunteers performed an emotional face recognition task. During encoding, participants were presented with 50 fearful and 50 neutral faces. One hour later, they underwent either a stress (Trier Social Stress Test) or a control procedure outside the scanner which was followed immediately by the recognition session inside the scanner, where participants had to discriminate between 100 old and 50 new faces. Stress increased salivary cortisol, blood pressure and pulse, and decreased the mood of participants but did not impact recognition memory. BOLD data during recognition revealed a stress condition by emotion interaction in the left inferior frontal gyrus and right hippocampus which was due to a stress-induced increase of neural activity to fearful and a decrease to neutral faces. Functional connectivity analyses revealed a stress-induced increase in coupling between the right amygdala and the right fusiform gyrus, when processing fearful as compared to neutral faces. Our results provide evidence that acute psychosocial stress affects medial temporal and frontal brain areas differentially for neutral and emotional items, with a stress-induced privileged processing of emotional stimuli.

  6. Activity-dependent plasticity in the isolated embryonic avian brainstem following manipulations of rhythmic spontaneous neural activity.

    Science.gov (United States)

    Vincen-Brown, Michael A; Revill, Ann L; Pilarski, Jason Q

    2016-07-15

    When rhythmic spontaneous neural activity (rSNA) first appears in the embryonic chick brainstem and cranial nerve motor axons it is principally driven by nicotinic neurotransmission (NT). At this early age, the nicotinic acetylcholine receptor (nAChR) agonist nicotine is known to critically disrupt rSNA at low concentrations (0.1-0.5μM), which are levels that mimic the blood plasma levels of a fetus following maternal cigarette smoking. Thus, we quantified the effect of persistent exposure to exogenous nicotine on rSNA using an in vitro developmental model. We found that rSNA was eliminated by continuous bath application of exogenous nicotine, but rSNA recovered activity within 6-12h despite the persistent activation and desensitization of nAChRs. During the recovery period rSNA was critically driven by chloride-mediated membrane depolarization instead of nicotinic NT. To test whether this observed compensation was unique to the antagonism of nicotinic NT or whether the loss of spiking behavior also played a role, we eliminated rSNA by lowering overall excitatory drive with a low [K(+)]o superfusate. In this context, rSNA again recovered, although the recovery time was much quicker, and exhibited a lower frequency, higher duration, and an increase in the number of bursts per episode when compared to control embryos. Importantly, we show that the main compensatory response to lower overall excitatory drive, similar to nicotinergic block, is a result of potentiated chloride mediated membrane depolarization. These results support increasing evidence that early neural circuits sense spiking behavior to maintain primordial bioelectric rhythms. Understanding the nature of developmental plasticity in the nervous system, especially versions that preserve rhythmic behaviors following clinically meaningful environmental stimuli, both normal and pathological, will require similar studies to determine the consequences of feedback compensation at more mature chronological ages

  7. Cortical geometry as a determinant of brain activity eigenmodes: Neural field analysis

    Science.gov (United States)

    Gabay, Natasha C.; Robinson, P. A.

    2017-09-01

    Perturbation analysis of neural field theory is used to derive eigenmodes of neural activity on a cortical hemisphere, which have previously been calculated numerically and found to be close analogs of spherical harmonics, despite heavy cortical folding. The present perturbation method treats cortical folding as a first-order perturbation from a spherical geometry. The first nine spatial eigenmodes on a population-averaged cortical hemisphere are derived and compared with previous numerical solutions. These eigenmodes contribute most to brain activity patterns such as those seen in electroencephalography and functional magnetic resonance imaging. The eigenvalues of these eigenmodes are found to agree with the previous numerical solutions to within their uncertainties. Also in agreement with the previous numerics, all eigenmodes are found to closely resemble spherical harmonics. The first seven eigenmodes exhibit a one-to-one correspondence with their numerical counterparts, with overlaps that are close to unity. The next two eigenmodes overlap the corresponding pair of numerical eigenmodes, having been rotated within the subspace spanned by that pair, likely due to second-order effects. The spatial orientations of the eigenmodes are found to be fixed by gross cortical shape rather than finer-scale cortical properties, which is consistent with the observed intersubject consistency of functional connectivity patterns. However, the eigenvalues depend more sensitively on finer-scale cortical structure, implying that the eigenfrequencies and consequent dynamical properties of functional connectivity depend more strongly on details of individual cortical folding. Overall, these results imply that well-established tools from perturbation theory and spherical harmonic analysis can be used to calculate the main properties and dynamics of low-order brain eigenmodes.

  8. A method for locating regions containing neural activation at a given confidence level from MEG data

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, D.M.; George, J.S.

    1996-02-01

    The MEG inverse problem does not have a general, unique solution. Unless restrictive model assumptions are made, there are generally many more free parameters than measurements and there exist silent sources - current distributions which produce no external magnetic field. By weighting solutions according to how well each fits our prior notion about what properties good solutions should have, it may be possible to obtain a single current distribution that best fits the data and our expectations. However, in general there will still exist a number of different current distributions which fit both the data and our prior expectations sufficiently well. For example, a simulated data set based on a single or several dipoles can generally be fit equally well by a distributed current minimum-norm reconstruction. In experimental data it is often possible to find a relatively small number of dipoles which both fit the data and have a norm not much larger than that of the minimum-norm solution. Moreover, the few-dipole solutions often have currents in different regions than the corresponding minimum-norm solution. Because there exist well-fitting current distributions which may have current in significantly different locations, it can be misleading to infer locations of stimulus-correlated neural activity based on a single, best-fitting current distribution. we demonstrate here a method for inferring the location and number of regions containing neural activation by considering all possible current distributions within a given model (not just the most likely one) weighted according to how well each fits both the data and our prior expectations.

  9. Is Neural Activity Detected by ERP-Based Brain-Computer Interfaces Task Specific?

    Directory of Open Access Journals (Sweden)

    Markus A Wenzel

    Full Text Available Brain-computer interfaces (BCIs that are based on event-related potentials (ERPs can estimate to which stimulus a user pays particular attention. In typical BCIs, the user silently counts the selected stimulus (which is repeatedly presented among other stimuli in order to focus the attention. The stimulus of interest is then inferred from the electroencephalogram (EEG. Detecting attention allocation implicitly could be also beneficial for human-computer interaction (HCI, because it would allow software to adapt to the user's interest. However, a counting task would be inappropriate for the envisaged implicit application in HCI. Therefore, the question was addressed if the detectable neural activity is specific for silent counting, or if it can be evoked also by other tasks that direct the attention to certain stimuli.Thirteen people performed a silent counting, an arithmetic and a memory task. The tasks required the subjects to pay particular attention to target stimuli of a random color. The stimulus presentation was the same in all three tasks, which allowed a direct comparison of the experimental conditions.Classifiers that were trained to detect the targets in one task, according to patterns present in the EEG signal, could detect targets in all other tasks (irrespective of some task-related differences in the EEG.The neural activity detected by the classifiers is not strictly task specific but can be generalized over tasks and is presumably a result of the attention allocation or of the augmented workload. The results may hold promise for the transfer of classification algorithms from BCI research to implicit relevance detection in HCI.

  10. 3K3A-activated protein C stimulates postischemic neuronal repair by human neural stem cells in mice

    DEFF Research Database (Denmark)

    Wang, Yaoming; Zhao, Zhen; Rege, Sanket V

    2016-01-01

    profile in humans, 3K3A-APC has advanced to clinical trials as a neuroprotectant in ischemic stroke. Recently, 3K3A-APC has been shown to stimulate neuronal production by human neural stem and progenitor cells (NSCs) in vitro via a PAR1-PAR3-sphingosine-1-phosphate-receptor 1-Akt pathway, which suggests...

  11. Neural response during the activation of the attachment system in patients with borderline personality disorder: An fMRI study

    Directory of Open Access Journals (Sweden)

    Anna Buchheim

    2016-08-01

    Full Text Available Individuals with borderline personality disorder (BPD are characterized by emotional instability, impaired emotion regulation and unresolved attachment patterns associated with abusive childhood experiences. We investigated the neural response during the activation of the attachment system in BPD patients compared to healthy controls using functional magnetic resonance imaging. Eleven female patients with BPD without posttraumatic stress disorder and seventeen healthy female controls matched for age and education were telling stories in the scanner in response to the Adult Attachment Projective Picture System, an eight-picture set assessment of adult attachment. The picture set includes theoretically-derived attachment scenes, such as separation, death, threat and potential abuse. The picture presentation order is designed to gradually increase the activation of the attachment system. Each picture stimulus was presented for two minutes. Analyses examine group differences in attachment classifications and neural activation patterns over the course of the task. Unresolved attachment was associated with increasing amygdala activation over the course of the attachment task in patients as well as controls. Unresolved controls, but not patients, showed activation in the right dorsolateral prefrontal cortex and the rostral cingulate zone. We interpret this as a neural signature of BPD patients’ inability to exert top-down control under conditions of attachment distress. These findings point to possible neural mechanisms for underlying affective dysregulation in BPD in the context of attachment trauma and fear.

  12. Homeodomain transcription factor Phox2a, via cyclic AMP-mediated activation, induces p27Kip1 transcription, coordinating neural progenitor cell cycle exit and differentiation.

    Science.gov (United States)

    Paris, Maryline; Wang, Wen-Horng; Shin, Min-Hwa; Franklin, David S; Andrisani, Ourania M

    2006-12-01

    Mechanisms coordinating neural progenitor cell cycle exit and differentiation are incompletely understood. The cyclin-dependent kinase inhibitor p27(Kip1) is transcriptionally induced, switching specific neural progenitors from proliferation to differentiation. However, neuronal differentiation-specific transcription factors mediating p27(Kip1) transcription have not been identified. We demonstrate the homeodomain transcription factor Phox2a, required for central nervous system (CNS)- and neural crest (NC)-derived noradrenergic neuron differentiation, coordinates cell cycle exit and differentiation by inducing p27(Kip1) transcription. Phox2a transcription and activation in the CNS-derived CAD cell line and primary NC cells is mediated by combined cyclic AMP (cAMP) and bone morphogenetic protein 2 (BMP2) signaling. In the CAD cellular model, cAMP and BMP2 signaling initially induces proliferation of the undifferentiated precursors, followed by p27(Kip1) transcription, G(1) arrest, and neuronal differentiation. Small interfering RNA silencing of either Phox2a or p27(Kip1) suppresses p27(Kip1) transcription and neuronal differentiation, suggesting a causal link between p27(Kip1) expression and differentiation. Conversely, ectopic Phox2a expression via the Tet-off expression system promotes accelerated CAD cell neuronal differentiation and p27(Kip1) transcription only in the presence of cAMP signaling. Importantly, endogenous or ectopically expressed Phox2a activated by cAMP signaling binds homeodomain cis-acting elements of the p27(Kip1) promoter in vivo and mediates p27(Kip1)-luciferase expression in CAD and NC cells. We conclude that developmental cues of cAMP signaling causally link Phox2a activation with p27(Kip1) transcription, thereby coordinating neural progenitor cell cycle exit and differentiation.

  13. Sex differences in neural activation following different routes of oxytocin administration in awake adult rats.

    Science.gov (United States)

    Dumais, Kelly M; Kulkarni, Praveen P; Ferris, Craig F; Veenema, Alexa H

    2017-07-01

    The neuropeptide oxytocin (OT) regulates social behavior in sex-specific ways across species. OT has promising effects on alleviating social deficits in sex-biased neuropsychiatric disorders. However little is known about potential sexually dimorphic effects of OT on brain function. Using the rat as a model organism, we determined whether OT administered centrally or peripherally induces sex differences in brain activation. Functional magnetic resonance imaging was used to examine blood oxygen level-dependent (BOLD) signal intensity changes in the brains of awake rats during the 20min following intracerebroventricular (ICV; 1μg/5μl) or intraperitoneal (IP; 0.1mg/kg) OT administration as compared to baseline. ICV OT induced sex differences in BOLD activation in 26 out of 172 brain regions analyzed, with 20 regions showing a greater volume of activation in males (most notably the nucleus accumbens and insular cortex), and 6 regions showing a greater volume of activation in females (including the lateral and central amygdala). IP OT also elicited sex differences in BOLD activation with a greater volume of activation in males, but this activation was found in different and fewer (10) brain regions compared to ICV OT. In conclusion, exogenous OT modulates neural activation differently in male versus female rats with the pattern and magnitude, but not the direction, of sex differences depending on the route of administration. These findings highlight the need to include both sexes in basic and clinical studies to fully understand the role of OT on brain function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. DataHigh: graphical user interface for visualizing and interacting with high-dimensional neural activity.

    Science.gov (United States)

    Cowley, Benjamin R; Kaufman, Matthew T; Churchland, Mark M; Ryu, Stephen I; Shenoy, Krishna V; Yu, Byron M

    2012-01-01

    The activity of tens to hundreds of neurons can be succinctly summarized by a smaller number of latent variables extracted using dimensionality reduction methods. These latent variables define a reduced-dimensional space in which we can study how population activity varies over time, across trials, and across experimental conditions. Ideally, we would like to visualize the population activity directly in the reduced-dimensional space, whose optimal dimensionality (as determined from the data) is typically greater than 3. However, direct plotting can only provide a 2D or 3D view. To address this limitation, we developed a Matlab graphical user interface (GUI) that allows the user to quickly navigate through a continuum of different 2D projections of the reduced-dimensional space. To demonstrate the utility and versatility of this GUI, we applied it to visualize population activity recorded in premotor and motor cortices during reaching tasks. Examples include single-trial population activity recorded using a multi-electrode array, as well as trial-averaged population activity recorded sequentially using single electrodes. Because any single 2D projection may provide a misleading impression of the data, being able to see a large number of 2D projections is critical for intuition-and hypothesis-building during exploratory data analysis. The GUI includes a suite of additional interactive tools, including playing out population activity timecourses as a movie and displaying summary statistics, such as covariance ellipses and average timecourses. The use of visualization tools like the GUI developed here, in tandem with dimensionality reduction methods, has the potential to further our understanding of neural population activity.

  15. Wrestling model of the repertoire of activity propagation modes in quadruple neural networks.

    Science.gov (United States)

    Shteingart, Hanan; Raichman, Nadav; Baruchi, Itay; Ben-Jacob, Eshel

    2010-01-01

    The spontaneous activity of engineered quadruple cultured neural networks (of four-coupled sub-networks) exhibits a repertoire of different types of mutual synchronization events. Each event corresponds to a specific activity propagation mode (APM) defined by the order of activity propagation between the sub-networks. We statistically characterized the frequency of spontaneous appearance of the different types of APMs. The relative frequencies of the APMs were then examined for their power-law properties. We found that the frequencies of appearance of the leading (most frequent) APMs have close to constant algebraic ratio reminiscent of Zipf's scaling of words. We show that the observations are consistent with a simplified "wrestling" model. This model represents an extension of the "boxing arena" model which was previously proposed to describe the ratio between the two activity modes in two coupled sub-networks. The additional new element in the "wrestling" model presented here is that the firing within each network is modeled by a time interval generator with similar intra-network Lévy distribution. We modeled the different burst-initiation zones' interaction by competition between the stochastic generators with Gaussian inter-network variability. Estimation of the model parameters revealed similarity across different cultures while the inter-burst-interval of the cultures was similar across different APMs as numerical simulation of the model predicts.

  16. Contralateral delay activity provides a neural measure of the number of representations in visual working memory.

    Science.gov (United States)

    Ikkai, Akiko; McCollough, Andrew W; Vogel, Edward K

    2010-04-01

    Visual working memory (VWM) helps to temporarily represent information from the visual environment and is severely limited in capacity. Recent work has linked various forms of neural activity to the ongoing representations in VWM. One piece of evidence comes from human event-related potential studies, which find a sustained contralateral negativity during the retention period of VWM tasks. This contralateral delay activity (CDA) has previously been shown to increase in amplitude as the number of memory items increases, up to the individual's working memory capacity limit. However, significant alternative hypotheses remain regarding the true nature of this activity. Here we test whether the CDA is modulated by the perceptual requirements of the memory items as well as whether it is determined by the number of locations that are being attended within the display. Our results provide evidence against these two alternative accounts and instead strongly support the interpretation that this activity reflects the current number of objects that are being represented in VWM.

  17. Classification of human activity on water through micro-Dopplers using deep convolutional neural networks

    Science.gov (United States)

    Kim, Youngwook; Moon, Taesup

    2016-05-01

    Detecting humans and classifying their activities on the water has significant applications for surveillance, border patrols, and rescue operations. When humans are illuminated by radar signal, they produce micro-Doppler signatures due to moving limbs. There has been a number of research into recognizing humans on land by their unique micro-Doppler signatures, but there is scant research into detecting humans on water. In this study, we investigate the micro-Doppler signatures of humans on water, including a swimming person, a swimming person pulling a floating object, and a rowing person in a small boat. The measured swimming styles were free stroke, backstroke, and breaststroke. Each activity was observed to have a unique micro-Doppler signature. Human activities were classified based on their micro-Doppler signatures. For the classification, we propose to apply deep convolutional neural networks (DCNN), a powerful deep learning technique. Rather than using conventional supervised learning that relies on handcrafted features, we present an alternative deep learning approach. We apply the DCNN, one of the most successful deep learning algorithms for image recognition, directly to a raw micro-Doppler spectrogram of humans on the water. Without extracting any explicit features from the micro-Dopplers, the DCNN can learn the necessary features and build classification boundaries using the training data. We show that the DCNN can achieve accuracy of more than 87.8% for activity classification using 5- fold cross validation.

  18. [Gateway Reflex, a regulator of the inflammation feedback loop by regional neural activation].

    Science.gov (United States)

    Arima, Yasunobu; Kamimura, Daisuke; Atsumi, Toru; Murakami, Masaaki

    2015-04-01

    Inflammation is observed in many diseases and disorders. We discovered a key machinery of inflammation, the inflammation amplifier, which is induced by the simultaneous activation of NFκB and STAT3 followed by the hyper-activation of NFκB in non-immune cells, including endothelial cells and fibroblasts. Since that discovery, we found the Gateway Reflex, which describes regional neural activations that enhance the inflammation amplifier to create a gateway for immune cells to bypass the blood-brain barrier. In addition, we have identified over 1,000 positive regulators and over 500 targets of the inflammation amplifier, which include a significant numbers of human disease-associated genes. In parallel, we performed a comprehensive analysis of human disease samples and found that the inflammation amplifier was activated during the development of chronic inflammation. Thus, we concluded that the inflammation amplifier is associated with various human diseases and disorders, including autoimmune diseases, metabolic syndromes, neurodegenerative diseases, and other inflammatory diseases. We are now attempting drug discovery for inflammatory diseases and disorders based on the inflammation amplifier and Gateway Reflex. In this review, we discuss the Gateway Reflex as an example for the neuro-immune interaction in vivo.

  19. New Ulvan-Degrading Polysaccharide Lyase Family: Structure and Catalytic Mechanism Suggests Convergent Evolution of Active Site Architecture.

    Science.gov (United States)

    Ulaganathan, ThirumalaiSelvi; Boniecki, Michal T; Foran, Elizabeth; Buravenkov, Vitaliy; Mizrachi, Naama; Banin, Ehud; Helbert, William; Cygler, Miroslaw

    2017-05-19

    Ulvan is a complex sulfated polysaccharide biosynthesized by green seaweed and contains predominantly rhamnose, xylose, and uronic acid sugars. Ulvan-degrading enzymes have only recently been identified and added to the CAZy ( www.cazy.org ) database as family PL24, but neither their structure nor catalytic mechanism(s) are yet known. Several homologous, new ulvan lyases, have been discovered in Pseudoalteromonas sp. strain PLSV, Alteromonas LOR, and Nonlabens ulvanivorans, defining a new family PL25, with the lyase encoded by the gene PLSV_3936 being one of them. This enzyme cleaves the glycosidic bond between 3-sulfated rhamnose (R3S) and glucuronic acid (GlcA) or iduronic acid (IdoA) via a β-elimination mechanism. We report the crystal structure of PLSV_3936 and its complex with a tetrasaccharide substrate. PLSV_3936 folds into a seven-bladed β-propeller, with each blade consisting of four antiparallel β-strands. Sequence conservation analysis identified a highly conserved region lining at one end of a deep crevice on the protein surface. The putative active site was identified by mutagenesis and activity measurements. Crystal structure of the enzyme with a bound tetrasaccharide substrate confirmed the identity of base and acid residues and allowed determination of the catalytic mechanism and also the identification of residues neutralizing the uronic acid carboxylic group. The PLSV_3936 structure provides an example of a convergent evolution among polysaccharide lyases toward a common active site architecture embedded in distinct folds.

  20. Baseline Levels of Rapid Eye Movement Sleep May Protect Against Excessive Activity in Fear-Related Neural Circuitry.

    Science.gov (United States)

    Lerner, Itamar; Lupkin, Shira M; Sinha, Neha; Tsai, Alan; Gluck, Mark A

    2017-11-15

    Sleep, and particularly rapid eye movement sleep (REM), has been implicated in the modulation of neural activity following fear conditioning and extinction in both human and animal studies. It has long been presumed that such effects play a role in the formation and persistence of posttraumatic stress disorder, of which sleep impairments are a core feature. However, to date, few studies have thoroughly examined the potential effects of sleep prior to conditioning on subsequent acquisition of fear learning in humans. Furthermore, these studies have been restricted to analyzing the effects of a single night of sleep-thus assuming a state-like relationship between the two. In the current study, we used long-term mobile sleep monitoring and functional neuroimaging (fMRI) to explore whether trait-like variations in sleep patterns, measured in advance in both male and female participants, predict subsequent patterns of neural activity during fear learning. Our results indicate that higher baseline levels of REM sleep predict reduced fear-related activity in, and connectivity between, the hippocampus, amygdala and ventromedial PFC during conditioning. Additionally, skin conductance responses (SCRs) were weakly correlated to the activity in the amygdala. Conversely, there was no direct correlation between REM sleep and SCRs, indicating that REM may only modulate fear acquisition indirectly. In a follow-up experiment, we show that these results are replicable, though to a lesser extent, when measuring sleep over a single night just before conditioning. As such, baseline sleep parameters may be able to serve as biomarkers for resilience, or lack thereof, to trauma. SIGNIFICANCE STATEMENT Numerous studies over the past two decades have established a clear role of sleep in fear-learning processes. However, previous work has focused on the effects of sleep following fear acquisition, thus neglecting the potential effects of baseline sleep levels on the acquisition itself. The

  1. Patterns of longitudinal neural activity linked to different cognitive profiles in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Atsuko Nagano-Saito

    2016-11-01

    Full Text Available Mild cognitive impairment in Parkinson’s disease (PD has been linked with functional brain changes. Previously, using functional magnetic resonance imaging (fMRI, we reported reduced cortico-striatal activity in patients with PD who also had mild cognitive impairment (MCI versus those who did not (non-MCI. We followed up these patients to investigate the longitudinal effect on the neural activity. Twenty-four non-demented patients with Parkinson’s disease (non-MCI: 12, MCI; 12 were included in the study. Each participant underwent two fMRIs while performing the Wisconsin Card Sorting Task 20 months apart. The non-MCI patients recruited the usual cognitive corticostriatal loop at the first and second sessions (Time 1 and Time 2, respectively. However, decreased activity was observed in the cerebellum and occipital area and increased activity was observed in the medial prefrontal cortex and parietal lobe during planning set-shift at Time 2. Increased activity in the precuneus was also demonstrated while executing set-shifts at Time 2. The MCI patients revealed more activity in the frontal, parietal and occipital lobes during planning set-shifts, and in the parietal and occipital lobes, precuneus, and cerebellum, during executing set-shift at Time 2. Analysis regrouping of both groups of PD patients revealed that hippocampal and thalamic activity at Time 1 was associated with less cognitive decline over time. Our results reveal that functional alteration along the time-points differed between the non-MCI and MCI patients. They also underline the importance of preserving thalamic and hippocampal function with respect to cognitive decline over time.

  2. Comparison of nonballistic active knee extension in neural slump position and static stretch techniques on hamstring flexibility.

    Science.gov (United States)

    Webright, W G; Randolph, B J; Perrin, D H

    1997-07-01

    Nonballistic, active range of motion exercises have been advocated as more effective than static stretching for increasing range of motion, yet no published data exist to support this claim. This study compared the effect of nonballistic, repetitive active knee extension movements performed in a neural slump sitting position with static stretching technique on hamstring flexibility. Forty healthy, adult volunteer subjects with limited right hamstring flexibility (i.e., minimum of 15 degrees loss of active knee extension measured with femur held at 90 degrees of hip flexion) were randomly assigned to one of three groups. Group 1 (static stretch) performed a 30-second stretch twice daily. Group 2 (active stretch) performed 30 repetitions of active knee extension while sitting in a neural slump position twice daily. Group 3 served as a control. Hamstring flexibility was determined by an active knee extension test before and after 6 weeks of stretching. Goniometric measurement of knee joint flexion angle was obtained from videotape recording of the active knee extension test. A 3 (group) x 2 (test) repeated measures analysis of variance and subsequent Tukey post hoc testing revealed no significant difference in knee joint range of motion gains between the static (mean = 8.9 degrees) and active stretch (mean = 10.2 degrees). Both stretch groups' knee joint range of motion improved significantly (p active knee extensions (30 repetitions, twice daily) performed in a neural slump sitting position improves hamstring flexibility in uninjured subjects, but is no different compared with static stretching (30 seconds, twice daily).

  3. Neurite outgrowth induced by a synthetic peptide ligand of neural cell adhesion molecule requires fibroblast growth factor receptor activation

    DEFF Research Database (Denmark)

    Rønn, L C; Doherty, P; Holm, A

    2000-01-01

    The neural cell adhesion molecule NCAM is involved in axonal outgrowth and target recognition in the developing nervous system. In vitro, NCAM-NCAM binding has been shown to induce neurite outgrowth, presumably through an activation of fibroblast growth factor receptors (FGFRs). We have recently...

  4. Decoupling Interval Timing and Climbing Neural Activity : A Dissociation between CNV and N1P2 Amplitudes

    NARCIS (Netherlands)

    Kononowicz, Tadeusz W.; van Rijn, Hedderik

    2014-01-01

    It is often argued that climbing neural activity, as for example reflected by the contingent negative variation (CNV) in the electroencephalogram, is the signature of the subjective experience of time. According to this view, the resolution of the CNV coincides with termination of subjective timing

  5. Comparative modeling and molecular dynamics suggest high carboxylase activity of the Cyanobium sp. CACIAM14 RbcL protein.

    Science.gov (United States)

    Siqueira, Andrei Santos; Lima, Alex Ranieri Jerônimo; Dall'Agnol, Leonardo Teixeira; de Azevedo, Juliana Simão Nina; da Silva Gonçalves Vianez, João Lídio; Gonçalves, Evonnildo Costa

    2016-03-01

    Rubisco catalyzes the first step reaction in the carbon fixation pathway, bonding atmospheric CO2/O2 to ribulose 1,5-bisphosphate; it is therefore considered one of the most important enzymes in the biosphere. Genetic modifications to increase the carboxylase activity of rubisco are a subject of great interest to agronomy and biotechnology, since this could increase the productivity of biomass in plants, algae and cyanobacteria and give better yields in crops and biofuel production. Thus, the aim of this study was to characterize in silico the catalytic domain of the rubisco large subunit (rbcL gene) of Cyanobium sp. CACIAM14, and identify target sites to improve enzyme affinity for ribulose 1,5-bisphosphate. A three-dimensional model was built using MODELLER 9.14, molecular dynamics was used to generate a 100 ns trajectory by AMBER12, and the binding free energy was calculated using MM-PBSA, MM-GBSA and SIE methods with alanine scanning. The model obtained showed characteristics of form-I rubisco, with 15 beta sheets and 19 alpha helices, and maintained the highly conserved catalytic site encompassing residues Lys175, Lys177, Lys201, Asp203, and Glu204. The binding free energy of the enzyme-substrate complexation of Cyanobium sp. CACIAM14 showed values around -10 kcal mol(-1) using the SIE method. The most important residues for the interaction with ribulose 1,5-bisphosphate were Arg295 followed by Lys334. The generated model was successfully validated, remaining stable during the whole simulation, and demonstrated characteristics of enzymes with high carboxylase activity. The binding analysis revealed candidates for directed mutagenesis sites to improve rubisco's affinity.

  6. Demystifying Multitask Deep Neural Networks for Quantitative Structure-Activity Relationships.

    Science.gov (United States)

    Xu, Yuting; Ma, Junshui; Liaw, Andy; Sheridan, Robert P; Svetnik, Vladimir

    2017-10-23

    Deep neural networks (DNNs) are complex computational models that have found great success in many artificial intelligence applications, such as computer vision1,2 and natural language processing.3,4 In the past four years, DNNs have also generated promising results for quantitative structure-activity relationship (QSAR) tasks.5,6 Previous work showed that DNNs can routinely make better predictions than traditional methods, such as random forests, on a diverse collection of QSAR data sets. It was also found that multitask DNN models-those trained on and predicting multiple QSAR properties simultaneously-outperform DNNs trained separately on the individual data sets in many, but not all, tasks. To date there has been no satisfactory explanation of why the QSAR of one task embedded in a multitask DNN can borrow information from other unrelated QSAR tasks. Thus, using multitask DNNs in a way that consistently provides a predictive advantage becomes a challenge. In this work, we explored why multitask DNNs make a difference in predictive performance. Our results show that during prediction a multitask DNN does borrow "signal" from molecules with similar structures in the training sets of the other tasks. However, whether this borrowing leads to better or worse predictive performance depends on whether the activities are correlated. On the basis of this, we have developed a strategy to use multitask DNNs that incorporate prior domain knowledge to select training sets with correlated activities, and we demonstrate its effectiveness on several examples.

  7. Peers and parents: a comparison between neural activation when winning for friends and mothers in adolescence.

    Science.gov (United States)

    Braams, Barbara R; Crone, Eveline A

    2017-03-01

    Rewards reliably elicit ventral striatum activity. More recently studies have shown that vicarious rewards elicit similar activation. Ventral striatum responses to rewards for self peak during adolescence. However, it is currently not well understood how ventral striatum responses to vicarious rewards develop. In this study, we test this question using behavioral and fMRI data. A total of 233 participants aged 9-26 years old played a gambling game in the scanner in which they could win or lose money for themselves, their best friend and mother. Participants rated how close they felt to their friend and mother and how much they liked winning for them. These ratings were positively correlated. On the neural level males showed higher responses to winning for a friend, but there were no age differences. In contrast, there was a quadratic effect of age when winning for mother, showing heightened ventral striatum activity in mid-adolescence. Furthermore, there was an interaction between age and sex; for females responses to winning for friends become stronger with age relative to winning for mothers. In conclusion, this study provided evidence for elevated ventral striatum responses for mothers in mid-adolescence, and a shift in ventral striatum responses towards peers in girls. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  8. Artificial neural network optimization of Althaea rosea seeds polysaccharides and its antioxidant activity.

    Science.gov (United States)

    Liu, Feng; Liu, Wenhui; Tian, Shuge

    2014-09-01

    A combination of an orthogonal L16(4)4 test design and a three-layer artificial neural network (ANN) model was applied to optimize polysaccharides from Althaea rosea seeds extracted by hot water method. The highest optimal experimental yield of A. rosea seed polysaccharides (ARSPs) of 59.85 mg/g was obtained using three extraction numbers, 113 min extraction time, 60.0% ethanol concentration, and 1:41 solid-liquid ratio. Under these optimized conditions, the ARSP experimental yield was very close to the predicted yield of 60.07 mg/g and was higher than the orthogonal test results (40.86 mg/g). Structural characterizations were conducted using physicochemical property and FTIR analysis. In addition, the study of ARSP antioxidant activity demonstrated that polysaccharides exhibited high superoxide dismutase activity, strong reducing power, and positive scavenging activity on superoxide anion, hydroxyl radical, 2,2-diphenyl-1-picrylhydrazyl, and reducing power. Our results indicated that ANNs were efficient quantitative tools for predicting the total ARSP content. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Neural correlates of reduced awareness in instrumental activities of daily living in frontotemporal dementia.

    Science.gov (United States)

    Amanzio, Martina; D'Agata, Federico; Palermo, Sara; Rubino, Elisa; Zucca, Milena; Galati, Antonello; Pinessi, Lorenzo; Castellano, Giancarlo; Rainero, Innocenzo

    2016-10-01

    A decline in instrumental activities of daily living has been described as the earliest functional deficit in patients with neurodegenerative disease. It embraces specific competencies such as: "recalling the date and telephone calls, orienting to new places, remembering the location of objects at home, understanding conversation and the plot of a movie, keeping belongings in order, doing mental calculations and handling money, remembering appointments and shopping lists and performing clerical work". Since changes in instrumental daily living activities are one of the descriptors of behavioural-variant frontotemporal dementia, we decided to investigate the neural correlates of a reduced awareness in this specific domain in twenty-three consecutive behavioural-variant frontotemporal dementia patients. Gray matter volume changes associated with a reduced awareness for the instrumental domain, assessed using a validated caregiver-patient discrepancy questionnaire, were examined. Interestingly, we found disabilities in instrumental daily living activities and a reduced awareness of these to be related to medial prefrontal cortex atrophy, where the mid-cingulate cortices, dorsal anterior insula and cuneous play an important role. Importantly, if the executive system does not function correctly, the comparator mechanism of action self-monitoring does not detect mismatches between the current and previous performance states stored in the personal database, and produces a reduced awareness for the instrumental domain. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Improved Neural Signal Classification in a Rapid Serial Visual Presentation Task Using Active Learning.

    Science.gov (United States)

    Marathe, Amar R; Lawhern, Vernon J; Wu, Dongrui; Slayback, David; Lance, Brent J

    2016-03-01

    The application space for brain-computer interface (BCI) technologies is rapidly expanding with improvements in technology. However, most real-time BCIs require extensive individualized calibration prior to use, and systems often have to be recalibrated to account for changes in the neural signals due to a variety of factors including changes in human state, the surrounding environment, and task conditions. Novel approaches to reduce calibration time or effort will dramatically improve the usability of BCI systems. Active Learning (AL) is an iterative semi-supervised learning technique for learning in situations in which data may be abundant, but labels for the data are difficult or expensive to obtain. In this paper, we apply AL to a simulated BCI system for target identification using data from a rapid serial visual presentation (RSVP) paradigm to minimize the amount of training samples needed to initially calibrate a neural classifier. Our results show AL can produce similar overall classification accuracy with significantly less labeled data (in some cases less than 20%) when compared to alternative calibration approaches. In fact, AL classification performance matches performance of 10-fold cross-validation (CV) in over 70% of subjects when training with less than 50% of the data. To our knowledge, this is the first work to demonstrate the use of AL for offline electroencephalography (EEG) calibration in a simulated BCI paradigm. While AL itself is not often amenable for use in real-time systems, this work opens the door to alternative AL-like systems that are more amenable for BCI applications and thus enables future efforts for developing highly adaptive BCI systems.

  11. What Shall I Be, What Must I Be:Neural Correlates of Personal Goal Activation

    Directory of Open Access Journals (Sweden)

    Timothy J. Strauman

    2013-01-01

    Full Text Available How is the brain engaged when people are thinking about their hopes, dreams, and obligations? Regulatory focus theory postulates two classes of personal goals and motivational systems for pursuing them. Ideal goals, such as hopes and aspirations, are pursued via the promotion system through making good things happen. Ought goals, such as obligations or responsibilities, are pursued via the prevention system through keeping bad things from happening. This study investigated the neural correlates of ideal and ought goal priming using an event-related fMRI design with rapid masked stimulus presentations. We exposed participants to their self-identified ideal and ought goals, yoked control words and nonwords. We also examined correlations between goal-related activation and measures of regulatory focus, behavioral activation/inhibition, and negative affect. Ideal priming led to activation in frontal and occipital regions as well as caudate and thalamus, whereas prevention goal priming was associated with activation in precuneus and posterior cingulate cortex. Individual differences in dysphoric/anxious affect and regulatory focus, but not differences in BAS/BIS strength, were predictive of differential activation in response to goal priming. The regions activated in response to ideal and ought goal priming broadly map onto the cortical midline network that has been shown to index processing of self-referential stimuli. Individual differences in regulatory focus and negative affect impact this network and appeared to influence the strength and accessibility of the promotion and prevention systems. The results support a fundamental distinction between promotion and prevention and extend our understanding of how personal goals influence behavior.

  12. Structure of Epstein-Barr Virus Glycoprotein 42 Suggests a Mechanism for Triggering Receptor-Activated Virus Entry

    Energy Technology Data Exchange (ETDEWEB)

    Kirschner, Austin N.; Sorem, Jessica; Longnecker, Richard; Jardetzky, Theodore S.; (NWU); (Stanford-MED)

    2009-05-26

    Epstein-Barr virus requires glycoproteins gH/gL, gB, and gp42 to fuse its lipid envelope with B cells. Gp42 is a type II membrane protein consisting of a flexible N-terminal region, which binds gH/gL, and a C-terminal lectin-like domain that binds to the B-cell entry receptor human leukocyte antigen (HLA) class II. Gp42 triggers membrane fusion after HLA binding, a process that requires simultaneous binding to gH/gL and a functional hydrophobic pocket in the lectin domain adjacent to the HLA binding site. Here we present the structure of gp42 in its unbound form. Comparisons to the previously determined structure of a gp42:HLA complex reveals additional N-terminal residues forming part of the gH/gL binding site and structural changes in the receptor binding domain. Although the core of the lectin domain remains similar, significant shifts in two loops and an {alpha} helix bordering the essential hydrophobic pocket suggest a structural mechanism for triggering fusion.

  13. Suggested management guidelines for participation in collision activities with congenital, developmental, or postinjury lesions involving the cervical spine.

    Science.gov (United States)

    Torg, J S; Ramsey-Emrhein, J A

    1997-07-01

    Many conditions involving the cervical spine in the athlete require a management decision. The purpose of this paper is to present appropriate guidelines for return to collision activities in those with congenital, developmental, or post-injury lesions. Information compiled from over 1200 cervical spine lesions documented by the National Football Head & Neck Injury Registry, an extensive literature review, as well as an understanding of injury mechanisms have resulted in reasonable management guidelines. Each of the congenital, developmental, and post-traumatic conditions presented are determined to present either no contraindication, relative contraindication, or an absolute contraindication on the basis of a variety of parameters. Conditions included in the discussion are: odontoid anomalies; spina bifida occulta; atlanto-occipital fusion; Klipple-Feil anomalies; cervical canal stenosis; spear tackler's spine; and traumatic conditions of the upper, middle, and lower cervical spine, including ligamentous injuries and fractures, intervertebral disc injuries, and post-cervical spine fusion. Emphasized is the fact that the proposed guidelines should be used in the decision-making process in conjuction with other factors such as the age, experience, ability of the individual, level of participation, position played, as well as the attitude and desires of the athlete and his parents after an informed discussion of the problem with particular regard to potential risk.

  14. Direct observations of the kinetics of migrating T cells suggest active retention by endothelial cells with continual bidirectional migration.

    Science.gov (United States)

    McGettrick, Helen M; Hunter, Kirsty; Moss, Paul A; Buckley, Christopher D; Rainger, G Ed; Nash, Gerard B

    2009-01-01

    The kinetics and regulatory mechanisms of T cell migration through the endothelium have not been fully defined. In experimental, filter-based assays in vitro, transmigration of lymphocytes takes hours, compared with minutes, in vivo. We cultured endothelial cell (EC) monolayers on filters, solid substrates, or collagen gels and treated them with TNF-alpha, IFN-gamma, or both prior to analysis of lymphocyte migration in the presence or absence of flow. PBL, CD4+ cells, or CD8+ cells took many hours to migrate through EC-filter constructs for all cytokine treatments. However, direct microscopic observations of EC filters, which had been mounted in a flow chamber, showed that PBL crossed the endothelial monolayer in minutes and were highly motile in the subendothelial space. Migration through EC was also observed on clear plastic, with or without flow. After a brief settling without flow, PBL and isolated CD3+ or CD4+ cells crossed EC in minutes, but the numbers of migrated cells varied little with time. Close observation revealed that lymphocytes migrated back and forth continuously across endothelium. Under flow, migration kinetics and the proportions migrating back and forth were altered little. On collagen gels, PBL again crossed EC in minutes and migrated back and forth but showed little penetration of the gel over hours. In contrast, neutrophils migrated efficiently through EC and into gels. These observations suggest a novel model for lymphoid migration in which EC support migration but retain lymphocytes (as opposed to neutrophils), and additional signal(s) are required for onward migration.

  15. Multistability of neural networks with discontinuous non-monotonic piecewise linear activation functions and time-varying delays.

    Science.gov (United States)

    Nie, Xiaobing; Zheng, Wei Xing

    2015-05-01

    This paper is concerned with the problem of coexistence and dynamical behaviors of multiple equilibrium points for neural networks with discontinuous non-monotonic piecewise linear activation functions and time-varying delays. The fixed point theorem and other analytical tools are used to develop certain sufficient conditions that ensure that the n-dimensional discontinuous neural networks with time-varying delays can have at least 5(n) equilibrium points, 3(n) of which are locally stable and the others are unstable. The importance of the derived results is that it reveals that the discontinuous neural networks can have greater storage capacity than the continuous ones. Moreover, different from the existing results on multistability of neural networks with discontinuous activation functions, the 3(n) locally stable equilibrium points obtained in this paper are located in not only saturated regions, but also unsaturated regions, due to the non-monotonic structure of discontinuous activation functions. A numerical simulation study is conducted to illustrate and support the derived theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Fault Diagnosis Based on Chemical Sensor Data with an Active Deep Neural Network.

    Science.gov (United States)

    Jiang, Peng; Hu, Zhixin; Liu, Jun; Yu, Shanen; Wu, Feng

    2016-10-13

    Big sensor data provide significant potential for chemical fault diagnosis, which involves the baseline values of security, stability and reliability in chemical processes. A deep neural network (DNN) with novel active learning for inducing chemical fault diagnosis is presented in this study. It is a method using large amount of chemical sensor data, which is a combination of deep learning and active learning criterion to target the difficulty of consecutive fault diagnosis. DNN with deep architectures, instead of shallow ones, could be developed through deep learning to learn a suitable feature representation from raw sensor data in an unsupervised manner using stacked denoising auto-encoder (SDAE) and work through a layer-by-layer successive learning process. The features are added to the top Softmax regression layer to construct the discriminative fault characteristics for diagnosis in a supervised manner. Considering the expensive and time consuming labeling of sensor data in chemical applications, in contrast to the available methods, we employ a novel active learning criterion for the particularity of chemical processes, which is a combination of Best vs. Second Best criterion (BvSB) and a Lowest False Positive criterion (LFP), for further fine-tuning of diagnosis model in an active manner rather than passive manner. That is, we allow models to rank the most informative sensor data to be labeled for updating the DNN parameters during the interaction phase. The effectiveness of the proposed method is validated in two well-known industrial datasets. Results indicate that the proposed method can obtain superior diagnosis accuracy and provide significant performance improvement in accuracy and false positive rate with less labeled chemical sensor data by further active learning compared with existing methods.

  17. Fault Diagnosis Based on Chemical Sensor Data with an Active Deep Neural Network

    Science.gov (United States)

    Jiang, Peng; Hu, Zhixin; Liu, Jun; Yu, Shanen; Wu, Feng

    2016-01-01

    Big sensor data provide significant potential for chemical fault diagnosis, which involves the baseline values of security, stability and reliability in chemical processes. A deep neural network (DNN) with novel active learning for inducing chemical fault diagnosis is presented in this study. It is a method using large amount of chemical sensor data, which is a combination of deep learning and active learning criterion to target the difficulty of consecutive fault diagnosis. DNN with deep architectures, instead of shallow ones, could be developed through deep learning to learn a suitable feature representation from raw sensor data in an unsupervised manner using stacked denoising auto-encoder (SDAE) and work through a layer-by-layer successive learning process. The features are added to the top Softmax regression layer to construct the discriminative fault characteristics for diagnosis in a supervised manner. Considering the expensive and time consuming labeling of sensor data in chemical applications, in contrast to the available methods, we employ a novel active learning criterion for the particularity of chemical processes, which is a combination of Best vs. Second Best criterion (BvSB) and a Lowest False Positive criterion (LFP), for further fine-tuning of diagnosis model in an active manner rather than passive manner. That is, we allow models to rank the most informative sensor data to be labeled for updating the DNN parameters during the interaction phase. The effectiveness of the proposed method is validated in two well-known industrial datasets. Results indicate that the proposed method can obtain superior diagnosis accuracy and provide significant performance improvement in accuracy and false positive rate with less labeled chemical sensor data by further active learning compared with existing methods. PMID:27754386

  18. Molecular multiproxy analysis of ancient root systems suggests strong alteration of deep subsoil organic matter by rhizomicrobial activity

    Science.gov (United States)

    Gocke, Martina; Huguet, Arnaud; Derenne, Sylvie; Kolb, Steffen; Wiesenberg, Guido L. B.

    2013-04-01

    decreasing contents of archeal GDGTs from rhizolith via rhizosphere towards root-free loess. Furthermore, the bacterial fingerprint revealed - similar to modern root systems - higher taxonomic diversity in rhizosphere compared to rhizoliths and reference loess. This argues for microorganisms benefiting from root deposits and exudates. Highest concentrations of branched GDGTs in rhizoliths suggest that their source organisms feed on root remains. Incorporation of rhizomicrobial remains as represented by RNA and GDGTs usually affected the sediment at maximum to a distance of 2-3 cm from the former root. FA contents in rhizosphere showed strong scatter and were in part depleted compared to reference loess or, especially in deeper transects, enriched. This indicates the presence of degradation products originating from former rhizosphere processes. Especially at larger depth not affected by modern pedogenic processes, portions of mainly microbial derived C16 homologues were higher in rhizosphere loess up to distances of 10 cm, revealing that the possible extension of the rhizosphere was underestimated so far. In Corg poor subsoil, the occurence of diverse rhizosphere microorganisms and degradation processes even in several centimeters distant from roots point to a strong alteration of OM, possibly contributing to carbon mineralisation.

  19. Spectral signatures of activity-dependent neural feedback in the corticothalamic system

    Science.gov (United States)

    Roy, N.; Sanz-Leon, P.; Robinson, P. A.

    2017-11-01

    The modulation of neural quantities by presynaptic and postsynaptic activities via local feedback processes is investigated by incorporating nonlinear phenomena such as relative refractory period, synaptic enhancement, synaptic depression, and habituation. This is done by introducing susceptibilities, which quantify the response in either firing threshold or synaptic strength to unit change in either presynaptic or postsynaptic activity. Effects on the power spectra are then analyzed for a realistic corticothalamic model to determine the spectral signatures of various nonlinear processes and to what extent these are distinct. Depending on the feedback processes, there can be enhancements or reductions in low-frequency and/or alpha power, splitting of the alpha resonance, and/or appearance of new resonances at high frequencies. These features in the power spectra allow processes to be fully distinguished where they are unique, or partly distinguished if they are common to only a subset of feedbacks, and can potentially be used to constrain the types, strengths, and dynamics of feedbacks present.

  20. Harnessing neural activity to promote repair of the damaged corticospinal system after spinal cord injury

    Directory of Open Access Journals (Sweden)

    John H Martin

    2016-01-01

    Full Text Available As most spinal cord injuries (SCIs are incomplete, an important target for promoting neural repair and recovery of lost motor function is to promote the connections of spared descending spinal pathways with spinal motor circuits. Among the pathways, the corticospinal tract (CST is most associated with skilled voluntary functions in humans and many animals. CST loss, whether at its origin in the motor cortex or in the white matter tracts subcortically and in the spinal cord, leads to movement impairments and paralysis. To restore motor function after injury will require repair of the damaged CST. In this review, I discuss how knowledge of activity-dependent development of the CST-which establishes connectional specificity through axon pruning, axon outgrowth, and synaptic competition among CST terminals-informed a novel activity-based therapy for promoting sprouting of spared CST axons after injur in mature animals. This therapy, which comprises motor cortex electrical stimulation with and without concurrent trans-spinal direct current stimulation, leads to an increase in the gray matter axon length of spared CST axons in the rat spinal cord and, after a pyramidal tract lesion, restoration of skilled locomotor movements. I discuss how this approach is now being applied to a C 4 contusion rat model.

  1. Healthy human CSF promotes glial differentiation of hESC-derived neural cells while retaining spontaneous activity in existing neuronal networks

    Directory of Open Access Journals (Sweden)

    Heikki Kiiski

    2013-05-01

    The possibilities of human pluripotent stem cell-derived neural cells from the basic research tool to a treatment option in regenerative medicine have been well recognized. These cells also offer an interesting tool for in vitro models of neuronal networks to be used for drug screening and neurotoxicological studies and for patient/disease specific in vitro models. Here, as aiming to develop a reductionistic in vitro human neuronal network model, we tested whether human embryonic stem cell (hESC-derived neural cells could be cultured in human cerebrospinal fluid (CSF in order to better mimic the in vivo conditions. Our results showed that CSF altered the differentiation of hESC-derived neural cells towards glial cells at the expense of neuronal differentiation. The proliferation rate was reduced in CSF cultures. However, even though the use of CSF as the culture medium altered the glial vs. neuronal differentiation rate, the pre-existing spontaneous activity of the neuronal networks persisted throughout the study. These results suggest that it is possible to develop fully human cell and culture-based environments that can further be modified for various in vitro modeling purposes.

  2. Music training enhances rapid neural plasticity of n1 and p2 source activation for unattended sounds.

    Science.gov (United States)

    Seppänen, Miia; Hämäläinen, Jarmo; Pesonen, Anu-Katriina; Tervaniemi, Mari

    2012-01-01

    Neurocognitive studies have demonstrated that long-term music training enhances the processing of unattended sounds. It is not clear, however, whether music training also modulates rapid (within tens of minutes) neural plasticity for sound encoding. To study this phenomenon, we examined whether adult musicians display enhanced rapid neural plasticity compared to non-musicians. More specifically, we compared the modulation of P1, N1, and P2 responses to standard sounds between four unattended passive blocks. Among the standard sounds, infrequently presented deviant sounds were presented (the so-called oddball paradigm). In the middle of the experiment (after two blocks), an active task was presented. Source analysis for event-related potentials (ERPs) showed that N1 and P2 source activation was selectively decreased in musicians after 15 min of passive exposure to sounds and that P2 source activation was found to be re-enhanced after the active task in musicians. Additionally, ERP analysis revealed that in both musicians and non-musicians, P2 ERP amplitude was enhanced after 15 min of passive exposure but only at the frontal electrodes. Furthermore, in musicians, the N1 ERP was enhanced after the active discrimination task but only at the parietal electrodes. Musical training modulates the rapid neural plasticity reflected in N1 and P2 source activation for unattended regular standard sounds. Enhanced rapid plasticity of N1 and P2 is likely to reflect faster auditory perceptual learning in musicians.

  3. Optical and electrical recording of neural activity evoked by graded contrast visual stimulus

    Directory of Open Access Journals (Sweden)

    Bulf Luca

    2007-07-01

    Full Text Available Abstract Background Brain activity has been investigated by several methods with different principles, notably optical ones. Each method may offer information on distinct physiological or pathological aspects of brain function. The ideal instrument to measure brain activity should include complementary techniques and integrate the resultant information. As a "low cost" approach towards this objective, we combined the well-grounded electroencephalography technique with the newer near infrared spectroscopy methods to investigate human visual function. Methods The article describes an embedded instrumentation combining a continuous-wave near-infrared spectroscopy system and an electroencephalography system to simultaneously monitor functional hemodynamics and electrical activity. Near infrared spectroscopy (NIRS signal depends on the light absorption spectra of haemoglobin and measures the blood volume and blood oxygenation regulation supporting the neural activity. The NIRS and visual evoked potential (VEP are concurrently acquired during steady state visual stimulation, at 8 Hz, with a b/w "windmill" pattern, in nine human subjects. The pattern contrast is varied (1%, 10%, 100% according to a stimulation protocol. Results In this study, we present the measuring system; the results consist in concurrent recordings of hemodynamic changes and evoked potential responses emerging from different contrast levels of a patterned stimulus. The concentration of [HbO2] increases and [HHb] decreases after the onset of the stimulus. Their variation shows a clear relationship with the contrast value: large contrast produce huge difference in concentration, while low contrast provokes small concentration difference. This behaviour is similar to the already known relationship between VEP response amplitude and contrast. Conclusion The simultaneous recording and analysis of NIRS and VEP signals in humans during visual stimulation with a b/w pattern at variable

  4. Light evokes melanopsin-dependent vocalization and neural activation associated with aversive experience in neonatal mice.

    Directory of Open Access Journals (Sweden)

    Anton Delwig

    Full Text Available Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs are the only functional photoreceptive cells in the eye of newborn mice. Through postnatal day 9, in the absence of functional rods and cones, these ipRGCs mediate a robust avoidance behavior to a light source, termed negative phototaxis. To determine whether this behavior is associated with an aversive experience in neonatal mice, we characterized light-induced vocalizations and patterns of neuronal activation in regions of the brain involved in the processing of aversive and painful stimuli. Light evoked distinct melanopsin-dependent ultrasonic vocalizations identical to those emitted under stressful conditions, such as isolation from the litter. In contrast, light did not evoke the broad-spectrum calls elicited by acute mechanical pain. Using markers of neuronal activation, we found that light induced the immediate-early gene product Fos in the posterior thalamus, a brain region associated with the enhancement of responses to mechanical stimulation of the dura by light, and thought to be the basis for migrainous photophobia. Additionally, light induced the phosphorylation of extracellular-related kinase (pERK in neurons of the central amygdala, an intracellular signal associated with the processing of the aversive aspects of pain. However, light did not activate Fos expression in the spinal trigeminal nucleus caudalis, the primary receptive field for painful stimulation to the head. We conclude that these light-evoked vocalizations and the distinct pattern of brain activation in neonatal mice are consistent with a melanopsin-dependent neural pathway involved in processing light as an aversive but not acutely painful stimulus.

  5. From baseline to epileptiform activity: A path to synchronized rhythmicity in large-scale neural networks

    Science.gov (United States)

    Shusterman, Vladimir; Troy, William C.

    2008-06-01

    In large-scale neural networks in the brain the emergence of global behavioral patterns, manifested by electroencephalographic activity, is driven by the self-organization of local neuronal groups into synchronously functioning ensembles. However, the laws governing such macrobehavior and its disturbances, in particular epileptic seizures, are poorly understood. Here we use a mean-field population network model to describe a state of baseline physiological activity and the transition from the baseline state to rhythmic epileptiform activity. We describe principles which explain how this rhythmic activity arises in the form of spatially uniform self-sustained synchronous oscillations. In addition, we show how the rate of migration of the leading edge of the synchronous oscillations can be theoretically predicted, and compare the accuracy of this prediction with that measured experimentally using multichannel electrocorticographic recordings obtained from a human subject experiencing epileptic seizures. The comparison shows that the experimentally measured rate of migration of the leading edge of synchronous oscillations is within the theoretically predicted range of values. Computer simulations have been performed to investigate the interactions between different regions of the brain and to show how organization in one spatial region can promote or inhibit organization in another. Our theoretical predictions are also consistent with the results of functional magnetic resonance imaging (fMRI), in particular with observations that lower-frequency electroencephalographic (EEG) rhythms entrain larger areas of the brain than higher-frequency rhythms. These findings advance the understanding of functional behavior of interconnected populations and might have implications for the analysis of diverse classes of networks.

  6. Multiphoton minimal inertia scanning for fast acquisition of neural activity signals.

    Science.gov (United States)

    Schuck, Renaud; Go, Mary Ann; Garasto, Stefania; Reynolds, Stephanie; Dragotti, Pier Luigi; Schultz, Simon

    2017-11-13

    Multi-photon laser scanning microscopy provides a powerful tool for monitoring the spatiotemporal dynamics of neural circuit activity. It is, however, intrinsically a point scanning technique. Standard raster scanning enables imaging at subcellular resolution; however, acquisition rates are limited by the size of the field of view to be scanned. Recently developed scanning strategies such as Travelling Salesman Scanning (TSS) have been developed to maximize cellular sampling rate by scanning only select regions in the field of view corresponding to locations of interest such as somata. However, such strategies are not optimized for the mechanical properties of galvanometric scanners. We thus aimed to develop a new scanning algorithm which produces minimal inertia trajectories, and compare its performance with existing scanning algorithms. Approach: We describe here the Adaptive Spiral Scanning (SSA) algorithm, which fits a set of near-circular trajectories to the cellular distribution to avoid inertial drifts of galvanometer position. We compare its performance to raster scanning and TSS in terms of cellular sampling frequency and signal-to-noise ratio (SNR). Main Results: Using surrogate neuron spatial position data, we show that SSA acquisition rates are an order of magnitude higher than those for raster scanning and generally exceed those achieved by TSS for neural densities comparable with those found in the cortex. We show that this result also holds true for in vitro hippocampal mouse brain slices bath loaded with the synthetic calcium dye Cal-520 AM. The ability of TSS to "park" the laser on each neuron along the scanning trajectory, however, enables higher SNR than SSA when all targets are precisely scanned. Raster scanning has the highest SNR but at a substantial cost in number of cells scanned. To understand the impact of sampling rate and SNR on functional calcium imaging, we used the Crame ́r-Rao Bound on evoked calcium traces recorded

  7. Phase-dependent stimulation effects on bursting activity in a neural network cortical simulation.

    Science.gov (United States)

    Anderson, William S; Kudela, Pawel; Weinberg, Seth; Bergey, Gregory K; Franaszczuk, Piotr J

    2009-03-01

    A neural network simulation with realistic cortical architecture has been used to study synchronized bursting as a seizure representation. This model has the property that bursting epochs arise and cease spontaneously, and bursting epochs can be induced by external stimulation. We have used this simulation to study the time-frequency properties of the evolving bursting activity, as well as effects due to network stimulation. The model represents a cortical region of 1.6 mm x 1.6mm, and includes seven neuron classes organized by cortical layer, inhibitory or excitatory properties, and electrophysiological characteristics. There are a total of 65,536 modeled single compartment neurons that operate according to a version of Hodgkin-Huxley dynamics. The intercellular wiring is based on histological studies and our previous modeling efforts. The bursting phase is characterized by a flat frequency spectrum. Stimulation pulses are applied to this modeled network, with an electric field provided by a 1mm radius circular electrode represented mathematically in the simulation. A phase dependence to the post-stimulation quiescence is demonstrated, with local relative maxima in efficacy occurring before or during the network depolarization phase in the underlying activity. Brief periods of network insensitivity to stimulation are also demonstrated. The phase dependence was irregular and did not reach statistical significance when averaged over the full 2.5s of simulated bursting investigated. This result provides comparison with previous in vivo studies which have also demonstrated increased efficacy of stimulation when pulses are applied at the peak of the local field potential during cortical after discharges. The network bursting is synchronous when comparing the different neuron classes represented up to an uncertainty of 10 ms. Studies performed with an excitatory chandelier cell component demonstrated increased synchronous bursting in the model, as predicted from

  8. Common neural structures activated by epidural and transcutaneous lumbar spinal cord stimulation: Elicitation of posterior root-muscle reflexes.

    Science.gov (United States)

    Hofstoetter, Ursula S; Freundl, Brigitta; Binder, Heinrich; Minassian, Karen

    2018-01-01

    Epidural electrical stimulation of the lumbar spinal cord is currently regaining momentum as a neuromodulation intervention in spinal cord injury (SCI) to modify dysregulated sensorimotor functions and augment residual motor capacity. There is ample evidence that it engages spinal circuits through the electrical stimulation of large-to-medium diameter afferent fibers within lumbar and upper sacral posterior roots. Recent pilot studies suggested that the surface electrode-based method of transcutaneous spinal cord stimulation (SCS) may produce similar neuromodulatory effects as caused by epidural SCS. Neurophysiological and computer modeling studies proposed that this noninvasive technique stimulates posterior-root fibers as well, likely activating similar input structures to the spinal cord as epidural stimulation. Here, we add a yet missing piece of evidence substantiating this assumption. We conducted in-depth analyses and direct comparisons of the electromyographic (EMG) characteristics of short-latency responses in multiple leg muscles to both stimulation techniques derived from ten individuals with SCI each. Post-activation depression of responses evoked by paired pulses applied either epidurally or transcutaneously confirmed the reflex nature of the responses. The muscle responses to both techniques had the same latencies, EMG peak-to-peak amplitudes, and waveforms, except for smaller responses with shorter onset latencies in the triceps surae muscle group and shorter offsets of the responses in the biceps femoris muscle during epidural stimulation. Responses obtained in three subjects tested with both methods at different time points had near-identical waveforms per muscle group as well as same onset latencies. The present results strongly corroborate the activation of common neural input structures to the lumbar spinal cord-predominantly primary afferent fibers within multiple posterior roots-by both techniques and add to unraveling the basic mechanisms

  9. Characterization of K-complexes and slow wave activity in a neural mass model.

    Directory of Open Access Journals (Sweden)

    Arne Weigenand

    2014-11-01

    Full Text Available NREM sleep is characterized by two hallmarks, namely K-complexes (KCs during sleep stage N2 and cortical slow oscillations (SOs during sleep stage N3. While the underlying dynamics on the neuronal level is well known and can be easily measured, the resulting behavior on the macroscopic population level remains unclear. On the basis of an extended neural mass model of the cortex, we suggest a new interpretation of the mechanisms responsible for the generation of KCs and SOs. As the cortex transitions from wake to deep sleep, in our model it approaches an oscillatory regime via a Hopf bifurcation. Importantly, there is a canard phenomenon arising from a homoclinic bifurcation, whose orbit determines the shape of large amplitude SOs. A KC corresponds to a single excursion along the homoclinic orbit, while SOs are noise-driven oscillations around a stable focus. The model generates both time series and spectra that strikingly resemble real electroencephalogram data and points out possible differences between the different stages of natural sleep.

  10. Strategy over operation: neural activation in subtraction and multiplication during fact retrieval and procedural strategy use in children.

    Science.gov (United States)

    Polspoel, Brecht; Peters, Lien; Vandermosten, Maaike; De Smedt, Bert

    2017-09-01

    Arithmetic development is characterized by strategy shifts between procedural strategy use and fact retrieval. This study is the first to explicitly investigate children's neural activation associated with the use of these different strategies. Participants were 26 typically developing 4th graders (9- to 10-year-olds), who, in a behavioral session, were asked to verbally report on a trial-by-trial basis how they had solved 100 subtraction and multiplication items. These items were subsequently presented during functional magnetic resonance imaging. An event-related design allowed us to analyze the brain responses during retrieval and procedural trials, based on the children's verbal reports. During procedural strategy use, and more specifically for the decomposition of operands strategy, activation increases were observed in the inferior and superior parietal lobes (intraparietal sulci), inferior to superior frontal gyri, bilateral areas in the occipital lobe, and insular cortex. For retrieval, in comparison to procedural strategy use, we observed increased activity in the bilateral angular and supramarginal gyri, left middle to inferior temporal gyrus, right superior temporal gyrus, and superior medial frontal gyrus. No neural differences were found between the two operations under study. These results are the first in children to provide direct evidence for alternate neural activation when different arithmetic strategies are used and further unravel that previously found effects of operation on brain activity reflect differences in arithmetic strategy use. Hum Brain Mapp 38:4657-4670, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Individual differences in distraction by motion predicted by neural activity in MT/V5

    Directory of Open Access Journals (Sweden)

    Jennifer R Lechak

    2012-02-01

    Full Text Available Individuals differ substantially in their susceptibility to distraction by irrelevant visual information. Previous research has uncovered how individual variability in the goal-driven component of attentional control influences distraction, yet it remains unknown whether other sources of variability between individuals also predict distraction. In this fMRI study, we showed that an individual’s inherent sensitivity to passively viewed visual motion predicts his/her susceptibility to distraction by motion. Bilateral MT/V5 was localized in participants during passive viewing of moving stimuli, affording a baseline measure of motion sensitivity. Next, participants performed a visual search task with an irrelevant motion singleton distractor, and both behavioral and neural indices of distraction were recorded. Results revealed that both of these indices were predicted by the independent index of motion sensitivity. An additional analysis of moment-to-moment fluctuations in distraction within individuals revealed that distraction could be predicted by pretrial fMRI activity in several brain regions, including MT+, which likely reflected the observer’s momentary propensity to process motion. Together, these results shed light on how variability in factors other than goal-driven processing, both within and between individuals, affects attentional control and one’s perception of the visual world.

  12. Active Noise Control Using a Functional Link Artificial Neural Network with the Simultaneous Perturbation Learning Rule

    Directory of Open Access Journals (Sweden)

    Ya-li Zhou

    2009-01-01

    Full Text Available In practical active noise control (ANC systems, the primary path and the secondary path may be nonlinear and time-varying. It has been reported that the linear techniques used to control such ANC systems exhibit degradation in performance. In addition, the actuators of an ANC system very often have nonminimum-phase response. A linear controller under such situations yields poor performance. A novel functional link artificial neural network (FLANN-based simultaneous perturbation stochastic approximation (SPSA algorithm, which functions as a nonlinear mode-free (MF controller, is proposed in this paper. Computer simulations have been carried out to demonstrate that the proposed algorithm outperforms the standard filtered-x least mean square (FXLMS algorithm, and performs better than the recently proposed filtered-s least mean square (FSLMS algorithm when the secondary path is time-varying. This observation implies that the SPSA-based MF controller can eliminate the need of the modeling of the secondary path for the ANC system.

  13. Disrupting neural activity related to awake-state sharp wave-ripple complexes prevents hippocampal learning

    Directory of Open Access Journals (Sweden)

    Miriam Shirin Nokia

    2012-12-01

    Full Text Available Oscillations in hippocampal local-field potentials reflect the crucial involvement of the hippocampus in memory trace formation: theta (4-8 Hz oscillations and ripples (~200 Hz occurring during sharp waves are thought to mediate encoding and consolidation, respectively. During sharp wave-ripple complexes (SPW-Rs, hippocampal cell firing closely follows the pattern that took place during the initial experience, most likely reflecting replay of that event. Disrupting hippocampal ripples using electrical stimulation either during training in awake animals or during sleep after training retards spatial learning. Here, adult rabbits were trained in trace eyeblink conditioning, a hippocampus-dependent associative learning task. A bright light was presented to the animals during the inter-trial interval, when awake, either during SPW-Rs or irrespective of their neural state. Learning was particularly poor when the light was presented following SPW-Rs. While the light did not disrupt the ripple itself, it elicited a theta-band oscillation, a state that does not usually coincide with SPW-Rs. Thus, it seems that consolidation depends on neuronal activity within and beyond the hippocampus taking place immediately after, but by no means limited to, hippocampal SPW-Rs.

  14. A wireless recording system that utilizes Bluetooth technology to transmit neural activity in freely moving animals.

    Science.gov (United States)

    Hampson, Robert E; Collins, Vernell; Deadwyler, Sam A

    2009-09-15

    A new wireless transceiver is described for recording individual neuron firing from behaving rats utilizing Bluetooth transmission technology and a processor onboard for discrimination of neuronal waveforms and associated time stamps. This universal brain activity transmitter (UBAT) is attached to rodents via a backpack and amplifier headstage and can transmit 16 channels of captured neuronal firing data via a Bluetooth transceiver chip over very large and unconstrained distances. The onboard microprocessor of the UBAT allows flexible online control over waveform isolation criteria via transceiver instruction and the two-way communication capacity allows for closed-loop applications between neural events and behavioral or physiological processes which can be modified by transceiver instructions. A detailed description of the multiplexer processing of channel data as well as examples of neuronal recordings in different behavioral testing contexts is provided to demonstrate the capacity for robust transmission within almost any laboratory environment. A major advantage of the UBAT is the long transmission range and lack of object-based line of sight interference afforded by Bluetooth technology, allowing flexible recording capabilities within multiple experimental paradigms without interruption. Continuous recordings over very large distance separations from the monitor station are demonstrated providing experimenters with recording advantages not previously available with other telemetry devices.

  15. The lysine acetyltransferase activator Brpf1 governs dentate gyrus development through neural stem cells and progenitors.

    Directory of Open Access Journals (Sweden)

    Linya You

    2015-03-01

    Full Text Available Lysine acetylation has recently emerged as an important post-translational modification in diverse organisms, but relatively little is known about its roles in mammalian development and stem cells. Bromodomain- and PHD finger-containing protein 1 (BRPF1 is a multidomain histone binder and a master activator of three lysine acetyltransferases, MOZ, MORF and HBO1, which are also known as KAT6A, KAT6B and KAT7, respectively. While the MOZ and MORF genes are rearranged in leukemia, the MORF gene is also mutated in prostate and other cancers and in four genetic disorders with intellectual disability. Here we show that forebrain-specific inactivation of the mouse Brpf1 gene causes hypoplasia in the dentate gyrus, including underdevelopment of the suprapyramidal blade and complete loss of the infrapyramidal blade. We trace the developmental origin to compromised Sox2+ neural stem cells and Tbr2+ intermediate neuronal progenitors. We further demonstrate that Brpf1 loss deregulates neuronal migration, cell cycle progression and transcriptional control, thereby causing abnormal morphogenesis of the hippocampus. These results link histone binding and acetylation control to hippocampus development and identify an important epigenetic regulator for patterning the dentate gyrus, a brain structure critical for learning, memory and adult neurogenesis.

  16. Optical imaging of neuronal activity and visualization of fine neural structures in non-desheathed nervous systems.

    Directory of Open Access Journals (Sweden)

    Christopher John Goldsmith

    Full Text Available Locating circuit neurons and recording from them with single-cell resolution is a prerequisite for studying neural circuits. Determining neuron location can be challenging even in small nervous systems because neurons are densely packed, found in different layers, and are often covered by ganglion and nerve sheaths that impede access for recording electrodes and neuronal markers. We revisited the voltage-sensitive dye RH795 for its ability to stain and record neurons through the ganglion sheath. Bath-application of RH795 stained neuronal membranes in cricket, earthworm and crab ganglia without removing the ganglion sheath, revealing neuron cell body locations in different ganglion layers. Using the pyloric and gastric mill central pattern generating neurons in the stomatogastric ganglion (STG of the crab, Cancer borealis, we found that RH795 permeated the ganglion without major residue in the sheath and brightly stained somatic, axonal and dendritic membranes. Visibility improved significantly in comparison to unstained ganglia, allowing the identification of somata location and number of most STG neurons. RH795 also stained axons and varicosities in non-desheathed nerves, and it revealed the location of sensory cell bodies in peripheral nerves. Importantly, the spike activity of the sensory neuron AGR, which influences the STG motor patterns, remained unaffected by RH795, while desheathing caused significant changes in AGR activity. With respect to recording neural activity, RH795 allowed us to optically record membrane potential changes of sub-sheath neuronal membranes without impairing sensory activity. The signal-to-noise ratio was comparable with that previously observed in desheathed preparations and sufficiently high to identify neurons in single-sweep recordings and synaptic events after spike-triggered averaging. In conclusion, RH795 enabled staining and optical recording of neurons through the ganglion sheath and is therefore both a

  17. Age-induced differences in brain neural activation elicited by visual emotional stimuli: A high-density EEG study.

    Science.gov (United States)

    Tsolaki, Anthoula C; Kosmidou, Vasiliki E; Kompatsiaris, Ioannis Yiannis; Papadaniil, Chrysa; Hadjileontiadis, Leontios; Tsolaki, Magda

    2017-01-06

    Identifying the brain sources of neural activation during processing of emotional information remains a very challenging task. In this work, we investigated the response to different emotional stimuli and the effect of age on the neuronal activation. Two negative emotion conditions, i.e., 'anger' and 'fear' faces were presented to 22 adult female participants (11 young and 11 elderly) while acquiring high-density electroencephalogram (EEG) data of 256 channels. Brain source localization was utilized to study the modulations in the early N170 event-related-potential component. The results revealed alterations in the amplitude of N170 and the localization of areas with maximum neural activation. Furthermore, age-induced differences are shown in the topographic maps and the neural activation for both emotional stimuli. Overall, aging appeared to affect the limbic area and its implication to emotional processing. These findings can serve as a step toward the understanding of the way the brain functions and evolves with age which is a significant element in the design of assistive environments. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Trait self-esteem and neural activities related to self-evaluation and social feedback

    OpenAIRE

    Juan Yang; Xiaofan Xu; Yu Chen; Zhenhao Shi; Shihui Han

    2016-01-01

    Self-esteem has been associated with neural responses to self-reflection and attitude toward social feedback but in different brain regions. The distinct associations might arise from different tasks or task-related attitudes in the previous studies. The current study aimed to clarify these by investigating the association between self-esteem and neural responses to evaluation of one?s own personality traits and of others? opinion about one?s own personality traits. We scanned 25 college stud...

  19. A neural model for temporal order judgments and their active recalibration: a common mechanism for space and time?

    Directory of Open Access Journals (Sweden)

    Mingbo eCai

    2012-11-01

    Full Text Available When observers experience a constant delay between their motor actions and sensory feedback, their perception of the temporal order between actions and sensations adapt (Stetson et al., 2006a. We present here a novel neural model that can explain temporal order judgments (TOJs and their recalibration. Our model employs three ubiquitous features of neural systems: 1 information pooling, 2 opponent processing, and 3 synaptic scaling. Specifically, the model proposes that different populations of neurons encode different delays between motor-sensory events, the outputs of these populations feed into rivaling neural populations (encoding before and after, and the activity difference between these populations determines the perceptual judgment. As a consequence of synaptic scaling of input weights, motor acts which are consistently followed by delayed sensory feedback will cause the network to recalibrate its point of subjective simultaneity. The structure of our model raises the possibility that recalibration of TOJs is a temporal analogue to the motion aftereffect. In other words, identical neural mechanisms may be used to make perceptual determinations about both space and time. Our model captures behavioral recalibration results for different numbers of adapting trials and different adapting delays. In line with predictions of the model, we additionally demonstrate that temporal recalibration can last through time, in analogy to storage of the motion aftereffect.

  20. Fluorescence-Activated Cell Sorting of EGFP-Labeled Neural Crest Cells From Murine Embryonic Craniofacial Tissue

    Directory of Open Access Journals (Sweden)

    Saurabh Singh

    2005-01-01

    Full Text Available During the early stages of embryogenesis, pluripotent neural crest cells (NCC are known to migrate from the neural folds to populate multiple target sites in the embryo where they differentiate into various derivatives, including cartilage, bone, connective tissue, melanocytes, glia, and neurons of the peripheral nervous system. The ability to obtain pure NCC populations is essential to enable molecular analyses of neural crest induction, migration, and/or differentiation. Crossing Wnt1-Cre and Z/EG transgenic mouse lines resulted in offspring in which the Wnt1-Cre transgene activated permanent EGFP expression only in NCC. The present report demonstrates a flow cytometric method to sort and isolate populations of EGFP-labeled NCC. The identity of the sorted neural crest cells was confirmed by assaying expression of known marker genes by TaqMan Quantitative Real-Time Polymerase Chain Reaction (QRT-PCR. The molecular strategy described in this report provides a means to extract intact RNA from a pure population of NCC thus enabling analysis of gene expression in a defined population of embryonic precursor cells critical to development.

  1. Maladaptive Sexual Behavior Following Concurrent Methamphetamine and Sexual Experience in Male Rats is Associated with Altered Neural Activity in Frontal Cortex.

    Science.gov (United States)

    Kuiper, Lindsey B; Frohmader, Karla S; Coolen, Lique M

    2017-09-01

    The use of psychostimulants is often associated with hypersexuality, and psychostimulant users have identified the effects of drug on sexual behavior as a reason for further use. It was previously demonstrated in male rats that methamphetamine (Meth), when administered concurrently with sexual behavior results in impairment of inhibition of sexual behavior in a conditioned sex aversion (CSA) paradigm where mating is paired with illness. This is indicative of maladaptive sex behavior following Meth and sex experience. The present study examined the neural pathways activated during inhibition of sexual behavior in male rats and the effects of concurrent Meth and sexual behavior on neural activity, using ERK phosphorylation (pERK). First, exposure to conditioned aversive stimuli in males trained to inhibit sexual behavior in the CSA paradigm increased pERK expression in medial prefrontal (mPFC), orbitofrontal cortex (OFC) and areas in striatum and amygdala. Second, effects of concurrent Meth and sex experience were tested in males that were exposed to four daily