WorldWideScience

Sample records for neural activity model

  1. Neural Network Hydrological Modelling: Linear Output Activation Functions?

    Science.gov (United States)

    Abrahart, R. J.; Dawson, C. W.

    2005-12-01

    The power to represent non-linear hydrological processes is of paramount importance in neural network hydrological modelling operations. The accepted wisdom requires non-polynomial activation functions to be incorporated in the hidden units such that a single tier of hidden units can thereafter be used to provide a 'universal approximation' to whatever particular hydrological mechanism or function is of interest to the modeller. The user can select from a set of default activation functions, or in certain software packages, is able to define their own function - the most popular options being logistic, sigmoid and hyperbolic tangent. If a unit does not transform its inputs it is said to possess a 'linear activation function' and a combination of linear activation functions will produce a linear solution; whereas the use of non-linear activation functions will produce non-linear solutions in which the principle of superposition does not hold. For hidden units, speed of learning and network complexities are important issues. For the output units, it is desirable to select an activation function that is suited to the distribution of the target values: e.g. binary targets (logistic); categorical targets (softmax); continuous-valued targets with a bounded range (logistic / tanh); positive target values with no known upper bound (exponential; but beware of overflow); continuous-valued targets with no known bounds (linear). It is also standard practice in most hydrological applications to use the default software settings and to insert a set of identical non-linear activation functions in the hidden layer and output layer processing units. Mixed combinations have nevertheless been reported in several hydrological modelling papers and the full ramifications of such activities requires further investigation and assessment i.e. non-linear activation functions in the hidden units connected to linear or clipped-linear activation functions in the output unit. There are two

  2. Identification of non-linear models of neural activity in bold fmri

    DEFF Research Database (Denmark)

    Jacobsen, Daniel Jakup; Madsen, Kristoffer Hougaard; Hansen, Lars Kai

    2006-01-01

    Non-linear hemodynamic models express the BOLD signal as a nonlinear, parametric functional of the temporal sequence of local neural activity. Several models have been proposed for this neural activity. We identify one such parametric model by estimating the distribution of its parameters. These ...

  3. Computational modeling of neural activities for statistical inference

    CERN Document Server

    Kolossa, Antonio

    2016-01-01

    This authored monograph supplies empirical evidence for the Bayesian brain hypothesis by modeling event-related potentials (ERP) of the human electroencephalogram (EEG) during successive trials in cognitive tasks. The employed observer models are useful to compute probability distributions over observable events and hidden states, depending on which are present in the respective tasks. Bayesian model selection is then used to choose the model which best explains the ERP amplitude fluctuations. Thus, this book constitutes a decisive step towards a better understanding of the neural coding and computing of probabilities following Bayesian rules. The target audience primarily comprises research experts in the field of computational neurosciences, but the book may also be beneficial for graduate students who want to specialize in this field. .

  4. Modeling electrocortical activity through improved local approximations of integral neural field equations.

    NARCIS (Netherlands)

    Coombes, S.; Venkov, N.A.; Shiau, L.; Bojak, I.; Liley, D.T.; Laing, C.R.

    2007-01-01

    Neural field models of firing rate activity typically take the form of integral equations with space-dependent axonal delays. Under natural assumptions on the synaptic connectivity we show how one can derive an equivalent partial differential equation (PDE) model that properly treats the axonal

  5. Model Integrating Fuzzy Argument with Neural Network Enhancing the Performance of Active Queue Management

    Directory of Open Access Journals (Sweden)

    Nguyen Kim Quoc

    2015-08-01

    Full Text Available The bottleneck control by active queue management mechanisms at network nodes is essential. In recent years, some researchers have used fuzzy argument to improve the active queue management mechanisms to enhance the network performance. However, the projects using the fuzzy controller depend heavily on professionals and their parameters cannot be updated according to changes in the network, so the effectiveness of this mechanism is not high. Therefore, we propose a model combining the fuzzy controller with neural network (FNN to overcome the limitations above. Results of the training of the neural networks will find the optimal parameters for the adaptive fuzzy controller well to changes of the network. This improves the operational efficiency of the active queue management mechanisms at network nodes.

  6. Emergence of gamma motor activity in an artificial neural network model of the corticospinal system.

    Science.gov (United States)

    Grandjean, Bernard; Maier, Marc A

    2017-02-01

    Muscle spindle discharge during active movement is a function of mechanical and neural parameters. Muscle length changes (and their derivatives) represent its primary mechanical, fusimotor drive its neural component. However, neither the action nor the function of fusimotor and in particular of γ-drive, have been clearly established, since γ-motor activity during voluntary, non-locomotor movements remains largely unknown. Here, using a computational approach, we explored whether γ-drive emerges in an artificial neural network model of the corticospinal system linked to a biomechanical antagonist wrist simulator. The wrist simulator included length-sensitive and γ-drive-dependent type Ia and type II muscle spindle activity. Network activity and connectivity were derived by a gradient descent algorithm to generate reciprocal, known target α-motor unit activity during wrist flexion-extension (F/E) movements. Two tasks were simulated: an alternating F/E task and a slow F/E tracking task. Emergence of γ-motor activity in the alternating F/E network was a function of α-motor unit drive: if muscle afferent (together with supraspinal) input was required for driving α-motor units, then γ-drive emerged in the form of α-γ coactivation, as predicted by empirical studies. In the slow F/E tracking network, γ-drive emerged in the form of α-γ dissociation and provided critical, bidirectional muscle afferent activity to the cortical network, containing known bidirectional target units. The model thus demonstrates the complementary aspects of spindle output and hence γ-drive: i) muscle spindle activity as a driving force of α-motor unit activity, and ii) afferent activity providing continuous sensory information, both of which crucially depend on γ-drive.

  7. Prediction of enzyme activity with neural network models based on electronic and geometrical features of substrates.

    Science.gov (United States)

    Szaleniec, Maciej

    2012-01-01

    Artificial Neural Networks (ANNs) are introduced as robust and versatile tools in quantitative structure-activity relationship (QSAR) modeling. Their application to the modeling of enzyme reactivity is discussed, along with methodological issues. Methods of input variable selection, optimization of network internal structure, data set division and model validation are discussed. The application of ANNs in the modeling of enzyme activity over the last 20 years is briefly recounted. The discussed methodology is exemplified by the case of ethylbenzene dehydrogenase (EBDH). Intelligent Problem Solver and genetic algorithms are applied for input vector selection, whereas k-means clustering is used to partition the data into training and test cases. The obtained models exhibit high correlation between the predicted and experimental values (R(2) > 0.9). Sensitivity analyses and study of the response curves are used as tools for the physicochemical interpretation of the models in terms of the EBDH reaction mechanism. Neural networks are shown to be a versatile tool for the construction of robust QSAR models that can be applied to a range of aspects important in drug design and the prediction of biological activity.

  8. Accelerometer signal-based human activity recognition using augmented autoregressive model coefficients and artificial neural nets.

    Science.gov (United States)

    Khan, A M; Lee, Y K; Kim, T S

    2008-01-01

    Automatic recognition of human activities is one of the important and challenging research areas in proactive and ubiquitous computing. In this work, we present some preliminary results of recognizing human activities using augmented features extracted from the activity signals measured using a single triaxial accelerometer sensor and artificial neural nets. The features include autoregressive (AR) modeling coefficients of activity signals, signal magnitude areas (SMA), and title angles (TA). We have recognized four human activities using AR coefficients (ARC) only, ARC with SMA, and ARC with SMA and TA. With the last augmented features, we have achieved the recognition rate above 99% for all four activities including lying, standing, walking, and running. With our proposed technique, real time recognition of some human activities is possible.

  9. Selective neural activation in a histologically derived model of peripheral nerve

    Science.gov (United States)

    Butson, Christopher R.; Miller, Ian O.; Normann, Richard A.; Clark, Gregory A.

    2011-06-01

    Functional electrical stimulation (FES) is a general term for therapeutic methods that use electrical stimulation to aid or replace lost ability. For FES systems that communicate with the nervous system, one critical component is the electrode interface through which the machine-body information transfer must occur. In this paper, we examine the influence of inhomogeneous tissue conductivities and positions of nodes of Ranvier on activation of myelinated axons for neuromuscular control as a function of electrode configuration. To evaluate these effects, we developed a high-resolution bioelectric model of a fascicle from a stained cross-section of cat sciatic nerve. The model was constructed by digitizing a fixed specimen of peripheral nerve, extruding the image along the axis of the nerve, and assigning each anatomical component to one of several different tissue types. Electrodes were represented by current sources in monopolar, transverse bipolar, and longitudinal bipolar configurations; neural activation was determined using coupled field-neuron simulations with myelinated axon cable models. We found that the use of an isotropic tissue medium overestimated neural activation thresholds compared with the use of physiologically based, inhomogeneous tissue medium, even after controlling for mean impedance levels. Additionally, the positions of the cathodic sources relative to the nodes of Ranvier had substantial effects on activation, and these effects were modulated by the electrode configuration. Our results indicate that physiologically based tissue properties cause considerable variability in the neural response, and the inclusion of these properties is an important component in accurately predicting activation. The results are used to suggest new electrode designs to enable selective stimulation of small diameter fibers.

  10. Emergence of spatially heterogeneous burst suppression in a neural field model of electrocortical activity

    Directory of Open Access Journals (Sweden)

    Ingo eBojak

    2015-02-01

    Full Text Available Burst suppression in the electroencephalogram (EEG is a well described phenomenon that occurs during deep anaesthesia, as well as in a variety of congenital and acquired brain insults. Classically it is thought of as spatially synchronous, quasi-periodic bursts of high amplitude EEG separated by low amplitude activity. However, its characterisation as a ``global brain state'' has been challenged by recent results obtained with intracranial electrocortigraphy. Not only does it appear that burst suppression activity is highly asynchronous across cortex, but also that it may occur in isolated regions of circumscribed spatial extent. Here we outline a realistic neural field model for burst suppression by adding a slow process of synaptic resource depletion and recovery, which is able to reproduce qualitatively the empirically observed features during general anaesthesia at the whole cortex level. Simulations reveal heterogeneous bursting over the model cortex and complex spatiotemporal dynamics during simulated anaesthetic action, and provide forward predictions of neuroimaging signals for subsequent empirical comparisons and more detailed characterisation.Because burst suppression corresponds to a dynamical end-point of brain activity, theoretically accounting for its spatiotemporal emergence will vitally contribute to efforts aimed at clarifying whether a common physiological trajectory is induced by the actions of general anaesthetic agents. We have taken a first step in this direction by showing that a neural field model can qualitatively match recent experimental data that indicate spatial differentiation of burst suppression activity across cortex.

  11. Impaired activity-dependent neural circuit assembly and refinement in autism spectrum disorder genetic models

    Directory of Open Access Journals (Sweden)

    Caleb Andrew Doll

    2014-02-01

    Full Text Available Early-use activity during circuit-specific critical periods refines brain circuitry by the coupled processes of eliminating inappropriate synapses and strengthening maintained synapses. We theorize these activity-dependent developmental processes are specifically impaired in autism spectrum disorders (ASDs. ASD genetic models in both mouse and Drosophila have pioneered our insights into normal activity-dependent neural circuit assembly and consolidation, and how these developmental mechanisms go awry in specific genetic conditions. The monogenic Fragile X syndrome (FXS, a common cause of heritable ASD and intellectual disability, has been particularly well linked to defects in activity-dependent critical period processes. The Fragile X Mental Retardation Protein (FMRP is positively activity-regulated in expression and function, in turn regulates excitability and activity in a negative feedback loop, and appears to be required for the activity-dependent remodeling of synaptic connectivity during early-use critical periods. The Drosophila FXS model has been shown to functionally conserve the roles of human FMRP in synaptogenesis, and has been centrally important in generating our current mechanistic understanding of the FXS disease state. Recent advances in Drosophila optogenetics, transgenic calcium reporters, highly-targeted transgenic drivers for individually-identified neurons, and a vastly improved connectome of the brain are now being combined to provide unparalleled opportunities to both manipulate and monitor activity-dependent processes during critical period brain development in defined neural circuits. The field is now poised to exploit this new Drosophila transgenic toolbox for the systematic dissection of activity-dependent mechanisms in normal versus ASD brain development, particularly utilizing the well-established Drosophila FXS disease model.

  12. Wrestling model of the repertoire of activity propagation modes in quadruple neural networks.

    Science.gov (United States)

    Shteingart, Hanan; Raichman, Nadav; Baruchi, Itay; Ben-Jacob, Eshel

    2010-01-01

    The spontaneous activity of engineered quadruple cultured neural networks (of four-coupled sub-networks) exhibits a repertoire of different types of mutual synchronization events. Each event corresponds to a specific activity propagation mode (APM) defined by the order of activity propagation between the sub-networks. We statistically characterized the frequency of spontaneous appearance of the different types of APMs. The relative frequencies of the APMs were then examined for their power-law properties. We found that the frequencies of appearance of the leading (most frequent) APMs have close to constant algebraic ratio reminiscent of Zipf's scaling of words. We show that the observations are consistent with a simplified "wrestling" model. This model represents an extension of the "boxing arena" model which was previously proposed to describe the ratio between the two activity modes in two coupled sub-networks. The additional new element in the "wrestling" model presented here is that the firing within each network is modeled by a time interval generator with similar intra-network Lévy distribution. We modeled the different burst-initiation zones' interaction by competition between the stochastic generators with Gaussian inter-network variability. Estimation of the model parameters revealed similarity across different cultures while the inter-burst-interval of the cultures was similar across different APMs as numerical simulation of the model predicts.

  13. Model of brain activation predicts the neural collective influence map of the brain.

    Science.gov (United States)

    Morone, Flaviano; Roth, Kevin; Min, Byungjoon; Stanley, H Eugene; Makse, Hernán A

    2017-04-11

    Efficient complex systems have a modular structure, but modularity does not guarantee robustness, because efficiency also requires an ingenious interplay of the interacting modular components. The human brain is the elemental paradigm of an efficient robust modular system interconnected as a network of networks (NoN). Understanding the emergence of robustness in such modular architectures from the interconnections of its parts is a longstanding challenge that has concerned many scientists. Current models of dependencies in NoN inspired by the power grid express interactions among modules with fragile couplings that amplify even small shocks, thus preventing functionality. Therefore, we introduce a model of NoN to shape the pattern of brain activations to form a modular environment that is robust. The model predicts the map of neural collective influencers (NCIs) in the brain, through the optimization of the influence of the minimal set of essential nodes responsible for broadcasting information to the whole-brain NoN. Our results suggest intervention protocols to control brain activity by targeting influential neural nodes predicted by network theory.

  14. The effects of dynamical synapses on firing rate activity: a spiking neural network model.

    Science.gov (United States)

    Khalil, Radwa; Moftah, Marie Z; Moustafa, Ahmed A

    2017-11-01

    Accumulating evidence relates the fine-tuning of synaptic maturation and regulation of neural network activity to several key factors, including GABA A signaling and a lateral spread length between neighboring neurons (i.e., local connectivity). Furthermore, a number of studies consider short-term synaptic plasticity (STP) as an essential element in the instant modification of synaptic efficacy in the neuronal network and in modulating responses to sustained ranges of external Poisson input frequency (IF). Nevertheless, evaluating the firing activity in response to the dynamical interaction between STP (triggered by ranges of IF) and these key parameters in vitro remains elusive. Therefore, we designed a spiking neural network (SNN) model in which we incorporated the following parameters: local density of arbor essences and a lateral spread length between neighboring neurons. We also created several network scenarios based on these key parameters. Then, we implemented two classes of STP: (1) short-term synaptic depression (STD) and (2) short-term synaptic facilitation (STF). Each class has two differential forms based on the parametric value of its synaptic time constant (either for depressing or facilitating synapses). Lastly, we compared the neural firing responses before and after the treatment with STP. We found that dynamical synapses (STP) have a critical differential role on evaluating and modulating the firing rate activity in each network scenario. Moreover, we investigated the impact of changing the balance between excitation (E) and inhibition (I) on stabilizing this firing activity. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Development of a computational model on the neural activity patterns of a visual working memory in a hierarchical feedforward Network

    Science.gov (United States)

    An, Soyoung; Choi, Woochul; Paik, Se-Bum

    2015-11-01

    Understanding the mechanism of information processing in the human brain remains a unique challenge because the nonlinear interactions between the neurons in the network are extremely complex and because controlling every relevant parameter during an experiment is difficult. Therefore, a simulation using simplified computational models may be an effective approach. In the present study, we developed a general model of neural networks that can simulate nonlinear activity patterns in the hierarchical structure of a neural network system. To test our model, we first examined whether our simulation could match the previously-observed nonlinear features of neural activity patterns. Next, we performed a psychophysics experiment for a simple visual working memory task to evaluate whether the model could predict the performance of human subjects. Our studies show that the model is capable of reproducing the relationship between memory load and performance and may contribute, in part, to our understanding of how the structure of neural circuits can determine the nonlinear neural activity patterns in the human brain.

  16. Neural networks with discontinuous/impact activations

    CERN Document Server

    Akhmet, Marat

    2014-01-01

    This book presents as its main subject new models in mathematical neuroscience. A wide range of neural networks models with discontinuities are discussed, including impulsive differential equations, differential equations with piecewise constant arguments, and models of mixed type. These models involve discontinuities, which are natural because huge velocities and short distances are usually observed in devices modeling the networks. A discussion of the models, appropriate for the proposed applications, is also provided. This book also: Explores questions related to the biological underpinning for models of neural networks\\ Considers neural networks modeling using differential equations with impulsive and piecewise constant argument discontinuities Provides all necessary mathematical basics for application to the theory of neural networks Neural Networks with Discontinuous/Impact Activations is an ideal book for researchers and professionals in the field of engineering mathematics that have an interest in app...

  17. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  18. A neural model for temporal order judgments and their active recalibration: a common mechanism for space and time?

    Directory of Open Access Journals (Sweden)

    Mingbo eCai

    2012-11-01

    Full Text Available When observers experience a constant delay between their motor actions and sensory feedback, their perception of the temporal order between actions and sensations adapt (Stetson et al., 2006a. We present here a novel neural model that can explain temporal order judgments (TOJs and their recalibration. Our model employs three ubiquitous features of neural systems: 1 information pooling, 2 opponent processing, and 3 synaptic scaling. Specifically, the model proposes that different populations of neurons encode different delays between motor-sensory events, the outputs of these populations feed into rivaling neural populations (encoding before and after, and the activity difference between these populations determines the perceptual judgment. As a consequence of synaptic scaling of input weights, motor acts which are consistently followed by delayed sensory feedback will cause the network to recalibrate its point of subjective simultaneity. The structure of our model raises the possibility that recalibration of TOJs is a temporal analogue to the motion aftereffect. In other words, identical neural mechanisms may be used to make perceptual determinations about both space and time. Our model captures behavioral recalibration results for different numbers of adapting trials and different adapting delays. In line with predictions of the model, we additionally demonstrate that temporal recalibration can last through time, in analogy to storage of the motion aftereffect.

  19. Segmentation of magnetic resonance images using a combination of neural networks and active contour models.

    Science.gov (United States)

    Middleton, Ian; Damper, Robert I

    2004-01-01

    Segmentation of medical images is very important for clinical research and diagnosis, leading to a requirement for robust automatic methods. This paper reports on the combined use of a neural network (a multilayer perceptron, MLP) and active contour model ('snake') to segment structures in magnetic resonance (MR) images. The perceptron is trained to produce a binary classification of each pixel as either a boundary or a non-boundary point. Subsequently, the resulting binary (edge-point) image forms the external energy function for a snake, used to link the candidate boundary points into a continuous, closed contour. We report here on the segmentation of the lungs from multiple MR slices of the torso; lung-specific constraints have been avoided to keep the technique as general as possible. In initial investigations, the inputs to the MLP were limited to normalised intensity values of the pixels from an (7 x 7) window scanned across the image. The use of spatial coordinates as additional inputs to the MLP is then shown to provide an improvement in segmentation performance as quantified using the effectiveness measure (a weighted product of precision and recall). Training sets were first developed using a lengthy iterative process. Thereafter, a novel cost function based on effectiveness is proposed for training that allows us to achieve dramatic improvements in segmentation performance, as well as faster, non-iterative selection of training examples. The classifications produced using this cost function were sufficiently good that the binary image produced by the MLP could be post-processed using an active contour model to provide an accurate segmentation of the lungs from the multiple slices in almost all cases, including unseen slices and subjects.

  20. A Granger causality measure for point process models of ensemble neural spiking activity.

    Directory of Open Access Journals (Sweden)

    Sanggyun Kim

    2011-03-01

    Full Text Available The ability to identify directional interactions that occur among multiple neurons in the brain is crucial to an understanding of how groups of neurons cooperate in order to generate specific brain functions. However, an optimal method of assessing these interactions has not been established. Granger causality has proven to be an effective method for the analysis of the directional interactions between multiple sets of continuous-valued data, but cannot be applied to neural spike train recordings due to their discrete nature. This paper proposes a point process framework that enables Granger causality to be applied to point process data such as neural spike trains. The proposed framework uses the point process likelihood function to relate a neuron's spiking probability to possible covariates, such as its own spiking history and the concurrent activity of simultaneously recorded neurons. Granger causality is assessed based on the relative reduction of the point process likelihood of one neuron obtained excluding one of its covariates compared to the likelihood obtained using all of its covariates. The method was tested on simulated data, and then applied to neural activity recorded from the primary motor cortex (MI of a Felis catus subject. The interactions present in the simulated data were predicted with a high degree of accuracy, and when applied to the real neural data, the proposed method identified causal relationships between many of the recorded neurons. This paper proposes a novel method that successfully applies Granger causality to point process data, and has the potential to provide unique physiological insights when applied to neural spike trains.

  1. A Granger causality measure for point process models of ensemble neural spiking activity.

    Science.gov (United States)

    Kim, Sanggyun; Putrino, David; Ghosh, Soumya; Brown, Emery N

    2011-03-01

    The ability to identify directional interactions that occur among multiple neurons in the brain is crucial to an understanding of how groups of neurons cooperate in order to generate specific brain functions. However, an optimal method of assessing these interactions has not been established. Granger causality has proven to be an effective method for the analysis of the directional interactions between multiple sets of continuous-valued data, but cannot be applied to neural spike train recordings due to their discrete nature. This paper proposes a point process framework that enables Granger causality to be applied to point process data such as neural spike trains. The proposed framework uses the point process likelihood function to relate a neuron's spiking probability to possible covariates, such as its own spiking history and the concurrent activity of simultaneously recorded neurons. Granger causality is assessed based on the relative reduction of the point process likelihood of one neuron obtained excluding one of its covariates compared to the likelihood obtained using all of its covariates. The method was tested on simulated data, and then applied to neural activity recorded from the primary motor cortex (MI) of a Felis catus subject. The interactions present in the simulated data were predicted with a high degree of accuracy, and when applied to the real neural data, the proposed method identified causal relationships between many of the recorded neurons. This paper proposes a novel method that successfully applies Granger causality to point process data, and has the potential to provide unique physiological insights when applied to neural spike trains.

  2. Influence of neural adaptation on dynamics and equilibrium state of neural activities in a ring neural network

    Science.gov (United States)

    Takiyama, Ken

    2017-12-01

    How neural adaptation affects neural information processing (i.e. the dynamics and equilibrium state of neural activities) is a central question in computational neuroscience. In my previous works, I analytically clarified the dynamics and equilibrium state of neural activities in a ring-type neural network model that is widely used to model the visual cortex, motor cortex, and several other brain regions. The neural dynamics and the equilibrium state in the neural network model corresponded to a Bayesian computation and statistically optimal multiple information integration, respectively, under a biologically inspired condition. These results were revealed in an analytically tractable manner; however, adaptation effects were not considered. Here, I analytically reveal how the dynamics and equilibrium state of neural activities in a ring neural network are influenced by spike-frequency adaptation (SFA). SFA is an adaptation that causes gradual inhibition of neural activity when a sustained stimulus is applied, and the strength of this inhibition depends on neural activities. I reveal that SFA plays three roles: (1) SFA amplifies the influence of external input in neural dynamics; (2) SFA allows the history of the external input to affect neural dynamics; and (3) the equilibrium state corresponds to the statistically optimal multiple information integration independent of the existence of SFA. In addition, the equilibrium state in a ring neural network model corresponds to the statistically optimal integration of multiple information sources under biologically inspired conditions, independent of the existence of SFA.

  3. Artificial Neural Networks for Reducing Computational Effort in Active Truncated Model Testing of Mooring Lines

    DEFF Research Database (Denmark)

    Christiansen, Niels Hørbye; Voie, Per Erlend Torbergsen; Høgsberg, Jan Becker

    2015-01-01

    simultaneously, this method is very demanding in terms of numerical efficiency and computational power. Therefore, this method has not yet proved to be feasible. It has recently been shown how a hybrid method combining classical numerical models and artificial neural networks (ANN) can provide a dramatic...... model. Hence, in principal it is possible to achieve reliable experimental data for much larger water depths than what the actual depth of the test basin would suggest. However, since the computations must be faster than real time, as the numerical simulations and the physical experiment run...... reduction in computational effort when performing time domain simulation of mooring lines. The hybrid method uses a classical numerical model to generate simulation data, which are then subsequently used to train the ANN. After successful training the ANN is able to take over the simulation at a speed two...

  4. Modeling the dynamics of human brain activity with recurrent neural networks

    NARCIS (Netherlands)

    Güçlü, U.; Gerven, M.A.J. van

    2017-01-01

    Encoding models are used for predicting brain activity in response to sensory stimuli with the objective of elucidating how sensory information is represented in the brain. Encoding models typically comprise a nonlinear transformation of stimuli to features (feature model) and a linear convolution

  5. Characterization of K-complexes and slow wave activity in a neural mass model.

    Directory of Open Access Journals (Sweden)

    Arne Weigenand

    2014-11-01

    Full Text Available NREM sleep is characterized by two hallmarks, namely K-complexes (KCs during sleep stage N2 and cortical slow oscillations (SOs during sleep stage N3. While the underlying dynamics on the neuronal level is well known and can be easily measured, the resulting behavior on the macroscopic population level remains unclear. On the basis of an extended neural mass model of the cortex, we suggest a new interpretation of the mechanisms responsible for the generation of KCs and SOs. As the cortex transitions from wake to deep sleep, in our model it approaches an oscillatory regime via a Hopf bifurcation. Importantly, there is a canard phenomenon arising from a homoclinic bifurcation, whose orbit determines the shape of large amplitude SOs. A KC corresponds to a single excursion along the homoclinic orbit, while SOs are noise-driven oscillations around a stable focus. The model generates both time series and spectra that strikingly resemble real electroencephalogram data and points out possible differences between the different stages of natural sleep.

  6. Commonality of neural representations of sentences across languages: Predicting brain activation during Portuguese sentence comprehension using an English-based model of brain function.

    Science.gov (United States)

    Yang, Ying; Wang, Jing; Bailer, Cyntia; Cherkassky, Vladimir; Just, Marcel Adam

    2017-02-01

    The aim of the study was to test the cross-language generative capability of a model that predicts neural activation patterns evoked by sentence reading, based on a semantic characterization of the sentence. In a previous study on English monolingual speakers (Wang et al., submitted), a computational model performed a mapping from a set of 42 concept-level semantic features (Neurally Plausible Semantic Features, NPSFs) as well as 6 thematic role markers to neural activation patterns (assessed with fMRI), to predict activation levels in a network of brain locations. The model used two types of information gained from the English-based fMRI data to predict the activation for individual sentences in Portuguese. First, it used the mapping weights from NPSFs to voxel activation levels derived from the model for English reading. Second, the brain locations for which the activation levels were predicted were derived from a factor analysis of the brain activation patterns during English reading. These meta-language locations were defined by the clusters of voxels with high loadings on each of the four main dimensions (factors), namely people, places, actions and feelings, underlying the neural representations of the stimulus sentences. This cross-language model succeeded in predicting the brain activation patterns associated with the reading of 60 individual Portuguese sentences that were entirely new to the model, attaining accuracies reliably above chance level. The prediction accuracy was not affected by whether the Portuguese speaker was monolingual or Portuguese-English bilingual. The model's confusion errors indicated an accurate capture of the events or states described in the sentence at a conceptual level. Overall, the cross-language predictive capability of the model demonstrates the neural commonality between speakers of different languages in the representations of everyday events and states, and provides an initial characterization of the common meta

  7. A Pharmacokinetics-Neural Mass Model (PK-NMM) for the Simulation of EEG Activity during Propofol Anesthesia.

    Science.gov (United States)

    Liang, Zhenhu; Duan, Xuejing; Su, Cui; Voss, Logan; Sleigh, Jamie; Li, Xiaoli

    2015-01-01

    Modeling the effects of anesthetic drugs on brain activity is very helpful in understanding anesthesia mechanisms. The aim of this study was to set up a combined model to relate actual drug levels to EEG dynamics and behavioral states during propofol-induced anesthesia. We proposed a new combined theoretical model based on a pharmacokinetics (PK) model and a neural mass model (NMM), which we termed PK-NMM--with the aim of simulating electroencephalogram (EEG) activity during propofol-induced general anesthesia. The PK model was used to derive propofol effect-site drug concentrations (C(eff)) based on the actual drug infusion regimen. The NMM model took C(eff) as the control parameter to produce simulated EEG-like (sEEG) data. For comparison, we used real prefrontal EEG (rEEG) data of nine volunteers undergoing propofol anesthesia from a previous experiment. To see how well the sEEG could describe the dynamic changes of neural activity during anesthesia, the rEEG data and the sEEG data were compared with respect to: power-frequency plots; nonlinear exponent (permutation entropy (PE)); and bispectral SynchFastSlow (SFS) parameters. We found that the PK-NMM model was able to reproduce anesthesia EEG-like signals based on the estimated drug concentration and patients' condition. The frequency spectrum indicated that the frequency power peak of the sEEG moved towards the low frequency band as anesthesia deepened. Different anesthetic states could be differentiated by the PE index. The correlation coefficient of PE was 0.80 ± 0.13 (mean ± standard deviation) between rEEG and sEEG for all subjects. Additionally, SFS could track the depth of anesthesia and the SFS of rEEG and sEEG were highly correlated with a correlation coefficient of 0.77 ± 0.13. The PK-NMM model could simulate EEG activity and might be a useful tool for understanding the action of propofol on brain activity.

  8. Spike Neural Models Part II: Abstract Neural Models

    OpenAIRE

    Johnson, Melissa G.; Chartier, Sylvain

    2018-01-01

    Neurons are complex cells that require a lot of time and resources to model completely. In spiking neural networks (SNN) though, not all that complexity is required. Therefore simple, abstract models are often used. These models save time, use less computer resources, and are easier to understand. This tutorial presents two such models: Izhikevich's model, which is biologically realistic in the resulting spike trains but not in the parameters, and the Leaky Integrate and Fire (LIF) model whic...

  9. Internal model control of inductive magnetic suspension spherical active joints based on fuzzy neural network inverse system

    Directory of Open Access Journals (Sweden)

    Li Zeng

    2015-11-01

    Full Text Available This article puts forward inductive magnetic suspension spherical active joints and has researched on its mechanism. The expression of motor’s electromagnetic torque is derived from the point of power balance of three-dimensional electromagnetic model, and on the basis of the air gap magnetic flux density distribution, we establish the joint’s mathematical model of electromagnetic levitation force. The relationship between the two of displacement, angle, and current and the transfer function expression of motor system are derived by the state equation and the inverse system theory We established the inverse system of joint’s original system using fuzzy neural network theory and simplified coupling relationship of the motor’s complex multivariable to establish ANFIS model of joint’s inverse system. An internal model controller with high robustness and stability was designed, and an internal model control joint pseudo linear system was built. According to the simulation analysis and experimental verification of the joint control system, the conclusion indicates that the rotor has quick dynamic response and high robustness.

  10. The application of the multi-alternative approach in active neural network models

    Science.gov (United States)

    Podvalny, S.; Vasiljev, E.

    2017-02-01

    The article refers to the construction of intelligent systems based artificial neuron networks are used. We discuss the basic properties of the non-compliance of artificial neuron networks and their biological prototypes. It is shown here that the main reason for these discrepancies is the structural immutability of the neuron network models in the learning process, that is, their passivity. Based on the modern understanding of the biological nervous system as a structured ensemble of nerve cells, it is proposed to abandon the attempts to simulate its work at the level of the elementary neurons functioning processes and proceed to the reproduction of the information structure of data storage and processing on the basis of the general enough evolutionary principles of multialternativity, i.e. the multi-level structural model, diversity and modularity. The implementation method of these principles is offered, using the faceted memory organization in the neuron network with the rearranging active structure. An example of the implementation of the active facet-type neuron network in the intellectual decision-making system in the conditions of critical events development in the electrical distribution system.

  11. Neural network modelling of antifungal activity of a series of oxazole derivatives based on in silico pharmacokinetic parameters

    Directory of Open Access Journals (Sweden)

    Kovačević Strahinja Z.

    2013-01-01

    Full Text Available In the present paper, the antifungal activity of a series of benzoxazole and oxazolo[ 4,5-b]pyridine derivatives was evaluated against Candida albicans by using quantitative structure-activity relationships chemometric methodology with artificial neural network (ANN regression approach. In vitro antifungal activity of the tested compounds was presented by minimum inhibitory concentration expressed as log(1/cMIC. In silico pharmacokinetic parameters related to absorption, distribution, metabolism and excretion (ADME were calculated for all studied compounds by using PreADMET software. A feedforward back-propagation ANN with gradient descent learning algorithm was applied for modelling of the relationship between ADME descriptors (blood-brain barrier penetration, plasma protein binding, Madin-Darby cell permeability and Caco-2 cell permeability and experimental log(1/cMIC values. A 4-6-1 ANN was developed with the optimum momentum and learning rates of 0.3 and 0.05, respectively. An excellent correlation between experimental antifungal activity and values predicted by the ANN was obtained with a correlation coefficient of 0.9536. [Projekat Ministarstva nauke Republike Srbije, br. 172012 i br. 172014

  12. Reinforcement learning models and their neural correlates: An activation likelihood estimation meta-analysis.

    Science.gov (United States)

    Chase, Henry W; Kumar, Poornima; Eickhoff, Simon B; Dombrovski, Alexandre Y

    2015-06-01

    Reinforcement learning describes motivated behavior in terms of two abstract signals. The representation of discrepancies between expected and actual rewards/punishments-prediction error-is thought to update the expected value of actions and predictive stimuli. Electrophysiological and lesion studies have suggested that mesostriatal prediction error signals control behavior through synaptic modification of cortico-striato-thalamic networks. Signals in the ventromedial prefrontal and orbitofrontal cortex are implicated in representing expected value. To obtain unbiased maps of these representations in the human brain, we performed a meta-analysis of functional magnetic resonance imaging studies that had employed algorithmic reinforcement learning models across a variety of experimental paradigms. We found that the ventral striatum (medial and lateral) and midbrain/thalamus represented reward prediction errors, consistent with animal studies. Prediction error signals were also seen in the frontal operculum/insula, particularly for social rewards. In Pavlovian studies, striatal prediction error signals extended into the amygdala, whereas instrumental tasks engaged the caudate. Prediction error maps were sensitive to the model-fitting procedure (fixed or individually estimated) and to the extent of spatial smoothing. A correlate of expected value was found in a posterior region of the ventromedial prefrontal cortex, caudal and medial to the orbitofrontal regions identified in animal studies. These findings highlight a reproducible motif of reinforcement learning in the cortico-striatal loops and identify methodological dimensions that may influence the reproducibility of activation patterns across studies.

  13. Neural predictive control for active buffet alleviation

    Science.gov (United States)

    Pado, Lawrence E.; Lichtenwalner, Peter F.; Liguore, Salvatore L.; Drouin, Donald

    1998-06-01

    The adaptive neural control of aeroelastic response (ANCAR) and the affordable loads and dynamics independent research and development (IRAD) programs at the Boeing Company jointly examined using neural network based active control technology for alleviating undesirable vibration and aeroelastic response in a scale model aircraft vertical tail. The potential benefits of adaptive control includes reducing aeroelastic response associated with buffet and atmospheric turbulence, increasing flutter margins, and reducing response associated with nonlinear phenomenon like limit cycle oscillations. By reducing vibration levels and thus loads, aircraft structures can have lower acquisition cost, reduced maintenance, and extended lifetimes. Wind tunnel tests were undertaken on a rigid 15% scale aircraft in Boeing's mini-speed wind tunnel, which is used for testing at very low air speeds up to 80 mph. The model included a dynamically scaled flexible fail consisting of an aluminum spar with balsa wood cross sections with a hydraulically powered rudder. Neural predictive control was used to actuate the vertical tail rudder in response to strain gauge feedback to alleviate buffeting effects. First mode RMS strain reduction of 50% was achieved. The neural predictive control system was developed and implemented by the Boeing Company to provide an intelligent, adaptive control architecture for smart structures applications with automated synthesis, self-optimization, real-time adaptation, nonlinear control, and fault tolerance capabilities. It is designed to solve complex control problems though a process of automated synthesis, eliminating costly control design and surpassing it in many instances by accounting for real world non-linearities.

  14. Closed-loop control of epileptiform activities in a neural population model using a proportional-derivative controller

    Science.gov (United States)

    Wang, Jun-Song; Wang, Mei-Li; Li, Xiao-Li; Ernst, Niebur

    2015-03-01

    Epilepsy is believed to be caused by a lack of balance between excitation and inhibitation in the brain. A promising strategy for the control of the disease is closed-loop brain stimulation. How to determine the stimulation control parameters for effective and safe treatment protocols remains, however, an unsolved question. To constrain the complex dynamics of the biological brain, we use a neural population model (NPM). We propose that a proportional-derivative (PD) type closed-loop control can successfully suppress epileptiform activities. First, we determine the stability of root loci, which reveals that the dynamical mechanism underlying epilepsy in the NPM is the loss of homeostatic control caused by the lack of balance between excitation and inhibition. Then, we design a PD type closed-loop controller to stabilize the unstable NPM such that the homeostatic equilibriums are maintained; we show that epileptiform activities are successfully suppressed. A graphical approach is employed to determine the stabilizing region of the PD controller in the parameter space, providing a theoretical guideline for the selection of the PD control parameters. Furthermore, we establish the relationship between the control parameters and the model parameters in the form of stabilizing regions to help understand the mechanism of suppressing epileptiform activities in the NPM. Simulations show that the PD-type closed-loop control strategy can effectively suppress epileptiform activities in the NPM. Project supported by the National Natural Science Foundation of China (Grant Nos. 61473208, 61025019, and 91132722), ONR MURI N000141010278, and NIH grant R01EY016281.

  15. Generalization performance of regularized neural network models

    DEFF Research Database (Denmark)

    Larsen, Jan; Hansen, Lars Kai

    1994-01-01

    Architecture optimization is a fundamental problem of neural network modeling. The optimal architecture is defined as the one which minimizes the generalization error. This paper addresses estimation of the generalization performance of regularized, complete neural network models. Regularization...

  16. Plant Growth Models Using Artificial Neural Networks

    Science.gov (United States)

    Bubenheim, David

    1997-01-01

    In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.

  17. Genetic neural network modeling of the selective inhibition of the intermediate-conductance Ca2+-activated K+ channel by some triarylmethanes using topological charge indexes descriptors

    Science.gov (United States)

    Caballero, Julio; Garriga, Miguel; Fernández, Michael

    2005-11-01

    Selective inhibition of the intermediate-conductance Ca2+-activated K+ channel ( IK Ca) by some clotrimazole analogs has been successfully modeled using topological charge indexes (TCI) and genetic neural networks (GNNs). A neural network monitoring scheme evidenced a highly non-linear dependence between the IK Ca blocking activity and TCI descriptors. Suitable subsets of descriptors were selected by means of genetic algorithm. Bayesian regularization was implemented in the network training function with the aim of assuring good generalization qualities to the predictors. GNNs were able to yield a reliable predictor that explained about 97% data variance with good predictive ability. On the contrary, the best multivariate linear equation with descriptors selected by linear genetic search, only explained about 60%. In spite of when using the descriptors from the linear equations to train neural networks yielded higher fitted models, such networks were very unstable and had relative low predictive ability. However, the best GNN BRANN 2 had a Q 2 of LOO of cross-validation equal to 0.901 and at the same time exhibited outstanding stability when calculating 80 randomly constructed training/test sets partitions. Our model suggested that structural fragments of size three and seven have relevant influence on the inhibitory potency of the studied IK Ca channel blockers. Furthermore, inhibitors were well distributed regarding its activity levels in a Kohonen self-organizing map (KSOM) built using the inputs of the best neural network predictor.

  18. Neural network modeling of emotion

    Science.gov (United States)

    Levine, Daniel S.

    2007-03-01

    This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.

  19. Plasmodium berghei ANKA: erythropoietin activates neural stem cells in an experimental cerebral malaria model

    DEFF Research Database (Denmark)

    Core, Andrew; Hempel, Casper; Kurtzhals, Jørgen A L

    2011-01-01

    Cerebral malaria (CM) causes substantial mortality and neurological sequelae in survivors, and no neuroprotective regimens are currently available for this condition. Erythropoietin (EPO) reduces neuropathology and improves survival in murine CM. Using the Plasmodium berghei model of CM, we...

  20. A hardware model of the auditory periphery to transduce acoustic signals into neural activity

    Directory of Open Access Journals (Sweden)

    Takashi eTateno

    2013-11-01

    Full Text Available To improve the performance of cochlear implants, we have integrated a microdevice into a model of the auditory periphery with the goal of creating a microprocessor. We constructed an artificial peripheral auditory system using a hybrid model in which polyvinylidene difluoride was used as a piezoelectric sensor to convert mechanical stimuli into electric signals. To produce frequency selectivity, the slit on a stainless steel base plate was designed such that the local resonance frequency of the membrane over the slit reflected the transfer function. In the acoustic sensor, electric signals were generated based on the piezoelectric effect from local stress in the membrane. The electrodes on the resonating plate produced relatively large electric output signals. The signals were fed into a computer model that mimicked some functions of inner hair cells, inner hair cell–auditory nerve synapses, and auditory nerve fibers. In general, the responses of the model to pure-tone burst and complex stimuli accurately represented the discharge rates of high-spontaneous-rate auditory nerve fibers across a range of frequencies greater than 1 kHz and middle to high sound pressure levels. Thus, the model provides a tool to understand information processing in the peripheral auditory system and a basic design for connecting artificial acoustic sensors to the peripheral auditory nervous system. Finally, we discuss the need for stimulus control with an appropriate model of the auditory periphery based on auditory brainstem responses that were electrically evoked by different temporal pulse patterns with the same pulse number.

  1. Dynamics of a modified Hindmarsh-Rose neural model with random perturbations: Moment analysis and firing activities

    Science.gov (United States)

    Mondal, Argha; Upadhyay, Ranjit Kumar

    2017-11-01

    In this paper, an attempt has been made to understand the activity of mean membrane voltage and subsidiary system variables with moment equations (i.e., mean, variance and covariance's) under noisy environment. We consider a biophysically plausible modified Hindmarsh-Rose (H-R) neural system injected by an applied current exhibiting spiking-bursting phenomenon. The effects of predominant parameters on the dynamical behavior of a modified H-R system are investigated. Numerically, it exhibits period-doubling, period halving bifurcation and chaos phenomena. Further, a nonlinear system has been analyzed for the first and second order moments with additive stochastic perturbations. It has been solved using fourth order Runge-Kutta method and noisy systems by Euler's scheme. It has been demonstrated that the firing properties of neurons to evoke an action potential in a certain parameter space of the large exact systems can be estimated using an approximated model. Strong stimulation can cause a change in increase or decrease of the firing patterns. Corresponding to a fixed set of parameter values, the firing behavior and dynamical differences of the collective variables of a large, exact and approximated systems are investigated.

  2. Delayed afterdepolarization and spontaneous secondary spiking in a simple model of neural activity

    Science.gov (United States)

    Klinshov, V. V.; Nekorkin, V. I.

    2012-03-01

    In this paper we suggest a new dynamical model of neuron excitability. It is based on the classical FitzHugh-Nagumo model in which we introduce the third variable for additional ionic current. By using the method of fast and slow motions we study the afterdepolarization, spontaneous secondary spiking and tonic spiking effects. We build regions in the parameter space that correspond to different dynamical regimes. The obtained results may be important for different problems of neuroscience, e.g. for the problem of working memory.

  3. Myelin plasticity, neural activity, and traumatic neural injury.

    Science.gov (United States)

    Kondiles, Bethany R; Horner, Philip J

    2018-02-01

    The possibility that adult organisms exhibit myelin plasticity has recently become a topic of great interest. Many researchers are exploring the role of myelin growth and adaptation in daily functions such as memory and motor learning. Here we consider evidence for three different potential categories of myelin plasticity: the myelination of previously bare axons, remodeling of existing sheaths, and the removal of a sheath with replacement by a new internode. We also review evidence that points to the importance of neural activity as a mechanism by which oligodendrocyte precursor cells (OPCs) are cued to differentiate into myelinating oligodendrocytes, which may potentially be an important component of myelin plasticity. Finally, we discuss demyelination in the context of traumatic neural injury and present an argument for altering neural activity as a potential therapeutic target for remyelination following injury. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 108-122, 2018. © 2017 Wiley Periodicals, Inc.

  4. A Bayesian framework for simultaneously modeling neural and behavioral data.

    Science.gov (United States)

    Turner, Brandon M; Forstmann, Birte U; Wagenmakers, Eric-Jan; Brown, Scott D; Sederberg, Per B; Steyvers, Mark

    2013-05-15

    Scientists who study cognition infer underlying processes either by observing behavior (e.g., response times, percentage correct) or by observing neural activity (e.g., the BOLD response). These two types of observations have traditionally supported two separate lines of study. The first is led by cognitive modelers, who rely on behavior alone to support their computational theories. The second is led by cognitive neuroimagers, who rely on statistical models to link patterns of neural activity to experimental manipulations, often without any attempt to make a direct connection to an explicit computational theory. Here we present a flexible Bayesian framework for combining neural and cognitive models. Joining neuroimaging and computational modeling in a single hierarchical framework allows the neural data to influence the parameters of the cognitive model and allows behavioral data, even in the absence of neural data, to constrain the neural model. Critically, our Bayesian approach can reveal interactions between behavioral and neural parameters, and hence between neural activity and cognitive mechanisms. We demonstrate the utility of our approach with applications to simulated fMRI data with a recognition model and to diffusion-weighted imaging data with a response time model of perceptual choice. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. A Bayesian framework for simultaneously modeling neural and behavioral data✩

    Science.gov (United States)

    Turner, Brandon M.; Forstmann, Birte U.; Wagenmakers, Eric-Jan; Brown, Scott D.; Sederberg, Per B.; Steyvers, Mark

    2013-01-01

    Scientists who study cognition infer underlying processes either by observing behavior (e.g., response times, percentage correct) or by observing neural activity (e.g., the BOLD response). These two types of observations have traditionally supported two separate lines of study. The first is led by cognitive modelers, who rely on behavior alone to support their computational theories. The second is led by cognitive neuroimagers, who rely on statistical models to link patterns of neural activity to experimental manipulations, often without any attempt to make a direct connection to an explicit computational theory. Here we present a flexible Bayesian framework for combining neural and cognitive models. Joining neuroimaging and computational modeling in a single hierarchical framework allows the neural data to influence the parameters of the cognitive model and allows behavioral data, even in the absence of neural data, to constrain the neural model. Critically, our Bayesian approach can reveal interactions between behavioral and neural parameters, and hence between neural activity and cognitive mechanisms. We demonstrate the utility of our approach with applications to simulated fMRI data with a recognition model and to diffusion-weighted imaging data with a response time model of perceptual choice. PMID:23370060

  6. Coding stimulus amplitude by correlated neural activity.

    Science.gov (United States)

    Metzen, Michael G; Ávila-Åkerberg, Oscar; Chacron, Maurice J

    2015-04-01

    While correlated activity is observed ubiquitously in the brain, its role in neural coding has remained controversial. Recent experimental results have demonstrated that correlated but not single-neuron activity can encode the detailed time course of the instantaneous amplitude (i.e., envelope) of a stimulus. These have furthermore demonstrated that such coding required and was optimal for a nonzero level of neural variability. However, a theoretical understanding of these results is still lacking. Here we provide a comprehensive theoretical framework explaining these experimental findings. Specifically, we use linear response theory to derive an expression relating the correlation coefficient to the instantaneous stimulus amplitude, which takes into account key single-neuron properties such as firing rate and variability as quantified by the coefficient of variation. The theoretical prediction was in excellent agreement with numerical simulations of various integrate-and-fire type neuron models for various parameter values. Further, we demonstrate a form of stochastic resonance as optimal coding of stimulus variance by correlated activity occurs for a nonzero value of noise intensity. Thus, our results provide a theoretical explanation of the phenomenon by which correlated but not single-neuron activity can code for stimulus amplitude and how key single-neuron properties such as firing rate and variability influence such coding. Correlation coding by correlated but not single-neuron activity is thus predicted to be a ubiquitous feature of sensory processing for neurons responding to weak input.

  7. The Effects of GABAergic Polarity Changes on Episodic Neural Network Activity in Developing Neural Systems

    Directory of Open Access Journals (Sweden)

    Wilfredo Blanco

    2017-09-01

    Full Text Available Early in development, neural systems have primarily excitatory coupling, where even GABAergic synapses are excitatory. Many of these systems exhibit spontaneous episodes of activity that have been characterized through both experimental and computational studies. As development progress the neural system goes through many changes, including synaptic remodeling, intrinsic plasticity in the ion channel expression, and a transformation of GABAergic synapses from excitatory to inhibitory. What effect each of these, and other, changes have on the network behavior is hard to know from experimental studies since they all happen in parallel. One advantage of a computational approach is that one has the ability to study developmental changes in isolation. Here, we examine the effects of GABAergic synapse polarity change on the spontaneous activity of both a mean field and a neural network model that has both glutamatergic and GABAergic coupling, representative of a developing neural network. We find some intuitive behavioral changes as the GABAergic neurons go from excitatory to inhibitory, shared by both models, such as a decrease in the duration of episodes. We also find some paradoxical changes in the activity that are only present in the neural network model. In particular, we find that during early development the inter-episode durations become longer on average, while later in development they become shorter. In addressing this unexpected finding, we uncover a priming effect that is particularly important for a small subset of neurons, called the “intermediate neurons.” We characterize these neurons and demonstrate why they are crucial to episode initiation, and why the paradoxical behavioral change result from priming of these neurons. The study illustrates how even arguably the simplest of developmental changes that occurs in neural systems can present non-intuitive behaviors. It also makes predictions about neural network behavioral changes

  8. Activity-dependent neural plasticity from bench to bedside.

    Science.gov (United States)

    Ganguly, Karunesh; Poo, Mu-Ming

    2013-10-30

    Much progress has been made in understanding how behavioral experience and neural activity can modify the structure and function of neural circuits during development and in the adult brain. Studies of physiological and molecular mechanisms underlying activity-dependent plasticity in animal models have suggested potential therapeutic approaches for a wide range of brain disorders in humans. Physiological and electrical stimulations as well as plasticity-modifying molecular agents may facilitate functional recovery by selectively enhancing existing neural circuits or promoting the formation of new functional circuits. Here, we review the advances in basic studies of neural plasticity mechanisms in developing and adult nervous systems and current clinical treatments that harness neural plasticity, and we offer perspectives on future development of plasticity-based therapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Embedding responses in spontaneous neural activity shaped through sequential learning.

    Science.gov (United States)

    Kurikawa, Tomoki; Kaneko, Kunihiko

    2013-01-01

    Recent experimental measurements have demonstrated that spontaneous neural activity in the absence of explicit external stimuli has remarkable spatiotemporal structure. This spontaneous activity has also been shown to play a key role in the response to external stimuli. To better understand this role, we proposed a viewpoint, "memories-as-bifurcations," that differs from the traditional "memories-as-attractors" viewpoint. Memory recall from the memories-as-bifurcations viewpoint occurs when the spontaneous neural activity is changed to an appropriate output activity upon application of an input, known as a bifurcation in dynamical systems theory, wherein the input modifies the flow structure of the neural dynamics. Learning, then, is a process that helps create neural dynamical systems such that a target output pattern is generated as an attractor upon a given input. Based on this novel viewpoint, we introduce in this paper an associative memory model with a sequential learning process. Using a simple hebbian-type learning, the model is able to memorize a large number of input/output mappings. The neural dynamics shaped through the learning exhibit different bifurcations to make the requested targets stable upon an increase in the input, and the neural activity in the absence of input shows chaotic dynamics with occasional approaches to the memorized target patterns. These results suggest that these dynamics facilitate the bifurcations to each target attractor upon application of the corresponding input, which thus increases the capacity for learning. This theoretical finding about the behavior of the spontaneous neural activity is consistent with recent experimental observations in which the neural activity without stimuli wanders among patterns evoked by previously applied signals. In addition, the neural networks shaped by learning properly reflect the correlations of input and target-output patterns in a similar manner to those designed in our previous study.

  10. Embedding responses in spontaneous neural activity shaped through sequential learning.

    Directory of Open Access Journals (Sweden)

    Tomoki Kurikawa

    Full Text Available Recent experimental measurements have demonstrated that spontaneous neural activity in the absence of explicit external stimuli has remarkable spatiotemporal structure. This spontaneous activity has also been shown to play a key role in the response to external stimuli. To better understand this role, we proposed a viewpoint, "memories-as-bifurcations," that differs from the traditional "memories-as-attractors" viewpoint. Memory recall from the memories-as-bifurcations viewpoint occurs when the spontaneous neural activity is changed to an appropriate output activity upon application of an input, known as a bifurcation in dynamical systems theory, wherein the input modifies the flow structure of the neural dynamics. Learning, then, is a process that helps create neural dynamical systems such that a target output pattern is generated as an attractor upon a given input. Based on this novel viewpoint, we introduce in this paper an associative memory model with a sequential learning process. Using a simple hebbian-type learning, the model is able to memorize a large number of input/output mappings. The neural dynamics shaped through the learning exhibit different bifurcations to make the requested targets stable upon an increase in the input, and the neural activity in the absence of input shows chaotic dynamics with occasional approaches to the memorized target patterns. These results suggest that these dynamics facilitate the bifurcations to each target attractor upon application of the corresponding input, which thus increases the capacity for learning. This theoretical finding about the behavior of the spontaneous neural activity is consistent with recent experimental observations in which the neural activity without stimuli wanders among patterns evoked by previously applied signals. In addition, the neural networks shaped by learning properly reflect the correlations of input and target-output patterns in a similar manner to those designed in

  11. Modelling personal exposure to particulate air pollution: an assessment of time-integrated activity modelling, Monte Carlo simulation & artificial neural network approaches.

    Science.gov (United States)

    McCreddin, A; Alam, M S; McNabola, A

    2015-01-01

    An experimental assessment of personal exposure to PM10 in 59 office workers was carried out in Dublin, Ireland. 255 samples of 24-h personal exposure were collected in real time over a 28 month period. A series of modelling techniques were subsequently assessed for their ability to predict 24-h personal exposure to PM10. Artificial neural network modelling, Monte Carlo simulation and time-activity based models were developed and compared. The results of the investigation showed that using the Monte Carlo technique to randomly select concentrations from statistical distributions of exposure concentrations in typical microenvironments encountered by office workers produced the most accurate results, based on 3 statistical measures of model performance. The Monte Carlo simulation technique was also shown to have the greatest potential utility over the other techniques, in terms of predicting personal exposure without the need for further monitoring data. Over the 28 month period only a very weak correlation was found between background air quality and personal exposure measurements, highlighting the need for accurate models of personal exposure in epidemiological studies. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. Sequential neural models with stochastic layers

    DEFF Research Database (Denmark)

    Fraccaro, Marco; Sønderby, Søren Kaae; Paquet, Ulrich

    2016-01-01

    How can we efficiently propagate uncertainty in a latent state representation with recurrent neural networks? This paper introduces stochastic recurrent neural networks which glue a deterministic recurrent neural network and a state space model together to form a stochastic and sequential neural ...... the uncertainty in a latent path, like a state space model, we improve the state of the art results on the Blizzard and TIMIT speech modeling data sets by a large margin, while achieving comparable performances to competing methods on polyphonic music modeling....

  13. Duct Modeling Using the Generalized RBF Neural Network for Active Cancellation of Variable Frequency Narrow Band Noise

    Directory of Open Access Journals (Sweden)

    Lotfizad Mojtaba

    2007-01-01

    Full Text Available We have shown that duct modeling using the generalized RBF neural network (DM_RBF, which has the capability of modeling the nonlinear behavior, can suppress a variable-frequency narrow band noise of a duct more efficiently than an FX-LMS algorithm. In our method (DM_RBF, at first the duct is identified using a generalized RBF network, after that stage of time delay of the input signal to the generalized RBF network is applied, then a linear combiner at their outputs makes an online identification of the nonlinear system. The weights of linear combiner are updated by the normalized LMS algorithm. We have showed that the proposed method is more than three times faster in comparison with the FX-LMS algorithm with 30% lower error. Also the DM_RBF method will converge in changing the input frequency, while it makes the FX-LMS cause divergence.

  14. Testing Neural Models of the Development of Infant Visual Attention

    OpenAIRE

    Richards, John E.; Hunter, Sharon K.

    2002-01-01

    Several models of the development of infant visual attention have used information about neural development. Most of these models have been based on nonhuman animal studies and have relied on indirect measures of neural development in human infants. This article discusses methods for studying a “neurodevelopmental” model of infant visual attention using indirect and direct measures of cortical activity. We concentrate on the effect of attention on eye movement control and show how animal-base...

  15. Lack of aspartoacylase activity disrupts survival and differentiation of neural progenitors and oligodendrocytes in a mouse model of Canavan disease.

    Science.gov (United States)

    Kumar, Shalini; Biancotti, Juan Carlos; Matalon, Reuben; de Vellis, Jean

    2009-11-15

    Loss of the oligodendrocyte (OL)-specific enzyme aspartoacylase (ASPA) from gene mutation results in the sponginess and loss of white matter (WM) in Canavan disease (CD). This study addresses the fate of OLs during the pathophysiology of CD in an adult ASPA knockout (KO) mouse strain. Massive arrays of neural stem/progenitor cells, immunopositive for PSA-NCAM, nestin, vimentin, and NG2, were observed within the severely affected spongy WM of the KO mouse brain. In these mice, G1-->S cell cycle progression was confirmed by an increase in cdk2-kinase activity, a reduction in mitotic inhibitors p21(Cip1) and p27(Kip1), and an increase in bromodeoxyuridine (BrdU) incorporation. Highly acetylated nuclear histones H2B and H3 were detected in adult KO mouse WM, suggesting the existence of noncompact chromatin as seen during early development. Costaining for BrdU- or Ki67-positive cells with markers for neural progenitors confirmed a continuous generation of OL lineage cells in KO WM. We observed a severe reduction in 21.5- and 18.5-kDa myelin basic protein and PLP/DM20 proteolipid proteins combined with a decrease in myelinated fibers and a perinuclear retention of myelin protein staining, indicating impairment in protein trafficking. Death of OLs, neurons, and astrocytes was identified in every region of the KO brain. Immature OLs constituted the largest population of dying cells, particularly in WM. We also report an early expression of full-length ASPA mRNA in normal mouse brain at embryonic day 12.5, when OL progenitors first appear during development. These findings support involvement of ASPA in CNS development and function.

  16. Modeling and optimization by particle swarm embedded neural network for adsorption of zinc (II) by palm kernel shell based activated carbon from aqueous environment.

    Science.gov (United States)

    Karri, Rama Rao; Sahu, J N

    2018-01-15

    Zn (II) is one the common pollutant among heavy metals found in industrial effluents. Removal of pollutant from industrial effluents can be accomplished by various techniques, out of which adsorption was found to be an efficient method. Applications of adsorption limits itself due to high cost of adsorbent. In this regard, a low cost adsorbent produced from palm oil kernel shell based agricultural waste is examined for its efficiency to remove Zn (II) from waste water and aqueous solution. The influence of independent process variables like initial concentration, pH, residence time, activated carbon (AC) dosage and process temperature on the removal of Zn (II) by palm kernel shell based AC from batch adsorption process are studied systematically. Based on the design of experimental matrix, 50 experimental runs are performed with each process variable in the experimental range. The optimal values of process variables to achieve maximum removal efficiency is studied using response surface methodology (RSM) and artificial neural network (ANN) approaches. A quadratic model, which consists of first order and second order degree regressive model is developed using the analysis of variance and RSM - CCD framework. The particle swarm optimization which is a meta-heuristic optimization is embedded on the ANN architecture to optimize the search space of neural network. The optimized trained neural network well depicts the testing data and validation data with R2 equal to 0.9106 and 0.9279 respectively. The outcomes indicates that the superiority of ANN-PSO based model predictions over the quadratic model predictions provided by RSM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Spiking modular neural networks: A neural network modeling approach for hydrological processes

    National Research Council Canada - National Science Library

    Kamban Parasuraman; Amin Elshorbagy; Sean K. Carey

    2006-01-01

    .... In this study, a novel neural network model called the spiking modular neural networks (SMNNs) is proposed. An SMNN consists of an input layer, a spiking layer, and an associator neural network layer...

  18. Computational modeling of neural plasticity for self-organization of neural networks.

    Science.gov (United States)

    Chrol-Cannon, Joseph; Jin, Yaochu

    2014-11-01

    Self-organization in biological nervous systems during the lifetime is known to largely occur through a process of plasticity that is dependent upon the spike-timing activity in connected neurons. In the field of computational neuroscience, much effort has been dedicated to building up computational models of neural plasticity to replicate experimental data. Most recently, increasing attention has been paid to understanding the role of neural plasticity in functional and structural neural self-organization, as well as its influence on the learning performance of neural networks for accomplishing machine learning tasks such as classification and regression. Although many ideas and hypothesis have been suggested, the relationship between the structure, dynamics and learning performance of neural networks remains elusive. The purpose of this article is to review the most important computational models for neural plasticity and discuss various ideas about neural plasticity's role. Finally, we suggest a few promising research directions, in particular those along the line that combines findings in computational neuroscience and systems biology, and their synergetic roles in understanding learning, memory and cognition, thereby bridging the gap between computational neuroscience, systems biology and computational intelligence. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. A neural network model for texture discrimination.

    Science.gov (United States)

    Xing, J; Gerstein, G L

    1993-01-01

    A model of texture discrimination in visual cortex was built using a feedforward network with lateral interactions among relatively realistic spiking neural elements. The elements have various membrane currents, equilibrium potentials and time constants, with action potentials and synapses. The model is derived from the modified programs of MacGregor (1987). Gabor-like filters are applied to overlapping regions in the original image; the neural network with lateral excitatory and inhibitory interactions then compares and adjusts the Gabor amplitudes in order to produce the actual texture discrimination. Finally, a combination layer selects and groups various representations in the output of the network to form the final transformed image material. We show that both texture segmentation and detection of texture boundaries can be represented in the firing activity of such a network for a wide variety of synthetic to natural images. Performance details depend most strongly on the global balance of strengths of the excitatory and inhibitory lateral interconnections. The spatial distribution of lateral connective strengths has relatively little effect. Detailed temporal firing activities of single elements in the lateral connected network were examined under various stimulus conditions. Results show (as in area 17 of cortex) that a single element's response to image features local to its receptive field can be altered by changes in the global context.

  20. An Analysis of Audio Features to Develop a Human Activity Recognition Model Using Genetic Algorithms, Random Forests, and Neural Networks

    Directory of Open Access Journals (Sweden)

    Carlos E. Galván-Tejada

    2016-01-01

    Full Text Available This work presents a human activity recognition (HAR model based on audio features. The use of sound as an information source for HAR models represents a challenge because sound wave analyses generate very large amounts of data. However, feature selection techniques may reduce the amount of data required to represent an audio signal sample. Some of the audio features that were analyzed include Mel-frequency cepstral coefficients (MFCC. Although MFCC are commonly used in voice and instrument recognition, their utility within HAR models is yet to be confirmed, and this work validates their usefulness. Additionally, statistical features were extracted from the audio samples to generate the proposed HAR model. The size of the information is necessary to conform a HAR model impact directly on the accuracy of the model. This problem also was tackled in the present work; our results indicate that we are capable of recognizing a human activity with an accuracy of 85% using the HAR model proposed. This means that minimum computational costs are needed, thus allowing portable devices to identify human activities using audio as an information source.

  1. Genetic control of active neural circuits

    Directory of Open Access Journals (Sweden)

    Leon Reijmers

    2009-12-01

    Full Text Available The use of molecular tools to study the neurobiology of complex behaviors has been hampered by an inability to target the desired changes to relevant groups of neurons. Specific memories and specific sensory representations are sparsely encoded by a small fraction of neurons embedded in a sea of morphologically and functionally similar cells. In this review we discuss genetics techniques that are being developed to address this difficulty. In several studies the use of promoter elements that are responsive to neural activity have been used to drive long lasting genetic alterations into neural ensembles that are activated by natural environmental stimuli. This approach has been used to examine neural activity patterns during learning and retrieval of a memory, to examine the regulation of receptor trafficking following learning and to functionally manipulate a specific memory trace. We suggest that these techniques will provide a general approach to experimentally investigate the link between patterns of environmentally activated neural firing and cognitive processes such as perception and memory.

  2. Comparison of ultrasonic with stirrer performance for removal of sunset yellow (SY) by activated carbon prepared from wood of orange tree: artificial neural network modeling.

    Science.gov (United States)

    Ghaedi, A M; Ghaedi, M; Karami, P

    2015-03-05

    The present work focused on the removal of sunset yellow (SY) dye from aqueous solution by ultrasound-assisted adsorption and stirrer by activated carbon prepared from wood of an orange tree. Also, the artificial neural network (ANN) model was used for predicting removal (%) of SY dye based on experimental data. In this study a green approach was described for the synthesis of activated carbon prepared from wood of an orange tree and usability of it for the removal of sunset yellow. This material was characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The impact of variables, including initial dye concentration (mg/L), pH, adsorbent dosage (g), sonication time (min) and temperature (°C) on SY removal were studied. Fitting the experimental equilibrium data of different isotherm models such as Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models display the suitability and applicability of the Langmuir model. Analysis of experimental adsorption data by different kinetic models including pseudo-first and second order, Elovich and intraparticle diffusion models indicate the applicability of the second-order equation model. The adsorbent (0.5g) is applicable for successful removal of SY (>98%) in short time (10min) under ultrasound condition. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Comparison of ultrasonic with stirrer performance for removal of sunset yellow (SY) by activated carbon prepared from wood of orange tree: Artificial neural network modeling

    Science.gov (United States)

    Ghaedi, A. M.; Ghaedi, M.; Karami, P.

    2015-03-01

    The present work focused on the removal of sunset yellow (SY) dye from aqueous solution by ultrasound-assisted adsorption and stirrer by activated carbon prepared from wood of an orange tree. Also, the artificial neural network (ANN) model was used for predicting removal (%) of SY dye based on experimental data. In this study a green approach was described for the synthesis of activated carbon prepared from wood of an orange tree and usability of it for the removal of sunset yellow. This material was characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The impact of variables, including initial dye concentration (mg/L), pH, adsorbent dosage (g), sonication time (min) and temperature (°C) on SY removal were studied. Fitting the experimental equilibrium data of different isotherm models such as Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models display the suitability and applicability of the Langmuir model. Analysis of experimental adsorption data by different kinetic models including pseudo-first and second order, Elovich and intraparticle diffusion models indicate the applicability of the second-order equation model. The adsorbent (0.5 g) is applicable for successful removal of SY (>98%) in short time (10 min) under ultrasound condition.

  4. Neural activation in stress-related exhaustion

    DEFF Research Database (Denmark)

    Gavelin, Hanna Malmberg; Neely, Anna Stigsdotter; Andersson, Micael

    2017-01-01

    The primary purpose of this study was to investigate the association between burnout and neural activation during working memory processing in patients with stress-related exhaustion. Additionally, we investigated the neural effects of cognitive training as part of stress rehabilitation. Fifty......-five patients with clinical diagnosis of exhaustion disorder were administered the n-back task during fMRI scanning at baseline. Ten patients completed a 12-week cognitive training intervention, as an addition to stress rehabilitation. Eleven patients served as a treatment-as-usual control group. At baseline...

  5. Neural Activity Reveals Preferences Without Choices

    Science.gov (United States)

    Smith, Alec; Bernheim, B. Douglas; Camerer, Colin

    2014-01-01

    We investigate the feasibility of inferring the choices people would make (if given the opportunity) based on their neural responses to the pertinent prospects when they are not engaged in actual decision making. The ability to make such inferences is of potential value when choice data are unavailable, or limited in ways that render standard methods of estimating choice mappings problematic. We formulate prediction models relating choices to “non-choice” neural responses and use them to predict out-of-sample choices for new items and for new groups of individuals. The predictions are sufficiently accurate to establish the feasibility of our approach. PMID:25729468

  6. Numerical analysis of modeling based on improved Elman neural network.

    Science.gov (United States)

    Jie, Shao; Li, Wang; WeiSong, Zhao; YaQin, Zhong; Malekian, Reza

    2014-01-01

    A modeling based on the improved Elman neural network (IENN) is proposed to analyze the nonlinear circuits with the memory effect. The hidden layer neurons are activated by a group of Chebyshev orthogonal basis functions instead of sigmoid functions in this model. The error curves of the sum of squared error (SSE) varying with the number of hidden neurons and the iteration step are studied to determine the number of the hidden layer neurons. Simulation results of the half-bridge class-D power amplifier (CDPA) with two-tone signal and broadband signals as input have shown that the proposed behavioral modeling can reconstruct the system of CDPAs accurately and depict the memory effect of CDPAs well. Compared with Volterra-Laguerre (VL) model, Chebyshev neural network (CNN) model, and basic Elman neural network (BENN) model, the proposed model has better performance.

  7. Numerical Analysis of Modeling Based on Improved Elman Neural Network

    Directory of Open Access Journals (Sweden)

    Shao Jie

    2014-01-01

    Full Text Available A modeling based on the improved Elman neural network (IENN is proposed to analyze the nonlinear circuits with the memory effect. The hidden layer neurons are activated by a group of Chebyshev orthogonal basis functions instead of sigmoid functions in this model. The error curves of the sum of squared error (SSE varying with the number of hidden neurons and the iteration step are studied to determine the number of the hidden layer neurons. Simulation results of the half-bridge class-D power amplifier (CDPA with two-tone signal and broadband signals as input have shown that the proposed behavioral modeling can reconstruct the system of CDPAs accurately and depict the memory effect of CDPAs well. Compared with Volterra-Laguerre (VL model, Chebyshev neural network (CNN model, and basic Elman neural network (BENN model, the proposed model has better performance.

  8. Optimal Decision Making in Neural Inhibition Models

    Science.gov (United States)

    van Ravenzwaaij, Don; van der Maas, Han L. J.; Wagenmakers, Eric-Jan

    2012-01-01

    In their influential "Psychological Review" article, Bogacz, Brown, Moehlis, Holmes, and Cohen (2006) discussed optimal decision making as accomplished by the drift diffusion model (DDM). The authors showed that neural inhibition models, such as the leaky competing accumulator model (LCA) and the feedforward inhibition model (FFI), can mimic the…

  9. Stimulus-dependent maximum entropy models of neural population codes.

    Directory of Open Access Journals (Sweden)

    Einat Granot-Atedgi

    Full Text Available Neural populations encode information about their stimulus in a collective fashion, by joint activity patterns of spiking and silence. A full account of this mapping from stimulus to neural activity is given by the conditional probability distribution over neural codewords given the sensory input. For large populations, direct sampling of these distributions is impossible, and so we must rely on constructing appropriate models. We show here that in a population of 100 retinal ganglion cells in the salamander retina responding to temporal white-noise stimuli, dependencies between cells play an important encoding role. We introduce the stimulus-dependent maximum entropy (SDME model-a minimal extension of the canonical linear-nonlinear model of a single neuron, to a pairwise-coupled neural population. We find that the SDME model gives a more accurate account of single cell responses and in particular significantly outperforms uncoupled models in reproducing the distributions of population codewords emitted in response to a stimulus. We show how the SDME model, in conjunction with static maximum entropy models of population vocabulary, can be used to estimate information-theoretic quantities like average surprise and information transmission in a neural population.

  10. Artificial Neural Networks for Modeling Knowing and Learning in Science.

    Science.gov (United States)

    Roth, Wolff-Michael

    2000-01-01

    Advocates artificial neural networks as models for cognition and development. Provides an example of how such models work in the context of a well-known Piagetian developmental task and school science activity: balance beam problems. (Contains 59 references.) (Author/WRM)

  11. Neural networks as models of psychopathology.

    Science.gov (United States)

    Aakerlund, L; Hemmingsen, R

    1998-04-01

    Neural network modeling is situated between neurobiology, cognitive science, and neuropsychology. The structural and functional resemblance with biological computation has made artificial neural networks (ANN) useful for exploring the relationship between neurobiology and computational performance, i.e., cognition and behavior. This review provides an introduction to the theory of ANN and how they have linked theories from neurobiology and psychopathology in schizophrenia, affective disorders, and dementia.

  12. Neural network approaches for noisy language modeling.

    Science.gov (United States)

    Li, Jun; Ouazzane, Karim; Kazemian, Hassan B; Afzal, Muhammad Sajid

    2013-11-01

    Text entry from people is not only grammatical and distinct, but also noisy. For example, a user's typing stream contains all the information about the user's interaction with computer using a QWERTY keyboard, which may include the user's typing mistakes as well as specific vocabulary, typing habit, and typing performance. In particular, these features are obvious in disabled users' typing streams. This paper proposes a new concept called noisy language modeling by further developing information theory and applies neural networks to one of its specific application-typing stream. This paper experimentally uses a neural network approach to analyze the disabled users' typing streams both in general and specific ways to identify their typing behaviors and subsequently, to make typing predictions and typing corrections. In this paper, a focused time-delay neural network (FTDNN) language model, a time gap model, a prediction model based on time gap, and a probabilistic neural network model (PNN) are developed. A 38% first hitting rate (HR) and a 53% first three HR in symbol prediction are obtained based on the analysis of a user's typing history through the FTDNN language modeling, while the modeling results using the time gap prediction model and the PNN model demonstrate that the correction rates lie predominantly in between 65% and 90% with the current testing samples, and 70% of all test scores above basic correction rates, respectively. The modeling process demonstrates that a neural network is a suitable and robust language modeling tool to analyze the noisy language stream. The research also paves the way for practical application development in areas such as informational analysis, text prediction, and error correction by providing a theoretical basis of neural network approaches for noisy language modeling.

  13. Understanding the Implications of Neural Population Activity on Behavior

    Science.gov (United States)

    Briguglio, John

    Learning how neural activity in the brain leads to the behavior we exhibit is one of the fundamental questions in Neuroscience. In this dissertation, several lines of work are presented to that use principles of neural coding to understand behavior. In one line of work, we formulate the efficient coding hypothesis in a non-traditional manner in order to test human perceptual sensitivity to complex visual textures. We find a striking agreement between how variable a particular texture signal is and how sensitive humans are to its presence. This reveals that the efficient coding hypothesis is still a guiding principle for neural organization beyond the sensory periphery, and that the nature of cortical constraints differs from the peripheral counterpart. In another line of work, we relate frequency discrimination acuity to neural responses from auditory cortex in mice. It has been previously observed that optogenetic manipulation of auditory cortex, in addition to changing neural responses, evokes changes in behavioral frequency discrimination. We are able to account for changes in frequency discrimination acuity on an individual basis by examining the Fisher information from the neural population with and without optogenetic manipulation. In the third line of work, we address the question of what a neural population should encode given that its inputs are responses from another group of neurons. Drawing inspiration from techniques in machine learning, we train Deep Belief Networks on fake retinal data and show the emergence of Garbor-like filters, reminiscent of responses in primary visual cortex. In the last line of work, we model the state of a cortical excitatory-inhibitory network during complex adaptive stimuli. Using a rate model with Wilson-Cowan dynamics, we demonstrate that simple non-linearities in the signal transferred from inhibitory to excitatory neurons can account for real neural recordings taken from auditory cortex. This work establishes and tests

  14. PREDIKSI FOREX MENGGUNAKAN MODEL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    R. Hadapiningradja Kusumodestoni

    2015-11-01

    Full Text Available ABSTRAK Prediksi adalah salah satu teknik yang paling penting dalam menjalankan bisnis forex. Keputusan dalam memprediksi adalah sangatlah penting, karena dengan prediksi dapat membantu mengetahui nilai forex di waktu tertentu kedepan sehingga dapat mengurangi resiko kerugian. Tujuan dari penelitian ini dimaksudkan memprediksi bisnis fores menggunakan model neural network dengan data time series per 1 menit untuk mengetahui nilai akurasi prediksi sehingga dapat mengurangi resiko dalam menjalankan bisnis forex. Metode penelitian pada penelitian ini meliputi metode pengumpulan data kemudian dilanjutkan ke metode training, learning, testing menggunakan neural network. Setelah di evaluasi hasil penelitian ini menunjukan bahwa penerapan algoritma Neural Network mampu untuk memprediksi forex dengan tingkat akurasi prediksi 0.431 +/- 0.096 sehingga dengan prediksi ini dapat membantu mengurangi resiko dalam menjalankan bisnis forex. Kata kunci: prediksi, forex, neural network.

  15. Cultured neural networks: Optimisation of patterned network adhesiveness and characterisation of their neural activity

    NARCIS (Netherlands)

    Rutten, Wim; Ruardij, T.G.; Marani, Enrico; Roelofsen, B.H.

    2006-01-01

    One type of future, improved neural interface is the "cultured probe"?. It is a hybrid type of neural information transducer or prosthesis, for stimulation and/or recording of neural activity. It would consist of a microelectrode array (MEA) on a planar substrate, each electrode being covered and

  16. Activity Patterns of Cultured Neural Networks on Micro Electrode Arrays

    National Research Council Canada - National Science Library

    Rutten, Wim

    2001-01-01

    A hybrid neuro-electronic interface is a cell-cultured micro electrode array, acting as a neural information transducer for stimulation and/or recording of neural activity in the brain or the spinal cord...

  17. Empirical generalization assessment of neural network models

    DEFF Research Database (Denmark)

    Larsen, Jan; Hansen, Lars Kai

    1995-01-01

    This paper addresses the assessment of generalization performance of neural network models by use of empirical techniques. We suggest to use the cross-validation scheme combined with a resampling technique to obtain an estimate of the generalization performance distribution of a specific model...

  18. A quantum-implementable neural network model

    Science.gov (United States)

    Chen, Jialin; Wang, Lingli; Charbon, Edoardo

    2017-10-01

    A quantum-implementable neural network, namely quantum probability neural network (QPNN) model, is proposed in this paper. QPNN can use quantum parallelism to trace all possible network states to improve the result. Due to its unique quantum nature, this model is robust to several quantum noises under certain conditions, which can be efficiently implemented by the qubus quantum computer. Another advantage is that QPNN can be used as memory to retrieve the most relevant data and even to generate new data. The MATLAB experimental results of Iris data classification and MNIST handwriting recognition show that much less neuron resources are required in QPNN to obtain a good result than the classical feedforward neural network. The proposed QPNN model indicates that quantum effects are useful for real-life classification tasks.

  19. Weather forecasting based on hybrid neural model

    Science.gov (United States)

    Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.

    2017-02-01

    Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.

  20. Weather forecasting based on hybrid neural model

    Science.gov (United States)

    Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.

    2017-11-01

    Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.

  1. Particle swarm optimization of a neural network model in a ...

    Indian Academy of Sciences (India)

    sets of cutting conditions and noting the root mean square (RMS) value of spindle motor current as well as ... A multi- objective optimization of hard turning using neural network modelling and swarm intelligence ... being used in this study), and these activated values in turn become the starting signals for the next adjacent ...

  2. Death and rebirth of neural activity in sparse inhibitory networks

    Science.gov (United States)

    Angulo-Garcia, David; Luccioli, Stefano; Olmi, Simona; Torcini, Alessandro

    2017-05-01

    Inhibition is a key aspect of neural dynamics playing a fundamental role for the emergence of neural rhythms and the implementation of various information coding strategies. Inhibitory populations are present in several brain structures, and the comprehension of their dynamics is strategical for the understanding of neural processing. In this paper, we clarify the mechanisms underlying a general phenomenon present in pulse-coupled heterogeneous inhibitory networks: inhibition can induce not only suppression of neural activity, as expected, but can also promote neural re-activation. In particular, for globally coupled systems, the number of firing neurons monotonically reduces upon increasing the strength of inhibition (neuronal death). However, the random pruning of connections is able to reverse the action of inhibition, i.e. in a random sparse network a sufficiently strong synaptic strength can surprisingly promote, rather than depress, the activity of neurons (neuronal rebirth). Thus, the number of firing neurons reaches a minimum value at some intermediate synaptic strength. We show that this minimum signals a transition from a regime dominated by neurons with a higher firing activity to a phase where all neurons are effectively sub-threshold and their irregular firing is driven by current fluctuations. We explain the origin of the transition by deriving a mean field formulation of the problem able to provide the fraction of active neurons as well as the first two moments of their firing statistics. The introduction of a synaptic time scale does not modify the main aspects of the reported phenomenon. However, for sufficiently slow synapses the transition becomes dramatic, and the system passes from a perfectly regular evolution to irregular bursting dynamics. In this latter regime the model provides predictions consistent with experimental findings for a specific class of neurons, namely the medium spiny neurons in the striatum.

  3. Isotherm and kinetics study of malachite green adsorption onto copper nanowires loaded on activated carbon: artificial neural network modeling and genetic algorithm optimization.

    Science.gov (United States)

    Ghaedi, M; Shojaeipour, E; Ghaedi, A M; Sahraei, Reza

    2015-05-05

    In this study, copper nanowires loaded on activated carbon (Cu-NWs-AC) was used as novel efficient adsorbent for the removal of malachite green (MG) from aqueous solution. This new material was synthesized through simple protocol and its surface properties such as surface area, pore volume and functional groups were characterized with different techniques such XRD, BET and FESEM analysis. The relation between removal percentages with variables such as solution pH, adsorbent dosage (0.005, 0.01, 0.015, 0.02 and 0.1g), contact time (1-40min) and initial MG concentration (5, 10, 20, 70 and 100mg/L) was investigated and optimized. A three-layer artificial neural network (ANN) model was utilized to predict the malachite green dye removal (%) by Cu-NWs-AC following conduction of 248 experiments. When the training of the ANN was performed, the parameters of ANN model were as follows: linear transfer function (purelin) at output layer, Levenberg-Marquardt algorithm (LMA), and a tangent sigmoid transfer function (tansig) at the hidden layer with 11 neurons. The minimum mean squared error (MSE) of 0.0017 and coefficient of determination (R(2)) of 0.9658 were found for prediction and modeling of dye removal using testing data set. A good agreement between experimental data and predicted data using the ANN model was obtained. Fitting the experimental data on previously optimized condition confirm the suitability of Langmuir isotherm models for their explanation with maximum adsorption capacity of 434.8mg/g at 25°C. Kinetic studies at various adsorbent mass and initial MG concentration show that the MG maximum removal percentage was achieved within 20min. The adsorption of MG follows the pseudo-second-order with a combination of intraparticle diffusion model. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Artificial neural network cardiopulmonary modeling and diagnosis

    Science.gov (United States)

    Kangas, Lars J.; Keller, Paul E.

    1997-01-01

    The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis.

  5. Neural modeling of prefrontal executive function

    Energy Technology Data Exchange (ETDEWEB)

    Levine, D.S. [Univ. of Texas, Arlington, TX (United States)

    1996-12-31

    Brain executive function is based in a distributed system whereby prefrontal cortex is interconnected with other cortical. and subcortical loci. Executive function is divided roughly into three interacting parts: affective guidance of responses; linkage among working memory representations; and forming complex behavioral schemata. Neural network models of each of these parts are reviewed and fit into a preliminary theoretical framework.

  6. Modeling the reflection of Photosynthetically active radiation in a monodominant floodable forest in the Pantanal of Mato Grosso State using multivariate statistics and neural networks

    Directory of Open Access Journals (Sweden)

    LEONE F.A. CURADO

    2016-01-01

    Full Text Available ABSTRACT The study of radiation entrance and exit dynamics and energy consumption in a system is important for understanding the environmental processes that rule the biosphere-atmosphere interactions of all ecosystems. This study provides an analysis of the interaction of energy in the form of photosynthetically active radiation (PAR in the Pantanal, a Brazilian wetland forest, by studying the variation of PAR reflectance and its interaction with local rainfall. The study site is located in Private Reserve of Natural Heritage, Mato Grosso State, Brazil, where the vegetation is a monodominant forest of Vochysia divergens Phol. The results showed a high correlation between the reflection of visible radiation and rainfall; however, the behavior was not the same at the three heights studied. An analysis of the hourly variation of the reflected waves also showed the seasonality of these phenomena in relation to the dry and rainy seasons. A predictive model for PAR was developed with a neural network that has a hidden layer, and it showed a determination coefficient of 0.938. This model showed that the Julian day and time of measurements had an inverse association with the wind profile and a direct association with the relative humidity profile.

  7. Modeling the reflection of Photosynthetically active radiation in a monodominant floodable forest in the Pantanal of Mato Grosso State using multivariate statistics and neural networks.

    Science.gov (United States)

    Curado, Leone F A; Musis, Carlo R DE; Cunha, Cristiano R DA; Rodrigues, Thiago R; Pereira, Vinicius M R; Nogueira, José S; Sanches, Luciana

    2016-09-01

    The study of radiation entrance and exit dynamics and energy consumption in a system is important for understanding the environmental processes that rule the biosphere-atmosphere interactions of all ecosystems. This study provides an analysis of the interaction of energy in the form of photosynthetically active radiation (PAR) in the Pantanal, a Brazilian wetland forest, by studying the variation of PAR reflectance and its interaction with local rainfall. The study site is located in Private Reserve of Natural Heritage, Mato Grosso State, Brazil, where the vegetation is a monodominant forest of Vochysia divergens Phol. The results showed a high correlation between the reflection of visible radiation and rainfall; however, the behavior was not the same at the three heights studied. An analysis of the hourly variation of the reflected waves also showed the seasonality of these phenomena in relation to the dry and rainy seasons. A predictive model for PAR was developed with a neural network that has a hidden layer, and it showed a determination coefficient of 0.938. This model showed that the Julian day and time of measurements had an inverse association with the wind profile and a direct association with the relative humidity profile.

  8. A neural model of hierarchical reinforcement learning.

    Science.gov (United States)

    Rasmussen, Daniel; Voelker, Aaron; Eliasmith, Chris

    2017-01-01

    We develop a novel, biologically detailed neural model of reinforcement learning (RL) processes in the brain. This model incorporates a broad range of biological features that pose challenges to neural RL, such as temporally extended action sequences, continuous environments involving unknown time delays, and noisy/imprecise computations. Most significantly, we expand the model into the realm of hierarchical reinforcement learning (HRL), which divides the RL process into a hierarchy of actions at different levels of abstraction. Here we implement all the major components of HRL in a neural model that captures a variety of known anatomical and physiological properties of the brain. We demonstrate the performance of the model in a range of different environments, in order to emphasize the aim of understanding the brain's general reinforcement learning ability. These results show that the model compares well to previous modelling work and demonstrates improved performance as a result of its hierarchical ability. We also show that the model's behaviour is consistent with available data on human hierarchical RL, and generate several novel predictions.

  9. A NEURAL OSCILLATOR-NETWORK MODEL OF TEMPORAL PATTERN GENERATION

    NARCIS (Netherlands)

    Schomaker, Lambert

    Most contemporary neural network models deal with essentially static, perceptual problems of classification and transformation. Models such as multi-layer feedforward perceptrons generally do not incorporate time as an essential dimension, whereas biological neural networks are inherently temporal

  10. Estimation of Effectivty Connectivity via Data-Driven Neural Modeling

    Directory of Open Access Journals (Sweden)

    Dean Robert Freestone

    2014-11-01

    Full Text Available This research introduces a new method for functional brain imaging via a process of model inversion. By estimating parameters of a computational model, we are able to track effective connectivity and mean membrane potential dynamics that cannot be directly measured using electrophysiological measurements alone. The ability to track the hidden aspects of neurophysiology will have a profound impact on the way we understand and treat epilepsy. For example, under the assumption the model captures the key features of the cortical circuits of interest, the framework will provide insights into seizure initiation and termination on a patient-specific basis. It will enable investigation into the effect a particular drug has on specific neural populations and connectivity structures using minimally invasive measurements. The method is based on approximating brain networks using an interconnected neural population model. The neural population model is based on a neural mass model that describes the functional activity of the brain, capturing the mesoscopic biophysics and anatomical structure. The model is made subject-specific by estimating the strength of intra-cortical connections within a region and inter-cortical connections between regions using a novel Kalman filtering method. We demonstrate through simulation how the framework can be used the track the mechanisms involved in seizure initiation and termination.

  11. UAV Trajectory Modeling Using Neural Networks

    Science.gov (United States)

    Xue, Min

    2017-01-01

    Massive small unmanned aerial vehicles are envisioned to operate in the near future. While there are lots of research problems need to be addressed before dense operations can happen, trajectory modeling remains as one of the keys to understand and develop policies, regulations, and requirements for safe and efficient unmanned aerial vehicle operations. The fidelity requirement of a small unmanned vehicle trajectory model is high because these vehicles are sensitive to winds due to their small size and low operational altitude. Both vehicle control systems and dynamic models are needed for trajectory modeling, which makes the modeling a great challenge, especially considering the fact that manufactures are not willing to share their control systems. This work proposed to use a neural network approach for modelling small unmanned vehicle's trajectory without knowing its control system and bypassing exhaustive efforts for aerodynamic parameter identification. As a proof of concept, instead of collecting data from flight tests, this work used the trajectory data generated by a mathematical vehicle model for training and testing the neural network. The results showed great promise because the trained neural network can predict 4D trajectories accurately, and prediction errors were less than 2:0 meters in both temporal and spatial dimensions.

  12. Ising model for neural data

    DEFF Research Database (Denmark)

    Roudi, Yasser; Tyrcha, Joanna; Hertz, John

    2009-01-01

    (dansk abstrakt findes ikke) We study pairwise Ising models for describing the statistics of multi-neuron spike trains, using data from a simulated cortical network. We explore efficient ways of finding the optimal couplings in these models and examine their statistical properties. To do this, we...

  13. Artificial Neural Network Modeling of an Inverse Fluidized Bed ...

    African Journals Online (AJOL)

    The application of neural networks to model a laboratory scale inverse fluidized bed reactor has been studied. A Radial Basis Function neural network has been successfully employed for the modeling of the inverse fluidized bed reactor. In the proposed model, the trained neural network represents the kinetics of biological ...

  14. Temporal-pattern learning in neural models

    CERN Document Server

    Genís, Carme Torras

    1985-01-01

    While the ability of animals to learn rhythms is an unquestionable fact, the underlying neurophysiological mechanisms are still no more than conjectures. This monograph explores the requirements of such mechanisms, reviews those previously proposed and postulates a new one based on a direct electric coding of stimulation frequencies. Experi­ mental support for the option taken is provided both at the single neuron and neural network levels. More specifically, the material presented divides naturally into four parts: a description of the experimental and theoretical framework where this work becomes meaningful (Chapter 2), a detailed specifica­ tion of the pacemaker neuron model proposed together with its valida­ tion through simulation (Chapter 3), an analytic study of the behavior of this model when submitted to rhythmic stimulation (Chapter 4) and a description of the neural network model proposed for learning, together with an analysis of the simulation results obtained when varying seve­ ral factors r...

  15. Models of Acetylcholine and Dopamine Signals Differentially Improve Neural Representations

    Science.gov (United States)

    Holca-Lamarre, Raphaël; Lücke, Jörg; Obermayer, Klaus

    2017-01-01

    Biological and artificial neural networks (ANNs) represent input signals as patterns of neural activity. In biology, neuromodulators can trigger important reorganizations of these neural representations. For instance, pairing a stimulus with the release of either acetylcholine (ACh) or dopamine (DA) evokes long lasting increases in the responses of neurons to the paired stimulus. The functional roles of ACh and DA in rearranging representations remain largely unknown. Here, we address this question using a Hebbian-learning neural network model. Our aim is both to gain a functional understanding of ACh and DA transmission in shaping biological representations and to explore neuromodulator-inspired learning rules for ANNs. We model the effects of ACh and DA on synaptic plasticity and confirm that stimuli coinciding with greater neuromodulator activation are over represented in the network. We then simulate the physiological release schedules of ACh and DA. We measure the impact of neuromodulator release on the network's representation and on its performance on a classification task. We find that ACh and DA trigger distinct changes in neural representations that both improve performance. The putative ACh signal redistributes neural preferences so that more neurons encode stimulus classes that are challenging for the network. The putative DA signal adapts synaptic weights so that they better match the classes of the task at hand. Our model thus offers a functional explanation for the effects of ACh and DA on cortical representations. Additionally, our learning algorithm yields performances comparable to those of state-of-the-art optimisation methods in multi-layer perceptrons while requiring weaker supervision signals and interacting with synaptically-local weight updates. PMID:28690509

  16. Active voltammetric microsensors with neural signal processing.

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, M. C.

    1998-12-11

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical ''signatures'' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration, the calibration, sensing, and processing methods of these active voltammetric microsensors can

  17. Modeling of the phenolic compounds and antioxidant activity of blueberries by artificial neural networks for data mining

    OpenAIRE

    Guiné, Raquel; Matos, Susana; Costa, Daniela; Mendes, Mateus

    2015-01-01

    The present work’s goal was to evaluate the effect of different production and conservation conditions, as well as extraction procedures on the phenolic compounds and antioxidant activity of blueberries from cultivar Bluecrop. The production factors considered were origin, altitude of the farm location and age of the bushes, and the conservation was under freezing as opposed to the fresh product. The extraction procedures included two different solvents and different orders...

  18. Optimizing neural network models: motivation and case studies

    OpenAIRE

    Harp, S A; T. Samad

    2012-01-01

    Practical successes have been achieved  with neural network models in a variety of domains, including energy-related industry. The large, complex design space presented by neural networks is only minimally explored in current practice. The satisfactory results that nevertheless have been obtained testify that neural networks are a robust modeling technology; at the same time, however, the lack of a systematic design approach implies that the best neural network models generally  rem...

  19. Product Cost Management Structures: a review and neural network modelling

    Directory of Open Access Journals (Sweden)

    P. Jha

    2003-11-01

    Full Text Available This paper reviews the growth of approaches in product costing and draws synergies with information management and resource planning systems, to investigate potential application of state of the art modelling techniques of neural networks. Increasing demands on costing systems to serve multiple decision-making objectives, have made it essential to use better techniques for analysis of available data. This need is highlighted in the paper. The approach of neural networks, which have several analogous facets to complement and aid the information demands of modern product costing, Enterprise Resource Planning (ERP structures and the dominant-computing environment (for information management in the object oriented paradigm form the domain for investigation. Simulated data is used in neural network applications across activities that consume resources and deliver products, to generate information for monitoring and control decisions. The results in application for feature extraction and variation detection and their implications are presented in the paper.

  20. Artificial Neural Network Model for Predicting Compressive

    Directory of Open Access Journals (Sweden)

    Salim T. Yousif

    2013-05-01

    Full Text Available   Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature.    The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor  affecting the output of the model.     The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.

  1. UAV Trajectory Modeling Using Neural Networks

    Science.gov (United States)

    Xue, Min

    2017-01-01

    Large amount of small Unmanned Aerial Vehicles (sUAVs) are projected to operate in the near future. Potential sUAV applications include, but not limited to, search and rescue, inspection and surveillance, aerial photography and video, precision agriculture, and parcel delivery. sUAVs are expected to operate in the uncontrolled Class G airspace, which is at or below 500 feet above ground level (AGL), where many static and dynamic constraints exist, such as ground properties and terrains, restricted areas, various winds, manned helicopters, and conflict avoidance among sUAVs. How to enable safe, efficient, and massive sUAV operations at the low altitude airspace remains a great challenge. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative works on establishing infrastructure and developing policies, requirement, and rules to enable safe and efficient sUAVs' operations. To achieve this goal, it is important to gain insights of future UTM traffic operations through simulations, where the accurate trajectory model plays an extremely important role. On the other hand, like what happens in current aviation development, trajectory modeling should also serve as the foundation for any advanced concepts and tools in UTM. Accurate models of sUAV dynamics and control systems are very important considering the requirement of the meter level precision in UTM operations. The vehicle dynamics are relatively easy to derive and model, however, vehicle control systems remain unknown as they are usually kept by manufactures as a part of intellectual properties. That brings challenges to trajectory modeling for sUAVs. How to model the vehicle's trajectories with unknown control system? This work proposes to use a neural network to model a vehicle's trajectory. The neural network is first trained to learn the vehicle's responses at numerous conditions. Once being fully trained, given current vehicle states, winds, and desired future trajectory, the neural

  2. Neural activity in the hippocampus during conflict resolution.

    Science.gov (United States)

    Sakimoto, Yuya; Okada, Kana; Hattori, Minoru; Takeda, Kozue; Sakata, Shogo

    2013-01-15

    This study examined configural association theory and conflict resolution models in relation to hippocampal neural activity during positive patterning tasks. According to configural association theory, the hippocampus is important for responses to compound stimuli in positive patterning tasks. In contrast, according to the conflict resolution model, the hippocampus is important for responses to single stimuli in positive patterning tasks. We hypothesized that if configural association theory is applicable, and not the conflict resolution model, the hippocampal theta power should be increased when compound stimuli are presented. If, on the other hand, the conflict resolution model is applicable, but not configural association theory, then the hippocampal theta power should be increased when single stimuli are presented. If both models are valid and applicable in the positive patterning task, we predict that the hippocampal theta power should be increased by presentation of both compound and single stimuli during the positive patterning task. To examine our hypotheses, we measured hippocampal theta power in rats during a positive patterning task. The results showed that hippocampal theta power increased during the presentation of a single stimulus, but did not increase during the presentation of a compound stimulus. This finding suggests that the conflict resolution model is more applicable than the configural association theory for describing neural activity during positive patterning tasks. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. A dynamic neural field model of temporal order judgments.

    Science.gov (United States)

    Hecht, Lauren N; Spencer, John P; Vecera, Shaun P

    2015-12-01

    Temporal ordering of events is biased, or influenced, by perceptual organization-figure-ground organization-and by spatial attention. For example, within a region assigned figural status or at an attended location, onset events are processed earlier (Lester, Hecht, & Vecera, 2009; Shore, Spence, & Klein, 2001), and offset events are processed for longer durations (Hecht & Vecera, 2011; Rolke, Ulrich, & Bausenhart, 2006). Here, we present an extension of a dynamic field model of change detection (Johnson, Spencer, Luck, & Schöner, 2009; Johnson, Spencer, & Schöner, 2009) that accounts for both the onset and offset performance for figural and attended regions. The model posits that neural populations processing the figure are more active, resulting in a peak of activation that quickly builds toward a detection threshold when the onset of a target is presented. This same enhanced activation for some neural populations is maintained when a present target is removed, creating delays in the perception of the target's offset. We discuss the broader implications of this model, including insights regarding how neural activation can be generated in response to the disappearance of information. (c) 2015 APA, all rights reserved).

  4. Can Neural Activity Propagate by Endogenous Electrical Field?

    Science.gov (United States)

    Qiu, Chen; Shivacharan, Rajat S.; Zhang, Mingming

    2015-01-01

    It is widely accepted that synaptic transmissions and gap junctions are the major governing mechanisms for signal traveling in the neural system. Yet, a group of neural waves, either physiological or pathological, share the same speed of ∼0.1 m/s without synaptic transmission or gap junctions, and this speed is not consistent with axonal conduction or ionic diffusion. The only explanation left is an electrical field effect. We tested the hypothesis that endogenous electric fields are sufficient to explain the propagation with in silico and in vitro experiments. Simulation results show that field effects alone can indeed mediate propagation across layers of neurons with speeds of 0.12 ± 0.09 m/s with pathological kinetics, and 0.11 ± 0.03 m/s with physiologic kinetics, both generating weak field amplitudes of ∼2–6 mV/mm. Further, the model predicted that propagation speed values are inversely proportional to the cell-to-cell distances, but do not significantly change with extracellular resistivity, membrane capacitance, or membrane resistance. In vitro recordings in mice hippocampi produced similar speeds (0.10 ± 0.03 m/s) and field amplitudes (2.5–5 mV/mm), and by applying a blocking field, the propagation speed was greatly reduced. Finally, osmolarity experiments confirmed the model's prediction that cell-to-cell distance inversely affects propagation speed. Together, these results show that despite their weak amplitude, electric fields can be solely responsible for spike propagation at ∼0.1 m/s. This phenomenon could be important to explain the slow propagation of epileptic activity and other normal propagations at similar speeds. SIGNIFICANCE STATEMENT Neural activity (waves or spikes) can propagate using well documented mechanisms such as synaptic transmission, gap junctions, or diffusion. However, the purpose of this paper is to provide an explanation for experimental data showing that neural signals can propagate by means other than synaptic

  5. Current approaches to model extracellular electrical neural microstimulation

    Directory of Open Access Journals (Sweden)

    Sébastien eJoucla

    2014-02-01

    Full Text Available Nowadays, high-density microelectrode arrays provide unprecedented possibilities to precisely activate spatially well-controlled central nervous system (CNS areas. However, this requires optimizing stimulating devices, which in turn requires a good understanding of the effects of microstimulation on cells and tissues. In this context, modeling approaches provide flexible ways to predict the outcome of electrical stimulation in terms of CNS activation. In this paper, we present state-of-the-art modeling methods with sufficient details to allow the reader to rapidly build numerical models of neuronal extracellular microstimulation. These include 1 the computation of the electrical potential field created by the stimulation in the tissue, and 2 the response of a target neuron to this field. Two main approaches are described: First we describe the classical hybrid approach that combines the finite element modeling of the potential field with the calculation of the neuron’s response in a cable equation framework (compartmentalized neuron models. Then, we present a whole finite element approach allows the simultaneous calculation of the extracellular and intracellular potentials, by representing the neuronal membrane with a thin-film approximation. This approach was previously introduced in the frame of neural recording, but has never been implemented to determine the effect of extracellular stimulation on the neural response at a sub-compartment level. Here, we show on an example that the latter modeling scheme can reveal important sub-compartment behavior of the neural membrane that cannot be resolved using the hybrid approach. The goal of this paper is also to describe in detail the practical implementation of these methods to allow the reader to easily build new models using standard software packages. These modeling paradigms, depending on the situation, should help build more efficient high-density neural prostheses for CNS rehabilitation.

  6. Neural Network Program Package for Prosody Modeling

    Directory of Open Access Journals (Sweden)

    J. Santarius

    2004-04-01

    Full Text Available This contribution describes the programme for one part of theautomatic Text-to-Speech (TTS synthesis. Some experiments (for example[14] documented the considerable improvement of the naturalness ofsynthetic speech, but this approach requires completing the inputfeature values by hand. This completing takes a lot of time for bigfiles. We need to improve the prosody by other approaches which useonly automatically classified features (input parameters. Theartificial neural network (ANN approach is used for the modeling ofprosody parameters. The program package contains all modules necessaryfor the text and speech signal pre-processing, neural network training,sensitivity analysis, result processing and a module for the creationof the input data protocol for Czech speech synthesizer ARTIC [1].

  7. Identifying Emotions on the Basis of Neural Activation.

    Directory of Open Access Journals (Sweden)

    Karim S Kassam

    Full Text Available We attempt to determine the discriminability and organization of neural activation corresponding to the experience of specific emotions. Method actors were asked to self-induce nine emotional states (anger, disgust, envy, fear, happiness, lust, pride, sadness, and shame while in an fMRI scanner. Using a Gaussian Naïve Bayes pooled variance classifier, we demonstrate the ability to identify specific emotions experienced by an individual at well over chance accuracy on the basis of: 1 neural activation of the same individual in other trials, 2 neural activation of other individuals who experienced similar trials, and 3 neural activation of the same individual to a qualitatively different type of emotion induction. Factor analysis identified valence, arousal, sociality, and lust as dimensions underlying the activation patterns. These results suggest a structure for neural representations of emotion and inform theories of emotional processing.

  8. Flood routing modelling with Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    R. Peters

    2006-01-01

    Full Text Available For the modelling of the flood routing in the lower reaches of the Freiberger Mulde river and its tributaries the one-dimensional hydrodynamic modelling system HEC-RAS has been applied. Furthermore, this model was used to generate a database to train multilayer feedforward networks. To guarantee numerical stability for the hydrodynamic modelling of some 60 km of streamcourse an adequate resolution in space requires very small calculation time steps, which are some two orders of magnitude smaller than the input data resolution. This leads to quite high computation requirements seriously restricting the application – especially when dealing with real time operations such as online flood forecasting. In order to solve this problem we tested the application of Artificial Neural Networks (ANN. First studies show the ability of adequately trained multilayer feedforward networks (MLFN to reproduce the model performance.

  9. Internal models and neural computation in the vestibular system.

    Science.gov (United States)

    Green, Andrea M; Angelaki, Dora E

    2010-01-01

    The vestibular system is vital for motor control and spatial self-motion perception. Afferents from the otolith organs and the semicircular canals converge with optokinetic, somatosensory and motor-related signals in the vestibular nuclei, which are reciprocally interconnected with the vestibulocerebellar cortex and deep cerebellar nuclei. Here, we review the properties of the many cell types in the vestibular nuclei, as well as some fundamental computations implemented within this brainstem-cerebellar circuitry. These include the sensorimotor transformations for reflex generation, the neural computations for inertial motion estimation, the distinction between active and passive head movements, as well as the integration of vestibular and proprioceptive information for body motion estimation. A common theme in the solution to such computational problems is the concept of internal models and their neural implementation. Recent studies have shed new insights into important organizational principles that closely resemble those proposed for other sensorimotor systems, where their neural basis has often been more difficult to identify. As such, the vestibular system provides an excellent model to explore common neural processing strategies relevant both for reflexive and for goal-directed, voluntary movement as well as perception.

  10. Modeling Broadband Microwave Structures by Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    V. Otevrel

    2004-06-01

    Full Text Available The paper describes the exploitation of feed-forward neural networksand recurrent neural networks for replacing full-wave numerical modelsof microwave structures in complex microwave design tools. Building aneural model, attention is turned to the modeling accuracy and to theefficiency of building a model. Dealing with the accuracy, we describea method of increasing it by successive completing a training set.Neural models are mutually compared in order to highlight theiradvantages and disadvantages. As a reference model for comparisons,approximations based on standard cubic splines are used. Neural modelsare used to replace both the time-domain numeric models and thefrequency-domain ones.

  11. In vivo functional brain mapping in a conditional mouse model of human tauopathy (tauP301L) reveals reduced neural activity in memory formation structures.

    Science.gov (United States)

    Perez, Pablo D; Hall, Gabrielle; Kimura, Tetsuya; Ren, Yan; Bailey, Rachel M; Lewis, Jada; Febo, Marcelo; Sahara, Naruhiko

    2013-02-04

    Tauopathies are characterized by intracellular deposition of the microtubule-associated protein tau as filamentous aggregates. The rTg4510 mouse conditionally expresses mutant human tau protein in various forebrain areas under the Tet-off expression system. Mice develop neurofibrillary tangles, with significant neuronal loss and cognitive deficits by 6 months of age. Previous behavioral and biochemical work has linked the expression and aggregates of mutant tau to functional impairments. The present work used manganese-enhanced magnetic resonance imaging (MEMRI) to investigate basal levels of brain activity in the rTg4510 and control mice. Our results show an unmistakable curtailment of neural activity in the amygdala and hippocampus, two regions known for their role in memory formation, but not the cortex, cerebellum, striatum and hypothalamus in tau expressing mice. Behavioral impairments associated with changes in activity in these areas may correspond to age progressive mutant tau(P301L)-induced neurodegeneration.

  12. Multiple faces elicit augmented neural activity

    Directory of Open Access Journals (Sweden)

    Aina ePuce

    2013-06-01

    Full Text Available How do our brains respond when we are being watched by a group of people? Despite the large volume of literature devoted to face processing, this question has received very little attention. Here we measured the effects on the face-sensitive N170 and other ERPs to viewing displays of one, two and three faces in two experiments. In Experiment 1, overall image brightness and contrast were adjusted to be constant, whereas in Experiment 2 local contrast and brightness of individual faces were not manipulated. A robust positive-negative-positive (P100-N170-P250 ERP complex and an additional late positive ERP, the P400, were elicited to all stimulus types. As the number of faces in the display increased, N170 amplitude increased for both stimulus sets, and latency increased in Experiment 2. P100 latency and P250 amplitude were affected by changes in overall brightness and contrast, but not by the number of faces in the display per se. In Experiment 1 when overall brightness and contrast were adjusted to be constant, later ERP (P250 and P400 latencies showed differences as a function of hemisphere. Hence, our data indicate that N170 increases its magnitude when multiple faces are seen, apparently impervious to basic low-level stimulus features including stimulus size. Outstanding questions remain regarding category-sensitive neural activity that is elicited to viewing multiple items of stimulus categories other than faces.

  13. Computational models of the neural control of breathing.

    Science.gov (United States)

    Molkov, Yaroslav I; Rubin, Jonathan E; Rybak, Ilya A; Smith, Jeffrey C

    2017-03-01

    The ongoing process of breathing underlies the gas exchange essential for mammalian life. Each respiratory cycle ensues from the activity of rhythmic neural circuits in the brainstem, shaped by various modulatory signals, including mechanoreceptor feedback sensitive to lung inflation and chemoreceptor feedback dependent on gas composition in blood and tissues. This paper reviews a variety of computational models designed to reproduce experimental findings related to the neural control of breathing and generate predictions for future experimental testing. The review starts from the description of the core respiratory network in the brainstem, representing the central pattern generator (CPG) responsible for producing rhythmic respiratory activity, and progresses to encompass additional complexities needed to simulate different metabolic challenges, closed-loop feedback control including the lungs, and interactions between the respiratory and autonomic nervous systems. The integrated models considered in this review share a common framework including a distributed CPG core network responsible for generating the baseline three-phase pattern of rhythmic neural activity underlying normal breathing. WIREs Syst Biol Med 2017, 9:e1371. doi: 10.1002/wsbm.1371 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  14. Neural Network Model of memory retrieval

    Directory of Open Access Journals (Sweden)

    Stefano eRecanatesi

    2015-12-01

    Full Text Available Human memory can store large amount of information. Nevertheless, recalling is often achallenging task. In a classical free recall paradigm, where participants are asked to repeat abriefly presented list of words, people make mistakes for lists as short as 5 words. We present amodel for memory retrieval based on a Hopfield neural network where transition between itemsare determined by similarities in their long-term memory representations. Meanfield analysis ofthe model reveals stable states of the network corresponding (1 to single memory representationsand (2 intersection between memory representations. We show that oscillating feedback inhibitionin the presence of noise induces transitions between these states triggering the retrieval ofdifferent memories. The network dynamics qualitatively predicts the distribution of time intervalsrequired to recall new memory items observed in experiments. It shows that items having largernumber of neurons in their representation are statistically easier to recall and reveals possiblebottlenecks in our ability of retrieving memories. Overall, we propose a neural network model ofinformation retrieval broadly compatible with experimental observations and is consistent with ourrecent graphical model (Romani et al., 2013.

  15. Automated Modeling of Microwave Structures by Enhanced Neural Networks

    Directory of Open Access Journals (Sweden)

    Z. Raida

    2006-12-01

    Full Text Available The paper describes the methodology of the automated creation of neural models of microwave structures. During the creation process, artificial neural networks are trained using the combination of the particle swarm optimization and the quasi-Newton method to avoid critical training problems of the conventional neural nets. In the paper, neural networks are used to approximate the behavior of a planar microwave filter (moment method, Zeland IE3D. In order to evaluate the efficiency of neural modeling, global optimizations are performed using numerical models and neural ones. Both approaches are compared from the viewpoint of CPU-time demands and the accuracy. Considering conclusions, methodological recommendations for including neural networks to the microwave design are formulated.

  16. ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation.

    Science.gov (United States)

    Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-07-20

    Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue in the field of surgical simulation. In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue deformation by combining neural dynamics of cellular neural network with ChainMail mechanism. The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into the neural dynamics of cellular neural network. Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues' nonlinear deformation and typical mechanical behaviors. The proposed method not only improves ChainMail's linear deformation with the nonlinear characteristics of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft tissue deformation.

  17. Neural activity during health messaging predicts reductions in smoking above and beyond self-report.

    Science.gov (United States)

    Falk, Emily B; Berkman, Elliot T; Whalen, Danielle; Lieberman, Matthew D

    2011-03-01

    The current study tested whether neural activity in response to messages designed to help smokers quit could predict smoking reduction, above and beyond self-report. Using neural activity in an a priori region of interest (a subregion of medial prefrontal cortex [MPFC]), in response to ads designed to help smokers quit smoking, we prospectively predicted reductions in smoking in a community sample of smokers (N = 28) who were attempting to quit smoking. Smoking was assessed via expired carbon monoxide (CO; a biological measure of recent smoking) at baseline and 1 month following exposure to professionally developed quitting ads. A positive relationship was observed between activity in the MPFC region of interest and successful quitting (increased activity in MPFC was associated with a greater decrease in expired CO). The addition of neural activity to a model predicting changes in CO from self-reported intentions, self-efficacy, and ability to relate to the messages significantly improved model fit, doubling the variance explained (R²self-report = .15, R²self-report + neural activity = .35, R²change = .20). Neural activity is a useful complement to existing self-report measures. In this investigation, we extend prior work predicting behavior change based on neural activity in response to persuasive media to an important health domain and discuss potential psychological interpretations of the brain-behavior link. Our results support a novel use of neuroimaging technology for understanding the psychology of behavior change and facilitating health promotion. (c) 2011 APA, all rights reserved

  18. A neural model of retrospective attention in visual working memory.

    Science.gov (United States)

    Bays, Paul M; Taylor, Robert

    2018-02-01

    An informative cue that directs attention to one of several items in working memory improves subsequent recall of that item. Here we examine the mechanism of this retro-cue effect using a model of short-term memory based on neural population coding. Our model describes recalled feature values as the output of an optimal decoding of spikes generated by a tuned population of neurons. This neural model provides a better account of human recall data than an influential model that assumes errors can be described as a mixture of normally distributed noise and random guesses. The retro-cue benefit is revealed to be consistent with a higher firing rate of the population encoding the cued versus uncued items, with no difference in tuning specificity. Additionally, a retro-cued item is less likely to be swapped with another item in memory, an effect that can also be explained by greater activity of the underlying population. These results provide a parsimonious account of the effects of retrospective attention on recall and demonstrate a principled method for investigating neural representations with behavioral tasks. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. A neural model of valuation and information virality.

    Science.gov (United States)

    Scholz, Christin; Baek, Elisa C; O'Donnell, Matthew Brook; Kim, Hyun Suk; Cappella, Joseph N; Falk, Emily B

    2017-03-14

    Information sharing is an integral part of human interaction that serves to build social relationships and affects attitudes and behaviors in individuals and large groups. We present a unifying neurocognitive framework of mechanisms underlying information sharing at scale (virality). We argue that expectations regarding self-related and social consequences of sharing (e.g., in the form of potential for self-enhancement or social approval) are integrated into a domain-general value signal that encodes the value of sharing a piece of information. This value signal translates into population-level virality. In two studies (n = 41 and 39 participants), we tested these hypotheses using functional neuroimaging. Neural activity in response to 80 New York Times articles was observed in theory-driven regions of interest associated with value, self, and social cognitions. This activity then was linked to objectively logged population-level data encompassing n = 117,611 internet shares of the articles. In both studies, activity in neural regions associated with self-related and social cognition was indirectly related to population-level sharing through increased neural activation in the brain's value system. Neural activity further predicted population-level outcomes over and above the variance explained by article characteristics and commonly used self-report measures of sharing intentions. This parsimonious framework may help advance theory, improve predictive models, and inform new approaches to effective intervention. More broadly, these data shed light on the core functions of sharing-to express ourselves in positive ways and to strengthen our social bonds.

  20. QSAR modelling using combined simple competitive learning networks and RBF neural networks.

    Science.gov (United States)

    Sheikhpour, R; Sarram, M A; Rezaeian, M; Sheikhpour, E

    2018-04-01

    The aim of this study was to propose a QSAR modelling approach based on the combination of simple competitive learning (SCL) networks with radial basis function (RBF) neural networks for predicting the biological activity of chemical compounds. The proposed QSAR method consisted of two phases. In the first phase, an SCL network was applied to determine the centres of an RBF neural network. In the second phase, the RBF neural network was used to predict the biological activity of various phenols and Rho kinase (ROCK) inhibitors. The predictive ability of the proposed QSAR models was evaluated and compared with other QSAR models using external validation. The results of this study showed that the proposed QSAR modelling approach leads to better performances than other models in predicting the biological activity of chemical compounds. This indicated the efficiency of simple competitive learning networks in determining the centres of RBF neural networks.

  1. Novel mathematical neural models for visual attention

    DEFF Research Database (Denmark)

    Li, Kang

    Visual attention has been extensively studied in psychology, but some fundamental questions remain controversial. We focus on two questions in this study. First, we investigate how a neuron in visual cortex responds to multiple stimuli inside the receptive eld, described by either a response...... for the visual attention theories and spiking neuron models for single spike trains. Statistical inference and model selection are performed and various numerical methods are explored. The designed methods also give a framework for neural coding under visual attention theories. We conduct both analysis on real...... system, supported by simulation study. Finally, we present the decoding of multiple temporal stimuli under these visual attention theories, also in a realistic biophysical situation with simulations....

  2. Nonlinear modeling of neural population dynamics for hippocampal prostheses.

    Science.gov (United States)

    Song, Dong; Chan, Rosa H M; Marmarelis, Vasilis Z; Hampson, Robert E; Deadwyler, Sam A; Berger, Theodore W

    2009-11-01

    Developing a neural prosthesis for the damaged hippocampus requires restoring the transformation of population neural activities performed by the hippocampal circuitry. To bypass a damaged region, output spike trains need to be predicted from the input spike trains and then reinstated through stimulation. We formulate a multiple-input, multiple-output (MIMO) nonlinear dynamic model for the input-output transformation of spike trains. In this approach, a MIMO model comprises a series of physiologically-plausible multiple-input, single-output (MISO) neuron models that consist of five components each: (1) feedforward Volterra kernels transforming the input spike trains into the synaptic potential, (2) a feedback kernel transforming the output spikes into the spike-triggered after-potential, (3) a noise term capturing the system uncertainty, (4) an adder generating the pre-threshold potential, and (5) a threshold function generating output spikes. It is shown that this model is equivalent to a generalized linear model with a probit link function. To reduce model complexity and avoid overfitting, statistical model selection and cross-validation methods are employed to choose the significant inputs and interactions between inputs. The model is applied successfully to the hippocampal CA3-CA1 population dynamics. Such a model can serve as a computational basis for the development of hippocampal prostheses.

  3. The Ising decoder: reading out the activity of large neural ensembles.

    Science.gov (United States)

    Schaub, Michael T; Schultz, Simon R

    2012-02-01

    The Ising model has recently received much attention for the statistical description of neural spike train data. In this paper, we propose and demonstrate its use for building decoders capable of predicting, on a millisecond timescale, the stimulus represented by a pattern of neural activity. After fitting to a training dataset, the Ising decoder can be applied "online" for instantaneous decoding of test data. While such models can be fit exactly using Boltzmann learning, this approach rapidly becomes computationally intractable as neural ensemble size increases. We show that several approaches, including the Thouless-Anderson-Palmer (TAP) mean field approach from statistical physics, and the recently developed Minimum Probability Flow Learning (MPFL) algorithm, can be used for rapid inference of model parameters in large-scale neural ensembles. Use of the Ising model for decoding, unlike other problems such as functional connectivity estimation, requires estimation of the partition function. As this involves summation over all possible responses, this step can be limiting. Mean field approaches avoid this problem by providing an analytical expression for the partition function. We demonstrate these decoding techniques by applying them to simulated neural ensemble responses from a mouse visual cortex model, finding an improvement in decoder performance for a model with heterogeneous as opposed to homogeneous neural tuning and response properties. Our results demonstrate the practicality of using the Ising model to read out, or decode, spatial patterns of activity comprised of many hundreds of neurons.

  4. Two stage neural network modelling for robust model predictive control.

    Science.gov (United States)

    Patan, Krzysztof

    2017-11-02

    The paper proposes a novel robust model predictive control scheme realized by means of artificial neural networks. The neural networks are used twofold: to design the so-called fundamental model of a plant and to catch uncertainty associated with the plant model. In order to simplify the optimization process carried out within the framework of predictive control an instantaneous linearization is applied which renders it possible to define the optimization problem in the form of constrained quadratic programming. Stability of the proposed control system is also investigated by showing that a cost function is monotonically decreasing with respect to time. Derived robust model predictive control is tested and validated on the example of a pneumatic servomechanism working at different operating regimes. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Bio-Inspired Neural Model for Learning Dynamic Models

    Science.gov (United States)

    Duong, Tuan; Duong, Vu; Suri, Ronald

    2009-01-01

    A neural-network mathematical model that, relative to prior such models, places greater emphasis on some of the temporal aspects of real neural physical processes, has been proposed as a basis for massively parallel, distributed algorithms that learn dynamic models of possibly complex external processes by means of learning rules that are local in space and time. The algorithms could be made to perform such functions as recognition and prediction of words in speech and of objects depicted in video images. The approach embodied in this model is said to be "hardware-friendly" in the following sense: The algorithms would be amenable to execution by special-purpose computers implemented as very-large-scale integrated (VLSI) circuits that would operate at relatively high speeds and low power demands.

  6. The versatility of RhoA activities in neural differentiation.

    Science.gov (United States)

    Horowitz, Arie; Yang, Junning; Cai, Jingli; Iacovitti, Lorraine

    2017-01-26

    In this commentary we discuss a paper we published recently on the activities of the GTPase RhoA during neural differentiation of murine embryonic stem cells, and relate our findings to previous studies. We narrate how we found that RhoA impedes neural differentiation by inhibiting the production as well as the secretion of noggin, a soluble factor that antagonizes bone morphogenetic protein. We discuss how the questions we tried to address shaped the study, and how embryonic stem cells isolated from a genetically modified mouse model devoid of Syx, a RhoA-specific guanine exchange factor, were used to address them. We detail several signaling pathways downstream of RhoA that are hindered by the absence of Syx, and obstructed by retinoic acid, resulting in an increase of noggin production; we explain how the lower RhoA activity and, consequently, the sparser peri-junctional stress fibers in Syx -/- cells facilitated noggin secretion; and we report unpublished results showing that pharmacological inhibition of RhoA accelerates the neuronal differentiation of human embryonic stem cells. Finally, we identify signaling mechanisms in our recent study that warrant further study, and speculate on the possibility of manipulating RhoA signaling in combination with other pathways to drive the differentiation of neuronal subtypes.

  7. Extended Neural Metastability in an Embodied Model of Sensorimotor Coupling

    Science.gov (United States)

    Aguilera, Miguel; Bedia, Manuel G.; Barandiaran, Xabier E.

    2016-01-01

    The hypothesis that brain organization is based on mechanisms of metastable synchronization in neural assemblies has been popularized during the last decades of neuroscientific research. Nevertheless, the role of body and environment for understanding the functioning of metastable assemblies is frequently dismissed. The main goal of this paper is to investigate the contribution of sensorimotor coupling to neural and behavioral metastability using a minimal computational model of plastic neural ensembles embedded in a robotic agent in a behavioral preference task. Our hypothesis is that, under some conditions, the metastability of the system is not restricted to the brain but extends to the system composed by the interaction of brain, body and environment. We test this idea, comparing an agent in continuous interaction with its environment in a task demanding behavioral flexibility with an equivalent model from the point of view of “internalist neuroscience.” A statistical characterization of our model and tools from information theory allow us to show how (1) the bidirectional coupling between agent and environment brings the system closer to a regime of criticality and triggers the emergence of additional metastable states which are not found in the brain in isolation but extended to the whole system of sensorimotor interaction, (2) the synaptic plasticity of the agent is fundamental to sustain open structures in the neural controller of the agent flexibly engaging and disengaging different behavioral patterns that sustain sensorimotor metastable states, and (3) these extended metastable states emerge when the agent generates an asymmetrical circular loop of causal interaction with its environment, in which the agent responds to variability of the environment at fast timescales while acting over the environment at slow timescales, suggesting the constitution of the agent as an autonomous entity actively modulating its sensorimotor coupling with the world. We

  8. Physical methods for generating and decoding neural activity in Hirudo verbana

    Science.gov (United States)

    Migliori, Benjamin John

    The interface between living nervous systems and hardware is an excellent proving ground for precision experimental methods and information classification systems. Nervous systems are complex (104 -- 10 15(!) connections), fragile, and highly active in intricate, constantly evolving patterns. However, despite the conveniently electrical nature of neural transmission, the interface between nervous systems and hardware poses significant experimental difficulties. As the desire for direct interfaces with neural signals continues to expand, the need for methods of generating and measuring neural activity with high spatiotemporal precision has become increasingly critical. In this thesis, I describe advances I have made in the ability to modify, generate, measure, and understand neural signals both in- and ex-vivo. I focus on methods developed for transmitting and extracting signals in the intact nervous system of Hirudo verbana (the medicinal leech), an animal with a minimally complex nervous system (10000 neurons distributed in packets along a nerve cord) that exhibits a diverse array of behaviors. To introduce artificial activity patterns, I developed a photothermal activation system in which a highly focused laser is used to irradiate carbon microparticles in contact with target neurons. The resulting local temperature increase generates an electrical current that forces the target neuron to fire neural signals, thereby providing a unique neural input mechanism. These neural signals can potentially be used to alter behavioral choice or generate specific behavioral output, and can be used endogenously in many animal models. I also describe new tools developed to expand the application of this method. In complement to this input system, I describe a new method of analyzing neural output signals involved in long-range coordination of behaviors. Leech behavioral signals are propagated between neural packets as electrical pulses in the nerve connective, a bundle of

  9. Neural Activity Patterns in the Human Brain Reflect Tactile Stickiness Perception

    Science.gov (United States)

    Kim, Junsuk; Yeon, Jiwon; Ryu, Jaekyun; Park, Jang-Yeon; Chung, Soon-Cheol; Kim, Sung-Phil

    2017-01-01

    Our previous human fMRI study found brain activations correlated with tactile stickiness perception using the uni-variate general linear model (GLM) (Yeon et al., 2017). Here, we conducted an in-depth investigation on neural correlates of sticky sensations by employing a multivoxel pattern analysis (MVPA) on the same dataset. In particular, we statistically compared multi-variate neural activities in response to the three groups of sticky stimuli: A supra-threshold group including a set of sticky stimuli that evoked vivid sticky perception; an infra-threshold group including another set of sticky stimuli that barely evoked sticky perception; and a sham group including acrylic stimuli with no physically sticky property. Searchlight MVPAs were performed to search for local activity patterns carrying neural information of stickiness perception. Similar to the uni-variate GLM results, significant multi-variate neural activity patterns were identified in postcentral gyrus, subcortical (basal ganglia and thalamus), and insula areas (insula and adjacent areas). Moreover, MVPAs revealed that activity patterns in posterior parietal cortex discriminated the perceptual intensities of stickiness, which was not present in the uni-variate analysis. Next, we applied a principal component analysis (PCA) to the voxel response patterns within identified clusters so as to find low-dimensional neural representations of stickiness intensities. Follow-up clustering analyses clearly showed separate neural grouping configurations between the Supra- and Infra-threshold groups. Interestingly, this neural categorization was in line with the perceptual grouping pattern obtained from the psychophysical data. Our findings thus suggest that different stickiness intensities would elicit distinct neural activity patterns in the human brain and may provide a neural basis for the perception and categorization of tactile stickiness. PMID:28936171

  10. Fuzzy stochastic neural network model for structural system identification

    Science.gov (United States)

    Jiang, Xiaomo; Mahadevan, Sankaran; Yuan, Yong

    2017-01-01

    This paper presents a dynamic fuzzy stochastic neural network model for nonparametric system identification using ambient vibration data. The model is developed to handle two types of imprecision in the sensed data: fuzzy information and measurement uncertainties. The dimension of the input vector is determined by using the false nearest neighbor approach. A Bayesian information criterion is applied to obtain the optimum number of stochastic neurons in the model. A fuzzy C-means clustering algorithm is employed as a data mining tool to divide the sensed data into clusters with common features. The fuzzy stochastic model is created by combining the fuzzy clusters of input vectors with the radial basis activation functions in the stochastic neural network. A natural gradient method is developed based on the Kullback-Leibler distance criterion for quick convergence of the model training. The model is validated using a power density pseudospectrum approach and a Bayesian hypothesis testing-based metric. The proposed methodology is investigated with numerically simulated data from a Markov Chain model and a two-story planar frame, and experimentally sensed data from ambient vibration data of a benchmark structure.

  11. Assessment of neural networks performance in modeling rainfall ...

    African Journals Online (AJOL)

    This paper presents the evaluation of performance of Neural Network (NN) model in predicting the behavioral pattern of rainfall depths of some locations in the North Central zones of Nigeria. The input to the model is the consecutive rainfall depths data obtained from the Nigerian Meteorological (NiMET) Agency. The neural ...

  12. Artificial Neural Network Modeling of an Inverse Fluidized Bed ...

    African Journals Online (AJOL)

    MICHAEL

    modeling of the inverse fluidized bed reactor. In the proposed model, the trained neural network represents the kinetics of biological decomposition of pollutants in the reactor. The neural network has been trained with experimental data obtained from an inverse fluidized bed reactor treating the starch industry wastewater.

  13. Computational modeling of spiking neural network with learning rules from STDP and intrinsic plasticity

    Science.gov (United States)

    Li, Xiumin; Wang, Wei; Xue, Fangzheng; Song, Yongduan

    2018-02-01

    Recently there has been continuously increasing interest in building up computational models of spiking neural networks (SNN), such as the Liquid State Machine (LSM). The biologically inspired self-organized neural networks with neural plasticity can enhance the capability of computational performance, with the characteristic features of dynamical memory and recurrent connection cycles which distinguish them from the more widely used feedforward neural networks. Despite a variety of computational models for brain-like learning and information processing have been proposed, the modeling of self-organized neural networks with multi-neural plasticity is still an important open challenge. The main difficulties lie in the interplay among different forms of neural plasticity rules and understanding how structures and dynamics of neural networks shape the computational performance. In this paper, we propose a novel approach to develop the models of LSM with a biologically inspired self-organizing network based on two neural plasticity learning rules. The connectivity among excitatory neurons is adapted by spike-timing-dependent plasticity (STDP) learning; meanwhile, the degrees of neuronal excitability are regulated to maintain a moderate average activity level by another learning rule: intrinsic plasticity (IP). Our study shows that LSM with STDP+IP performs better than LSM with a random SNN or SNN obtained by STDP alone. The noticeable improvement with the proposed method is due to the better reflected competition among different neurons in the developed SNN model, as well as the more effectively encoded and processed relevant dynamic information with its learning and self-organizing mechanism. This result gives insights to the optimization of computational models of spiking neural networks with neural plasticity.

  14. Hybrid neural network bushing model for vehicle dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jeong Hyun [Pukyong National University, Busan (Korea, Republic of); Lee, Seung Kyu [Hyosung Corporation, Changwon (Korea, Republic of); Yoo, Wan Suk [Pusan National University, Busan (Korea, Republic of)

    2008-12-15

    Although the linear model was widely used for the bushing model in vehicle suspension systems, it could not express the nonlinear characteristics of bushing in terms of the amplitude and the frequency. An artificial neural network model was suggested to consider the hysteretic responses of bushings. This model, however, often diverges due to the uncertainties of the neural network under the unexpected excitation inputs. In this paper, a hybrid neural network bushing model combining linear and neural network is suggested. A linear model was employed to represent linear stiffness and damping effects, and the artificial neural network algorithm was adopted to take into account the hysteretic responses. A rubber test was performed to capture bushing characteristics, where sine excitation with different frequencies and amplitudes is applied. Random test results were used to update the weighting factors of the neural network model. It is proven that the proposed model has more robust characteristics than a simple neural network model under step excitation input. A full car simulation was carried out to verify the proposed bushing models. It was shown that the hybrid model results are almost identical to the linear model under several maneuvers

  15. Bayesian Recurrent Neural Network for Language Modeling.

    Science.gov (United States)

    Chien, Jen-Tzung; Ku, Yuan-Chu

    2016-02-01

    A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.

  16. Runoff Modelling in Urban Storm Drainage by Neural Networks

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Brorsen, Michael; Schaarup-Jensen, Kjeld

    1995-01-01

    A neural network is used to simulate folw and water levels in a sewer system. The calibration of th neural network is based on a few measured events and the network is validated against measureed events as well as flow simulated with the MOUSE model (Lindberg and Joergensen, 1986). The neural...... network is used to compute flow or water level at selected points in the sewer system, and to forecast the flow from a small residential area. The main advantages of the neural network are the build-in self calibration procedure and high speed performance, but the neural network cannot be used to extract...... knowledge of the runoff process. The neural network was found to simulate 150 times faster than e.g. the MOUSE model....

  17. In vivo functional brain mapping in a conditional mouse model of human tauopathy (taup301l reveals reduced neural activity in memory formation structures

    Directory of Open Access Journals (Sweden)

    Perez Pablo D

    2013-02-01

    Full Text Available Abstract Background Tauopathies are characterized by intracellular deposition of the microtubule-associated protein tau as filamentous aggregates. The rTg4510 mouse conditionally expresses mutant human tau protein in various forebrain areas under the Tet-off expression system. Mice develop neurofibrillary tangles, with significant neuronal loss and cognitive deficits by 6 months of age. Previous behavioral and biochemical work has linked the expression and aggregates of mutant tau to functional impairments. The present work used manganese-enhanced magnetic resonance imaging (MEMRI to investigate basal levels of brain activity in the rTg4510 and control mice. Results Our results show an unmistakable curtailment of neural activity in the amygdala and hippocampus, two regions known for their role in memory formation, but not the cortex, cerebellum, striatum and hypothalamus in tau expressing mice. Conclusion Behavioral impairments associated with changes in activity in these areas may correspond to age progressive mutant tauP301L-induced neurodegeneration.

  18. Active Engine Mounting Control Algorithm Using Neural Network

    Directory of Open Access Journals (Sweden)

    Fadly Jashi Darsivan

    2009-01-01

    Full Text Available This paper proposes the application of neural network as a controller to isolate engine vibration in an active engine mounting system. It has been shown that the NARMA-L2 neurocontroller has the ability to reject disturbances from a plant. The disturbance is assumed to be both impulse and sinusoidal disturbances that are induced by the engine. The performance of the neural network controller is compared with conventional PD and PID controllers tuned using Ziegler-Nichols. From the result simulated the neural network controller has shown better ability to isolate the engine vibration than the conventional controllers.

  19. Patterns recognition of electric brain activity using artificial neural networks

    Science.gov (United States)

    Musatov, V. Yu.; Pchelintseva, S. V.; Runnova, A. E.; Hramov, A. E.

    2017-04-01

    An approach for the recognition of various cognitive processes in the brain activity in the perception of ambiguous images. On the basis of developed theoretical background and the experimental data, we propose a new classification of oscillating patterns in the human EEG by using an artificial neural network approach. After learning of the artificial neural network reliably identified cube recognition processes, for example, left-handed or right-oriented Necker cube with different intensity of their edges, construct an artificial neural network based on Perceptron architecture and demonstrate its effectiveness in the pattern recognition of the EEG in the experimental.

  20. A novel neural network based image reconstruction model with scale and rotation invariance for target identification and classification for Active millimetre wave imaging

    Science.gov (United States)

    Agarwal, Smriti; Bisht, Amit Singh; Singh, Dharmendra; Pathak, Nagendra Prasad

    2014-12-01

    Millimetre wave imaging (MMW) is gaining tremendous interest among researchers, which has potential applications for security check, standoff personal screening, automotive collision-avoidance, and lot more. Current state-of-art imaging techniques viz. microwave and X-ray imaging suffers from lower resolution and harmful ionizing radiation, respectively. In contrast, MMW imaging operates at lower power and is non-ionizing, hence, medically safe. Despite these favourable attributes, MMW imaging encounters various challenges as; still it is very less explored area and lacks suitable imaging methodology for extracting complete target information. Keeping in view of these challenges, a MMW active imaging radar system at 60 GHz was designed for standoff imaging application. A C-scan (horizontal and vertical scanning) methodology was developed that provides cross-range resolution of 8.59 mm. The paper further details a suitable target identification and classification methodology. For identification of regular shape targets: mean-standard deviation based segmentation technique was formulated and further validated using a different target shape. For classification: probability density function based target material discrimination methodology was proposed and further validated on different dataset. Lastly, a novel artificial neural network based scale and rotation invariant, image reconstruction methodology has been proposed to counter the distortions in the image caused due to noise, rotation or scale variations. The designed neural network once trained with sample images, automatically takes care of these deformations and successfully reconstructs the corrected image for the test targets. Techniques developed in this paper are tested and validated using four different regular shapes viz. rectangle, square, triangle and circle.

  1. Attenuation of β-Amyloid Deposition and Neurotoxicity by Chemogenetic Modulation of Neural Activity.

    Science.gov (United States)

    Yuan, Peng; Grutzendler, Jaime

    2016-01-13

    Aberrant neural hyperactivity has been observed in early stages of Alzheimer's disease (AD) and may be a driving force in the progression of amyloid pathology. Evidence for this includes the findings that neural activity may modulate β-amyloid (Aβ) peptide secretion and experimental stimulation of neural activity can increase amyloid deposition. However, whether long-term attenuation of neural activity prevents the buildup of amyloid plaques and associated neural pathologies remains unknown. Using viral-mediated delivery of designer receptors exclusively activated by designer drugs (DREADDs), we show in two AD-like mouse models that chronic intermittent increases or reductions of activity have opposite effects on Aβ deposition. Neural activity reduction markedly decreases Aβ aggregation in regions containing axons or dendrites of DREADD-expressing neurons, suggesting the involvement of synaptic and nonsynaptic Aβ release mechanisms. Importantly, activity attenuation is associated with a reduction in axonal dystrophy and synaptic loss around amyloid plaques. Thus, modulation of neural activity could constitute a potential therapeutic strategy for ameliorating amyloid-induced pathology in AD. A novel chemogenetic approach to upregulate and downregulate neuronal activity in Alzheimer's disease (AD) mice was implemented. This led to the first demonstration that chronic intermittent attenuation of neuronal activity in vivo significantly reduces amyloid deposition. The study also demonstrates that modulation of β-amyloid (Aβ) release can occur at both axonal and dendritic fields, suggesting the involvement of synaptic and nonsynaptic Aβ release mechanisms. Activity reductions also led to attenuation of the synaptic pathology associated with amyloid plaques. Therefore, chronic attenuation of neuronal activity could constitute a novel therapeutic approach for AD. Copyright © 2016 the authors 0270-6474/16/360632-10$15.00/0.

  2. High Accuracy Human Activity Monitoring using Neural network

    OpenAIRE

    Sharma, Annapurna; Lee, Young-Dong; Chung, Wan-Young

    2011-01-01

    This paper presents the designing of a neural network for the classification of Human activity. A Triaxial accelerometer sensor, housed in a chest worn sensor unit, has been used for capturing the acceleration of the movements associated. All the three axis acceleration data were collected at a base station PC via a CC2420 2.4GHz ISM band radio (zigbee wireless compliant), processed and classified using MATLAB. A neural network approach for classification was used with an eye on theoretical a...

  3. Ocean wave prediction using numerical and neural network models

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    This paper presents an overview of the development of the numerical wave prediction models and recently used neural networks for ocean wave hindcasting and forecasting. The numerical wave models express the physical concepts of the phenomena...

  4. Genetic algorithm-artificial neural network and adaptive neuro-fuzzy inference system modeling of antibacterial activity of annatto dye on Salmonella enteritidis.

    Science.gov (United States)

    Yolmeh, Mahmoud; Habibi Najafi, Mohammad B; Salehi, Fakhreddin

    2014-01-01

    Annatto is commonly used as a coloring agent in the food industry and has antimicrobial and antioxidant properties. In this study, genetic algorithm-artificial neural network (GA-ANN) and adaptive neuro-fuzzy inference system (ANFIS) models were used to predict the effect of annatto dye on Salmonella enteritidis in mayonnaise. The GA-ANN and ANFIS were fed with 3 inputs of annatto dye concentration (0, 0.1, 0.2 and 0.4%), storage temperature (4 and 25°C) and storage time (1-20 days) for prediction of S. enteritidis population. Both models were trained with experimental data. The results showed that the annatto dye was able to reduce of S. enteritidis and its effect was stronger at 25°C than 4°C. The developed GA-ANN, which included 8 hidden neurons, could predict S. enteritidis population with correlation coefficient of 0.999. The overall agreement between ANFIS predictions and experimental data was also very good (r=0.998). Sensitivity analysis results showed that storage temperature was the most sensitive factor for prediction of S. enteritidis population. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Neural and Neural Gray-Box Modeling for Entry Temperature Prediction in a Hot Strip Mill

    Science.gov (United States)

    Barrios, José Angel; Torres-Alvarado, Miguel; Cavazos, Alberto; Leduc, Luis

    2011-10-01

    In hot strip mills, initial controller set points have to be calculated before the steel bar enters the mill. Calculations rely on the good knowledge of rolling variables. Measurements are available only after the bar has entered the mill, and therefore they have to be estimated. Estimation of process variables, particularly that of temperature, is of crucial importance for the bar front section to fulfill quality requirements, and the same must be performed in the shortest possible time to preserve heat. Currently, temperature estimation is performed by physical modeling; however, it is highly affected by measurement uncertainties, variations in the incoming bar conditions, and final product changes. In order to overcome these problems, artificial intelligence techniques such as artificial neural networks and fuzzy logic have been proposed. In this article, neural network-based systems, including neural-based Gray-Box models, are applied to estimate scale breaker entry temperature, given its importance, and their performance is compared to that of the physical model used in plant. Several neural systems and several neural-based Gray-Box models are designed and tested with real data. Taking advantage of the flexibility of neural networks for input incorporation, several factors which are believed to have influence on the process are also tested. The systems proposed in this study were proven to have better performance indexes and hence better prediction capabilities than the physical models currently used in plant.

  6. Neural network models: Insights and prescriptions from practical applications

    Energy Technology Data Exchange (ETDEWEB)

    Samad, T. [Honeywell Technology Center, Minneapolis, MN (United States)

    1995-12-31

    Neural networks are no longer just a research topic; numerous applications are now testament to their practical utility. In the course of developing these applications, researchers and practitioners have been faced with a variety of issues. This paper briefly discusses several of these, noting in particular the rich connections between neural networks and other, more conventional technologies. A more comprehensive version of this paper is under preparation that will include illustrations on real examples. Neural networks are being applied in several different ways. Our focus here is on neural networks as modeling technology. However, much of the discussion is also relevant to other types of applications such as classification, control, and optimization.

  7. A neural network model of causative actions.

    Science.gov (United States)

    Lee-Hand, Jeremy; Knott, Alistair

    2015-01-01

    A common idea in models of action representation is that actions are represented in terms of their perceptual effects (see e.g., Prinz, 1997; Hommel et al., 2001; Sahin et al., 2007; Umiltà et al., 2008; Hommel, 2013). In this paper we extend existing models of effect-based action representations to account for a novel distinction. Some actions bring about effects that are independent events in their own right: for instance, if John smashes a cup, he brings about the event of the cup smashing. Other actions do not bring about such effects. For instance, if John grabs a cup, this action does not cause the cup to "do" anything: a grab action has well-defined perceptual effects, but these are not registered by the perceptual system that detects independent events involving external objects in the world. In our model, effect-based actions are implemented in several distinct neural circuits, which are organized into a hierarchy based on the complexity of their associated perceptual effects. The circuit at the top of this hierarchy is responsible for actions that bring about independently perceivable events. This circuit receives input from the perceptual module that recognizes arbitrary events taking place in the world, and learns movements that reliably cause such events. We assess our model against existing experimental observations about effect-based motor representations, and make some novel experimental predictions. We also consider the possibility that the "causative actions" circuit in our model can be identified with a motor pathway reported in other work, specializing in "functional" actions on manipulable tools (Bub et al., 2008; Binkofski and Buxbaum, 2013).

  8. Active Vibration Control of the Smart Plate Using Artificial Neural Network Controller

    Directory of Open Access Journals (Sweden)

    Mohit

    2015-01-01

    Full Text Available The active vibration control (AVC of a rectangular plate with single input and single output approach is investigated using artificial neural network. The cantilever plate of finite length, breadth, and thickness having piezoelectric patches as sensors/actuators fixed at the upper and lower surface of the metal plate is considered for examination. The finite element model of the cantilever plate is utilized to formulate the whole strategy. The compact RIO and MATLAB simulation software are exercised to get the appropriate results. The cantilever plate is subjected to impulse input and uniform white noise disturbance. The neural network is trained offline and tuned with LQR controller. The various training algorithms to tune the neural network are exercised. The best efficient algorithm is finally considered to tune the neural network controller designed for active vibration control of the smart plate.

  9. Modulation of Neural Activity during Guided Viewing of Visual Art

    Directory of Open Access Journals (Sweden)

    Guillermo Herrera-Arcos

    2017-11-01

    Full Text Available Mobile Brain-Body Imaging (MoBI technology was deployed to record multi-modal data from 209 participants to examine the brain’s response to artistic stimuli at the Museo de Arte Contemporáneo (MARCO in Monterrey, México. EEG signals were recorded as the subjects walked through the exhibit in guided groups of 6–8 people. Moreover, guided groups were either provided with an explanation of each art piece (Guided-E, or given no explanation (Guided-NE. The study was performed using portable Muse (InteraXon, Inc, Toronto, ON, Canada headbands with four dry electrodes located at AF7, AF8, TP9, and TP10. Each participant performed a baseline (BL control condition devoid of artistic stimuli and selected his/her favorite piece of art (FP during the guided tour. In this study, we report data related to participants’ demographic information and aesthetic preference as well as effects of art viewing on neural activity (EEG in a select subgroup of 18–30 year-old subjects (Nc = 25 that generated high-quality EEG signals, on both BL and FP conditions. Dependencies on gender, sensor placement, and presence or absence of art explanation were also analyzed. After denoising, clustering of spectral EEG models was used to identify neural patterns associated with BL and FP conditions. Results indicate statistically significant suppression of beta band frequencies (15–25 Hz in the prefrontal electrodes (AF7 and AF8 during appreciation of subjects’ favorite painting, compared to the BL condition, which was significantly different from EEG responses to non-favorite paintings (NFP. No significant differences in brain activity in relation to the presence or absence of explanation during exhibit tours were found. Moreover, a frontal to posterior asymmetry in neural activity was observed, for both BL and FP conditions. These findings provide new information about frequency-related effects of preferred art viewing in brain activity, and support the view that art

  10. Modulation of Neural Activity during Guided Viewing of Visual Art

    Science.gov (United States)

    Herrera-Arcos, Guillermo; Tamez-Duque, Jesús; Acosta-De-Anda, Elsa Y.; Kwan-Loo, Kevin; de-Alba, Mayra; Tamez-Duque, Ulises; Contreras-Vidal, Jose L.; Soto, Rogelio

    2017-01-01

    Mobile Brain-Body Imaging (MoBI) technology was deployed to record multi-modal data from 209 participants to examine the brain’s response to artistic stimuli at the Museo de Arte Contemporáneo (MARCO) in Monterrey, México. EEG signals were recorded as the subjects walked through the exhibit in guided groups of 6–8 people. Moreover, guided groups were either provided with an explanation of each art piece (Guided-E), or given no explanation (Guided-NE). The study was performed using portable Muse (InteraXon, Inc, Toronto, ON, Canada) headbands with four dry electrodes located at AF7, AF8, TP9, and TP10. Each participant performed a baseline (BL) control condition devoid of artistic stimuli and selected his/her favorite piece of art (FP) during the guided tour. In this study, we report data related to participants’ demographic information and aesthetic preference as well as effects of art viewing on neural activity (EEG) in a select subgroup of 18–30 year-old subjects (Nc = 25) that generated high-quality EEG signals, on both BL and FP conditions. Dependencies on gender, sensor placement, and presence or absence of art explanation were also analyzed. After denoising, clustering of spectral EEG models was used to identify neural patterns associated with BL and FP conditions. Results indicate statistically significant suppression of beta band frequencies (15–25 Hz) in the prefrontal electrodes (AF7 and AF8) during appreciation of subjects’ favorite painting, compared to the BL condition, which was significantly different from EEG responses to non-favorite paintings (NFP). No significant differences in brain activity in relation to the presence or absence of explanation during exhibit tours were found. Moreover, a frontal to posterior asymmetry in neural activity was observed, for both BL and FP conditions. These findings provide new information about frequency-related effects of preferred art viewing in brain activity, and support the view that art

  11. Modulation of Neural Activity during Guided Viewing of Visual Art.

    Science.gov (United States)

    Herrera-Arcos, Guillermo; Tamez-Duque, Jesús; Acosta-De-Anda, Elsa Y; Kwan-Loo, Kevin; de-Alba, Mayra; Tamez-Duque, Ulises; Contreras-Vidal, Jose L; Soto, Rogelio

    2017-01-01

    Mobile Brain-Body Imaging (MoBI) technology was deployed to record multi-modal data from 209 participants to examine the brain's response to artistic stimuli at the Museo de Arte Contemporáneo (MARCO) in Monterrey, México. EEG signals were recorded as the subjects walked through the exhibit in guided groups of 6-8 people. Moreover, guided groups were either provided with an explanation of each art piece (Guided-E), or given no explanation (Guided-NE). The study was performed using portable Muse (InteraXon, Inc, Toronto, ON, Canada) headbands with four dry electrodes located at AF7, AF8, TP9, and TP10. Each participant performed a baseline (BL) control condition devoid of artistic stimuli and selected his/her favorite piece of art (FP) during the guided tour. In this study, we report data related to participants' demographic information and aesthetic preference as well as effects of art viewing on neural activity (EEG) in a select subgroup of 18-30 year-old subjects (Nc = 25) that generated high-quality EEG signals, on both BL and FP conditions. Dependencies on gender, sensor placement, and presence or absence of art explanation were also analyzed. After denoising, clustering of spectral EEG models was used to identify neural patterns associated with BL and FP conditions. Results indicate statistically significant suppression of beta band frequencies (15-25 Hz) in the prefrontal electrodes (AF7 and AF8) during appreciation of subjects' favorite painting, compared to the BL condition, which was significantly different from EEG responses to non-favorite paintings (NFP). No significant differences in brain activity in relation to the presence or absence of explanation during exhibit tours were found. Moreover, a frontal to posterior asymmetry in neural activity was observed, for both BL and FP conditions. These findings provide new information about frequency-related effects of preferred art viewing in brain activity, and support the view that art appreciation is

  12. Acquiring neural signals for developing a perception and cognition model

    Science.gov (United States)

    Li, Wei; Li, Yunyi; Chen, Genshe; Shen, Dan; Blasch, Erik; Pham, Khanh; Lynch, Robert

    2012-06-01

    The understanding of how humans process information, determine salience, and combine seemingly unrelated information is essential to automated processing of large amounts of information that is partially relevant, or of unknown relevance. Recent neurological science research in human perception, and in information science regarding contextbased modeling, provides us with a theoretical basis for using a bottom-up approach for automating the management of large amounts of information in ways directly useful for human operators. However, integration of human intelligence into a game theoretic framework for dynamic and adaptive decision support needs a perception and cognition model. For the purpose of cognitive modeling, we present a brain-computer-interface (BCI) based humanoid robot system to acquire brainwaves during human mental activities of imagining a humanoid robot-walking behavior. We use the neural signals to investigate relationships between complex humanoid robot behaviors and human mental activities for developing the perception and cognition model. The BCI system consists of a data acquisition unit with an electroencephalograph (EEG), a humanoid robot, and a charge couple CCD camera. An EEG electrode cup acquires brainwaves from the skin surface on scalp. The humanoid robot has 20 degrees of freedom (DOFs); 12 DOFs located on hips, knees, and ankles for humanoid robot walking, 6 DOFs on shoulders and arms for arms motion, and 2 DOFs for head yaw and pitch motion. The CCD camera takes video clips of the human subject's hand postures to identify mental activities that are correlated to the robot-walking behaviors. We use the neural signals to investigate relationships between complex humanoid robot behaviors and human mental activities for developing the perception and cognition model.

  13. Decorrelation of Neural-Network Activity by Inhibitory Feedback

    Science.gov (United States)

    Einevoll, Gaute T.; Diesmann, Markus

    2012-01-01

    Correlations in spike-train ensembles can seriously impair the encoding of information by their spatio-temporal structure. An inevitable source of correlation in finite neural networks is common presynaptic input to pairs of neurons. Recent studies demonstrate that spike correlations in recurrent neural networks are considerably smaller than expected based on the amount of shared presynaptic input. Here, we explain this observation by means of a linear network model and simulations of networks of leaky integrate-and-fire neurons. We show that inhibitory feedback efficiently suppresses pairwise correlations and, hence, population-rate fluctuations, thereby assigning inhibitory neurons the new role of active decorrelation. We quantify this decorrelation by comparing the responses of the intact recurrent network (feedback system) and systems where the statistics of the feedback channel is perturbed (feedforward system). Manipulations of the feedback statistics can lead to a significant increase in the power and coherence of the population response. In particular, neglecting correlations within the ensemble of feedback channels or between the external stimulus and the feedback amplifies population-rate fluctuations by orders of magnitude. The fluctuation suppression in homogeneous inhibitory networks is explained by a negative feedback loop in the one-dimensional dynamics of the compound activity. Similarly, a change of coordinates exposes an effective negative feedback loop in the compound dynamics of stable excitatory-inhibitory networks. The suppression of input correlations in finite networks is explained by the population averaged correlations in the linear network model: In purely inhibitory networks, shared-input correlations are canceled by negative spike-train correlations. In excitatory-inhibitory networks, spike-train correlations are typically positive. Here, the suppression of input correlations is not a result of the mere existence of correlations between

  14. Evaluation of neural networks to identify types of activity using accelerometers

    NARCIS (Netherlands)

    Vries, S.I. de; Garre, F.G.; Engbers, L.H.; Hildebrandt, V.H.; Buuren, S. van

    2011-01-01

    Purpose: To develop and evaluate two artificial neural network (ANN) models based on single-sensor accelerometer data and an ANN model based on the data of two accelerometers for the identification of types of physical activity in adults. Methods: Forty-nine subjects (21 men and 28 women; age range

  15. Forecasting volatility with neural regression: a contribution to model adequacy.

    Science.gov (United States)

    Refenes, A N; Holt, W T

    2001-01-01

    Neural nets' usefulness for forecasting is limited by problems of overfitting and the lack of rigorous procedures for model identification, selection and adequacy testing. This paper describes a methodology for neural model misspecification testing. We introduce a generalization of the Durbin-Watson statistic for neural regression and discuss the general issues of misspecification testing using residual analysis. We derive a generalized influence matrix for neural estimators which enables us to evaluate the distribution of the statistic. We deploy Monte Carlo simulation to compare the power of the test for neural and linear regressors. While residual testing is not a sufficient condition for model adequacy, it is nevertheless a necessary condition to demonstrate that the model is a good approximation to the data generating process, particularly as neural-network estimation procedures are susceptible to partial convergence. The work is also an important step toward developing rigorous procedures for neural model identification, selection and adequacy testing which have started to appear in the literature. We demonstrate its applicability in the nontrivial problem of forecasting implied volatility innovations using high-frequency stock index options. Each step of the model building process is validated using statistical tests to verify variable significance and model adequacy with the results confirming the presence of nonlinear relationships in implied volatility innovations.

  16. A neural network model of ventriloquism effect and aftereffect.

    Directory of Open Access Journals (Sweden)

    Elisa Magosso

    Full Text Available Presenting simultaneous but spatially discrepant visual and auditory stimuli induces a perceptual translocation of the sound towards the visual input, the ventriloquism effect. General explanation is that vision tends to dominate over audition because of its higher spatial reliability. The underlying neural mechanisms remain unclear. We address this question via a biologically inspired neural network. The model contains two layers of unimodal visual and auditory neurons, with visual neurons having higher spatial resolution than auditory ones. Neurons within each layer communicate via lateral intra-layer synapses; neurons across layers are connected via inter-layer connections. The network accounts for the ventriloquism effect, ascribing it to a positive feedback between the visual and auditory neurons, triggered by residual auditory activity at the position of the visual stimulus. Main results are: i the less localized stimulus is strongly biased toward the most localized stimulus and not vice versa; ii amount of the ventriloquism effect changes with visual-auditory spatial disparity; iii ventriloquism is a robust behavior of the network with respect to parameter value changes. Moreover, the model implements Hebbian rules for potentiation and depression of lateral synapses, to explain ventriloquism aftereffect (that is, the enduring sound shift after exposure to spatially disparate audio-visual stimuli. By adaptively changing the weights of lateral synapses during cross-modal stimulation, the model produces post-adaptive shifts of auditory localization that agree with in-vivo observations. The model demonstrates that two unimodal layers reciprocally interconnected may explain ventriloquism effect and aftereffect, even without the presence of any convergent multimodal area. The proposed study may provide advancement in understanding neural architecture and mechanisms at the basis of visual-auditory integration in the spatial realm.

  17. Spike neural models (part I: The Hodgkin-Huxley model

    Directory of Open Access Journals (Sweden)

    Johnson, Melissa G.

    2017-05-01

    Full Text Available Artificial neural networks, or ANNs, have grown a lot since their inception back in the 1940s. But no matter the changes, one of the most important components of neural networks is still the node, which represents the neuron. Within spiking neural networks, the node is especially important because it contains the functions and properties of neurons that are necessary for their network. One important aspect of neurons is the ionic flow which produces action potentials, or spikes. Forces of diffusion and electrostatic pressure work together with the physical properties of the cell to move ions around changing the cell membrane potential which ultimately produces the action potential. This tutorial reviews the Hodkgin-Huxley model and shows how it simulates the ionic flow of the giant squid axon via four differential equations. The model is implemented in Matlab using Euler's Method to approximate the differential equations. By using Euler's method, an extra parameter is created, the time step. This new parameter needs to be carefully considered or the results of the node may be impaired.

  18. From neural plate to cortical arousal-a neuronal network theory of sleep derived from in vitro "model" systems for primordial patterns of spontaneous bioelectric activity in the vertebrate central nervous system.

    Science.gov (United States)

    Corner, Michael A

    2013-05-22

    In the early 1960s intrinsically generated widespread neuronal discharges were discovered to be the basis for the earliest motor behavior throughout the animal kingdom. The pattern generating system is in fact programmed into the developing nervous system, in a regionally specific manner, already at the early neural plate stage. Such rhythmically modulated phasic bursts were next discovered to be a general feature of developing neural networks and, largely on the basis of experimental interventions in cultured neural tissues, to contribute significantly to their morpho-physiological maturation. In particular, the level of spontaneous synchronized bursting is homeostatically regulated, and has the effect of constraining the development of excessive network excitability. After birth or hatching, this "slow-wave" activity pattern becomes sporadically suppressed in favor of sensory oriented "waking" behaviors better adapted to dealing with environmental contingencies. It nevertheless reappears periodically as "sleep" at several species-specific points in the diurnal/nocturnal cycle. Although this "default" behavior pattern evolves with development, its essential features are preserved throughout the life cycle, and are based upon a few simple mechanisms which can be both experimentally demonstrated and simulated by computer modeling. In contrast, a late onto- and phylogenetic aspect of sleep, viz., the intermittent "paradoxical" activation of the forebrain so as to mimic waking activity, is much less well understood as regards its contribution to brain development. Some recent findings dealing with this question by means of cholinergically induced "aroused" firing patterns in developing neocortical cell cultures, followed by quantitative electrophysiological assays of immediate and longterm sequelae, will be discussed in connection with their putative implications for sleep ontogeny.

  19. Neural decision model of business capitalization

    Directory of Open Access Journals (Sweden)

    Martin Pokorný

    2007-01-01

    Full Text Available The topic of this article is focused on problems related to enterprise financial supervising. In the concrete, the situation of enterprise investment policy evaluation is described here. In this case, as a convenient tool for decision support, the approach of artificial intelligence was selected, particularly the model of neuron network. For the purpose of enterprise economic state evaluation, we use four input variables which describe the economic state. Three main variables are selected and the fourth one is the additional. The coding of main variables is chosen with the respect to the possible states of the enterprise. The multilayer neuron network was used for evaluation.The neural network can solve problems, which are hardly solvable for a manager because there can exist a lot of factors affecting the final decision. We have to take into account the fact that sometimes the situation is too complex. In this case, when the system gives incorrect result, it is possible to extend the current learning set and add adequate patterns which will help the system to recognize states of the enterprise.

  20. Neural field model of memory-guided search

    Science.gov (United States)

    Kilpatrick, Zachary P.; Poll, Daniel B.

    2017-12-01

    Many organisms can remember locations they have previously visited during a search. Visual search experiments have shown exploration is guided away from these locations, reducing redundancies in the search path before finding a hidden target. We develop and analyze a two-layer neural field model that encodes positional information during a search task. A position-encoding layer sustains a bump attractor corresponding to the searching agent's current location, and search is modeled by velocity input that propagates the bump. A memory layer sustains persistent activity bounded by a wave front, whose edges expand in response to excitatory input from the position layer. Search can then be biased in response to remembered locations, influencing velocity inputs to the position layer. Asymptotic techniques are used to reduce the dynamics of our model to a low-dimensional system of equations that track the bump position and front boundary. Performance is compared for different target-finding tasks.

  1. Artificial neural network modeling of dissolved oxygen in reservoir.

    Science.gov (United States)

    Chen, Wei-Bo; Liu, Wen-Cheng

    2014-02-01

    The water quality of reservoirs is one of the key factors in the operation and water quality management of reservoirs. Dissolved oxygen (DO) in water column is essential for microorganisms and a significant indicator of the state of aquatic ecosystems. In this study, two artificial neural network (ANN) models including back propagation neural network (BPNN) and adaptive neural-based fuzzy inference system (ANFIS) approaches and multilinear regression (MLR) model were developed to estimate the DO concentration in the Feitsui Reservoir of northern Taiwan. The input variables of the neural network are determined as water temperature, pH, conductivity, turbidity, suspended solids, total hardness, total alkalinity, and ammonium nitrogen. The performance of the ANN models and MLR model was assessed through the mean absolute error, root mean square error, and correlation coefficient computed from the measured and model-simulated DO values. The results reveal that ANN estimation performances were superior to those of MLR. Comparing to the BPNN and ANFIS models through the performance criteria, the ANFIS model is better than the BPNN model for predicting the DO values. Study results show that the neural network particularly using ANFIS model is able to predict the DO concentrations with reasonable accuracy, suggesting that the neural network is a valuable tool for reservoir management in Taiwan.

  2. Positive mood enhances reward-related neural activity.

    Science.gov (United States)

    Young, Christina B; Nusslock, Robin

    2016-06-01

    Although behavioral research has shown that positive mood leads to desired outcomes in nearly every major life domain, no studies have directly examined the effects of positive mood on the neural processes underlying reward-related affect and goal-directed behavior. To address this gap, participants in the present fMRI study experienced either a positive (n = 20) or neutral (n = 20) mood induction and subsequently completed a monetary incentive delay task that assessed reward and loss processing. Consistent with prediction, positive mood elevated activity specifically during reward anticipation in corticostriatal neural regions that have been implicated in reward processing and goal-directed behavior, including the nucleus accumbens, caudate, lateral orbitofrontal cortex and putamen, as well as related paralimbic regions, including the anterior insula and ventromedial prefrontal cortex. These effects were not observed during reward outcome, loss anticipation or loss outcome. Critically, this is the first study to report that positive mood enhances reward-related neural activity. Our findings have implications for uncovering the neural mechanisms by which positive mood enhances goal-directed behavior, understanding the malleability of reward-related neural activity, and developing targeted treatments for psychiatric disorders characterized by deficits in reward processing. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  3. Visually-salient contour detection using a V1 neural model with horizontal connections

    CERN Document Server

    Loxley, P N

    2011-01-01

    A convolution model which accounts for neural activity dynamics in the primary visual cortex is derived and used to detect visually salient contours in images. Image inputs to the model are modulated by long-range horizontal connections, allowing contextual effects in the image to determine visual saliency, i.e. line segments arranged in a closed contour elicit a larger neural response than line segments forming background clutter. The model is tested on 3 types of contour, including a line, a circular closed contour, and a non-circular closed contour. Using a modified association field to describe horizontal connections the model is found to perform well for different parameter values. For each type of contour a different facilitation mechanism is found. Operating as a feed-forward network, the model assigns saliency by increasing the neural activity of line segments facilitated by the horizontal connections. Alternatively, operating as a feedback network, the model can achieve further improvement over sever...

  4. Cultured Neural Networks: Optimization of Patterned Network Adhesiveness and Characterization of their Neural Activity

    Directory of Open Access Journals (Sweden)

    W. L. C. Rutten

    2006-01-01

    Full Text Available One type of future, improved neural interface is the “cultured probe”. It is a hybrid type of neural information transducer or prosthesis, for stimulation and/or recording of neural activity. It would consist of a microelectrode array (MEA on a planar substrate, each electrode being covered and surrounded by a local circularly confined network (“island” of cultured neurons. The main purpose of the local networks is that they act as biofriendly intermediates for collateral sprouts from the in vivo system, thus allowing for an effective and selective neuron–electrode interface. As a secondary purpose, one may envisage future information processing applications of these intermediary networks. In this paper, first, progress is shown on how substrates can be chemically modified to confine developing networks, cultured from dissociated rat cortex cells, to “islands” surrounding an electrode site. Additional coating of neurophobic, polyimide-coated substrate by triblock-copolymer coating enhances neurophilic-neurophobic adhesion contrast. Secondly, results are given on neuronal activity in patterned, unconnected and connected, circular “island” networks. For connected islands, the larger the island diameter (50, 100 or 150 μm, the more spontaneous activity is seen. Also, activity may show a very high degree of synchronization between two islands. For unconnected islands, activity may start at 22 days in vitro (DIV, which is two weeks later than in unpatterned networks.

  5. Neural speech recognition: continuous phoneme decoding using spatiotemporal representations of human cortical activity

    Science.gov (United States)

    Moses, David A.; Mesgarani, Nima; Leonard, Matthew K.; Chang, Edward F.

    2016-10-01

    Objective. The superior temporal gyrus (STG) and neighboring brain regions play a key role in human language processing. Previous studies have attempted to reconstruct speech information from brain activity in the STG, but few of them incorporate the probabilistic framework and engineering methodology used in modern speech recognition systems. In this work, we describe the initial efforts toward the design of a neural speech recognition (NSR) system that performs continuous phoneme recognition on English stimuli with arbitrary vocabulary sizes using the high gamma band power of local field potentials in the STG and neighboring cortical areas obtained via electrocorticography. Approach. The system implements a Viterbi decoder that incorporates phoneme likelihood estimates from a linear discriminant analysis model and transition probabilities from an n-gram phonemic language model. Grid searches were used in an attempt to determine optimal parameterizations of the feature vectors and Viterbi decoder. Main results. The performance of the system was significantly improved by using spatiotemporal representations of the neural activity (as opposed to purely spatial representations) and by including language modeling and Viterbi decoding in the NSR system. Significance. These results emphasize the importance of modeling the temporal dynamics of neural responses when analyzing their variations with respect to varying stimuli and demonstrate that speech recognition techniques can be successfully leveraged when decoding speech from neural signals. Guided by the results detailed in this work, further development of the NSR system could have applications in the fields of automatic speech recognition and neural prosthetics.

  6. Radial Basis Function Neural Network-based PID model for functional electrical stimulation system control.

    Science.gov (United States)

    Cheng, Longlong; Zhang, Guangju; Wan, Baikun; Hao, Linlin; Qi, Hongzhi; Ming, Dong

    2009-01-01

    Functional electrical stimulation (FES) has been widely used in the area of neural engineering. It utilizes electrical current to activate nerves innervating extremities affected by paralysis. An effective combination of a traditional PID controller and a neural network, being capable of nonlinear expression and adaptive learning property, supply a more reliable approach to construct FES controller that help the paraplegia complete the action they want. A FES system tuned by Radial Basis Function (RBF) Neural Network-based Proportional-Integral-Derivative (PID) model was designed to control the knee joint according to the desired trajectory through stimulation of lower limbs muscles in this paper. Experiment result shows that the FES system with RBF Neural Network-based PID model get a better performance when tracking the preset trajectory of knee angle comparing with the system adjusted by Ziegler- Nichols tuning PID model.

  7. Distributed Recurrent Neural Forward Models with Neural Control for Complex Locomotion in Walking Robots

    DEFF Research Database (Denmark)

    Dasgupta, Sakyasingha; Goldschmidt, Dennis; Wörgötter, Florentin

    2015-01-01

    movements, (2) distributed (at each leg) recurrent neural network based adaptive forward models with efference copies as internal models for sensory predictions and instantaneous state estimations, and (3) searching and elevation control for adapting the movement of an individual leg to deal with different...... conditions, like uneven terrains, gaps, obstacles etc. Biological study has revealed that such complex behaviors are a result of a combination of biomechanics and neural mechanism thus representing the true nature of embodied interactions. While the biomechanics helps maintain flexibility and sustain...... a variety of movements, the neural mechanisms generate movements while making appropriate predictions crucial for achieving adaptation. Such predictions or planning ahead can be achieved by way of internal models that are grounded in the overall behavior of the animal. Inspired by these findings, we present...

  8. Avalanches in self-organized critical neural networks: a minimal model for the neural SOC universality class.

    Directory of Open Access Journals (Sweden)

    Matthias Rybarsch

    Full Text Available The brain keeps its overall dynamics in a corridor of intermediate activity and it has been a long standing question what possible mechanism could achieve this task. Mechanisms from the field of statistical physics have long been suggesting that this homeostasis of brain activity could occur even without a central regulator, via self-organization on the level of neurons and their interactions, alone. Such physical mechanisms from the class of self-organized criticality exhibit characteristic dynamical signatures, similar to seismic activity related to earthquakes. Measurements of cortex rest activity showed first signs of dynamical signatures potentially pointing to self-organized critical dynamics in the brain. Indeed, recent more accurate measurements allowed for a detailed comparison with scaling theory of non-equilibrium critical phenomena, proving the existence of criticality in cortex dynamics. We here compare this new evaluation of cortex activity data to the predictions of the earliest physics spin model of self-organized critical neural networks. We find that the model matches with the recent experimental data and its interpretation in terms of dynamical signatures for criticality in the brain. The combination of signatures for criticality, power law distributions of avalanche sizes and durations, as well as a specific scaling relationship between anomalous exponents, defines a universality class characteristic of the particular critical phenomenon observed in the neural experiments. Thus the model is a candidate for a minimal model of a self-organized critical adaptive network for the universality class of neural criticality. As a prototype model, it provides the background for models that may include more biological details, yet share the same universality class characteristic of the homeostasis of activity in the brain.

  9. Activity-dependent modulation of neural circuit synaptic connectivity

    Directory of Open Access Journals (Sweden)

    Charles R Tessier

    2009-07-01

    Full Text Available In many nervous systems, the establishment of neural circuits is known to proceed via a two-stage process; 1 early, activity-independent wiring to produce a rough map characterized by excessive synaptic connections, and 2 subsequent, use-dependent pruning to eliminate inappropriate connections and reinforce maintained synapses. In invertebrates, however, evidence of the activity-dependent phase of synaptic refinement has been elusive, and the dogma has long been that invertebrate circuits are “hard-wired” in a purely activity-independent manner. This conclusion has been challenged recently through the use of new transgenic tools employed in the powerful Drosophila system, which have allowed unprecedented temporal control and single neuron imaging resolution. These recent studies reveal that activity-dependent mechanisms are indeed required to refine circuit maps in Drosophila during precise, restricted windows of late-phase development. Such mechanisms of circuit refinement may be key to understanding a number of human neurological diseases, including developmental disorders such as Fragile X syndrome (FXS and autism, which are hypothesized to result from defects in synaptic connectivity and activity-dependent circuit function. This review focuses on our current understanding of activity-dependent synaptic connectivity in Drosophila, primarily through analyzing the role of the fragile X mental retardation protein (FMRP in the Drosophila FXS disease model. The particular emphasis of this review is on the expanding array of new genetically-encoded tools that are allowing cellular events and molecular players to be dissected with ever greater precision and detail.

  10. Small-signal neural models and their applications.

    Science.gov (United States)

    Basu, Arindam

    2012-02-01

    This paper introduces the use of the concept of small-signal analysis, commonly used in circuit design, for understanding neural models. We show that neural models, varying in complexity from Hodgkin-Huxley to integrate and fire have similar small-signal models when their corresponding differential equations are close to the same bifurcation with respect to input current. Three applications of small-signal neural models are shown. First, some of the properties of cortical neurons described by Izhikevich are explained intuitively through small-signal analysis. Second, we use small-signal models for deriving parameters for a simple neural model (such as resonate and fire) from a more complicated but biophysically relevant one like Morris-Lecar. We show similarity in the subthreshold behavior of the simple and complicated model when they are close to a Hopf bifurcation and a saddle-node bifurcation. Hence, this is useful to correctly tune simple neural models for large-scale cortical simulations. Finaly, the biasing regime of a silicon ion channel is derived by comparing its small-signal model with a Hodgkin-Huxley-type model.

  11. Epigenomic Landscapes of hESC-Derived Neural Rosettes: Modeling Neural Tube Formation and Diseases.

    Science.gov (United States)

    Valensisi, Cristina; Andrus, Colin; Buckberry, Sam; Doni Jayavelu, Naresh; Lund, Riikka J; Lister, Ryan; Hawkins, R David

    2017-08-08

    We currently lack a comprehensive understanding of the mechanisms underlying neural tube formation and their contributions to neural tube defects (NTDs). Developing a model to study such a complex morphogenetic process, especially one that models human-specific aspects, is critical. Three-dimensional, human embryonic stem cell (hESC)-derived neural rosettes (NRs) provide a powerful resource for in vitro modeling of human neural tube formation. Epigenomic maps reveal enhancer elements unique to NRs relative to 2D systems. A master regulatory network illustrates that key NR properties are related to their epigenomic landscapes. We found that folate-associated DNA methylation changes were enriched within NR regulatory elements near genes involved in neural tube formation and metabolism. Our comprehensive regulatory maps offer insights into the mechanisms by which folate may prevent NTDs. Lastly, our distal regulatory maps provide a better understanding of the potential role of neurological-disorder-associated SNPs. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Neural network models of learning and categorization in multigame experiments

    Directory of Open Access Journals (Sweden)

    Davide eMarchiori

    2011-12-01

    Full Text Available Previous research has shown that regret-driven neural networks predict behavior in repeated completely mixed games remarkably well, substantially equating the performance of the most accurate established models of learning. This result prompts the question of what is the added value of modeling learning through neural networks. We submit that this modeling approach allows for models that are able to distinguish among and respond differently to different payoff structures. Moreover, the process of categorization of a game is implicitly carried out by these models, thus without the need of any external explicit theory of similarity between games. To validate our claims, we designed and ran two multigame experiments in which subjects faced, in random sequence, different instances of two completely mixed 2x2 games. Then, we tested on our experimental data two regret-driven neural network models, and compared their performance with that of other established models of learning and Nash equilibrium.

  13. Neural activity predicts attitude change in cognitive dissonance.

    Science.gov (United States)

    van Veen, Vincent; Krug, Marie K; Schooler, Jonathan W; Carter, Cameron S

    2009-11-01

    When our actions conflict with our prior attitudes, we often change our attitudes to be more consistent with our actions. This phenomenon, known as cognitive dissonance, is considered to be one of the most influential theories in psychology. However, the neural basis of this phenomenon is unknown. Using a Solomon four-group design, we scanned participants with functional MRI while they argued that the uncomfortable scanner environment was nevertheless a pleasant experience. We found that cognitive dissonance engaged the dorsal anterior cingulate cortex and anterior insula; furthermore, we found that the activation of these regions tightly predicted participants' subsequent attitude change. These effects were not observed in a control group. Our findings elucidate the neural representation of cognitive dissonance, and support the role of the anterior cingulate cortex in detecting cognitive conflict and the neural prediction of attitude change.

  14. High solar activity predictions through an artificial neural network

    Science.gov (United States)

    Orozco-Del-Castillo, M. G.; Ortiz-Alemán, J. C.; Couder-Castañeda, C.; Hernández-Gómez, J. J.; Solís-Santomé, A.

    The effects of high-energy particles coming from the Sun on human health as well as in the integrity of outer space electronics make the prediction of periods of high solar activity (HSA) a task of significant importance. Since periodicities in solar indexes have been identified, long-term predictions can be achieved. In this paper, we present a method based on an artificial neural network to find a pattern in some harmonics which represent such periodicities. We used data from 1973 to 2010 to train the neural network, and different historical data for its validation. We also used the neural network along with a statistical analysis of its performance with known data to predict periods of HSA with different confidence intervals according to the three-sigma rule associated with solar cycles 24-26, which we found to occur before 2040.

  15. Identification of children's activity type with accelerometer-based neural networks

    NARCIS (Netherlands)

    Vries, S.I. de; Engels, M.; Garre, F.G.

    2011-01-01

    Purpose: The study's purpose was to identify children's physical activity type using artificial neural network (ANN) models based on uniaxial or triaxial accelerometer data from the hip or the ankle. Methods: Fifty-eight children (31 boys and 27 girls, age range = 9-12 yr) performed the following

  16. Task-dependent modulation of oscillatory neural activity during movements

    DEFF Research Database (Denmark)

    Herz, D. M.; Christensen, M. S.; Reck, C.

    2011-01-01

    -dependent modulation of frequency coupling within this network. To this end we recorded 122-multichannel EEG in 13 healthy subjects while they performed three simple motor tasks. EEG data source modeling using individual MR images was carried out with a multiple source beamformer approach. A bilateral motor network...... for inferring on architecture and coupling parameters of neural networks....

  17. Neural activity when people solve verbal problems with insight.

    Directory of Open Access Journals (Sweden)

    Mark Jung-Beeman

    2004-04-01

    Full Text Available People sometimes solve problems with a unique process called insight, accompanied by an "Aha!" experience. It has long been unclear whether different cognitive and neural processes lead to insight versus noninsight solutions, or if solutions differ only in subsequent subjective feeling. Recent behavioral studies indicate distinct patterns of performance and suggest differential hemispheric involvement for insight and noninsight solutions. Subjects solved verbal problems, and after each correct solution indicated whether they solved with or without insight. We observed two objective neural correlates of insight. Functional magnetic resonance imaging (Experiment 1 revealed increased activity in the right hemisphere anterior superior temporal gyrus for insight relative to noninsight solutions. The same region was active during initial solving efforts. Scalp electroencephalogram recordings (Experiment 2 revealed a sudden burst of high-frequency (gamma-band neural activity in the same area beginning 0.3 s prior to insight solutions. This right anterior temporal area is associated with making connections across distantly related information during comprehension. Although all problem solving relies on a largely shared cortical network, the sudden flash of insight occurs when solvers engage distinct neural and cognitive processes that allow them to see connections that previously eluded them.

  18. Strategies influence neural activity for feedback learning across child and adolescent development.

    Science.gov (United States)

    Peters, Sabine; Koolschijn, P Cédric M P; Crone, Eveline A; Van Duijvenvoorde, Anna C K; Raijmakers, Maartje E J

    2014-09-01

    Learning from feedback is an important aspect of executive functioning that shows profound improvements during childhood and adolescence. This is accompanied by neural changes in the feedback-learning network, which includes pre-supplementary motor area (pre- SMA)/anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC), superior parietal cortex (SPC), and the basal ganglia. However, there can be considerable differences within age ranges in performance that are ascribed to differences in strategy use. This is problematic for traditional approaches of analyzing developmental data, in which age groups are assumed to be homogenous in strategy use. In this study, we used latent variable models to investigate if underlying strategy groups could be detected for a feedback-learning task and whether there were differences in neural activation patterns between strategies. In a sample of 268 participants between ages 8 to 25 years, we observed four underlying strategy groups, which were cut across age groups and varied in the optimality of executive functioning. These strategy groups also differed in neural activity during learning; especially the most optimal performing group showed more activity in DLPFC, SPC and pre-SMA/ACC compared to the other groups. However, age differences remained an important contributor to neural activation, even when correcting for strategy. These findings contribute to the debate of age versus performance predictors of neural development, and highlight the importance of studying individual differences in strategy use when studying development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Neural activations correlated with reading speed during reading novels.

    Science.gov (United States)

    Fujimaki, Norio; Munetsuna, Shinji; Sasaki, Toyofumi; Hayakawa, Tomoe; Ihara, Aya; Wei, Qiang; Terazono, Yasushi; Murata, Tsutomu

    2009-12-01

    Functional magnetic resonance imaging was used to measure neural activations in subjects instructed to silently read novels at ordinary and rapid speeds. Among the 19 subjects, 8 were experts in a rapid reading technique. Subjects pressed a button to turn pages during reading, and the interval between turning pages was recorded to evaluate the reading speed. For each subject, we evaluated activations in 14 areas and at 2 instructed reading speeds. Neural activations decreased with increasing reading speed in the left middle and posterior superior temporal area, left inferior frontal area, left precentral area, and the anterior temporal areas of both hemispheres, which have been reported to be active for linguistic processes, while neural activation increased with increasing reading speed in the right intraparietal sulcus, which is considered to reflect visuo-spatial processes. Despite the considerable reading speed differences, correlation analysis showed no significant difference in activation dependence on reading speed with respect to the subject groups and instructed reading speeds. The activation reduction with speed increase in language-related areas was opposite to the previous reports for low reading speeds. The present results suggest that subjects reduced linguistic processes with reading speed increase from ordinary to rapid speed.

  20. Development of modularity in the neural activity of children's brains.

    Science.gov (United States)

    Chen, Man; Deem, Michael W

    2015-01-26

    We study how modularity of the human brain changes as children develop into adults. Theory suggests that modularity can enhance the response function of a networked system subject to changing external stimuli. Thus, greater cognitive performance might be achieved for more modular neural activity, and modularity might likely increase as children develop. The value of modularity calculated from functional magnetic resonance imaging (fMRI) data is observed to increase during childhood development and peak in young adulthood. Head motion is deconvolved from the fMRI data, and it is shown that the dependence of modularity on age is independent of the magnitude of head motion. A model is presented to illustrate how modularity can provide greater cognitive performance at short times, i.e. task switching. A fitness function is extracted from the model. Quasispecies theory is used to predict how the average modularity evolves with age, illustrating the increase of modularity during development from children to adults that arises from selection for rapid cognitive function in young adults. Experiments exploring the effect of modularity on cognitive performance are suggested. Modularity may be a potential biomarker for injury, rehabilitation, or disease.

  1. Comparative nonlinear modeling of renal autoregulation in rats: Volterra approach versus artificial neural networks

    DEFF Research Database (Denmark)

    Chon, K H; Holstein-Rathlou, N H; Marsh, D J

    1998-01-01

    kernel estimation method based on Laguerre expansions. The results for the two types of artificial neural networks and the Volterra models are comparable in terms of normalized mean square error (NMSE) of the respective output prediction for independent testing data. However, the Volterra models obtained......In this paper, feedforward neural networks with two types of activation functions (sigmoidal and polynomial) are utilized for modeling the nonlinear dynamic relation between renal blood pressure and flow data, and their performance is compared to Volterra models obtained by use of the leading...... via the Laguerre expansion technique achieve this prediction NMSE with approximately half the number of free parameters relative to either neural-network model. However, both approaches are deemed effective in modeling nonlinear dynamic systems and their cooperative use is recommended in general....

  2. Improved estimation of energy expenditure by artificial neural network modeling.

    Science.gov (United States)

    Hay, Dean Charles; Wakayama, Akinobu; Sakamura, Ken; Fukashiro, Senshi

    2008-12-01

    Estimation of energy expenditure in daily living conditions can be a tool for clinical assessment of health status, as well as a self-measure of lifestyle and general activity levels. Criterion measures are either prohibitively expensive or restricted to laboratory settings. Portable devices (heart rate monitors, pedometers) have gained recent popularity, but accuracy of the prediction equations remains questionable. This study applied an artificial neural network modeling approach to the problem of estimating energy expenditure with different dynamic inputs (accelerometry, heart rate above resting (HRar), and electromyography (EMG)). Nine feed-forward back-propagation models were trained, with the goal of minimizing the mean squared error (MSE) of the training datasets. Model 1 (accelerometry only) and model 2 (HRar only) performed poorly and had significantly greater MSE than all other models (p energy expenditure for models 3 to 9 ranged from 0.745 to 0.817. Analysis of mean error within specific movement categories indicates that EMG models may be better at predicting higher-intensity energy expenditure, but combined accelerometry and HRar provides an economical solution, with sufficient accuracy.

  3. ARTIFICIAL NEURAL NETWORK FOR MODELS OF HUMAN OPERATOR

    Directory of Open Access Journals (Sweden)

    Martin Ruzek

    2017-12-01

    Full Text Available This paper presents a new approach to mental functions modeling with the use of artificial neural networks. The artificial neural networks seems to be a promising method for the modeling of a human operator because the architecture of the ANN is directly inspired by the biological neuron. On the other hand, the classical paradigms of artificial neural networks are not suitable because they simplify too much the real processes in biological neural network. The search for a compromise between the complexity of biological neural network and the practical feasibility of the artificial network led to a new learning algorithm. This algorithm is based on the classical multilayered neural network; however, the learning rule is different. The neurons are updating their parameters in a way that is similar to real biological processes. The basic idea is that the neurons are competing for resources and the criterion to decide which neuron will survive is the usefulness of the neuron to the whole neural network. The neuron is not using "teacher" or any kind of superior system, the neuron receives only the information that is present in the biological system. The learning process can be seen as searching of some equilibrium point that is equal to a state with maximal importance of the neuron for the neural network. This position can change if the environment changes. The name of this type of learning, the homeostatic artificial neural network, originates from this idea, as it is similar to the process of homeostasis known in any living cell. The simulation results suggest that this type of learning can be useful also in other tasks of artificial learning and recognition.

  4. Neural Networks and Their Application to Air Force Personnel Modeling

    Science.gov (United States)

    1991-11-01

    breadth of techniques provides fertile ground against which to compare the results obtained with neural networks. ", Most of the models in reenlistment or...Specialties (MOSs) receiving SRBs were taken from the 1980 and 1981 Enlisted Master Files ( EMFs ). These 98 MOSs were then aggregated into 15 Career Management... mechanisms , and architectures. Neural Networks, 1(1), 17-62. Hagiwara, M. (1990). Accelerated backpropagation using unlearning based on a Hebb rule

  5. Nanoelectronics enabled chronic multimodal neural platform in a mouse ischemic model.

    Science.gov (United States)

    Luan, Lan; Sullender, Colin T; Li, Xue; Zhao, Zhengtuo; Zhu, Hanlin; Wei, Xiaoling; Xie, Chong; Dunn, Andrew K

    2017-12-04

    Despite significant advancements of optical imaging techniques for mapping hemodynamics in small animal models, it remains challenging to combine imaging with spatially resolved electrical recording of individual neurons especially for longitudinal studies. This is largely due to the strong invasiveness to the living brain from the penetrating electrodes and their limited compatibility with longitudinal imaging. We implant arrays of ultraflexible nanoelectronic threads (NETs) in mice for neural recording both at the brain surface and intracortically, which maintain great tissue compatibility chronically. By mounting a cranial window atop of the NET arrays that allows for chronic optical access, we establish a multimodal platform that combines spatially resolved electrical recording of neural activity and laser speckle contrast imaging (LSCI) of cerebral blood flow (CBF) for longitudinal studies. We induce peri-infarct depolarizations (PIDs) by targeted photothrombosis, and show the ability to detect its occurrence and propagation through spatiotemporal variations in both extracellular potentials and CBF. We also demonstrate chronic tracking of single-unit neural activity and CBF over days after photothrombosis, from which we observe reperfusion and increased firing rates. This multimodal platform enables simultaneous mapping of neural activity and hemodynamic parameters at the microscale for quantitative, longitudinal comparisons with minimal perturbation to the baseline neurophysiology. The ability to spatiotemporally resolve and chronically track CBF and neural electrical activity in the same living brain region has broad applications for studying the interplay between neural and hemodynamic responses in health and in cerebrovascular and neurological pathologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Constitutive Modelling of INCONEL 718 using Artificial Neural Network

    Science.gov (United States)

    Abiriand Bhekisipho Twala, Olufunminiyi

    2017-08-01

    Artificial neural network is used to model INCONEL 718 in this paper. The model accounts for precipitate hardening in the alloy. The input variables for the neural network model are strain, strain rate, temperature and microstructure state. The output variable is the flow stress. The early stopping technique is combined with Bayesian regularization process in training the network. Sample and non-sample measurement data were taken from the literature. The model predictions of flow stress of the alloy are in good agreement with experimental measurements.

  7. Early interfaced neural activity from chronic amputated nerves

    Directory of Open Access Journals (Sweden)

    Kshitija Garde

    2009-05-01

    Full Text Available Direct interfacing of transected peripheral nerves with advanced robotic prosthetic devices has been proposed as a strategy for achieving natural motor control and sensory perception of such bionic substitutes, thus fully functionally replacing missing limbs in amputees. Multi-electrode arrays placed in the brain and peripheral nerves have been used successfully to convey neural control of prosthetic devices to the user. However, reactive gliosis, micro hemorrhages, axonopathy and excessive inflammation, currently limit their long-term use. Here we demonstrate that enticement of peripheral nerve regeneration through a non-obstructive multi-electrode array, after either acute or chronic nerve amputation, offers a viable alternative to obtain early neural recordings and to enhance long-term interfacing of nerve activity. Non restrictive electrode arrays placed in the path of regenerating nerve fibers allowed the recording of action potentials as early as 8 days post-implantation with high signal-to-noise ratio, as long as 3 months in some animals, and with minimal inflammation at the nerve tissue-metal electrode interface. Our findings suggest that regenerative on-dependent multi-electrode arrays of open design allow the early and stable interfacing of neural activity from amputated peripheral nerves and might contribute towards conveying full neural control and sensory feedback to users of robotic prosthetic devices. .

  8. An ART neural network model of discrimination shift learning

    NARCIS (Netherlands)

    Raijmakers, M.E.J.; Coffey, E.; Stevenson, C.; Winkel, J.; Berkeljon, A.; Taatgen, N.; van Rijn, H.

    2009-01-01

    We present an ART-based neural network model (adapted from [2]) of the development of discrimination-shift learning that models the trial-by-trial learning process in great detail. In agreement with the results of human participants (4-20 years of age) in [1] the model revealed two distinct learning

  9. Performance of Deep and Shallow Neural Networks, the Universal Approximation Theorem, Activity Cliffs, and QSAR.

    Science.gov (United States)

    Winkler, David A; Le, Tu C

    2017-01-01

    Neural networks have generated valuable Quantitative Structure-Activity/Property Relationships (QSAR/QSPR) models for a wide variety of small molecules and materials properties. They have grown in sophistication and many of their initial problems have been overcome by modern mathematical techniques. QSAR studies have almost always used so-called "shallow" neural networks in which there is a single hidden layer between the input and output layers. Recently, a new and potentially paradigm-shifting type of neural network based on Deep Learning has appeared. Deep learning methods have generated impressive improvements in image and voice recognition, and are now being applied to QSAR and QSAR modelling. This paper describes the differences in approach between deep and shallow neural networks, compares their abilities to predict the properties of test sets for 15 large drug data sets (the kaggle set), discusses the results in terms of the Universal Approximation theorem for neural networks, and describes how DNN may ameliorate or remove troublesome "activity cliffs" in QSAR data sets. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Modelling Framework of a Neural Object Recognition

    Directory of Open Access Journals (Sweden)

    Aswathy K S

    2016-02-01

    Full Text Available In many industrial, medical and scientific image processing applications, various feature and pattern recognition techniques are used to match specific features in an image with a known template. Despite the capabilities of these techniques, some applications require simultaneous analysis of multiple, complex, and irregular features within an image as in semiconductor wafer inspection. In wafer inspection discovered defects are often complex and irregular and demand more human-like inspection techniques to recognize irregularities. By incorporating neural network techniques such image processing systems with much number of images can be trained until the system eventually learns to recognize irregularities. The aim of this project is to develop a framework of a machine-learning system that can classify objects of different category. The framework utilizes the toolboxes in the Matlab such as Computer Vision Toolbox, Neural Network Toolbox etc.

  11. Cortical Neural Activity Predicts Sensory Acuity Under Optogenetic Manipulation.

    Science.gov (United States)

    Briguglio, John J; Aizenberg, Mark; Balasubramanian, Vijay; Geffen, Maria N

    2018-02-21

    Excitatory and inhibitory neurons in the mammalian sensory cortex form interconnected circuits that control cortical stimulus selectivity and sensory acuity. Theoretical studies have predicted that suppression of inhibition in such excitatory-inhibitory networks can lead to either an increase or, paradoxically, a decrease in excitatory neuronal firing, with consequent effects on stimulus selectivity. We tested whether modulation of inhibition or excitation in the auditory cortex of male mice could evoke such a variety of effects in tone-evoked responses and in behavioral frequency discrimination acuity. We found that, indeed, the effects of optogenetic manipulation on stimulus selectivity and behavior varied in both magnitude and sign across subjects, possibly reflecting differences in circuitry or expression of optogenetic factors. Changes in neural population responses consistently predicted behavioral changes for individuals separately, including improvement and impairment in acuity. This correlation between cortical and behavioral change demonstrates that, despite the complex and varied effects that these manipulations can have on neuronal dynamics, the resulting changes in cortical activity account for accompanying changes in behavioral acuity. SIGNIFICANCE STATEMENT Excitatory and inhibitory interactions determine stimulus specificity and tuning in sensory cortex, thereby controlling perceptual discrimination acuity. Modeling has predicted that suppressing the activity of inhibitory neurons can lead to increased or, paradoxically, decreased excitatory activity depending on the architecture of the network. Here, we capitalized on differences between subjects to test whether suppressing/activating inhibition and excitation can in fact exhibit such paradoxical effects for both stimulus sensitivity and behavioral discriminability. Indeed, the same optogenetic manipulation in the auditory cortex of different mice could improve or impair frequency discrimination

  12. Water Quality Modeling in Reservoirs Using Multivariate Linear Regression and Two Neural Network Models

    OpenAIRE

    Wei-Bo Chen; Wen-Cheng Liu

    2015-01-01

    In this study, two artificial neural network models (i.e., a radial basis function neural network, RBFN, and an adaptive neurofuzzy inference system approach, ANFIS) and a multilinear regression (MLR) model were developed to simulate the DO, TP, Chl a, and SD in the Mingder Reservoir of central Taiwan. The input variables of the neural network and the MLR models were determined using linear regression. The performances were evaluated using the RBFN, ANFIS, and MLR models based on statistical ...

  13. Targeting neural synchrony deficits is sufficient to improve cognition in a schizophrenia-related neurodevelopmental model

    Directory of Open Access Journals (Sweden)

    Heekyung eLee

    2014-02-01

    Full Text Available Cognitive symptoms are core features of mental disorders but procognitive treatments are limited. We have proposed a ‘discoordination’ hypothesis that cognitive impairment results from aberrant coordination of neural activity. We reported that neonatal ventral hippocampus lesion (NVHL rats, an established neurodevelopmental model of schizophrenia, have abnormal neural synchrony and cognitive deficits in the active place avoidance task. During stillness, we observed that cortical local field potentials sometimes resembled epileptiform spike-wave discharges with higher prevalence in NVHL rats, indicating abnormal neural synchrony due perhaps to imbalanced excitation-inhibition coupling. Here, within the context of the hypothesis, we investigated whether attenuating abnormal neural synchrony will improve cognition in NVHL rats. We report that 1 interhippocampal synchrony in the theta and beta bands is correlated with active place avoidance performance; 2 the anticonvulsant ethosuximide attenuated the abnormal spike-wave activity, improved cognitive control, and reduced hyperlocomotion; 3 ethosuximide normalized the task-associated theta and beta synchrony between the two hippocampi but also increased synchrony between the medial prefrontal cortex and hippocampus above control levels; 4 the antipsychotic olanzapine was less effective at improving cognitive control and normalizing place avoidance-related inter-hippocampal neural synchrony, although it reduced hyperactivity; and 5 olanzapine caused an abnormal pattern of frequency-independent increases in neural synchrony, in both NVHL and control rats. These data suggest that normalizing aberrant neural synchrony can be beneficial and that drugs targeting the pathophysiology of abnormally coordinated neural activities may be a promising theoretical framework and strategy for developing treatments that improve cognition in neurodevelopmental disorders such as schizophrenia.

  14. Dissipativity and Synchronization of Generalized BAM Neural Networks With Multivariate Discontinuous Activations.

    Science.gov (United States)

    Wang, Dongshu; Huang, Lihong; Tang, Longkun

    2017-09-14

    This paper is concerned with the dissipativity and synchronization problems of a class of delayed bidirectional associative memory (BAM) neural networks in which neuron activations are modeled by discontinuous bivariate functions. First, the concept of the Filippov solution is extended to functional differential equations with discontinuous right-hand sides and mixed delays via functional differential inclusions. The global dissipativity of the Filippov solution to the considered BAM neural networks is proven using generalized Halanay inequalities and matrix measure approaches. Second, to realize global exponential complete synchronization of BAM neural networks with multivariate discontinuous activations, discontinuous state feedback controllers are designed using functional differential inclusions theory and nonsmooth analysis theory with generalized Lyapunov functional method. Finally, several numerical examples are provided to demonstrate the applicability and effectiveness of our proposed results.

  15. Forecast of consumer behaviour based on neural networks models comparison

    Directory of Open Access Journals (Sweden)

    Michael Štencl

    2012-01-01

    Full Text Available The aim of this article is comparison of accuracy level of forecasted values of several artificial neural network models. The comparison is performed on datasets of Czech household consumption values. Several statistical models often resolve this task with more or fewer restrictions. In previous work where models’ input conditions were not so strict and model with missing data was used (the time series didn’t contain many values we have obtained comparably good results with artificial neural networks. Two views – practical and theoretical, motivate the purpose of this study. Forecasting models for medium term prognosis of the main trends of Czech household consumption is part of the faculty research design grant MSM 6215648904/03/02 (Sub-task 5.3 which defines the practical purpose. Testing of nonlinear autoregressive artificial neural network model compared with feed-forward neural network and radial basis function neural network defines the theoretical purpose. The performance metrics of the models were evaluated using a combination of common error metrics, namely Correlation Coefficient and Mean Square Error, together with the number of epochs and/or main prediction error.

  16. Artificial neural networks modeling gene-environment interaction

    Directory of Open Access Journals (Sweden)

    Günther Frauke

    2012-05-01

    Full Text Available Abstract Background Gene-environment interactions play an important role in the etiological pathway of complex diseases. An appropriate statistical method for handling a wide variety of complex situations involving interactions between variables is still lacking, especially when continuous variables are involved. The aim of this paper is to explore the ability of neural networks to model different structures of gene-environment interactions. A simulation study is set up to compare neural networks with standard logistic regression models. Eight different structures of gene-environment interactions are investigated. These structures are characterized by penetrance functions that are based on sigmoid functions or on combinations of linear and non-linear effects of a continuous environmental factor and a genetic factor with main effect or with a masking effect only. Results In our simulation study, neural networks are more successful in modeling gene-environment interactions than logistic regression models. This outperfomance is especially pronounced when modeling sigmoid penetrance functions, when distinguishing between linear and nonlinear components, and when modeling masking effects of the genetic factor. Conclusion Our study shows that neural networks are a promising approach for analyzing gene-environment interactions. Especially, if no prior knowledge of the correct nature of the relationship between co-variables and response variable is present, neural networks provide a valuable alternative to regression methods that are limited to the analysis of linearly separable data.

  17. Neural activity in the rat basal ganglia

    NARCIS (Netherlands)

    Zhao, Yan; Stegenga, J.; Heida, Tjitske; van Wezel, Richard Jack Anton

    2013-01-01

    Objectives: Pathological oscillations in the beta frequencies (8-30Hz) have been found in the local field potentials of Parkinson's disease (PD) patients and non-human primate models of PD1. In particular, these synchronizations appear in the subthalamic nucleus (STN), a common target for deep brain

  18. Optogenetics in Silicon: A Neural Processor for Predicting Optically Active Neural Networks.

    Science.gov (United States)

    Junwen Luo; Nikolic, Konstantin; Evans, Benjamin D; Na Dong; Xiaohan Sun; Andras, Peter; Yakovlev, Alex; Degenaar, Patrick

    2017-02-01

    We present a reconfigurable neural processor for real-time simulation and prediction of opto-neural behaviour. We combined a detailed Hodgkin-Huxley CA3 neuron integrated with a four-state Channelrhodopsin-2 (ChR2) model into reconfigurable silicon hardware. Our architecture consists of a Field Programmable Gated Array (FPGA) with a custom-built computing data-path, a separate data management system and a memory approach based router. Advancements over previous work include the incorporation of short and long-term calcium and light-dependent ion channels in reconfigurable hardware. Also, the developed processor is computationally efficient, requiring only 0.03 ms processing time per sub-frame for a single neuron and 9.7 ms for a fully connected network of 500 neurons with a given FPGA frequency of 56.7 MHz. It can therefore be utilized for exploration of closed loop processing and tuning of biologically realistic optogenetic circuitry.

  19. Nonlinear predictive modeling of MHC class II-peptide binding using Bayesian neural networks.

    Science.gov (United States)

    Winkler, David A; Burden, Frank R

    2007-01-01

    Methods for predicting the binding affinity of peptides to the MHC have become more sophisticated in the past 5-10 years. It is possible to use computational quantitative structure-activity methods to build models of peptide affinity that are truly predictive. Two of the most useful methods for building models are Bayesian regularized neural networks for continuous or discrete (categorical) data and support vector machines (SVMs) for discrete data. We illustrate the application of Bayesian regularized neural networks to modeling MHC class II-binding affinity of peptides. Training data comprised sequences and binding data for nonamer (nine amino acid) peptides. Peptides were characterized by mathematical representations of several types. Independent test data comprised sequences and binding data for peptides of length Bayesian neural networks are robust, efficient "universal approximators" that are well able to tackle the difficult problem of correctly predicting the MHC class II-binding activities of a majority of the test set peptides.

  20. SCYNet. Testing supersymmetric models at the LHC with neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Bechtle, Philip; Belkner, Sebastian; Hamer, Matthias [Universitaet Bonn, Bonn (Germany); Dercks, Daniel [Universitaet Hamburg, Hamburg (Germany); Keller, Tim; Kraemer, Michael; Sarrazin, Bjoern; Schuette-Engel, Jan; Tattersall, Jamie [RWTH Aachen University, Institute for Theoretical Particle Physics and Cosmology, Aachen (Germany)

    2017-10-15

    SCYNet (SUSY Calculating Yield Net) is a tool for testing supersymmetric models against LHC data. It uses neural network regression for a fast evaluation of the profile likelihood ratio. Two neural network approaches have been developed: one network has been trained using the parameters of the 11-dimensional phenomenological Minimal Supersymmetric Standard Model (pMSSM-11) as an input and evaluates the corresponding profile likelihood ratio within milliseconds. It can thus be used in global pMSSM-11 fits without time penalty. In the second approach, the neural network has been trained using model-independent signature-related objects, such as energies and particle multiplicities, which were estimated from the parameters of a given new physics model. (orig.)

  1. SCYNet: testing supersymmetric models at the LHC with neural networks

    Science.gov (United States)

    Bechtle, Philip; Belkner, Sebastian; Dercks, Daniel; Hamer, Matthias; Keller, Tim; Krämer, Michael; Sarrazin, Björn; Schütte-Engel, Jan; Tattersall, Jamie

    2017-10-01

    SCYNet (SUSY Calculating Yield Net) is a tool for testing supersymmetric models against LHC data. It uses neural network regression for a fast evaluation of the profile likelihood ratio. Two neural network approaches have been developed: one network has been trained using the parameters of the 11-dimensional phenomenological Minimal Supersymmetric Standard Model (pMSSM-11) as an input and evaluates the corresponding profile likelihood ratio within milliseconds. It can thus be used in global pMSSM-11 fits without time penalty. In the second approach, the neural network has been trained using model-independent signature-related objects, such as energies and particle multiplicities, which were estimated from the parameters of a given new physics model.

  2. Neural Networks for Modeling and Control of Particle Accelerators

    Science.gov (United States)

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; Edstrom, D.; Milton, S. V.; Stabile, P.

    2016-04-01

    Particle accelerators are host to myriad nonlinear and complex physical phenomena. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems, as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. The purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  3. Modelling of word usage frequency dynamics using artificial neural network

    Science.gov (United States)

    Maslennikova, Yu S.; Bochkarev, V. V.; Voloskov, D. S.

    2014-03-01

    In this paper the method for modelling of word usage frequency time series is proposed. An artificial feedforward neural network was used to predict word usage frequencies. The neural network was trained using the maximum likelihood criterion. The Google Books Ngram corpus was used for the analysis. This database provides a large amount of data on frequency of specific word forms for 7 languages. Statistical modelling of word usage frequency time series allows finding optimal fitting and filtering algorithm for subsequent lexicographic analysis and verification of frequency trend models.

  4. Monitoring activity in neural circuits with genetically encoded indicators

    Directory of Open Access Journals (Sweden)

    Gerard Joseph Broussard

    2014-12-01

    Full Text Available Recent developments in genetically encoded indicators of neural activity (GINAs have greatly advanced the field of systems neuroscience. As they are encoded by DNA, GINAs can be targeted to genetically defined cellular populations. Combined with fluorescence microscopy, most notably multi-photon imaging, GINAs allow chronic simultaneous optical recordings from large populations of neurons or glial cells in awake, behaving mammals, particularly rodents. This large-scale recording of neural activity at multiple temporal and spatial scales has greatly advanced our understanding of the dynamics of neural circuitry underlying behavior—a critical first step toward understanding the complexities of brain function, such as sensorimotor integration and learning.Here, we summarize the recent development and applications of the major classes of GINAs. In particular, we take an in-depth look at the design of available GINA families with a particular focus on genetically encoded calcium indicators, sensors probing synaptic activity, and genetically encoded voltage indicators. Using the family of the genetically encoded calcium indicator GCaMP as an example, we review established sensor optimization pipelines. We also discuss practical considerations for end users of GINAs about experimental methods including approaches for gene delivery, imaging system requirements, and data analysis techniques. With the growing toolbox of GINAs and with new microscopy techniques pushing beyond their current limits, the age of light can finally achieve the goal of broad and dense sampling of neuronal activity across time and brain structures to obtain a dynamic picture of brain function.

  5. Photovoltaic Pixels for Neural Stimulation: Circuit Models and Performance.

    Science.gov (United States)

    Boinagrov, David; Lei, Xin; Goetz, Georges; Kamins, Theodore I; Mathieson, Keith; Galambos, Ludwig; Harris, James S; Palanker, Daniel

    2016-02-01

    Photovoltaic conversion of pulsed light into pulsed electric current enables optically-activated neural stimulation with miniature wireless implants. In photovoltaic retinal prostheses, patterns of near-infrared light projected from video goggles onto subretinal arrays of photovoltaic pixels are converted into patterns of current to stimulate the inner retinal neurons. We describe a model of these devices and evaluate the performance of photovoltaic circuits, including the electrode-electrolyte interface. Characteristics of the electrodes measured in saline with various voltages, pulse durations, and polarities were modeled as voltage-dependent capacitances and Faradaic resistances. The resulting mathematical model of the circuit yielded dynamics of the electric current generated by the photovoltaic pixels illuminated by pulsed light. Voltages measured in saline with a pipette electrode above the pixel closely matched results of the model. Using the circuit model, our pixel design was optimized for maximum charge injection under various lighting conditions and for different stimulation thresholds. To speed discharge of the electrodes between the pulses of light, a shunt resistor was introduced and optimized for high frequency stimulation.

  6. Persistent activity in neural networks with dynamic synapses.

    Directory of Open Access Journals (Sweden)

    Omri Barak

    2007-02-01

    Full Text Available Persistent activity states (attractors, observed in several neocortical areas after the removal of a sensory stimulus, are believed to be the neuronal basis of working memory. One of the possible mechanisms that can underlie persistent activity is recurrent excitation mediated by intracortical synaptic connections. A recent experimental study revealed that connections between pyramidal cells in prefrontal cortex exhibit various degrees of synaptic depression and facilitation. Here we analyze the effect of synaptic dynamics on the emergence and persistence of attractor states in interconnected neural networks. We show that different combinations of synaptic depression and facilitation result in qualitatively different network dynamics with respect to the emergence of the attractor states. This analysis raises the possibility that the framework of attractor neural networks can be extended to represent time-dependent stimuli.

  7. A Neural Computational Model of Incentive Salience

    Science.gov (United States)

    Zhang, Jun; Berridge, Kent C.; Tindell, Amy J.; Smith, Kyle S.; Aldridge, J. Wayne

    2009-01-01

    Incentive salience is a motivational property with ‘magnet-like’ qualities. When attributed to reward-predicting stimuli (cues), incentive salience triggers a pulse of ‘wanting’ and an individual is pulled toward the cues and reward. A key computational question is how incentive salience is generated during a cue re-encounter, which combines both learning and the state of limbic brain mechanisms. Learning processes, such as temporal-difference models, provide one way for stimuli to acquire cached predictive values of rewards. However, empirical data show that subsequent incentive values are also modulated on the fly by dynamic fluctuation in physiological states, altering cached values in ways requiring additional motivation mechanisms. Dynamic modulation of incentive salience for a Pavlovian conditioned stimulus (CS or cue) occurs during certain states, without necessarily requiring (re)learning about the cue. In some cases, dynamic modulation of cue value occurs during states that are quite novel, never having been experienced before, and even prior to experience of the associated unconditioned reward in the new state. Such cases can include novel drug-induced mesolimbic activation and addictive incentive-sensitization, as well as natural appetite states such as salt appetite. Dynamic enhancement specifically raises the incentive salience of an appropriate CS, without necessarily changing that of other CSs. Here we suggest a new computational model that modulates incentive salience by integrating changing physiological states with prior learning. We support the model with behavioral and neurobiological data from empirical tests that demonstrate dynamic elevations in cue-triggered motivation (involving natural salt appetite, and drug-induced intoxication and sensitization). Our data call for a dynamic model of incentive salience, such as presented here. Computational models can adequately capture fluctuations in cue-triggered ‘wanting’ only by

  8. Development of modularity in the neural activity of children's brains

    OpenAIRE

    Chen, Man; Deem, Michael W.

    2015-01-01

    We study how modularity of the human brain changes as children develop into adults. Theory suggests that modularity can enhance the response function of a networked system subject to changing external stimuli. Thus, greater cognitive performance might be achieved for more modular neural activity, and modularity might likely increase as children develop. The value of modularity calculated from fMRI data is observed to increase during childhood development and peak in young adulthood. Head moti...

  9. Bioinorganic Life and Neural Activity: Toward a Chemistry of Consciousness?

    Science.gov (United States)

    Chang, Christopher J

    2017-03-21

    Identifying what elements are required for neural activity as potential path toward consciousness, which represents life with the state or quality of awareness, is a "Holy Grail" of chemistry. As life itself arises from coordinated interactions between elements across the periodic table, the majority of which are metals, new approaches for analysis, binding, and control of these primary chemical entities can help enrich our understanding of inorganic chemistry in living systems in a context that is both universal and personal.

  10. Data Driven Broiler Weight Forecasting using Dynamic Neural Network Models

    DEFF Research Database (Denmark)

    Johansen, Simon Vestergaard; Bendtsen, Jan Dimon; Riisgaard-Jensen, Martin

    2017-01-01

    In this article, the dynamic influence of environmental broiler house conditions and broiler growth is investigated. Dynamic neural network forecasting models have been trained on farm-scale broiler batch production data from 12 batches from the same house. The model forecasts future broiler weight...

  11. An artificial neural network based fast radiative transfer model for ...

    Indian Academy of Sciences (India)

    the present study, a fast radiative transfer model using neural networks is proposed to simulate radiances corresponding to the wavenumbers of ... in construction, purpose and design and already in use are used. The fast RT model is able to ... porates measurements from various instruments in comparison with other ...

  12. Discriminative training of self-structuring hidden control neural models

    DEFF Research Database (Denmark)

    Sørensen, Helge Bjarup Dissing; Hartmann, Uwe; Hunnerup, Preben

    1995-01-01

    This paper presents a new training algorithm for self-structuring hidden control neural (SHC) models. The SHC models were trained non-discriminatively for speech recognition applications. Better recognition performance can generally be achieved, if discriminative training is applied instead. Thus...

  13. Role of neural network models for developing speech systems

    Indian Academy of Sciences (India)

    These prosody models are further examined for applications such as text to speech synthesis, speech recognition, speaker recognition and language identification. Neural network models in voice conversion system are explored for capturing the mapping functions between source and target speakers at source, system and ...

  14. Neural Energy Supply-Consumption Properties Based on Hodgkin-Huxley Model

    Directory of Open Access Journals (Sweden)

    Yihong Wang

    2017-01-01

    Full Text Available Electrical activity is the foundation of the neural system. Coding theories that describe neural electrical activity by the roles of action potential timing or frequency have been thoroughly studied. However, an alternative method to study coding questions is the energy method, which is more global and economical. In this study, we clearly defined and calculated neural energy supply and consumption based on the Hodgkin-Huxley model, during firing action potentials and subthreshold activities using ion-counting and power-integral model. Furthermore, we analyzed energy properties of each ion channel and found that, under the two circumstances, power synchronization of ion channels and energy utilization ratio have significant differences. This is particularly true of the energy utilization ratio, which can rise to above 100% during subthreshold activity, revealing an overdraft property of energy use. These findings demonstrate the distinct status of the energy properties during neuronal firings and subthreshold activities. Meanwhile, after introducing a synapse energy model, this research can be generalized to energy calculation of a neural network. This is potentially important for understanding the relationship between dynamical network activities and cognitive behaviors.

  15. Neural Energy Supply-Consumption Properties Based on Hodgkin-Huxley Model.

    Science.gov (United States)

    Wang, Yihong; Wang, Rubin; Xu, Xuying

    2017-01-01

    Electrical activity is the foundation of the neural system. Coding theories that describe neural electrical activity by the roles of action potential timing or frequency have been thoroughly studied. However, an alternative method to study coding questions is the energy method, which is more global and economical. In this study, we clearly defined and calculated neural energy supply and consumption based on the Hodgkin-Huxley model, during firing action potentials and subthreshold activities using ion-counting and power-integral model. Furthermore, we analyzed energy properties of each ion channel and found that, under the two circumstances, power synchronization of ion channels and energy utilization ratio have significant differences. This is particularly true of the energy utilization ratio, which can rise to above 100% during subthreshold activity, revealing an overdraft property of energy use. These findings demonstrate the distinct status of the energy properties during neuronal firings and subthreshold activities. Meanwhile, after introducing a synapse energy model, this research can be generalized to energy calculation of a neural network. This is potentially important for understanding the relationship between dynamical network activities and cognitive behaviors.

  16. Compensatory Neural Activity in Response to Cognitive Fatigue.

    Science.gov (United States)

    Wang, Chao; Trongnetrpunya, Amy; Samuel, Immanuel Babu Henry; Ding, Mingzhou; Kluger, Benzi M

    2016-04-06

    Prolonged continuous performance of a cognitively demanding task induces cognitive fatigue and is associated with a time-related deterioration of objective performance, the degree of which is referred to cognitive fatigability. Although the neural underpinnings of cognitive fatigue are poorly understood, prior studies report changes in neural activity consistent with deterioration of task-related networks over time. While compensatory brain activity is reported to maintain motor task performance in the face of motor fatigue and cognitive performance in the face of other stressors (e.g., aging) and structural changes, there are no studies to date demonstrating compensatory activity for cognitive fatigue. High-density electroencephalography was recorded from human subjects during a 160 min continuous performance of a cognitive control task. While most time-varying neural activity showed a linear decline over time, we identified an evoked potential over the anterior frontal region which demonstrated an inverted U-shaped time-on-task profile. This evoked brain activity peaked between 60 and 100 min into the task and was positively associated with better behavioral performance only during this interval. Following the peak and during subsequent decline of this anterior frontal activity, the rate of performance decline also accelerated. These findings demonstrate that this anterior frontal brain activity, which is not part of the primary task-related activity at baseline, is recruited to compensate for fatigue-induced impairments in the primary task-related network, and that this compensation terminates as cognitive fatigue further progresses. These findings may be relevant to understanding individual differences in cognitive fatigability and developing interventions for clinical conditions afflicted by fatigue. Fatigue refers to changes in objective performance and subjective effort induced by continuous task performance. We examined the neural underpinnings of cognitive

  17. Combining BMI stimulation and mathematical modeling for acute stroke recovery and neural repair

    Directory of Open Access Journals (Sweden)

    Sara L Gonzalez Andino

    2011-07-01

    Full Text Available Rehabilitation is a neural plasticity-exploiting approach that forces undamaged neural circuits to undertake the functionality of other circuits damaged by stroke. It aims to partial restoration of the neural functions by circuit remodeling rather than by the regeneration of damaged circuits. The core hypothesis of the present paper is that - in stroke - Brain Machine Interfaces can be designed to target neural repair instead of rehabilitation. To support this hypothesis we first review existing evidence on the role of endogenous or externally applied electric fields on all processes involved in CNS repair. We then describe our own results to illustrate the neuroprotective and neuroregenerative effects of BMI- electrical stimulation on sensory deprivation-related degenerative processes of the CNS. Finally, we discuss three of the crucial issues involved in the design of neural repair-oriented BMIs: when to stimulate, where to stimulate and - the particularly important but unsolved issue of - how to stimulate. We argue that optimal parameters for the electrical stimulation can be determined from studying and modeling the dynamics of the electric fields that naturally emerge at the central and peripheral nervous system during spontaneous healing in both, experimental animals and human patients. We conclude that a closed-loop BMI that defines the optimal stimulation parameters from a priori developed experimental models of the dynamics of spontaneous repair and the on-line monitoring of neural activity might place BMIs as an alternative or complement to stem-cell transplantation or pharmacological approaches, intensively pursued nowadays.

  18. A neural population model incorporating dopaminergic neurotransmission during complex voluntary behaviors.

    Directory of Open Access Journals (Sweden)

    Stefan Fürtinger

    2014-11-01

    Full Text Available Assessing brain activity during complex voluntary motor behaviors that require the recruitment of multiple neural sites is a field of active research. Our current knowledge is primarily based on human brain imaging studies that have clear limitations in terms of temporal and spatial resolution. We developed a physiologically informed non-linear multi-compartment stochastic neural model to simulate functional brain activity coupled with neurotransmitter release during complex voluntary behavior, such as speech production. Due to its state-dependent modulation of neural firing, dopaminergic neurotransmission plays a key role in the organization of functional brain circuits controlling speech and language and thus has been incorporated in our neural population model. A rigorous mathematical proof establishing existence and uniqueness of solutions to the proposed model as well as a computationally efficient strategy to numerically approximate these solutions are presented. Simulated brain activity during the resting state and sentence production was analyzed using functional network connectivity, and graph theoretical techniques were employed to highlight differences between the two conditions. We demonstrate that our model successfully reproduces characteristic changes seen in empirical data between the resting state and speech production, and dopaminergic neurotransmission evokes pronounced changes in modeled functional connectivity by acting on the underlying biological stochastic neural model. Specifically, model and data networks in both speech and rest conditions share task-specific network features: both the simulated and empirical functional connectivity networks show an increase in nodal influence and segregation in speech over the resting state. These commonalities confirm that dopamine is a key neuromodulator of the functional connectome of speech control. Based on reproducible characteristic aspects of empirical data, we suggest a number

  19. The necessity of connection structures in neural models of variable binding

    NARCIS (Netherlands)

    van der Velde, Frank; van der Velde, Frank; de Kamps, Marc

    2015-01-01

    In his review of neural binding problems, Feldman (Cogn Neurodyn 7:1–11, 2013) addressed two types of models as solutions of (novel) variable binding. The one type uses labels such as phase synchrony of activation. The other (‘connectivity based’) type uses dedicated connections structures to

  20. The generation effect: activating broad neural circuits during memory encoding.

    Science.gov (United States)

    Rosner, Zachary A; Elman, Jeremy A; Shimamura, Arthur P

    2013-01-01

    The generation effect is a robust memory phenomenon in which actively producing material during encoding acts to improve later memory performance. In a functional magnetic resonance imaging (fMRI) analysis, we explored the neural basis of this effect. During encoding, participants generated synonyms from word-fragment cues (e.g., GARBAGE-W_ST_) or read other synonym pairs (e.g., GARBAGE-WASTE). Compared to simply reading target words, generating target words significantly improved later recognition memory performance. During encoding, this benefit was associated with a broad neural network that involved both prefrontal (inferior frontal gyrus, middle frontal gyrus) and posterior cortex (inferior temporal gyrus, lateral occipital cortex, parahippocampal gyrus, ventral posterior parietal cortex). These findings define the prefrontal-posterior cortical dynamics associated with the mnemonic benefits underlying the generation effect. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Highly efficient simultaneous ultrasonic assisted adsorption of brilliant green and eosin B onto ZnS nanoparticles loaded activated carbon: Artificial neural network modeling and central composite design optimization

    Science.gov (United States)

    Jamshidi, M.; Ghaedi, M.; Dashtian, K.; Ghaedi, A. M.; Hajati, S.; Goudarzi, A.; Alipanahpour, E.

    2016-01-01

    In this work, central composite design (CCD) combined with response surface methodology (RSM) and desirability function approach (DFA) gives useful information about operational condition and also to obtain useful information about interaction and main effect of variables concerned to simultaneous ultrasound-assisted removal of brilliant green (BG) and eosin B (EB) by zinc sulfide nanoparticles loaded on activated carbon (ZnS-NPs-AC). Spectra overlap between BG and EB dyes was extensively reduced and/or omitted by derivative spectrophotometric method, while multi-layer artificial neural network (ML-ANN) model learned with Levenberg-Marquardt (LM) algorithm was used for building up a predictive model and prediction of the BG and EB removal. The ANN efficiently was able to forecast the simultaneous BG and EB removal that was confirmed by reasonable numerical value i.e. MSE of 0.0021 and R2 of 0.9589 and MSE of 0.0022 and R2 of 0.9455 for testing data set, respectively. The results reveal acceptable agreement among experimental data and ANN predicted results. Langmuir as the best model for fitting experimental data relevant to BG and EB removal indicates high, economic and profitable adsorption capacity (258.7 and 222.2 mg g- 1) that supports and confirms its applicability for wastewater treatment.

  2. On the nature, modeling, and neural bases of social ties.

    Science.gov (United States)

    van Winden, Frans; Stallen, Mirre; Ridderinkhof, K Richard

    2008-01-01

    This chapter addresses the nature, formalization, and neural bases of (affective) social ties and discusses the relevance of ties for health economics. A social tie is defined as an affective weight attached by an individual to the well-being of another individual ('utility interdependence'). Ties can be positive or negative, and symmetric or asymmetric between individuals. Characteristic of a social tie, as conceived of here, is that it develops over time under the influence of interaction, in contrast with a trait like altruism. Moreover, a tie is not related to strategic behavior such as reputation formation but seen as generated by affective responses. A formalization is presented together with some supportive evidence from behavioral experiments. This is followed by a discussion of related psychological constructs and the presentation of suggestive existing neural findings. To help prepare the grounds for a model-based neural analysis some speculations on the neural networks involved are provided, together with suggestions for future research. Social ties are not only found to be important from an economic viewpoint, it is also shown that they can be modeled and related to neural substrates. By providing an overview of the economic research on social ties and connecting it with the broader behavioral and neuroeconomics literature, the chapter may contribute to the development of a neuroeconomics of social ties.

  3. Artificial neural network model of pork meat cubes osmotic dehydratation

    Directory of Open Access Journals (Sweden)

    Pezo Lato L.

    2013-01-01

    Full Text Available Mass transfer of pork meat cubes (M. triceps brachii, shaped as 1x1x1 cm, during osmotic dehydration (OD and under atmospheric pressure was investigated in this paper. The effects of different parameters, such as concentration of sugar beet molasses (60-80%, w/w, temperature (20-50ºC, and immersion time (1-5 h in terms of water loss (WL, solid gain (SG, final dry matter content (DM, and water activity (aw, were investigated using experimental results. Five artificial neural network (ANN models were developed for the prediction of WL, SG, DM, and aw in OD of pork meat cubes. These models were able to predict process outputs with coefficient of determination, r2, of 0.990 for SG, 0.985 for WL, 0.986 for aw, and 0.992 for DM compared to experimental measurements. The wide range of processing variables considered for the formulation of these models, and their easy implementation in a spreadsheet calculus make it very useful and practical for process design and control.

  4. Modeling fMRI signals can provide insights into neural processing in the cerebral cortex

    Science.gov (United States)

    Sharifian, Fariba; Heikkinen, Hanna; Vigário, Ricardo

    2015-01-01

    Every stimulus or task activates multiple areas in the mammalian cortex. These distributed activations can be measured with functional magnetic resonance imaging (fMRI), which has the best spatial resolution among the noninvasive brain imaging methods. Unfortunately, the relationship between the fMRI activations and distributed cortical processing has remained unclear, both because the coupling between neural and fMRI activations has remained poorly understood and because fMRI voxels are too large to directly sense the local neural events. To get an idea of the local processing given the macroscopic data, we need models to simulate the neural activity and to provide output that can be compared with fMRI data. Such models can describe neural mechanisms as mathematical functions between input and output in a specific system, with little correspondence to physiological mechanisms. Alternatively, models can be biomimetic, including biological details with straightforward correspondence to experimental data. After careful balancing between complexity, computational efficiency, and realism, a biomimetic simulation should be able to provide insight into how biological structures or functions contribute to actual data processing as well as to promote theory-driven neuroscience experiments. This review analyzes the requirements for validating system-level computational models with fMRI. In particular, we study mesoscopic biomimetic models, which include a limited set of details from real-life networks and enable system-level simulations of neural mass action. In addition, we discuss how recent developments in neurophysiology and biophysics may significantly advance the modelling of fMRI signals. PMID:25972586

  5. Modeling brain resonance phenomena using a neural mass model.

    Directory of Open Access Journals (Sweden)

    Andreas Spiegler

    2011-12-01

    Full Text Available Stimulation with rhythmic light flicker (photic driving plays an important role in the diagnosis of schizophrenia, mood disorder, migraine, and epilepsy. In particular, the adjustment of spontaneous brain rhythms to the stimulus frequency (entrainment is used to assess the functional flexibility of the brain. We aim to gain deeper understanding of the mechanisms underlying this technique and to predict the effects of stimulus frequency and intensity. For this purpose, a modified Jansen and Rit neural mass model (NMM of a cortical circuit is used. This mean field model has been designed to strike a balance between mathematical simplicity and biological plausibility. We reproduced the entrainment phenomenon observed in EEG during a photic driving experiment. More generally, we demonstrate that such a single area model can already yield very complex dynamics, including chaos, for biologically plausible parameter ranges. We chart the entire parameter space by means of characteristic Lyapunov spectra and Kaplan-Yorke dimension as well as time series and power spectra. Rhythmic and chaotic brain states were found virtually next to each other, such that small parameter changes can give rise to switching from one to another. Strikingly, this characteristic pattern of unpredictability generated by the model was matched to the experimental data with reasonable accuracy. These findings confirm that the NMM is a useful model of brain dynamics during photic driving. In this context, it can be used to study the mechanisms of, for example, perception and epileptic seizure generation. In particular, it enabled us to make predictions regarding the stimulus amplitude in further experiments for improving the entrainment effect.

  6. A Bayesian framework for simultaneously modeling neural and behavioral data

    NARCIS (Netherlands)

    Turner, B.M.; Forstmann, B.U.; Wagenmakers, E.-J.; Brown, S.D.; Sederberg, P.B.; Steyvers, M.

    2013-01-01

    Scientists who study cognition infer underlying processes either by observing behavior (e.g., response times, percentage correct) or by observing neural activity (e.g., the BOLD response). These two types of observations have traditionally supported two separate lines of study. The first is led by

  7. Modeling of methane emissions using artificial neural network approach

    Directory of Open Access Journals (Sweden)

    Stamenković Lidija J.

    2015-01-01

    Full Text Available The aim of this study was to develop a model for forecasting CH4 emissions at the national level, using Artificial Neural Networks (ANN with broadly available sustainability, economical and industrial indicators as their inputs. ANN modeling was performed using two different types of architecture; a Backpropagation Neural Network (BPNN and a General Regression Neural Network (GRNN. A conventional multiple linear regression (MLR model was also developed in order to compare model performance and assess which model provides the best results. ANN and MLR models were developed and tested using the same annual data for 20 European countries. The ANN model demonstrated very good performance, significantly better than the MLR model. It was shown that a forecast of CH4 emissions at the national level using the ANN model can be made successfully and accurately for a future period of up to two years, thereby opening the possibility to apply such a modeling technique which can be used to support the implementation of sustainable development strategies and environmental management policies. [Projekat Ministarstva nauke Republike Srbije, br. 172007

  8. Advanced models of neural networks nonlinear dynamics and stochasticity in biological neurons

    CERN Document Server

    Rigatos, Gerasimos G

    2015-01-01

    This book provides a complete study on neural structures exhibiting nonlinear and stochastic dynamics, elaborating on neural dynamics by introducing advanced models of neural networks. It overviews the main findings in the modelling of neural dynamics in terms of electrical circuits and examines their stability properties with the use of dynamical systems theory. It is suitable for researchers and postgraduate students engaged with neural networks and dynamical systems theory.

  9. Neural network based semi-active control strategy for structural vibration mitigation with magnetorheological damper

    DEFF Research Database (Denmark)

    Bhowmik, Subrata

    2011-01-01

    This paper presents a neural network based semi-active control method for a rotary type magnetorheological (MR) damper. The characteristics of the MR damper are described by the classic Bouc-Wen model, and the performance of the proposed control method is evaluated in terms of a base exited shear...... frame structure. As demonstrated in the literature effective damping of flexible structures is obtained by a suitable combination of pure friction and negative damper stiffness. This damper model is rate-independent and fully described by the desired shape of the hysteresis loops or force...... mode of the structure. The neural network control is then developed to reproduce the desired force based on damper displacement and velocity as network input, and it is therefore referred to as an amplitude dependent model reference control method. An inverse model of the MR damper is needed...

  10. Neural networkbased semi-active control strategy for structural vibration mitigation with magnetorheological damper

    DEFF Research Database (Denmark)

    Bhowmik, Subrata

    2011-01-01

    This paper presents a neural network based semi-active control method for a rotary type magnetorheological (MR) damper. The characteristics of the MR damper are described by the classic Bouc-Wen model, and the performance of the proposed control method is evaluated in terms of a base exited shear...... frame structure. As demonstrated in the literature effective damping of flexible structures is obtained by a suitable combination of pure friction and negative damper stiffness. This damper model is rate-independent and fully described by the desired shape of the hysteresis loops or force...... mode of the structure. The neural network control is then developed to reproduce the desired force based on damper displacement and velocity as network input, and it is therefore referred to as an amplitude dependent model reference control method. An inverse model of the MR damper is needed...

  11. Development of an artificial neural network model for risk assessment of skin sensitization using human cell line activation test, direct peptide reactivity assay, KeratinoSens™ and in silico structure alert parameter.

    Science.gov (United States)

    Hirota, Morihiko; Ashikaga, Takao; Kouzuki, Hirokazu

    2017-12-10

    It is important to predict the potential of cosmetic ingredients to cause skin sensitization, and in accordance with the European Union cosmetic directive for the replacement of animal tests, several in vitro tests based on the adverse outcome pathway have been developed for hazard identification, such as the direct peptide reactivity assay, KeratinoSens™ and the human cell line activation test. Here, we describe the development of an artificial neural network (ANN) prediction model for skin sensitization risk assessment based on the integrated testing strategy concept, using direct peptide reactivity assay, KeratinoSens™, human cell line activation test and an in silico or structure alert parameter. We first investigated the relationship between published murine local lymph node assay EC3 values, which represent skin sensitization potency, and in vitro test results using a panel of about 134 chemicals for which all the required data were available. Predictions based on ANN analysis using combinations of parameters from all three in vitro tests showed a good correlation with local lymph node assay EC3 values. However, when the ANN model was applied to a testing set of 28 chemicals that had not been included in the training set, predicted EC3s were overestimated for some chemicals. Incorporation of an additional in silico or structure alert descriptor (obtained with TIMES-M or Toxtree software) in the ANN model improved the results. Our findings suggest that the ANN model based on the integrated testing strategy concept could be useful for evaluating the skin sensitization potential. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Aplication of artificial neural network model in aviation specialist training

    Directory of Open Access Journals (Sweden)

    Висиль Миколайович Казак

    2016-02-01

    Full Text Available This paper reviews the application of artificial neural network (ANN model in aviation specialist training. The ANN model is based on the dependence of residual knowledge of subjects of study on their individual abilities. The residual knowledge is the skills acquired by the subject before he is going for an occupation.  The presented ANN model gives the possibility to predict the level of professional training of the specialists with high accuracy

  13. THE USE OF NEURAL NETWORK TECHNOLOGY TO MODEL SWIMMING PERFORMANCE

    Directory of Open Access Journals (Sweden)

    António José Silva

    2007-03-01

    Full Text Available The aims of the present study were: to identify the factors which are able to explain the performance in the 200 meters individual medley and 400 meters front crawl events in young swimmers, to model the performance in those events using non-linear mathematic methods through artificial neural networks (multi-layer perceptrons and to assess the neural network models precision to predict the performance. A sample of 138 young swimmers (65 males and 73 females of national level was submitted to a test battery comprising four different domains: kinanthropometric evaluation, dry land functional evaluation (strength and flexibility, swimming functional evaluation (hydrodynamics, hydrostatic and bioenergetics characteristics and swimming technique evaluation. To establish a profile of the young swimmer non-linear combinations between preponderant variables for each gender and swim performance in the 200 meters medley and 400 meters font crawl events were developed. For this purpose a feed forward neural network was used (Multilayer Perceptron with three neurons in a single hidden layer. The prognosis precision of the model (error lower than 0.8% between true and estimated performances is supported by recent evidence. Therefore, we consider that the neural network tool can be a good approach in the resolution of complex problems such as performance modeling and the talent identification in swimming and, possibly, in a wide variety of sports

  14. A hyperstable neural network for the modelling and control of ...

    Indian Academy of Sciences (India)

    A multivariable hyperstable robust adaptive decoupling control algorithm based on a neural network is presented for the control of nonlinear multivariable coupled systems with unknown parameters and structure. The Popov theorem is used in the design of the controller. The modelling errors, coupling action and other ...

  15. A Constructive Neural-Network Approach to Modeling Psychological Development

    Science.gov (United States)

    Shultz, Thomas R.

    2012-01-01

    This article reviews a particular computational modeling approach to the study of psychological development--that of constructive neural networks. This approach is applied to a variety of developmental domains and issues, including Piagetian tasks, shift learning, language acquisition, number comparison, habituation of visual attention, concept…

  16. Introducing Artificial Neural Networks through a Spreadsheet Model

    Science.gov (United States)

    Rienzo, Thomas F.; Athappilly, Kuriakose K.

    2012-01-01

    Business students taking data mining classes are often introduced to artificial neural networks (ANN) through point and click navigation exercises in application software. Even if correct outcomes are obtained, students frequently do not obtain a thorough understanding of ANN processes. This spreadsheet model was created to illuminate the roles of…

  17. Bilingual Lexical Interactions in an Unsupervised Neural Network Model

    Science.gov (United States)

    Zhao, Xiaowei; Li, Ping

    2010-01-01

    In this paper we present an unsupervised neural network model of bilingual lexical development and interaction. We focus on how the representational structures of the bilingual lexicons can emerge, develop, and interact with each other as a function of the learning history. The results show that: (1) distinct representations for the two lexicons…

  18. An artificial neural network based fast radiative transfer model for ...

    Indian Academy of Sciences (India)

    In the present study, a fast radiative transfer model using neural networks is proposed to simulate radiances corresponding to the wavenumbers of INSAT-3D. Realistic atmospheric temperature and humidity profiles have been used for training the network. Spectral response functions of GOES-13, a satellite similar in ...

  19. Pragmatic Bootstrapping: A Neural Network Model of Vocabulary Acquisition

    Science.gov (United States)

    Caza, Gregory A.; Knott, Alistair

    2012-01-01

    The social-pragmatic theory of language acquisition proposes that children only become efficient at learning the meanings of words once they acquire the ability to understand the intentions of other agents, in particular the intention to communicate (Akhtar & Tomasello, 2000). In this paper we present a neural network model of word learning which…

  20. A Neural Network Model for Dynamics Simulation | Bholoa ...

    African Journals Online (AJOL)

    University of Mauritius Research Journal. Journal Home · ABOUT · Advanced Search · Current Issue · Archives · Journal Home > Vol 15, No 1 (2009) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. A Neural Network Model for Dynamics Simulation. Ajeevsing ...

  1. Improved neural network modeling of inverse lens distortion

    CSIR Research Space (South Africa)

    De Villiers, JP

    2011-04-01

    Full Text Available Inverse lens distortion modelling allows one to find the pixel in a distorted image which corresponds to a known point in object space, such as may be produced by a RADAR. This paper extends recent work using neural networks as a compromise between...

  2. Dynamic causal models of neural system dynamics: current state ...

    Indian Academy of Sciences (India)

    2006-09-28

    Sep 28, 2006 ... Keywords. Dynamic causal modelling; EEG; effective connectivity; event-related potentials; fMRI; neural system ... In this article, we review the conceptual and mathematical basis of DCM and its implementation for functional magnetic resonance imaging data and event-related potentials. After introducing ...

  3. A model of interval timing by neural integration

    Science.gov (United States)

    Simen, Patrick; Balci, Fuat; deSouza, Laura; Cohen, Jonathan D.; Holmes, Philip

    2011-01-01

    We show that simple assumptions about neural processing lead to a model of interval timing as a temporal integration process, in which a noisy firing-rate representation of time rises linearly on average toward a response threshold over the course of an interval. Our assumptions include: that neural spike trains are approximately independent Poisson processes; that correlations among them can be largely cancelled by balancing excitation and inhibition; that neural populations can act as integrators; and that the objective of timed behavior is maximal accuracy and minimal variance. The model accounts for a variety of physiological and behavioral findings in rodents, monkeys and humans, including ramping firing rates between the onset of reward-predicting cues and the receipt of delayed rewards, and universally scale-invariant response time distributions in interval timing tasks. It furthermore makes specific, well-supported predictions about the skewness of these distributions, a feature of timing data that is usually ignored. The model also incorporates a rapid (potentially one-shot) duration-learning procedure. Human behavioral data support the learning rule’s predictions regarding learning speed in sequences of timed responses. These results suggest that simple, integration-based models should play as prominent a role in interval timing theory as they do in theories of perceptual decision making, and that a common neural mechanism may underlie both types of behavior. PMID:21697374

  4. Review of mesoscopic optical tomography for depth-resolved imaging of hemodynamic changes and neural activities

    Science.gov (United States)

    Tang, Qinggong; Lin, Jonathan; Tsytsarev, Vassiliy; Erzurumlu, Reha S.; Liu, Yi; Chen, Yu

    2016-01-01

    Abstract. Understanding the functional wiring of neural circuits and their patterns of activation following sensory stimulations is a fundamental task in the field of neuroscience. Furthermore, charting the activity patterns is undoubtedly important to elucidate how neural networks operate in the living brain. However, optical imaging must overcome the effects of light scattering in the tissue, which limit the light penetration depth and affect both the imaging quantitation and sensitivity. Laminar optical tomography (LOT) is a three-dimensional (3-D) in-vivo optical imaging technique that can be used for functional imaging. LOT can achieve both a resolution of 100 to 200  μm and a penetration depth of 2 to 3 mm based either on absorption or fluorescence contrast, as well as large field-of-view and high acquisition speed. These advantages make LOT suitable for 3-D depth-resolved functional imaging of the neural functions in the brain and spinal cords. We review the basic principles and instrumentations of representative LOT systems, followed by recent applications of LOT on 3-D imaging of neural activities in the rat forepaw stimulation model and mouse whisker-barrel system. PMID:27990452

  5. Convergence of inhibitory neural inputs regulate motor activity in the murine and monkey stomach.

    Science.gov (United States)

    Shaylor, Lara A; Hwang, Sung Jin; Sanders, Kenton M; Ward, Sean M

    2016-11-01

    Inhibitory motor neurons regulate several gastric motility patterns including receptive relaxation, gastric peristaltic motor patterns, and pyloric sphincter opening. Nitric oxide (NO) and purines have been identified as likely candidates that mediate inhibitory neural responses. However, the contribution from each neurotransmitter has received little attention in the distal stomach. The aims of this study were to identify the roles played by NO and purines in inhibitory motor responses in the antrums of mice and monkeys. By using wild-type mice and mutants with genetically deleted neural nitric oxide synthase (Nos1-/-) and P2Y1 receptors (P2ry1-/-) we examined the roles of NO and purines in postjunctional inhibitory responses in the distal stomach and compared these responses to those in primate stomach. Activation of inhibitory motor nerves using electrical field stimulation (EFS) produced frequency-dependent inhibitory junction potentials (IJPs) that produced muscle relaxations in both species. Stimulation of inhibitory nerves during slow waves terminated pacemaker events and associated contractions. In Nos1-/- mice IJPs and relaxations persisted whereas in P2ry1-/- mice IJPs were absent but relaxations persisted. In the gastric antrum of the non-human primate model Macaca fascicularis, similar NO and purine neural components contributed to inhibition of gastric motor activity. These data support a role of convergent inhibitory neural responses in the regulation of gastric motor activity across diverse species. Copyright © 2016 the American Physiological Society.

  6. Synaptic organizations and dynamical properties of weakly connected neural oscillators. I. Analysis of a canonical model.

    Science.gov (United States)

    Hoppensteadt, F C; Izhikevich, E M

    1996-08-01

    We study weakly connected networks of neural oscillators near multiple Andronov-Hopf bifurcation points. We analyze relationships between synaptic organizations (anatomy) of the networks and their dynamical properties (function). Our principal assumptions are: (1) Each neural oscillator comprises two populations of neurons; excitatory and inhibitory ones; (2) activity of each population of neurons is described by a scalar (one-dimensional) variable; (3) each neural oscillator is near a nondegenerate supercritical Andronov-Hopf bifurcation point; (4) the synaptic connections between the neural oscillators are weak. All neural networks satisfying these hypotheses are governed by the same dynamical system, which we call the canonical model. Studying the canonical model shows that: (1) A neural oscillator can communicate only with those oscillators which have roughly the same natural frequency. That is, synaptic connections between a pair of oscillators having different natural frequencies are functionally insignificant. (2) Two neural oscillators having the same natural frequencies might not communicate if the connections between them are from among a class of pathological synaptic configurations. In both cases the anatomical presence of synaptic connections between neural oscillators does not necessarily guarantee that the connections are functionally significant. (3) There can be substantial phase differences (time delays) between the neural oscillators, which result from the synaptic organization of the network, not from the transmission delays. Using the canonical model we can illustrate self-ignition and autonomous quiescence (oscillator death) phenomena. That is, a network of passive elements can exhibit active properties and vice versa. We also study how Dale's principle affects dynamics of the networks, in particular, the phase differences that the network can reproduce. We present a complete classification of all possible synaptic organizations from this

  7. The effects of gratitude expression on neural activity.

    Science.gov (United States)

    Kini, Prathik; Wong, Joel; McInnis, Sydney; Gabana, Nicole; Brown, Joshua W

    2016-03-01

    Gratitude is a common aspect of social interaction, yet relatively little is known about the neural bases of gratitude expression, nor how gratitude expression may lead to longer-term effects on brain activity. To address these twin issues, we recruited subjects who coincidentally were entering psychotherapy for depression and/or anxiety. One group participated in a gratitude writing intervention, which required them to write letters expressing gratitude. The therapy-as-usual control group did not perform a writing intervention. After three months, subjects performed a "Pay It Forward" task in the fMRI scanner. In the task, subjects were repeatedly endowed with a monetary gift and then asked to pass it on to a charitable cause to the extent they felt grateful for the gift. Operationalizing gratitude as monetary gifts allowed us to engage the subjects and quantify the gratitude expression for subsequent analyses. We measured brain activity and found regions where activity correlated with self-reported gratitude experience during the task, even including related constructs such as guilt motivation and desire to help as statistical controls. These were mostly distinct from brain regions activated by empathy or theory of mind. Also, our between groups cross-sectional study found that a simple gratitude writing intervention was associated with significantly greater and lasting neural sensitivity to gratitude - subjects who participated in gratitude letter writing showed both behavioral increases in gratitude and significantly greater neural modulation by gratitude in the medial prefrontal cortex three months later. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Alternative Sensor System and MLP Neural Network for Vehicle Pedal Activity Estimation

    Directory of Open Access Journals (Sweden)

    Ahmed M. Wefky

    2010-04-01

    Full Text Available It is accepted that the activity of the vehicle pedals (i.e., throttle, brake, clutch reflects the driver’s behavior, which is at least partially related to the fuel consumption and vehicle pollutant emissions. This paper presents a solution to estimate the driver activity regardless of the type, model, and year of fabrication of the vehicle. The solution is based on an alternative sensor system (regime engine, vehicle speed, frontal inclination and linear acceleration that reflects the activity of the pedals in an indirect way, to estimate that activity by means of a multilayer perceptron neural network with a single hidden layer.

  9. Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction

    Directory of Open Access Journals (Sweden)

    Ayodele Ariyo Adebiyi

    2014-01-01

    Full Text Available This paper examines the forecasting performance of ARIMA and artificial neural networks model with published stock data obtained from New York Stock Exchange. The empirical results obtained reveal the superiority of neural networks model over ARIMA model. The findings further resolve and clarify contradictory opinions reported in literature over the superiority of neural networks and ARIMA model and vice versa.

  10. HIV lipodystrophy case definition using artificial neural network modelling

    DEFF Research Database (Denmark)

    Ioannidis, John P A; Trikalinos, Thomas A; Law, Matthew

    2003-01-01

    OBJECTIVE: A case definition of HIV lipodystrophy has recently been developed from a combination of clinical, metabolic and imaging/body composition variables using logistic regression methods. We aimed to evaluate whether artificial neural networks could improve the diagnostic accuracy. METHODS......: The database of the case-control Lipodystrophy Case Definition Study was split into 504 subjects (265 with and 239 without lipodystrophy) used for training and 284 independent subjects (152 with and 132 without lipodystrophy) used for validation. Back-propagation neural networks with one or two middle layers...... were trained and validated. Results were compared against logistic regression models using the same information. RESULTS: Neural networks using clinical variables only (41 items) achieved consistently superior performance than logistic regression in terms of specificity, overall accuracy and area under...

  11. Neural network versus classical time series forecasting models

    Science.gov (United States)

    Nor, Maria Elena; Safuan, Hamizah Mohd; Shab, Noorzehan Fazahiyah Md; Asrul, Mohd; Abdullah, Affendi; Mohamad, Nurul Asmaa Izzati; Lee, Muhammad Hisyam

    2017-05-01

    Artificial neural network (ANN) has advantage in time series forecasting as it has potential to solve complex forecasting problems. This is because ANN is data driven approach which able to be trained to map past values of a time series. In this study the forecast performance between neural network and classical time series forecasting method namely seasonal autoregressive integrated moving average models was being compared by utilizing gold price data. Moreover, the effect of different data preprocessing on the forecast performance of neural network being examined. The forecast accuracy was evaluated using mean absolute deviation, root mean square error and mean absolute percentage error. It was found that ANN produced the most accurate forecast when Box-Cox transformation was used as data preprocessing.

  12. Statistical modelling of neural networks in {gamma}-spectrometry applications

    Energy Technology Data Exchange (ETDEWEB)

    Vigneron, V.; Martinez, J.M. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie; Morel, J.; Lepy, M.C. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. des Applications et de la Metrologie des Rayonnements Ionisants

    1995-12-31

    Layered Neural Networks, which are a class of models based on neural computation, are applied to the measurement of uranium enrichment, i.e. the isotope ratio {sup 235} U/({sup 235} U + {sup 236} U + {sup 238} U). The usual method consider a limited number of {Gamma}-ray and X-ray peaks, and require previously calibrated instrumentation for each sample. But, in practice, the source-detector ensemble geometry conditions are critically different, thus a means of improving the above convention methods is to reduce the region of interest: this is possible by focusing on the K{sub {alpha}} X region where the three elementary components are present. Real data are used to study the performance of neural networks. Training is done with a Maximum Likelihood method to measure uranium {sup 235} U and {sup 238} U quantities in infinitely thick samples. (authors). 18 refs., 6 figs., 3 tabs.

  13. Evolution of Neural Dynamics in an Ecological Model

    Directory of Open Access Journals (Sweden)

    Steven Williams

    2017-07-01

    Full Text Available What is the optimal level of chaos in a computational system? If a system is too chaotic, it cannot reliably store information. If it is too ordered, it cannot transmit information. A variety of computational systems exhibit dynamics at the “edge of chaos”, the transition between the ordered and chaotic regimes. In this work, we examine the evolved neural networks of Polyworld, an artificial life model consisting of a simulated ecology populated with biologically inspired agents. As these agents adapt to their environment, their initially simple neural networks become increasingly capable of exhibiting rich dynamics. Dynamical systems analysis reveals that natural selection drives these networks toward the edge of chaos until the agent population is able to sustain itself. After this point, the evolutionary trend stabilizes, with neural dynamics remaining on average significantly far from the transition to chaos.

  14. Neural Networks Modelling of Municipal Real Estate Market Rent Rates

    Directory of Open Access Journals (Sweden)

    Muczyński Andrzej

    2016-12-01

    Full Text Available This paper presents the results of research on the application of neural networks modelling of municipal real estate market rent rates. The test procedure was based on selected networks trained on the local real estate market data and transformation of the detected dependencies – through established models – to estimate the potential market rent rates of municipal premises. On this basis, the assessment of the adequacy of the actual market rent rates of municipal properties was made. Empirical research was conducted on the local real estate market of the city of Olsztyn in Poland. In order to describe the phenomenon of market rent rates formation an unidirectional three-layer network and a network of radial base was selected. Analyses showed a relatively low degree of convergence of the actual municipal rent rents with potential market rent rates. This degree was strongly varied depending on the type of business ran on the property and its’ social and economic impact. The applied research methodology and the obtained results can be used in order to rationalize municipal property management, including the activation of rental policy.

  15. A continuous-time neural model for sequential action.

    Science.gov (United States)

    Kachergis, George; Wyatte, Dean; O'Reilly, Randall C; de Kleijn, Roy; Hommel, Bernhard

    2014-11-05

    Action selection, planning and execution are continuous processes that evolve over time, responding to perceptual feedback as well as evolving top-down constraints. Existing models of routine sequential action (e.g. coffee- or pancake-making) generally fall into one of two classes: hierarchical models that include hand-built task representations, or heterarchical models that must learn to represent hierarchy via temporal context, but thus far lack goal-orientedness. We present a biologically motivated model of the latter class that, because it is situated in the Leabra neural architecture, affords an opportunity to include both unsupervised and goal-directed learning mechanisms. Moreover, we embed this neurocomputational model in the theoretical framework of the theory of event coding (TEC), which posits that actions and perceptions share a common representation with bidirectional associations between the two. Thus, in this view, not only does perception select actions (along with task context), but actions are also used to generate perceptions (i.e. intended effects). We propose a neural model that implements TEC to carry out sequential action control in hierarchically structured tasks such as coffee-making. Unlike traditional feedforward discrete-time neural network models, which use static percepts to generate static outputs, our biological model accepts continuous-time inputs and likewise generates non-stationary outputs, making short-timescale dynamic predictions. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. A neural model of decision making

    OpenAIRE

    Larsen, Torben

    2008-01-01

    Background: A descriptive neuroeconomic model is aimed for relativity of the concept of economic man to empirical science.Method: A 4-level client-server-integrator model integrating the brain models of McLean and Luria is the general framework for the model of empirical findings.Results: Decision making relies on integration across brain levels of emotional intelligence (LU) and logico-matematico intelligence (RIA), respectively. The integrated decision making formula approaching zero by bot...

  17. Distributed Recurrent Neural Forward Models with Neural Control for Complex Locomotion in Walking Robots

    DEFF Research Database (Denmark)

    Dasgupta, Sakyasingha; Goldschmidt, Dennis; Wörgötter, Florentin

    2015-01-01

    Walking animals, like stick insects, cockroaches or ants, demonstrate a fascinating range of locomotive abilities and complex behaviors. The locomotive behaviors can consist of a variety of walking patterns along with adaptation that allow the animals to deal with changes in environmental...... conditions, like uneven terrains, gaps, obstacles etc. Biological study has revealed that such complex behaviors are a result of a combination of biomechanics and neural mechanism thus representing the true nature of embodied interactions. While the biomechanics helps maintain flexibility and sustain...... a variety of movements, the neural mechanisms generate movements while making appropriate predictions crucial for achieving adaptation. Such predictions or planning ahead can be achieved by way of internal models that are grounded in the overall behavior of the animal. Inspired by these findings, we present...

  18. Building footprint extraction from digital surface models using neural networks

    Science.gov (United States)

    Davydova, Ksenia; Cui, Shiyong; Reinartz, Peter

    2016-10-01

    Two-dimensional building footprints are a basis for many applications: from cartography to three-dimensional building models generation. Although, many methodologies have been proposed for building footprint extraction, this topic remains an open research area. Neural networks are able to model the complex relationships between the multivariate input vector and the target vector. Based on these abilities we propose a methodology using neural networks and Markov Random Fields (MRF) for automatic building footprint extraction from normalized Digital Surface Model (nDSM) and satellite images within urban areas. The proposed approach has mainly two steps. In the first step, the unary terms are learned for the MRF energy function by a four-layer neural network. The neural network is learned on a large set of patches consisting of both nDSM and Normalized Difference Vegetation Index (NDVI). Then prediction is performed to calculate the unary terms that are used in the MRF. In the second step, the energy function is minimized using a maxflow algorithm, which leads to a binary building mask. The building extraction results are compared with available ground truth. The comparison illustrates the efficiency of the proposed algorithm which can extract approximately 80% of buildings from nDSM with high accuracy.

  19. Modelling drying kinetics of thyme (Thymus vulgaris L.): theoretical and empirical models, and neural networks.

    Science.gov (United States)

    Rodríguez, J; Clemente, G; Sanjuán, N; Bon, J

    2014-01-01

    The drying kinetics of thyme was analyzed by considering different conditions: air temperature of between 40°C  and 70°C , and air velocity of 1 m/s. A theoretical diffusion model and eight different empirical models were fitted to the experimental data. From the theoretical model application, the effective diffusivity per unit area of the thyme was estimated (between 3.68 × 10(-5) and 2.12 × 10 (-4) s(-1)). The temperature dependence of the effective diffusivity was described by the Arrhenius relationship with activation energy of 49.42 kJ/mol. Eight different empirical models were fitted to the experimental data. Additionally, the dependence of the parameters of each model on the drying temperature was determined, obtaining equations that allow estimating the evolution of the moisture content at any temperature in the established range. Furthermore, artificial neural networks were developed and compared with the theoretical and empirical models using the percentage of the relative errors and the explained variance. The artificial neural networks were found to be more accurate predictors of moisture evolution with VAR ≥ 99.3% and ER ≤ 8.7%.

  20. A model for integrating elementary neural functions into delayed-response behavior.

    Directory of Open Access Journals (Sweden)

    Thomas Gisiger

    2006-04-01

    Full Text Available It is well established that various cortical regions can implement a wide array of neural processes, yet the mechanisms which integrate these processes into behavior-producing, brain-scale activity remain elusive. We propose that an important role in this respect might be played by executive structures controlling the traffic of information between the cortical regions involved. To illustrate this hypothesis, we present a neural network model comprising a set of interconnected structures harboring stimulus-related activity (visual representation, working memory, and planning, and a group of executive units with task-related activity patterns that manage the information flowing between them. The resulting dynamics allows the network to perform the dual task of either retaining an image during a delay (delayed-matching to sample task, or recalling from this image another one that has been associated with it during training (delayed-pair association task. The model reproduces behavioral and electrophysiological data gathered on the inferior temporal and prefrontal cortices of primates performing these same tasks. It also makes predictions on how neural activity coding for the recall of the image associated with the sample emerges and becomes prospective during the training phase. The network dynamics proves to be very stable against perturbations, and it exhibits signs of scale-invariant organization and cooperativity. The present network represents a possible neural implementation for active, top-down, prospective memory retrieval in primates. The model suggests that brain activity leading to performance of cognitive tasks might be organized in modular fashion, simple neural functions becoming integrated into more complex behavior by executive structures harbored in prefrontal cortex and/or basal ganglia.

  1. An integrated modelling framework for neural circuits with multiple neuromodulators.

    Science.gov (United States)

    Joshi, Alok; Youssofzadeh, Vahab; Vemana, Vinith; McGinnity, T M; Prasad, Girijesh; Wong-Lin, KongFatt

    2017-01-01

    Neuromodulators are endogenous neurochemicals that regulate biophysical and biochemical processes, which control brain function and behaviour, and are often the targets of neuropharmacological drugs. Neuromodulator effects are generally complex partly owing to the involvement of broad innervation, co-release of neuromodulators, complex intra- and extrasynaptic mechanism, existence of multiple receptor subtypes and high interconnectivity within the brain. In this work, we propose an efficient yet sufficiently realistic computational neural modelling framework to study some of these complex behaviours. Specifically, we propose a novel dynamical neural circuit model that integrates the effective neuromodulator-induced currents based on various experimental data (e.g. electrophysiology, neuropharmacology and voltammetry). The model can incorporate multiple interacting brain regions, including neuromodulator sources, simulate efficiently and easily extendable to large-scale brain models, e.g. for neuroimaging purposes. As an example, we model a network of mutually interacting neural populations in the lateral hypothalamus, dorsal raphe nucleus and locus coeruleus, which are major sources of neuromodulator orexin/hypocretin, serotonin and norepinephrine/noradrenaline, respectively, and which play significant roles in regulating many physiological functions. We demonstrate that such a model can provide predictions of systemic drug effects of the popular antidepressants (e.g. reuptake inhibitors), neuromodulator antagonists or their combinations. Finally, we developed user-friendly graphical user interface software for model simulation and visualization for both fundamental sciences and pharmacological studies. © 2017 The Authors.

  2. Modeling of surface dust concentrations using neural networks and kriging

    Science.gov (United States)

    Buevich, Alexander G.; Medvedev, Alexander N.; Sergeev, Alexander P.; Tarasov, Dmitry A.; Shichkin, Andrey V.; Sergeeva, Marina V.; Atanasova, T. B.

    2016-12-01

    Creating models which are able to accurately predict the distribution of pollutants based on a limited set of input data is an important task in environmental studies. In the paper two neural approaches: (multilayer perceptron (MLP)) and generalized regression neural network (GRNN)), and two geostatistical approaches: (kriging and cokriging), are using for modeling and forecasting of dust concentrations in snow cover. The area of study is under the influence of dust emissions from a copper quarry and a several industrial companies. The comparison of two mentioned approaches is conducted. Three indices are used as the indicators of the models accuracy: the mean absolute error (MAE), root mean square error (RMSE) and relative root mean square error (RRMSE). Models based on artificial neural networks (ANN) have shown better accuracy. When considering all indices, the most precision model was the GRNN, which uses as input parameters for modeling the coordinates of sampling points and the distance to the probable emissions source. The results of work confirm that trained ANN may be more suitable tool for modeling of dust concentrations in snow cover.

  3. Recursive Bayesian recurrent neural networks for time-series modeling.

    Science.gov (United States)

    Mirikitani, Derrick T; Nikolaev, Nikolay

    2010-02-01

    This paper develops a probabilistic approach to recursive second-order training of recurrent neural networks (RNNs) for improved time-series modeling. A general recursive Bayesian Levenberg-Marquardt algorithm is derived to sequentially update the weights and the covariance (Hessian) matrix. The main strengths of the approach are a principled handling of the regularization hyperparameters that leads to better generalization, and stable numerical performance. The framework involves the adaptation of a noise hyperparameter and local weight prior hyperparameters, which represent the noise in the data and the uncertainties in the model parameters. Experimental investigations using artificial and real-world data sets show that RNNs equipped with the proposed approach outperform standard real-time recurrent learning and extended Kalman training algorithms for recurrent networks, as well as other contemporary nonlinear neural models, on time-series modeling.

  4. Long-range correlations in rabbit brain neural activity.

    Science.gov (United States)

    de la Fuente, I M; Perez-Samartin, A L; Martínez, L; Garcia, M A; Vera-Lopez, A

    2006-02-01

    We have analyzed the presence of persistence properties in rabbit brain electrical signals by means of non-equilibrium statistical physics tools. To measure long-memory properties of these experimental signals, we have first determined whether the data are fractional Gaussian noise (fGn) or fractional Brownian motion (fBm) by calculating the slope of the power spectral density plot of the series. The results show that the series correspond to fBm. Then, the data were studied by means of the bridge detrended scaled windowed variance analysis, detecting long-term correlation. Three different types of experimental signals have been studied: neural basal activity without stimulation, the response induced by a single flash light stimulus and the average of the activity evoked by 200 flash light stimulations. Analysis of the series revealed the existence of persistent behavior in all cases. Moreover, the results also exhibited an increasing correlation in the level of long-term memory from recordings without stimulation, to one sweep recording or 200 sweeps averaged recordings. Thus, brain neural electrical activity is affected not only by its most recent states, but also by previous states much more distant in the past.

  5. Time Multiplexed Active Neural Probe with 1356 Parallel Recording Sites

    Directory of Open Access Journals (Sweden)

    Bogdan C. Raducanu

    2017-10-01

    Full Text Available We present a high electrode density and high channel count CMOS (complementary metal-oxide-semiconductor active neural probe containing 1344 neuron sized recording pixels (20 µm × 20 µm and 12 reference pixels (20 µm × 80 µm, densely packed on a 50 µm thick, 100 µm wide, and 8 mm long shank. The active electrodes or pixels consist of dedicated in-situ circuits for signal source amplification, which are directly located under each electrode. The probe supports the simultaneous recording of all 1356 electrodes with sufficient signal to noise ratio for typical neuroscience applications. For enhanced performance, further noise reduction can be achieved while using half of the electrodes (678. Both of these numbers considerably surpass the state-of-the art active neural probes in both electrode count and number of recording channels. The measured input referred noise in the action potential band is 12.4 µVrms, while using 678 electrodes, with just 3 µW power dissipation per pixel and 45 µW per read-out channel (including data transmission.

  6. A scale-free neural network for modelling neurogenesis

    Science.gov (United States)

    Perotti, Juan I.; Tamarit, Francisco A.; Cannas, Sergio A.

    2006-11-01

    In this work we introduce a neural network model for associative memory based on a diluted Hopfield model, which grows through a neurogenesis algorithm that guarantees that the final network is a small-world and scale-free one. We also analyze the storage capacity of the network and prove that its performance is larger than that measured in a randomly dilute network with the same connectivity.

  7. PEM Fuel Cell Modelling Using Artificial Neural Networks

    OpenAIRE

    Doumbia, Mamadou Lamine

    2016-01-01

    Fuel cells are electrochemical devices that convert the chemical energy of a reaction directly into dc electrical energy. Proton Exchange Membrane (PEM) fuel cell is a suitable alternative for both electrical transportation and stationary applications. In this article, an Artificial Neural Network (ANN) modelling approach of a PEM fuel cell is developed. This model describes the behaviour of PEM fuel cell voltage under both steady-state and transient conditions. Moreover, the prediction of th...

  8. Two-photon imaging of cerebral hemodynamics and neural activity in awake and anesthetized marmosets.

    Science.gov (United States)

    Santisakultarm, Thom P; Kersbergen, Calvin J; Bandy, Daryl K; Ide, David C; Choi, Sang-Ho; Silva, Afonso C

    2016-09-15

    Marmosets are a powerful, emerging model for human behavior and neurological disorders. However, longitudinal imaging modalities that visualize both cellular structure and function within the cortex are not available in this animal model. Hence, we implemented an approach to quantify vascular topology, hemodynamics, and neural activity in awake marmosets using two-photon microscopy (2PM). Marmosets were acclimated to a custom stereotaxic system. AAV1-GCaMP5G was injected into somatosensory cortex to optically indicate neural activity, and a cranial chamber was implanted. Longitudinal 2PM revealed vasculature and neurons 500μm below the cortical surface. Vascular response and neural activity during sensory stimulation were preserved over 5 and 3 months, respectively, before optical quality deteriorated. Vascular remodeling including increased tortuosity and branching was quantified. However, capillary connectivity from arterioles to venules remained unchanged. Further, behavioral assessment before and after surgery demonstrated no impact on cognitive and motor function. Immunohistochemistry confirmed minimal astrocyte activation with no focal damage. Over 6 months, total cortical depth visualized decreased. When under anesthesia, the most prominent isoflurane-induced vasodilation occurred in capillaries and smaller arterioles. These results demonstrate the capability to repeatedly observe cortical physiology in awake marmosets over months. This work provides a novel and insightful technique to investigate critical mechanisms in neurological disorders in awake marmosets without introducing confounds from anesthesia. Published by Elsevier B.V.

  9. A neural click model for web search

    NARCIS (Netherlands)

    Borisov, A.; Markov, I.; de Rijke, M.; Serdyukov, P.

    2016-01-01

    Understanding user browsing behavior in web search is key to improving web search effectiveness. Many click models have been proposed to explain or predict user clicks on search engine results. They are based on the probabilistic graphical model (PGM) framework, in which user behavior is represented

  10. Model study of combined electrical and near-infrared neural stimulation on the bullfrog sciatic nerve.

    Science.gov (United States)

    You, Mengxian; Mou, Zongxia

    2017-07-01

    This paper implemented a model study of combined electrical and near-infrared (808 nm) neural stimulation (NINS) on the bullfrog sciatic nerve. The model includes a COMSOL model to calculate the electric-field distribution of the surrounding area of the nerve, a Monte Carlo model to simulate light transport and absorption in the bullfrog sciatic nerve during NINS, and a NEURON model to simulate the neural electrophysiology changes under electrical stimulus and laser irradiation. The optical thermal effect is considered the main mechanism during NINS. Therefore, thermal change during laser irradiation was calculated by the Monte Carlo method, and the temperature distribution was then transferred to the NEURON model to stimulate the sciatic nerve. The effects on thermal response by adjusting the laser spot size, energy of the beam, and the absorption coefficient of the nerve are analyzed. The effect of the ambient temperature on the electrical stimulation or laser stimulation and the interaction between laser irradiation and electrical stimulation are also studied. The results indicate that the needed stimulus threshold for neural activation or inhibition is reduced by laser irradiation. Additionally, the needed laser energy for blocking the action potential is reduced by electrical stimulus. Both electrical and laser stimulation are affected by the ambient temperature. These results provide references for subsequent animal experiments and could be of great help to future basic and applied studies of infrared neural stimulation (INS).

  11. Sociocultural patterning of neural activity during self-reflection

    DEFF Research Database (Denmark)

    Ma, Yina; Bang, Dan; Wang, Chenbo

    2014-01-01

    Western cultures encourage self-construals independent of social contexts whereas East Asian cultures foster interdependent self-construals that rely on how others perceive the self. How are culturally specific self-construals mediated by the human brain? Using functional MRI, we monitored neural...... that judgments of self vs. a public figure elicited greater activation in the medial prefrontal cortex (mPFC) in Danish than in Chinese participants regardless of attribute dimensions for judgments. However, self-judgments of social attributes induced greater activity in the temporoparietal junction (TPJ......) in Chinese than in Danish participants. Moreover, the group difference in TPJ activity was mediated by a measure of a cultural value (i.e., interdependence of self-construal). Our findings suggest that individuals in different sociocultural contexts may learn and/or adopt distinct strategies for self...

  12. Empirical Modeling of the Plasmasphere Dynamics Using Neural Networks

    Science.gov (United States)

    Zhelavskaya, Irina S.; Shprits, Yuri Y.; Spasojević, Maria

    2017-11-01

    We present the PINE (Plasma density in the Inner magnetosphere Neural network-based Empirical) model - a new empirical model for reconstructing the global dynamics of the cold plasma density distribution based only on solar wind data and geomagnetic indices. Utilizing the density database obtained using the NURD (Neural-network-based Upper hybrid Resonance Determination) algorithm for the period of 1 October 2012 to 1 July 2016, in conjunction with solar wind data and geomagnetic indices, we develop a neural network model that is capable of globally reconstructing the dynamics of the cold plasma density distribution for 2≤L≤6 and all local times. We validate and test the model by measuring its performance on independent data sets withheld from the training set and by comparing the model-predicted global evolution with global images of He+ distribution in the Earth's plasmasphere from the IMAGE Extreme UltraViolet (EUV) instrument. We identify the parameters that best quantify the plasmasphere dynamics by training and comparing multiple neural networks with different combinations of input parameters (geomagnetic indices, solar wind data, and different durations of their time history). The optimal model is based on the 96 h time history of Kp, AE, SYM-H, and F10.7 indices. The model successfully reproduces erosion of the plasmasphere on the nightside and plume formation and evolution. We demonstrate results of both local and global plasma density reconstruction. This study illustrates how global dynamics can be reconstructed from local in situ observations by using machine learning techniques.

  13. A neural model of decision making

    DEFF Research Database (Denmark)

    Larsen, Torben

    2008-01-01

    a range of 4-7 Hz) [Sauseng et al, 2006]. See, elaborated description at L4. Thalamo-cortico integration The characteristic resting pattern of the brain is α-waves in the 8-12 Hz/s band which indicates an autogenic cortical reset originated in Thalamus (α%) [Hanslmayr et al, 2007]. The dynamics......Background: A descriptive neuroeconomic model is aimed for relativity of the concept of economic man to empirical science. Method: A 4-level client-server-integrator model integrating the brain models of McLean and Luria is the general framework for the model of empirical findings. Results......: Decision making relies on integration across brain levels of emotional intelligence (LU) and logico-matematico intelligence (RIA), respectively. The integrated decision making formula approaching zero by bottom-up emotional and  frontoparietal-downward logico-matematico learning is: CONC := LU...

  14. A neural network model of attention-modulated neurodynamics.

    Science.gov (United States)

    Gu, Yuqiao; Liljenström, Hans

    2007-12-01

    Visual attention appears to modulate cortical neurodynamics and synchronization through various cholinergic mechanisms. In order to study these mechanisms, we have developed a neural network model of visual cortex area V4, based on psychophysical, anatomical and physiological data. With this model, we want to link selective visual information processing to neural circuits within V4, bottom-up sensory input pathways, top-down attention input pathways, and to cholinergic modulation from the prefrontal lobe. We investigate cellular and network mechanisms underlying some recent analytical results from visual attention experimental data. Our model can reproduce the experimental findings that attention to a stimulus causes increased gamma-frequency synchronization in the superficial layers. Computer simulations and STA power analysis also demonstrate different effects of the different cholinergic attention modulation action mechanisms.

  15. Hand Posture Prediction Using Neural Networks within a Biomechanical Model

    Directory of Open Access Journals (Sweden)

    Marta C. Mora

    2012-10-01

    Full Text Available This paper proposes the use of artificial neural networks (ANNs in the framework of a biomechanical hand model for grasping. ANNs enhance the model capabilities as they substitute estimated data for the experimental inputs required by the grasping algorithm used. These inputs are the tentative grasping posture and the most open posture during grasping. As a consequence, more realistic grasping postures are predicted by the grasping algorithm, along with the contact information required by the dynamic biomechanical model (contact points and normals. Several neural network architectures are tested and compared in terms of prediction errors, leading to encouraging results. The performance of the overall proposal is also shown through simulation, where a grasping experiment is replicated and compared to the real grasping data collected by a data glove device.

  16. Functional Modeling of Neural-Glia Interaction

    DEFF Research Database (Denmark)

    Postnov, D.E.; Brazhe, N.A.; Sosnovtseva, Olga

    2012-01-01

    Functional modeling is an approach that focuses on the representation of the qualitative dynamics of the individual components (e.g. cells) of a system and on the structure of the interaction network.......Functional modeling is an approach that focuses on the representation of the qualitative dynamics of the individual components (e.g. cells) of a system and on the structure of the interaction network....

  17. Biological modelling of a computational spiking neural network with neuronal avalanches

    Science.gov (United States)

    Li, Xiumin; Chen, Qing; Xue, Fangzheng

    2017-05-01

    In recent years, an increasing number of studies have demonstrated that networks in the brain can self-organize into a critical state where dynamics exhibit a mixture of ordered and disordered patterns. This critical branching phenomenon is termed neuronal avalanches. It has been hypothesized that the homeostatic level balanced between stability and plasticity of this critical state may be the optimal state for performing diverse neural computational tasks. However, the critical region for high performance is narrow and sensitive for spiking neural networks (SNNs). In this paper, we investigated the role of the critical state in neural computations based on liquid-state machines, a biologically plausible computational neural network model for real-time computing. The computational performance of an SNN when operating at the critical state and, in particular, with spike-timing-dependent plasticity for updating synaptic weights is investigated. The network is found to show the best computational performance when it is subjected to critical dynamic states. Moreover, the active-neuron-dominant structure refined from synaptic learning can remarkably enhance the robustness of the critical state and further improve computational accuracy. These results may have important implications in the modelling of spiking neural networks with optimal computational performance. This article is part of the themed issue `Mathematical methods in medicine: neuroscience, cardiology and pathology'.

  18. Regional Computation of TEC Using a Neural Network Model

    Science.gov (United States)

    Leandro, R. F.; Santos, M. C.

    2004-05-01

    One of the main sources of errors of GPS measurements is the ionosphere refraction. As a dispersive medium, the ionosphere allow its influence to be computed by using dual frequency receivers. In the case of single frequency receivers it is necessary to use models that tell us how big the ionospheric refraction is. The GPS broadcast message carries parameters of this model, namely Klobuchar model. Dual frequency receivers allow to estimate the influence of ionosphere in the GPS signal by the computation of TEC (Total Electron Content) values, that have a direct relationship with the magnitude of the delay caused by the ionosphere. One alternative is to create a regional model based on a network of dual frequency receivers. In this case, the regional behaviour of ionosphere is modelled in a way that it is possible to estimate the TEC values into or near this region. This regional model can be based on polynomials, for example. In this work we will present a Neural Network-based model to the regional computation of TEC. The advantage of using a Neural Network is that it is not necessary to have a great knowledge on the behaviour of the modelled surface due to the adaptation capability of neural networks training process, that is an iterative adjust of the synaptic weights in function of residuals, using the training parameters. Therefore, the previous knowledge of the modelled phenomena is important to define what kind of and how many parameters are needed to train the neural network so that reasonable results are obtained from the estimations. We have used data from the GPS tracking network in Brazil, and we have tested the accuracy of the new model to all locations where there is a station, accessing the efficiency of the model everywhere. TEC values were computed for each station of the network. After that the training parameters data set for the test station was formed, with the TEC values of all others (all stations, except the test one). The Neural Network was

  19. Beyond the quantum formalism: consequences of a neural-oscillator model to quantum cognition

    CERN Document Server

    de Barros, J Acacio

    2013-01-01

    In this paper we present a neural oscillator model of stimulus response theory that exhibits quantum-like behavior. We then show that without adding any additional assumptions, a quantum model constructed to fit observable pairwise correlations has no predictive power over the unknown triple moment, obtainable through the activation of multiple oscillators. We compare this with the results obtained in de Barros (2013), where a criteria of rationality gives optimal ranges for the triple moment.

  20. The Vite Model: A Neural Command Circuit for Generating Arm and Articulator Trajectories,

    Science.gov (United States)

    1988-03-01

    associative map, looking at an object can activate a TPC of the hand-arm system, as Piaget (1963) noted. Then a VITE circuit can translate this latter TPC...two ways: by comparing trajectories of the neural circuit’s output stage with actual arm trajectories, and by checking for the existence of the...in precentral motor cortex could be analysed as an in vivo analogue of model DV stage neurons. Additional physiological support for the VITE model

  1. Sensory-related neural activity regulates the structure of vascular networks in the cerebral cortex

    Science.gov (United States)

    Lacoste, Baptiste; Comin, Cesar H.; Ben-Zvi, Ayal; Kaeser, Pascal S.; Xu, Xiaoyin; Costa, Luciano da F.; Gu, Chenghua

    2014-01-01

    SUMMARY Neurovascular interactions are essential for proper brain function. While the effect of neural activity on cerebral blood flow has been extensively studied, whether neural activity influences vascular patterning remains elusive. Here, we demonstrate that neural activity promotes the formation of vascular networks in the early postnatal mouse barrel cortex. Using a combination of genetics, imaging, and computational tools to allow simultaneous analysis of neuronal and vascular components, we found that vascular density and branching were decreased in the barrel cortex when sensory input was reduced by either a complete deafferentation, a genetic impairment of neurotransmitter release at thalamocortical synapses, or a selective reduction of sensory-related neural activity by whisker plucking. In contrast, enhancement of neural activity by whisker stimulation led to an increase in vascular density and branching. The finding that neural activity is necessary and sufficient to trigger alterations of vascular networks reveals a novel feature of neurovascular interactions. PMID:25155955

  2. Sensory-related neural activity regulates the structure of vascular networks in the cerebral cortex.

    Science.gov (United States)

    Lacoste, Baptiste; Comin, Cesar H; Ben-Zvi, Ayal; Kaeser, Pascal S; Xu, Xiaoyin; Costa, Luciano da F; Gu, Chenghua

    2014-09-03

    Neurovascular interactions are essential for proper brain function. While the effect of neural activity on cerebral blood flow has been extensively studied, whether or not neural activity influences vascular patterning remains elusive. Here, we demonstrate that neural activity promotes the formation of vascular networks in the early postnatal mouse barrel cortex. Using a combination of genetics, imaging, and computational tools to allow simultaneous analysis of neuronal and vascular components, we found that vascular density and branching were decreased in the barrel cortex when sensory input was reduced by either a complete deafferentation, a genetic impairment of neurotransmitter release at thalamocortical synapses, or a selective reduction of sensory-related neural activity by whisker plucking. In contrast, enhancement of neural activity by whisker stimulation led to an increase in vascular density and branching. The finding that neural activity is necessary and sufficient to trigger alterations of vascular networks reveals an important feature of neurovascular interactions. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons.

    Directory of Open Access Journals (Sweden)

    Lars Buesing

    2011-11-01

    Full Text Available The organization of computations in networks of spiking neurons in the brain is still largely unknown, in particular in view of the inherently stochastic features of their firing activity and the experimentally observed trial-to-trial variability of neural systems in the brain. In principle there exists a powerful computational framework for stochastic computations, probabilistic inference by sampling, which can explain a large number of macroscopic experimental data in neuroscience and cognitive science. But it has turned out to be surprisingly difficult to create a link between these abstract models for stochastic computations and more detailed models of the dynamics of networks of spiking neurons. Here we create such a link and show that under some conditions the stochastic firing activity of networks of spiking neurons can be interpreted as probabilistic inference via Markov chain Monte Carlo (MCMC sampling. Since common methods for MCMC sampling in distributed systems, such as Gibbs sampling, are inconsistent with the dynamics of spiking neurons, we introduce a different approach based on non-reversible Markov chains that is able to reflect inherent temporal processes of spiking neuronal activity through a suitable choice of random variables. We propose a neural network model and show by a rigorous theoretical analysis that its neural activity implements MCMC sampling of a given distribution, both for the case of discrete and continuous time. This provides a step towards closing the gap between abstract functional models of cortical computation and more detailed models of networks of spiking neurons.

  4. Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons.

    Science.gov (United States)

    Buesing, Lars; Bill, Johannes; Nessler, Bernhard; Maass, Wolfgang

    2011-11-01

    The organization of computations in networks of spiking neurons in the brain is still largely unknown, in particular in view of the inherently stochastic features of their firing activity and the experimentally observed trial-to-trial variability of neural systems in the brain. In principle there exists a powerful computational framework for stochastic computations, probabilistic inference by sampling, which can explain a large number of macroscopic experimental data in neuroscience and cognitive science. But it has turned out to be surprisingly difficult to create a link between these abstract models for stochastic computations and more detailed models of the dynamics of networks of spiking neurons. Here we create such a link and show that under some conditions the stochastic firing activity of networks of spiking neurons can be interpreted as probabilistic inference via Markov chain Monte Carlo (MCMC) sampling. Since common methods for MCMC sampling in distributed systems, such as Gibbs sampling, are inconsistent with the dynamics of spiking neurons, we introduce a different approach based on non-reversible Markov chains that is able to reflect inherent temporal processes of spiking neuronal activity through a suitable choice of random variables. We propose a neural network model and show by a rigorous theoretical analysis that its neural activity implements MCMC sampling of a given distribution, both for the case of discrete and continuous time. This provides a step towards closing the gap between abstract functional models of cortical computation and more detailed models of networks of spiking neurons.

  5. Forecasting macroeconomic variables using neural network models and three automated model selection techniques

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl; Teräsvirta, Timo

    2016-01-01

    When forecasting with neural network models one faces several problems, all of which influence the accuracy of the forecasts. First, neural networks are often hard to estimate due to their highly nonlinear structure. To alleviate the problem, White (2006) presented a solution (QuickNet...

  6. Dynamics of modularity of neural activity in the brain during development

    Science.gov (United States)

    Deem, Michael; Chen, Man

    2014-03-01

    Theory suggests that more modular systems can have better response functions at short times. This theory suggests that greater cognitive performance may be achieved for more modular neural activity, and that modularity of neural activity may, therefore, likely increase with development in children. We study the relationship between age and modularity of brain neural activity in developing children. The value of modularity calculated from fMRI data is observed to increase during childhood development and peak in young adulthood. We interpret these results as evidence of selection for plasticity in the cognitive function of the human brain. We present a model to illustrate how modularity can provide greater cognitive performance at short times and enhance fast, low-level, automatic cognitive processes. Conversely, high-level, effortful, conscious cognitive processes may not benefit from modularity. We use quasispecies theory to predict how the average modularity evolves with age, given a fitness function extracted from the model. We suggest further experiments exploring the effect of modularity on cognitive performance and suggest that modularity may be a potential biomarker for injury, rehabilitation, or disease.

  7. What are the odds? The neural correlates of active choice during gambling

    Directory of Open Access Journals (Sweden)

    Bettina eStuder

    2012-04-01

    Full Text Available Gambling is a widespread recreational activity and requires pitting the values of potential wins and losses against their probability of occurrence. Neuropsychological research showed that betting behavior on laboratory gambling tasks is highly sensitive to focal lesions to the ventromedial prefrontal cortex (vmPFC and insula. In the current study, we assessed the neural basis of betting choices in healthy participants, using functional magnetic resonance imaging of the Roulette Betting Task. In half of the trials participants actively chose their bets; in the other half the computer dictated the bet size. Our results highlight the impact of volitional choice upon the neural substrates of gambling: Neural activity in a distributed network - including key structures of the reward circuitry (midbrain, striatum - was higher during active compared to computer-dictated bet selection. In line with neuropsychological data, the anterior insula and vmPFC were more activated during self-directed bet selection, and responses in these areas were differentially modulated by the odds of winning in the two choice conditions. In addition, responses in the vmPFC and ventral striatum were modulated by the bet size. Convergent with electrophysiological research in macaques, our results further implicate the inferior parietal cortex (IPC in the processing of the likelihood of potential outcomes: Neural responses in the IPC bilaterally reflected the probability of winning during bet selection. Moreover, the IPC was particularly sensitive to the odds of winning in the active choice condition, where this information was used to guide bet selection. Our results indicate a neglected role of the IPC in human decision-making under risk and help to integrate neuropsychological data of risk-taking following vmPFC and insula damage with models of choice derived from human neuroimaging and monkey electrophysiology.

  8. A Pruning Neural Network Model in Credit Classification Analysis

    Directory of Open Access Journals (Sweden)

    Yajiao Tang

    2018-01-01

    Full Text Available Nowadays, credit classification models are widely applied because they can help financial decision-makers to handle credit classification issues. Among them, artificial neural networks (ANNs have been widely accepted as the convincing methods in the credit industry. In this paper, we propose a pruning neural network (PNN and apply it to solve credit classification problem by adopting the well-known Australian and Japanese credit datasets. The model is inspired by synaptic nonlinearity of a dendritic tree in a biological neural model. And it is trained by an error back-propagation algorithm. The model is capable of realizing a neuronal pruning function by removing the superfluous synapses and useless dendrites and forms a tidy dendritic morphology at the end of learning. Furthermore, we utilize logic circuits (LCs to simulate the dendritic structures successfully which makes PNN be implemented on the hardware effectively. The statistical results of our experiments have verified that PNN obtains superior performance in comparison with other classical algorithms in terms of accuracy and computational efficiency.

  9. Neural oscillations: beta band activity across motor networks.

    Science.gov (United States)

    Khanna, Preeya; Carmena, Jose M

    2015-06-01

    Local field potential (LFP) activity in motor cortical and basal ganglia regions exhibits prominent beta (15-40Hz) oscillations during reaching and grasping, muscular contraction, and attention tasks. While in vitro and computational work has revealed specific mechanisms that may give rise to the frequency and duration of this oscillation, there is still controversy about what behavioral processes ultimately drive it. Here, simultaneous behavioral and large-scale neural recording experiments from non-human primate and human subjects are reviewed in the context of specific hypotheses about how beta band activity is generated. Finally, a new experimental paradigm utilizing operant conditioning combined with motor tasks is proposed as a way to further investigate this oscillation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Social power and approach-related neural activity

    Science.gov (United States)

    Smolders, Ruud; Cremer, David De

    2012-01-01

    It has been argued that power activates a general tendency to approach whereas powerlessness activates a tendency to inhibit. The assumption is that elevated power involves reward-rich environments, freedom and, as a consequence, triggers an approach-related motivational orientation and attention to rewards. In contrast, reduced power is associated with increased threat, punishment and social constraint and thereby activates inhibition-related motivation. Moreover, approach motivation has been found to be associated with increased relative left-sided frontal brain activity, while withdrawal motivation has been associated with increased right sided activations. We measured EEG activity while subjects engaged in a task priming either high or low social power. Results show that high social power is indeed associated with greater left-frontal brain activity compared to low social power, providing the first neural evidence for the theory that high power is associated with approach-related motivation. We propose a framework accounting for differences in both approach motivation and goal-directed behaviour associated with different levels of power. PMID:19304842

  11. Characterizing Deep Brain Stimulation effects in computationally efficient neural network models.

    Science.gov (United States)

    Latteri, Alberta; Arena, Paolo; Mazzone, Paolo

    2011-04-15

    Recent studies on the medical treatment of Parkinson's disease (PD) led to the introduction of the so called Deep Brain Stimulation (DBS) technique. This particular therapy allows to contrast actively the pathological activity of various Deep Brain structures, responsible for the well known PD symptoms. This technique, frequently joined to dopaminergic drugs administration, replaces the surgical interventions implemented to contrast the activity of specific brain nuclei, called Basal Ganglia (BG). This clinical protocol gave the possibility to analyse and inspect signals measured from the electrodes implanted into the deep brain regions. The analysis of these signals led to the possibility to study the PD as a specific case of dynamical synchronization in biological neural networks, with the advantage to apply the theoretical analysis developed in such scientific field to find efficient treatments to face with this important disease. Experimental results in fact show that the PD neurological diseases are characterized by a pathological signal synchronization in BG. Parkinsonian tremor, for example, is ascribed to be caused by neuron populations of the Thalamic and Striatal structures that undergo an abnormal synchronization. On the contrary, in normal conditions, the activity of the same neuron populations do not appear to be correlated and synchronized. To study in details the effect of the stimulation signal on a pathological neural medium, efficient models of these neural structures were built, which are able to show, without any external input, the intrinsic properties of a pathological neural tissue, mimicking the BG synchronized dynamics.We start considering a model already introduced in the literature to investigate the effects of electrical stimulation on pathologically synchronized clusters of neurons. This model used Morris Lecar type neurons. This neuron model, although having a high level of biological plausibility, requires a large computational effort

  12. A Neural Network Model for Prediction of Sound Quality

    DEFF Research Database (Denmark)

    Nielsen,, Lars Bramsløw

    An artificial neural network structure has been specified, implemented and optimized for the purpose of predicting the perceived sound quality for normal-hearing and hearing-impaired subjects. The network was implemented by means of commercially available software and optimized to predict results...... error on the test set. The overall concept proved functional, but further testing with data obtained from a new rating experiment is necessary to better assess the utility of this measure. The weights in the trained neural networks were analyzed to qualitatively interpret the relation between...... obtained in subjective sound quality rating experiments based on input data from an auditory model. Various types of input data and data representations from the auditory model were used as input data for the chosen network structure, which was a three-layer perceptron. This network was trained by means...

  13. Role of SDF1/CXCR4 Interaction in Experimental Hemiplegic Models with Neural Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Noboru Suzuki

    2012-02-01

    Full Text Available Much attention has been focused on neural cell transplantation because of its promising clinical applications. We have reported that embryonic stem (ES cell derived neural stem/progenitor cell transplantation significantly improved motor functions in a hemiplegic mouse model. It is important to understand the molecular mechanisms governing neural regeneration of the damaged motor cortex after the transplantation. Recent investigations disclosed that chemokines participated in the regulation of migration and maturation of neural cell grafts. In this review, we summarize the involvement of inflammatory chemokines including stromal cell derived factor 1 (SDF1 in neural regeneration after ES cell derived neural stem/progenitor cell transplantation in mouse stroke models.

  14. Neural system modeling and simulation using Hybrid Functional Petri Net.

    Science.gov (United States)

    Tang, Yin; Wang, Fei

    2012-02-01

    The Petri net formalism has been proved to be powerful in biological modeling. It not only boasts of a most intuitive graphical presentation but also combines the methods of classical systems biology with the discrete modeling technique. Hybrid Functional Petri Net (HFPN) was proposed specially for biological system modeling. An array of well-constructed biological models using HFPN yielded very interesting results. In this paper, we propose a method to represent neural system behavior, where biochemistry and electrical chemistry are both included using the Petri net formalism. We built a model for the adrenergic system using HFPN and employed quantitative analysis. Our simulation results match the biological data well, showing that the model is very effective. Predictions made on our model further manifest the modeling power of HFPN and improve the understanding of the adrenergic system. The file of our model and more results with their analysis are available in our supplementary material.

  15. Transformation of Neural State Space Models into LFT Models for Robust Control Design

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2000-01-01

    This paper considers the extraction of linear state space models and uncertainty models from neural networks trained as state estimators with direct application to robust control. A new method for writing a neural state space model in a linear fractional transformation form in a non-conservative ......-conservative way is proposed, and it is demonstrated how a standard robust control law can be designed for a system described by means of a multi layer perceptron....

  16. Capacitive MEMS accelerometer wide range modeling using artificial neural network

    OpenAIRE

    A. Baharodimehr; A. Abolfazl Suratgar; H. Sadeghi

    2009-01-01

    This paper presents a nonlinear model for a capacitive microelectromechanical accelerometer (MEMA). System parameters ofthe accelerometer are developed using the effect of cubic term of the folded‐flexure spring. To solve this equation, we use theFEA method. The neural network (NN) uses the Levenberg‐Marquardt (LM) method for training the system to have a moreaccurate response. The designed NN can identify and predict the displacement of the movable mass of accelerometer. Thesimulation result...

  17. Capacitive MEMS accelerometer wide range modeling using artificial neural network

    Directory of Open Access Journals (Sweden)

    A. Baharodimehr

    2009-08-01

    Full Text Available This paper presents a nonlinear model for a capacitive microelectromechanical accelerometer (MEMA. System parameters ofthe accelerometer are developed using the effect of cubic term of the folded‐flexure spring. To solve this equation, we use theFEA method. The neural network (NN uses the Levenberg‐Marquardt (LM method for training the system to have a moreaccurate response. The designed NN can identify and predict the displacement of the movable mass of accelerometer. Thesimulation results are very promising.

  18. Synthetic neural modeling applied to a real-world artifact.

    OpenAIRE

    Edelman, G M; Reeke, G N; Gall, W E; Tononi, G; Williams, D.; Sporns, O.

    1992-01-01

    We describe the general design, operating principles, and performance of a neurally organized, multiply adaptive device (NOMAD) under control of a nervous system simulated in a computer. The complete system, Darwin IV, is the latest in a series of models based on the theory of neuronal group selection, which postulates that adaptive behavior is the result of selection in somatic time among synaptic populations. The simulated brain of Darwin IV includes visual and motor areas that are connecte...

  19. A model for the neural control of pineal periodicity

    Science.gov (United States)

    de Oliveira Cruz, Frederico Alan; Soares, Marilia Amavel Gomes; Cortez, Celia Martins

    2016-12-01

    The aim of this work was verify if a computational model associating the synchronization dynamics of coupling oscillators to a set of synaptic transmission equations would be able to simulate the control of pineal by a complex neural pathway that connects the retina to this gland. Results from the simulations showed that the frequency and temporal firing patterns were in the range of values found in literature.

  20. Acupuncture stimulation on GB34 activates neural responses associated with Parkinson's disease.

    Science.gov (United States)

    Yeo, Sujung; Lim, Sabina; Choe, Il-Hwan; Choi, Yeong-Gon; Chung, Kyung-Cheon; Jahng, Geon-Ho; Kim, Sung-Hoon

    2012-09-01

    Parkinson's disease (PD) is a degenerative brain disorder that is caused by neural defects in the substantia nigra. Numerous studies have reported that acupuncture treatment on GB34 (Yanglingquan) leads to significant improvements in patients with PD and in PD animal models. Studies using functional magnetic resonance imaging (fMRI) have shown that patients with PD, compared to healthy participants, have lower neural responses in extensive brain regions including the putamen, thalamus, and the supplementary motor area. This study investigated the reported association between acupuncture point GB34 and PD. Using fMRI, neural responses of 12 patients with PD and 12 healthy participants were examined before and after acupuncture stimulation. Acupuncture stimulation increased neural responses in regions including the substantia nigra, caudate, thalamus, and putamen, which are impaired caused by PD. Areas associated with PD were activated by the acupuncture stimulation on GB34. This shows that acupuncture treatment on GB34 may be effective in improving the symptoms of PD. Although more randomized controlled trials on the topic will be needed, this study shows that acupuncture may be helpful in the treatment of symptoms involving PD. © 2012 Blackwell Publishing Ltd.

  1. Risk prediction model: Statistical and artificial neural network approach

    Science.gov (United States)

    Paiman, Nuur Azreen; Hariri, Azian; Masood, Ibrahim

    2017-04-01

    Prediction models are increasingly gaining popularity and had been used in numerous areas of studies to complement and fulfilled clinical reasoning and decision making nowadays. The adoption of such models assist physician's decision making, individual's behavior, and consequently improve individual outcomes and the cost-effectiveness of care. The objective of this paper is to reviewed articles related to risk prediction model in order to understand the suitable approach, development and the validation process of risk prediction model. A qualitative review of the aims, methods and significant main outcomes of the nineteen published articles that developed risk prediction models from numerous fields were done. This paper also reviewed on how researchers develop and validate the risk prediction models based on statistical and artificial neural network approach. From the review done, some methodological recommendation in developing and validating the prediction model were highlighted. According to studies that had been done, artificial neural network approached in developing the prediction model were more accurate compared to statistical approach. However currently, only limited published literature discussed on which approach is more accurate for risk prediction model development.

  2. Prediction horizon effects on stochastic modelling hints for neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Drossu, R.; Obradovic, Z. [Washington State Univ., Pullman, WA (United States)

    1995-12-31

    The objective of this paper is to investigate the relationship between stochastic models and neural network (NN) approaches to time series modelling. Experiments on a complex real life prediction problem (entertainment video traffic) indicate that prior knowledge can be obtained through stochastic analysis both with respect to an appropriate NN architecture as well as to an appropriate sampling rate, in the case of a prediction horizon larger than one. An improvement of the obtained NN predictor is also proposed through a bias removal post-processing, resulting in much better performance than the best stochastic model.

  3. Forecasting Macroeconomic Variables using Neural Network Models and Three Automated Model Selection Techniques

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl; Teräsvirta, Timo

    In this paper we consider the forecasting performance of a well-defined class of flexible models, the so-called single hidden-layer feedforward neural network models. A major aim of our study is to find out whether they, due to their flexibility, are as useful tools in economic forecasting as some...... previous studies have indicated. When forecasting with neural network models one faces several problems, all of which influence the accuracy of the forecasts. First, neural networks are often hard to estimate due to their highly nonlinear structure. In fact, their parameters are not even globally...... on the linearisation idea: the Marginal Bridge Estimator and Autometrics. Second, one must decide whether forecasting should be carried out recursively or directly. Comparisons of these two methodss exist for linear models and here these comparisons are extended to neural networks. Finally, a nonlinear model...

  4. Analysis of the behavior of a seizure neural mass model using describing functions.

    Science.gov (United States)

    Shayegh, Farzaneh; Bellanger, Jean-Jacques; Sadri, Saied; Amirfattahi, Rasoul; Ansari-Asl, Karim; Senhadji, Lotfi

    2013-01-01

    Neural mass models are computational nonlinear models that simulate the activity of a population of neurons as an average neuron, in such a way that different inhibitory post-synaptic potential and excitatory post-synaptic potential signals could be reproduced. These models have been developed either to simulate the recognized neural mechanisms or to predict some physiological facts that are not easy to realize naturally. The role of the excitatory and inhibitory activity variation in seizure genesis has been proved, but it is not evident how these activities influence appearance of seizure like signals. In this paper a population model is considered in which the physiological inter-relation of the pyramidal and inter-neurons of the hippocampus has been appropriately modeled. The average neurons of this model have been assumed to act as a linear filter followed by a nonlinear function. By changing the gain of excitatory and inhibitory activities that are modeled by the gain of the filters, seizure-like signals could be generated. In this paper through the analysis of this nonlinear model by means of the describing function concepts, it is theoretically shown that not only the gains of the excitatory and inhibitory activities, but also the time constants may play an efficient role in seizure genesis.

  5. Validating neural-network refinements of nuclear mass models

    Science.gov (United States)

    Utama, R.; Piekarewicz, J.

    2018-01-01

    Background: Nuclear astrophysics centers on the role of nuclear physics in the cosmos. In particular, nuclear masses at the limits of stability are critical in the development of stellar structure and the origin of the elements. Purpose: We aim to test and validate the predictions of recently refined nuclear mass models against the newly published AME2016 compilation. Methods: The basic paradigm underlining the recently refined nuclear mass models is based on existing state-of-the-art models that are subsequently refined through the training of an artificial neural network. Bayesian inference is used to determine the parameters of the neural network so that statistical uncertainties are provided for all model predictions. Results: We observe a significant improvement in the Bayesian neural network (BNN) predictions relative to the corresponding "bare" models when compared to the nearly 50 new masses reported in the AME2016 compilation. Further, AME2016 estimates for the handful of impactful isotopes in the determination of r -process abundances are found to be in fairly good agreement with our theoretical predictions. Indeed, the BNN-improved Duflo-Zuker model predicts a root-mean-square deviation relative to experiment of σrms≃400 keV. Conclusions: Given the excellent performance of the BNN refinement in confronting the recently published AME2016 compilation, we are confident of its critical role in our quest for mass models of the highest quality. Moreover, as uncertainty quantification is at the core of the BNN approach, the improved mass models are in a unique position to identify those nuclei that will have the strongest impact in resolving some of the outstanding questions in nuclear astrophysics.

  6. Artificial neural network modeling of p-cresol photodegradation.

    Science.gov (United States)

    Abdollahi, Yadollah; Zakaria, Azmi; Abbasiyannejad, Mina; Masoumi, Hamid Reza Fard; Moghaddam, Mansour Ghaffari; Matori, Khamirul Amin; Jahangirian, Hossein; Keshavarzi, Ashkan

    2013-06-03

    The complexity of reactions and kinetic is the current problem of photodegradation processes. Recently, artificial neural networks have been widely used to solve the problems because of their reliable, robust, and salient characteristics in capturing the non-linear relationships between variables in complex systems. In this study, an artificial neural network was applied for modeling p-cresol photodegradation. To optimize the network, the independent variables including irradiation time, pH, photocatalyst amount and concentration of p-cresol were used as the input parameters, while the photodegradation% was selected as output. The photodegradation% was obtained from the performance of the experimental design of the variables under UV irradiation. The network was trained by Quick propagation (QP) and the other three algorithms as a model. To determine the number of hidden layer nodes in the model, the root mean squared error of testing set was minimized. After minimizing the error, the topologies of the algorithms were compared by coefficient of determination and absolute average deviation. The comparison indicated that the Quick propagation algorithm had minimum root mean squared error, 1.3995, absolute average deviation, 3.0478, and maximum coefficient of determination, 0.9752, for the testing data set. The validation test results of the artificial neural network based on QP indicated that the root mean squared error was 4.11, absolute average deviation was 8.071 and the maximum coefficient of determination was 0.97. Artificial neural network based on Quick propagation algorithm with topology 4-10-1 gave the best performance in this study.

  7. Determination of platinum by radiochemical neutron activation analysis in neural tissues from rats, monkeys and patients treated with cisplatin

    DEFF Research Database (Denmark)

    Rietz, B.; Krarup-Hansen, A.; Rorth, M.

    2001-01-01

    of the animals mentioned and in the neural tissues of human patients. For the determination of platinum in the tissues radiochemical neutron activation analysis has been used. The detection limit is 1 ng Pt g(-1). The platinum results indicate that platinum becomes accumulated in the dorsal root ganglia......Cisplatin is one of the most used antineoplastic drugs, essential for the treatment of germ cell tumours. Its use in medical treatment of cancer patients often causes chronic peripheral neuropathy in these patients. The distribution of cisplatin in neural tissues is, therefore, of great interest....... Rats and monkeys were used as animal models for the study of sensory changes in different neural tissues, like spinal cord (ventral and dorsal part), dorsal root ganglia and sural nerve. The study was combined with quantitative measurements of the content of platinum in the neural tissues...

  8. Natural lecithin promotes neural network complexity and activity.

    Science.gov (United States)

    Latifi, Shahrzad; Tamayol, Ali; Habibey, Rouhollah; Sabzevari, Reza; Kahn, Cyril; Geny, David; Eftekharpour, Eftekhar; Annabi, Nasim; Blau, Axel; Linder, Michel; Arab-Tehrany, Elmira

    2016-05-27

    Phospholipids in the brain cell membranes contain different polyunsaturated fatty acids (PUFAs), which are critical to nervous system function and structure. In particular, brain function critically depends on the uptake of the so-called "essential" fatty acids such as omega-3 (n-3) and omega-6 (n-6) PUFAs that cannot be readily synthesized by the human body. We extracted natural lecithin rich in various PUFAs from a marine source and transformed it into nanoliposomes. These nanoliposomes increased neurite outgrowth, network complexity and neural activity of cortical rat neurons in vitro. We also observed an upregulation of synapsin I (SYN1), which supports the positive role of lecithin in synaptogenesis, synaptic development and maturation. These findings suggest that lecithin nanoliposomes enhance neuronal development, which may have an impact on devising new lecithin delivery strategies for therapeutic applications.

  9. Neural activity reveals perceptual grouping in working memory.

    Science.gov (United States)

    Rabbitt, Laura R; Roberts, Daniel M; McDonald, Craig G; Peterson, Matthew S

    2017-03-01

    There is extensive evidence that the contralateral delay activity (CDA), a scalp recorded event-related brain potential, provides a reliable index of the number of objects held in visual working memory. Here we present evidence that the CDA not only indexes visual object working memory, but also the number of locations held in spatial working memory. In addition, we demonstrate that the CDA can be predictably modulated by the type of encoding strategy employed. When individual locations were held in working memory, the pattern of CDA modulation mimicked previous findings for visual object working memory. Specifically, CDA amplitude increased monotonically until working memory capacity was reached. However, when participants were instructed to group individual locations to form a constellation, the CDA was prolonged and reached an asymptote at two locations. This result provides neural evidence for the formation of a unitary representation of multiple spatial locations. Published by Elsevier B.V.

  10. Neural Net Gains Estimation Based on an Equivalent Model

    Directory of Open Access Journals (Sweden)

    Karen Alicia Aguilar Cruz

    2016-01-01

    Full Text Available A model of an Equivalent Artificial Neural Net (EANN describes the gains set, viewed as parameters in a layer, and this consideration is a reproducible process, applicable to a neuron in a neural net (NN. The EANN helps to estimate the NN gains or parameters, so we propose two methods to determine them. The first considers a fuzzy inference combined with the traditional Kalman filter, obtaining the equivalent model and estimating in a fuzzy sense the gains matrix A and the proper gain K into the traditional filter identification. The second develops a direct estimation in state space, describing an EANN using the expected value and the recursive description of the gains estimation. Finally, a comparison of both descriptions is performed; highlighting the analytical method describes the neural net coefficients in a direct form, whereas the other technique requires selecting into the Knowledge Base (KB the factors based on the functional error and the reference signal built with the past information of the system.

  11. Neural network connectivity and response latency modelled by stochastic processes

    DEFF Research Database (Denmark)

    Tamborrino, Massimiliano

    is connected to thousands of other neurons. The rst question is: how to model neural networks through stochastic processes? A multivariate Ornstein-Uhlenbeck process, obtained as a diffusion approximation of a jump process, is the proposed answer. Obviously, dependencies between neurons imply dependencies......Stochastic processes and their rst passage times have been widely used to describe the membrane potential dynamics of single neurons and to reproduce neuronal spikes, respectively.However, cerebral cortex in human brains is estimated to contain 10-20 billions of neurons and each of them...... between their spike times. Therefore, the second question is: how to detect neural network connectivity from simultaneously recorded spike trains? Answering this question corresponds to investigate the joint distribution of sequences of rst passage times. A non-parametric method based on copulas...

  12. Neural network connectivity and response latency modelled by stochastic processes

    DEFF Research Database (Denmark)

    Tamborrino, Massimiliano

    is connected to thousands of other neurons. The rst question is: how to model neural networks through stochastic processes? A multivariate Ornstein-Uhlenbeck process, obtained as a diffusion approximation of a jump process, is the proposed answer. Obviously, dependencies between neurons imply dependencies...... between their spike times. Therefore, the second question is: how to detect neural network connectivity from simultaneously recorded spike trains? Answering this question corresponds to investigate the joint distribution of sequences of rst passage times. A non-parametric method based on copulas...... generation of pikes. When a stimulus is applied to the network, the spontaneous rings may prevail and hamper detection of the effects of the stimulus. Therefore, the spontaneous rings cannot be ignored and the response latency has to be detected on top of a background signal. Everything becomes more dicult...

  13. Adaptive model predictive process control using neural networks

    Science.gov (United States)

    Buescher, K.L.; Baum, C.C.; Jones, R.D.

    1997-08-19

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.

  14. Circuit models and experimental noise measurements of micropipette amplifiers for extracellular neural recordings from live animals.

    Science.gov (United States)

    Chen, Chang Hao; Pun, Sio Hang; Mak, Peng Un; Vai, Mang I; Klug, Achim; Lei, Tim C

    2014-01-01

    Glass micropipettes are widely used to record neural activity from single neurons or clusters of neurons extracellularly in live animals. However, to date, there has been no comprehensive study of noise in extracellular recordings with glass micropipettes. The purpose of this work was to assess various noise sources that affect extracellular recordings and to create model systems in which novel micropipette neural amplifier designs can be tested. An equivalent circuit of the glass micropipette and the noise model of this circuit, which accurately describe the various noise sources involved in extracellular recordings, have been developed. Measurement schemes using dead brain tissue as well as extracellular recordings from neurons in the inferior colliculus, an auditory brain nucleus of an anesthetized gerbil, were used to characterize noise performance and amplification efficacy of the proposed micropipette neural amplifier. According to our model, the major noise sources which influence the signal to noise ratio are the intrinsic noise of the neural amplifier and the thermal noise from distributed pipette resistance. These two types of noise were calculated and measured and were shown to be the dominating sources of background noise for in vivo experiments.

  15. Circuit Models and Experimental Noise Measurements of Micropipette Amplifiers for Extracellular Neural Recordings from Live Animals

    Directory of Open Access Journals (Sweden)

    Chang Hao Chen

    2014-01-01

    Full Text Available Glass micropipettes are widely used to record neural activity from single neurons or clusters of neurons extracellularly in live animals. However, to date, there has been no comprehensive study of noise in extracellular recordings with glass micropipettes. The purpose of this work was to assess various noise sources that affect extracellular recordings and to create model systems in which novel micropipette neural amplifier designs can be tested. An equivalent circuit of the glass micropipette and the noise model of this circuit, which accurately describe the various noise sources involved in extracellular recordings, have been developed. Measurement schemes using dead brain tissue as well as extracellular recordings from neurons in the inferior colliculus, an auditory brain nucleus of an anesthetized gerbil, were used to characterize noise performance and amplification efficacy of the proposed micropipette neural amplifier. According to our model, the major noise sources which influence the signal to noise ratio are the intrinsic noise of the neural amplifier and the thermal noise from distributed pipette resistance. These two types of noise were calculated and measured and were shown to be the dominating sources of background noise for in vivo experiments.

  16. To compare the effect of Active Neural Mobilization during Intermittent Lumbar Traction and Intermittent Lumbar Traction followed by Active Neural Mobilization in cases of Lumbar Radiculopathy

    OpenAIRE

    Jaywant Nagulkar; Kalyani Nagulkar

    2016-01-01

    To compare the effectiveness of Active neural mobilization (ANM) during intermittent lumbar traction (ILT) and intermittent lumbar traction followed by active neural mobilization treatment in patients of low back pain (LBP) with radiculopathy.. To study the effect of ANM during ILT and ILT followed by ANM in patients of LBP with radiculopathy on VAS scale, P1 angle of SLR, P2 angle of SLR and Oswestry disability index(ODI). To compare the effect of ANM during ILT and ILT followed ...

  17. Analysis of Neural-BOLD Coupling through Four Models of the Neural Metabolic Demand

    Directory of Open Access Journals (Sweden)

    Christopher W Tyler

    2015-12-01

    Full Text Available The coupling of the neuronal energetics to the blood-oxygen-level-dependent (BOLD response is still incompletely understood. To address this issue, we compared the fits of four plausible models of neurometabolic coupling dynamics to available data for simultaneous recordings of the local field potential (LFP and the local BOLD response recorded from monkey primary visual cortex over a wide range of stimulus durations. The four models of the metabolic demand driving the BOLD response were: direct coupling with the overall LFP; rectified coupling to the LFP; coupling with a slow adaptive component of the implied neural population response; and coupling with the non-adaptive intracellular input signal defined by the stimulus time course. Taking all stimulus durations into account, the results imply that the BOLD response is most closely coupled with metabolic demand derived from the intracellular input waveform, without significant influence from the adaptive transients and nonlinearities exhibited by the LFP waveform.

  18. Neural network modeling of a dolphin's sonar discrimination capabilities

    DEFF Research Database (Denmark)

    Andersen, Lars Nonboe; René Rasmussen, A; Au, WWL

    1994-01-01

    The capability of an echo-locating dolphin to discriminate differences in the wall thickness of cylinders was previously modeled by a counterpropagation neural network using only spectral information of the echoes [W. W. L. Au, J. Acoust. Soc. Am. 95, 2728–2735 (1994)]. In this study, both time...... and frequency information were used to model the dolphin discrimination capabilities. Echoes from the same cylinders were digitized using a broadband simulated dolphin sonar signal with the transducer mounted on the dolphin's pen. The echoes were filtered by a bank of continuous constant-Q digital filters...

  19. Design of a neurally plausible model of fear learning

    Directory of Open Access Journals (Sweden)

    Franklin B. Krasne

    2011-07-01

    Full Text Available A neurally oriented conceptual and computational model of fear conditioning ("Fraidy Rat" or FRAT has been constructed that accounts for many aspects of delay and context conditioning. Conditioning and extinction are the result of neuromodulation-controlled LTP at synapses of thalamic, cortical, and hippocampal afferents on principal cells and inhibitory interneurons of lateral and basal amygdala. The phenomena accounted for by the model (and simulated by the computational version include conditioning, secondary reinforcement, blocking, the immediate shock deficit, extinction, renewal, and a range of empirically valid effects of pre- and post-training ablation or inactivation of hippocampus or amygdala nuclei.

  20. Tracking cortical entrainment in neural activity: Auditory processes in human temporal cortex

    Directory of Open Access Journals (Sweden)

    Andrew eThwaites

    2015-02-01

    Full Text Available A primary objective for cognitive neuroscience is to identify how features of the sensory environment are encoded in neural activity. Current auditory models of loudness perception can be used to make detailed predictions about the neural activity of the cortex as an individual listens to speech. We used two such models (loudness-sones and loudness-phons, varying in their psychophysiological realism, to predict the instantaneous loudness contours produced by 480 isolated words. These two sets of 480 contours were used to search for electrophysiological evidence of loudness processing in whole-brain recordings of electro- and magneto-encephalographic (EMEG activity, recorded while subjects listened to the words. The technique identified a bilateral sequence of loudness processes, predicted by the more realistic loudness-sones model, that begin in auditory cortex at ~80 ms and subsequently reappear, tracking progressively down the superior temporal sulcus (STS at lags from 230 to 330 ms. The technique was then extended to search for regions sensitive to the fundamental frequency (F0 of the voiced parts of the speech. It identified a bilateral F0 process in auditory cortex at a lag of ~90 ms, which was not followed by activity in STS. The results suggest that loudness information is being used to guide the analysis of the speech stream as it proceeds beyond auditory cortex down STS towards the temporal pole.

  1. A deep convolutional neural network model to classify heartbeats.

    Science.gov (United States)

    Acharya, U Rajendra; Oh, Shu Lih; Hagiwara, Yuki; Tan, Jen Hong; Adam, Muhammad; Gertych, Arkadiusz; Tan, Ru San

    2017-10-01

    The electrocardiogram (ECG) is a standard test used to monitor the activity of the heart. Many cardiac abnormalities will be manifested in the ECG including arrhythmia which is a general term that refers to an abnormal heart rhythm. The basis of arrhythmia diagnosis is the identification of normal versus abnormal individual heart beats, and their correct classification into different diagnoses, based on ECG morphology. Heartbeats can be sub-divided into five categories namely non-ectopic, supraventricular ectopic, ventricular ectopic, fusion, and unknown beats. It is challenging and time-consuming to distinguish these heartbeats on ECG as these signals are typically corrupted by noise. We developed a 9-layer deep convolutional neural network (CNN) to automatically identify 5 different categories of heartbeats in ECG signals. Our experiment was conducted in original and noise attenuated sets of ECG signals derived from a publicly available database. This set was artificially augmented to even out the number of instances the 5 classes of heartbeats and filtered to remove high-frequency noise. The CNN was trained using the augmented data and achieved an accuracy of 94.03% and 93.47% in the diagnostic classification of heartbeats in original and noise free ECGs, respectively. When the CNN was trained with highly imbalanced data (original dataset), the accuracy of the CNN reduced to 89.07%% and 89.3% in noisy and noise-free ECGs. When properly trained, the proposed CNN model can serve as a tool for screening of ECG to quickly identify different types and frequency of arrhythmic heartbeats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Predicting the parameters of energy installations with laser ignition: Neural network models

    Directory of Open Access Journals (Sweden)

    Alexey A. Pastukhov

    2015-06-01

    Full Text Available This article considers the possibility of using artificial neural networks for predicting the parameters of the model energy installation with laser ignition. The main stages of creating a prognostic model based on an artificial neural network have been presented. Input data were analyzed by principal component method. The synthesized neural network was designed to predict the parameter value of the model in question. The artificial neural network was trained by a back-propagation algorithm. The efficiency of the artificial neural networks and their applicability to predicting parameter values of various rocket engine elements were demonstrated.

  3. Evidence-Based Systematic Review: Effects of Neuromuscular Electrical Stimulation on Swallowing and Neural Activation

    Science.gov (United States)

    Clark, Heather; Lazarus, Cathy; Arvedson, Joan; Schooling, Tracy; Frymark, Tobi

    2009-01-01

    Purpose: To systematically review the literature examining the effects of neuromuscular electrical stimulation (NMES) on swallowing and neural activation. The review was conducted as part of a series examining the effects of oral motor exercises (OMEs) on speech, swallowing, and neural activation. Method: A systematic search was conducted to…

  4. The effects of noise on binocular rivalry waves: a stochastic neural field model

    KAUST Repository

    Webber, Matthew A

    2013-03-12

    We analyze the effects of extrinsic noise on traveling waves of visual perception in a competitive neural field model of binocular rivalry. The model consists of two one-dimensional excitatory neural fields, whose activity variables represent the responses to left-eye and right-eye stimuli, respectively. The two networks mutually inhibit each other, and slow adaptation is incorporated into the model by taking the network connections to exhibit synaptic depression. We first show how, in the absence of any noise, the system supports a propagating composite wave consisting of an invading activity front in one network co-moving with a retreating front in the other network. Using a separation of time scales and perturbation methods previously developed for stochastic reaction-diffusion equations, we then show how extrinsic noise in the activity variables leads to a diffusive-like displacement (wandering) of the composite wave from its uniformly translating position at long time scales, and fluctuations in the wave profile around its instantaneous position at short time scales. We use our analysis to calculate the first-passage-time distribution for a stochastic rivalry wave to travel a fixed distance, which we find to be given by an inverse Gaussian. Finally, we investigate the effects of noise in the depression variables, which under an adiabatic approximation lead to quenched disorder in the neural fields during propagation of a wave. © 2013 IOP Publishing Ltd and SISSA Medialab srl.

  5. The effects of noise on binocular rivalry waves: a stochastic neural field model

    Science.gov (United States)

    Webber, Matthew A.; Bressloff, Paul C.

    2013-03-01

    We analyze the effects of extrinsic noise on traveling waves of visual perception in a competitive neural field model of binocular rivalry. The model consists of two one-dimensional excitatory neural fields, whose activity variables represent the responses to left-eye and right-eye stimuli, respectively. The two networks mutually inhibit each other, and slow adaptation is incorporated into the model by taking the network connections to exhibit synaptic depression. We first show how, in the absence of any noise, the system supports a propagating composite wave consisting of an invading activity front in one network co-moving with a retreating front in the other network. Using a separation of time scales and perturbation methods previously developed for stochastic reaction-diffusion equations, we then show how extrinsic noise in the activity variables leads to a diffusive-like displacement (wandering) of the composite wave from its uniformly translating position at long time scales, and fluctuations in the wave profile around its instantaneous position at short time scales. We use our analysis to calculate the first-passage-time distribution for a stochastic rivalry wave to travel a fixed distance, which we find to be given by an inverse Gaussian. Finally, we investigate the effects of noise in the depression variables, which under an adiabatic approximation lead to quenched disorder in the neural fields during propagation of a wave.

  6. Optical Neural Network Models Applied To Logic Program Execution

    Science.gov (United States)

    Stormon, Charles D.

    1988-05-01

    Logic programming is being used extensively by Artificial Intelligence researchers to solve problems including natural language processing and expert systems. These languages, of which Prolog is the most widely used, promise to revolutionize software engineering, but much greater performance is needed. Researchers have demonstrated the applicability of neural network models to the solution of certain NP-complete problems, but these methods are not obviously applicable to the execution of logic programs. This paper outlines the use of neural networks in four aspects of the logic program execution cycle, and discusses results of a simulation of three of these. Four neural network functional units are described, called the substitution agent, the clause filter, the structure processor, and the heuristics generator, respectively. Simulation results suggest that the system described may provide several orders of magnitude improvement in execution speed for large logic programs. However, practical implementation of the proposed architecture will require the application of optical computing techniques due to the large number of neurons required, and the need for massive, adaptive connectivity.

  7. Models of neural networks temporal aspects of coding and information processing in biological systems

    CERN Document Server

    Hemmen, J; Schulten, Klaus

    1994-01-01

    Since the appearance of Vol. 1 of Models of Neural Networks in 1991, the theory of neural nets has focused on two paradigms: information coding through coherent firing of the neurons and functional feedback. Information coding through coherent neuronal firing exploits time as a cardinal degree of freedom. This capacity of a neural network rests on the fact that the neuronal action potential is a short, say 1 ms, spike, localized in space and time. Spatial as well as temporal correlations of activity may represent different states of a network. In particular, temporal correlations of activity may express that neurons process the same "object" of, for example, a visual scene by spiking at the very same time. The traditional description of a neural network through a firing rate, the famous S-shaped curve, presupposes a wide time window of, say, at least 100 ms. It thus fails to exploit the capacity to "bind" sets of coherently firing neurons for the purpose of both scene segmentation and figure-ground segregatio...

  8. Hybrid neural network model for the design of beam subjected to ...

    Indian Academy of Sciences (India)

    This paper demonstrates the applicability of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) for the design of beams subjected to moment and shear. A hybrid neural network model which combines the features of feed forward neural networks and genetic algorithms has been developed for the design of beam ...

  9. Genetic Algorithm Optimization of Artificial Neural Networks for Hydrological Modelling

    Science.gov (United States)

    Abrahart, R. J.

    2004-05-01

    This paper will consider the case for genetic algorithm optimization in the development of an artificial neural network model. It will provide a methodological evaluation of reported investigations with respect to hydrological forecasting and prediction. The intention in such operations is to develop a superior modelling solution that will be: \\begin{itemize} more accurate in terms of output precision and model estimation skill; more tractable in terms of personal requirements and end-user control; and/or more robust in terms of conceptual and mechanical power with respect to adverse conditions. The genetic algorithm optimization toolbox could be used to perform a number of specific roles or purposes and it is the harmonious and supportive relationship between neural networks and genetic algorithms that will be highlighted and assessed. There are several neural network mechanisms and procedures that could be enhanced and potential benefits are possible at different stages in the design and construction of an operational hydrological model e.g. division of inputs; identification of structure; initialization of connection weights; calibration of connection weights; breeding operations between successful models; and output fusion associated with the development of ensemble solutions. Each set of opportunities will be discussed and evaluated. Two strategic questions will also be considered: [i] should optimization be conducted as a set of small individual procedures or as one large holistic operation; [ii] what specific function or set of weighted vectors should be optimized in a complex software product e.g. timings, volumes, or quintessential hydrological attributes related to the 'problem situation' - that might require the development flood forecasting, drought estimation, or record infilling applications. The paper will conclude with a consideration of hydrological forecasting solutions developed on the combined methodologies of co-operative co-evolution and

  10. Continuous Online Sequence Learning with an Unsupervised Neural Network Model.

    Science.gov (United States)

    Cui, Yuwei; Ahmad, Subutar; Hawkins, Jeff

    2016-09-14

    The ability to recognize and predict temporal sequences of sensory inputs is vital for survival in natural environments. Based on many known properties of cortical neurons, hierarchical temporal memory (HTM) sequence memory recently has been proposed as a theoretical framework for sequence learning in the cortex. In this letter, we analyze properties of HTM sequence memory and apply it to sequence learning and prediction problems with streaming data. We show the model is able to continuously learn a large number of variableorder temporal sequences using an unsupervised Hebbian-like learning rule. The sparse temporal codes formed by the model can robustly handle branching temporal sequences by maintaining multiple predictions until there is sufficient disambiguating evidence. We compare the HTM sequence memory with other sequence learning algorithms, including statistical methods: autoregressive integrated moving average; feedforward neural networks-time delay neural network and online sequential extreme learning machine; and recurrent neural networks-long short-term memory and echo-state networks on sequence prediction problems with both artificial and real-world data. The HTM model achieves comparable accuracy to other state-of-the-art algorithms. The model also exhibits properties that are critical for sequence learning, including continuous online learning, the ability to handle multiple predictions and branching sequences with high-order statistics, robustness to sensor noise and fault tolerance, and good performance without task-specific hyperparameter tuning. Therefore, the HTM sequence memory not only advances our understanding of how the brain may solve the sequence learning problem but is also applicable to real-world sequence learning problems from continuous data streams.

  11. EEG-fMRI Bayesian framework for neural activity estimation: a simulation study

    Science.gov (United States)

    Croce, Pierpaolo; Basti, Alessio; Marzetti, Laura; Zappasodi, Filippo; Del Gratta, Cosimo

    2016-12-01

    Objective. Due to the complementary nature of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), and given the possibility of simultaneous acquisition, the joint data analysis can afford a better understanding of the underlying neural activity estimation. In this simulation study we want to show the benefit of the joint EEG-fMRI neural activity estimation in a Bayesian framework. Approach. We built a dynamic Bayesian framework in order to perform joint EEG-fMRI neural activity time course estimation. The neural activity is originated by a given brain area and detected by means of both measurement techniques. We have chosen a resting state neural activity situation to address the worst case in terms of the signal-to-noise ratio. To infer information by EEG and fMRI concurrently we used a tool belonging to the sequential Monte Carlo (SMC) methods: the particle filter (PF). Main results. First, despite a high computational cost, we showed the feasibility of such an approach. Second, we obtained an improvement in neural activity reconstruction when using both EEG and fMRI measurements. Significance. The proposed simulation shows the improvements in neural activity reconstruction with EEG-fMRI simultaneous data. The application of such an approach to real data allows a better comprehension of the neural dynamics.

  12. Neural processes in symmetry perception: a parallel spatio-temporal model.

    Science.gov (United States)

    Zhu, Tao

    2014-04-01

    Symmetry is usually computationally expensive to detect reliably, while it is relatively easy to perceive. In spite of many attempts to understand the neurofunctional properties of symmetry processing, no symmetry-specific activation was found in earlier cortical areas. Psychophysical evidence relating to the processing mechanisms suggests that the basic processes of symmetry perception would not perform a serial, point-by-point comparison of structural features but rather operate in parallel. Here, modeling of neural processes in psychophysical detection of bilateral texture symmetry is considered. A simple fine-grained algorithm that is capable of performing symmetry estimation without explicit comparison of remote elements is introduced. A computational model of symmetry perception is then described to characterize the underlying mechanisms as one-dimensional spatio-temporal neural processes, each of which is mediated by intracellular horizontal connections in primary visual cortex and adopts the proposed algorithm for the neural computation. Simulated experiments have been performed to show the efficiency and the dynamics of the model. Model and human performances are comparable for symmetry perception of intensity images. Interestingly, the responses of V1 neurons to propagation activities reflecting higher-order perceptual computations have been reported in neurophysiologic experiments.

  13. Comparing Active Vision Models

    NARCIS (Netherlands)

    Croon, G.C.H.E. de; Sprinkhuizen-Kuyper, I.G.; Postma, E.O.

    2009-01-01

    Active vision models can simplify visual tasks, provided that they can select sensible actions given incoming sensory inputs. Many active vision models have been proposed, but a comparative evaluation of these models is lacking. We present a comparison of active vision models from two different

  14. Comparing active vision models

    NARCIS (Netherlands)

    Croon, G.C.H.E. de; Sprinkhuizen-Kuyper, I.G.; Postma, E.O.

    2009-01-01

    Active vision models can simplify visual tasks, provided that they can select sensible actions given incoming sensory inputs. Many active vision models have been proposed, but a comparative evaluation of these models is lacking. We present a comparison of active vision models from two different

  15. SPR imaging combined with cyclic voltammetry for the detection of neural activity

    Directory of Open Access Journals (Sweden)

    Hui Li

    2014-03-01

    Full Text Available Surface plasmon resonance (SPR detects changes in refractive index at a metal-dielectric interface. In this study, SPR imaging (SPRi combined with cyclic voltammetry (CV was applied to detect neural activity in isolated bullfrog sciatic nerves. The neural activities induced by chemical and electrical stimulation led to an SPR response, and the activities were recorded in real time. The activities of different parts of the sciatic nerve were recorded and compared. The results demonstrated that SPR imaging combined with CV is a powerful tool for the investigation of neural activity.

  16. Landslide susceptibility analysis using an artificial neural network model

    Science.gov (United States)

    Mansor, Shattri; Pradhan, Biswajeet; Daud, Mohamed; Jamaludin, Normalina; Khuzaimah, Zailani

    2007-10-01

    This paper deals with landslide susceptibility analysis using an artificial neural network model for Cameron Highland, Malaysia. Landslide locations were identified in the study area from interpretation of aerial photographs and field surveys. Topographical/geological data and satellite images were collected and processed using GIS and image processing tools. There are ten landslide inducing parameters which are considered for the landslide hazards. These parameters are topographic slope, aspect, curvature and distance from drainage, all derived from the topographic database; geology and distance from lineament, derived from the geologic database; landuse from Landsat satellite images; soil from the soil database; precipitation amount, derived from the rainfall database; and the vegetation index value from SPOT satellite images. Landslide hazard was analyzed using landslide occurrence factors employing the logistic regression model. The results of the analysis were verified using the landslide location data and compared with logistic regression model. The accuracy of hazard map observed was 85.73%. The qualitative landslide susceptibility analysis was carried out using an artificial neural network model by doing map overlay analysis in GIS environment. This information could be used to estimate the risk to population, property and existing infrastructure like transportation network.

  17. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research.

    Science.gov (United States)

    Agatonovic-Kustrin, S; Beresford, R

    2000-06-01

    Artificial neural networks (ANNs) are biologically inspired computer programs designed to simulate the way in which the human brain processes information. ANNs gather their knowledge by detecting the patterns and relationships in data and learn (or are trained) through experience, not from programming. An ANN is formed from hundreds of single units, artificial neurons or processing elements (PE), connected with coefficients (weights), which constitute the neural structure and are organised in layers. The power of neural computations comes from connecting neurons in a network. Each PE has weighted inputs, transfer function and one output. The behavior of a neural network is determined by the transfer functions of its neurons, by the learning rule, and by the architecture itself. The weights are the adjustable parameters and, in that sense, a neural network is a parameterized system. The weighed sum of the inputs constitutes the activation of the neuron. The activation signal is passed through transfer function to produce a single output of the neuron. Transfer function introduces non-linearity to the network. During training, the inter-unit connections are optimized until the error in predictions is minimized and the network reaches the specified level of accuracy. Once the network is trained and tested it can be given new input information to predict the output. Many types of neural networks have been designed already and new ones are invented every week but all can be described by the transfer functions of their neurons, by the learning rule, and by the connection formula. ANN represents a promising modeling technique, especially for data sets having non-linear relationships which are frequently encountered in pharmaceutical processes. In terms of model specification, artificial neural networks require no knowledge of the data source but, since they often contain many weights that must be estimated, they require large training sets. In addition, ANNs can combine

  18. FPGA implementation of a biological neural network based on the Hodgkin-Huxley neuron model.

    Science.gov (United States)

    Yaghini Bonabi, Safa; Asgharian, Hassan; Safari, Saeed; Nili Ahmadabadi, Majid

    2014-01-01

    A set of techniques for efficient implementation of Hodgkin-Huxley-based (H-H) model of a neural network on FPGA (Field Programmable Gate Array) is presented. The central implementation challenge is H-H model complexity that puts limits on the network size and on the execution speed. However, basics of the original model cannot be compromised when effect of synaptic specifications on the network behavior is the subject of study. To solve the problem, we used computational techniques such as CORDIC (Coordinate Rotation Digital Computer) algorithm and step-by-step integration in the implementation of arithmetic circuits. In addition, we employed different techniques such as sharing resources to preserve the details of model as well as increasing the network size in addition to keeping the network execution speed close to real time while having high precision. Implementation of a two mini-columns network with 120/30 excitatory/inhibitory neurons is provided to investigate the characteristic of our method in practice. The implementation techniques provide an opportunity to construct large FPGA-based network models to investigate the effect of different neurophysiological mechanisms, like voltage-gated channels and synaptic activities, on the behavior of a neural network in an appropriate execution time. Additional to inherent properties of FPGA, like parallelism and re-configurability, our approach makes the FPGA-based system a proper candidate for study on neural control of cognitive robots and systems as well.

  19. Neural coordination can be enhanced by occasional interruption of normal firing patterns: a self-optimizing spiking neural network model.

    Science.gov (United States)

    Woodward, Alexander; Froese, Tom; Ikegami, Takashi

    2015-02-01

    The state space of a conventional Hopfield network typically exhibits many different attractors of which only a small subset satisfies constraints between neurons in a globally optimal fashion. It has recently been demonstrated that combining Hebbian learning with occasional alterations of normal neural states avoids this problem by means of self-organized enlargement of the best basins of attraction. However, so far it is not clear to what extent this process of self-optimization is also operative in real brains. Here we demonstrate that it can be transferred to more biologically plausible neural networks by implementing a self-optimizing spiking neural network model. In addition, by using this spiking neural network to emulate a Hopfield network with Hebbian learning, we attempt to make a connection between rate-based and temporal coding based neural systems. Although further work is required to make this model more realistic, it already suggests that the efficacy of the self-optimizing process is independent from the simplifying assumptions of a conventional Hopfield network. We also discuss natural and cultural processes that could be responsible for occasional alteration of neural firing patterns in actual brains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. A hybrid neural network model for noisy data regression.

    Science.gov (United States)

    Lee, Eric W M; Lim, Chee Peng; Yuen, Richard K K; Lo, S M

    2004-04-01

    A hybrid neural network model, based on the fusion of fuzzy adaptive resonance theory (FA ART) and the general regression neural network (GRNN), is proposed in this paper. Both FA and the GRNN are incremental learning systems and are very fast in network training. The proposed hybrid model, denoted as GRNNFA, is able to retain these advantages and, at the same time, to reduce the computational requirements in calculating and storing information of the kernels. A clustering version of the GRNN is designed with data compression by FA for noise removal. An adaptive gradient-based kernel width optimization algorithm has also been devised. Convergence of the gradient descent algorithm can be accelerated by the geometric incremental growth of the updating factor. A series of experiments with four benchmark datasets have been conducted to assess and compare effectiveness of GRNNFA with other approaches. The GRNNFA model is also employed in a novel application task for predicting the evacuation time of patrons at typical karaoke centers in Hong Kong in the event of fire. The results positively demonstrate the applicability of GRNNFA in noisy data regression problems.

  1. Modelling electric trains energy consumption using Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Fernandez, P.; Garcia Roman, C.; Insa Franco, R.

    2016-07-01

    Nowadays there is an evident concern regarding the efficiency and sustainability of the transport sector due to both the threat of climate change and the current financial crisis. This concern explains the growth of railways over the last years as they present an inherent efficiency compared to other transport means. However, in order to further expand their role, it is necessary to optimise their energy consumption so as to increase their competitiveness. Improving railways energy efficiency requires both reliable data and modelling tools that will allow the study of different variables and alternatives. With this need in mind, this paper presents the development of consumption models based on neural networks that calculate the energy consumption of electric trains. These networks have been trained based on an extensive set of consumption data measured in line 1 of the Valencia Metro Network. Once trained, the neural networks provide a reliable estimation of the vehicles consumption along a specific route when fed with input data such as train speed, acceleration or track longitudinal slope. These networks represent a useful modelling tool that may allow a deeper study of railway lines in terms of energy expenditure with the objective of reducing the costs and environmental impact associated to railways. (Author)

  2. Chaotic Simulated Annealing by A Neural Network Model with Transient Chaos

    CERN Document Server

    Chen, L; Chen, Luonan; Aihara, Kazuyuki

    1997-01-01

    We propose a neural network model with transient chaos, or a transiently chaotic neural network (TCNN) as an approximation method for combinatorial optimization problem, by introducing transiently chaotic dynamics into neural networks. Unlike conventional neural networks only with point attractors, the proposed neural network has richer and more flexible dynamics, so that it can be expected to have higher ability of searching for globally optimal or near-optimal solutions. A significant property of this model is that the chaotic neurodynamics is temporarily generated for searching and self-organizing, and eventually vanishes with autonomous decreasing of a bifurcation parameter corresponding to the "temperature" in usual annealing process. Therefore, the neural network gradually approaches, through the transient chaos, to dynamical structure similar to such conventional models as the Hopfield neural network which converges to a stable equilibrium point. Since the optimization process of the transiently chaoti...

  3. Artificial Neural Network versus Linear Models Forecasting Doha Stock Market

    Science.gov (United States)

    Yousif, Adil; Elfaki, Faiz

    2017-12-01

    The purpose of this study is to determine the instability of Doha stock market and develop forecasting models. Linear time series models are used and compared with a nonlinear Artificial Neural Network (ANN) namely Multilayer Perceptron (MLP) Technique. It aims to establish the best useful model based on daily and monthly data which are collected from Qatar exchange for the period starting from January 2007 to January 2015. Proposed models are for the general index of Qatar stock exchange and also for the usages in other several sectors. With the help of these models, Doha stock market index and other various sectors were predicted. The study was conducted by using various time series techniques to study and analyze data trend in producing appropriate results. After applying several models, such as: Quadratic trend model, double exponential smoothing model, and ARIMA, it was concluded that ARIMA (2,2) was the most suitable linear model for the daily general index. However, ANN model was found to be more accurate than time series models.

  4. Applications of Wavelet Neural Network Model to Building Settlement Prediction: A Case Study

    Directory of Open Access Journals (Sweden)

    Qulin TAN

    2014-04-01

    Full Text Available Deformation monitoring is a significant work for engineering safety, which is performed throughout the entire process of engineering design, construction and operation. Based on the theoretic analysis of wavelet and neural network, we applied the improved BP neural network model, auxiliary wavelet neural network model and embedded wavelet neural network model to the settlement prediction in one practical engineering monitoring project with MATLAB software programming. The cumulative and the interval settlement was predicted and compared with measured data. The overall performances of the three models were analyzed and compared. The results show that the accuracies of two kinds of wavelet neural network models are roughly the same, which prediction errors of monitoring points are less than 1mm, obviously superior to the single BP neural network model.

  5. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition

    Science.gov (United States)

    Ordóñez, Francisco Javier; Roggen, Daniel

    2016-01-01

    Human activity recognition (HAR) tasks have traditionally been solved using engineered features obtained by heuristic processes. Current research suggests that deep convolutional neural networks are suited to automate feature extraction from raw sensor inputs. However, human activities are made of complex sequences of motor movements, and capturing this temporal dynamics is fundamental for successful HAR. Based on the recent success of recurrent neural networks for time series domains, we propose a generic deep framework for activity recognition based on convolutional and LSTM recurrent units, which: (i) is suitable for multimodal wearable sensors; (ii) can perform sensor fusion naturally; (iii) does not require expert knowledge in designing features; and (iv) explicitly models the temporal dynamics of feature activations. We evaluate our framework on two datasets, one of which has been used in a public activity recognition challenge. Our results show that our framework outperforms competing deep non-recurrent networks on the challenge dataset by 4% on average; outperforming some of the previous reported results by up to 9%. Our results show that the framework can be applied to homogeneous sensor modalities, but can also fuse multimodal sensors to improve performance. We characterise key architectural hyperparameters’ influence on performance to provide insights about their optimisation. PMID:26797612

  6. Age of acquisition modulates neural activity for both regular and irregular syntactic functions.

    Science.gov (United States)

    Hernandez, Arturo E; Hofmann, Juliane; Kotz, Sonja A

    2007-07-01

    Studies have found that neural activity is greater for irregular grammatical items than regular items. Findings with monolingual Spanish speakers have revealed a similar effect when making gender decisions for visually presented nouns. The current study extended previous studies by looking at the role of regularity in modulating differences in groups that differ in the age of acquisition of a language. Early and late learners of Spanish matched on measures of language proficiency were asked to make gender decisions to regular (-o for masculine and -a for feminine) and irregular items (which can end in e, l, n, r, s, t and z). Results revealed increased activity in left BA 44 for irregular compared to regular items in separate comparisons for both early and late learners. In addition, within-group comparisons revealed that neural activity for irregulars extended into left BA 47 for late learners and into left BA 6 for early learners. Direct comparisons between groups revealed increased activity in left BA 44/45 for irregular items indicating the need for more extensive syntactic processing in late learners. The results revealed that processing of irregular grammatical gender leads to increased activity in left BA 44 and adjacent areas in the left IFG regardless of when a language is learned. Furthermore, these findings suggest differential recruitment of brain areas associated with grammatical processing in late learners. The results are discussed with regard to a model which considers L2 learning as emerging from the competitive interplay between two languages.

  7. neural network based model o work based model of an industrial oil

    African Journals Online (AJOL)

    eobe

    ropagation Algorithm (trainlm). The data; shows that data; shows that the simulated model the simulated model t outputs t outputs, with regression val with regression val with regression value of d to control the neural network model. , PID controller. ing processes. An additional node with ut (usually 1) is often added to the.

  8. QSAR modelling of integrin antagonists using enhanced Bayesian regularised genetic neural networks.

    Science.gov (United States)

    Jalali-Heravi, M; Mani-Varnosfaderani, A

    2011-06-01

    Bayesian regularised genetic neural network (BRGNN) has been used for modelling the inhibition activity of 141 biphenylalanine derivatives as integrin antagonists. Three local pattern search (PS) methods, simulated annealing and threshold acceptance were combined with BRGNN in the form of a hybrid genetic algorithm (HGA). The results obtained revealed that PS is a suitable method for improving the ability of BRGNN to break out from the local minima. The proposed HGA technique is able to retrieve important variables from complex systems and nonlinear search spaces for optimisation. Two models with 8-3-1 artificial neural network (ANN) architectures were developed for describing α₄β₇ and α₄β₁ modulatory activities of integrin antagonists. Monte Carlo cross-validation was performed to validate the models and Q₂ values of 0.75 and 0.74 were obtained for α₄β₇ and α₄β₁ inhibitory activities, respectively. The scrambling technique was used for sensitivity analysis of descriptors appearing in ANN models. Frequencies of repetition and sensitivity analysis of molecular descriptors revealed that 3D-Morse descriptors are influential factors for describing α₄β₇ inhibitory activity, while in the case of α₄β₁ inhibitory activity, the Randic shape index, the lowest eigenvalue of the Burden matrix and the number of rotatable bonds are important parameters.

  9. Hierarchical Neural Regression Models for Customer Churn Prediction

    Directory of Open Access Journals (Sweden)

    Golshan Mohammadi

    2013-01-01

    Full Text Available As customers are the main assets of each industry, customer churn prediction is becoming a major task for companies to remain in competition with competitors. In the literature, the better applicability and efficiency of hierarchical data mining techniques has been reported. This paper considers three hierarchical models by combining four different data mining techniques for churn prediction, which are backpropagation artificial neural networks (ANN, self-organizing maps (SOM, alpha-cut fuzzy c-means (α-FCM, and Cox proportional hazards regression model. The hierarchical models are ANN + ANN + Cox, SOM + ANN + Cox, and α-FCM + ANN + Cox. In particular, the first component of the models aims to cluster data in two churner and nonchurner groups and also filter out unrepresentative data or outliers. Then, the clustered data as the outputs are used to assign customers to churner and nonchurner groups by the second technique. Finally, the correctly classified data are used to create Cox proportional hazards model. To evaluate the performance of the hierarchical models, an Iranian mobile dataset is considered. The experimental results show that the hierarchical models outperform the single Cox regression baseline model in terms of prediction accuracy, Types I and II errors, RMSE, and MAD metrics. In addition, the α-FCM + ANN + Cox model significantly performs better than the two other hierarchical models.

  10. Sensory Entrainment Mechanisms in Auditory Perception: Neural Synchronization Cortico-Striatal Activation

    Science.gov (United States)

    Sameiro-Barbosa, Catia M.; Geiser, Eveline

    2016-01-01

    The auditory system displays modulations in sensitivity that can align with the temporal structure of the acoustic environment. This sensory entrainment can facilitate sensory perception and is particularly relevant for audition. Systems neuroscience is slowly uncovering the neural mechanisms underlying the behaviorally observed sensory entrainment effects in the human sensory system. The present article summarizes the prominent behavioral effects of sensory entrainment and reviews our current understanding of the neural basis of sensory entrainment, such as synchronized neural oscillations, and potentially, neural activation in the cortico-striatal system. PMID:27559306

  11. Reconstructing neural dynamics using data assimilation with multiple models

    Science.gov (United States)

    Hamilton, Franz; Cressman, John; Peixoto, Nathalia; Sauer, Timothy

    2014-09-01

    Assimilation of data with models of physical processes is a critical component of modern scientific analysis. In recent years, nonlinear versions of Kalman filtering have been developed, in addition to methods that estimate model parameters in parallel with the system state. We propose a substantial extension of these tools to deal with the specific case of unmodeled variables, when training data from the variable is avaiable. The method uses a stack of several, nonidentical copies of a physical model to jointly reconstruct the variable in question. We demonstrate the ability of this technique to accurately recover an unmodeled experimental quantity, such as an ion concentration, from a single voltage trace after the training period is completed. The method is applied to reconstruct the potassium concentration in a neural culture from multielectrode array voltage measurements.

  12. An effective convolutional neural network model for Chinese sentiment analysis

    Science.gov (United States)

    Zhang, Yu; Chen, Mengdong; Liu, Lianzhong; Wang, Yadong

    2017-06-01

    Nowadays microblog is getting more and more popular. People are increasingly accustomed to expressing their opinions on Twitter, Facebook and Sina Weibo. Sentiment analysis of microblog has received significant attention, both in academia and in industry. So far, Chinese microblog exploration still needs lots of further work. In recent years CNN has also been used to deal with NLP tasks, and already achieved good results. However, these methods ignore the effective use of a large number of existing sentimental resources. For this purpose, we propose a Lexicon-based Sentiment Convolutional Neural Networks (LSCNN) model focus on Weibo's sentiment analysis, which combines two CNNs, trained individually base on sentiment features and word embedding, at the fully connected hidden layer. The experimental results show that our model outperforms the CNN model only with word embedding features on microblog sentiment analysis task.

  13. Mild blast events alter anxiety, memory, and neural activity patterns in the anterior cingulate cortex.

    Directory of Open Access Journals (Sweden)

    Kun Xie

    Full Text Available There is a general interest in understanding of whether and how exposure to emotionally traumatizing events can alter memory function and anxiety behaviors. Here we have developed a novel laboratory-version of mild blast exposure comprised of high decibel bomb explosion sound coupled with strong air blast to mice. This model allows us to isolate the effects of emotionally fearful components from those of traumatic brain injury or bodily injury typical associated with bomb blasts. We demonstrate that this mild blast exposure is capable of impairing object recognition memory, increasing anxiety in elevated O-maze test, and resulting contextual generalization. Our in vivo neural ensemble recording reveal that such mild blast exposures produced diverse firing changes in the anterior cingulate cortex, a region processing emotional memory and inhibitory control. Moreover, we show that these real-time neural ensemble patterns underwent post-event reverberations, indicating rapid consolidation of those fearful experiences. Identification of blast-induced neural activity changes in the frontal brain may allow us to better understand how mild blast experiences result in abnormal changes in memory functions and excessive fear generalization related to post-traumatic stress disorder.

  14. Models of neural networks IV early vision and attention

    CERN Document Server

    Cowan, Jack; Domany, Eytan

    2002-01-01

    Close this book for a moment and look around you. You scan the scene by directing your attention, and gaze, at certain specific objects. Despite the background, you discern them. The process is partially intentional and partially preattentive. How all this can be done is described in the fourth volume of Models of Neural Networks devoted to Early Vision and Atten­ tion that you are holding in your hands. Early vision comprises the first stages of visual information processing. It is as such a scientific challenge whose clarification calls for a penetrating review. Here you see the result. The Heraeus Foundation (Hanau) is to be thanked for its support during the initial phase of this project. John Hertz, who has extensive experience in both computational and ex­ perimental neuroscience, provides in "Neurons, Networks, and Cognition" to neural modeling. John Van Opstal explains in a theoretical introduction "The Gaze Control System" how the eye's gaze control is performed and presents a novel theoretical des...

  15. Synthetic neural modeling applied to a real-world artifact.

    Science.gov (United States)

    Edelman, G M; Reeke, G N; Gall, W E; Tononi, G; Williams, D; Sporns, O

    1992-08-01

    We describe the general design, operating principles, and performance of a neurally organized, multiply adaptive device (NOMAD) under control of a nervous system simulated in a computer. The complete system, Darwin IV, is the latest in a series of models based on the theory of neuronal group selection, which postulates that adaptive behavior is the result of selection in somatic time among synaptic populations. The simulated brain of Darwin IV includes visual and motor areas that are connected with NOMAD by telemetry. Under suitable conditions, Darwin IV can be trained to track a light moving in a random path. After such training, it can approach colored blocks and collect them to a home position. Following a series of contacts with such blocks, value signals received through a "snout" that senses conductivity allow it to sort these blocks on the basis of differences in color associated with differences in their conductivity. Darwin IV represents a new approach to synthetic neural modeling (SNM), a technique in which large-scale computer simulations are employed to analyze the interactions among the nervous system, the phenotype, and the environment of a designed organism as behavior develops. Darwin IV retains the advantages of SNM while avoiding the difficulties and pitfalls of attempting to simulate a rich environment in addition to a brain.

  16. Models of Hopfield-type quaternion neural networks and their energy functions.

    Science.gov (United States)

    Yoshida, Mitsuo; Kuroe, Yasuaki; Mori, Takehiro

    2005-01-01

    Recently models of neural networks that can directly deal with complex numbers, complex-valued neural networks, have been proposed and several studies on their abilities of information processing have been done. Furthermore models of neural networks that can deal with quaternion numbers, which is the extension of complex numbers, have also been proposed. However they are all multilayer quaternion neural networks. This paper proposes models of fully connected recurrent quaternion neural networks, Hopfield-type quaternion neural networks. Since quaternion numbers are non-commutative on multiplication, some different models can be considered. We investigate dynamics of these proposed models from the point of view of the existence of an energy function and derive their conditions for existence.

  17. Neural control and precision of flight muscle activation in Drosophila.

    Science.gov (United States)

    Lehmann, Fritz-Olaf; Bartussek, Jan

    2017-01-01

    Precision of motor commands is highly relevant in a large context of various locomotor behaviors, including stabilization of body posture, heading control and directed escape responses. While posture stability and heading control in walking and swimming animals benefit from high friction via ground reaction forces and elevated viscosity of water, respectively, flying animals have to cope with comparatively little aerodynamic friction on body and wings. Although low frictional damping in flight is the key to the extraordinary aerial performance and agility of flying birds, bats and insects, it challenges these animals with extraordinary demands on sensory integration and motor precision. Our review focuses on the dynamic precision with which Drosophila activates its flight muscular system during maneuvering flight, considering relevant studies on neural and muscular mechanisms of thoracic propulsion. In particular, we tackle the precision with which flies adjust power output of asynchronous power muscles and synchronous flight control muscles by monitoring muscle calcium and spike timing within the stroke cycle. A substantial proportion of the review is engaged in the significance of visual and proprioceptive feedback loops for wing motion control including sensory integration at the cellular level. We highlight that sensory feedback is the basis for precise heading control and body stability in flies.

  18. Neural activity associated with metaphor comprehension: spatial analysis.

    Science.gov (United States)

    Sotillo, María; Carretié, Luis; Hinojosa, José A; Tapia, Manuel; Mercado, Francisco; López-Martín, Sara; Albert, Jacobo

    2005-01-03

    Though neuropsychological data indicate that the right hemisphere (RH) plays a major role in metaphor processing, other studies suggest that, at least during some phases of this processing, a RH advantage may not exist. The present study explores, through a temporally agile neural signal--the event-related potentials (ERPs)--, and through source-localization algorithms applied to ERP recordings, whether the crucial phase of metaphor comprehension presents or not a RH advantage. Participants (n=24) were submitted to a S1-S2 experimental paradigm. S1 consisted of visually presented metaphoric sentences (e.g., "Green lung of the city"), followed by S2, which consisted of words that could (i.e., "Park") or could not (i.e., "Semaphore") be defined by S1. ERPs elicited by S2 were analyzed using temporal principal component analysis (tPCA) and source-localization algorithms. These analyses revealed that metaphorically related S2 words showed significantly higher N400 amplitudes than non-related S2 words. Source-localization algorithms showed differential activity between the two S2 conditions in the right middle/superior temporal areas. These results support the existence of an important RH contribution to (at least) one phase of metaphor processing and, furthermore, implicate the temporal cortex with respect to that contribution.

  19. Channelrhodopsins: visual regeneration and neural activation by a light switch

    Science.gov (United States)

    Natasha, G; Tan, Aaron; Farhatnia, Yasmin; Rajadas, Jayakumar; Hamblin, Michael R.; Khaw, Peng T.; Seifalian, Alexander M.

    2013-01-01

    The advent of optogenetics provides a new direction for the field of neuroscience and biotechnology, serving both as a refined investigative tool and as potential cure for many medical conditions via genetic manipulation. Although still in its infancy, recent advances in optogenetics has made it possible to remotely manipulate in vivo cellular functions using light. Coined Nature Methods’ ‘Method of the Year’ in 2010, the optogenetic toolbox has the potential to control cell, tissue and even animal behaviour. This optogenetic toolbox consists of light-sensitive proteins that are able to modulate membrane potential in response to light. Channelrhodopsins (ChR) are light-gated microbial ion channels, which were first described in green algae. ChR2 (a subset of ChR) is a seven transmembrane a helix protein, which evokes membrane depolarization and mediates an action potential upon photostimulation with blue (470 nm) light. By contrast to other seven-transmembrane proteins that require second messengers to open ion channels, ChR2 form ion channels themselves, allowing ultrafast depolarization (within 50 milliseconds of illumination). It has been shown that integration of ChR2 into various tissues of mice can activate neural circuits, control heart muscle contractions, and even restore breathing after spinal cord injury. More compellingly, a plethora of evidence has indicated that artificial expression of ChR2 in retinal ganglion cells can reinstate visual perception in mice with retinal degeneration. PMID:23664865

  20. Neural differentiation of transplanted neural stem cells in a rat model of striatal lacunar infarction: light and electron microscopic observations

    Science.gov (United States)

    Muñetón-Gómez, Vilma C.; Doncel-Pérez, Ernesto; Fernandez, Ana P.; Serrano, Julia; Pozo-Rodrigálvarez, Andrea; Vellosillo-Huerta, Lara; Taylor, Julian S.; Cardona-Gómez, Gloria P.; Nieto-Sampedro, Manuel; Martínez-Murillo, Ricardo

    2012-01-01

    The increased risk and prevalence of lacunar stroke and Parkinson's disease (PD) makes the search for better experimental models an important requirement for translational research. In this study we assess ischemic damage of the nigrostriatal pathway in a model of lacunar stroke evoked by damaging the perforating arteries in the territory of the substantia nigra (SN) of the rat after stereotaxic administration of endothelin-1 (ET-1), a potent vasoconstrictor peptide. We hypothesized that transplantation of neural stem cells (NSCs) with the capacity of differentiating into diverse cell types such as neurons and glia, but with limited proliferation potential, would constitute an alternative and/or adjuvant therapy for lacunar stroke. These cells showed neuritogenic activity in vitro and a high potential for neural differentiation. Light and electron microscopy immunocytochemistry was used to characterize GFP-positive neurons derived from the transplants. 48 h after ET-1 injection, we characterized an area of selective degeneration of dopaminergic neurons within the nigrostriatal pathway characterized with tissue necrosis and glial scar formation, with subsequent behavioral signs of Parkinsonism. Light microscopy showed that grafted cells within the striatal infarction zone differentiated with a high yield into mature glial cells (GFAP-positive) and neuron types present in the normal striatum. Electron microscopy revealed that NSCs-derived neurons integrated into the host circuitry establishing synaptic contacts, mostly of the asymmetric type. Astrocytes were closely associated with normal small-sized blood vessels in the area of infarct, suggesting a possible role in the regulation of the blood brain barrier and angiogenesis. Our results encourage the use of NSCs as a cell-replacement therapy for the treatment of human vascular Parkinsonism. PMID:22876219

  1. Predicting musically induced emotions from physiological inputs: linear and neural network models.

    Science.gov (United States)

    Russo, Frank A; Vempala, Naresh N; Sandstrom, Gillian M

    2013-01-01

    Listening to music often leads to physiological responses. Do these physiological responses contain sufficient information to infer emotion induced in the listener? The current study explores this question by attempting to predict judgments of "felt" emotion from physiological responses alone using linear and neural network models. We measured five channels of peripheral physiology from 20 participants-heart rate (HR), respiration, galvanic skin response, and activity in corrugator supercilii and zygomaticus major facial muscles. Using valence and arousal (VA) dimensions, participants rated their felt emotion after listening to each of 12 classical music excerpts. After extracting features from the five channels, we examined their correlation with VA ratings, and then performed multiple linear regression to see if a linear relationship between the physiological responses could account for the ratings. Although linear models predicted a significant amount of variance in arousal ratings, they were unable to do so with valence ratings. We then used a neural network to provide a non-linear account of the ratings. The network was trained on the mean ratings of eight of the 12 excerpts and tested on the remainder. Performance of the neural network confirms that physiological responses alone can be used to predict musically induced emotion. The non-linear model derived from the neural network was more accurate than linear models derived from multiple linear regression, particularly along the valence dimension. A secondary analysis allowed us to quantify the relative contributions of inputs to the non-linear model. The study represents a novel approach to understanding the complex relationship between physiological responses and musically induced emotion.

  2. Predicting musically induced emotions from physiological inputs: Linear and neural network models

    Directory of Open Access Journals (Sweden)

    Frank A. Russo

    2013-08-01

    Full Text Available Listening to music often leads to physiological responses. Do these physiological responses contain sufficient information to infer emotion induced in the listener? The current study explores this question by attempting to predict judgments of 'felt' emotion from physiological responses alone using linear and neural network models. We measured five channels of peripheral physiology from 20 participants – heart rate, respiration, galvanic skin response, and activity in corrugator supercilii and zygomaticus major facial muscles. Using valence and arousal (VA dimensions, participants rated their felt emotion after listening to each of 12 classical music excerpts. After extracting features from the five channels, we examined their correlation with VA ratings, and then performed multiple linear regression to see if a linear relationship between the physiological responses could account for the ratings. Although linear models predicted a significant amount of variance in arousal ratings, they were unable to do so with valence ratings. We then used a neural network to provide a nonlinear account of the ratings. The network was trained on the mean ratings of eight of the 12 excerpts and tested on the remainder. Performance of the neural network confirms that physiological responses alone can be used to predict musically induced emotion. The nonlinear model derived from the neural network was more accurate than linear models derived from multiple linear regression, particularly along the valence dimension. A secondary analysis allowed us to quantify the relative contributions of inputs to the nonlinear model. The study represents a novel approach to understanding the complex relationship between physiological responses and musically induced emotion.

  3. Overlapping patterns of neural activity for different forms of novelty in fMRI

    Directory of Open Access Journals (Sweden)

    Colin Shaun Hawco

    2014-09-01

    Full Text Available When stimuli are presented multiple times, the neural response to repeated stimuli is reduced relative to novel stimuli (repetition suppression. Responses to different types of novelty were examined. Stimulus novelty was examined by contrasting first vs. second presentation of triads of objects during memory encoding. Semantic novelty was contrasted by comparing unrelated (semantically novel triads of objects to triads in which all three objects were related (e.g. all objects were tools. In recognition, associative novelty was examined by contrasting rearranged triads (previously seen objects in a new association with intact triads. Activity was observed in posterior regions (occipital and fusiform, with the largest extent of activity for stimulus novelty and smallest for associational novelty. Frontal activity was also observed in stimulus and semantic novelty. Additional analysis indicated that the hemodynamic response in voxels identified in the stimulus and semantic novelty contrasts was modulated by reaction time on a trial-by-trial basis. That is, the duration of the hemodynamic response was driven by reaction time. This was not the case for associative novelty. The high level of overlap across different forms of novelty suggests a similar mechanism for reduced neural activity, which may be related to reduced visual processing time. This is consistent with a facilitation model of repetition suppression, which posits a reduced peak and duration of neuronal firing for repeated stimuli.

  4. A Neural Model of Distance-Dependent Percept of Object Size Constancy.

    Directory of Open Access Journals (Sweden)

    Jiehui Qian

    Full Text Available Size constancy is one of the well-known visual phenomena that demonstrates perceptual stability to account for the effect of viewing distance on retinal image size. Although theories involving distance scaling to achieve size constancy have flourished based on psychophysical studies, its underlying neural mechanisms remain unknown. Single cell recordings show that distance-dependent size tuned cells are common along the ventral stream, originating from V1, V2, and V4 leading to IT. In addition, recent research employing fMRI demonstrates that an object's perceived size, associated with its perceived egocentric distance, modulates its retinotopic representation in V1. These results suggest that V1 contributes to size constancy, and its activity is possibly regulated by feedback of distance information from other brain areas. Here, we propose a neural model based on these findings. First, we construct an egocentric distance map in LIP by integrating horizontal disparity and vergence through gain-modulated MT neurons. Second, LIP neurons send modulatory feedback of distance information to size tuned cells in V1, resulting in a spread of V1 cortical activity. This process provides V1 with distance-dependent size representations. The model supports that size constancy is preserved by scaling retinal image size to compensate for changes in perceived distance, and suggests a possible neural circuit capable of implementing this process.

  5. The Artifical Neural Network as means for modeling Nonlinear Systems

    OpenAIRE

    Drábek Oldøich; Taufer Ivan

    1998-01-01

    The paper deals with nonlinear system identification based on neural network. The topic of this publication is simulation of training and testing a neural network. A contribution is assigned to technologists which are good at the clasical identification problems but their knowledges about identification based on neural network are only on the stage of theoretical bases.

  6. The Artifical Neural Network as means for modeling Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Drábek Oldøich

    1998-12-01

    Full Text Available The paper deals with nonlinear system identification based on neural network. The topic of this publication is simulation of training and testing a neural network. A contribution is assigned to technologists which are good at the clasical identification problems but their knowledges about identification based on neural network are only on the stage of theoretical bases.

  7. Short-Term Load Forecasting Model Based on Quantum Elman Neural Networks

    Directory of Open Access Journals (Sweden)

    Zhisheng Zhang

    2016-01-01

    Full Text Available Short-term load forecasting model based on quantum Elman neural networks was constructed in this paper. The quantum computation and Elman feedback mechanism were integrated into quantum Elman neural networks. Quantum computation can effectively improve the approximation capability and the information processing ability of the neural networks. Quantum Elman neural networks have not only the feedforward connection but also the feedback connection. The feedback connection between the hidden nodes and the context nodes belongs to the state feedback in the internal system, which has formed specific dynamic memory performance. Phase space reconstruction theory is the theoretical basis of constructing the forecasting model. The training samples are formed by means of K-nearest neighbor approach. Through the example simulation, the testing results show that the model based on quantum Elman neural networks is better than the model based on the quantum feedforward neural network, the model based on the conventional Elman neural network, and the model based on the conventional feedforward neural network. So the proposed model can effectively improve the prediction accuracy. The research in the paper makes a theoretical foundation for the practical engineering application of the short-term load forecasting model based on quantum Elman neural networks.

  8. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems

    Science.gov (United States)

    Ranganayaki, V.; Deepa, S. N.

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature. PMID:27034973

  9. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems.

    Science.gov (United States)

    Ranganayaki, V; Deepa, S N

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature.

  10. Water Quality Modeling in Reservoirs Using Multivariate Linear Regression and Two Neural Network Models

    Directory of Open Access Journals (Sweden)

    Wei-Bo Chen

    2015-01-01

    Full Text Available In this study, two artificial neural network models (i.e., a radial basis function neural network, RBFN, and an adaptive neurofuzzy inference system approach, ANFIS and a multilinear regression (MLR model were developed to simulate the DO, TP, Chl a, and SD in the Mingder Reservoir of central Taiwan. The input variables of the neural network and the MLR models were determined using linear regression. The performances were evaluated using the RBFN, ANFIS, and MLR models based on statistical errors, including the mean absolute error, the root mean square error, and the correlation coefficient, computed from the measured and the model-simulated DO, TP, Chl a, and SD values. The results indicate that the performance of the ANFIS model is superior to those of the MLR and RBFN models. The study results show that the neural network using the ANFIS model is suitable for simulating the water quality variables with reasonable accuracy, suggesting that the ANFIS model can be used as a valuable tool for reservoir management in Taiwan.

  11. From image edges to geons to viewpoint-invariant object models: a neural net implementation

    Science.gov (United States)

    Biederman, Irving; Hummel, John E.; Gerhardstein, Peter C.; Cooper, Eric E.

    1992-03-01

    Three striking and fundamental characteristics of human shape recognition are its invariance with viewpoint in depth (including scale), its tolerance of unfamiliarity, and its robustness with the actual contours present in an image (as long as the same convex parts [geons] can be activated). These characteristics are expressed in an implemented neural network model (Hummel & Biederman, 1992) that takes a line drawing of an object as input and generates a structural description of geons and their relations which is then used for object classification. The model's capacity for structural description derives from its solution to the dynamic binding problem of neural networks: independent units representing an object's parts (in terms of their shape attributes and interrelations) are bound temporarily when those attributes occur in conjunction in the system's input. Temporary conjunctions of attributes are represented by synchronized activity among the units representing those attributes. Specifically, the model induces temporal correlation in the firing of activated units to: (1) parse images into their constituent parts; (2) bind together the attributes of a part; and (3) determine the relations among the parts and bind them to the parts to which they apply. Because it conjoins independent units temporarily, dynamic binding allows tremendous economy of representation, and permits the representation to reflect an object's attribute structure. The model's recognition performance conforms well to recent results from shape priming experiments. Moreover, the manner in which the model's performance degrades due to accidental synchrony produced by an excess of phase sets suggests a basis for a theory of visual attention.

  12. Artificial neural network modeling of plasmonic transmission lines.

    Science.gov (United States)

    Andrawis, Robert R; Swillam, Mohamed A; El-Gamal, Mohamed A; Soliman, Ezzeldin A

    2016-04-01

    In this paper, new models based on an artificial neural network (ANN) are developed to predict the propagation characteristics of plasmonic nanostrip and coupled nanostrips transmission lines. The trained ANNs are capable of providing the required propagation characteristics with good accuracy and almost instantaneously. The nonlinear mapping performed by the trained ANNs is written as closed-form expressions, which facilitate the direct use of the results obtained in this research. The propagation characteristics of the investigated transmission lines include the effective refractive index and the characteristic impedance. The time needed to simulate 1000 different versions of the transmission line structure is about 48 h, using a full-wave electromagnetic solver compared to 3 s using the developed ANN model.

  13. SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos.

    Directory of Open Access Journals (Sweden)

    Mary Y Wu

    2011-02-01

    Full Text Available Bone morphogenetic protein (BMP gradients provide positional information to direct cell fate specification, such as patterning of the vertebrate ectoderm into neural, neural crest, and epidermal tissues, with precise borders segregating these domains. However, little is known about how BMP activity is regulated spatially and temporally during vertebrate development to contribute to embryonic patterning, and more specifically to neural crest formation. Through a large-scale in vivo functional screen in Xenopus for neural crest fate, we identified an essential regulator of BMP activity, SNW1. SNW1 is a nuclear protein known to regulate gene expression. Using antisense morpholinos to deplete SNW1 protein in both Xenopus and zebrafish embryos, we demonstrate that dorsally expressed SNW1 is required for neural crest specification, and this is independent of mesoderm formation and gastrulation morphogenetic movements. By exploiting a combination of immunostaining for phosphorylated Smad1 in Xenopus embryos and a BMP-dependent reporter transgenic zebrafish line, we show that SNW1 regulates a specific domain of BMP activity in the dorsal ectoderm at the neural plate border at post-gastrula stages. We use double in situ hybridizations and immunofluorescence to show how this domain of BMP activity is spatially positioned relative to the neural crest domain and that of SNW1 expression. Further in vivo and in vitro assays using cell culture and tissue explants allow us to conclude that SNW1 acts upstream of the BMP receptors. Finally, we show that the requirement of SNW1 for neural crest specification is through its ability to regulate BMP activity, as we demonstrate that targeted overexpression of BMP to the neural plate border is sufficient to restore neural crest formation in Xenopus SNW1 morphants. We conclude that through its ability to regulate a specific domain of BMP activity in the vertebrate embryo, SNW1 is a critical regulator of neural plate

  14. Neural Manifolds for the Control of Movement.

    Science.gov (United States)

    Gallego, Juan A; Perich, Matthew G; Miller, Lee E; Solla, Sara A

    2017-06-07

    The analysis of neural dynamics in several brain cortices has consistently uncovered low-dimensional manifolds that capture a significant fraction of neural variability. These neural manifolds are spanned by specific patterns of correlated neural activity, the "neural modes." We discuss a model for neural control of movement in which the time-dependent activation of these neural modes is the generator of motor behavior. This manifold-based view of motor cortex may lead to a better understanding of how the brain controls movement. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. A low-order model of biological neural networks.

    Science.gov (United States)

    Lo, James Ting-Ho

    2011-10-01

    A biologically plausible low-order model (LOM) of biological neural networks is proposed. LOM is a recurrent hierarchical network of models of dendritic nodes and trees; spiking and nonspiking neurons; unsupervised, supervised covariance and accumulative learning mechanisms; feedback connections; and a scheme for maximal generalization. These component models are motivated and necessitated by making LOM learn and retrieve easily without differentiation, optimization, or iteration, and cluster, detect, and recognize multiple and hierarchical corrupted, distorted, and occluded temporal and spatial patterns. Four models of dendritic nodes are given that are all described as a hyperbolic polynomial that acts like an exclusive-OR logic gate when the model dendritic nodes input two binary digits. A model dendritic encoder that is a network of model dendritic nodes encodes its inputs such that the resultant codes have an orthogonality property. Such codes are stored in synapses by unsupervised covariance learning, supervised covariance learning, or unsupervised accumulative learning, depending on the type of postsynaptic neuron. A masking matrix for a dendritic tree, whose upper part comprises model dendritic encoders, enables maximal generalization on corrupted, distorted, and occluded data. It is a mathematical organization and idealization of dendritic trees with overlapped and nested input vectors. A model nonspiking neuron transmits inhibitory graded signals to modulate its neighboring model spiking neurons. Model spiking neurons evaluate the subjective probability distribution (SPD) of the labels of the inputs to model dendritic encoders and generate spike trains with such SPDs as firing rates. Feedback connections from the same or higher layers with different numbers of unit-delay devices reflect different signal traveling times, enabling LOM to fully utilize temporally and spatially associated information. Biological plausibility of the component models is

  16. Complex Environmental Data Modelling Using Adaptive General Regression Neural Networks

    Science.gov (United States)

    Kanevski, Mikhail

    2015-04-01

    The research deals with an adaptation and application of Adaptive General Regression Neural Networks (GRNN) to high dimensional environmental data. GRNN [1,2,3] are efficient modelling tools both for spatial and temporal data and are based on nonparametric kernel methods closely related to classical Nadaraya-Watson estimator. Adaptive GRNN, using anisotropic kernels, can be also applied for features selection tasks when working with high dimensional data [1,3]. In the present research Adaptive GRNN are used to study geospatial data predictability and relevant feature selection using both simulated and real data case studies. The original raw data were either three dimensional monthly precipitation data or monthly wind speeds embedded into 13 dimensional space constructed by geographical coordinates and geo-features calculated from digital elevation model. GRNN were applied in two different ways: 1) adaptive GRNN with the resulting list of features ordered according to their relevancy; and 2) adaptive GRNN applied to evaluate all possible models N [in case of wind fields N=(2^13 -1)=8191] and rank them according to the cross-validation error. In both cases training were carried out applying leave-one-out procedure. An important result of the study is that the set of the most relevant features depends on the month (strong seasonal effect) and year. The predictabilities of precipitation and wind field patterns, estimated using the cross-validation and testing errors of raw and shuffled data, were studied in detail. The results of both approaches were qualitatively and quantitatively compared. In conclusion, Adaptive GRNN with their ability to select features and efficient modelling of complex high dimensional data can be widely used in automatic/on-line mapping and as an integrated part of environmental decision support systems. 1. Kanevski M., Pozdnoukhov A., Timonin V. Machine Learning for Spatial Environmental Data. Theory, applications and software. EPFL Press

  17. A model of traffic signs recognition with convolutional neural network

    Science.gov (United States)

    Hu, Haihe; Li, Yujian; Zhang, Ting; Huo, Yi; Kuang, Wenqing

    2016-10-01

    In real traffic scenes, the quality of captured images are generally low due to some factors such as lighting conditions, and occlusion on. All of these factors are challengeable for automated recognition algorithms of traffic signs. Deep learning has provided a new way to solve this kind of problems recently. The deep network can automatically learn features from a large number of data samples and obtain an excellent recognition performance. We therefore approach this task of recognition of traffic signs as a general vision problem, with few assumptions related to road signs. We propose a model of Convolutional Neural Network (CNN) and apply the model to the task of traffic signs recognition. The proposed model adopts deep CNN as the supervised learning model, directly takes the collected traffic signs image as the input, alternates the convolutional layer and subsampling layer, and automatically extracts the features for the recognition of the traffic signs images. The proposed model includes an input layer, three convolutional layers, three subsampling layers, a fully-connected layer, and an output layer. To validate the proposed model, the experiments are implemented using the public dataset of China competition of fuzzy image processing. Experimental results show that the proposed model produces a recognition accuracy of 99.01 % on the training dataset, and yield a record of 92% on the preliminary contest within the fourth best.

  18. Evaluation of an artificial neural network rainfall disaggregation model.

    Science.gov (United States)

    Burian, S J; Durran, S R

    2002-01-01

    Previous research produced an artificial neural network (ANN) temporal rainfall disaggregation model. After proper training the model can disaggregate hourly rainfall records into sub-hourly time increments. In this paper we present results from continued evaluations of the performance of the ANN model specifically examining how the errors in the disaggregated rainfall hyetograph translate to errors in the prediction of the runoff hydrograph. Using a rainfall-runoff model of a hypothetical watershed we compare the runoff hydrographs produced by the ANN-predicted 15-minute increment rainfall pattern to runoff hydrographs produced by (1) the observed 15-minute increment rainfall pattern, (2) the observed hourly-increment rainfall pattern, and (3) the 15-minute increment rainfall pattern produced by a disaggregation model based on geometric similarity. For 98 test storms the peak discharges produced by the ANN model rainfall pattern had a median under-prediction of 16.6%. This relative error was less than the median under-prediction in peak discharge when using the observed 15-minute rainfall patterns aggregated to hourly increments (40.8%), and when using rainfall patterns produced by the geometric similarity rainfall disaggregation model (21.9%).

  19. Activity in part of the neural correlates of consciousness reflects integration.

    Science.gov (United States)

    Eriksson, Johan

    2017-10-01

    Integration is commonly viewed as a key process for generating conscious experiences. Accordingly, there should be increased activity within the neural correlates of consciousness when demands on integration increase. We used fMRI and "informational masking" to isolate the neural correlates of consciousness and measured how the associated brain activity changed as a function of required integration. Integration was manipulated by comparing the experience of hearing simple reoccurring tones to hearing harmonic tone triplets. The neural correlates of auditory consciousness included superior temporal gyrus, lateral and medial frontal regions, cerebellum, and also parietal cortex. Critically, only activity in left parietal cortex increased significantly as a function of increasing demands on integration. We conclude that integration can explain part of the neural activity associated with the generation conscious experiences, but that much of associated brain activity apparently reflects other processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Acute genetic manipulation of neuronal activity for the functional dissection of neural circuits-a dream come true for the pioneers of behavioral genetics.

    Science.gov (United States)

    Yoshihara, Moto; Ito, Kei

    2012-03-01

    Abstract: This review summarizes technical development of the functional manipulation of specific neural circuits through genetic techniques in Drosophila. Long after pioneers' efforts for the genetic dissection of behavior using this organism as a model, analyses with acute activation of specific neural circuits have finally become feasible using transgenic Drosophila that expresses light-, heat-, or cold-activatable cation channels by xxx/upstream activation sequence (Gal4/UAS)-based induction system. This methodology opened a new avenue to dissect functions of neural circuits to make dreams of the pioneers into reality.

  1. Adaptive Neural-Sliding Mode Control of Active Suspension System for Camera Stabilization

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2015-01-01

    Full Text Available The camera always suffers from image instability on the moving vehicle due to the unintentional vibrations caused by road roughness. This paper presents a novel adaptive neural network based on sliding mode control strategy to stabilize the image captured area of the camera. The purpose is to suppress vertical displacement of sprung mass with the application of active suspension system. Since the active suspension system has nonlinear and time varying characteristics, adaptive neural network (ANN is proposed to make the controller robustness against systematic uncertainties, which release the model-based requirement of the sliding model control, and the weighting matrix is adjusted online according to Lyapunov function. The control system consists of two loops. The outer loop is a position controller designed with sliding mode strategy, while the PID controller in the inner loop is to track the desired force. The closed loop stability and asymptotic convergence performance can be guaranteed on the basis of the Lyapunov stability theory. Finally, the simulation results show that the employed controller effectively suppresses the vibration of the camera and enhances the stabilization of the entire camera, where different excitations are considered to validate the system performance.

  2. Neural-networks-based feedback linearization versus model predictive control of continuous alcoholic fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Mjalli, F.S.; Al-Asheh, S. [Chemical Engineering Department, Qatar University, Doha (Qatar)

    2005-10-01

    In this work advanced nonlinear neural networks based control system design algorithms are adopted to control a mechanistic model for an ethanol fermentation process. The process model equations for such systems are highly nonlinear. A neural network strategy has been implemented in this work for capturing the dynamics of the mechanistic model for the fermentation process. The neural network achieved has been validated against the mechanistic model. Two neural network based nonlinear control strategies have also been adopted using the model identified. The performance of the feedback linearization technique was compared to neural network model predictive control in terms of stability and set point tracking capabilities. Under servo conditions, the feedback linearization algorithm gave comparable tracking and stability. The feedback linearization controller achieved the control target faster than the model predictive one but with vigorous and sudden controller moves. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  3. Neural Activities Underlying the Feedback Express Salience Prediction Errors for Appetitive and Aversive Stimuli.

    Science.gov (United States)

    Gu, Yan; Hu, Xueping; Pan, Weigang; Yang, Chun; Wang, Lijun; Li, Yiyuan; Chen, Antao

    2016-10-03

    Feedback information is essential for us to adapt appropriately to the environment. The feedback-related negativity (FRN), a frontocentral negative deflection after the delivery of feedback, has been found to be larger for outcomes that are worse than expected, and it reflects a reward prediction error derived from the midbrain dopaminergic projections to the anterior cingulate cortex (ACC), as stated in reinforcement learning theory. In contrast, the prediction of response-outcome (PRO) model claims that the neural activity in the mediofrontal cortex (mPFC), especially the ACC, is sensitive to the violation of expectancy, irrespective of the valence of feedback. Additionally, increasing evidence has demonstrated significant activities in the striatum, anterior insula and occipital lobe for unexpected outcomes independently of their valence. Thus, the neural mechanism of the feedback remains under dispute. Here, we investigated the feedback with monetary reward and electrical pain shock in one task via functional magnetic resonance imaging. The results revealed significant prediction-error-related activities in the bilateral fusiform gyrus, right middle frontal gyrus and left cingulate gyrus for both money and pain. This implies that some regions underlying the feedback may signal a salience prediction error rather than a reward prediction error.

  4. Ground Motion Prediction Model Using Artificial Neural Network

    Science.gov (United States)

    Dhanya, J.; Raghukanth, S. T. G.

    2017-12-01

    This article focuses on developing a ground motion prediction equation based on artificial neural network (ANN) technique for shallow crustal earthquakes. A hybrid technique combining genetic algorithm and Levenberg-Marquardt technique is used for training the model. The present model is developed to predict peak ground velocity, and 5% damped spectral acceleration. The input parameters for the prediction are moment magnitude (M w), closest distance to rupture plane (R rup), shear wave velocity in the region (V s30) and focal mechanism (F). A total of 13,552 ground motion records from 288 earthquakes provided by the updated NGA-West2 database released by Pacific Engineering Research Center are utilized to develop the model. The ANN architecture considered for the model consists of 192 unknowns including weights and biases of all the interconnected nodes. The performance of the model is observed to be within the prescribed error limits. In addition, the results from the study are found to be comparable with the existing relations in the global database. The developed model is further demonstrated by estimating site-specific response spectra for Shimla city located in Himalayan region.

  5. Taming Many-Parameter BSM Models with Bayesian Neural Networks

    Science.gov (United States)

    Kuchera, M. P.; Karbo, A.; Prosper, H. B.; Sanchez, A.; Taylor, J. Z.

    2017-09-01

    The search for physics Beyond the Standard Model (BSM) is a major focus of large-scale high energy physics experiments. One method is to look for specific deviations from the Standard Model that are predicted by BSM models. In cases where the model has a large number of free parameters, standard search methods become intractable due to computation time. This talk presents results using Bayesian Neural Networks, a supervised machine learning method, to enable the study of higher-dimensional models. The popular phenomenological Minimal Supersymmetric Standard Model was studied as an example of the feasibility and usefulness of this method. Graphics Processing Units (GPUs) are used to expedite the calculations. Cross-section predictions for 13 TeV proton collisions will be presented. My participation in the Conference Experience for Undergraduates (CEU) in 2004-2006 exposed me to the national and global significance of cutting-edge research. At the 2005 CEU, I presented work from the previous summer's SULI internship at Lawrence Berkeley Laboratory, where I learned to program while working on the Majorana Project. That work inspired me to follow a similar research path, which led me to my current work on computational methods applied to BSM physics.

  6. Anisotropy of ongoing neural activity in the primate visual cortex

    Directory of Open Access Journals (Sweden)

    Maier A

    2014-09-01

    Full Text Available Alexander Maier,1 Michele A Cox,1 Kacie Dougherty,1 Brandon Moore,1 David A Leopold2 1Department of Psychology, College of Arts and Science, Vanderbilt University, Nashville, TN, USA; 2Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, National Institute of Health, Bethesda, MD, USA Abstract: The mammalian neocortex features distinct anatomical variation in its tangential and radial extents. This review consolidates previously published findings from our group in order to compare and contrast the spatial profile of neural activity coherence across these distinct cortical dimensions. We focus on studies of ongoing local field potential (LFP data obtained simultaneously from multiple sites in the primary visual cortex in two types of experiments in which electrode contacts were spaced either along the cortical surface or at different laminar positions. These studies demonstrate that across both dimensions the coherence of ongoing LFP fluctuations diminishes as a function of interelectrode distance, although the nature and spatial scale of this falloff is very different. Along the cortical surface, the overall LFP coherence declines gradually and continuously away from a given position. In contrast, across the cortical layers, LFP coherence is discontinuous and compartmentalized as a function of depth. Specifically, regions of high LFP coherence fall into discrete superficial and deep laminar zones, with an abrupt discontinuity between the granular and infragranular layers. This spatial pattern of ongoing LFP coherence is similar when animals are at rest and when they are engaged in a behavioral task. These results point to the existence of partially segregated laminar zones of cortical processing that extend tangentially within the laminar compartments and are thus oriented orthogonal to the cortical columns. We interpret these electrophysiological observations in light of the known anatomical organization of

  7. Data-driven inference of network connectivity for modeling the dynamics of neural codes in the insect antennal lobe

    Directory of Open Access Journals (Sweden)

    Eli eShlizerman

    2014-08-01

    Full Text Available The antennal lobe (AL, olfactory processing center in insects, is able to process stimuli into distinct neural activity patterns, called olfactory neural codes. To model their dynamics we perform multichannel recordings from the projection neurons in the AL driven by different odorants. We then derive a dynamic neuronal network from the electrophysiological data. The network consists of lateral-inhibitory neurons and excitatory neurons (modeled as firing-rate units, and is capable of producing unique olfactory neural codes for the tested odorants. To construct the network, we (i design a projection, an odor space, for the neural recording from the AL, which discriminates between distinct odorants trajectories (ii characterize scent recognition, i.e., decision-making based on olfactory signals and (iii infer the wiring of the neural circuit, the connectome of the AL. We show that the constructed model is consistent with biological observations, such as contrast enhancement and robustness to noise. The study suggests a data-driven approach to answer a key biological question in identifying how lateral inhibitory neurons can be wired to excitatory neurons to permit robust activity patterns.

  8. Data-driven inference of network connectivity for modeling the dynamics of neural codes in the insect antennal lobe.

    Science.gov (United States)

    Shlizerman, Eli; Riffell, Jeffrey A; Kutz, J Nathan

    2014-01-01

    The antennal lobe (AL), olfactory processing center in insects, is able to process stimuli into distinct neural activity patterns, called olfactory neural codes. To model their dynamics we perform multichannel recordings from the projection neurons in the AL driven by different odorants. We then derive a dynamic neuronal network from the electrophysiological data. The network consists of lateral-inhibitory neurons and excitatory neurons (modeled as firing-rate units), and is capable of producing unique olfactory neural codes for the tested odorants. To construct the network, we (1) design a projection, an odor space, for the neural recording from the AL, which discriminates between distinct odorants trajectories (2) characterize scent recognition, i.e., decision-making based on olfactory signals and (3) infer the wiring of the neural circuit, the connectome of the AL. We show that the constructed model is consistent with biological observations, such as contrast enhancement and robustness to noise. The study suggests a data-driven approach to answer a key biological question in identifying how lateral inhibitory neurons can be wired to excitatory neurons to permit robust activity patterns.

  9. Hardware Neural Networks Modeling for Computing Different Performance Parameters of Rectangular, Circular, and Triangular Microstrip Antennas

    Directory of Open Access Journals (Sweden)

    Taimoor Khan

    2014-01-01

    Full Text Available In the last one decade, neural networks-based modeling has been used for computing different performance parameters of microstrip antennas because of learning and generalization features. Most of the created neural models are based on software simulation. As the neural networks show massive parallelism inherently, a parallel hardware needs to be created for creating faster computing machine by taking the advantages of the parallelism of the neural networks. This paper demonstrates a generalized neural networks model created on field programmable gate array- (FPGA- based reconfigurable hardware platform for computing different performance parameters of microstrip antennas. Thus, the proposed approach provides a platform for developing low-cost neural network-based FPGA simulators for microwave applications. Also, the results obtained by this approach are in very good agreement with the measured results available in the literature.

  10. Fuzzy Logic, Neural Networks, Genetic Algorithms: Views of Three Artificial Intelligence Concepts Used in Modeling Scientific Systems

    Science.gov (United States)

    Sunal, Cynthia Szymanski; Karr, Charles L.; Sunal, Dennis W.

    2003-01-01

    Students' conceptions of three major artificial intelligence concepts used in the modeling of systems in science, fuzzy logic, neural networks, and genetic algorithms were investigated before and after a higher education science course. Students initially explored their prior ideas related to the three concepts through active tasks. Then,…

  11. Model-Based Fault Diagnosis in Electric Drive Inverters Using Artificial Neural Network

    National Research Council Canada - National Science Library

    Masrur, Abul; Chen, ZhiHang; Zhang, Baifang; Jia, Hongbin; Murphey, Yi-Lu

    2006-01-01

    .... A normal model and various faulted models of the inverter-motor combination were developed, and voltages and current signals were generated from those models to train an artificial neural network for fault diagnosis...

  12. Modeling Distillation Column Using ARX Model Structure and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Reza Pirmoradi

    2012-04-01

    Full Text Available Distillation is a complex and highly nonlinear industrial process. In general it is not always possible to obtain accurate first principles models for high-purity distillation columns. On the other hand the development of first principles models is usually time consuming and expensive. To overcome these problems, empirical models such as neural networks can be used. One major drawback of empirical models is that the prediction is valid only inside the data domain that is sufficiently covered by measurement data. Modeling distillation columns by means of neural networks is reported in literature by using recursive networks. The recursive networks are proper for modeling purpose, but such models have the problems of high complexity and high computational cost. The objective of this paper is to propose a simple and reliable model for distillation column. The proposed model uses feed forward neural networks which results in a simple model with less parameters and faster training time. Simulation results demonstrate that predictions of the proposed model in all regions are close to outputs of the dynamic model and the error in negligible. This implies that the model is reliable in all regions.

  13. Artificial neural network model for earthquake prediction with radon monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kuelahci, Fatih [Science and Art Faculty, Physics Department, Firat University, Elazig 23169 (Turkey)], E-mail: fatihkulahci@firat.edu.tr; Inceoez, Murat [Engineering Faculty, Geology Department, Firat University, Elazig 23169 (Turkey); Dogru, Mahmut [Science and Art Faculty, Physics Department, Firat University, Elazig 23169 (Turkey)], E-mail: mdogru@firat.edu.tr; Aksoy, Ercan [Engineering Faculty, Geology Department, Firat University, Elazig 23169 (Turkey); Baykara, Oktay [Education Faculty, Science Education Division, Firat University, Elazig 23169 (Turkey)

    2009-01-15

    Apart from the linear monitoring studies concerning the relationship between radon and earthquake, an artificial neural networks (ANNs) model approach is presented starting out from non-linear changes of the eight different parameters during the earthquake occurrence. A three-layer Levenberg-Marquardt feedforward learning algorithm is used to model the earthquake prediction process in the East Anatolian Fault System (EAFS). The proposed ANN system employs individual training strategy with fixed-weight and supervised models leading to estimations. The average relative error between the magnitudes of the earthquakes acquired by ANN and measured data is about 2.3%. The relative error between the test and earthquake data varies between 0% and 12%. In addition, the factor analysis was applied on all data and the model output values to see the statistical variation. The total variance of 80.18% was explained with four factors by this analysis. Consequently, it can be concluded that ANN approach is a potential alternative to other models with complex mathematical operations.

  14. Neural Network Modeling to Predict Shelf Life of Greenhouse Lettuce

    Directory of Open Access Journals (Sweden)

    Wei-Chin Lin

    2009-04-01

    Full Text Available Greenhouse-grown butter lettuce (Lactuca sativa L. can potentially be stored for 21 days at constant 0°C. When storage temperature was increased to 5°C or 10°C, shelf life was shortened to 14 or 10 days, respectively, in our previous observations. Also, commercial shelf life of 7 to 10 days is common, due to postharvest temperature fluctuations. The objective of this study was to establish neural network (NN models to predict the remaining shelf life (RSL under fluctuating postharvest temperatures. A box of 12 - 24 lettuce heads constituted a sample unit. The end of the shelf life of each head was determined when it showed initial signs of decay or yellowing. Air temperatures inside a shipping box were recorded. Daily average temperatures in storage and averaged shelf life of each box were used as inputs, and the RSL was modeled as an output. An R2 of 0.57 could be observed when a simple NN structure was employed. Since the "future" (or remaining storage temperatures were unavailable at the time of making a prediction, a second NN model was introduced to accommodate a range of future temperatures and associated shelf lives. Using such 2-stage NN models, an R2 of 0.61 could be achieved for predicting RSL. This study indicated that NN modeling has potential for cold chain quality control and shelf life prediction.

  15. The quadriceps muscle of knee joint modelling Using Hybrid Particle Swarm Optimization-Neural Network (PSO-NN)

    Science.gov (United States)

    Kamaruddin, Saadi Bin Ahmad; Marponga Tolos, Siti; Hee, Pah Chin; Ghani, Nor Azura Md; Ramli, Norazan Mohamed; Nasir, Noorhamizah Binti Mohamed; Ksm Kader, Babul Salam Bin; Saiful Huq, Mohammad

    2017-03-01

    Neural framework has for quite a while been known for its ability to handle a complex nonlinear system without a logical model and can learn refined nonlinear associations gives. Theoretically, the most surely understood computation to set up the framework is the backpropagation (BP) count which relies on upon the minimization of the mean square error (MSE). However, this algorithm is not totally efficient in the presence of outliers which usually exist in dynamic data. This paper exhibits the modelling of quadriceps muscle model by utilizing counterfeit smart procedures named consolidated backpropagation neural network nonlinear autoregressive (BPNN-NAR) and backpropagation neural network nonlinear autoregressive moving average (BPNN-NARMA) models in view of utilitarian electrical incitement (FES). We adapted particle swarm optimization (PSO) approach to enhance the performance of backpropagation algorithm. In this research, a progression of tests utilizing FES was led. The information that is gotten is utilized to build up the quadriceps muscle model. 934 preparing information, 200 testing and 200 approval information set are utilized as a part of the improvement of muscle model. It was found that both BPNN-NAR and BPNN-NARMA performed well in modelling this type of data. As a conclusion, the neural network time series models performed reasonably efficient for non-linear modelling such as active properties of the quadriceps muscle with one input, namely output namely muscle force.

  16. Neural modeling of bromelain extraction by reversed micelles

    Directory of Open Access Journals (Sweden)

    Ana Maria Frattini Fileti

    2010-04-01

    Full Text Available A pulsed-cap microcolumn was used for bromelain extraction from pineapple juice by reversed micelles. The cationic micellar solution used BDBAC as the surfactant, isooctane as the solvent and hexanol as the co-solvent. In order to capture the dynamic behavior and the nonlinearities of the column, the operating conditions were modified in accordance with the central composite design for the experiment, using the ratio between the light phase flow rate and the total flow rate, and the time interval between pulses. The effects on the purification factor and on total protein yield were modeled via neural networks. The best topology was defined as 16-9-2, and the input layer was a moving window of the independent variables. The neural model successfully predicted both the purification factor and the total protein yield from historical data. At the optimal operating point, a purification factor of 4.96 and a productivity of 1.29 mL/min were obtained.Uma micro-coluna com campânulas pulsantes foi utilizada para a extração de bromelina a partir de suco de abacaxi, usando micelas reversas. A solução catiônica micelar foi composta do surfactante BDBAC, do solvente iso-octano e do co-solvente hexanol. Seguindo um planejamento experimental, perturbações foram impostas à coluna de extração com o objetivo de capturar seu comportamento dinâmico e suas não-linearidades, usando a razão entre a vazão da fase leve e vazão total, e o intervalo de tempo entre os pulsos. Os efeitos das variáveis independentes sobre o fator de purificação e sobre o rendimento em proteínas totais foram modelados via redes neurais artificiais. A melhor topologia de rede obtida foi definida como 16-9-2, usando um esquema de janela móvel no tempo das variáveis independentes. O modelo neural obtido do histórico do processo se mostrou adequado para predizer simultaneamente o fator de purificação e o rendimento do processo em proteínas totais. No ponto ótimo de

  17. Wavelet Neural Network Model for Yield Spread Forecasting

    Directory of Open Access Journals (Sweden)

    Firdous Ahmad Shah

    2017-11-01

    Full Text Available In this study, a hybrid method based on coupling discrete wavelet transforms (DWTs and artificial neural network (ANN for yield spread forecasting is proposed. The discrete wavelet transform (DWT using five different wavelet families is applied to decompose the five different yield spreads constructed at shorter end, longer end, and policy relevant area of the yield curve to eliminate noise from them. The wavelet coefficients are then used as inputs into Levenberg-Marquardt (LM ANN models to forecast the predictive power of each of these spreads for output growth. We find that the yield spreads constructed at the shorter end and policy relevant areas of the yield curve have a better predictive power to forecast the output growth, whereas the yield spreads, which are constructed at the longer end of the yield curve do not seem to have predictive information for output growth. These results provide the robustness to the earlier results.

  18. DataHigh: Graphical user interface for visualizing and interacting with high-dimensional neural activity

    Science.gov (United States)

    Cowley, Benjamin R.; Kaufman, Matthew T.; Butler, Zachary S.; Churchland, Mark M.; Ryu, Stephen I.; Shenoy, Krishna V.; Yu, Byron M.

    2014-01-01

    Objective Analyzing and interpreting the activity of a heterogeneous population of neurons can be challenging, especially as the number of neurons, experimental trials, and experimental conditions increases. One approach is to extract a set of latent variables that succinctly captures the prominent co-fluctuation patterns across the neural population. A key problem is that the number of latent variables needed to adequately describe the population activity is often greater than three, thereby preventing direct visualization of the latent space. By visualizing a small number of 2-d projections of the latent space or each latent variable individually, it is easy to miss salient features of the population activity. Approach To address this limitation, we developed a Matlab graphical user interface (called DataHigh) that allows the user to quickly and smoothly navigate through a continuum of different 2-d projections of the latent space. We also implemented a suite of additional visualization tools (including playing out population activity timecourses as a movie and displaying summary statistics, such as covariance ellipses and average timecourses) and an optional tool for performing dimensionality reduction. Main results To demonstrate the utility and versatility of DataHigh, we used it to analyze single-trial spike count and single-trial timecourse population activity recorded using a multi-electrode array, as well as trial-averaged population activity recorded using single electrodes. Significance DataHigh was developed to fulfill a need for visualization in exploratory neural data analysis, which can provide intuition that is critical for building scientific hypotheses and models of population activity. PMID:24216250

  19. Parasympathetic neural activity accounts for the lowering of exercise heart rate at high altitude

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Calbet, J A; Rådegran, G

    2001-01-01

    In chronic hypoxia, both heart rate (HR) and cardiac output (Q) are reduced during exercise. The role of parasympathetic neural activity in lowering HR is unresolved, and its influence on Q and oxygen transport at high altitude has never been studied.......In chronic hypoxia, both heart rate (HR) and cardiac output (Q) are reduced during exercise. The role of parasympathetic neural activity in lowering HR is unresolved, and its influence on Q and oxygen transport at high altitude has never been studied....

  20. KNT-artificial neural network model for flux prediction of ultrafiltration membrane producing drinking water.

    Science.gov (United States)

    Oh, H K; Yu, M J; Gwon, E M; Koo, J Y; Kim, S G; Koizumi, A

    2004-01-01

    This paper describes the prediction of flux behavior in an ultrafiltration (UF) membrane system using a Kalman neuro training (KNT) network model. The experimental data was obtained from operating a pilot plant of hollow fiber UF membrane with groundwater for 7 months. The network was trained using operating conditions such as inlet pressure, filtration duration, and feed water quality parameters including turbidity, temperature and UV254. Pre-processing of raw data allowed the normalized input data to be used in sigmoid activation functions. A neural network architecture was structured by modifying the number of hidden layers, neurons and learning iterations. The structure of KNT-neural network with 3 layers and 5 neurons allowed a good prediction of permeate flux by 0.997 of correlation coefficient during the learning phase. Also the validity of the designed model was evaluated with other experimental data not used during the training phase and nonlinear flux behavior was accurately estimated with 0.999 of correlation coefficient and a lower error of prediction in the testing phase. This good flux prediction can provide preliminary criteria in membrane design and set up the proper cleaning cycle in membrane operation. The KNT-artificial neural network is also expected to predict the variation of transmembrane pressure during filtration cycles and can be applied to automation and control of full scale treatment plants.

  1. Critical Branching Neural Networks

    Science.gov (United States)

    Kello, Christopher T.

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…

  2. Modelling the growth of Leuconostoc mesenteroides by Artificial Neural Networks.

    Science.gov (United States)

    García-Gimeno, R M; Hervás-Martínez, C; Rodríguez-Pérez, R; Zurera-Cosano, G

    2005-12-15

    The combined effect of temperature (10.5 to 24.5 degrees C), pH level (5.5 to 7.5), sodium chloride level (0.25% to 6.25%) and sodium nitrite level (0 to 200 ppm) on the predicted specific growth rate (Gr), lag-time (Lag) and maximum population density (yEnd) of Leuconostoc mesenteroides under aerobic and anaerobic conditions, was studied using an Artificial Neural Network-based model (ANN) in comparison with Response Surface Methodology (RS). For both aerobic and anaerobic conditions, two types of ANN model were elaborated, unidimensional for each of the growth parameters, and multidimensional in which the three parameters Gr, Lag, and yEnd are combined. Although in general no significant statistical differences were observed between both types of model, we opted for the unidimensional model, because it obtained the lowest mean value for the standard error of prediction for generalisation. The ANN models developed provided reliable estimates for the three kinetic parameters studied; the SEP values in aerobic conditions ranged from between 2.82% for Gr, 6.05% for Lag and 10% for yEnd, a higher degree accuracy than those of the RS model (Gr: 9.54%; Lag: 8.89%; yEnd: 10.27%). Similar results were observed for anaerobic conditions. During external validation, a higher degree of accuracy (Af) and bias (Bf) were observed for the ANN model compared with the RS model. ANN predictive growth models are a valuable tool, enabling swift determination of L. mesenteroides growth parameters.

  3. Population red blood cell folate concentrations for prevention of neural tube defects: Bayesian model.

    Science.gov (United States)

    Crider, Krista S; Devine, Owen; Hao, Ling; Dowling, Nicole F; Li, Song; Molloy, Anne M; Li, Zhu; Zhu, Jianghui; Berry, Robert J

    2014-07-29

    To determine an optimal population red blood cell (RBC) folate concentration for the prevention of neural tube birth defects. Bayesian model. Data from two population based studies in China. 247,831 participants in a prospective community intervention project in China (1993-95) to prevent neural tube defects with 400 μg/day folic acid supplementation and 1194 participants in a population based randomized trial (2003-05) to evaluate the effect of folic acid supplementation on blood folate concentration among Chinese women of reproductive age. Folic acid supplementation (400 μg/day). Estimated RBC folate concentration at time of neural tube closure (day 28 of gestation) and risk of neural tube defects. Risk of neural tube defects was high at the lowest estimated RBC folate concentrations (for example, 25.4 (95% uncertainty interval 20.8 to 31.2) neural tube defects per 10,000 births at 500 nmol/L) and decreased as estimated RBC folate concentration increased. Risk of neural tube defects was substantially attenuated at estimated RBC folate concentrations above about 1000 nmol/L (for example, 6 neural tube defects per 10,000 births at 1180 (1050 to 1340) nmol/L). The modeled dose-response relation was consistent with the existing literature. In addition, neural tube defect risk estimates developed using the proposed model and population level RBC information were consistent with the prevalence of neural tube defects in the US population before and after food fortification with folic acid. A threshold for "optimal" population RBC folate concentration for the prevention of neural tube defects could be defined (for example, approximately 1000 nmol/L). Population based RBC folate concentrations, as a biomarker for risk of neural tube defects, can be used to facilitate evaluation of prevention programs as well as to identify subpopulations at elevated risk for a neural tube defect affected pregnancy due to folate insufficiency. © Crider et al 2014.

  4. To compare the effect of Active Neural Mobilization during Intermittent Lumbar Traction and Intermittent Lumbar Traction followed by Active Neural Mobilization in cases of Lumbar Radiculopathy

    Directory of Open Access Journals (Sweden)

    Jaywant Nagulkar

    2016-08-01

    Full Text Available To compare the effectiveness of Active neural mobilization (ANM during intermittent lumbar traction (ILT and intermittent lumbar traction followed by active neural mobilization treatment in patients of low back pain (LBP with radiculopathy.. To study the effect of ANM during ILT and ILT followed by ANM in patients of LBP with radiculopathy on VAS scale, P1 angle of SLR, P2 angle of SLR and Oswestry disability index(ODI. To compare the effect of ANM during ILT and ILT followed by ANM in patients of LBP with radiculopathy on visual analog scale (VAS scale, P1 angle of SLR, P2 angle of SLR and Oswestry disability index. In this study 107 patients of LBP with radiculopathy were randomly assigned into two different groups. Group A containing 54 patients received active neural mobilization during intermittent lumber traction and group B received intermittent lumber traction followed by active neural mobilization. The data on all the outcome measures were recorded on day 0 pre-treatment and on 10th day post treatment. Data were analyzed using statistical software Intercorted STATA VERSION 9.0. Patients in both the groups showed improvement in all 4 outcome measures as compared to baseline assessment values. Patients treated in group A showed more improvement as compared to group B. This study concluded that ANM during ILT gives more relief and yields better responses in patients of LBP with radiculopathy and may help person to resume his daily activities.

  5. Neural Networks for Modeling and Control of Particle Accelerators

    CERN Document Server

    Edelen, A.L.; Chase, B.E.; Edstrom, D.; Milton, S.V.; Stabile, P.

    2016-01-01

    We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  6. Analysis of the developing neural system using an in vitro model by Raman spectroscopy.

    Science.gov (United States)

    Hashimoto, Kosuke; Kudoh, Suguru N; Sato, Hidetoshi

    2015-04-07

    We developed an in vitro model of early neural cell development. The maturation of a normal neural cell was studied in vitro using Raman spectroscopy for 120 days. The Raman spectra datasets were analyzed by principal component analysis (PCA) to investigate the relationship between maturation stages and molecular composition changes in neural cells. According to the PCA, the Raman spectra datasets can be classified into four larger groups. Previous electrophysiological studies have suggested that a normal neural cell goes through three maturation states. The groups we observed by Raman analysis showed good agreement with the electrophysiological results, except with the addition of a fourth state. The results demonstrated that Raman analysis was powerful to investigate the daily changes in molecular composition of the growing neural cell. This in vitro model system may be useful for future studies of the effects of endocrine disrupters in the developing early neural system.

  7. Exploring Neural Network Models with Hierarchical Memories and Their Use in Modeling Biological Systems

    Science.gov (United States)

    Pusuluri, Sai Teja

    Energy landscapes are often used as metaphors for phenomena in biology, social sciences and finance. Different methods have been implemented in the past for the construction of energy landscapes. Neural network models based on spin glass physics provide an excellent mathematical framework for the construction of energy landscapes. This framework uses a minimal number of parameters and constructs the landscape using data from the actual phenomena. In the past neural network models were used to mimic the storage and retrieval process of memories (patterns) in the brain. With advances in the field now, these models are being used in machine learning, deep learning and modeling of complex phenomena. Most of the past literature focuses on increasing the storage capacity and stability of stored patterns in the network but does not study these models from a modeling perspective or an energy landscape perspective. This dissertation focuses on neural network models both from a modeling perspective and from an energy landscape perspective. I firstly show how the cellular interconversion phenomenon can be modeled as a transition between attractor states on an epigenetic landscape constructed using neural network models. The model allows the identification of a reaction coordinate of cellular interconversion by analyzing experimental and simulation time course data. Monte Carlo simulations of the model show that the initial phase of cellular interconversion is a Poisson process and the later phase of cellular interconversion is a deterministic process. Secondly, I explore the static features of landscapes generated using neural network models, such as sizes of basins of attraction and densities of metastable states. The simulation results show that the static landscape features are strongly dependent on the correlation strength and correlation structure between patterns. Using different hierarchical structures of the correlation between patterns affects the landscape features

  8. Active registration models

    Science.gov (United States)

    Marstal, Kasper; Klein, Stefan

    2017-02-01

    We present the Active Registration Model (ARM) that couples medical image registration with regularization using a statistical model of intensity. Inspired by Active Appearance Models (AAMs), the statistical model is embedded in the registration procedure as a regularization term that penalize differences between a target image and a synthesized model reconstruction of that image. We demonstrate that the method generalizes AAMs to 3D images, many different transformation models, and many different gradient descent optimization methods. The method is validated on magnetic resonance images of human brains.

  9. Research on quasi-dynamic calibration model of plastic sensitive element based on neural networks

    Science.gov (United States)

    Wang, Fang; Kong, Deren; Yang, Lixia; Zhang, Zouzou

    2017-08-01

    Quasi-dynamic calibration accuracy of the plastic sensitive element depends on the accuracy of the fitting model between pressure and deformation. By using the excellent nonlinear mapping ability of RBF (Radial Basis Function) neural network, a calibration model is established which use the peak pressure as the input and use the deformation of the plastic sensitive element as the output in this paper. The calibration experiments of a batch of copper cylinders are carried out on the quasi-dynamic pressure calibration device, which pressure range is within the range of 200MPa to 700MPa. The experiment data are acquired according to the standard pressure monitoring system. The network train and study are done to quasi dynamic calibration model based on neural network by using MATLAB neural network toolbox. Taking the testing samples as the research object, the prediction accuracy of neural network model is compared with the exponential fitting model and the second-order polynomial fitting model. The results show that prediction of the neural network model is most close to the testing samples, and the accuracy of prediction model based on neural network is better than 0.5%, respectively one order higher than the second-order polynomial fitting model and two orders higher than the exponential fitting model. The quasi-dynamic calibration model between pressure peak and deformation of plastic sensitive element, which is based on neural network, provides important basis for creating higher accuracy quasi-dynamic calibration table.

  10. Voltage Estimation in Active Distribution Grids Using Neural Networks

    DEFF Research Database (Denmark)

    Pertl, Michael; Heussen, Kai; Gehrke, Oliver

    2016-01-01

    the observability of distribution systems has to be improved. To increase the situational awareness of the power system operator data driven methods can be employed. These methods benefit from newly available data sources such as smart meters. This paper presents a voltage estimation method based on neural networks...

  11. Sustained activity in hierarchical modular neural networks: self-organized criticality and oscillations

    Directory of Open Access Journals (Sweden)

    Sheng-Jun Wang

    2011-06-01

    Full Text Available Cerebral cortical brain networks possess a number of conspicuous features of structure and dynamics. First, these networks have an intricate, non-random organization. They are structured in a hierarchical modular fashion, from large-scale regions of the whole brain, via cortical areas and area subcompartments organized as structural and functional maps to cortical columns, and finally circuits made up of individual neurons. Second, the networks display self-organized sustained activity, which is persistent in the absence of external stimuli. At the systems level, such activity is characterized by complex rhythmical oscillations over a broadband background, while at the cellular level, neuronal discharges have been observed to display avalanches, indicating that cortical networks are at the state of self-organized criticality. We explored the relationship between hierarchical neural network organization and sustained dynamics using large-scale network modeling. It was shown that sparse random networks with balanced excitation and inhibition can sustain neural activity without external stimulation. We find that a hierarchical modular architecture can generate sustained activity better than random networks. Moreover, the system can simultaneously support rhythmical oscillations and self-organized criticality, which are not present in the respective random networks. The underlying mechanism is that each dense module cannot sustain activity on its own, but displays self-organized criticality in the presence of weak perturbations. The hierarchical modular networks provide the coupling among subsystems with self-organized criticality. These results imply that the hierarchical modular architecture of cortical networks plays an important role in shaping the ongoing spontaneous activity of the brain, potentially allowing the system to take advantage of both the sensitivityof critical state and predictability and timing of oscillations for efficient

  12. SOME QUESTIONS OF THE GRID AND NEURAL NETWORK MODELING OF AIRPORT AVIATION SECURITY CONTROL TASKS

    Directory of Open Access Journals (Sweden)

    N. Elisov Lev

    2017-01-01

    Full Text Available The authors’ original problem-solution-approach concerning aviation security management in civil aviation apply- ing parallel calculation processes method and the usage of neural computers is considered in this work. The statement of secure environment modeling problems for grid models and with the use of neural networks is presented. The research sub- ject area of this article is airport activity in the field of civil aviation, considered in the context of aviation security, defined as the state of aviation security against unlawful interference with the aviation field. The key issue in this subject area is aviation safety provision at an acceptable level. In this case, airport security level management becomes one of the main objectives of aviation security. Aviation security management is organizational-regulation in modern systems that can no longer correspond to changing requirements, increasingly getting complex and determined by external and internal envi- ronment factors, associated with a set of potential threats to airport activity. Optimal control requires the most accurate identification of management parameters and their quantitative assessment. The authors examine the possibility of applica- tion of mathematical methods for the modeling of security management processes and procedures in their latest works. Par- allel computing methods and network neurocomputing for modeling of airport security control processes are examined in this work. It is shown that the methods’ practical application of the methods is possible along with the decision support system, where the decision maker plays the leading role.

  13. A customizable stochastic state point process filter (SSPPF) for neural spiking activity.

    Science.gov (United States)

    Xin, Yao; Li, Will X Y; Min, Biao; Han, Yan; Cheung, Ray C C

    2013-01-01

    Stochastic State Point Process Filter (SSPPF) is effective for adaptive signal processing. In particular, it has been successfully applied to neural signal coding/decoding in recent years. Recent work has proven its efficiency in non-parametric coefficients tracking in modeling of mammal nervous system. However, existing SSPPF has only been realized in commercial software platforms which limit their computational capability. In this paper, the first hardware architecture of SSPPF has been designed and successfully implemented on field-programmable gate array (FPGA), proving a more efficient means for coefficient tracking in a well-established generalized Laguerre-Volterra model for mammalian hippocampal spiking activity research. By exploring the intrinsic parallelism of the FPGA, the proposed architecture is able to process matrices or vectors with random size, and is efficiently scalable. Experimental result shows its superior performance comparing to the software implementation, while maintaining the numerical precision. This architecture can also be potentially utilized in the future hippocampal cognitive neural prosthesis design.

  14. A RBF neural network model with GARCH errors: Application to electricity price forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Leandro dos Santos [Industrial and Systems Engineering Graduate Program, PPGEPS, Pontifical Catholic University of Parana, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, Parana (Brazil); Santos, Andre A.P. [Department of Statistics, Universidad Carlos III de Madrid, C/ Madrid, 126, 28903 Getafe, Madrid (Spain)

    2011-01-15

    In this article, we propose a nonlinear forecasting model based on radial basis function neural networks (RBF-NNs) with Gaussian activation functions and robust clustering algorithms to model the conditional mean and a parametric generalized autoregressive conditional heteroskedasticity (GARCH) specification to model the conditional volatility. Instead of calibrating the parameters of the RBF-NNs via numerical simulations, we propose an estimation procedure by which the number of basis functions, their corresponding widths and the parameters of the GARCH model are jointly estimated via maximum likelihood along with a genetic algorithm to maximize the likelihood function. We use this model to provide multi-step-ahead point and direction-of-change forecasts of the Spanish electricity pool prices. (author)

  15. Application of Artificial Neural Networks in the Heart Electrical Axis Position Conclusion Modeling

    Science.gov (United States)

    Bakanovskaya, L. N.

    2016-08-01

    The article touches upon building of a heart electrical axis position conclusion model using an artificial neural network. The input signals of the neural network are the values of deflections Q, R and S; and the output signal is the value of the heart electrical axis position. Training of the network is carried out by the error propagation method. The test results allow concluding that the created neural network makes a conclusion with a high degree of accuracy.

  16. Amniotic fluid paraoxonase-1 activity, thyroid hormone concentration and oxidant status in neural tube defects.

    Science.gov (United States)

    Sak, Sibel; Agacayak, Elif; Tunc, Senem Yaman; Icen, Mehmet Sait; Findik, Fatih Mehmet; Sak, Muhammet Erdal; Yalinkaya, Ahmet; Gul, Talip

    2016-09-01

    The aim of this study was to investigate the potential association between neural tube defects and paraoxonase-1 activity in amniotic fluid. We studied total oxidant status, total antioxidant capacity, paraoxonase-1 activity and thyroid hormone amniotic fluid concentration in fetuses with neural tube defects. The present study was performed at the Department of Obstetrics and Gynaecology and the Department of Clinical Biochemistry of Dicle University between September 2011 and June 2013. The study group included 37 amniotic fluid samples from pregnant women (16-20 weeks of gestation) with fetuses affected by neural tube defects. The control group consisted of 36 pregnant women who were diagnosed with a high-risk pregnancy according to first or second trimester aneuploidy screening and were later confirmed on amniocentesis to have genetically normal fetuses. Amniotic fluid paraoxonase-1 activity and total oxidant status were significantly higher (P = 0.023, P = 0.029, respectively) whereas free T4 was significantly lower (P = 0.022) in fetuses with neural tube defects compared with control subjects. In fetuses with neural tube defects, amniotic fluid paraoxonase-1 activity correlated positively with total oxidant status (r = 0.424**, P = 0.010), and amniotic fluid total antioxidant capacity correlated positively with free t4 (r = 0.381*, P = 0.022). This is the first study in the literature to show an association between paraoxonase-1 activity and thyroid hormone concentration and neural tube defects. © 2016 Japan Society of Obstetrics and Gynecology.

  17. Biological oscillations for learning walking coordination: dynamic recurrent neural network functionally models physiological central pattern generator.

    Science.gov (United States)

    Hoellinger, Thomas; Petieau, Mathieu; Duvinage, Matthieu; Castermans, Thierry; Seetharaman, Karthik; Cebolla, Ana-Maria; Bengoetxea, Ana; Ivanenko, Yuri; Dan, Bernard; Cheron, Guy

    2013-01-01

    The existence of dedicated neuronal modules such as those organized in the cerebral cortex, thalamus, basal ganglia, cerebellum, or spinal cord raises the question of how these functional modules are coordinated for appropriate motor behavior. Study of human locomotion offers an interesting field for addressing this central question. The coordination of the elevation of the 3 leg segments under a planar covariation rule (Borghese et al., 1996) was recently modeled (Barliya et al., 2009) by phase-adjusted simple oscillators shedding new light on the understanding of the central pattern generator (CPG) processing relevant oscillation signals. We describe the use of a dynamic recurrent neural network (DRNN) mimicking the natural oscillatory behavior of human locomotion for reproducing the planar covariation rule in both legs at different walking speeds. Neural network learning was based on sinusoid signals integrating frequency and amplitude features of the first three harmonics of the sagittal elevation angles of the thigh, shank, and foot of each lower limb. We verified the biological plausibility of the neural networks. Best results were obtained with oscillations extracted from the first three harmonics in comparison to oscillations outside the harmonic frequency peaks. Physiological replication steadily increased with the number of neuronal units from 1 to 80, where similarity index reached 0.99. Analysis of synaptic weighting showed that the proportion of inhibitory connections consistently increased with the number of neuronal units in the DRNN. This emerging property in the artificial neural networks resonates with recent advances in neurophysiology of inhibitory neurons that are involved in central nervous system oscillatory activities. The main message of this study is that this type of DRNN may offer a useful model of physiological central pattern generator for gaining insights in basic research and developing clinical applications.

  18. Determination of Complex-Valued Parametric Model Coefficients Using Artificial Neural Network Technique

    Directory of Open Access Journals (Sweden)

    A. M. Aibinu

    2010-01-01

    Full Text Available A new approach for determining the coefficients of a complex-valued autoregressive (CAR and complex-valued autoregressive moving average (CARMA model coefficients using complex-valued neural network (CVNN technique is discussed in this paper. The CAR and complex-valued moving average (CMA coefficients which constitute a CARMA model are computed simultaneously from the adaptive weights and coefficients of the linear activation functions in a two-layered CVNN. The performance of the proposed technique has been evaluated using simulated complex-valued data (CVD with three different types of activation functions. The results show that the proposed method can accurately determine the model coefficients provided that the network is properly trained. Furthermore, application of the developed CVNN-based technique for MRI K-space reconstruction results in images with improve resolution.

  19. Modeling Markov switching ARMA-GARCH neural networks models and an application to forecasting stock returns.

    Science.gov (United States)

    Bildirici, Melike; Ersin, Özgür

    2014-01-01

    The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100). Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray's MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray's MS-GARCH model. Therefore, the models are promising for various economic applications.

  20. Modeling Markov Switching ARMA-GARCH Neural Networks Models and an Application to Forecasting Stock Returns

    Directory of Open Access Journals (Sweden)

    Melike Bildirici

    2014-01-01

    Full Text Available The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100. Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray’s MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray’s MS-GARCH model. Therefore, the models are promising for various economic applications.

  1. Simple Electromagnetic Modeling of Small Airplanes: Neural Network Approach

    Directory of Open Access Journals (Sweden)

    P. Tobola

    2009-04-01

    Full Text Available The paper deals with the development of simple electromagnetic models of small airplanes, which can contain composite materials in their construction. Electromagnetic waves can penetrate through the surface of the aircraft due to the specific electromagnetic properties of the composite materials, which can increase the intensity of fields inside the airplane and can negatively influence the functionality of the sensitive avionics. The airplane is simulated by two parallel dielectric layers (the left-hand side wall and the right-hand side wall of the airplane. The layers are put into a rectangular metallic waveguide terminated by the absorber in order to simulate the illumination of the airplane by the external wave (both of the harmonic nature and pulse one. Thanks to the simplicity of the model, the parametric analysis can be performed, and the results can be used in order to train an artificial neural network. The trained networks excel in further reduction of CPU-time demands of an airplane modeling.

  2. High baseline activity in inferior temporal cortex improves neural and behavioral discriminability during visual categorization

    Directory of Open Access Journals (Sweden)

    Nazli eEmadi

    2014-11-01

    Full Text Available Spontaneous firing is a ubiquitous property of neural activity in the brain. Recent literature suggests that this baseline activity plays a key role in perception. However, it is not known how the baseline activity contributes to neural coding and behavior. Here, by recording from the single neurons in the inferior temporal cortex of monkeys performing a visual categorization task, we thoroughly explored the relationship between baseline activity, the evoked response, and behavior. Specifically we found that a low-frequency (< 8 Hz oscillation in the spike train, prior and phase-locked to the stimulus onset, was correlated with increased gamma power and neuronal baseline activity. This enhancement of the baseline activity was then followed by an increase in the neural selectivity and the response reliability and eventually a higher behavioral performance.

  3. Neural network model to control an experimental chaotic pendulum

    NARCIS (Netherlands)

    Bakker, R; Schouten, JC; Takens, F; vandenBleek, CM

    1996-01-01

    A feedforward neural network was trained to predict the motion of an experimental, driven, and damped pendulum operating in a chaotic regime. The network learned the behavior of the pendulum from a time series of the pendulum's angle, the single measured variable. The validity of the neural

  4. Commentary. Integrative Modeling and the Role of Neural Constraints

    Czech Academy of Sciences Publication Activity Database

    Bantegnie, Brice

    2017-01-01

    Roč. 8, SEP 5 (2017), s. 1-2, č. článku 1531. ISSN 1664-1078 Institutional support: RVO:67985955 Keywords : mechanistic explanation * functional analysis * mechanistic integration * reverse inference * neural plasticity * neural networks Subject RIV: AA - Philosophy ; Religion Impact factor: 2.323, year: 2016

  5. Particle swarm optimization of a neural network model in a ...

    Indian Academy of Sciences (India)

    This paper presents a particle swarm optimization (PSO) technique to train an artificial neural network (ANN) for prediction of flank wear in drilling, and compares the network performance with that of the back propagation neural network (BPNN). This analysis is carried out following a series of experiments employing high ...

  6. GABAA receptors in visual and auditory cortex and neural activity changes during basic visual stimulation

    Science.gov (United States)

    Qin, Pengmin; Duncan, Niall W.; Wiebking, Christine; Gravel, Paul; Lyttelton, Oliver; Hayes, Dave J.; Verhaeghe, Jeroen; Kostikov, Alexey; Schirrmacher, Ralf; Reader, Andrew J.; Northoff, Georg

    2012-01-01

    Recent imaging studies have demonstrated that levels of resting γ-aminobutyric acid (GABA) in the visual cortex predict the degree of stimulus-induced activity in the same region. These studies have used the presentation of discrete visual stimulus; the change from closed eyes to open also represents a simple visual stimulus, however, and has been shown to induce changes in local brain activity and in functional connectivity between regions. We thus aimed to investigate the role of the GABA system, specifically GABAA receptors, in the changes in brain activity between the eyes closed (EC) and eyes open (EO) state in order to provide detail at the receptor level to complement previous studies of GABA concentrations. We conducted an fMRI study involving two different modes of the change from EC to EO: an EO and EC block design, allowing the modeling of the haemodynamic response, followed by longer periods of EC and EO to allow the measuring of functional connectivity. The same subjects also underwent [18F]Flumazenil PET to measure GABAA receptor binding potentials. It was demonstrated that the local-to-global ratio of GABAA receptor binding potential in the visual cortex predicted the degree of changes in neural activity from EC to EO. This same relationship was also shown in the auditory cortex. Furthermore, the local-to-global ratio of GABAA receptor binding potential in the visual cortex also predicted the change in functional connectivity between the visual and auditory cortex from EC to EO. These findings contribute to our understanding of the role of GABAA receptors in stimulus-induced neural activity in local regions and in inter-regional functional connectivity. PMID:23293594

  7. GABAA receptors in visual and auditory cortex and neural activity changes during basic visual stimulation

    Directory of Open Access Journals (Sweden)

    Pengmin eQin

    2012-12-01

    Full Text Available Recent imaging studies have demonstrated that levels of resting GABA in the visual cortex predict the degree of stimulus-induced activity in the same region. These studies have used the presentation of discrete visual stimulus; the change from closed eyes to open also represents a simple visual stimulus, however, and has been shown to induce changes in local brain activity and in functional connectivity between regions. We thus aimed to investigate the role of the GABA system, specifically GABAA receptors, in the changes in brain activity between the eyes closed (EC and eyes open (EO state in order to provide detail at the receptor level to complement previous studies of GABA concentrations. We conducted an fMRI study involving two different modes of the change from EC to EO: An EO and EC block design, allowing the modelling of the haemodynamic response, followed by longer periods of EC and EO to allow the measuring of functional connectivity. The same subjects also underwent [18F]Flumazenil PET measure GABAA receptor binding potentials. It was demonstrated that the local-to-global ratio of GABAA receptor binding potential in the visual cortex predicted the degree of changes in neural activity from EC to EO. This same relationship was also shown in the auditory cortex. Furthermore, the local-to-global ratio of GABAA receptor binding potential in the visual cortex also predicts the change of functional connectivity between visual and auditory cortex from EC to EO. These findings contribute to our understanding of the role of GABAA receptors in stimulus-induced neural activity in local regions and in inter-regional functional connectivity.

  8. Rapid adaptive remote focusing microscope for sensing of volumetric neural activity.

    Science.gov (United States)

    Žurauskas, Mantas; Barnstedt, Oliver; Frade-Rodriguez, Maria; Waddell, Scott; Booth, Martin J

    2017-10-01

    The ability to record neural activity in the brain of a living organism at cellular resolution is of great importance for defining the neural circuit mechanisms that direct behavior. Here we present an adaptive two-photon microscope optimized for extraction of neural signals over volumes in intact Drosophila brains, even in the presence of specimen motion. High speed volume imaging was made possible through reduction of spatial resolution while maintaining the light collection efficiency of a high resolution, high numerical aperture microscope. This enabled simultaneous recording of odor-evoked calcium transients in a defined volume of mushroom body Kenyon cell bodies in a live fruit fly.

  9. Nondestructive pavement evaluation using ILLI-PAVE based artificial neural network models.

    Science.gov (United States)

    2008-09-01

    The overall objective in this research project is to develop advanced pavement structural analysis models for more accurate solutions with fast computation schemes. Soft computing and modeling approaches, specifically the Artificial Neural Network (A...

  10. PREDICTION OF FINANCIAL FAILURE OF BANKS BY ARTIFICAL NEURAL NETWORK MODEL

    National Research Council Canada - National Science Library

    Utku ALTUNÖZ

    2013-01-01

    In this article financial failure prediction models based on artificial neural network model, which is among the multivariable statistical techniques has been tested in a parallel with literature surveys...

  11. Software Development Cost and Time Forecasting Using a High Performance Artificial Neural Network Model

    Science.gov (United States)

    Attarzadeh, Iman; Ow, Siew Hock

    Nowadays, mature software companies are more interested to have a precise estimation of software metrics such as project time, cost, quality, and risk at the early stages of software development process. The ability to precisely estimate project time and costs by project managers is one of the essential tasks in software development activities, and it named software effort estimation. The estimated effort at the early stage of project development process is uncertain, vague, and often the least accurate. It is because that very little information is available at the beginning stage of project. Therefore, a reliable and precise effort estimation model is an ongoing challenge for project managers and software engineers. This research work proposes a novel soft computing model incorporating Constructive Cost Model (COCOMO) to improve the precision of software time and cost estimation. The proposed artificial neural network model has good generalisation, adaption capability, and it can be interpreted and validated by software engineers. The experimental results show that applying the desirable features of artificial neural networks on the algorithmic estimation model improves the accuracy of time and cost estimation and estimated effort can be very close to the actual effort.

  12. Spatiotemporal imaging of glutamate-induced biophotonic activities and transmission in neural circuits.

    Directory of Open Access Journals (Sweden)

    Rendong Tang

    Full Text Available The processing of neural information in neural circuits plays key roles in neural functions. Biophotons, also called ultra-weak photon emissions (UPE, may play potential roles in neural signal transmission, contributing to the understanding of the high functions of nervous system such as vision, learning and memory, cognition and consciousness. However, the experimental analysis of biophotonic activities (emissions in neural circuits has been hampered due to technical limitations. Here by developing and optimizing an in vitro biophoton imaging method, we characterize the spatiotemporal biophotonic activities and transmission in mouse brain slices. We show that the long-lasting application of glutamate to coronal brain slices produces a gradual and significant increase of biophotonic activities and achieves the maximal effect within approximately 90 min, which then lasts for a relatively long time (>200 min. The initiation and/or maintenance of biophotonic activities by glutamate can be significantly blocked by oxygen and glucose deprivation, together with the application of a cytochrome c oxidase inhibitor (sodium azide, but only partly by an action potential inhibitor (TTX, an anesthetic (procaine, or the removal of intracellular and extracellular Ca(2+. We also show that the detected biophotonic activities in the corpus callosum and thalamus in sagittal brain slices mostly originate from axons or axonal terminals of cortical projection neurons, and that the hyperphosphorylation of microtubule-associated protein tau leads to a significant decrease of biophotonic activities in these two areas. Furthermore, the application of glutamate in the hippocampal dentate gyrus results in increased biophotonic activities in its intrahippocampal projection areas. These results suggest that the glutamate-induced biophotonic activities reflect biophotonic transmission along the axons and in neural circuits, which may be a new mechanism for the processing of

  13. Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor.

    Science.gov (United States)

    Pandey, Daya Shankar; Das, Saptarshi; Pan, Indranil; Leahy, James J; Kwapinski, Witold

    2016-12-01

    In this paper, multi-layer feed forward neural networks are used to predict the lower heating value of gas (LHV), lower heating value of gasification products including tars and entrained char (LHVp) and syngas yield during gasification of municipal solid waste (MSW) during gasification in a fluidized bed reactor. These artificial neural networks (ANNs) with different architectures are trained using the Levenberg-Marquardt (LM) back-propagation algorithm and a cross validation is also performed to ensure that the results generalise to other unseen datasets. A rigorous study is carried out on optimally choosing the number of hidden layers, number of neurons in the hidden layer and activation function in a network using multiple Monte Carlo runs. Nine input and three output parameters are used to train and test various neural network architectures in both multiple output and single output prediction paradigms using the available experimental datasets. The model selection procedure is carried out to ascertain the best network architecture in terms of predictive accuracy. The simulation results show that the ANN based methodology is a viable alternative which can be used to predict the performance of a fluidized bed gasifier. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. SpikingLab: modelling agents controlled by Spiking Neural Networks in Netlogo.

    Science.gov (United States)

    Jimenez-Romero, Cristian; Johnson, Jeffrey

    2017-01-01

    The scientific interest attracted by Spiking Neural Networks (SNN) has lead to the development of tools for the simulation and study of neuronal dynamics ranging from phenomenological models to the more sophisticated and biologically accurate Hodgkin-and-Huxley-based and multi-compartmental models. However, despite the multiple features offered by neural modelling tools, their integration with environments for the simulation of robots and agents can be challenging and time consuming. The implementation of artificial neural circuits to control robots generally involves the following tasks: (1) understanding the simulation tools, (2) creating the neural circuit in the neural simulator, (3) linking the simulated neural circuit with the environment of the agent and (4) programming the appropriate interface in the robot or agent to use the neural controller. The accomplishment of the above-mentioned tasks can be challenging, especially for undergraduate students or novice researchers. This paper presents an alternative tool which facilitates the simulation of simple SNN circuits using the multi-agent simulation and the programming environment Netlogo (educational software that simplifies the study and experimentation of complex systems). The engine proposed and implemented in Netlogo for the simulation of a functional model of SNN is a simplification of integrate and fire (I&F) models. The characteristics of the engine (including neuronal dynamics, STDP learning and synaptic delay) are demonstrated through the implementation of an agent representing an artificial insect controlled by a simple neural circuit. The setup of the experiment and its outcomes are described in this work.

  15. Anti-glycated activity prediction of polysaccharides from two guava fruits using artificial neural networks.

    Science.gov (United States)

    Yan, Chunyan; Lee, Jinsheng; Kong, Fansheng; Zhang, Dezhi

    2013-10-15

    High-efficiency ultrasonic treatment was used to extract the polysaccharides of Psidium guajava (PPG) and Psidium littorale (PPL). The aims of this study were to compare polysaccharide activities from these two guavas, as well as to investigate the relationship between ultrasonic conditions and anti-glycated activity. A mathematical model of anti-glycated activity was constructed with the artificial neural network (ANN) toolbox of MATLAB software. Response surface plots showed the correlation between ultrasonic conditions and bioactivity. The optimal ultrasonic conditions of PPL for the highest anti-glycated activity were predicted to be 256 W, 60 °C, and 12 min, and the predicted activity was 42.2%. The predicted highest anti-glycated activity of PPG was 27.2% under its optimal predicted ultrasonic condition. The experimental result showed that PPG and PPL possessed anti-glycated and antioxidant activities, and those of PPL were greater. The experimental data also indicated that ANN had good prediction and optimization capability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Testing of information condensation in a model reverberating spiking neural network.

    Science.gov (United States)

    Vidybida, Alexander

    2011-06-01

    Information about external world is delivered to the brain in the form of structured in time spike trains. During further processing in higher areas, information is subjected to a certain condensation process, which results in formation of abstract conceptual images of external world, apparently, represented as certain uniform spiking activity partially independent on the input spike trains details. Possible physical mechanism of condensation at the level of individual neuron was discussed recently. In a reverberating spiking neural network, due to this mechanism the dynamics should settle down to the same uniform/ periodic activity in response to a set of various inputs. Since the same periodic activity may correspond to different input spike trains, we interpret this as possible candidate for information condensation mechanism in a network. Our purpose is to test this possibility in a network model consisting of five fully connected neurons, particularly, the influence of geometric size of the network, on its ability to condense information. Dynamics of 20 spiking neural networks of different geometric sizes are modelled by means of computer simulation. Each network was propelled into reverberating dynamics by applying various initial input spike trains. We run the dynamics until it becomes periodic. The Shannon's formula is used to calculate the amount of information in any input spike train and in any periodic state found. As a result, we obtain explicit estimate of the degree of information condensation in the networks, and conclude that it depends strongly on the net's geometric size.

  17. Neural Control and Adaptive Neural Forward Models for Insect-like, Energy-Efficient, and Adaptable Locomotion of Walking Machines

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Parlitz, Ulrich; Wörgötter, Florentin

    2013-01-01

    Living creatures, like walking animals, have found fascinating solutions for the problem of locomotion control. Their movements show the impression of elegance including versatile, energy-efficient, and adaptable locomotion. During the last few decades, roboticists have tried to imitate......, animal locomotion mechanisms seem to largely depend not only on central mechanisms (central pattern generators, CPGs) and sensory feedback (afferent-based control) but also on internal forward models (efference copies). They are used to a different degree in different animals. Generally, CPGs organize...... on sensory feedback and adaptive neural forward models with efference copies. This neural closed-loop controller enables a walking machine to perform a multitude of different walking patterns including insect-like leg movements and gaits as well as energy-efficient locomotion. In addition, the forward models...

  18. Analysis of electromyographic activity in spastic biceps brachii muscle following neural mobilization.

    Science.gov (United States)

    Castilho, Jéssica; Ferreira, Luiz Alfredo Braun; Pereira, Wagner Menna; Neto, Hugo Pasini; Morelli, José Geraldo da Silva; Brandalize, Danielle; Kerppers, Ivo Ilvan; Oliveira, Claudia Santos

    2012-07-01

    Hypertonia is prevalent in anti-gravity muscles, such as the biceps brachii. Neural mobilization is one of the techniques currently used to reduce spasticity. The aim of the present study was to assess electromyographic (EMG) activity in spastic biceps brachii muscles before and after neural mobilization of the upper limb contralateral to the hemiplegia. Repeated pre-test and post-test EMG measurements were performed on six stroke victims with grade 1 or 2 spasticity (Modified Ashworth Scale). The Upper Limb Neurodynamic Test (ULNT1) was the mobilization technique employed. After neural mobilization contralateral to the lesion, electromyographic activity in the biceps brachii decreased by 17% and 11% for 90° flexion and complete extension of the elbow, respectively. However, the results were not statistically significant (p gt; 0.05). When performed using contralateral techniques, neural mobilization alters the electrical signal of spastic muscles. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Modelling innovation performance of European regions using multi-output neural networks.

    Science.gov (United States)

    Hajek, Petr; Henriques, Roberto

    2017-01-01

    Regional innovation performance is an important indicator for decision-making regarding the implementation of policies intended to support innovation. However, patterns in regional innovation structures are becoming increasingly diverse, complex and nonlinear. To address these issues, this study aims to develop a model based on a multi-output neural network. Both intra- and inter-regional determinants of innovation performance are empirically investigated using data from the 4th and 5th Community Innovation Surveys of NUTS 2 (Nomenclature of Territorial Units for Statistics) regions. The results suggest that specific innovation strategies must be developed based on the current state of input attributes in the region. Thus, it is possible to develop appropriate strategies and targeted interventions to improve regional innovation performance. We demonstrate that support of entrepreneurship is an effective instrument of innovation policy. We also provide empirical support that both business and government R&D activity have a sigmoidal effect, implying that the most effective R&D support should be directed to regions with below-average and average R&D activity. We further show that the multi-output neural network outperforms traditional statistical and machine learning regression models. In general, therefore, it seems that the proposed model can effectively reflect both the multiple-output nature of innovation performance and the interdependency of the output attributes.

  20. Modelling innovation performance of European regions using multi-output neural networks.

    Directory of Open Access Journals (Sweden)

    Petr Hajek

    Full Text Available Regional innovation performance is an important indicator for decision-making regarding the implementation of policies intended to support innovation. However, patterns in regional innovation structures are becoming increasingly diverse, complex and nonlinear. To address these issues, this study aims to develop a model based on a multi-output neural network. Both intra- and inter-regional determinants of innovation performance are empirically investigated using data from the 4th and 5th Community Innovation Surveys of NUTS 2 (Nomenclature of Territorial Units for Statistics regions. The results suggest that specific innovation strategies must be developed based on the current state of input attributes in the region. Thus, it is possible to develop appropriate strategies and targeted interventions to improve regional innovation performance. We demonstrate that support of entrepreneurship is an effective instrument of innovation policy. We also provide empirical support that both business and government R&D activity have a sigmoidal effect, implying that the most effective R&D support should be directed to regions with below-average and average R&D activity. We further show that the multi-output neural network outperforms traditional statistical and machine learning regression models. In general, therefore, it seems that the proposed model can effectively reflect both the multiple-output nature of innovation performance and the interdependency of the output attributes.

  1. Parametric characterization of neural activity in the locus coeruleus in response to vagus nerve stimulation.

    Science.gov (United States)

    Hulsey, Daniel R; Riley, Jonathan R; Loerwald, Kristofer W; Rennaker, Robert L; Kilgard, Michael P; Hays, Seth A

    2017-03-01

    Vagus nerve stimulation (VNS) has emerged as a therapy to treat a wide range of neurological disorders, including epilepsy, depression, stroke, and tinnitus. Activation of neurons in the locus coeruleus (LC) is believed to mediate many of the effects of VNS in the central nervous system. Despite the importance of the LC, there is a dearth of direct evidence characterizing neural activity in response to VNS. A detailed understanding of the brain activity evoked by VNS across a range of stimulation parameters may guide selection of stimulation regimens for therapeutic use. In this study, we recorded neural activity in the LC and the mesencephalic trigeminal nucleus (Me5) in response to VNS over a broad range of current amplitudes, pulse frequencies, train durations, inter-train intervals, and pulse widths. Brief 0.5s trains of VNS drive rapid, phasic firing of LC neurons at 0.1mA. Higher current intensities and longer pulse widths drive greater increases in LC firing rate. Varying the pulse frequency substantially affects the timing, but not the total amount, of phasic LC activity. VNS drives pulse-locked neural activity in the Me5 at current levels above 1.2mA. These results provide insight into VNS-evoked phasic neural activity in multiple neural structures and may be useful in guiding the selection of VNS parameters to enhance clinical efficacy. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Abnormal neural activation patterns underlying working memory impairment in chronic phencyclidine-treated mice.

    Directory of Open Access Journals (Sweden)

    Yosefu Arime

    Full Text Available Working memory impairment is a hallmark feature of schizophrenia and is thought be caused by dysfunctions in the prefrontal cortex (PFC and associated brain regions. However, the neural circuit anomalies underlying this impairment are poorly understood. The aim of this study is to assess working memory performance in the chronic phencyclidine (PCP mouse model of schizophrenia, and to identify the neural substrates of working memory. To address this issue, we conducted the following experiments for mice after withdrawal from chronic administration (14 days of either saline or PCP (10 mg/kg: (1 a discrete paired-trial variable-delay task in T-maze to assess working memory, and (2 brain-wide c-Fos mapping to identify activated brain regions relevant to this task performance either 90 min or 0 min after the completion of the task, with each time point examined under working memory effort and basal conditions. Correct responses in the test phase of the task were significantly reduced across delays (5, 15, and 30 s in chronic PCP-treated mice compared with chronic saline-treated controls, suggesting delay-independent impairments in working memory in the PCP group. In layer 2-3 of the prelimbic cortex, the number of working memory effort-elicited c-Fos+ cells was significantly higher in the chronic PCP group than in the chronic saline group. The main effect of working memory effort relative to basal conditions was to induce significantly increased c-Fos+ cells in the other layers of prelimbic cortex and the anterior cingulate and infralimbic cortex regardless of the different chronic regimens. Conversely, this working memory effort had a negative effect (fewer c-Fos+ cells in the ventral hippocampus. These results shed light on some putative neural networks relevant to working memory impairments in mice chronically treated with PCP, and emphasize the importance of the layer 2-3 of the prelimbic cortex of the PFC.

  3. Abnormal neural activation patterns underlying working memory impairment in chronic phencyclidine-treated mice.

    Science.gov (United States)

    Arime, Yosefu; Akiyama, Kazufumi

    2017-01-01

    Working memory impairment is a hallmark feature of schizophrenia and is thought be caused by dysfunctions in the prefrontal cortex (PFC) and associated brain regions. However, the neural circuit anomalies underlying this impairment are poorly understood. The aim of this study is to assess working memory performance in the chronic phencyclidine (PCP) mouse model of schizophrenia, and to identify the neural substrates of working memory. To address this issue, we conducted the following experiments for mice after withdrawal from chronic administration (14 days) of either saline or PCP (10 mg/kg): (1) a discrete paired-trial variable-delay task in T-maze to assess working memory, and (2) brain-wide c-Fos mapping to identify activated brain regions relevant to this task performance either 90 min or 0 min after the completion of the task, with each time point examined under working memory effort and basal conditions. Correct responses in the test phase of the task were significantly reduced across delays (5, 15, and 30 s) in chronic PCP-treated mice compared with chronic saline-treated controls, suggesting delay-independent impairments in working memory in the PCP group. In layer 2-3 of the prelimbic cortex, the number of working memory effort-elicited c-Fos+ cells was significantly higher in the chronic PCP group than in the chronic saline group. The main effect of working memory effort relative to basal conditions was to induce significantly increased c-Fos+ cells in the other layers of prelimbic cortex and the anterior cingulate and infralimbic cortex regardless of the different chronic regimens. Conversely, this working memory effort had a negative effect (fewer c-Fos+ cells) in the ventral hippocampus. These results shed light on some putative neural networks relevant to working memory impairments in mice chronically treated with PCP, and emphasize the importance of the layer 2-3 of the prelimbic cortex of the PFC.

  4. Neural networks and differential evolution algorithm applied for modelling the depollution process of some gaseous streams.

    Science.gov (United States)

    Curteanu, Silvia; Suditu, Gabriel Dan; Buburuzan, Adela Marina; Dragoi, Elena Niculina

    2014-11-01

    The depollution of some gaseous streams containing n-hexane is studied by adsorption in a fixed bed column, under dynamic conditions, using granular activated carbon and two types of non-functionalized hypercross-linked polymeric resins. In order to model the process, a new neuro-evolutionary approach is proposed. It is a combination of a modified differential evolution (DE) with neural networks (NNs) and two local search algorithms, the global and local optimizers, working together to determine the optimal NN model. The main elements that characterize the applied variant of DE consist in using an opposition-based learning initialization, a simple self-adaptive procedure for the control parameters, and a modified mutation principle based on the fitness function as a criterion for reorganization. The results obtained prove that the proposed algorithm is able to determine a good model of the considered process, its performance being better than those of an available phenomenological model.

  5. Stability of a neural predictive controller scheme on a neural model

    DEFF Research Database (Denmark)

    Luther, Jim Benjamin; Sørensen, Paul Haase

    2009-01-01

    In previous works presenting various forms of neural-network-based predictive controllers, the main emphasis has been on the implementation aspects, i.e. the development of a robust optimization algorithm for the controller, which will be able to perform in real time. However, the stability issue....... The resulting controller is tested on a nonlinear pneumatic servo system....

  6. Validation of protein models by a neural network approach

    Directory of Open Access Journals (Sweden)

    Fantucci Piercarlo

    2008-01-01

    Full Text Available Abstract Background The development and improvement of reliable computational methods designed to evaluate the quality of protein models is relevant in the context of protein structure refinement, which has been recently identified as one of the bottlenecks limiting the quality and usefulness of protein structure prediction. Results In this contribution, we present a computational method (Artificial Intelligence Decoys Evaluator: AIDE which is able to consistently discriminate between correct and incorrect protein models. In particular, the method is based on neural networks that use as input 15 structural parameters, which include energy, solvent accessible surface, hydrophobic contacts and secondary structure content. The results obtained with AIDE on a set of decoy structures were evaluated using statistical indicators such as Pearson correlation coefficients, Znat, fraction enrichment, as well as ROC plots. It turned out that AIDE performances are comparable and often complementary to available state-of-the-art learning-based methods. Conclusion In light of the results obtained with AIDE, as well as its comparison with available learning-based methods, it can be concluded that AIDE can be successfully used to evaluate the quality of protein structures. The use of AIDE in combination with other evaluation tools is expected to further enhance protein refinement efforts.

  7. Analytic Modeling of Neural Tissue: I. A Spherical Bidomain.

    Science.gov (United States)

    Schwartz, Benjamin L; Chauhan, Munish; Sadleir, Rosalind J

    2016-12-01

    Presented here is a model of neural tissue in a conductive medium stimulated by externally injected currents. The tissue is described as a conductively isotropic bidomain, i.e. comprised of intra and extracellular regions that occupy the same space, as well as the membrane that divides them, and the injection currents are described as a pair of source and sink points. The problem is solved in three spatial dimensions and defined in spherical coordinates [Formula: see text]. The system of coupled partial differential equations is solved by recasting the problem to be in terms of the membrane and a monodomain, interpreted as a weighted average of the intra and extracellular domains. The membrane and monodomain are defined by the scalar Helmholtz and Laplace equations, respectively, which are both separable in spherical coordinates. Product solutions are thus assumed and given through certain transcendental functions. From these electrical potentials, analytic expressions for current density are derived and from those fields the magnetic flux density is calculated. Numerical examples are considered wherein the interstitial conductivity is varied, as well as the limiting case of the problem simplifying to two dimensions due to azimuthal independence. Finally, future modeling work is discussed.

  8. Modeling the Constitutive Relationship of Al–0.62Mg–0.73Si Alloy Based on Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Ying Han

    2017-03-01

    Full Text Available In this work, the hot deformation behavior of 6A02 aluminum alloy was investigated by isothermal compression tests conducted in the temperature range of 683–783 K and strain-rate range of 0.001–1 s−1. According to the obtained true stress–true strain curves, the constitutive relationship of the alloy was revealed by establishing the Arrhenius-type constitutive model and back-propagation (BP neural network model. It is found that the flow characteristic of 6A02 aluminum alloy is closely related to deformation temperature and strain rate, and the true stress decreases with increasing temperatures and decreasing strain rates. The hot deformation activation energy is calculated to be 168.916 kJ mol−1. The BP neural network model with one hidden layer and 20 neurons in the hidden layer is developed. The accuracy in prediction of the Arrhenius-type constitutive model and BP neural network model is eveluated by using statistics analysis method. It is demonstrated that the BP neural network model has better performance in predicting the flow stress.

  9. Modeling of farnesyltransferase inhibition by some thiol and non-thiol peptidomimetic inhibitors using genetic neural networks and RDF approaches.

    Science.gov (United States)

    González, Maykel Pérez; Caballero, Julio; Tundidor-Camba, Alain; Helguera, Aliuska Morales; Fernández, Michael

    2006-01-01

    Inhibition of farnesyltransferase (FT) enzyme by a set of 78 thiol and non-thiol peptidomimetic inhibitors was successfully modeled by a genetic neural network (GNN) approach, using radial distribution function descriptors. A linear model was unable to successfully fit the whole data set; however, the optimum Bayesian regularized neural network model described about 87% inhibitory activity variance with a relevant predictive power measured by q2 values of leave-one-out and leave-group-out cross-validations of about 0.7. According to their activity levels, thiol and non-thiol inhibitors were well-distributed in a topological map, built with the inputs of the optimum non-linear predictor. Furthermore, descriptors in the GNN model suggested the occurrence of a strong dependence of FT inhibition on the molecular shape and size rather than on electronegativity or polarizability characteristics of the studied compounds.

  10. Temporal Modeling of Neural Net Input/Output Behaviors: The Case of XOR

    Directory of Open Access Journals (Sweden)

    Bernard P. Zeigler

    2017-01-01

    Full Text Available In the context of the modeling and simulation of neural nets, we formulate definitions for the behavioral realization of memoryless functions. The definitions of realization are substantively different for deterministic and stochastic systems constructed of neuron-inspired components. In contrast to earlier generations of neural net models, third generation spiking neural nets exhibit important temporal and dynamic properties, and random neural nets provide alternative probabilistic approaches. Our definitions of realization are based on the Discrete Event System Specification (DEVS formalism that fundamentally include temporal and probabilistic characteristics of neuron system inputs, state, and outputs. The realizations that we construct—in particular for the Exclusive Or (XOR logic gate—provide insight into the temporal and probabilistic characteristics that real neural systems might display. Our results provide a solid system-theoretical foundation and simulation modeling framework for the high-performance computational support of such applications.

  11. Modelling and Prediction of Photovoltaic Power Output Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Aminmohammad Saberian

    2014-01-01

    Full Text Available This paper presents a solar power modelling method using artificial neural networks (ANNs. Two neural network structures, namely, general regression neural network (GRNN feedforward back propagation (FFBP, have been used to model a photovoltaic panel output power and approximate the generated power. Both neural networks have four inputs and one output. The inputs are maximum temperature, minimum temperature, mean temperature, and irradiance; the output is the power. The data used in this paper started from January 1, 2006, until December 31, 2010. The five years of data were split into two parts: 2006–2008 and 2009-2010; the first part was used for training and the second part was used for testing the neural networks. A mathematical equation is used to estimate the generated power. At the end, both of these networks have shown good modelling performance; however, FFBP has shown a better performance comparing with GRNN.

  12. QSAR models for prediction study of HIV protease inhibitors using support vector machines, neural networks and multiple linear regression

    Directory of Open Access Journals (Sweden)

    Rachid Darnag

    2017-02-01

    Full Text Available Support vector machines (SVM represent one of the most promising Machine Learning (ML tools that can be applied to develop a predictive quantitative structure–activity relationship (QSAR models using molecular descriptors. Multiple linear regression (MLR and artificial neural networks (ANNs were also utilized to construct quantitative linear and non linear models to compare with the results obtained by SVM. The prediction results are in good agreement with the experimental value of HIV activity; also, the results reveal the superiority of the SVM over MLR and ANN model. The contribution of each descriptor to the structure–activity relationships was evaluated.

  13. Neural systems language: a formal modeling language for the systematic description, unambiguous communication, and automated digital curation of neural connectivity.

    Science.gov (United States)

    Brown, Ramsay A; Swanson, Larry W

    2013-09-01

    Systematic description and the unambiguous communication of findings and models remain among the unresolved fundamental challenges in systems neuroscience. No common descriptive frameworks exist to describe systematically the connective architecture of the nervous system, even at the grossest level of observation. Furthermore, the accelerating volume of novel data generated on neural connectivity outpaces the rate at which this data is curated into neuroinformatics databases to synthesize digitally systems-level insights from disjointed reports and observations. To help address these challenges, we propose the Neural Systems Language (NSyL). NSyL is a modeling language to be used by investigators to encode and communicate systematically reports of neural connectivity from neuroanatomy and brain imaging. NSyL engenders systematic description and communication of connectivity irrespective of the animal taxon described, experimental or observational technique implemented, or nomenclature referenced. As a language, NSyL is internally consistent, concise, and comprehensible to both humans and computers. NSyL is a promising development for systematizing the representation of neural architecture, effectively managing the increasing volume of data on neural connectivity and streamlining systems neuroscience research. Here we present similar precedent systems, how NSyL extends existing frameworks, and the reasoning behind NSyL's development. We explore NSyL's potential for balancing robustness and consistency in representation by encoding previously reported assertions of connectivity from the literature as examples. Finally, we propose and discuss the implications of a framework for how NSyL will be digitally implemented in the future to streamline curation of experimental results and bridge the gaps among anatomists, imagers, and neuroinformatics databases. Copyright © 2013 Wiley Periodicals, Inc.

  14. Reversible neural stem cell niche dysfunction in a model of multiple sclerosis

    DEFF Research Database (Denmark)

    Rasmussen, Stine; Imitola, Jaime; Ayuso-Sacido, Angel

    2011-01-01

    OBJECTIVE: The subventricular zone (SVZ) of the brain constitutes a niche for neural stem and progenitor cells that can initiate repair after central nervous system (CNS) injury. In a relapsing-remitting model of experimental autoimmune encephalomyelitis (EAE), the neural stem cells (NSCs) become...

  15. COMPUTER-SIMULATED NEURAL NETWORKS - AN APPROPRIATE MODEL FOR MOTOR DEVELOPMENT

    NARCIS (Netherlands)

    VOS, JE; SCHEEPSTRA, KA

    The idea of an artificial neural network is introduced in a historical context, and the essential aspect of it, viz., the modifiable synapse, is compared to the aspect of plasticity in the natural nervous system. Based on such an artificial neural network, a model is presented for the way in which

  16. Adolescents' risky decision-making activates neural networks related to social cognition and cognitive control processes.

    Science.gov (United States)

    Rodrigo, María José; Padrón, Iván; de Vega, Manuel; Ferstl, Evelyn C

    2014-01-01

    This study examines by means of functional magnetic resonance imaging the neural mechanisms underlying adolescents' risk decision-making in social contexts. We hypothesize that the social context could engage brain regions associated with social cognition processes and developmental changes are also expected. Sixty participants (adolescents: 17-18, and young adults: 21-22 years old) read narratives describing typical situations of decision-making in the presence of peers. They were asked to make choices in risky situations (e.g., taking or refusing a drug) or ambiguous situations (e.g., eating a hamburger or a hotdog). Risky as compared to ambiguous scenarios activated bilateral temporoparietal junction (TPJ), bilateral middle temporal gyrus (MTG), right medial prefrontal cortex, and the precuneus bilaterally; i.e., brain regions related to social cognition processes, such as self-reflection and theory of mind (ToM). In addition, brain structures related to cognitive control were active [right anterior cingulate cortex (ACC), bilateral dorsolateral prefrontal cortex (DLPFC), bilateral orbitofrontal cortex], whereas no significant clusters were obtained in the reward system (ventral striatum). Choosing the dangerous option involved a further activation of control areas (ACC) and emotional and social cognition areas (temporal pole). Adolescents employed more neural resources than young adults in the right DLPFC and the right TPJ in risk situations. When choosing the dangerous option, young adults showed a further engagement in ToM related regions (bilateral MTG) and in motor control regions related to the planning of actions (pre-supplementary motor area). Finally, the right insula and the right superior temporal gyrus were more activated in women than in men, suggesting more emotional involvement and more intensive modeling of the others' perspective in the risky conditions. These findings call for more comprehensive developmental accounts of decision-making in

  17. Adolescents’ risky decision-making activates neural networks related to social cognition and cognitive control processes

    Directory of Open Access Journals (Sweden)

    María José eRodrigo

    2014-02-01

    Full Text Available This study examines by means of fMRI the neural mechanisms underlying adolescents’ risk decision-making in social contexts. We hypothesize that the social context could engage brain regions associated with social cognition processes and developmental changes are also expected. Sixty participants (adolescents: 17-18, and young adults: 21-22 years old read narratives describing typical situations of decision-making in the presence of peers. They were asked to make choices in risky situations (e.g., taking or refusing a drug or ambiguous situations (e.g., eating a hamburger or a hotdog. Risky as compared to ambiguous scenarios activated bilateral temporoparietal junction (TPJ, bilateral middle temporal gyrus (MTG, right medial prefrontal cortex (mPFC, and the precuneus bilaterally; i.e., brain regions related to social cognition processes, such as self-reflection and theory of mind. In addition, brain structures related to cognitive control were active (right ACC, bilateral DLPFC, bilateral OFC, whereas no significant clusters were obtained in the reward system (VS. Choosing the dangerous option involved a further activation of control areas (ACC and emotional and social cognition areas (temporal pole. Adolescents employed more neural resources than young adults in the right DLPFC and the right TPJ in risk situations. When choosing the dangerous option, young adults showed a further engagement in theory of mind related regions (bilateral middle temporal gyrus and in motor control regions related to the planning of actions (pre-supplementary motor area. Finally, the right insula and the right superior temporal gyrus were more activated in women than in men, suggesting more emotional involvement and more intensive modeling of the others’ perspective in the risky conditions. These findings call for more comprehensive developmental accounts of decision-making in social contexts that incorporate the role of emotional and social cognition processes.

  18. Mixed Mode Oscillations and Synchronous Activity in Noise Induced Modified Morris-Lecar Neural System

    Science.gov (United States)

    Upadhyay, Ranjit Kumar; Mondal, Argha; Teka, Wondimu W.

    The modified three-dimensional (3D) Morris-Lecar (M-L) model is very useful to understand the spiking activities of neurons. The present article addresses the random dynamical behavior of a modified M-L model driven by a white Gaussian noise with mean zero and unit spectral density. The applied stimulus can be expressed as a random term. Such random perturbations are represented by a white Gaussian noise current added through the electrical potential of membrane of the excitatory principal cells. The properties of the stochastic system (perturbed one) and noise induced mixed mode oscillation are analyzed. The Lyapunov spectrum is computed to present the nature of the system dynamics. The noise intensity is varied while keeping fixed the predominant parameters of the model in their ranges and also observed the changes in the dynamical behavior of the system. The dynamical synchronization is studied in the coupled M-L systems interconnected by excitatory and inhibitory neurons with noisy electrical coupling and verified with similarity functions. This result suggests the potential benefits of noise and noise induced oscillations which have been observed in real neurons and how that affects the dynamics of the neural model as well as the coupled systems. The analysis reports that the modified M-L system which has the limit cycle behavior can show a type of phase locking behavior which follows either period adding (i.e. 1:1, 2:1, 3:1, 4:1) sequences or Farey sequences. For the coupled neural systems, complete synchronization is shown for sufficient noisy coupling strength.

  19. Implantable Graphene-based Neural Electrode Interfaces for Electrophysiology and Neurochemistry in In Vivo Hyperacute Stroke Model.

    Science.gov (United States)

    Liu, Ta-Chung; Chuang, Min-Chieh; Chu, Chao-Yi; Huang, Wei-Chen; Lai, Hsin-Yi; Wang, Chao-Ting; Chu, Wei-Lin; Chen, San-Yuan; Chen, You-Yin

    2016-01-13

    Implantable microelectrode arrays have attracted considerable interest due to their high temporal and spatial resolution recording of neuronal activity in tissues. We herein presented an implantable multichannel neural probe with multiple real-time monitoring of neural-chemical and neural-electrical signals by a nonenzymatic neural-chemical interface, which was designed by creating the newly developed reduced graphene oxide-gold oxide (rGO/Au2O3) nanocomposite electrode. The modified electrode on the neural probe was prepared by a facile one-step cyclic voltammetry (CV) electrochemical method with simultaneous occurrence of gold oxidation and GOs reduction to induce the intimate attachment by electrostatic interaction using chloride ions (Cl(-)). The rGO/Au2O3-modified electrode at a low deposition scan rate of 10 mVs(-1) displayed significantly improved electrocatalytic activity due to large active areas and well-dispersive attached rGO sheets. The in vitro amperometric response to H2O2 demonstrated a fast response of less than 5 s and a very low detection limit of 0.63 μM. In in vivo hyperacute stroke model, the concentration of H2O2 was measured as 100.48 ± 4.52 μM for rGO/Au2O3 electrode within 1 h photothrombotic stroke, which was much higher than that (71.92 μM ± 2.52 μM) for noncoated electrode via in vitro calibration. Simultaneously, the somatosensory-evoked potentials (SSEPs) test provided reliable and precise validation for detecting functional changes of neuronal activities. This newly developed implantable probe with localized rGO/Au2O3 nanocomposite electrode can serve as a rapid and reliable sensing platform for practical H2O2 detection in the brain or for other neural-chemical molecules in vivo.

  20. Comparing Models GRM, Refraction Tomography and Neural Network to Analyze Shallow Landslide

    Directory of Open Access Journals (Sweden)

    Armstrong F. Sompotan

    2011-11-01

    Full Text Available Detailed investigations of landslides are essential to understand fundamental landslide mechanisms. Seismic refraction method has been proven as a useful geophysical tool for investigating shallow landslides. The objective of this study is to introduce a new workflow using neural network in analyzing seismic refraction data and to compare the result with some methods; that are general reciprocal method (GRM and refraction tomography. The GRM is effective when the velocity structure is relatively simple and refractors are gently dipping. Refraction tomography is capable of modeling the complex velocity structures of landslides. Neural network is found to be more potential in application especially in time consuming and complicated numerical methods. Neural network seem to have the ability to establish a relationship between an input and output space for mapping seismic velocity. Therefore, we made a preliminary attempt to evaluate the applicability of neural network to determine velocity and elevation of subsurface synthetic models corresponding to arrival times. The training and testing process of the neural network is successfully accomplished using the synthetic data. Furthermore, we evaluated the neural network using observed data. The result of the evaluation indicates that the neural network can compute velocity and elevation corresponding to arrival times. The similarity of those models shows the success of neural network as a new alternative in seismic refraction data interpretation.

  1. Neural Control and Adaptive Neural Forward Models for Insect-like, Energy-Efficient, and Adaptable Locomotion of Walking Machines

    Directory of Open Access Journals (Sweden)

    Poramate eManoonpong

    2013-02-01

    Full Text Available Living creatures, like walking animals, have found fascinating solutions for the problem of locomotion control. Their movements show the impression of elegance including versatile, energy-efficient, and adaptable locomotion. During the last few decades, roboticists have tried to imitate such natural properties with artificial legged locomotion systems by using different approaches including machine learning algorithms, classical engineering control techniques, and biologically-inspired control mechanisms. However, their levels of performance are still far from the natural ones. By contrast, animal locomotion mechanisms seem to largely depend not only on central mechanisms (central pattern generators, CPGs and sensory feedback (afferent-based control but also on internal forward models (efference copies. They are used to a different degree in different animals. Generally, CPGs organize basic rhythmic motions which are shaped by sensory feedback while internal models are used for sensory prediction and state estimations. According to this concept, we present here adaptive neural locomotion control consisting of a CPG mechanism with neuromodulation and local leg control mechanisms based on sensory feedback and adaptive neural forward models with efference copies. This neural closed-loop controller enables a walking machine to perform a multitude of different walking patterns including insect-like leg movements and gaits as well as energy-efficient locomotion. In addition, the forward models allow the machine to autonomously adapt its locomotion to deal with a change of terrain, losing of ground contact during stance phase, stepping on or hitting an obstacle during swing phase, leg damage, and even to promote cockroach-like climbing behavior. Thus, the results presented here show that the employed embodied neural closed-loop system can be a powerful way for developing robust and adaptable machines.

  2. Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines.

    Science.gov (United States)

    Manoonpong, Poramate; Parlitz, Ulrich; Wörgötter, Florentin

    2013-01-01

    Living creatures, like walking animals, have found fascinating solutions for the problem of locomotion control. Their movements show the impression of elegance including versatile, energy-efficient, and adaptable locomotion. During the last few decades, roboticists have tried to imitate such natural properties with artificial legged locomotion systems by using different approaches including machine learning algorithms, classical engineering control techniques, and biologically-inspired control mechanisms. However, their levels of performance are still far from the natural ones. By contrast, animal locomotion mechanisms seem to largely depend not only on central mechanisms (central pattern generators, CPGs) and sensory feedback (afferent-based control) but also on internal forward models (efference copies). They are used to a different degree in different animals. Generally, CPGs organize basic rhythmic motions which are shaped by sensory feedback while internal models are used for sensory prediction and state estimations. According to this concept, we present here adaptive neural locomotion control consisting of a CPG mechanism with neuromodulation and local leg control mechanisms based on sensory feedback and adaptive neural forward models with efference copies. This neural closed-loop controller enables a walking machine to perform a multitude of different walking patterns including insect-like leg movements and gaits as well as energy-efficient locomotion. In addition, the forward models allow the machine to autonomously adapt its locomotion to deal with a change of terrain, losing of ground contact during stance phase, stepping on or hitting an obstacle during swing phase, leg damage, and even to promote cockroach-like climbing behavior. Thus, the results presented here show that the employed embodied neural closed-loop system can be a powerful way for developing robust and adaptable machines.

  3. A new neural network model for solving random interval linear programming problems.

    Science.gov (United States)

    Arjmandzadeh, Ziba; Safi, Mohammadreza; Nazemi, Alireza

    2017-05-01

    This paper presents a neural network model for solving random interval linear programming problems. The original problem involving random interval variable coefficients is first transformed into an equivalent convex second order cone programming problem. A neural network model is then constructed for solving the obtained convex second order cone problem. Employing Lyapunov function approach, it is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact satisfactory solution of the original problem. Several illustrative examples are solved in support of this technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Exponential stabilization and synchronization for fuzzy model of memristive neural networks by periodically intermittent control.

    Science.gov (United States)

    Yang, Shiju; Li, Chuandong; Huang, Tingwen

    2016-03-01

    The problem of exponential stabilization and synchronization for fuzzy model of memristive neural networks (MNNs) is investigated by using periodically intermittent control in this paper. Based on the knowledge of memristor and recurrent neural network, the model of MNNs is formulated. Some novel and useful stabilization criteria and synchronization conditions are then derived by using the Lyapunov functional and differential inequality techniques. It is worth noting that the methods used in this paper are also applied to fuzzy model for complex networks and general neural networks. Numerical simulations are also provided to verify the effectiveness of theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Neural Activations of Guided Imagery and Music in Negative Emotional Processing: A Functional MRI Study.

    Science.gov (United States)

    Lee, Sang Eun; Han, Yeji; Park, HyunWook

    2016-01-01

    The Bonny Method of Guided Imagery and Music uses music and imagery to access and explore personal emotions associated with episodic memories. Understanding the neural mechanism of guided imagery and music (GIM) as combined stimuli for emotional processing informs clinical application. We performed functional magnetic resonance imaging (fMRI) to demonstrate neural mechanisms of GIM for negative emotional processing when personal episodic memory is recalled and re-experienced through GIM processes. Twenty-four healthy volunteers participated in the study, which used classical music and verbal instruction stimuli to evoke negative emotions. To analyze the neural mechanism, activated regions associated with negative emotional and episodic memory processing were extracted by conducting volume analyses for the contrast between GIM and guided imagery (GI) or music (M). The GIM stimuli showed increased activation over the M-only stimuli in five neural regions associated with negative emotional and episodic memory processing, including the left amygdala, left anterior cingulate gyrus, left insula, bilateral culmen, and left angular gyrus (AG). Compared with GI alone, GIM showed increased activation in three regions associated with episodic memory processing in the emotional context, including the right posterior cingulate gyrus, bilateral parahippocampal gyrus, and AG. No neural regions related to negative emotional and episodic memory processing showed more activation for M and GI than for GIM. As a combined multimodal stimulus, GIM may increase neural activations related to negative emotions and episodic memory processing. Findings suggest a neural basis for GIM with personal episodic memories affecting cortical and subcortical structures and functions. © the American Music Therapy Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Isolating Discriminant Neural Activity in the Presence of Eye Movements and Concurrent Task Demands

    Directory of Open Access Journals (Sweden)

    Jon Touryan

    2017-07-01

    Full Text Available A growing number of studies use the combination of eye-tracking and electroencephalographic (EEG measures to explore the neural processes that underlie visual perception. In these studies, fixation-related potentials (FRPs are commonly used to quantify early and late stages of visual processing that follow the onset of each fixation. However, FRPs reflect a mixture of bottom-up (sensory-driven and top-down (goal-directed processes, in addition to eye movement artifacts and unrelated neural activity. At present there is little consensus on how to separate this evoked response into its constituent elements. In this study we sought to isolate the neural sources of target detection in the presence of eye movements and over a range of concurrent task demands. Here, participants were asked to identify visual targets (Ts amongst a grid of distractor stimuli (Ls, while simultaneously performing an auditory N-back task. To identify the discriminant activity, we used independent components analysis (ICA for the separation of EEG into neural and non-neural sources. We then further separated the neural sources, using a modified measure-projection approach, into six regions of interest (ROIs: occipital, fusiform, temporal, parietal, cingulate, and frontal cortices. Using activity from these ROIs, we identified target from non-target fixations in all participants at a level similar to other state-of-the-art classification techniques. Importantly, we isolated the time course and spectral features of this discriminant activity in each ROI. In addition, we were able to quantify the effect of cognitive load on both fixation-locked potential and classification performance across regions. Together, our results show the utility of a measure-projection approach for separating task-relevant neural activity into meaningful ROIs within more complex contexts that include eye movements.

  7. Increased neural activity of a mushroom body neuron subtype in the brains of forager honeybees.

    Directory of Open Access Journals (Sweden)

    Taketoshi Kiya

    Full Text Available Honeybees organize a sophisticated society, and the workers transmit information about the location of food sources using a symbolic dance, known as 'dance communication'. Recent studies indicate that workers integrate sensory information during foraging flight for dance communication. The neural mechanisms that account for this remarkable ability are, however, unknown. In the present study, we established a novel method to visualize neural activity in the honeybee brain using a novel immediate early gene, kakusei, as a marker of neural activity. The kakusei transcript was localized in the nuclei of brain neurons and did not encode an open reading frame, suggesting that it functions as a non-coding nuclear RNA. Using this method, we show that neural activity of a mushroom body neuron subtype, the small-type Kenyon cells, is prominently increased in the brains of dancer and forager honeybees. In contrast, the neural activity of the two mushroom body neuron subtypes, the small-and large-type Kenyon cells, is increased in the brains of re-orienting workers, which memorize their hive location during re-orienting flights. These findings demonstrate that the small-type Kenyon cell-preferential activity is associated with foraging behavior, suggesting its involvement in information integration during foraging flight, which is an essential basis for dance communication.

  8. Neural-Fuzzy model Based Steel Pipeline Multiple Cracks Classification

    Science.gov (United States)

    Elwalwal, Hatem Mostafa; Mahzan, Shahruddin Bin Hj.; Abdalla, Ahmed N.

    2017-10-01

    While pipes are cheaper than other means of transportation, this cost saving comes with a major price: pipes are subject to cracks, corrosion etc., which in turn can cause leakage and environmental damage. In this paper, Neural-Fuzzy model for multiple cracks classification based on Lamb Guide Wave. Simulation results for 42 sample were collected using ANSYS software. The current research object to carry on the numerical simulation and experimental study, aiming at finding an effective way to detection and the localization of cracks and holes defects in the main body of pipeline. Considering the damage form of multiple cracks and holes which may exist in pipeline, to determine the respective position in the steel pipe. In addition, the technique used in this research a guided lamb wave based structural health monitoring method whereas piezoelectric transducers will use as exciting and receiving sensors by Pitch-Catch method. Implementation of simple learning mechanism has been developed specially for the ANN for fuzzy the system represented.

  9. The Effect of Inhibitory Neuron on the Evolution Model of Higher-Order Coupling Neural Oscillator Population

    Science.gov (United States)

    Qi, Yi; Wang, Rubin; Jiao, Xianfa; Du, Ying

    2014-01-01

    We proposed a higher-order coupling neural network model including the inhibitory neurons and examined the dynamical evolution of average number density and phase-neural coding under the spontaneous activity and external stimulating condition. The results indicated that increase of inhibitory coupling strength will cause decrease of average number density, whereas increase of excitatory coupling strength will cause increase of stable amplitude of average number density. Whether the neural oscillator population is able to enter the new synchronous oscillation or not is determined by excitatory and inhibitory coupling strength. In the presence of external stimulation, the evolution of the average number density is dependent upon the external stimulation and the coupling term in which the dominator will determine the final evolution. PMID:24516505

  10. The Effect of Inhibitory Neuron on the Evolution Model of Higher-Order Coupling Neural Oscillator Population

    Directory of Open Access Journals (Sweden)

    Yi Qi

    2014-01-01

    Full Text Available We proposed a higher-order coupling neural network model including the inhibitory neurons and examined the dynamical evolution of average number density and phase-neural coding under the spontaneous activity and external stimulating condition. The results indicated that increase of inhibitory coupling strength will cause decrease of average number density, whereas increase of excitatory coupling strength will cause increase of stable amplitude of average number density. Whether the neural oscillator population is able to enter the new synchronous oscillation or not is determined by excitatory and inhibitory coupling strength. In the presence of external stimulation, the evolution of the average number density is dependent upon the external stimulation and the coupling term in which the dominator will determine the final evolution.

  11. Using artificial neural network approach for modelling rainfall–runoff ...

    Indian Academy of Sciences (India)

    driven techniques, the artificial neural .... inputs from the environment), one or more inter- mediate layers and an output layer (producing the ... three-layer learning network consisting of an input layer, a hidden layer and an output layer as illus-.

  12. Spatial interactions in the superior colliculus predict saccade behavior in a neural field model.

    Science.gov (United States)

    Marino, Robert A; Trappenberg, Thomas P; Dorris, Michael; Munoz, Douglas P

    2012-02-01

    During natural vision, eye movements are dynamically controlled by the combinations of goal-related top-down (TD) and stimulus-related bottom-up (BU) neural signals that map onto objects or locations of interest in the visual world. In primates, both BU and TD signals converge in many areas of the brain, including the intermediate layers of the superior colliculus (SCi), a midbrain structure that contains a retinotopically coded map for saccades. How TD and BU signals combine or interact within the SCi map to influence saccades remains poorly understood and actively debated. It has been proposed that winner-take-all competition between these signals occurs dynamically within this map to determine the next location for gaze. Here, we examine how TD and BU signals interact spatially within an artificial two-dimensional dynamic winner-take-all neural field model of the SCi to influence saccadic RT (SRT). We measured point images (spatially organized population activity on the SC map) physiologically to inform the TD and BU model parameters. In this model, TD and BU signals interacted nonlinearly within the SCi map to influence SRT via changes to the (1) spatial size or extent of individual signals, (2) peak magnitude of individual signals, (3) total number of competing signals, and (4) the total spatial separation between signals in the visual field. This model reproduced previous behavioral studies of TD and BU influences on SRT and accounted for multiple inconsistencies between them. This is achieved by demonstrating how, under different experimental conditions, the spatial interactions of TD and BU signals can lead to either increases or decreases in SRT. Our results suggest that dynamic winner-take-all modeling with local excitation and distal inhibition in two dimensions accurately reflects both the physiological activity within the SCi map and the behavioral changes in SRT that result from BU and TD manipulations.

  13. A method for locating regions containing neural activation at a given confidence level from MEG data

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, D.M.; George, J.S.

    1996-02-01

    The MEG inverse problem does not have a general, unique solution. Unless restrictive model assumptions are made, there are generally many more free parameters than measurements and there exist silent sources - current distributions which produce no external magnetic field. By weighting solutions according to how well each fits our prior notion about what properties good solutions should have, it may be possible to obtain a single current distribution that best fits the data and our expectations. However, in general there will still exist a number of different current distributions which fit both the data and our prior expectations sufficiently well. For example, a simulated data set based on a single or several dipoles can generally be fit equally well by a distributed current minimum-norm reconstruction. In experimental data it is often possible to find a relatively small number of dipoles which both fit the data and have a norm not much larger than that of the minimum-norm solution. Moreover, the few-dipole solutions often have currents in different regions than the corresponding minimum-norm solution. Because there exist well-fitting current distributions which may have current in significantly different locations, it can be misleading to infer locations of stimulus-correlated neural activity based on a single, best-fitting current distribution. we demonstrate here a method for inferring the location and number of regions containing neural activation by considering all possible current distributions within a given model (not just the most likely one) weighted according to how well each fits both the data and our prior expectations.

  14. Adaptive RBF Neural Network Control for Three-Phase Active Power Filter

    Directory of Open Access Journals (Sweden)

    Juntao Fei

    2013-05-01

    Full Text Available Abstract An adaptive radial basis function (RBF neural network control system for three-phase active power filter (APF is proposed to eliminate harmonics. Compensation current is generated to track command current so as to eliminate the harmonic current of non-linear load and improve the quality of the power system. The asymptotical stability of the APF system can be guaranteed with the proposed adaptive neural network strategy. The parameters of the neural network can be adaptively updated to achieve the desired tracking task. The simulation results demonstrate good performance, for example showing small current tracking error, reduced total harmonic distortion (THD, improved accuracy and strong robustness in the presence of parameters variation and nonlinear load. It is shown that the adaptive RBF neural network control system for three-phase APF gives better control than hysteresis control.

  15. Artificial neural networks from MATLAB in medicinal chemistry. Bayesian-regularized genetic neural networks (BRGNN): application to the prediction of the antagonistic activity against human platelet thrombin receptor (PAR-1).

    Science.gov (United States)

    Caballero, Julio; Fernández, Michael

    2008-01-01

    Artificial neural networks (ANNs) have been widely used for medicinal chemistry modeling. In the last two decades, too many reports used MATLAB environment as an adequate platform for programming ANNs. Some of these reports comprise a variety of applications intended to quantitatively or qualitatively describe structure-activity relationships. A powerful tool is obtained when there are combined Bayesian-regularized neural networks (BRANNs) and genetic algorithm (GA): Bayesian-regularized genetic neural networks (BRGNNs). BRGNNs can model complicated relationships between explanatory variables and dependent variables. Thus, this methodology is regarded as useful tool for QSAR analysis. In order to demonstrate the use of BRGNNs, we developed a reliable method for predicting the antagonistic activity of 5-amino-3-arylisoxazole derivatives against Human Platelet Thrombin Receptor (PAR-1), using classical 3D-QSAR methodologies: Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA). In addition, 3D vectors generated from the molecular structures were correlated with antagonistic activities by multivariate linear regression (MLR) and Bayesian-regularized neural networks (BRGNNs). All models were trained with 34 compounds, after which they were evaluated for predictive ability with additional 6 compounds. CoMFA and CoMSIA were unable to describe this structure-activity relationship, while BRGNN methodology brings the best results according to validation statistics.

  16. Bayesian Inference for Neural Electromagnetic Source Localization: Analysis of MEG Visual Evoked Activity

    Energy Technology Data Exchange (ETDEWEB)

    George, J.S.; Schmidt, D.M.; Wood, C.C.

    1999-02-01

    We have developed a Bayesian approach to the analysis of neural electromagnetic (MEG/EEG) data that can incorporate or fuse information from other imaging modalities and addresses the ill-posed inverse problem by sarnpliig the many different solutions which could have produced the given data. From these samples one can draw probabilistic inferences about regions of activation. Our source model assumes a variable number of variable size cortical regions of stimulus-correlated activity. An active region consists of locations on the cortical surf ace, within a sphere centered on some location in cortex. The number and radi of active regions can vary to defined maximum values. The goal of the analysis is to determine the posterior probability distribution for the set of parameters that govern the number, location, and extent of active regions. Markov Chain Monte Carlo is used to generate a large sample of sets of parameters distributed according to the posterior distribution. This sample is representative of the many different source distributions that could account for given data, and allows identification of probable (i.e. consistent) features across solutions. Examples of the use of this analysis technique with both simulated and empirical MEG data are presented.

  17. Neural model of gene regulatory network: a survey on supportive meta-heuristics.

    Science.gov (United States)

    Biswas, Surama; Acharyya, Sriyankar

    2016-06-01

    Gene regulatory network (GRN) is produced as a result of regulatory interactions between different genes through their coded proteins in cellular context. Having immense importance in disease detection and drug finding, GRN has been modelled through various mathematical and computational schemes and reported in survey articles. Neural and neuro-fuzzy models have been the focus of attraction in bioinformatics. Predominant use of meta-heuristic algorithms in training neural models has proved its excellence. Considering these facts, this paper is organized to survey neural modelling schemes of GRN and the efficacy of meta-heuristic algorithms towards parameter learning (i.e. weighting connections) within the model. This survey paper renders two different structure-related approaches to infer GRN which are global structure approach and substructure approach. It also describes two neural modelling schemes, such as artificial neural network/recurrent neural network based modelling and neuro-fuzzy modelling. The meta-heuristic algorithms applied so far to learn the structure and parameters of neutrally modelled GRN have been reviewed here.

  18. Maximum solid concentrations of coal water slurries predicted by neural network models

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jun; Li, Yanchang; Zhou, Junhu; Liu, Jianzhong; Cen, Kefa

    2010-12-15

    The nonlinear back-propagation (BP) neural network models were developed to predict the maximum solid concentration of coal water slurry (CWS) which is a substitute for oil fuel, based on physicochemical properties of 37 typical Chinese coals. The Levenberg-Marquardt algorithm was used to train five BP neural network models with different input factors. The data pretreatment method, learning rate and hidden neuron number were optimized by training models. It is found that the Hardgrove grindability index (HGI), moisture and coalification degree of parent coal are 3 indispensable factors for the prediction of CWS maximum solid concentration. Each BP neural network model gives a more accurate prediction result than the traditional polynomial regression equation. The BP neural network model with 3 input factors of HGI, moisture and oxygen/carbon ratio gives the smallest mean absolute error of 0.40%, which is much lower than that of 1.15% given by the traditional polynomial regression equation. (author)

  19. Adaptive control using a hybrid-neural model: application to a polymerisation reactor

    Directory of Open Access Journals (Sweden)

    Cubillos F.

    2001-01-01

    Full Text Available This work presents the use of a hybrid-neural model for predictive control of a plug flow polymerisation reactor. The hybrid-neural model (HNM is based on fundamental conservation laws associated with a neural network (NN used to model the uncertain parameters. By simulations, the performance of this approach was studied for a peroxide-initiated styrene tubular reactor. The HNM was synthesised for a CSTR reactor with a radial basis function neural net (RBFN used to estimate the reaction rates recursively. The adaptive HNM was incorporated in two model predictive control strategies, a direct synthesis scheme and an optimum steady state scheme. Tests for servo and regulator control showed excellent behaviour following different setpoint variations, and rejecting perturbations. The good generalisation and training capacities of hybrid models, associated with the simplicity and robustness characteristics of the MPC formulations, make an attractive combination for the control of a polymerisation reactor.

  20. Predictions of Diffuse Pollution by the HSPF Model and the Back-Propagation Neural Network Model.

    Science.gov (United States)

    Chang, Chia-Ling; Li, Meng-Yuan

    2017-08-01

      Watershed models are important tools for predicting the possible change of watershed responses. Environmental models comprise the deterministic model and the probabilistic model. This study discusses the Hydrological Simulation Program Fortran (HSPF) and the Back-Propagation Neural Network (BPNN); these two models represent the deterministic model and the probabilistic model, respectively. As the properties of the two models are distinct, they have differing abilities to predict surface-runoff pollution. For the two models, the runoff simulation results are satisfactory. However, due to the limitation of the water quality monitoring records, pollution simulation is more difficult than runoff simulation. The results indicate that the prediction accuracy in the pollution simulation can be improved by adjusting the BPNN neurons. On the contrary, improving the prediction accuracy is limited by HSPF. Although the flexibility of BPNN is higher than HSPF, sufficient historical monitoring records are important for both of these models.

  1. An Integrative Model for the Neural Mechanism of Eye Movement Desensitization and Reprocessing (EMDR).

    Science.gov (United States)

    Coubard, Olivier A

    2016-01-01

    Since the seminal report by Shapiro that bilateral stimulation induces cognitive and emotional changes, 26 years of basic and clinical research have examined the effects of Eye Movement Desensitization and Reprocessing (EMDR) in anxiety disorders, particularly in post-traumatic stress disorder (PTSD). The present article aims at better understanding EMDR neural mechanism. I first review procedural aspects of EMDR protocol and theoretical hypothesis about EMDR effects, and develop the reasons why the scientific community is still divided about EMDR. I then slide from psychology to physiology describing eye movements/emotion interaction from the physiological viewpoint, and introduce theoretical and technical tools used in movement research to re-examine EMDR neural mechanism. Using a recent physiological model for the neuropsychological architecture of motor and cognitive control, the Threshold Interval Modulation with Early Release-Rate of rIse Deviation with Early Release (TIMER-RIDER)-model, I explore how attentional control and bilateral stimulation may participate to EMDR effects. These effects may be obtained by two processes acting in parallel: (i) activity level enhancement of attentional control component; and (ii) bilateral stimulation in any sensorimotor modality, both resulting in lower inhibition enabling dysfunctional information to be processed and anxiety to be reduced. The TIMER-RIDER model offers quantitative predictions about EMDR effects for future research about its underlying physiological mechanisms.

  2. An integrative model for the neural mechanism of Eye Movement Desensitization and Reprocessing (EMDR

    Directory of Open Access Journals (Sweden)

    Olivier A. Coubard

    2016-04-01

    Full Text Available Since the seminal report by Shapiro that bilateral stimulation induces cognitive and emotional changes, twenty-six years of basic and clinical research have examined the effects of Eye Movement Desensitization and Reprocessing (EMDR in anxiety disorders, particularly in Post-Traumatic Stress Disorder (PTSD. The present article aims at better understanding EMDR neural mechanism. I first review procedural aspects of EMDR protocol and theoretical hypothesis about EMDR effects, and develop the reasons why the scientific community is still divided about EMDR. I then slide from psychology to physiology describing eye movements/emotion interaction from the physiological viewpoint, and introduce theoretical and technical tools used in movement research to re-examine EMDR neural mechanism. Using a recent physiological model for the neuropsychological architecture of motor and cognitive control, the Threshold Interval Modulation with Early Release-Rate of rIse Deviation with Early Release – TIMER-RIDER – model, I explore how attentional control and bilateral stimulation may participate to EMDR effects. These effects may be obtained by two processes acting in parallel: (i activity level enhancement of attentional control component; and (ii bilateral stimulation in any sensorimotor modality, both resulting in lower inhibition enabling dysfunctional information to be processed and anxiety to be reduced. The TIMER-RIDER model offers quantitative predictions about EMDR effects for future research about its underlying physiological mechanisms.

  3. The necessity of connection structures in neural models of variable binding.

    Science.gov (United States)

    van der Velde, Frank; de Kamps, Marc

    2015-08-01

    In his review of neural binding problems, Feldman (Cogn Neurodyn 7:1-11, 2013) addressed two types of models as solutions of (novel) variable binding. The one type uses labels such as phase synchrony of activation. The other ('connectivity based') type uses dedicated connections structures to achieve novel variable binding. Feldman argued that label (synchrony) based models are the only possible candidates to handle novel variable binding, whereas connectivity based models lack the flexibility required for that. We argue and illustrate that Feldman's analysis is incorrect. Contrary to his conclusion, connectivity based models are the only viable candidates for models of novel variable binding because they are the only type of models that can produce behavior. We will show that the label (synchrony) based models analyzed by Feldman are in fact examples of connectivity based models. Feldman's analysis that novel variable binding can be achieved without existing connection structures seems to result from analyzing the binding problem in a wrong frame of reference, in particular in an outside instead of the required inside frame of reference. Connectivity based models can be models of novel variable binding when they possess a connection structure that resembles a small-world network, as found in the brain. We will illustrate binding with this type of model with episode binding and the binding of words, including novel words, in sentence structures.

  4. Neural networks for modeling gene-gene interactions in association studies

    Directory of Open Access Journals (Sweden)

    Bammann Karin

    2009-12-01

    Full Text Available Abstract Background Our aim is to investigate the ability of neural networks to model different two-locus disease models. We conduct a simulation study to compare neural networks with two standard methods, namely logistic regression models and multifactor dimensionality reduction. One hundred data sets are generated for each of six two-locus disease models, which are considered in a low and in a high risk scenario. Two models represent independence, one is a multiplicative model, and three models are epistatic. For each data set, six neural networks (with up to five hidden neurons and five logistic regression models (the null model, three main effect models, and the full model with two different codings for the genotype information are fitted. Additionally, the multifactor dimensionality reduction approach is applied. Results The results show that neural networks are more successful in modeling the structure of the underlying disease model than logistic regression models in most of the investigated situations. In our simulation study, neither logistic regression nor multifactor dimensionality reduction are able to correctly identify biological interaction. Conclusions Neural networks are a promising tool to handle complex data situations. However, further research is necessary concerning the interpretation of their parameters.

  5. Modelling the nonlinearity of piezoelectric actuators in active ...

    African Journals Online (AJOL)

    Piezoelectric actuators have great capabilities as elements of intelligent structures for active vibration cancellation. One problem with this type of actuator is its nonlinear behaviour. In active vibration control systems, it is important to have an accurate model of the control branch. This paper demonstrates the ability of neural ...

  6. modelling the nonlinearity of piezoelectric actuators in active ...

    African Journals Online (AJOL)

    cistvr

    Piezoelectric actuators have great capabilities as elements of intelligent structures for active vibration cancellation. One problem with this type of actuator is its nonlinear behaviour. In active vibration control systems, it is important to have an accurate model of the control branch. This paper demonstrates the ability of neural ...

  7. Development of Ensemble Neural Network Convection Parameterizations for Climate Models

    Energy Technology Data Exchange (ETDEWEB)

    Fox-Rabinovitz, M. S.; Krasnopolsky, V. M.

    2012-05-02

    The novel neural network (NN) approach has been formulated and used for development of a NN ensemble stochastic convection parametrization for climate models. This fast parametrization is built based on data from Cloud Resolving Model (CRM) simulations initialized with and forced by TOGA-COARE data. The SAM (System for Atmospheric Modeling), developed by D. Randall, M. Khairoutdinov, and their collaborators, has been used for CRM simulations. The observational data are also used for validation of model simulations. The SAM-simulated data have been averaged and projected onto the GCM space of atmospheric states to implicitly define a stochastic convection parametrization. This parametrization is emulated using an ensemble of NNs. An ensemble of NNs with different NN parameters has been trained and tested. The inherent uncertainty of the stochastic convection parametrization derived in such a way is estimated. Due to these inherent uncertainties, NN ensemble is used to constitute a stochastic NN convection parametrization. The developed NN convection parametrization have been validated in a diagnostic CAM (CAM-NN) run vs. the control CAM run. Actually, CAM inputs have been used, at every time step of the control/original CAM integration, for parallel calculations of the NN convection parametrization (CAM-NN) to produce its outputs as a diagnostic byproduct. Total precipitation (P) and cloudiness (CLD) time series, diurnal cycles, and P and CLD distributions for the large Tropical Pacific Ocean for the parallel CAM-NN and CAM runs show similarity and consistency with the NCEP reanalysis. The P and CLD distributions for the tropical area for the parallel runs have been analyzed first for the TOGA-COARE boreal winter season (November 1992 through February 1993) and then for the winter seasons of the follow-up parallel decadal simulations. The obtained results are encouraging and practically meaningful. They show the validity of the NN approach. This constitutes an

  8. Demystifying Multitask Deep Neural Networks for Quantitative Structure-Activity Relationships.

    Science.gov (United States)

    Xu, Yuting; Ma, Junshui; Liaw, Andy; Sheridan, Robert P; Svetnik, Vladimir

    2017-10-23

    Deep neural networks (DNNs) are complex computational models that have found great success in many artificial intelligence applications, such as computer vision1,2 and natural language processing.3,4 In the past four years, DNNs have also generated promising results for quantitative structure-activity relationship (QSAR) tasks.5,6 Previous work showed that DNNs can routinely make better predictions than traditional methods, such as random forests, on a diverse collection of QSAR data sets. It was also found that multitask DNN models-those trained on and predicting multiple QSAR properties simultaneously-outperform DNNs trained separately on the individual data sets in many, but not all, tasks. To date there has been no satisfactory explanation of why the QSAR of one task embedded in a multitask DNN can borrow information from other unrelated QSAR tasks. Thus, using multitask DNNs in a way that consistently provides a predictive advantage becomes a challenge. In this work, we explored why multitask DNNs make a difference in predictive performance. Our results show that during prediction a multitask DNN does borrow "signal" from molecules with similar structures in the training sets of the other tasks. However, whether this borrowing leads to better or worse predictive performance depends on whether the activities are correlated. On the basis of this, we have developed a strategy to use multitask DNNs that incorporate prior domain knowledge to select training sets with correlated activities, and we demonstrate its effectiveness on several examples.

  9. Activational and effort-related aspects of motivation: neural mechanisms and implications for psychopathology.

    Science.gov (United States)

    Salamone, John D; Yohn, Samantha E; López-Cruz, Laura; San Miguel, Noemí; Correa, Mercè

    2016-05-01

    Motivation has been defined as the process that allows organisms to regulate their internal and external environment, and control the probability, proximity and availability of stimuli. As such, motivation is a complex process that is critical for survival, which involves multiple behavioural functions mediated by a number of interacting neural circuits. Classical theories of motivation suggest that there are both directional and activational aspects of motivation, and activational aspects (i.e. speed and vigour of both the instigation and persistence of behaviour) are critical for enabling organisms to overcome work-related obstacles or constraints that separate them from significant stimuli. The present review discusses the role of brain dopamine and related circuits in behavioural activation, exertion of effort in instrumental behaviour, and effort-related decision-making, based upon both animal and human studies. Impairments in behavioural activation and effort-related aspects of motivation are associated with psychiatric symptoms such as anergia, fatigue, lassitude and psychomotor retardation, which cross multiple pathologies, including depression, schizophrenia, and Parkinson's disease. Therefore, this review also attempts to provide an interdisciplinary approach that integrates findings from basic behavioural neuroscience, behavioural economics, clinical neuropsychology, psychiatry, and neurology, to provide a coherent framework for future research and theory in this critical field. Although dopamine systems are a critical part of the brain circuitry regulating behavioural activation, exertion of effort, and effort-related decision-making, mesolimbic dopamine is only one part of a distributed circuitry that includes multiple neurotransmitters and brain areas. Overall, there is a striking similarity between the brain areas involved in behavioural activation and effort-related processes in rodents and in humans. Animal models of effort-related decision

  10. Learning Pitch with STDP: A Computational Model of Place and Temporal Pitch Perception Using Spiking Neural Networks.

    Directory of Open Access Journals (Sweden)

    Nafise Erfanian Saeedi

    2016-04-01

    Full Text Available Pitch perception is important for understanding speech prosody, music perception, recognizing tones in tonal languages, and perceiving speech in noisy environments. The two principal pitch perception theories consider the place of maximum neural excitation along the auditory nerve and the temporal pattern of the auditory neurons' action potentials (spikes as pitch cues. This paper describes a biophysical mechanism by which fine-structure temporal information can be extracted from the spikes generated at the auditory periphery. Deriving meaningful pitch-related information from spike times requires neural structures specialized in capturing synchronous or correlated activity from amongst neural events. The emergence of such pitch-processing neural mechanisms is described through a computational model of auditory processing. Simulation results show that a correlation-based, unsupervised, spike-based form of Hebbian learning can explain the development of neural structures required for recognizing the pitch of simple and complex tones, with or without the fundamental frequency. The temporal code is robust to variations in the spectral shape of the signal and thus can explain the phenomenon of pitch constancy.

  11. Vascular Endothelial Growth Factor Receptor 3 Controls Neural Stem Cell Activation in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Jinah Han

    2015-02-01

    Full Text Available Neural stem cells (NSCs continuously produce new neurons within the adult mammalian hippocampus. NSCs are typically quiescent but activated to self-renew or differentiate into neural progenitor cells. The molecular mechanisms of NSC activation remain poorly understood. Here, we show that adult hippocampal NSCs express vascular endothelial growth factor receptor (VEGFR 3 and its ligand VEGF-C, which activates quiescent NSCs to enter the cell cycle and generate progenitor cells. Hippocampal NSC activation and neurogenesis are impaired by conditional deletion of Vegfr3 in NSCs. Functionally, this is associated with compromised NSC activation in response to VEGF-C and