WorldWideScience

Sample records for networks support vector

  1. Artificial neural networks and support vector mac

    Indian Academy of Sciences (India)

    Quantitative structure-property relationships of electroluminescent materials: Artificial neural networks and support vector machines to predict electroluminescence of organic molecules. ALANA FERNANDES GOLIN and RICARDO STEFANI. ∗. Laboratório de Estudos de Materiais (LEMAT), Instituto de Ciências Exatas e da ...

  2. Incremental Support Vector Machine Framework for Visual Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yuichi Motai

    2007-01-01

    Full Text Available Motivated by the emerging requirements of surveillance networks, we present in this paper an incremental multiclassification support vector machine (SVM technique as a new framework for action classification based on real-time multivideo collected by homogeneous sites. The technique is based on an adaptation of least square SVM (LS-SVM formulation but extends beyond the static image-based learning of current SVM methodologies. In applying the technique, an initial supervised offline learning phase is followed by a visual behavior data acquisition and an online learning phase during which the cluster head performs an ensemble of model aggregations based on the sensor nodes inputs. The cluster head then selectively switches on designated sensor nodes for future incremental learning. Combining sensor data offers an improvement over single camera sensing especially when the latter has an occluded view of the target object. The optimization involved alleviates the burdens of power consumption and communication bandwidth requirements. The resulting misclassification error rate, the iterative error reduction rate of the proposed incremental learning, and the decision fusion technique prove its validity when applied to visual sensor networks. Furthermore, the enabled online learning allows an adaptive domain knowledge insertion and offers the advantage of reducing both the model training time and the information storage requirements of the overall system which makes it even more attractive for distributed sensor networks communication.

  3. Artificial neural networks and support vector machine in banking computer systems

    Directory of Open Access Journals (Sweden)

    Jerzy Balicki

    2013-12-01

    Full Text Available In this paper, some artificial neural networks as well as a support vector machines have been studied due to bank computer system development. These approaches with the contact-less microprocessor technologies can upsurge the bank competitiveness by adding new functionalities. Moreover, some financial crisis influences can be declines.

  4. Water demand prediction using artificial neural networks and support vector regression

    CSIR Research Space (South Africa)

    Msiza, IS

    2008-11-01

    Full Text Available comparison are Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs). In this study it was observed that ANNs perform significantly better than SVMs. This performance is measured against the generalization ability of the two techniques in water...

  5. Network-based support vector machine for classification of microarray samples.

    Science.gov (United States)

    Zhu, Yanni; Shen, Xiaotong; Pan, Wei

    2009-01-30

    The importance of network-based approach to identifying biological markers for diagnostic classification and prognostic assessment in the context of microarray data has been increasingly recognized. To our knowledge, there have been few, if any, statistical tools that explicitly incorporate the prior information of gene networks into classifier building. The main idea of this paper is to take full advantage of the biological observation that neighboring genes in a network tend to function together in biological processes and to embed this information into a formal statistical framework. We propose a network-based support vector machine for binary classification problems by constructing a penalty term from the Finfinity-norm being applied to pairwise gene neighbors with the hope to improve predictive performance and gene selection. Simulation studies in both low- and high-dimensional data settings as well as two real microarray applications indicate that the proposed method is able to identify more clinically relevant genes while maintaining a sparse model with either similar or higher prediction accuracy compared with the standard and the L1 penalized support vector machines. The proposed network-based support vector machine has the potential to be a practically useful classification tool for microarrays and other high-dimensional data.

  6. The Neural Support Vector Machine

    NARCIS (Netherlands)

    Wiering, Marco; van der Ree, Michiel; Embrechts, Mark; Stollenga, Marijn; Meijster, Arnold; Nolte, A; Schomaker, Lambertus

    2013-01-01

    This paper describes a new machine learning algorithm for regression and dimensionality reduction tasks. The Neural Support Vector Machine (NSVM) is a hybrid learning algorithm consisting of neural networks and support vector machines (SVMs). The output of the NSVM is given by SVMs that take a

  7. Application of structured support vector machine backpropagation to a convolutional neural network for human pose estimation.

    Science.gov (United States)

    Witoonchart, Peerajak; Chongstitvatana, Prabhas

    2017-08-01

    In this study, for the first time, we show how to formulate a structured support vector machine (SSVM) as two layers in a convolutional neural network, where the top layer is a loss augmented inference layer and the bottom layer is the normal convolutional layer. We show that a deformable part model can be learned with the proposed structured SVM neural network by backpropagating the error of the deformable part model to the convolutional neural network. The forward propagation calculates the loss augmented inference and the backpropagation calculates the gradient from the loss augmented inference layer to the convolutional layer. Thus, we obtain a new type of convolutional neural network called an Structured SVM convolutional neural network, which we applied to the human pose estimation problem. This new neural network can be used as the final layers in deep learning. Our method jointly learns the structural model parameters and the appearance model parameters. We implemented our method as a new layer in the existing Caffe library. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Electrocardiogram Pattern Recognition and Analysis Based on Artificial Neural Networks and Support Vector Machines: A Review

    Directory of Open Access Journals (Sweden)

    Mario Sansone

    2013-01-01

    Full Text Available Computer systems for Electrocardiogram (ECG analysis support the clinician in tedious tasks (e.g., Holter ECG monitored in Intensive Care Units or in prompt detection of dangerous events (e.g., ventricular fibrillation. Together with clinical applications (arrhythmia detection and heart rate variability analysis, ECG is currently being investigated in biometrics (human identification, an emerging area receiving increasing attention. Methodologies for clinical applications can have both differences and similarities with respect to biometrics. This paper reviews methods of ECG processing from a pattern recognition perspective. In particular, we focus on features commonly used for heartbeat classification. Considering the vast literature in the field and the limited space of this review, we dedicated a detailed discussion only to a few classifiers (Artificial Neural Networks and Support Vector Machines because of their popularity; however, other techniques such as Hidden Markov Models and Kalman Filtering will be also mentioned.

  9. Monthly evaporation forecasting using artificial neural networks and support vector machines

    Science.gov (United States)

    Tezel, Gulay; Buyukyildiz, Meral

    2016-04-01

    Evaporation is one of the most important components of the hydrological cycle, but is relatively difficult to estimate, due to its complexity, as it can be influenced by numerous factors. Estimation of evaporation is important for the design of reservoirs, especially in arid and semi-arid areas. Artificial neural network methods and support vector machines (SVM) are frequently utilized to estimate evaporation and other hydrological variables. In this study, usability of artificial neural networks (ANNs) (multilayer perceptron (MLP) and radial basis function network (RBFN)) and ɛ-support vector regression (SVR) artificial intelligence methods was investigated to estimate monthly pan evaporation. For this aim, temperature, relative humidity, wind speed, and precipitation data for the period 1972 to 2005 from Beysehir meteorology station were used as input variables while pan evaporation values were used as output. The Romanenko and Meyer method was also considered for the comparison. The results were compared with observed class A pan evaporation data. In MLP method, four different training algorithms, gradient descent with momentum and adaptive learning rule backpropagation (GDX), Levenberg-Marquardt (LVM), scaled conjugate gradient (SCG), and resilient backpropagation (RBP), were used. Also, ɛ-SVR model was used as SVR model. The models were designed via 10-fold cross-validation (CV); algorithm performance was assessed via mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R 2). According to the performance criteria, the ANN algorithms and ɛ-SVR had similar results. The ANNs and ɛ-SVR methods were found to perform better than the Romanenko and Meyer methods. Consequently, the best performance using the test data was obtained using SCG(4,2,2,1) with R 2 = 0.905.

  10. Support Vector Machine Based Mobility Prediction Scheme in Heterogeneous Wireless Networks

    Directory of Open Access Journals (Sweden)

    Jiamei Chen

    2015-01-01

    Full Text Available To improve the intelligence of the mobile-aware applications in the heterogeneous wireless networks (HetNets, it is essential to establish an advanced mechanism to anticipate the change of the user location in every subnet for HetNets. This paper proposes a multiclass support vector machine based mobility prediction (Multi-SVMMP scheme to estimate the future location of mobile users according to the movement history information of each user in HetNets. In the location prediction process, the regular and random user movement patterns are treated differently, which can reflect the user movements more realistically than the existing movement models in HetNets. And different forms of multiclass support vector machines are embedded in the two mobility patterns according to the different characteristics of the two mobility patterns. Moreover, the introduction of target region (TR cuts down the energy consumption efficiently without impacting the prediction accuracy. As reported in the simulations, our Multi-SVMMP can overcome the difficulties found in the traditional methods and obtain a higher prediction accuracy and user adaptability while reducing the cost of prediction resources.

  11. Application of neural networks and support vector machine for significant wave height prediction

    Directory of Open Access Journals (Sweden)

    Jadran Berbić

    2017-07-01

    Full Text Available For the purposes of planning and operation of maritime activities, information about wave height dynamics is of great importance. In the paper, real-time prediction of significant wave heights for the following 0.5–5.5 h is provided, using information from 3 or more time points. In the first stage, predictions are made by varying the quantity of significant wave heights from previous time points and various ways of using data are discussed. Afterwards, in the best model, according to the criteria of practicality and accuracy, the influence of wind is taken into account. Predictions are made using two machine learning methods – artificial neural networks (ANN and support vector machine (SVM. The models were built using the built-in functions of software Weka, developed by Waikato University, New Zealand.

  12. A comparative study of support vector machines and artificial neural networks for predicting precipitation in Iran

    Science.gov (United States)

    Hamidi, Omid; Poorolajal, Jalal; Sadeghifar, Majid; Abbasi, Hamed; Maryanaji, Zohreh; Faridi, Hamid Reza; Tapak, Lily

    2015-02-01

    This study compared two machine learning techniques, support vector machines (SVM), and artificial neural network (ANN) in modeling monthly precipitation fluctuations. The SVM and ANN approaches were applied to the monthly precipitation data of two synoptic stations in Hamadan (Airport and Nojeh), the west of Iran. To avoid overfitting, the data were divided into two parts of training (70 %) and test sets (30 %). Then, monthly data from July 1976 to June 2001 and data from April 1961 to November 1996 were considered as training set for the Hamadan and Nojeh stations, respectively, and the remaining were used as test set. The results of the SVM model were compared with those of the ANN based on the root mean square errors, mean absolute errors, determination coefficient, and efficiency coefficient criteria. Based on the comparison, it was found that the SVM model outperformed the ANN, and the estimated precipitation values were in good agreement with the corresponding observed values.

  13. CLASSIFICATION OF ENTREPRENEURIAL INTENTIONS BY NEURAL NETWORKS, DECISION TREES AND SUPPORT VECTOR MACHINES

    Directory of Open Access Journals (Sweden)

    Marijana Zekić-Sušac

    2010-12-01

    Full Text Available Entrepreneurial intentions of students are important to recognize during the study in order to provide those students with educational background that will support such intentions and lead them to successful entrepreneurship after the study. The paper aims to develop a model that will classify students according to their entrepreneurial intentions by benchmarking three machine learning classifiers: neural networks, decision trees, and support vector machines. A survey was conducted at a Croatian university including a sample of students at the first year of study. Input variables described students’ demographics, importance of business objectives, perception of entrepreneurial carrier, and entrepreneurial predispositions. Due to a large dimension of input space, a feature selection method was used in the pre-processing stage. For comparison reasons, all tested models were validated on the same out-of-sample dataset, and a cross-validation procedure for testing generalization ability of the models was conducted. The models were compared according to its classification accuracy, as well according to input variable importance. The results show that although the best neural network model produced the highest average hit rate, the difference in performance is not statistically significant. All three models also extract similar set of features relevant for classifying students, which can be suggested to be taken into consideration by universities while designing their academic programs.

  14. Condition classification of small reciprocating compressor for refrigerators using artificial neural networks and support vector machines

    Science.gov (United States)

    Yang, Bo-Suk; Hwang, Won-Woo; Kim, Dong-Jo; Chit Tan, Andy

    2005-03-01

    The need to increase machine reliability and decrease production loss due to faulty products in highly automated line requires accurate and reliable fault classification technique. Wavelet transform and statistical method are used to extract salient features from raw noise and vibration signals. The wavelet transform decomposes the raw time-waveform signals into two respective parts in the time space and frequency domain. With wavelet transform prominent features can be obtained easily than from time-waveform analysis. This paper focuses on the development of an advanced signal classifier for small reciprocating refrigerator compressors using noise and vibration signals. Three classifiers, self-organising feature map, learning vector quantisation and support vector machine (SVM) are applied in training and testing for feature extraction and the classification accuracies of the techniques are compared to determine the optimum fault classifier. The classification technique selected for detecting faulty reciprocating refrigerator compressors involves artificial neural networks and SVMs. The results confirm that the classification technique can differentiate faulty compressors from healthy ones and with high flexibility and reliability.

  15. Curriculum Assessment Using Artificial Neural Network and Support Vector Machine Modeling Approaches: A Case Study. IR Applications. Volume 29

    Science.gov (United States)

    Chen, Chau-Kuang

    2010-01-01

    Artificial Neural Network (ANN) and Support Vector Machine (SVM) approaches have been on the cutting edge of science and technology for pattern recognition and data classification. In the ANN model, classification accuracy can be achieved by using the feed-forward of inputs, back-propagation of errors, and the adjustment of connection weights. In…

  16. Target Localization in Wireless Sensor Networks Using Online Semi-Supervised Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Jaehyun Yoo

    2015-05-01

    Full Text Available Machine learning has been successfully used for target localization in wireless sensor networks (WSNs due to its accurate and robust estimation against highly nonlinear and noisy sensor measurement. For efficient and adaptive learning, this paper introduces online semi-supervised support vector regression (OSS-SVR. The first advantage of the proposed algorithm is that, based on semi-supervised learning framework, it can reduce the requirement on the amount of the labeled training data, maintaining accurate estimation. Second, with an extension to online learning, the proposed OSS-SVR automatically tracks changes of the system to be learned, such as varied noise characteristics. We compare the proposed algorithm with semi-supervised manifold learning, an online Gaussian process and online semi-supervised colocalization. The algorithms are evaluated for estimating the unknown location of a mobile robot in a WSN. The experimental results show that the proposed algorithm is more accurate under the smaller amount of labeled training data and is robust to varying noise. Moreover, the suggested algorithm performs fast computation, maintaining the best localization performance in comparison with the other methods.

  17. Fractional Snow Cover Mapping by Artificial Neural Networks and Support Vector Machines

    Science.gov (United States)

    Çiftçi, B. B.; Kuter, S.; Akyürek, Z.; Weber, G.-W.

    2017-11-01

    Snow is an important land cover whose distribution over space and time plays a significant role in various environmental processes. Hence, snow cover mapping with high accuracy is necessary to have a real understanding for present and future climate, water cycle, and ecological changes. This study aims to investigate and compare the design and use of artificial neural networks (ANNs) and support vector machines (SVMs) algorithms for fractional snow cover (FSC) mapping from satellite data. ANN and SVM models with different model building settings are trained by using Moderate Resolution Imaging Spectroradiometer surface reflectance values of bands 1-7, normalized difference snow index and normalized difference vegetation index as predictor variables. Reference FSC maps are generated from higher spatial resolution Landsat ETM+ binary snow cover maps. Results on the independent test data set indicate that the developed ANN model with hyperbolic tangent transfer function in the output layer and the SVM model with radial basis function kernel produce high FSC mapping accuracies with the corresponding values of R = 0.93 and R = 0.92, respectively.

  18. Performance Comparison Between Support Vector Regression and Artificial Neural Network for Prediction of Oil Palm Production

    Directory of Open Access Journals (Sweden)

    Mustakim Mustakim

    2016-02-01

    Full Text Available The largest region that produces oil palm in Indonesia has an important role in improving the welfare of society and economy. Oil palm has increased significantly in Riau Province in every period, to determine the production development for the next few years with the functions and benefits of oil palm carried prediction production results that were seen from time series data last 8 years (2005-2013. In its prediction implementation, it was done by comparing the performance of Support Vector Regression (SVR method and Artificial Neural Network (ANN. From the experiment, SVR produced the best model compared with ANN. It is indicated by the correlation coefficient of 95% and 6% for MSE in the kernel Radial Basis Function (RBF, whereas ANN produced only 74% for R2 and 9% for MSE on the 8th experiment with hiden neuron 20 and learning rate 0,1. SVR model generates predictions for next 3 years which increased between 3% - 6% from actual data and RBF model predictions.

  19. A comparative study of support vector machine, artificial neural network and bayesian classifier for mutagenicity prediction.

    Science.gov (United States)

    Sharma, Anju; Kumar, Rajnish; Varadwaj, Pritish Kumar; Ahmad, Ausaf; Ashraf, Ghulam Md

    2011-09-01

    Mutagenicity is the capability of a chemical to carry out mutations in genetic material of an organism. In order to curtail expensive drug failures due to mutagenicity found in late development or even in clinical trials, it is crucial to determine potential mutagenicity problems as early as possible. In this work we have proposed three different classifiers, i.e. Support Vector Machine (SVM), Artificial Neural Network (ANN) and bayesian classifiers, for the prediction of mutagenicity of compounds based on seventeen descriptors. Among the three classifiers Radial Basis Function (RBF) kernel based SVM classifier appeared to be more accurate for classifying the compounds under study on mutagens and non-mutagens. The overall prediction accuracy of SVM model was found to be 71.73% which was appreciably higher than the accuracy of ANN based classifier (59.72%) and bayesian classifier (66.61%). It suggests that SVM based prediction model can be used for predicting mutagenicity more accurately compared to ANN and bayesian classifier for data under consideration.

  20. Support Vector Components Analysis

    NARCIS (Netherlands)

    van der Ree, Michiel; Roerdink, Johannes; Phillips, Christophe; Garraux, Gaetan; Salmon, Eric; Wiering, Marco

    2017-01-01

    In this paper we propose a novel method for learning a distance metric in the process of training Support Vector Machines (SVMs) with the radial basis function kernel. A transformation matrix is adapted in such a way that the SVM dual objective of a classification problem is optimized. By using a

  1. KOMPARASI MODEL SUPPORT VECTOR MACHINES (SVM DAN NEURAL NETWORK UNTUK MENGETAHUI TINGKAT AKURASI PREDIKSI TERTINGGI HARGA SAHAM

    Directory of Open Access Journals (Sweden)

    R. Hadapiningradja Kusumodestoni

    2017-09-01

    Full Text Available There are many types of investments to make money, one of which is in the form of shares. Shares is a trading company dealing with securities in the global capital markets. Stock Exchange or also called stock market is actually the activities of private companies in the form of buying and selling investments. To avoid losses in investing, we need a model of predictive analysis with high accuracy and supported by data - lots of data and accurately. The correct techniques in the analysis will be able to reduce the risk for investors in investing. There are many models used in the analysis of stock price movement prediction, in this study the researchers used models of neural networks (NN and a model of support vector machine (SVM. Based on the background of the problems that have been mentioned in the previous description it can be formulated the problem as follows: need an algorithm that can predict stock prices, and need a high accuracy rate by adding a data set on the prediction, two algorithms will be investigated expected results last researchers can deduce where the algorithm accuracy rate predictions are the highest or accurate, then the purpose of this study was to mengkomparasi or compare between the two algorithms are algorithms Neural Network algorithm and Support Vector Machine which later on the end result has an accuracy rate forecast stock prices highest to see the error value RMSEnya. After doing research using the model of neural network and model of support vector machine (SVM to predict the stock using the data value of the shares on the stock index hongkong dated July 20, 2016 at 16:26 pm until the date of 15 September 2016 at 17:40 pm as many as 729 data sets within an interval of 5 minute through a process of training, learning, and then continue the process of testing so the result is that by using a neural network model of the prediction accuracy of 0.503 +/- 0.009 (micro 503 while using the model of support vector machine

  2. A Support Vector Learning-Based Particle Filter Scheme for Target Localization in Communication-Constrained Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xinbin Li

    2017-12-01

    Full Text Available Target localization, which aims to estimate the location of an unknown target, is one of the key issues in applications of underwater acoustic sensor networks (UASNs. However, the constrained property of an underwater environment, such as restricted communication capacity of sensor nodes and sensing noises, makes target localization a challenging problem. This paper relies on fractional sensor nodes to formulate a support vector learning-based particle filter algorithm for the localization problem in communication-constrained underwater acoustic sensor networks. A node-selection strategy is exploited to pick fractional sensor nodes with short-distance pattern to participate in the sensing process at each time frame. Subsequently, we propose a least-square support vector regression (LSSVR-based observation function, through which an iterative regression strategy is used to deal with the distorted data caused by sensing noises, to improve the observation accuracy. At the same time, we integrate the observation to formulate the likelihood function, which effectively update the weights of particles. Thus, the particle effectiveness is enhanced to avoid “particle degeneracy” problem and improve localization accuracy. In order to validate the performance of the proposed localization algorithm, two different noise scenarios are investigated. The simulation results show that the proposed localization algorithm can efficiently improve the localization accuracy. In addition, the node-selection strategy can effectively select the subset of sensor nodes to improve the communication efficiency of the sensor network.

  3. A Support Vector Learning-Based Particle Filter Scheme for Target Localization in Communication-Constrained Underwater Acoustic Sensor Networks.

    Science.gov (United States)

    Li, Xinbin; Zhang, Chenglin; Yan, Lei; Han, Song; Guan, Xinping

    2017-12-21

    Target localization, which aims to estimate the location of an unknown target, is one of the key issues in applications of underwater acoustic sensor networks (UASNs). However, the constrained property of an underwater environment, such as restricted communication capacity of sensor nodes and sensing noises, makes target localization a challenging problem. This paper relies on fractional sensor nodes to formulate a support vector learning-based particle filter algorithm for the localization problem in communication-constrained underwater acoustic sensor networks. A node-selection strategy is exploited to pick fractional sensor nodes with short-distance pattern to participate in the sensing process at each time frame. Subsequently, we propose a least-square support vector regression (LSSVR)-based observation function, through which an iterative regression strategy is used to deal with the distorted data caused by sensing noises, to improve the observation accuracy. At the same time, we integrate the observation to formulate the likelihood function, which effectively update the weights of particles. Thus, the particle effectiveness is enhanced to avoid "particle degeneracy" problem and improve localization accuracy. In order to validate the performance of the proposed localization algorithm, two different noise scenarios are investigated. The simulation results show that the proposed localization algorithm can efficiently improve the localization accuracy. In addition, the node-selection strategy can effectively select the subset of sensor nodes to improve the communication efficiency of the sensor network.

  4. FINGERPRINT CLASSIFICATION BASED ON RECURSIVE NEURAL NETWORK WITH SUPPORT VECTOR MACHINE

    Directory of Open Access Journals (Sweden)

    T. Chakravarthy

    2011-01-01

    Full Text Available Fingerprint classification based on statistical and structural (RNN and SVM approach. RNNs are trained on a structured representation of the fingerprint image. They are also used to extract a set of distributed features of the fingerprint which can be integrated in this support vector machine. SVMs are combined with a new error correcting codes scheme. This approach has two main advantages. (a It can tolerate the presence of ambiguous fingerprint images in the training set and (b It can effectively identify the most difficult fingerprint images in the test set. In this experiment on the fingerprint database NIST-4 (National Institute of Science and Technology, our best classification accuracy of 94.7% is obtained by training SVM on both fingerCode and RNN –extracted futures of segmentation algorithm which has used very sophisticated “region growing process”.

  5. QSAR models for prediction study of HIV protease inhibitors using support vector machines, neural networks and multiple linear regression

    Directory of Open Access Journals (Sweden)

    Rachid Darnag

    2017-02-01

    Full Text Available Support vector machines (SVM represent one of the most promising Machine Learning (ML tools that can be applied to develop a predictive quantitative structure–activity relationship (QSAR models using molecular descriptors. Multiple linear regression (MLR and artificial neural networks (ANNs were also utilized to construct quantitative linear and non linear models to compare with the results obtained by SVM. The prediction results are in good agreement with the experimental value of HIV activity; also, the results reveal the superiority of the SVM over MLR and ANN model. The contribution of each descriptor to the structure–activity relationships was evaluated.

  6. Prediction of Tourism Demand in Iran by Using Artificial Neural Network (ANN and Supporting Vector Machine (SVR

    Directory of Open Access Journals (Sweden)

    Seyedehelham Sadatiseyedmahalleh

    2016-02-01

    Full Text Available This research examines and proves this effectiveness connected with artificial neural networks (ANNs as an alternative approach to the use of Support Vector Machine (SVR in the tourism research. This method can be used for the tourism industry to define the turism’s demands in Iran. The outcome reveals the use of ANNs in tourism research might result in better quotations when it comes to prediction bias and accuracy. Even more applications of ANNs in the context of tourism demand evaluation is needed to establish and validate the effects.

  7. Carbon Nanotube Growth Rate Regression using Support Vector Machines and Artificial Neural Networks

    Science.gov (United States)

    2014-03-27

    chiral vector is made up of the unit vectors a1 a2 and the angle θ determines the tube type of either zig zag , chiral or armchair. Recreated from [4...observed. Reprinted from [45] with permission from the Nature Publishing Group. . . . . . . . . . . . . . . . . . . 22 2.14 Armchair, zig zag and...of the unit vectors a1 a2 and the angle θ determines the tube type of either zig zag , chiral or armchair. Recreated from [4, 39]. the angle between

  8. Classification of Echolocation Calls from 14 Species of Bat by Support Vector Machines and Ensembles of Neural Networks

    Directory of Open Access Journals (Sweden)

    Stuart Parsons

    2009-07-01

    Full Text Available Calls from 14 species of bat were classified to genus and species using discriminant function analysis (DFA, support vector machines (SVM and ensembles of neural networks (ENN. Both SVMs and ENNs outperformed DFA for every species while ENNs (mean identification rate – 97% consistently outperformed SVMs (mean identification rate – 87%. Correct classification rates produced by the ENNs varied from 91% to 100%; calls from six species were correctly identified with 100% accuracy. Calls from the five species of Myotis, a genus whose species are considered difficult to distinguish acoustically, had correct identification rates that varied from 91 – 100%. Five parameters were most important for classifying calls correctly while seven others contributed little to classification performance.

  9. Classification and biomarker identification using gene network modules and support vector machines

    Directory of Open Access Journals (Sweden)

    Showe Louise C

    2009-10-01

    Full Text Available Abstract Background Classification using microarray datasets is usually based on a small number of samples for which tens of thousands of gene expression measurements have been obtained. The selection of the genes most significant to the classification problem is a challenging issue in high dimension data analysis and interpretation. A previous study with SVM-RCE (Recursive Cluster Elimination, suggested that classification based on groups of correlated genes sometimes exhibits better performance than classification using single genes. Large databases of gene interaction networks provide an important resource for the analysis of genetic phenomena and for classification studies using interacting genes. We now demonstrate that an algorithm which integrates network information with recursive feature elimination based on SVM exhibits good performance and improves the biological interpretability of the results. We refer to the method as SVM with Recursive Network Elimination (SVM-RNE Results Initially, one thousand genes selected by t-test from a training set are filtered so that only genes that map to a gene network database remain. The Gene Expression Network Analysis Tool (GXNA is applied to the remaining genes to form n clusters of genes that are highly connected in the network. Linear SVM is used to classify the samples using these clusters, and a weight is assigned to each cluster based on its importance to the classification. The least informative clusters are removed while retaining the remainder for the next classification step. This process is repeated until an optimal classification is obtained. Conclusion More than 90% accuracy can be obtained in classification of selected microarray datasets by integrating the interaction network information with the gene expression information from the microarrays. The Matlab version of SVM-RNE can be downloaded from http://web.macam.ac.il/~myousef

  10. Robust Template Decomposition without Weight Restriction for Cellular Neural Networks Implementing Arbitrary Boolean Functions Using Support Vector Classifiers

    Directory of Open Access Journals (Sweden)

    Yih-Lon Lin

    2013-01-01

    Full Text Available If the given Boolean function is linearly separable, a robust uncoupled cellular neural network can be designed as a maximal margin classifier. On the other hand, if the given Boolean function is linearly separable but has a small geometric margin or it is not linearly separable, a popular approach is to find a sequence of robust uncoupled cellular neural networks implementing the given Boolean function. In the past research works using this approach, the control template parameters and thresholds are restricted to assume only a given finite set of integers, and this is certainly unnecessary for the template design. In this study, we try to remove this restriction. Minterm- and maxterm-based decomposition algorithms utilizing the soft margin and maximal margin support vector classifiers are proposed to design a sequence of robust templates implementing an arbitrary Boolean function. Several illustrative examples are simulated to demonstrate the efficiency of the proposed method by comparing our results with those produced by other decomposition methods with restricted weights.

  11. Application of Artificial Neural Network and Support Vector Machines in Predicting Metabolizable Energy in Compound Feeds for Pigs.

    Science.gov (United States)

    Ahmadi, Hamed; Rodehutscord, Markus

    2017-01-01

    In the nutrition literature, there are several reports on the use of artificial neural network (ANN) and multiple linear regression (MLR) approaches for predicting feed composition and nutritive value, while the use of support vector machines (SVM) method as a new alternative approach to MLR and ANN models is still not fully investigated. The MLR, ANN, and SVM models were developed to predict metabolizable energy (ME) content of compound feeds for pigs based on the German energy evaluation system from analyzed contents of crude protein (CP), ether extract (EE), crude fiber (CF), and starch. A total of 290 datasets from standardized digestibility studies with compound feeds was provided from several institutions and published papers, and ME was calculated thereon. Accuracy and precision of developed models were evaluated, given their produced prediction values. The results revealed that the developed ANN [R2 = 0.95; root mean square error (RMSE) = 0.19 MJ/kg of dry matter] and SVM (R2 = 0.95; RMSE = 0.21 MJ/kg of dry matter) models produced better prediction values in estimating ME in compound feed than those produced by conventional MLR (R2 = 0.89; RMSE = 0.27 MJ/kg of dry matter). The developed ANN and SVM models produced better prediction values in estimating ME in compound feed than those produced by conventional MLR; however, there were not obvious differences between performance of ANN and SVM models. Thus, SVM model may also be considered as a promising tool for modeling the relationship between chemical composition and ME of compound feeds for pigs. To provide the readers and nutritionist with the easy and rapid tool, an Excel® calculator, namely, SVM_ME_pig, was created to predict the metabolizable energy values in compound feeds for pigs using developed support vector machine model.

  12. Classification of bifurcations regions in IVOCT images using support vector machine and artificial neural network models

    Science.gov (United States)

    Porto, C. D. N.; Costa Filho, C. F. F.; Macedo, M. M. G.; Gutierrez, M. A.; Costa, M. G. F.

    2017-03-01

    Studies in intravascular optical coherence tomography (IV-OCT) have demonstrated the importance of coronary bifurcation regions in intravascular medical imaging analysis, as plaques are more likely to accumulate in this region leading to coronary disease. A typical IV-OCT pullback acquires hundreds of frames, thus developing an automated tool to classify the OCT frames as bifurcation or non-bifurcation can be an important step to speed up OCT pullbacks analysis and assist automated methods for atherosclerotic plaque quantification. In this work, we evaluate the performance of two state-of-the-art classifiers, SVM and Neural Networks in the bifurcation classification task. The study included IV-OCT frames from 9 patients. In order to improve classification performance, we trained and tested the SVM with different parameters by means of a grid search and different stop criteria were applied to the Neural Network classifier: mean square error, early stop and regularization. Different sets of features were tested, using feature selection techniques: PCA, LDA and scalar feature selection with correlation. Training and test were performed in sets with a maximum of 1460 OCT frames. We quantified our results in terms of false positive rate, true positive rate, accuracy, specificity, precision, false alarm, f-measure and area under ROC curve. Neural networks obtained the best classification accuracy, 98.83%, overcoming the results found in literature. Our methods appear to offer a robust and reliable automated classification of OCT frames that might assist physicians indicating potential frames to analyze. Methods for improving neural networks generalization have increased the classification performance.

  13. Support Vector Machine and Artificial Neural Network Models for the Classification of Grapevine Varieties Using a Portable NIR Spectrophotometer.

    Science.gov (United States)

    Gutiérrez, Salvador; Tardaguila, Javier; Fernández-Novales, Juan; Diago, María P

    2015-01-01

    The identification of different grapevine varieties, currently attended using visual ampelometry, DNA analysis and very recently, by hyperspectral analysis under laboratory conditions, is an issue of great importance in the wine industry. This work presents support vector machine and artificial neural network's modelling for grapevine varietal classification from in-field leaf spectroscopy. Modelling was attempted at two scales: site-specific and a global scale. Spectral measurements were obtained on the near-infrared (NIR) spectral range between 1600 to 2400 nm under field conditions in a non-destructive way using a portable spectrophotometer. For the site specific approach, spectra were collected from the adaxial side of 400 individual leaves of 20 grapevine (Vitis vinifera L.) varieties one week after veraison. For the global model, two additional sets of spectra were collected one week before harvest from two different vineyards in another vintage, each one consisting on 48 measurement from individual leaves of six varieties. Several combinations of spectra scatter correction and smoothing filtering were studied. For the training of the models, support vector machines and artificial neural networks were employed using the pre-processed spectra as input and the varieties as the classes of the models. The results from the pre-processing study showed that there was no influence whether using scatter correction or not. Also, a second-degree derivative with a window size of 5 Savitzky-Golay filtering yielded the highest outcomes. For the site-specific model, with 20 classes, the best results from the classifiers thrown an overall score of 87.25% of correctly classified samples. These results were compared under the same conditions with a model trained using partial least squares discriminant analysis, which showed a worse performance in every case. For the global model, a 6-class dataset involving samples from three different vineyards, two years and leaves

  14. Non-metallic coating thickness prediction using artificial neural network and support vector machine with time resolved thermography

    Science.gov (United States)

    Wang, Hongjin; Hsieh, Sheng-Jen; Peng, Bo; Zhou, Xunfei

    2016-07-01

    A method without requirements on knowledge about thermal properties of coatings or those of substrates will be interested in the industrial application. Supervised machine learning regressions may provide possible solution to the problem. This paper compares the performances of two regression models (artificial neural networks (ANN) and support vector machines for regression (SVM)) with respect to coating thickness estimations made based on surface temperature increments collected via time resolved thermography. We describe SVM roles in coating thickness prediction. Non-dimensional analyses are conducted to illustrate the effects of coating thicknesses and various factors on surface temperature increments. It's theoretically possible to correlate coating thickness with surface increment. Based on the analyses, the laser power is selected in such a way: during the heating, the temperature increment is high enough to determine the coating thickness variance but low enough to avoid surface melting. Sixty-one pain-coated samples with coating thicknesses varying from 63.5 μm to 571 μm are used to train models. Hyper-parameters of the models are optimized by 10-folder cross validation. Another 28 sets of data are then collected to test the performance of the three methods. The study shows that SVM can provide reliable predictions of unknown data, due to its deterministic characteristics, and it works well when used for a small input data group. The SVM model generates more accurate coating thickness estimates than the ANN model.

  15. A cross-sectional evaluation of meditation experience on electroencephalography data by artificial neural network and support vector machine classifiers.

    Science.gov (United States)

    Lee, Yu-Hao; Hsieh, Ya-Ju; Shiah, Yung-Jong; Lin, Yu-Huei; Chen, Chiao-Yun; Tyan, Yu-Chang; GengQiu, JiaCheng; Hsu, Chung-Yao; Chen, Sharon Chia-Ju

    2017-04-01

    To quantitate the meditation experience is a subjective and complex issue because it is confounded by many factors such as emotional state, method of meditation, and personal physical condition. In this study, we propose a strategy with a cross-sectional analysis to evaluate the meditation experience with 2 artificial intelligence techniques: artificial neural network and support vector machine. Within this analysis system, 3 features of the electroencephalography alpha spectrum and variant normalizing scaling are manipulated as the evaluating variables for the detection of accuracy. Thereafter, by modulating the sliding window (the period of the analyzed data) and shifting interval of the window (the time interval to shift the analyzed data), the effect of immediate analysis for the 2 methods is compared. This analysis system is performed on 3 meditation groups, categorizing their meditation experiences in 10-year intervals from novice to junior and to senior. After an exhausted calculation and cross-validation across all variables, the high accuracy rate >98% is achievable under the criterion of 0.5-minute sliding window and 2 seconds shifting interval for both methods. In a word, the minimum analyzable data length is 0.5 minute and the minimum recognizable temporal resolution is 2 seconds in the decision of meditative classification. Our proposed classifier of the meditation experience promotes a rapid evaluation system to distinguish meditation experience and a beneficial utilization of artificial techniques for the big-data analysis.

  16. In silico log P prediction for a large data set with support vector machines, radial basis neural networks and multiple linear regression.

    Science.gov (United States)

    Chen, Hai-Feng

    2009-08-01

    Oil/water partition coefficient (log P) is one of the key points for lead compound to be drug. In silico log P models based solely on chemical structures have become an important part of modern drug discovery. Here, we report support vector machines, radial basis function neural networks, and multiple linear regression methods to investigate the correlation between partition coefficient and physico-chemical descriptors for a large data set of compounds. The correlation coefficient r(2) between experimental and predicted log P for training and test sets by support vector machines, radial basis function neural networks, and multiple linear regression is 0.92, 0.90, and 0.88, respectively. The results show that non-linear support vector machines derives statistical models that have better prediction ability than those of radial basis function neural networks and multiple linear regression methods. This indicates that support vector machines can be used as an alternative modeling tool for quantitative structure-property/activity relationships studies.

  17. Support Vector Machine and Artificial Neural Network Models for the Classification of Grapevine Varieties Using a Portable NIR Spectrophotometer

    Science.gov (United States)

    Gutiérrez, Salvador; Tardaguila, Javier; Fernández-Novales, Juan; Diago, María P.

    2015-01-01

    The identification of different grapevine varieties, currently attended using visual ampelometry, DNA analysis and very recently, by hyperspectral analysis under laboratory conditions, is an issue of great importance in the wine industry. This work presents support vector machine and artificial neural network’s modelling for grapevine varietal classification from in-field leaf spectroscopy. Modelling was attempted at two scales: site-specific and a global scale. Spectral measurements were obtained on the near-infrared (NIR) spectral range between 1600 to 2400 nm under field conditions in a non-destructive way using a portable spectrophotometer. For the site specific approach, spectra were collected from the adaxial side of 400 individual leaves of 20 grapevine (Vitis vinifera L.) varieties one week after veraison. For the global model, two additional sets of spectra were collected one week before harvest from two different vineyards in another vintage, each one consisting on 48 measurement from individual leaves of six varieties. Several combinations of spectra scatter correction and smoothing filtering were studied. For the training of the models, support vector machines and artificial neural networks were employed using the pre-processed spectra as input and the varieties as the classes of the models. The results from the pre-processing study showed that there was no influence whether using scatter correction or not. Also, a second-degree derivative with a window size of 5 Savitzky-Golay filtering yielded the highest outcomes. For the site-specific model, with 20 classes, the best results from the classifiers thrown an overall score of 87.25% of correctly classified samples. These results were compared under the same conditions with a model trained using partial least squares discriminant analysis, which showed a worse performance in every case. For the global model, a 6-class dataset involving samples from three different vineyards, two years and leaves

  18. Application of Artificial Neural Network and Support Vector Machines in Predicting Metabolizable Energy in Compound Feeds for Pigs

    Directory of Open Access Journals (Sweden)

    Hamed Ahmadi

    2017-06-01

    Full Text Available BackgroundIn the nutrition literature, there are several reports on the use of artificial neural network (ANN and multiple linear regression (MLR approaches for predicting feed composition and nutritive value, while the use of support vector machines (SVM method as a new alternative approach to MLR and ANN models is still not fully investigated.MethodsThe MLR, ANN, and SVM models were developed to predict metabolizable energy (ME content of compound feeds for pigs based on the German energy evaluation system from analyzed contents of crude protein (CP, ether extract (EE, crude fiber (CF, and starch. A total of 290 datasets from standardized digestibility studies with compound feeds was provided from several institutions and published papers, and ME was calculated thereon. Accuracy and precision of developed models were evaluated, given their produced prediction values.ResultsThe results revealed that the developed ANN [R2 = 0.95; root mean square error (RMSE = 0.19 MJ/kg of dry matter] and SVM (R2 = 0.95; RMSE = 0.21 MJ/kg of dry matter models produced better prediction values in estimating ME in compound feed than those produced by conventional MLR (R2 = 0.89; RMSE = 0.27 MJ/kg of dry matter.ConclusionThe developed ANN and SVM models produced better prediction values in estimating ME in compound feed than those produced by conventional MLR; however, there were not obvious differences between performance of ANN and SVM models. Thus, SVM model may also be considered as a promising tool for modeling the relationship between chemical composition and ME of compound feeds for pigs. To provide the readers and nutritionist with the easy and rapid tool, an Excel® calculator, namely, SVM_ME_pig, was created to predict the metabolizable energy values in compound feeds for pigs using developed support vector machine model.

  19. Learning with Support Vector Machines

    CERN Document Server

    Campbell, Colin

    2010-01-01

    Support Vectors Machines have become a well established tool within machine learning. They work well in practice and have now been used across a wide range of applications from recognizing hand-written digits, to face identification, text categorisation, bioinformatics, and database marketing. In this book we give an introductory overview of this subject. We start with a simple Support Vector Machine for performing binary classification before considering multi-class classification and learning in the presence of noise. We show that this framework can be extended to many other scenarios such a

  20. Pre-operative prediction of advanced prostatic cancer using clinical decision support systems: accuracy comparison between support vector machine and artificial neural network.

    Science.gov (United States)

    Kim, Sang Youn; Moon, Sung Kyoung; Jung, Dae Chul; Hwang, Sung Il; Sung, Chang Kyu; Cho, Jeong Yeon; Kim, Seung Hyup; Lee, Jiwon; Lee, Hak Jong

    2011-01-01

    The purpose of the current study was to develop support vector machine (SVM) and artificial neural network (ANN) models for the pre-operative prediction of advanced prostate cancer by using the parameters acquired from transrectal ultrasound (TRUS)-guided prostate biopsies, and to compare the accuracies between the two models. Five hundred thirty-two consecutive patients who underwent prostate biopsies and prostatectomies for prostate cancer were divided into the training and test groups (n = 300 versus n = 232). From the data in the training group, two clinical decision support systems (CDSSs-[SVM and ANN]) were constructed with input (age, prostate specific antigen level, digital rectal examination, and five biopsy parameters) and output data (the probability for advanced prostate cancer [> pT3a]). From the data of the test group, the accuracy of output data was evaluated. The areas under the receiver operating characteristic (ROC) curve (AUC) were calculated to summarize the overall performances, and a comparison of the ROC curves was performed (p cancer. The performance of SVM is superior to ANN in the pre-operative prediction of advanced prostate cancer.

  1. New model for prediction binary mixture of antihistamine decongestant using artificial neural networks and least squares support vector machine by spectrophotometry method.

    Science.gov (United States)

    Mofavvaz, Shirin; Sohrabi, Mahmoud Reza; Nezamzadeh-Ejhieh, Alireza

    2017-07-05

    In the present study, artificial neural networks (ANNs) and least squares support vector machines (LS-SVM) as intelligent methods based on absorption spectra in the range of 230-300nm have been used for determination of antihistamine decongestant contents. In the first step, one type of network (feed-forward back-propagation) from the artificial neural network with two different training algorithms, Levenberg-Marquardt (LM) and gradient descent with momentum and adaptive learning rate back-propagation (GDX) algorithm, were employed and their performance was evaluated. The performance of the LM algorithm was better than the GDX algorithm. In the second one, the radial basis network was utilized and results compared with the previous network. In the last one, the other intelligent method named least squares support vector machine was proposed to construct the antihistamine decongestant prediction model and the results were compared with two of the aforementioned networks. The values of the statistical parameters mean square error (MSE), Regression coefficient (R2), correlation coefficient (r) and also mean recovery (%), relative standard deviation (RSD) used for selecting the best model between these methods. Moreover, the proposed methods were compared to the high- performance liquid chromatography (HPLC) as a reference method. One way analysis of variance (ANOVA) test at the 95% confidence level applied to the comparison results of suggested and reference methods that there were no significant differences between them. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. New model for prediction binary mixture of antihistamine decongestant using artificial neural networks and least squares support vector machine by spectrophotometry method

    Science.gov (United States)

    Mofavvaz, Shirin; Sohrabi, Mahmoud Reza; Nezamzadeh-Ejhieh, Alireza

    2017-07-01

    In the present study, artificial neural networks (ANNs) and least squares support vector machines (LS-SVM) as intelligent methods based on absorption spectra in the range of 230-300 nm have been used for determination of antihistamine decongestant contents. In the first step, one type of network (feed-forward back-propagation) from the artificial neural network with two different training algorithms, Levenberg-Marquardt (LM) and gradient descent with momentum and adaptive learning rate back-propagation (GDX) algorithm, were employed and their performance was evaluated. The performance of the LM algorithm was better than the GDX algorithm. In the second one, the radial basis network was utilized and results compared with the previous network. In the last one, the other intelligent method named least squares support vector machine was proposed to construct the antihistamine decongestant prediction model and the results were compared with two of the aforementioned networks. The values of the statistical parameters mean square error (MSE), Regression coefficient (R2), correlation coefficient (r) and also mean recovery (%), relative standard deviation (RSD) used for selecting the best model between these methods. Moreover, the proposed methods were compared to the high- performance liquid chromatography (HPLC) as a reference method. One way analysis of variance (ANOVA) test at the 95% confidence level applied to the comparison results of suggested and reference methods that there were no significant differences between them.

  3. On Weighted Support Vector Regression

    DEFF Research Database (Denmark)

    Han, Xixuan; Clemmensen, Line Katrine Harder

    2014-01-01

    We propose a new type of weighted support vector regression (SVR), motivated by modeling local dependencies in time and space in prediction of house prices. The classic weights of the weighted SVR are added to the slack variables in the objective function (OF‐weights). This procedure directly...

  4. Comparing artificial neural networks, general linear models and support vector machines in building predictive models for small interfering RNAs.

    Directory of Open Access Journals (Sweden)

    Kyle A McQuisten

    Full Text Available BACKGROUND: Exogenous short interfering RNAs (siRNAs induce a gene knockdown effect in cells by interacting with naturally occurring RNA processing machinery. However not all siRNAs induce this effect equally. Several heterogeneous kinds of machine learning techniques and feature sets have been applied to modeling siRNAs and their abilities to induce knockdown. There is some growing agreement to which techniques produce maximally predictive models and yet there is little consensus for methods to compare among predictive models. Also, there are few comparative studies that address what the effect of choosing learning technique, feature set or cross validation approach has on finding and discriminating among predictive models. PRINCIPAL FINDINGS: Three learning techniques were used to develop predictive models for effective siRNA sequences including Artificial Neural Networks (ANNs, General Linear Models (GLMs and Support Vector Machines (SVMs. Five feature mapping methods were also used to generate models of siRNA activities. The 2 factors of learning technique and feature mapping were evaluated by complete 3x5 factorial ANOVA. Overall, both learning techniques and feature mapping contributed significantly to the observed variance in predictive models, but to differing degrees for precision and accuracy as well as across different kinds and levels of model cross-validation. CONCLUSIONS: The methods presented here provide a robust statistical framework to compare among models developed under distinct learning techniques and feature sets for siRNAs. Further comparisons among current or future modeling approaches should apply these or other suitable statistically equivalent methods to critically evaluate the performance of proposed models. ANN and GLM techniques tend to be more sensitive to the inclusion of noisy features, but the SVM technique is more robust under large numbers of features for measures of model precision and accuracy. Features

  5. Active set support vector regression.

    Science.gov (United States)

    Musicant, David R; Feinberg, Alexander

    2004-03-01

    This paper presents active set support vector regression (ASVR), a new active set strategy to solve a straightforward reformulation of the standard support vector regression problem. This new algorithm is based on the successful ASVM algorithm for classification problems, and consists of solving a finite number of linear equations with a typically large dimensionality equal to the number of points to be approximated. However, by making use of the Sherman-Morrison-Woodbury formula, a much smaller matrix of the order of the original input space is inverted at each step. The algorithm requires no specialized quadratic or linear programming code, but merely a linear equation solver which is publicly available. ASVR is extremely fast, produces comparable generalization error to other popular algorithms, and is available on the web for download.

  6. GAPS IN SUPPORT VECTOR OPTIMIZATION

    Energy Technology Data Exchange (ETDEWEB)

    STEINWART, INGO [Los Alamos National Laboratory; HUSH, DON [Los Alamos National Laboratory; SCOVEL, CLINT [Los Alamos National Laboratory; LIST, NICOLAS [Los Alamos National Laboratory

    2007-01-29

    We show that the stopping criteria used in many support vector machine (SVM) algorithms working on the dual can be interpreted as primal optimality bounds which in turn are known to be important for the statistical analysis of SVMs. To this end we revisit the duality theory underlying the derivation of the dual and show that in many interesting cases primal optimality bounds are the same as known dual optimality bounds.

  7. Condition Assessment of Foundation Piles and Utility Poles Based on Guided Wave Propagation Using a Network of Tactile Transducers and Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Ulrike Dackermann

    2017-12-01

    Full Text Available This paper presents a novel non-destructive testing and health monitoring system using a network of tactile transducers and accelerometers for the condition assessment and damage classification of foundation piles and utility poles. While in traditional pile integrity testing an impact hammer with broadband frequency excitation is typically used, the proposed testing system utilizes an innovative excitation system based on a network of tactile transducers to induce controlled narrow-band frequency stress waves. Thereby, the simultaneous excitation of multiple stress wave types and modes is avoided (or at least reduced, and targeted wave forms can be generated. The new testing system enables the testing and monitoring of foundation piles and utility poles where the top is inaccessible, making the new testing system suitable, for example, for the condition assessment of pile structures with obstructed heads and of poles with live wires. For system validation, the new system was experimentally tested on nine timber and concrete poles that were inflicted with several types of damage. The tactile transducers were excited with continuous sine wave signals of 1 kHz frequency. Support vector machines were employed together with advanced signal processing algorithms to distinguish recorded stress wave signals from pole structures with different types of damage. The results show that using fast Fourier transform signals, combined with principal component analysis as the input feature vector for support vector machine (SVM classifiers with different kernel functions, can achieve damage classification with accuracies of 92.5% ± 7.5%.

  8. An Ensemble of Deep Support Vector Machines for Image Categorization

    NARCIS (Netherlands)

    Abdullah, Azizi; Veltkamp, Remco C.; Wiering, Marco

    2009-01-01

    This paper presents the deep support vector machine (D-SVM) inspired by the increasing popularity of deep belief networks for image recognition. Our deep SVM trains an SVM in the standard way and then uses the kernel activations of support vectors as inputs for training another SVM at the next

  9. Support vector machine based training of multilayer feedforward neural networks as optimized by particle swarm algorithm: application in QSAR studies of bioactivity of organic compounds.

    Science.gov (United States)

    Lin, Wei-Qi; Jiang, Jian-Hui; Zhou, Yan-Ping; Wu, Hai-Long; Shen, Guo-Li; Yu, Ru-Qin

    2007-01-30

    Multilayer feedforward neural networks (MLFNNs) are important modeling techniques widely used in QSAR studies for their ability to represent nonlinear relationships between descriptors and activity. However, the problems of overfitting and premature convergence to local optima still pose great challenges in the practice of MLFNNs. To circumvent these problems, a support vector machine (SVM) based training algorithm for MLFNNs has been developed with the incorporation of particle swarm optimization (PSO). The introduction of the SVM based training mechanism imparts the developed algorithm with inherent capacity for combating the overfitting problem. Moreover, with the implementation of PSO for searching the optimal network weights, the SVM based learning algorithm shows relatively high efficiency in converging to the optima. The proposed algorithm has been evaluated using the Hansch data set. Application to QSAR studies of the activity of COX-2 inhibitors is also demonstrated. The results reveal that this technique provides superior performance to backpropagation (BP) and PSO training neural networks.

  10. Comparison of support vector machine and neutral network classification method in hyperspectral mapping of ophiolite mélanges–A case study of east of Iran

    Directory of Open Access Journals (Sweden)

    Bahram Bahrambeygi

    2017-06-01

    Full Text Available Ophiolitic regions are one of the most complex geology settings. Mapping in these parts need broad and precise studies and tools because of the mixture rocks and confusion units. Hyperion hyperspectral sensor data are one of the advanced tools for earth surface mapping that containing rich information of shallow electromagnetic reflection in 242 continuous bands. Because of some contaminated noise in tens of these bands we removed 87 most noisy bands and focused our study on 155 low noisy bands. In present study, tow spectral based classification algorithms of support vector machine and neutral network are compared on hyperion image for classification of cluttered units in an ophiolite set. Study area is Mesina region in collision ophiolitic belt of south east of Iran. In this region for design processing results validation rate, lots of random locations and control points were studied in field scale and were sampled for laboratory surveys. Samples were investigated in microscopic section and by electron microprobe system. Based on laboratory-field studies, the lithology of this area can divided into five general groups: (Melange series, metamorphic units, Oligocene – Miocene to Quaternary volcanic units, lime and flysch units. Based on field-laboratory works, some standard points defined for validate processing results accuracy rate. Therefore, the Support Vector Machine and neutral network method as advanced hyperspectral image processing methods respectively have overall accuracies of 52% and 65%. Consequently the method based neutral network theory for hyperspectral classification have acceptable ratio in separation of blended complicated units.

  11. Radial basis function network-based transform for a nonlinear support vector machine as optimized by a particle swarm optimization algorithm with application to QSAR studies.

    Science.gov (United States)

    Tang, Li-Juan; Zhou, Yan-Ping; Jiang, Jian-Hui; Zou, Hong-Yan; Wu, Hai-Long; Shen, Guo-Li; Yu, Ru-Qin

    2007-01-01

    The support vector machine (SVM) has been receiving increasing interest in an area of QSAR study for its ability in function approximation and remarkable generalization performance. However, selection of support vectors and intensive optimization of kernel width of a nonlinear SVM are inclined to get trapped into local optima, leading to an increased risk of underfitting or overfitting. To overcome these problems, a new nonlinear SVM algorithm is proposed using adaptive kernel transform based on a radial basis function network (RBFN) as optimized by particle swarm optimization (PSO). The new algorithm incorporates a nonlinear transform of the original variables to feature space via a RBFN with one input and one hidden layer. Such a transform intrinsically yields a kernel transform of the original variables. A synergetic optimization of all parameters including kernel centers and kernel widths as well as SVM model coefficients using PSO enables the determination of a flexible kernel transform according to the performance of the total model. The implementation of PSO demonstrates a relatively high efficiency in convergence to a desired optimum. Applications of the proposed algorithm to QSAR studies of binding affinity of HIV-1 reverse transcriptase inhibitors and activity of 1-phenylbenzimidazoles reveal that the new algorithm provides superior performance to the backpropagation neural network and a conventional nonlinear SVM, indicating that this algorithm holds great promise in nonlinear SVM learning.

  12. Models of logistic regression analysis, support vector machine, and back-propagation neural network based on serum tumor markers in colorectal cancer diagnosis.

    Science.gov (United States)

    Zhang, B; Liang, X L; Gao, H Y; Ye, L S; Wang, Y G

    2016-05-13

    We evaluated the application of three machine learning algorithms, including logistic regression, support vector machine and back-propagation neural network, for diagnosing congenital heart disease and colorectal cancer. By inspecting related serum tumor marker levels in colorectal cancer patients and healthy subjects, early diagnosis models for colorectal cancer were built using three machine learning algorithms to assess their corresponding diagnostic values. Except for serum alpha-fetoprotein, the levels of 11 other serum markers of patients in the colorectal cancer group were higher than those in the benign colorectal cancer group (P model and back-propagation, a neural network diagnosis model was built with diagnostic accuracies of 82 and 75%, sensitivities of 85 and 80%, and specificities of 80 and 70%, respectively. Colorectal cancer diagnosis models based on the three machine learning algorithms showed high diagnostic value and can help obtain evidence for the early diagnosis of colorectal cancer.

  13. Support vector machine regression (SVR/LS-SVM)--an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data.

    Science.gov (United States)

    Balabin, Roman M; Lomakina, Ekaterina I

    2011-04-21

    In this study, we make a general comparison of the accuracy and robustness of five multivariate calibration models: partial least squares (PLS) regression or projection to latent structures, polynomial partial least squares (Poly-PLS) regression, artificial neural networks (ANNs), and two novel techniques based on support vector machines (SVMs) for multivariate data analysis: support vector regression (SVR) and least-squares support vector machines (LS-SVMs). The comparison is based on fourteen (14) different datasets: seven sets of gasoline data (density, benzene content, and fractional composition/boiling points), two sets of ethanol gasoline fuel data (density and ethanol content), one set of diesel fuel data (total sulfur content), three sets of petroleum (crude oil) macromolecules data (weight percentages of asphaltenes, resins, and paraffins), and one set of petroleum resins data (resins content). Vibrational (near-infrared, NIR) spectroscopic data are used to predict the properties and quality coefficients of gasoline, biofuel/biodiesel, diesel fuel, and other samples of interest. The four systems presented here range greatly in composition, properties, strength of intermolecular interactions (e.g., van der Waals forces, H-bonds), colloid structure, and phase behavior. Due to the high diversity of chemical systems studied, general conclusions about SVM regression methods can be made. We try to answer the following question: to what extent can SVM-based techniques replace ANN-based approaches in real-world (industrial/scientific) applications? The results show that both SVR and LS-SVM methods are comparable to ANNs in accuracy. Due to the much higher robustness of the former, the SVM-based approaches are recommended for practical (industrial) application. This has been shown to be especially true for complicated, highly nonlinear objects.

  14. Distinguishing Parkinson’s disease from atypical parkinsonian syndromes using PET data and a computer system based on support vector machines and Bayesian networks

    Directory of Open Access Journals (Sweden)

    Fermín eSegovia

    2015-11-01

    Full Text Available Differentiating between Parkinson's disease (PD and atypical parkinsonian syndromes (APS is still a challenge, specially at early stages when the patients show similar symptoms. During last years, several computer systems have been proposed in order to improve the diagnosis of PD, but their accuracy is still limited. In this work we demonstrate a full automatic computer system to assist the diagnosis of PD using 18F-DMFP PET data. First, a few regions of interest are selected by means of a two-sample t-test. The accuracy of the selected regions to separate PD from APS patients is then computed using a support vector machine classifier. The accuracy values are finally used to train a Bayesian network that can be used to predict the class of new unseen data. This methodology was evaluated using a database with 87 neuroimages, achieving accuracy rates over 78%. A fair comparison with other similar approaches is also provided.

  15. Distinguishing Parkinson's disease from atypical parkinsonian syndromes using PET data and a computer system based on support vector machines and Bayesian networks.

    Science.gov (United States)

    Segovia, Fermín; Illán, Ignacio A; Górriz, Juan M; Ramírez, Javier; Rominger, Axel; Levin, Johannes

    2015-01-01

    Differentiating between Parkinson's disease (PD) and atypical parkinsonian syndromes (APS) is still a challenge, specially at early stages when the patients show similar symptoms. During last years, several computer systems have been proposed in order to improve the diagnosis of PD, but their accuracy is still limited. In this work we demonstrate a full automatic computer system to assist the diagnosis of PD using (18)F-DMFP PET data. First, a few regions of interest are selected by means of a two-sample t-test. The accuracy of the selected regions to separate PD from APS patients is then computed using a support vector machine classifier. The accuracy values are finally used to train a Bayesian network that can be used to predict the class of new unseen data. This methodology was evaluated using a database with 87 neuroimages, achieving accuracy rates over 78%. A fair comparison with other similar approaches is also provided.

  16. Arrhythmia Identification with Two-Lead Electrocardiograms Using Artificial Neural Networks and Support Vector Machines for a Portable ECG Monitor System

    Directory of Open Access Journals (Sweden)

    Shing-Hong Liu

    2013-01-01

    Full Text Available An automatic configuration that can detect the position of R-waves, classify the normal sinus rhythm (NSR and other four arrhythmic types from the continuous ECG signals obtained from the MIT-BIH arrhythmia database is proposed. In this configuration, a support vector machine (SVM was used to detect and mark the ECG heartbeats with raw signals and differential signals of a lead ECG. An algorithm based on the extracted markers segments waveforms of Lead II and V1 of the ECG as the pattern classification features. A self-constructing neural fuzzy inference network (SoNFIN was used to classify NSR and four arrhythmia types, including premature ventricular contraction (PVC, premature atrium contraction (PAC, left bundle branch block (LBBB, and right bundle branch block (RBBB. In a real scenario, the classification results show the accuracy achieved is 96.4%. This performance is suitable for a portable ECG monitor system for home care purposes.

  17. Clustering Categories in Support Vector Machines

    DEFF Research Database (Denmark)

    Carrizosa, Emilio; Nogales-Gómez, Amaya; Morales, Dolores Romero

    2017-01-01

    The support vector machine (SVM) is a state-of-the-art method in supervised classification. In this paper the Cluster Support Vector Machine (CLSVM) methodology is proposed with the aim to increase the sparsity of the SVM classifier in the presence of categorical features, leading to a gain in in...

  18. Deep Support Vector Machines for Regression Problems

    NARCIS (Netherlands)

    Wiering, Marco; Schutten, Marten; Millea, Adrian; Meijster, Arnold; Schomaker, Lambertus

    2013-01-01

    In this paper we describe a novel extension of the support vector machine, called the deep support vector machine (DSVM). The original SVM has a single layer with kernel functions and is therefore a shallow model. The DSVM can use an arbitrary number of layers, in which lower-level layers contain

  19. Cascade Support Vector Machines with Dimensionality Reduction

    Directory of Open Access Journals (Sweden)

    Oliver Kramer

    2015-01-01

    Full Text Available Cascade support vector machines have been introduced as extension of classic support vector machines that allow a fast training on large data sets. In this work, we combine cascade support vector machines with dimensionality reduction based preprocessing. The cascade principle allows fast learning based on the division of the training set into subsets and the union of cascade learning results based on support vectors in each cascade level. The combination with dimensionality reduction as preprocessing results in a significant speedup, often without loss of classifier accuracies, while considering the high-dimensional pendants of the low-dimensional support vectors in each new cascade level. We analyze and compare various instantiations of dimensionality reduction preprocessing and cascade SVMs with principal component analysis, locally linear embedding, and isometric mapping. The experimental analysis on various artificial and real-world benchmark problems includes various cascade specific parameters like intermediate training set sizes and dimensionalities.

  20. Comparison of Support Vector Machine, Neural Network, and CART Algorithms for the Land-Cover Classification Using Limited Training Data Points

    Science.gov (United States)

    Support vector machine (SVM) was applied for land-cover characterization using MODIS time-series data. Classification performance was examined with respect to training sample size, sample variability, and landscape homogeneity (purity). The results were compared to two convention...

  1. Comparison Between Wind Power Prediction Models Based on Wavelet Decomposition with Least-Squares Support Vector Machine (LS-SVM and Artificial Neural Network (ANN

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi

    2014-08-01

    Full Text Available A high penetration of wind energy into the electricity market requires a parallel development of efficient wind power forecasting models. Different hybrid forecasting methods were applied to wind power prediction, using historical data and numerical weather predictions (NWP. A comparative study was carried out for the prediction of the power production of a wind farm located in complex terrain. The performances of Least-Squares Support Vector Machine (LS-SVM with Wavelet Decomposition (WD were evaluated at different time horizons and compared to hybrid Artificial Neural Network (ANN-based methods. It is acknowledged that hybrid methods based on LS-SVM with WD mostly outperform other methods. A decomposition of the commonly known root mean square error was beneficial for a better understanding of the origin of the differences between prediction and measurement and to compare the accuracy of the different models. A sensitivity analysis was also carried out in order to underline the impact that each input had in the network training process for ANN. In the case of ANN with the WD technique, the sensitivity analysis was repeated on each component obtained by the decomposition.

  2. Support vector regression and artificial neural network models for stability indicating analysis of mebeverine hydrochloride and sulpiride mixtures in pharmaceutical preparation: A comparative study

    Science.gov (United States)

    Naguib, Ibrahim A.; Darwish, Hany W.

    2012-02-01

    A comparison between support vector regression (SVR) and Artificial Neural Networks (ANNs) multivariate regression methods is established showing the underlying algorithm for each and making a comparison between them to indicate the inherent advantages and limitations. In this paper we compare SVR to ANN with and without variable selection procedure (genetic algorithm (GA)). To project the comparison in a sensible way, the methods are used for the stability indicating quantitative analysis of mixtures of mebeverine hydrochloride and sulpiride in binary mixtures as a case study in presence of their reported impurities and degradation products (summing up to 6 components) in raw materials and pharmaceutical dosage form via handling the UV spectral data. For proper analysis, a 6 factor 5 level experimental design was established resulting in a training set of 25 mixtures containing different ratios of the interfering species. An independent test set consisting of 5 mixtures was used to validate the prediction ability of the suggested models. The proposed methods (linear SVR (without GA) and linear GA-ANN) were successfully applied to the analysis of pharmaceutical tablets containing mebeverine hydrochloride and sulpiride mixtures. The results manifest the problem of nonlinearity and how models like the SVR and ANN can handle it. The methods indicate the ability of the mentioned multivariate calibration models to deconvolute the highly overlapped UV spectra of the 6 components' mixtures, yet using cheap and easy to handle instruments like the UV spectrophotometer.

  3. Improved predictions of nonlinear support vector regression and artificial neural network models via preprocessing of data with orthogonal projection to latent structures: A case study

    Directory of Open Access Journals (Sweden)

    Ibrahim A. Naguib

    2017-12-01

    Full Text Available In the presented study, orthogonal projection to latent structures (OPLS is introduced as a data preprocessing method that handles nonlinear data prior to modelling with two well established nonlinear multivariate models; namely support vector regression (SVR and artificial neural networks (ANN. The proposed preprocessing proved to significantly improve prediction abilities through removal of uncorrelated data.The study was established based on a case study nonlinear spectrofluorimetric data of agomelatine (AGM and its hydrolysis degradation products (Deg I and Deg II, where a 3 factor 4 level experimental design was used to provide a training set of 16 mixtures with different proportions of studied components. An independent test set which consisted of 9 mixtures was established to confirm the prediction ability of the introduced models. Excitation wavelength was 227 nm, and working range for emission spectra was 320–440 nm.The couplings of OPLS-SVR and OPLS-ANN provided better accuracy for prediction of independent nonlinear test set. The root mean square error of prediction RMSEP for the test set mixtures was used as a major comparison parameter, where RMSEP results for OPLS-SVR and OPLS-ANN are 2.19 and 1.50 respectively. Keywords: Agomelatine, SVR, ANN, OPLS, Spectrofluorimetry, Nonlinear

  4. Support vector regression and artificial neural network models for stability indicating analysis of mebeverine hydrochloride and sulpiride mixtures in pharmaceutical preparation: a comparative study.

    Science.gov (United States)

    Naguib, Ibrahim A; Darwish, Hany W

    2012-02-01

    A comparison between support vector regression (SVR) and Artificial Neural Networks (ANNs) multivariate regression methods is established showing the underlying algorithm for each and making a comparison between them to indicate the inherent advantages and limitations. In this paper we compare SVR to ANN with and without variable selection procedure (genetic algorithm (GA)). To project the comparison in a sensible way, the methods are used for the stability indicating quantitative analysis of mixtures of mebeverine hydrochloride and sulpiride in binary mixtures as a case study in presence of their reported impurities and degradation products (summing up to 6 components) in raw materials and pharmaceutical dosage form via handling the UV spectral data. For proper analysis, a 6 factor 5 level experimental design was established resulting in a training set of 25 mixtures containing different ratios of the interfering species. An independent test set consisting of 5 mixtures was used to validate the prediction ability of the suggested models. The proposed methods (linear SVR (without GA) and linear GA-ANN) were successfully applied to the analysis of pharmaceutical tablets containing mebeverine hydrochloride and sulpiride mixtures. The results manifest the problem of nonlinearity and how models like the SVR and ANN can handle it. The methods indicate the ability of the mentioned multivariate calibration models to deconvolute the highly overlapped UV spectra of the 6 components' mixtures, yet using cheap and easy to handle instruments like the UV spectrophotometer. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Genetic algorithm optimization in drug design QSAR: Bayesian-regularized genetic neural networks (BRGNN) and genetic algorithm-optimized support vectors machines (GA-SVM).

    Science.gov (United States)

    Fernandez, Michael; Caballero, Julio; Fernandez, Leyden; Sarai, Akinori

    2011-02-01

    Many articles in "in silico" drug design implemented genetic algorithm (GA) for feature selection, model optimization, conformational search, or docking studies. Some of these articles described GA applications to quantitative structure-activity relationships (QSAR) modeling in combination with regression and/or classification techniques. We reviewed the implementation of GA in drug design QSAR and specifically its performance in the optimization of robust mathematical models such as Bayesian-regularized artificial neural networks (BRANNs) and support vector machines (SVMs) on different drug design problems. Modeled data sets encompassed ADMET and solubility properties, cancer target inhibitors, acetylcholinesterase inhibitors, HIV-1 protease inhibitors, ion-channel and calcium entry blockers, and antiprotozoan compounds as well as protein classes, functional, and conformational stability data. The GA-optimized predictors were often more accurate and robust than previous published models on the same data sets and explained more than 65% of data variances in validation experiments. In addition, feature selection over large pools of molecular descriptors provided insights into the structural and atomic properties ruling ligand-target interactions.

  6. Assessing the performance of multiple spectral-spatial features of a hyperspectral image for classification of urban land cover classes using support vector machines and artificial neural network

    Science.gov (United States)

    Pullanagari, Reddy; Kereszturi, Gábor; Yule, Ian J.; Ghamisi, Pedram

    2017-04-01

    Accurate and spatially detailed mapping of complex urban environments is essential for land managers. Classifying high spectral and spatial resolution hyperspectral images is a challenging task because of its data abundance and computational complexity. Approaches with a combination of spectral and spatial information in a single classification framework have attracted special attention because of their potential to improve the classification accuracy. We extracted multiple features from spectral and spatial domains of hyperspectral images and evaluated them with two supervised classification algorithms; support vector machines (SVM) and an artificial neural network. The spatial features considered are produced by a gray level co-occurrence matrix and extended multiattribute profiles. All of these features were stacked, and the most informative features were selected using a genetic algorithm-based SVM. After selecting the most informative features, the classification model was integrated with a segmentation map derived using a hidden Markov random field. We tested the proposed method on a real application of a hyperspectral image acquired from AisaFENIX and on widely used hyperspectral images. From the results, it can be concluded that the proposed framework significantly improves the results with different spectral and spatial resolutions over different instrumentation.

  7. Vectorized algorithms for spiking neural network simulation.

    Science.gov (United States)

    Brette, Romain; Goodman, Dan F M

    2011-06-01

    High-level languages (Matlab, Python) are popular in neuroscience because they are flexible and accelerate development. However, for simulating spiking neural networks, the cost of interpretation is a bottleneck. We describe a set of algorithms to simulate large spiking neural networks efficiently with high-level languages using vector-based operations. These algorithms constitute the core of Brian, a spiking neural network simulator written in the Python language. Vectorized simulation makes it possible to combine the flexibility of high-level languages with the computational efficiency usually associated with compiled languages.

  8. Computerized Interactive Gaming via Supporting Vector Machines

    Directory of Open Access Journals (Sweden)

    Y. Jiang

    2008-01-01

    Full Text Available Computerized interactive gaming requires automatic processing of large volume of random data produced by players on spot, such as shooting, football kicking, and boxing. This paper describes a supporting vector machine-based artificial intelligence algorithm as one of the possible solutions to the problem of random data processing and the provision of interactive indication for further actions. In comparison with existing techniques, such as rule-based and neural networks, and so forth, our SVM-based interactive gaming algorithm has the features of (i high-speed processing, providing instant response to the players, (ii winner selection and control by one parameter, which can be predesigned and adjusted according to the needs of interaction and game design or specific level of difficulties, and (iii detection of interaction points is adaptive to the input changes, and no labelled training data is required. Experiments on numerical simulation support that the proposed algorithm is robust to random noise, accurate in picking up winning data, and convenient for all interactive gaming designs.

  9. Knowledge-Based Green's Kernel for Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Tahir Farooq

    2010-01-01

    Full Text Available This paper presents a novel prior knowledge-based Green's kernel for support vector regression (SVR. After reviewing the correspondence between support vector kernels used in support vector machines (SVMs and regularization operators used in regularization networks and the use of Green's function of their corresponding regularization operators to construct support vector kernels, a mathematical framework is presented to obtain the domain knowledge about magnitude of the Fourier transform of the function to be predicted and design a prior knowledge-based Green's kernel that exhibits optimal regularization properties by using the concept of matched filters. The matched filter behavior of the proposed kernel function makes it suitable for signals corrupted with noise that includes many real world systems. We conduct several experiments mostly using benchmark datasets to compare the performance of our proposed technique with the results already published in literature for other existing support vector kernel over a variety of settings including different noise levels, noise models, loss functions, and SVM variations. Experimental results indicate that knowledge-based Green's kernel could be seen as a good choice among the other candidate kernel functions.

  10. Efficient Multiplicative Updates for Support Vector Machines

    DEFF Research Database (Denmark)

    Potluru, Vamsi K.; Plis, Sergie N; Mørup, Morten

    2009-01-01

    The dual formulation of the support vector machine (SVM) objective function is an instance of a nonnegative quadratic programming problem. We reformulate the SVM objective function as a matrix factorization problem which establishes a connection with the regularized nonnegative matrix factorizati...

  11. Arabic Text Classification Using Support Vector Machines

    NARCIS (Netherlands)

    Gharib, Tarek F.; Habib, Mena B.; Fayed, Zaki T.

    2009-01-01

    Text classification (TC) is the process of classifying documents into a predefined set of categories based on their content. Arabic language is highly inflectional and derivational language which makes text mining a complex task. In this paper we applied the Support Vector Machines (SVM) model in

  12. Robust Pseudo-Hierarchical Support Vector Clustering

    DEFF Research Database (Denmark)

    Hansen, Michael Sass; Sjöstrand, Karl; Olafsdóttir, Hildur

    2007-01-01

    Support vector clustering (SVC) has proven an efficient algorithm for clustering of noisy and high-dimensional data sets, with applications within many fields of research. An inherent problem, however, has been setting the parameters of the SVC algorithm. Using the recent emergence of a method fo...

  13. Online social support networks.

    Science.gov (United States)

    Mehta, Neil; Atreja, Ashish

    2015-04-01

    Peer support groups have a long history and have been shown to improve health outcomes. With the increasing familiarity with online social networks like Facebook and ubiquitous access to the Internet, online social support networks are becoming popular. While studies have shown the benefit of these networks in providing emotional support or meeting informational needs, robust data on improving outcomes such as a decrease in health services utilization or reduction in adverse outcomes is lacking. These networks also pose unique challenges in the areas of patient privacy, funding models, quality of content, and research agendas. Addressing these concerns while creating patient-centred, patient-powered online support networks will help leverage these platforms to complement traditional healthcare delivery models in the current environment of value-based care.

  14. Progressive Classification Using Support Vector Machines

    Science.gov (United States)

    Wagstaff, Kiri; Kocurek, Michael

    2009-01-01

    An algorithm for progressive classification of data, analogous to progressive rendering of images, makes it possible to compromise between speed and accuracy. This algorithm uses support vector machines (SVMs) to classify data. An SVM is a machine learning algorithm that builds a mathematical model of the desired classification concept by identifying the critical data points, called support vectors. Coarse approximations to the concept require only a few support vectors, while precise, highly accurate models require far more support vectors. Once the model has been constructed, the SVM can be applied to new observations. The cost of classifying a new observation is proportional to the number of support vectors in the model. When computational resources are limited, an SVM of the appropriate complexity can be produced. However, if the constraints are not known when the model is constructed, or if they can change over time, a method for adaptively responding to the current resource constraints is required. This capability is particularly relevant for spacecraft (or any other real-time systems) that perform onboard data analysis. The new algorithm enables the fast, interactive application of an SVM classifier to a new set of data. The classification process achieved by this algorithm is characterized as progressive because a coarse approximation to the true classification is generated rapidly and thereafter iteratively refined. The algorithm uses two SVMs: (1) a fast, approximate one and (2) slow, highly accurate one. New data are initially classified by the fast SVM, producing a baseline approximate classification. For each classified data point, the algorithm calculates a confidence index that indicates the likelihood that it was classified correctly in the first pass. Next, the data points are sorted by their confidence indices and progressively reclassified by the slower, more accurate SVM, starting with the items most likely to be incorrectly classified. The user

  15. Characterization of digital medical images utilizing support vector machines

    Directory of Open Access Journals (Sweden)

    Zafiropoulos Elias P

    2004-03-01

    Full Text Available Abstract Background In this paper we discuss an efficient methodology for the image analysis and characterization of digital images containing skin lesions using Support Vector Machines and present the results of a preliminary study. Methods The methodology is based on the support vector machines algorithm for data classification and it has been applied to the problem of the recognition of malignant melanoma versus dysplastic naevus. Border and colour based features were extracted from digital images of skin lesions acquired under reproducible conditions, using basic image processing techniques. Two alternative classification methods, the statistical discriminant analysis and the application of neural networks were also applied to the same problem and the results are compared. Results The SVM (Support Vector Machines algorithm performed quite well achieving 94.1% correct classification, which is better than the performance of the other two classification methodologies. The method of discriminant analysis classified correctly 88% of cases (71% of Malignant Melanoma and 100% of Dysplastic Naevi, while the neural networks performed approximately the same. Conclusion The use of a computer-based system, like the one described in this paper, is intended to avoid human subjectivity and to perform specific tasks according to a number of criteria. However the presence of an expert dermatologist is considered necessary for the overall visual assessment of the skin lesion and the final diagnosis.

  16. Support vector machines for spam categorization.

    Science.gov (United States)

    Drucker, H; Wu, D; Vapnik, V N

    1999-01-01

    We study the use of support vector machines (SVM's) in classifying e-mail as spam or nonspam by comparing it to three other classification algorithms: Ripper, Rocchio, and boosting decision trees. These four algorithms were tested on two different data sets: one data set where the number of features were constrained to the 1000 best features and another data set where the dimensionality was over 7000. SVM's performed best when using binary features. For both data sets, boosting trees and SVM's had acceptable test performance in terms of accuracy and speed. However, SVM's had significantly less training time.

  17. Artificial Neural Network for Displacement Vectors Determination

    Directory of Open Access Journals (Sweden)

    P. Bohmann

    1997-09-01

    Full Text Available An artificial neural network (NN for displacement vectors (DV determination is presented in this paper. DV are computed in areas which are essential for image analysis and computer vision, in areas where are edges, lines, corners etc. These special features are found by edges operators with the following filtration. The filtration is performed by a threshold function. The next step is DV computation by 2D Hamming artificial neural network. A method of DV computation is based on the full search block matching algorithms. The pre-processing (edges finding is the reason why the correlation function is very simple, the process of DV determination needs less computation and the structure of the NN is simpler.

  18. When do support vector machines work fast?

    Energy Technology Data Exchange (ETDEWEB)

    Steinwart, I. (Ingo); Scovel, James C.

    2004-01-01

    The authors establish learning rates to the Bayes risk for support vector machines (SVM's) with hinge loss. Since a theorem of Devroyte states that no learning algorithm can learn with a uniform rate to the Bayes risk for all probability distributions they have to restrict the class of considered distributions: in order to obtain fast rates they assume a noise condition recently proposed by Tsybakov and an approximation condition in terms of the distribution and the reproducing kernel Hilbert space used by the SVM. for Gaussian RBF kernels with varying widths they propose a geometric noise assumption on the distribution which ensures the approximation condition. This geometric assumption is not in terms of smoothness but describes the concentration of the marginal distribution near the decision boundary. In particular they are able to describe nontrivial classes of distributions for which SVM's using a Gaussian kernel can learn with almost linear rate.

  19. Supernova Recognition using Support Vector Machines

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Raquel A.; Aragon, Cecilia R.; Ding, Chris

    2006-10-01

    We introduce a novel application of Support Vector Machines(SVMs) to the problem of identifying potential supernovae usingphotometric and geometric features computed from astronomical imagery.The challenges of this supervised learning application are significant:1) noisy and corrupt imagery resulting in high levels of featureuncertainty,2) features with heavy-tailed, peaked distributions,3)extremely imbalanced and overlapping positiveand negative data sets, and4) the need to reach high positive classification rates, i.e. to find allpotential supernovae, while reducing the burdensome workload of manuallyexamining false positives. High accuracy is achieved viaasign-preserving, shifted log transform applied to features with peaked,heavy-tailed distributions. The imbalanced data problem is handled byoversampling positive examples,selectively sampling misclassifiednegative examples,and iteratively training multiple SVMs for improvedsupernovarecognition on unseen test data. We present crossvalidationresults and demonstrate the impact on a largescale supernova survey thatcurrently uses the SVM decision value to rank-order 600,000 potentialsupernovae each night.

  20. Scope of Support Vector Machine in Steganography

    Science.gov (United States)

    Tanwar, Rohit; Malhotrab, Sona

    2017-08-01

    Steganography is a technique used for secure transmission of data. Using audio as a cover file opens path for many extra features. In order to overcome the limitations of conventional LSB technique, various variants were proposed by different authors. In order to achieve robustness, use of various optimization techniques has been tradition. In this paper the focus is put on use of Genetic Algorithm and Particle Swarm Intelligence in steganography. To list detailed scope, merits and de-merits of the two optimization techniques is the main constituent of this paper. In spite of analyzing the two techniques, the motivation and applicability of machine learning algorithm in the problem statement is also discussed. This paper will guide the path in using Support Vector Machine for optimizing the data hiding.

  1. Supporting medical decisions with vector decision trees.

    Science.gov (United States)

    Sprogar, M; Kokol, P; Zorman, M; Podgorelec, V; Yamamoto, R; Masuda, G; Sakamoto, N

    2001-01-01

    The article presents the extension of a common decision tree concept to a multidimensional - vector - decision tree constructed with the help of evolutionary techniques. In contrary to the common decision tree the vector decision tree can make more than just one suggestion per input sample. It has the functionality of many separate decision trees acting on a same set of training data and answering different questions. Vector decision tree is therefore simple in its form, is easy to use and analyse and can express some relationships between decisions not visible before. To explore and test the possibilities of this concept we developed a software tool--DecRain--for building vector decision trees using the ideas of evolutionary computing. Generated vector decision trees showed good results in comparison to classical decision trees. The concept of vector decision trees can be safely and effectively used in any decision making process.

  2. Deep Learning for Person Reidentification Using Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Mengyu Xu

    2017-01-01

    Full Text Available Due to the variations of viewpoint, pose, and illumination, a given individual may appear considerably different across different camera views. Tracking individuals across camera networks with no overlapping fields is still a challenging problem. Previous works mainly focus on feature representation and metric learning individually which tend to have a suboptimal solution. To address this issue, in this work, we propose a novel framework to do the feature representation learning and metric learning jointly. Different from previous works, we represent the pairs of pedestrian images as new resized input and use linear Support Vector Machine to replace softmax activation function for similarity learning. Particularly, dropout and data augmentation techniques are also employed in this model to prevent the network from overfitting. Extensive experiments on two publically available datasets VIPeR and CUHK01 demonstrate the effectiveness of our proposed approach.

  3. Support vector machines optimization based theory, algorithms, and extensions

    CERN Document Server

    Deng, Naiyang; Zhang, Chunhua

    2013-01-01

    Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions presents an accessible treatment of the two main components of support vector machines (SVMs)-classification problems and regression problems. The book emphasizes the close connection between optimization theory and SVMs since optimization is one of the pillars on which SVMs are built.The authors share insight on many of their research achievements. They give a precise interpretation of statistical leaning theory for C-support vector classification. They also discuss regularized twi

  4. Ranking Support Vector Machine with Kernel Approximation.

    Science.gov (United States)

    Chen, Kai; Li, Rongchun; Dou, Yong; Liang, Zhengfa; Lv, Qi

    2017-01-01

    Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.

  5. Support vector machine with Dirichlet feature mapping.

    Science.gov (United States)

    Nedaie, Ali; Najafi, Amir Abbas

    2017-11-16

    The Support Vector Machine (SVM) is a supervised learning algorithm to analyze data and recognize patterns. The standard SVM suffers from some limitations in nonlinear classification problems. To tackle these limitations, the nonlinear form of the SVM poses a modified machine based on the kernel functions or other nonlinear feature mappings obviating the mentioned imperfection. However, choosing an efficient kernel or feature mapping function is strongly dependent on data structure. Thus, a flexible feature mapping can be confidently applied in different types of data structures without challenging a kernel selection and its tuning. This paper introduces a new flexible feature mapping approach based on the Dirichlet distribution in order to develop an efficient SVM for nonlinear data structures. To determine the parameters of the Dirichlet mapping, a tuning technique is employed based on the maximum likelihood estimation and Newton's optimization method. The numerical results illustrate the superiority of the proposed machine in terms of the accuracy and relative error rate measures in comparison to the traditional ones. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Novel Method for Measuring the Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters Based on Artificial Neural Networks and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhijian Liu

    2015-08-01

    Full Text Available The determinations of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, which also wastes too much time and manpower. To address this problem, we propose machine learning models including artificial neural networks (ANNs and support vector machines (SVM to predict the heat collection rate and heat loss coefficient without a direct determination. Parameters that can be easily obtained by “portable test instruments” were set as independent variables, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, final temperature and angle between tubes and ground, while the heat collection rate and heat loss coefficient determined by the detection device were set as dependent variables respectively. Nine hundred fifteen samples from in-service water-in-glass evacuated tube solar water heaters were used for training and testing the models. Results show that the multilayer feed-forward neural network (MLFN with 3 nodes is the best model for the prediction of heat collection rate and the general regression neural network (GRNN is the best model for the prediction of heat loss coefficient due to their low root mean square (RMS errors, short training times, and high prediction accuracies (under the tolerances of 30%, 20%, and 10%, respectively.

  7. Support vector regression and least squares support vector regression for hormetic dose-response curves fitting.

    Science.gov (United States)

    Qin, Li-Tang; Liu, Shu-Shen; Liu, Hai-Ling; Zhang, Yong-Hong

    2010-01-01

    Accurate description of hormetic dose-response curves (DRC) is a key step for the determination of the efficacy and hazards of the pollutants with the hormetic phenomenon. This study tries to use support vector regression (SVR) and least squares support vector regression (LS-SVR) to address the problem of curve fitting existing in hormesis. The SVR and LS-SVR, which are entirely different from the non-linear fitting methods used to describe hormetic effects based on large sample, are at present only optimum methods based on small sample often encountered in the experimental toxicology. The tuning parameters (C and p1 for SVR, gam and sig2 for LS-SVR) determining SVR and LS-SVR models were obtained by both the internal and external validation of the models. The internal validation was performed by using leave-one-out (LOO) cross-validation and the external validation was performed by splitting the whole data set (12 data points) into the same size (six data points) of training set and test set. The results show that SVR and LS-SVR can accurately describe not only for the hermetic J-shaped DRC of seven water-soluble organic solvents consisting of acetonitrile, methanol, ethanol, acetone, ether, tetrahydrofuran, and isopropanol, but also for the classical sigmoid DRC of six pesticides including simetryn, prometon, bromacil, velpar, diquat-dibromide monohydrate, and dichlorvos. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Application of Support Vector Machine to Forex Monitoring

    Science.gov (United States)

    Kamruzzaman, Joarder; Sarker, Ruhul A.

    Previous studies have demonstrated superior performance of artificial neural network (ANN) based forex forecasting models over traditional regression models. This paper applies support vector machines to build a forecasting model from the historical data using six simple technical indicators and presents a comparison with an ANN based model trained by scaled conjugate gradient (SCG) learning algorithm. The models are evaluated and compared on the basis of five commonly used performance metrics that measure closeness of prediction as well as correctness in directional change. Forecasting results of six different currencies against Australian dollar reveal superior performance of SVM model using simple linear kernel over ANN-SCG model in terms of all the evaluation metrics. The effect of SVM parameter selection on prediction performance is also investigated and analyzed.

  9. Support Vector Regression Model for Direct Methanol Fuel Cell

    Science.gov (United States)

    Tang, J. L.; Cai, C. Z.; Xiao, T. T.; Huang, S. J.

    2012-07-01

    The purpose of this paper is to establish a direct methanol fuel cell (DMFC) prediction model by using the support vector regression (SVR) approach combined with particle swarm optimization (PSO) algorithm for its parameter selection. Two variables, cell temperature and cell current density were employed as input variables, cell voltage value of DMFC acted as output variable. Using leave-one-out cross-validation (LOOCV) test on 21 samples, the maximum absolute percentage error (APE) yields 5.66%, the mean absolute percentage error (MAPE) is only 0.93% and the correlation coefficient (R2) as high as 0.995. Compared with the result of artificial neural network (ANN) approach, it is shown that the modeling ability of SVR surpasses that of ANN. These suggest that SVR prediction model can be a good predictor to estimate the cell voltage for DMFC system.

  10. [Rule induction algorithm for brain glioma using support vector machine].

    Science.gov (United States)

    Li, Guozheng; Yang, Jie; Wang, Jiaju; Geng, Daoying

    2006-04-01

    A new proposed data mining technique, support vector machine (SVM), is used to predict the degree of malignancy in brain glioma. Based on statistical learning theory, SVM realizes the principle of data dependent structure risk minimization, so it can depress the overfitting with better generalization performance, since the prediction in medical diagnosis often deals with a small sample. SVM based rule induction algorithm is implemented in comparison with other data mining techniques such as artificial neural networks, rule induction algorithm and fuzzy rule extraction algorithm based on fuzzy max-min neural networks (FRE-FMMNN) proposed recently. Computation results by 10 fold cross validation method show that SVM can get higher prediction accuracy than artificial neural networks and FRE-FMMNN, which implies SVM can get higher accuracy and more reliability. On the whole data sets, SVM gets one rule with the classification accuracy of 89.29%, while FRE-FMMNN gets two rules of 84. 64%, in which the rule got by SVM is of quantity relation and contains more information than the two rules by FRE-FMMNN. All the above show SVM is a potential algorithm for the medical diagnosis such as the prediction of the degree of malignancy in brain glioma.

  11. Data mining methods in the prediction of Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests.

    Science.gov (United States)

    Maroco, João; Silva, Dina; Rodrigues, Ana; Guerreiro, Manuela; Santana, Isabel; de Mendonça, Alexandre

    2011-08-17

    Dementia and cognitive impairment associated with aging are a major medical and social concern. Neuropsychological testing is a key element in the diagnostic procedures of Mild Cognitive Impairment (MCI), but has presently a limited value in the prediction of progression to dementia. We advance the hypothesis that newer statistical classification methods derived from data mining and machine learning methods like Neural Networks, Support Vector Machines and Random Forests can improve accuracy, sensitivity and specificity of predictions obtained from neuropsychological testing. Seven non parametric classifiers derived from data mining methods (Multilayer Perceptrons Neural Networks, Radial Basis Function Neural Networks, Support Vector Machines, CART, CHAID and QUEST Classification Trees and Random Forests) were compared to three traditional classifiers (Linear Discriminant Analysis, Quadratic Discriminant Analysis and Logistic Regression) in terms of overall classification accuracy, specificity, sensitivity, Area under the ROC curve and Press'Q. Model predictors were 10 neuropsychological tests currently used in the diagnosis of dementia. Statistical distributions of classification parameters obtained from a 5-fold cross-validation were compared using the Friedman's nonparametric test. Press' Q test showed that all classifiers performed better than chance alone (p classification accuracy (Median (Me) = 0.76) an area under the ROC (Me = 0.90). However this method showed high specificity (Me = 1.0) but low sensitivity (Me = 0.3). Random Forest ranked second in overall accuracy (Me = 0.73) with high area under the ROC (Me = 0.73) specificity (Me = 0.73) and sensitivity (Me = 0.64). Linear Discriminant Analysis also showed acceptable overall accuracy (Me = 0.66), with acceptable area under the ROC (Me = 0.72) specificity (Me = 0.66) and sensitivity (Me = 0.64). The remaining classifiers showed overall classification accuracy above a median value of 0.63, but for most

  12. Cavitation detection of butterfly valve using support vector machines

    Science.gov (United States)

    Yang, Bo-Suk; Hwang, Won-Woo; Ko, Myung-Han; Lee, Soo-Jong

    2005-10-01

    Butterfly valves are popularly used in service in the industrial and water works pipeline systems with large diameter because of its lightweight, simple structure and the rapidity of its manipulation. Sometimes cavitation can occur, resulting in noise, vibration and rapid deterioration of the valve trim, and do not allow further operation. Thus, monitoring of cavitation is of economic interest and is very important in industry. This paper proposes a condition monitoring scheme using statistical feature evaluation and support vector machine (SVM) to detect the cavitation conditions of butterfly valve which used as a flow control valve at the pumping stations. The stationary features of vibration signals are extracted from statistical moments. The SVMs are trained, and then classify normal and cavitation conditions of control valves. The SVMs with the reorganized feature vectors can distinguish the class of the untrained and untested data. The classification validity of this method is examined by various signals acquired from butterfly valves in the pumping stations. And the classification success rate is compared with that of self-organizing feature map neural network (SOFM).

  13. The entire regularization path for the support vector domain description

    DEFF Research Database (Denmark)

    Sjöstrand, Karl; Larsen, Rasmus

    2006-01-01

    -class support vector machine classifier. Recently, it was shown that the regularization path of the support vector machine is piecewise linear, and that the entire path can be computed efficiently. This pa- per shows that this property carries over to the support vector domain description. Using our results...... the solution to the one-class classification can be solved for any amount of regularization with roughly the same computational complexity required to solve for a particularly value of the regularization parameter. The possibility of evaluating the results for any amount of regularization not only offers more...

  14. Music Signal Processing Using Vector Product Neural Networks

    Science.gov (United States)

    Fan, Z. C.; Chan, T. S.; Yang, Y. H.; Jang, J. S. R.

    2017-05-01

    We propose a novel neural network model for music signal processing using vector product neurons and dimensionality transformations. Here, the inputs are first mapped from real values into three-dimensional vectors then fed into a three-dimensional vector product neural network where the inputs, outputs, and weights are all three-dimensional values. Next, the final outputs are mapped back to the reals. Two methods for dimensionality transformation are proposed, one via context windows and the other via spectral coloring. Experimental results on the iKala dataset for blind singing voice separation confirm the efficacy of our model.

  15. Deep Learning for Person Reidentification Using Support Vector Machines

    National Research Council Canada - National Science Library

    Mengyu Xu; Zhenmin Tang; Yazhou Yao; Lingxiang Yao; Huafeng Liu; Jingsong Xu

    2017-01-01

    .... Different from previous works, we represent the pairs of pedestrian images as new resized input and use linear Support Vector Machine to replace softmax activation function for similarity learning...

  16. Building and analysis of protein-protein interactions related to diabetes mellitus using support vector machine, biomedical text mining and network analysis.

    Science.gov (United States)

    Vyas, Renu; Bapat, Sanket; Jain, Esha; Karthikeyan, Muthukumarasamy; Tambe, Sanjeev; Kulkarni, Bhaskar D

    2016-12-01

    In order to understand the molecular mechanism underlying any disease, knowledge about the interacting proteins in the disease pathway is essential. The number of revealed protein-protein interactions (PPI) is still very limited compared to the available protein sequences of different organisms. Experiment based high-throughput technologies though provide some data about these interactions, those are often fairly noisy. Computational techniques for predicting protein-protein interactions therefore assume significance. 1296 binary fingerprints that encode a combination of structural and geometric properties were developed using the crystallographic data of 15,000 protein complexes in the pdb server. In a case study, these fingerprints were created for proteins implicated in the Type 2 diabetes mellitus disease. The fingerprints were input into a SVM based model for discriminating disease proteins from non disease proteins yielding a classification accuracy of 78.2% (AUC value of 0.78) on an external data set composed of proteins retrieved via text mining of diabetes related literature. A PPI network was constructed and analysed to explore new disease targets. The integrated approach exemplified here has a potential for identifying disease related proteins, functional annotation and other proteomics studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Particle swarm optimization based support vector machine for damage level prediction of non-reshaped berm breakwater

    Digital Repository Service at National Institute of Oceanography (India)

    Harish, N.; Mandal, S.; Rao, S.; Patil, S.G.

    breakwater. Soft computing tools like Artificial Neural Network, Fuzzy Logic, Support Vector Machine (SVM), etc, are successfully used to solve complex problems. In the present study, SVM and hybrid of Particle Swarm Optimization (PSO) with SVM (PSO...

  18. Support Vector Machines for decision support in electricity markets׳ strategic bidding

    DEFF Research Database (Denmark)

    Pinto, Tiago; Sousa, Tiago M.; Praça, Isabel

    2015-01-01

    by being included in ALBidS and then compared with the application of an Artificial Neural Network (ANN), originating promising results: an effective electricity market price forecast in a fast execution time. The proposed approach is tested and validated using real electricity markets data from MIBEL......׳ research group has developed a multi-agent system: Multi-Agent System for Competitive Electricity Markets (MASCEM), which simulates the electricity markets environment. MASCEM is integrated with Adaptive Learning Strategic Bidding System (ALBidS) that works as a decision support system for market players....... The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. This paper presents the application of a Support Vector Machines (SVM) based approach to provide decision support to electricity market players. This strategy is tested and validated...

  19. Support Vector Machines for Pattern Classification

    CERN Document Server

    Abe, Shigeo

    2010-01-01

    A guide on the use of SVMs in pattern classification, including a rigorous performance comparison of classifiers and regressors. The book presents architectures for multiclass classification and function approximation problems, as well as evaluation criteria for classifiers and regressors. Features: Clarifies the characteristics of two-class SVMs; Discusses kernel methods for improving the generalization ability of neural networks and fuzzy systems; Contains ample illustrations and examples; Includes performance evaluation using publicly available data sets; Examines Mahalanobis kernels, empir

  20. Deep Learning using Linear Support Vector Machines

    OpenAIRE

    Tang, Yichuan

    2013-01-01

    Recently, fully-connected and convolutional neural networks have been trained to achieve state-of-the-art performance on a wide variety of tasks such as speech recognition, image classification, natural language processing, and bioinformatics. For classification tasks, most of these "deep learning" models employ the softmax activation function for prediction and minimize cross-entropy loss. In this paper, we demonstrate a small but consistent advantage of replacing the softmax layer with a li...

  1. Comparative Study on Theoretical and Machine Learning Methods for Acquiring Compressed Liquid Densities of 1,1,1,2,3,3,3-Heptafluoropropane (R227ea via Song and Mason Equation, Support Vector Machine, and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Hao Li

    2016-01-01

    Full Text Available 1,1,1,2,3,3,3-Heptafluoropropane (R227ea is a good refrigerant that reduces greenhouse effects and ozone depletion. In practical applications, we usually have to know the compressed liquid densities at different temperatures and pressures. However, the measurement requires a series of complex apparatus and operations, wasting too much manpower and resources. To solve these problems, here, Song and Mason equation, support vector machine (SVM, and artificial neural networks (ANNs were used to develop theoretical and machine learning models, respectively, in order to predict the compressed liquid densities of R227ea with only the inputs of temperatures and pressures. Results show that compared with the Song and Mason equation, appropriate machine learning models trained with precise experimental samples have better predicted results, with lower root mean square errors (RMSEs (e.g., the RMSE of the SVM trained with data provided by Fedele et al. [1] is 0.11, while the RMSE of the Song and Mason equation is 196.26. Compared to advanced conventional measurements, knowledge-based machine learning models are proved to be more time-saving and user-friendly.

  2. Efficient Vector-Based Forwarding for Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Peng Xie

    2010-01-01

    Full Text Available Underwater Sensor Networks (UWSNs are significantly different from terrestrial sensor networks in the following aspects: low bandwidth, high latency, node mobility, high error probability, and 3-dimensional space. These new features bring many challenges to the network protocol design of UWSNs. In this paper, we tackle one fundamental problem in UWSNs: robust, scalable, and energy efficient routing. We propose vector-based forwarding (VBF, a geographic routing protocol. In VBF, the forwarding path is guided by a vector from the source to the target, no state information is required on the sensor nodes, and only a small fraction of the nodes is involved in routing. To improve the robustness, packets are forwarded in redundant and interleaved paths. Further, a localized and distributed self-adaptation algorithm allows the nodes to reduce energy consumption by discarding redundant packets. VBF performs well in dense networks. For sparse networks, we propose a hop-by-hop vector-based forwarding (HH-VBF protocol, which adapts the vector-based approach at every hop. We evaluate the performance of VBF and HH-VBF through extensive simulations. The simulation results show that VBF achieves high packet delivery ratio and energy efficiency in dense networks and HH-VBF has high packet delivery ratio even in sparse networks.

  3. Classification Method in Integrated Information Network Using Vector Image Comparison

    Directory of Open Access Journals (Sweden)

    Zhou Yuan

    2014-05-01

    Full Text Available Wireless Integrated Information Network (WMN consists of integrated information that can get data from its surrounding, such as image, voice. To transmit information, large resource is required which decreases the service time of the network. In this paper we present a Classification Approach based on Vector Image Comparison (VIC for WMN that improve the service time of the network. The available methods for sub-region selection and conversion are also proposed.

  4. Supporting networks for realizing rights

    DEFF Research Database (Denmark)

    Wilson, Fiona

    2005-01-01

    The chapter explores how DFID, the British bi-lateral aid donor, adopted an innovative rights' based approach that rested on supporting in existing networks in Peru. Focus is put on the history and challenges of DFID's engagement with three networks in particular: in the fields of health, local...

  5. Track Circuit Fault Diagnosis Method based on Least Squares Support Vector

    Science.gov (United States)

    Cao, Yan; Sun, Fengru

    2018-01-01

    In order to improve the troubleshooting efficiency and accuracy of the track circuit, track circuit fault diagnosis method was researched. Firstly, the least squares support vector machine was applied to design the multi-fault classifier of the track circuit, and then the measured track data as training samples was used to verify the feasibility of the methods. Finally, the results based on BP neural network fault diagnosis methods and the methods used in this paper were compared. Results shows that the track fault classifier based on least squares support vector machine can effectively achieve the five track circuit fault diagnosis with less computing time.

  6. Support Vector Regression and Genetic Algorithm for HVAC Optimal Operation

    Directory of Open Access Journals (Sweden)

    Ching-Wei Chen

    2016-01-01

    Full Text Available This study covers records of various parameters affecting the power consumption of air-conditioning systems. Using the Support Vector Machine (SVM, the chiller power consumption model, secondary chilled water pump power consumption model, air handling unit fan power consumption model, and air handling unit load model were established. In addition, it was found that R2 of the models all reached 0.998, and the training time was far shorter than that of the neural network. Through genetic programming, a combination of operating parameters with the least power consumption of air conditioning operation was searched. Moreover, the air handling unit load in line with the air conditioning cooling load was predicted. The experimental results show that for the combination of operating parameters with the least power consumption in line with the cooling load obtained through genetic algorithm search, the power consumption of the air conditioning systems under said combination of operating parameters was reduced by 22% compared to the fixed operating parameters, thus indicating significant energy efficiency.

  7. Support vector machine in machine condition monitoring and fault diagnosis

    Science.gov (United States)

    Widodo, Achmad; Yang, Bo-Suk

    2007-08-01

    Recently, the issue of machine condition monitoring and fault diagnosis as a part of maintenance system became global due to the potential advantages to be gained from reduced maintenance costs, improved productivity and increased machine availability. This paper presents a survey of machine condition monitoring and fault diagnosis using support vector machine (SVM). It attempts to summarize and review the recent research and developments of SVM in machine condition monitoring and diagnosis. Numerous methods have been developed based on intelligent systems such as artificial neural network, fuzzy expert system, condition-based reasoning, random forest, etc. However, the use of SVM for machine condition monitoring and fault diagnosis is still rare. SVM has excellent performance in generalization so it can produce high accuracy in classification for machine condition monitoring and diagnosis. Until 2006, the use of SVM in machine condition monitoring and fault diagnosis is tending to develop towards expertise orientation and problem-oriented domain. Finally, the ability to continually change and obtain a novel idea for machine condition monitoring and fault diagnosis using SVM will be future works.

  8. River flow time series using least squares support vector machines

    Directory of Open Access Journals (Sweden)

    R. Samsudin

    2011-06-01

    Full Text Available This paper proposes a novel hybrid forecasting model known as GLSSVM, which combines the group method of data handling (GMDH and the least squares support vector machine (LSSVM. The GMDH is used to determine the useful input variables which work as the time series forecasting for the LSSVM model. Monthly river flow data from two stations, the Selangor and Bernam rivers in Selangor state of Peninsular Malaysia were taken into consideration in the development of this hybrid model. The performance of this model was compared with the conventional artificial neural network (ANN models, Autoregressive Integrated Moving Average (ARIMA, GMDH and LSSVM models using the long term observations of monthly river flow discharge. The root mean square error (RMSE and coefficient of correlation (R are used to evaluate the models' performances. In both cases, the new hybrid model has been found to provide more accurate flow forecasts compared to the other models. The results of the comparison indicate that the new hybrid model is a useful tool and a promising new method for river flow forecasting.

  9. River flow time series using least squares support vector machines

    Science.gov (United States)

    Samsudin, R.; Saad, P.; Shabri, A.

    2011-06-01

    This paper proposes a novel hybrid forecasting model known as GLSSVM, which combines the group method of data handling (GMDH) and the least squares support vector machine (LSSVM). The GMDH is used to determine the useful input variables which work as the time series forecasting for the LSSVM model. Monthly river flow data from two stations, the Selangor and Bernam rivers in Selangor state of Peninsular Malaysia were taken into consideration in the development of this hybrid model. The performance of this model was compared with the conventional artificial neural network (ANN) models, Autoregressive Integrated Moving Average (ARIMA), GMDH and LSSVM models using the long term observations of monthly river flow discharge. The root mean square error (RMSE) and coefficient of correlation (R) are used to evaluate the models' performances. In both cases, the new hybrid model has been found to provide more accurate flow forecasts compared to the other models. The results of the comparison indicate that the new hybrid model is a useful tool and a promising new method for river flow forecasting.

  10. Support vector machine classification of strong gravitational lenses

    Science.gov (United States)

    Hartley, P.; Flamary, R.; Jackson, N.; Tagore, A. S.; Metcalf, R. B.

    2017-11-01

    The imminent advent of very large-scale optical sky surveys, such as Euclid and the Large Synoptic Survey Telescope (LSST), makes it important to find efficient ways of discovering rare objects such as strong gravitational lens systems, where a background object is multiply gravitationally imaged by a foreground mass. As well as finding the lens systems, it is important to reject false positives due to intrinsic structure in galaxies, and much work is in progress with machine learning algorithms such as neural networks in order to achieve both these aims. We present and discuss a support vector machine (SVM) algorithm which makes use of a Gabor filter bank in order to provide learning criteria for separation of lenses and non-lenses, and demonstrate using blind challenges that under certain circumstances, it is a particularly efficient algorithm for rejecting false positives. We compare the SVM engine with a large-scale human examination of 100 000 simulated lenses in a challenge data set, and also apply the SVM method to survey images from the Kilo Degree Survey.

  11. Environmental noise forecasting based on support vector machine

    Science.gov (United States)

    Fu, Yumei; Zan, Xinwu; Chen, Tianyi; Xiang, Shihan

    2018-01-01

    As an important pollution source, the noise pollution is always the researcher's focus. Especially in recent years, the noise pollution is seriously harmful to the human beings' environment, so the research about the noise pollution is a very hot spot. Some noise monitoring technologies and monitoring systems are applied in the environmental noise test, measurement and evaluation. But, the research about the environmental noise forecasting is weak. In this paper, a real-time environmental noise monitoring system is introduced briefly. This monitoring system is working in Mianyang City, Sichuan Province. It is monitoring and collecting the environmental noise about more than 20 enterprises in this district. Based on the large amount of noise data, the noise forecasting by the Support Vector Machine (SVM) is studied in detail. Compared with the time series forecasting model and the artificial neural network forecasting model, the SVM forecasting model has some advantages such as the smaller data size, the higher precision and stability. The noise forecasting results based on the SVM can provide the important and accuracy reference to the prevention and control of the environmental noise.

  12. Support vector machine for day ahead electricity price forecasting

    Science.gov (United States)

    Razak, Intan Azmira binti Wan Abdul; Abidin, Izham bin Zainal; Siah, Yap Keem; Rahman, Titik Khawa binti Abdul; Lada, M. Y.; Ramani, Anis Niza binti; Nasir, M. N. M.; Ahmad, Arfah binti

    2015-05-01

    Electricity price forecasting has become an important part of power system operation and planning. In a pool- based electric energy market, producers submit selling bids consisting in energy blocks and their corresponding minimum selling prices to the market operator. Meanwhile, consumers submit buying bids consisting in energy blocks and their corresponding maximum buying prices to the market operator. Hence, both producers and consumers use day ahead price forecasts to derive their respective bidding strategies to the electricity market yet reduce the cost of electricity. However, forecasting electricity prices is a complex task because price series is a non-stationary and highly volatile series. Many factors cause for price spikes such as volatility in load and fuel price as well as power import to and export from outside the market through long term contract. This paper introduces an approach of machine learning algorithm for day ahead electricity price forecasting with Least Square Support Vector Machine (LS-SVM). Previous day data of Hourly Ontario Electricity Price (HOEP), generation's price and demand from Ontario power market are used as the inputs for training data. The simulation is held using LSSVMlab in Matlab with the training and testing data of 2004. SVM that widely used for classification and regression has great generalization ability with structured risk minimization principle rather than empirical risk minimization. Moreover, same parameter settings in trained SVM give same results that absolutely reduce simulation process compared to other techniques such as neural network and time series. The mean absolute percentage error (MAPE) for the proposed model shows that SVM performs well compared to neural network.

  13. Vector network analyzer (VNA) measurements and uncertainty assessment

    CERN Document Server

    Shoaib, Nosherwan

    2017-01-01

    This book describes vector network analyzer measurements and uncertainty assessments, particularly in waveguide test-set environments, in order to establish their compatibility to the International System of Units (SI) for accurate and reliable characterization of communication networks. It proposes a fully analytical approach to measurement uncertainty evaluation, while also highlighting the interaction and the linear propagation of different uncertainty sources to compute the final uncertainties associated with the measurements. The book subsequently discusses the dimensional characterization of waveguide standards and the quality of the vector network analyzer (VNA) calibration techniques. The book concludes with an in-depth description of the novel verification artefacts used to assess the performance of the VNAs. It offers a comprehensive reference guide for beginners to experts, in both academia and industry, whose work involves the field of network analysis, instrumentation and measurements.

  14. Word Vectorization Using Relations among Words for Neural Network

    Science.gov (United States)

    Hotta, Hajime; Kittaka, Masanobu; Hagiwara, Masafumi

    In this paper, we propose a new vectorization method for a new generation of computational intelligence including neural networks and natural language processing. In recent years, various techniques of word vectorization have been proposed, many of which rely on the preparation of dictionaries. However, these techniques don't consider the symbol grounding problem for unknown types of data, which is one of the most fundamental issues on artificial intelligence. In order to avoid the symbol-grounding problem, pattern processing based methods, such as neural networks, are often used in various studies on self-directive systems and algorithms, and the merit of neural network is not exception in the natural language processing. The proposed method is a converter from one word input to one real-valued vector, whose algorithm is inspired by neural network architecture. The merits of the method are as follows: (1) the method requires no specific knowledge of linguistics e.g. word classes or grammatical one; (2) the method is a sequence learning technique and it can learn additional knowledge. The experiment showed the efficiency of word vectorization in terms of similarity measurement.

  15. Fuzzy support vector machine: an efficient rule-based classification technique for microarrays

    Science.gov (United States)

    2013-01-01

    Background The abundance of gene expression microarray data has led to the development of machine learning algorithms applicable for tackling disease diagnosis, disease prognosis, and treatment selection problems. However, these algorithms often produce classifiers with weaknesses in terms of accuracy, robustness, and interpretability. This paper introduces fuzzy support vector machine which is a learning algorithm based on combination of fuzzy classifiers and kernel machines for microarray classification. Results Experimental results on public leukemia, prostate, and colon cancer datasets show that fuzzy support vector machine applied in combination with filter or wrapper feature selection methods develops a robust model with higher accuracy than the conventional microarray classification models such as support vector machine, artificial neural network, decision trees, k nearest neighbors, and diagonal linear discriminant analysis. Furthermore, the interpretable rule-base inferred from fuzzy support vector machine helps extracting biological knowledge from microarray data. Conclusions Fuzzy support vector machine as a new classification model with high generalization power, robustness, and good interpretability seems to be a promising tool for gene expression microarray classification. PMID:24266942

  16. A novel stepwise support vector machine (SVM) method based on ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-23

    Nov 23, 2011 ... began to use computational approaches, particularly machine learning methods to identify pre-miRNAs (Xue et al., 2005; Huang et al., 2007; Jiang et al., 2007). Xue et al. (2005) presented a support vector machine (SVM)- based classifier called triplet-SVM, which classifies human pre-miRNAs from pseudo ...

  17. Evaluating automatically parallelized versions of the support vector machine

    NARCIS (Netherlands)

    Codreanu, Valeriu; Droge, Bob; Williams, David; Yasar, Burhan; Yang, Fo; Liu, Baoquan; Dong, Feng; Surinta, Olarik; Schomaker, Lambertus; Roerdink, Jos; Wiering, Marco

    2014-01-01

    The support vector machine (SVM) is a supervised learning algorithm used for recognizing patterns in data. It is a very popular technique in machine learning and has been successfully used in applications such as image classification, protein classification, and handwriting recognition. However, the

  18. Support Vector Machines: Relevance Feedback and Information Retrieval.

    Science.gov (United States)

    Drucker, Harris; Shahrary, Behzad; Gibbon, David C.

    2002-01-01

    Compares support vector machines (SVMs) to Rocchio, Ide regular and Ide dec-hi algorithms in information retrieval (IR) of text documents using relevancy feedback. If the preliminary search is so poor that one has to search through many documents to find at least one relevant document, then SVM is preferred. Includes nine tables. (Contains 24…

  19. Support vector machine: a tool for mapping mineral prospectivity

    NARCIS (Netherlands)

    Zuo, R.; Carranza, E.J.M

    2011-01-01

    In this contribution, we describe an application of support vector machine (SVM), a supervised learning algorithm, to mineral prospectivity mapping. The free R package e1071 is used to construct a SVM with sigmoid kernel function to map prospectivity for Au deposits in western Meguma Terrain of Nova

  20. Landslide susceptibility mapping using support vector machine and ...

    Indian Academy of Sciences (India)

    learning algorithm; Eng. Geol. 123 225–234. Micheletti N 2011 Landslide susceptibility mapping using adaptive support vector machines and feature selection,. A Master Thesis submitted to University of Lausanne. Faculty of Geosciences and Environment for the Degree of Master of Science in Environmental Geosciences,.

  1. Using of support vector machines for link spam detection

    Science.gov (United States)

    Sharapov, Ruslan V.; Sharapova, Ekaterina V.

    2011-10-01

    In this article we described methods of link spam detection with using of machine learning. We analyzed main factors of link spam, which helps to find them. There is algorithm of link spam detection, based on support vector machines. The methods of link spam detection shows good results

  2. Memorizing binary vector sequences by a sparsely encoded network.

    Science.gov (United States)

    Baram, Y

    1994-01-01

    We present a neural network employing Hebbian storage and sparse internal coding, which is capable of memorizing and correcting sequences of binary vectors by association. A ternary version of the Kanerva memory, folded into a feedback configuration, is shown to perform the basic sequence memorization and regeneration function. The inclusion of lateral connections between the internal cells increases the network capacity considerably and facilitates the correction of individual input patterns and the detection of large errors. The introduction of higher delays in the transmission lines between the external input-output layer and the internal memory layer is shown to further improve the network's error correction capability.

  3. Network Regulation and Support Schemes

    DEFF Research Database (Denmark)

    Ropenus, Stephanie; Schröder, Sascha Thorsten; Jacobsen, Henrik

    2009-01-01

    -in tariffs to market-based quota systems, and network regulation approaches, comprising rate-of-return and incentive regulation. National regulation and the vertical structure of the electricity sector shape the incentives of market agents, notably of distributed generators and network operators....... This article seeks to investigate the interactions between the policy dimensions of support schemes and network regulation and how they affect the deployment of distributed generation. Firstly, a conceptual analysis examines how the incentives of the different market agents are affected. In particular......At present, there exists no explicit European policy framework on distributed generation. Various Directives encompass distributed generation; inherently, their implementation is to the discretion of the Member States. The latter have adopted different kinds of support schemes, ranging from feed...

  4. Supporting rights and nurturing networks

    DEFF Research Database (Denmark)

    Wilson, Fiona

    2006-01-01

    The article explores how a bilateral aid donor (British DFID) managed their organizational and relational work when the local office (in Peru) put rights at the centre of their policy. Taking the example of DFID support to alternative thinking in the health sector, critical questions are raised a...... about the way donors engage with local networks....

  5. Twin support vector machines models, extensions and applications

    CERN Document Server

    Jayadeva; Chandra, Suresh

    2017-01-01

    This book provides a systematic and focused study of the various aspects of twin support vector machines (TWSVM) and related developments for classification and regression. In addition to presenting most of the basic models of TWSVM and twin support vector regression (TWSVR) available in the literature, it also discusses the important and challenging applications of this new machine learning methodology. A chapter on “Additional Topics” has been included to discuss kernel optimization and support tensor machine topics, which are comparatively new but have great potential in applications. It is primarily written for graduate students and researchers in the area of machine learning and related topics in computer science, mathematics, electrical engineering, management science and finance.

  6. On the KDD’99 Dataset: Support Vector Machine Based Intrusion Detection System (IDS) with Different Kernels

    OpenAIRE

    Md. Al MehediHasan; Mohammed Nasser; Biprodip Pal

    2013-01-01

    The success of any Intrusion Detection System (IDS) is a complicated problem due to its nonlinearity and the quantitative or qualitative network traffic data stream with many features. To get rid of this problem, several types of intrusion detection methods have been proposed and shown different levels of accuracy. This is why, the choice of the effective and robust method for IDS is very important topic in information security. Support vector machine (SVM) has been employed to provide potent...

  7. Vector-model-supported approach in prostate plan optimization.

    Science.gov (United States)

    Liu, Eva Sau Fan; Wu, Vincent Wing Cheung; Harris, Benjamin; Lehman, Margot; Pryor, David; Chan, Lawrence Wing Chi

    2017-01-01

    Lengthy time consumed in traditional manual plan optimization can limit the use of step-and-shoot intensity-modulated radiotherapy/volumetric-modulated radiotherapy (S&S IMRT/VMAT). A vector model base, retrieving similar radiotherapy cases, was developed with respect to the structural and physiologic features extracted from the Digital Imaging and Communications in Medicine (DICOM) files. Planning parameters were retrieved from the selected similar reference case and applied to the test case to bypass the gradual adjustment of planning parameters. Therefore, the planning time spent on the traditional trial-and-error manual optimization approach in the beginning of optimization could be reduced. Each S&S IMRT/VMAT prostate reference database comprised 100 previously treated cases. Prostate cases were replanned with both traditional optimization and vector-model-supported optimization based on the oncologists' clinical dose prescriptions. A total of 360 plans, which consisted of 30 cases of S&S IMRT, 30 cases of 1-arc VMAT, and 30 cases of 2-arc VMAT plans including first optimization and final optimization with/without vector-model-supported optimization, were compared using the 2-sided t-test and paired Wilcoxon signed rank test, with a significance level of 0.05 and a false discovery rate of less than 0.05. For S&S IMRT, 1-arc VMAT, and 2-arc VMAT prostate plans, there was a significant reduction in the planning time and iteration with vector-model-supported optimization by almost 50%. When the first optimization plans were compared, 2-arc VMAT prostate plans had better plan quality than 1-arc VMAT plans. The volume receiving 35 Gy in the femoral head for 2-arc VMAT plans was reduced with the vector-model-supported optimization compared with the traditional manual optimization approach. Otherwise, the quality of plans from both approaches was comparable. Vector-model-supported optimization was shown to offer much shortened planning time and iteration number

  8. Fault Isolation for Nonlinear Systems Using Flexible Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Yufang Liu

    2014-01-01

    Full Text Available While support vector regression is widely used as both a function approximating tool and a residual generator for nonlinear system fault isolation, a drawback for this method is the freedom in selecting model parameters. Moreover, for samples with discordant distributing complexities, the selection of reasonable parameters is even impossible. To alleviate this problem we introduce the method of flexible support vector regression (F-SVR, which is especially suited for modelling complicated sample distributions, as it is free from parameters selection. Reasonable parameters for F-SVR are automatically generated given a sample distribution. Lastly, we apply this method in the analysis of the fault isolation of high frequency power supplies, where satisfactory results have been obtained.

  9. Sistem Deteksi Retinopati Diabetik Menggunakan Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Wahyudi Setiawan

    2014-02-01

    Full Text Available Diabetic Retinopathy is a complication of Diabetes Melitus. It can be a blindness if untreated settled as early as possible. System created in this thesis is the detection of diabetic retinopathy level of the image obtained from fundus photographs. There are three main steps to resolve the problems, preprocessing, feature extraction and classification. Preprocessing methods that used in this system are Grayscale Green Channel, Gaussian Filter, Contrast Limited Adaptive Histogram Equalization and Masking. Two Dimensional Linear Discriminant Analysis (2DLDA is used for feature extraction. Support Vector Machine (SVM is used for classification. The test result performed by taking a dataset of MESSIDOR with number of images that vary for the training phase, otherwise is used for the testing phase. Test result show the optimal accuracy are 84% .   Keywords : Diabetic Retinopathy, Support Vector Machine, Two Dimensional Linear Discriminant Analysis, MESSIDOR

  10. A Novel Support Vector Machine with Globality-Locality Preserving

    Directory of Open Access Journals (Sweden)

    Cheng-Long Ma

    2014-01-01

    Full Text Available Support vector machine (SVM is regarded as a powerful method for pattern classification. However, the solution of the primal optimal model of SVM is susceptible for class distribution and may result in a nonrobust solution. In order to overcome this shortcoming, an improved model, support vector machine with globality-locality preserving (GLPSVM, is proposed. It introduces globality-locality preserving into the standard SVM, which can preserve the manifold structure of the data space. We complete rich experiments on the UCI machine learning data sets. The results validate the effectiveness of the proposed model, especially on the Wine and Iris databases; the recognition rate is above 97% and outperforms all the algorithms that were developed from SVM.

  11. Support Vector Machine Classification of Drunk Driving Behaviour

    OpenAIRE

    Chen, Huiqin; Chen, Lei

    2017-01-01

    Alcohol is the root cause of numerous traffic accidents due to its pharmacological action on the human central nervous system. This study conducted a detection process to distinguish drunk driving from normal driving under simulated driving conditions. The classification was performed by a support vector machine (SVM) classifier trained to distinguish between these two classes by integrating both driving performance and physiological measurements. In addition, principal component analysis was...

  12. An Efficient Audio Classification Approach Based on Support Vector Machines

    OpenAIRE

    Lhoucine Bahatti; Omar Bouattane; My Elhoussine Echhibat; Mohamed Hicham Zaggaf

    2016-01-01

    In order to achieve an audio classification aimed to identify the composer, the use of adequate and relevant features is important to improve performance especially when the classification algorithm is based on support vector machines. As opposed to conventional approaches that often use timbral features based on a time-frequency representation of the musical signal using constant window, this paper deals with a new audio classification method which improves the features extraction according ...

  13. Chord Recognition Based on Temporal Correlation Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhongyang Rao

    2016-05-01

    Full Text Available In this paper, we propose a method called temporal correlation support vector machine (TCSVM for automatic major-minor chord recognition in audio music. We first use robust principal component analysis to separate the singing voice from the music to reduce the influence of the singing voice and consider the temporal correlations of the chord features. Using robust principal component analysis, we expect the low-rank component of the spectrogram matrix to contain the musical accompaniment and the sparse component to contain the vocal signals. Then, we extract a new logarithmic pitch class profile (LPCP feature called enhanced LPCP from the low-rank part. To exploit the temporal correlation among the LPCP features of chords, we propose an improved support vector machine algorithm called TCSVM. We perform this study using the MIREX’09 (Music Information Retrieval Evaluation eXchange Audio Chord Estimation dataset. Furthermore, we conduct comprehensive experiments using different pitch class profile feature vectors to examine the performance of TCSVM. The results of our method are comparable to the state-of-the-art methods that entered the MIREX in 2013 and 2014 for the MIREX’09 Audio Chord Estimation task dataset.

  14. Visual Tracking With Convolutional Random Vector Functional Link Network.

    Science.gov (United States)

    Zhang, Le; Suganthan, Ponnuthurai Nagaratnam

    2017-10-01

    Deep neural network-based methods have recently achieved excellent performance in visual tracking task. As very few training samples are available in visual tracking task, those approaches rely heavily on extremely large auxiliary dataset such as ImageNet to pretrain the model. In order to address the discrepancy between the source domain (the auxiliary data) and the target domain (the object being tracked), they need to be finetuned during the tracking process. However, those methods suffer from sensitivity to the hyper-parameters such as learning rate, maximum number of epochs, size of mini-batch, and so on. Thus, it is worthy to investigate whether pretraining and fine tuning through conventional back-prop is essential for visual tracking. In this paper, we shed light on this line of research by proposing convolutional random vector functional link (CRVFL) neural network, which can be regarded as a marriage of the convolutional neural network and random vector functional link network, to simplify the visual tracking system. The parameters in the convolutional layer are randomly initialized and kept fixed. Only the parameters in the fully connected layer need to be learned. We further propose an elegant approach to update the tracker. In the widely used visual tracking benchmark, without any auxiliary data, a single CRVFL model achieves 79.0% with a threshold of 20 pixels for the precision plot. Moreover, an ensemble of CRVFL yields comparatively the best result of 86.3%.

  15. Scorebox extraction from mobile sports videos using Support Vector Machines

    Science.gov (United States)

    Kim, Wonjun; Park, Jimin; Kim, Changick

    2008-08-01

    Scorebox plays an important role in understanding contents of sports videos. However, the tiny scorebox may give the small-display-viewers uncomfortable experience in grasping the game situation. In this paper, we propose a novel framework to extract the scorebox from sports video frames. We first extract candidates by using accumulated intensity and edge information after short learning period. Since there are various types of scoreboxes inserted in sports videos, multiple attributes need to be used for efficient extraction. Based on those attributes, the optimal information gain is computed and top three ranked attributes in terms of information gain are selected as a three-dimensional feature vector for Support Vector Machines (SVM) to distinguish the scorebox from other candidates, such as logos and advertisement boards. The proposed method is tested on various videos of sports games and experimental results show the efficiency and robustness of our proposed method.

  16. Neural cell image segmentation method based on support vector machine

    Science.gov (United States)

    Niu, Shiwei; Ren, Kan

    2015-10-01

    In the analysis of neural cell images gained by optical microscope, accurate and rapid segmentation is the foundation of nerve cell detection system. In this paper, a modified image segmentation method based on Support Vector Machine (SVM) is proposed to reduce the adverse impact caused by low contrast ratio between objects and background, adherent and clustered cells' interference etc. Firstly, Morphological Filtering and OTSU Method are applied to preprocess images for extracting the neural cells roughly. Secondly, the Stellate Vector, Circularity and Histogram of Oriented Gradient (HOG) features are computed to train SVM model. Finally, the incremental learning SVM classifier is used to classify the preprocessed images, and the initial recognition areas identified by the SVM classifier are added to the library as the positive samples for training SVM model. Experiment results show that the proposed algorithm can achieve much better segmented results than the classic segmentation algorithms.

  17. A Modified Method Combined with a Support Vector Machine and Bayesian Algorithms in Biological Information

    Directory of Open Access Journals (Sweden)

    Wen-Gang Zhou

    2015-06-01

    Full Text Available With the deep research of genomics and proteomics, the number of new protein sequences has expanded rapidly. With the obvious shortcomings of high cost and low efficiency of the traditional experimental method, the calculation method for protein localization prediction has attracted a lot of attention due to its convenience and low cost. In the machine learning techniques, neural network and support vector machine (SVM are often used as learning tools. Due to its complete theoretical framework, SVM has been widely applied. In this paper, we make an improvement on the existing machine learning algorithm of the support vector machine algorithm, and a new improved algorithm has been developed, combined with Bayesian algorithms. The proposed algorithm can improve calculation efficiency, and defects of the original algorithm are eliminated. According to the verification, the method has proved to be valid. At the same time, it can reduce calculation time and improve prediction efficiency.

  18. Matrix Multiplication Algorithm Selection with Support Vector Machines

    Science.gov (United States)

    2015-05-01

    libraries that could intelligently choose the optimal algorithm for a particular set of inputs. Users would be oblivious to the underlying algorithmic...SAT.” J. Artif . Intell. Res.(JAIR), vol. 32, pp. 565–606, 2008. [9] M. G. Lagoudakis and M. L. Littman, “Algorithm selection using reinforcement...Artificial Intelligence , vol. 21, no. 05, pp. 961–976, 2007. [15] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM

  19. Cardiovascular Response Identification Based on Nonlinear Support Vector Regression

    Science.gov (United States)

    Wang, Lu; Su, Steven W.; Chan, Gregory S. H.; Celler, Branko G.; Cheng, Teddy M.; Savkin, Andrey V.

    This study experimentally investigates the relationships between central cardiovascular variables and oxygen uptake based on nonlinear analysis and modeling. Ten healthy subjects were studied using cycle-ergometry exercise tests with constant workloads ranging from 25 Watt to 125 Watt. Breath by breath gas exchange, heart rate, cardiac output, stroke volume and blood pressure were measured at each stage. The modeling results proved that the nonlinear modeling method (Support Vector Regression) outperforms traditional regression method (reducing Estimation Error between 59% and 80%, reducing Testing Error between 53% and 72%) and is the ideal approach in the modeling of physiological data, especially with small training data set.

  20. Predicting post-translational lysine acetylation using support vector machines

    DEFF Research Database (Denmark)

    Gnad, Florian; Ren, Shubin; Choudhary, Chunaram

    2010-01-01

    Lysine acetylation is a post-translational protein modification and a primary regulatory mechanism that controls many cell signaling processes. Lysine acetylation sites are recognized by acetyltransferases and deacetylases through sequence patterns (motifs). Recently, we used high-resolution mass...... spectrometry to identify 3600 lysine acetylation sites on 1750 human proteins covering most of the previously annotated sites and providing the most comprehensive acetylome so far. This dataset should provide an excellent source to train support vector machines (SVMs) allowing the high accuracy in silico...

  1. Engineering support vector machine kernels that recognize translation initiation sites.

    Science.gov (United States)

    Zien, A; Rätsch, G; Mika, S; Schölkopf, B; Lengauer, T; Müller, K R

    2000-09-01

    In order to extract protein sequences from nucleotide sequences, it is an important step to recognize points at which regions start that code for proteins. These points are called translation initiation sites (TIS). The task of finding TIS can be modeled as a classification problem. We demonstrate the applicability of support vector machines for this task, and show how to incorporate prior biological knowledge by engineering an appropriate kernel function. With the described techniques the recognition performance can be improved by 26% over leading existing approaches. We provide evidence that existing related methods (e.g. ESTScan) could profit from advanced TIS recognition.

  2. Single Directional SMO Algorithm for Least Squares Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Xigao Shao

    2013-01-01

    Full Text Available Working set selection is a major step in decomposition methods for training least squares support vector machines (LS-SVMs. In this paper, a new technique for the selection of working set in sequential minimal optimization- (SMO- type decomposition methods is proposed. By the new method, we can select a single direction to achieve the convergence of the optimality condition. A simple asymptotic convergence proof for the new algorithm is given. Experimental comparisons demonstrate that the classification accuracy of the new method is not largely different from the existing methods, but the training speed is faster than existing ones.

  3. A New Conic Approach to Semisupervised Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Ye Tian

    2016-01-01

    Full Text Available We propose a completely positive programming reformulation of the 2-norm soft margin S3VM model. Then, we construct a sequence of computable cones of nonnegative quadratic forms over a union of second-order cones to approximate the underlying completely positive cone. An ϵ-optimal solution can be found in finite iterations using semidefinite programming techniques by our method. Moreover, in order to obtain a good lower bound efficiently, an adaptive scheme is adopted in our approximation algorithm. The numerical results show that the proposed algorithm can achieve more accurate classifications than other well-known conic relaxations of semisupervised support vector machine models in the literature.

  4. Slope Deformation Prediction Based on Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Lei JIA

    2013-07-01

    Full Text Available This paper principally studies the prediction of slope deformation based on Support Vector Machine (SVM. In the prediction process,explore how to reconstruct the phase space. The geological body’s displacement data obtained from chaotic time series are used as SVM’s training samples. Slope displacement caused by multivariable coupling is predicted by means of single variable. Results show that this model is of high fitting accuracy and generalization, and provides reference for deformation prediction in slope engineering.

  5. Support Vector Machines as tools for mortality graduation

    Directory of Open Access Journals (Sweden)

    Anastasia Kostaki

    2012-07-01

    Full Text Available A topic of interest in demographic and biostatistical analysis as well as in actuarial practice,is the graduation of the age-specific mortality pattern. A classical graduation technique is to fit parametric models. Recently, particular emphasis has been given to graduation using nonparametric techniques. Support Vector Machines (SVM is an innovative methodology that could be utilized for mortality graduation purposes. This paper evaluates SVM techniques as tools for graduating mortality rates. We apply SVM to empirical death rates from a variety of populations and time periods. For comparison, we also apply standard graduation techniques to the same data.

  6. Support Vector Machines as tools for mortality graduation

    Directory of Open Access Journals (Sweden)

    Alberto Olivares

    2011-01-01

    Full Text Available A topic of interest in demographic and biostatistical analysis as well as in actuarial practice,is the graduation of the age-specific mortality pattern. A classical graduation technique is to fit parametric models. Recently, particular emphasis has been given to graduation using nonparametric techniques. Support Vector Machines (SVM is an innovative methodology that could be utilized for mortality graduation purposes. This paper evaluates SVM techniques as tools for graduating mortality rates. We apply SVM to empirical death rates from a variety of populations and time periods. For comparison, we also apply standard graduation techniques to the same data.

  7. Support vector machine classifiers for large data sets.

    Energy Technology Data Exchange (ETDEWEB)

    Gertz, E. M.; Griffin, J. D.

    2006-01-31

    This report concerns the generation of support vector machine classifiers for solving the pattern recognition problem in machine learning. Several methods are proposed based on interior point methods for convex quadratic programming. Software implementations are developed by adapting the object-oriented packaging OOQP to the problem structure and by using the software package PETSc to perform time-intensive computations in a distributed setting. Linear systems arising from classification problems with moderately large numbers of features are solved by using two techniques--one a parallel direct solver, the other a Krylov-subspace method incorporating novel preconditioning strategies. Numerical results are provided, and computational experience is discussed.

  8. Cross-Validation, Bootstrap, and Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Masaaki Tsujitani

    2011-01-01

    Full Text Available This paper considers the applications of resampling methods to support vector machines (SVMs. We take into account the leaving-one-out cross-validation (CV when determining the optimum tuning parameters and bootstrapping the deviance in order to summarize the measure of goodness-of-fit in SVMs. The leaving-one-out CV is also adapted in order to provide estimates of the bias of the excess error in a prediction rule constructed with training samples. We analyze the data from a mackerel-egg survey and a liver-disease study.

  9. A Simpler Approach to Coefficient Regularized Support Vector Machines Regression

    Directory of Open Access Journals (Sweden)

    Hongzhi Tong

    2014-01-01

    Full Text Available We consider a kind of support vector machines regression (SVMR algorithms associated with lq  (1≤q<∞ coefficient-based regularization and data-dependent hypothesis space. Compared with former literature, we provide here a simpler convergence analysis for those algorithms. The novelty of our analysis lies in the estimation of the hypothesis error, which is implemented by setting a stepping stone between the coefficient regularized SVMR and the classical SVMR. An explicit learning rate is then derived under very mild conditions.

  10. Unsupervised pedestrian detection using support vector data description

    Science.gov (United States)

    Gurram, Prudhvi; Hu, Shuowen; Reale, Chris; Chan, Alex

    2013-05-01

    In this paper, an unsupervised pedestrian detection algorithm is proposed. An input image is first divided into overlapping detection windows in a sliding fashion and Histogram of Oriented Gradients (HOG) features are collected over each window using non-overlapping cells. A distance metric is used to determine the distance between histograms of corresponding cells in each detection window and the average pedestrian HOG template (determined a priori). These distances over a group of cells are concatenated to obtain the feature vector pertaining to a block of cells. The feature vectors over overlapping blocks of cells are concatenated to form the distance feature vector of a detection window. Each window provides a data sample and the data samples extracted from the whole image are then modeled as a normalcy class using Support Vector Data Description (SVDD). The benefit of using the state-of-the-art SVDD technique to model the normalcy class is that it can be controlled by setting an upper limit on the permissible outliers during the modeling process. Assuming that most of the image is covered by background, the outliers that are detected during the modeling of the normalcy class can be hypothesized as detection windows that contain pedestrians in them. The detections are obtained at different scales in order to account for the different sizes of pedestrians. The final pedestrian detections are generated by applying non-maximal suppression on all the detections at all scales. The system is tested on the INRIA pedestrian dataset and its performance analyzed with respect to accuracy and detection rate.

  11. MATRIX-VECTOR ALGORITHMS OF LOCAL POSTERIORI INFERENCE IN ALGEBRAIC BAYESIAN NETWORKS ON QUANTA PROPOSITIONS

    Directory of Open Access Journals (Sweden)

    A. A. Zolotin

    2015-07-01

    Full Text Available Posteriori inference is one of the three kinds of probabilistic-logic inferences in the probabilistic graphical models theory and the base for processing of knowledge patterns with probabilistic uncertainty using Bayesian networks. The paper deals with a task of local posteriori inference description in algebraic Bayesian networks that represent a class of probabilistic graphical models by means of matrix-vector equations. The latter are essentially based on the use of tensor product of matrices, Kronecker degree and Hadamard product. Matrix equations for calculating posteriori probabilities vectors within posteriori inference in knowledge patterns with quanta propositions are obtained. Similar equations of the same type have already been discussed within the confines of the theory of algebraic Bayesian networks, but they were built only for the case of posteriori inference in the knowledge patterns on the ideals of conjuncts. During synthesis and development of matrix-vector equations on quanta propositions probability vectors, a number of earlier results concerning normalizing factors in posteriori inference and assignment of linear projective operator with a selector vector was adapted. We consider all three types of incoming evidences - deterministic, stochastic and inaccurate - combined with scalar and interval estimation of probability truth of propositional formulas in the knowledge patterns. Linear programming problems are formed. Their solution gives the desired interval values of posterior probabilities in the case of inaccurate evidence or interval estimates in a knowledge pattern. That sort of description of a posteriori inference gives the possibility to extend the set of knowledge pattern types that we can use in the local and global posteriori inference, as well as simplify complex software implementation by use of existing third-party libraries, effectively supporting submission and processing of matrices and vectors when

  12. Clifford support vector machines for classification, regression, and recurrence.

    Science.gov (United States)

    Bayro-Corrochano, Eduardo Jose; Arana-Daniel, Nancy

    2010-11-01

    This paper introduces the Clifford support vector machines (CSVM) as a generalization of the real and complex-valued support vector machines using the Clifford geometric algebra. In this framework, we handle the design of kernels involving the Clifford or geometric product. In this approach, one redefines the optimization variables as multivectors. This allows us to have a multivector as output. Therefore, we can represent multiple classes according to the dimension of the geometric algebra in which we work. We show that one can apply CSVM for classification and regression and also to build a recurrent CSVM. The CSVM is an attractive approach for the multiple input multiple output processing of high-dimensional geometric entities. We carried out comparisons between CSVM and the current approaches to solve multiclass classification and regression. We also study the performance of the recurrent CSVM with experiments involving time series. The authors believe that this paper can be of great use for researchers and practitioners interested in multiclass hypercomplex computing, particularly for applications in complex and quaternion signal and image processing, satellite control, neurocomputation, pattern recognition, computer vision, augmented virtual reality, robotics, and humanoids.

  13. Support Vector Machine Classification of Drunk Driving Behaviour

    Directory of Open Access Journals (Sweden)

    Huiqin Chen

    2017-01-01

    Full Text Available Alcohol is the root cause of numerous traffic accidents due to its pharmacological action on the human central nervous system. This study conducted a detection process to distinguish drunk driving from normal driving under simulated driving conditions. The classification was performed by a support vector machine (SVM classifier trained to distinguish between these two classes by integrating both driving performance and physiological measurements. In addition, principal component analysis was conducted to rank the weights of the features. The standard deviation of R–R intervals (SDNN, the root mean square value of the difference of the adjacent R–R interval series (RMSSD, low frequency (LF, high frequency (HF, the ratio of the low and high frequencies (LF/HF, and average blink duration were the highest weighted features in the study. The results show that SVM classification can successfully distinguish drunk driving from normal driving with an accuracy of 70%. The driving performance data and the physiological measurements reported by this paper combined with air-alcohol concentration could be integrated using the support vector regression classification method to establish a better early warning model, thereby improving vehicle safety.

  14. Support Vector Machine Classification of Drunk Driving Behaviour.

    Science.gov (United States)

    Chen, Huiqin; Chen, Lei

    2017-01-23

    Alcohol is the root cause of numerous traffic accidents due to its pharmacological action on the human central nervous system. This study conducted a detection process to distinguish drunk driving from normal driving under simulated driving conditions. The classification was performed by a support vector machine (SVM) classifier trained to distinguish between these two classes by integrating both driving performance and physiological measurements. In addition, principal component analysis was conducted to rank the weights of the features. The standard deviation of R-R intervals (SDNN), the root mean square value of the difference of the adjacent R-R interval series (RMSSD), low frequency (LF), high frequency (HF), the ratio of the low and high frequencies (LF/HF), and average blink duration were the highest weighted features in the study. The results show that SVM classification can successfully distinguish drunk driving from normal driving with an accuracy of 70%. The driving performance data and the physiological measurements reported by this paper combined with air-alcohol concentration could be integrated using the support vector regression classification method to establish a better early warning model, thereby improving vehicle safety.

  15. Novel cascade FPGA accelerator for support vector machines classification.

    Science.gov (United States)

    Papadonikolakis, Markos; Bouganis, Christos-Savvas

    2012-07-01

    Support vector machines (SVMs) are a powerful machine learning tool, providing state-of-the-art accuracy to many classification problems. However, SVM classification is a computationally complex task, suffering from linear dependencies on the number of the support vectors and the problem's dimensionality. This paper presents a fully scalable field programmable gate array (FPGA) architecture for the acceleration of SVM classification, which exploits the device heterogeneity and the dynamic range diversities among the dataset attributes. An adaptive and fully-customized processing unit is proposed, which utilizes the available heterogeneous resources of a modern FPGA device in efficient way with respect to the problem's characteristics. The implementation results demonstrate the efficiency of the heterogeneous architecture, presenting a speed-up factor of 2-3 orders of magnitude, compared to the CPU implementation. The proposed architecture outperforms other proposed FPGA and graphic processor unit approaches by more than seven times. Furthermore, based on the special properties of the heterogeneous architecture, this paper introduces the first FPGA-oriented cascade SVM classifier scheme, which exploits the FPGA reconfigurability and intensifies the custom-arithmetic properties of the heterogeneous architecture. The results show that the proposed cascade scheme is able to increase the heterogeneous classifier throughput even further, without introducing any penalty on the resource utilization.

  16. Penerapan Support Vector Machine (SVM untuk Pengkategorian Penelitian

    Directory of Open Access Journals (Sweden)

    Fithri Selva Jumeilah

    2017-07-01

    Full Text Available Research every college will continue to grow. Research will be stored in softcopy and hardcopy. The preparation of the research should be categorized in order to facilitate the search for people who need reference. To categorize the research, we need a method for text mining, one of them is with the implementation of Support Vector Machines (SVM. The data used to recognize the characteristics of each category then it takes secondary data which is a collection of abstracts of research. The data will be pre-processed with several stages: case folding converts all the letters into lowercase, stop words removal removal of very common words, tokenizing discard punctuation, and stemming searching for root words by removing the prefix and suffix. Further data that has undergone preprocessing will be converted into a numerical form with for the term weighting stage that is the weighting contribution of each word. From the results of term weighting then obtained data that can be used for data training and test data. The training process is done by providing input in the form of text data that is known to the class or category. Then by using the Support Vector Machines algorithm, the input data is transformed into a rule, function, or knowledge model that can be used in the prediction process. From the results of this study obtained that the categorization of research produced by SVM has been very good. This is proven by the results of the test which resulted in an accuracy of 90%.

  17. Robust Unsupervised Lagrangian Support Vector Machines for Supply Chain Management

    Science.gov (United States)

    Zhao, Kun; Liu, Yong-Sheng; Deng, Nai-Yang

    Support Vector Machines (SVMs) have been dominant learning techniques for more than ten years, and mostly applied to supervised learning problems. These years two-class unsupervised and semi-supervised classification algorithms based on Bounded C-SVMs, Bounded ν-SVMs, Lagrangian SVMs (LSVMs) and robust version to Bounded C - SVMs respectively, and which are relaxed to Semi-definite Programming (SDP), get good classification results. The time consumed of method based on robust version to BC-SVMs is too long. So it seems necessary to find a faster method, which has almost accurate results as above at least. Therefore we proposed robust version to unsupervised and semi-supervised classification algorithms based on Lagrangian Support Vector Machines and its application on evaluation of supply chain management performance. Numerical results confirm the robustness of the proposed method and show that our new unsupervised and semi-supervised classification algorithms based on LSVMs often obtain almost the same accurate results as other algorithms,while considerably faster than them.

  18. Evaluation of Raman spectra of human brain tumor tissue using the learning vector quantization neural network

    Science.gov (United States)

    Liu, Tuo; Chen, Changshui; Shi, Xingzhe; Liu, Chengyong

    2016-05-01

    The Raman spectra of tissue of 20 brain tumor patients was recorded using a confocal microlaser Raman spectroscope with 785 nm excitation in vitro. A total of 133 spectra were investigated. Spectra peaks from normal white matter tissue and tumor tissue were analyzed. Algorithms, such as principal component analysis, linear discriminant analysis, and the support vector machine, are commonly used to analyze spectral data. However, in this study, we employed the learning vector quantization (LVQ) neural network, which is typically used for pattern recognition. By applying the proposed method, a normal diagnosis accuracy of 85.7% and a glioma diagnosis accuracy of 89.5% were achieved. The LVQ neural network is a recent approach to excavating Raman spectra information. Moreover, it is fast and convenient, does not require the spectra peak counterpart, and achieves a relatively high accuracy. It can be used in brain tumor prognostics and in helping to optimize the cutting margins of gliomas.

  19. Using Of Learning Vector Quantization Network for Pan Evaporation Estimation

    Directory of Open Access Journals (Sweden)

    Kamil7 A. Abdulmohsen

    2013-05-01

    Full Text Available A modern technique is presented to study the evaporation process which is considered as an important component of the hydrological cycle. The Pan Evaporation depth is estimated depending upon four metrological factors viz. (temperature, relative humidity, sunshine, and wind speed. Unsupervised Artificial Neural Network has been proposed to accomplish the study goal, specifically, a type called Linear Vector Quantitization, (LVQ.  A step by step method is used to cope with difficulties that usually associated with computation procedures inherent in these kind of networks. Such systematic approach may close the gap between the hesitation of the user to make use of the capabilities of these type of neural networks and the relative complexity involving the computations procedures. The results reveal the possibility of using LVQ for of Pan Evaporation depth estimation where a good agreement has been noticed between the outputs of the proposed network and the observed values of the Pan Evaporation depth with a correlation coefficient of 0.986. 

  20. Automated identification of biomedical article type using support Vector machines

    Science.gov (United States)

    Kim, In Cheol; Le, Daniel X.; Thoma, George R.

    2011-01-01

    Authors of short papers such as letters or editorials often express complementary opinions, and sometimes contradictory ones, on related work in previously published articles. The MEDLINE® citations for such short papers are required to list bibliographic data on these "commented on" articles in a "CON" field. The challenge is to automatically identify the CON articles referred to by the author of the short paper (called "Comment-in" or CIN paper). Our approach is to use support vector machines (SVM) to first classify a paper as either a CIN or a regular full-length article (which is exempt from this requirement), and then to extract from the CIN paper the bibliographic data of the CON articles. A solution to the first part of the problem, identifying CIN articles, is addressed here. We implement and compare the performance of two types of SVM, one with a linear kernel function and the other with a radial basis kernel function (RBF). Input feature vectors for the SVMs are created by combining four types of features based on statistics of words in the article title, words that suggest the article type (letter, correspondence, editorial), size of body text, and cue phrases. Experiments conducted on a set of online biomedical articles show that the SVM with a linear kernel function yields a significantly lower false negative error rate than the one with an RBF. Our experiments also show that the SVM with a linear kernel function achieves a significantly higher level of accuracy, and lower false positive and false negative error rates by using input feature vectors created by combining all four types of features rather than any single type.

  1. A comparative study of slope failure prediction using logistic regression, support vector machine and least square support vector machine models

    Science.gov (United States)

    Zhou, Lim Yi; Shan, Fam Pei; Shimizu, Kunio; Imoto, Tomoaki; Lateh, Habibah; Peng, Koay Swee

    2017-08-01

    A comparative study of logistic regression, support vector machine (SVM) and least square support vector machine (LSSVM) models has been done to predict the slope failure (landslide) along East-West Highway (Gerik-Jeli). The effects of two monsoon seasons (southwest and northeast) that occur in Malaysia are considered in this study. Two related factors of occurrence of slope failure are included in this study: rainfall and underground water. For each method, two predictive models are constructed, namely SOUTHWEST and NORTHEAST models. Based on the results obtained from logistic regression models, two factors (rainfall and underground water level) contribute to the occurrence of slope failure. The accuracies of the three statistical models for two monsoon seasons are verified by using Relative Operating Characteristics curves. The validation results showed that all models produced prediction of high accuracy. For the results of SVM and LSSVM, the models using RBF kernel showed better prediction compared to the models using linear kernel. The comparative results showed that, for SOUTHWEST models, three statistical models have relatively similar performance. For NORTHEAST models, logistic regression has the best predictive efficiency whereas the SVM model has the second best predictive efficiency.

  2. Using support vector machines for anomalous change detonation

    Energy Technology Data Exchange (ETDEWEB)

    Theiler, James P [Los Alamos National Laboratory; Steinwart, Ingo [UNIV STUTTGART; Llamocca, Daniel [UNM

    2010-01-01

    We cast anomalous change detection as a binary classification problem, and use a support vector machine (SVM) to build a detector that does not depend on assumptions about the underlying data distribution. To speed up the computation, our SVM is implemented, in part, on a graphical processing unit. Results on real and simulated anomalous changes are used to compare performance to algorithms which effectively assume a Gaussian distribution. In this paper, we investigate the use of support vector machines (SVMs) with radial basis kernels for finding anomalous changes. Compared to typical applications of SVMs, we are operating in a regime of very low false alarm rate. This means that even for relatively large training sets, the data are quite meager in the regime of operational interest. This drives us to use larger training sets, which in turn places more of a computational burden on the SVM. We initially considered three different approaches to to address the need to work in the very low false alarm rate regime. The first is a standard SVM which is trained at one threshold (where more reliable estimates of false alarm rates are possible) and then re-thresholded for the low false alarm rate regime. The second uses the same thresholding approach, but employs a so-called least squares SVM; here a quadratic (instead of a hinge-based) loss function is employed, and for this model, there are good theoretical arguments in favor of adjusting the threshold in a straightforward manner. The third approach employs a weighted support vector machine, where the weights for the two types of errors (false alarm and missed detection) are automatically adjusted to achieve the desired false alarm rate. We have found in previous experiments (not shown here) that the first two types can in some cases work well, while in other cases they do not. This renders both approaches unreliable for automated change detection. By contrast, the third approach reliably produces good results, but at

  3. Support-vector-machine tree-based domain knowledge learning toward automated sports video classification

    Science.gov (United States)

    Xiao, Guoqiang; Jiang, Yang; Song, Gang; Jiang, Jianmin

    2010-12-01

    We propose a support-vector-machine (SVM) tree to hierarchically learn from domain knowledge represented by low-level features toward automatic classification of sports videos. The proposed SVM tree adopts a binary tree structure to exploit the nature of SVM's binary classification, where each internal node is a single SVM learning unit, and each external node represents the classified output type. Such a SVM tree presents a number of advantages, which include: 1. low computing cost; 2. integrated learning and classification while preserving individual SVM's learning strength; and 3. flexibility in both structure and learning modules, where different numbers of nodes and features can be added to address specific learning requirements, and various learning models can be added as individual nodes, such as neural networks, AdaBoost, hidden Markov models, dynamic Bayesian networks, etc. Experiments support that the proposed SVM tree achieves good performances in sports video classifications.

  4. Support vector machine classification of major depressive disorder using diffusion-weighted neuroimaging and graph theory.

    Science.gov (United States)

    Sacchet, Matthew D; Prasad, Gautam; Foland-Ross, Lara C; Thompson, Paul M; Gotlib, Ian H

    2015-01-01

    Recently, there has been considerable interest in understanding brain networks in major depressive disorder (MDD). Neural pathways can be tracked in the living brain using diffusion-weighted imaging (DWI); graph theory can then be used to study properties of the resulting fiber networks. To date, global abnormalities have not been reported in tractography-based graph metrics in MDD, so we used a machine learning approach based on "support vector machines" to differentiate depressed from healthy individuals based on multiple brain network properties. We also assessed how important specific graph metrics were for this differentiation. Finally, we conducted a local graph analysis to identify abnormal connectivity at specific nodes of the network. We were able to classify depression using whole-brain graph metrics. Small-worldness was the most useful graph metric for classification. The right pars orbitalis, right inferior parietal cortex, and left rostral anterior cingulate all showed abnormal network connectivity in MDD. This is the first use of structural global graph metrics to classify depressed individuals. These findings highlight the importance of future research to understand network properties in depression across imaging modalities, improve classification results, and relate network alterations to psychiatric symptoms, medication, and comorbidities.

  5. Hybrid RGSA and Support Vector Machine Framework for Three-Dimensional Magnetic Resonance Brain Tumor Classification

    Directory of Open Access Journals (Sweden)

    R. Rajesh Sharma

    2015-01-01

    algorithm (RGSA. Support vector machines, over backpropagation network, and k-nearest neighbor are used to evaluate the goodness of classifier approach. The preliminary evaluation of the system is performed using 320 real-time brain MRI images. The system is trained and tested by using a leave-one-case-out method. The performance of the classifier is tested using the receiver operating characteristic curve of 0.986 (±002. The experimental results demonstrate the systematic and efficient feature extraction and feature selection algorithm to the performance of state-of-the-art feature classification methods.

  6. Support vector regression for real-time flood stage forecasting

    Science.gov (United States)

    Yu, Pao-Shan; Chen, Shien-Tsung; Chang, I.-Fan

    2006-09-01

    SummaryFlood forecasting is an important non-structural approach for flood mitigation. The flood stage is chosen as the variable to be forecasted because it is practically useful in flood forecasting. The support vector machine, a novel artificial intelligence-based method developed from statistical learning theory, is adopted herein to establish a real-time stage forecasting model. The lags associated with the input variables are determined by applying the hydrological concept of the time of response, and a two-step grid search method is applied to find the optimal parameters, and thus overcome the difficulties in constructing the learning machine. Two structures of models used to perform multiple-hour-ahead stage forecasts are developed. Validation results from flood events in Lan-Yang River, Taiwan, revealed that the proposed models can effectively predict the flood stage forecasts one-to-six-hours ahead. Moreover, a sensitivity analysis was conducted on the lags associated with the input variables.

  7. Peringkasan dan Support Vector Machine pada Klasifikasi Dokumen

    Directory of Open Access Journals (Sweden)

    Nelly Indriani Widiastuti

    2017-11-01

    Full Text Available Klasifikasi adalah proses pengelompokkan objek yang memiliki karakteristik atau ciri yang sama ke dalam beberapa kelas. Klasifikasi dokumen secara otomatis dapat dilakukan dengan menggunakan ciri atau fitur kata yang muncul pada dokumen latih. Jumlah dokumen yang besar dan banyak mengakibatkan jumlah kata yang muncul sebagai fitur akan bertambah. Oleh karena itu, peringkasan dipilih untuk mereduksi jumlah kata yang digunakan dalam proses klasifikasi. Untuk proses klasifikasi digunakan metode Support Vector Machine (SVM untuk multikelas. SVM dipilih karena dianggap memiliki reputasi yang baik dalam klasifikasi. Penelitian ini menguji penggunaan ringkasan sebagai seleksi fitur dalam klasifikasi dokumen. Peringkasan menggunakan kompresi 50 %. Hasil yang diperoleh menunjukkan bahwa proses peringkasan tidak mempengaruhi nilai akurasi dari klasifikasi dokumen yang menggunakan SVM. Akan tetapi, penggunaan peringkasan berpengaruh pada peningkatan hasil akurasi dari metode klasifikasi Simple Logistic Classifier (SLC. Hasil pengujian metode klasifikasi menunjukkan bahwa penggunaan metode Naïve Bayes Multinomial (NBM menghasilkan akurasi yang lebih baik dari pada metode SVM

  8. Electricity Load Forecasting Using Support Vector Regression with Memetic Algorithms

    Science.gov (United States)

    Hu, Zhongyi; Xiong, Tao

    2013-01-01

    Electricity load forecasting is an important issue that is widely explored and examined in power systems operation literature and commercial transactions in electricity markets literature as well. Among the existing forecasting models, support vector regression (SVR) has gained much attention. Considering the performance of SVR highly depends on its parameters; this study proposed a firefly algorithm (FA) based memetic algorithm (FA-MA) to appropriately determine the parameters of SVR forecasting model. In the proposed FA-MA algorithm, the FA algorithm is applied to explore the solution space, and the pattern search is used to conduct individual learning and thus enhance the exploitation of FA. Experimental results confirm that the proposed FA-MA based SVR model can not only yield more accurate forecasting results than the other four evolutionary algorithms based SVR models and three well-known forecasting models but also outperform the hybrid algorithms in the related existing literature. PMID:24459425

  9. Electricity Load Forecasting Using Support Vector Regression with Memetic Algorithms

    Directory of Open Access Journals (Sweden)

    Zhongyi Hu

    2013-01-01

    Full Text Available Electricity load forecasting is an important issue that is widely explored and examined in power systems operation literature and commercial transactions in electricity markets literature as well. Among the existing forecasting models, support vector regression (SVR has gained much attention. Considering the performance of SVR highly depends on its parameters; this study proposed a firefly algorithm (FA based memetic algorithm (FA-MA to appropriately determine the parameters of SVR forecasting model. In the proposed FA-MA algorithm, the FA algorithm is applied to explore the solution space, and the pattern search is used to conduct individual learning and thus enhance the exploitation of FA. Experimental results confirm that the proposed FA-MA based SVR model can not only yield more accurate forecasting results than the other four evolutionary algorithms based SVR models and three well-known forecasting models but also outperform the hybrid algorithms in the related existing literature.

  10. Prediction of Pork Quality by Fuzzy Support Vector Machine Classifier

    Science.gov (United States)

    Zhang, Jianxi; Yu, Huaizhi; Wang, Jiamin

    Existing objective methods to evaluate pork quality in general do not yield satisfactory results and their applications in meat industry are limited. In this study, fuzzy support vector machine (FSVM) method was developed to evaluate and predict pork quality rapidly and nondestructively. Firstly, the discrete wavelet transform (DWT) was used to eliminate the noise component in original spectrum and the new spectrum was reconstructed. Then, considering the characteristic variables still exist correlation and contain some redundant information, principal component analysis (PCA) was carried out. Lastly, FSVM was developed to differentiate and classify pork samples into different quality grades using the features from PCA. Jackknife tests on the working datasets indicated that the prediction accuracies were higher than other methods.

  11. BEHAVIOR BASED CREDIT CARD FRAUD DETECTION USING SUPPORT VECTOR MACHINES

    Directory of Open Access Journals (Sweden)

    V. Dheepa

    2012-07-01

    Full Text Available Along with the great increase of internet and e-commerce, the use of credit card is an unavoidable one. Due to the increase of credit card usage, the frauds associated with this have also increased. There are a lot of approaches used to detect the frauds. In this paper, behavior based classification approach using Support Vector Machines are employed and efficient feature extraction method also adopted. If any discrepancies occur in the behaviors transaction pattern then it is predicted as suspicious and taken for further consideration to find the frauds. Generally credit card fraud detection problem suffers from a large amount of data, which is rectified by the proposed method. Achieving finest accuracy, high fraud catching rate and low false alarms are the main tasks of this approach.

  12. Ecological footprint model using the support vector machine technique.

    Science.gov (United States)

    Ma, Haibo; Chang, Wenjuan; Cui, Guangbai

    2012-01-01

    The per capita ecological footprint (EF) is one of the most widely recognized measures of environmental sustainability. It aims to quantify the Earth's biological resources required to support human activity. In this paper, we summarize relevant previous literature, and present five factors that influence per capita EF. These factors are: National gross domestic product (GDP), urbanization (independent of economic development), distribution of income (measured by the Gini coefficient), export dependence (measured by the percentage of exports to total GDP), and service intensity (measured by the percentage of service to total GDP). A new ecological footprint model based on a support vector machine (SVM), which is a machine-learning method based on the structural risk minimization principle from statistical learning theory was conducted to calculate the per capita EF of 24 nations using data from 123 nations. The calculation accuracy was measured by average absolute error and average relative error. They were 0.004883 and 0.351078% respectively. Our results demonstrate that the EF model based on SVM has good calculation performance.

  13. SYN Flood Attack Detection in Cloud Computing using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zerina Mašetić

    2017-11-01

    Full Text Available Cloud computing is a trending technology, as it reduces the cost of running a business. However, many companies are skeptic moving about towards cloud due to the security concerns. Based on the Cloud Security Alliance report, Denial of Service (DoS attacks are among top 12 attacks in the cloud computing. Therefore, it is important to develop a mechanism for detection and prevention of these attacks. The aim of this paper is to evaluate Support Vector Machine (SVM algorithm in creating the model for classification of DoS attacks and normal network behaviors. The study was performed in several phases: a attack simulation, b data collection, cfeature selection, and d classification. The proposedmodel achieved 100% classification accuracy with true positive rate (TPR of 100%. SVM showed outstanding performance in DoS attack detection and proves that it serves as a valuable asset in the network security area.

  14. Research on Application of Regression Least Squares Support Vector Machine on Performance Prediction of Hydraulic Excavator

    Directory of Open Access Journals (Sweden)

    Zhan-bo Chen

    2014-01-01

    Full Text Available In order to improve the performance prediction accuracy of hydraulic excavator, the regression least squares support vector machine is applied. First, the mathematical model of the regression least squares support vector machine is studied, and then the algorithm of the regression least squares support vector machine is designed. Finally, the performance prediction simulation of hydraulic excavator based on regression least squares support vector machine is carried out, and simulation results show that this method can predict the performance changing rules of hydraulic excavator correctly.

  15. Vectors

    DEFF Research Database (Denmark)

    Boeriis, Morten; van Leeuwen, Theo

    2017-01-01

    This article revisits the concept of vectors, which, in Kress and van Leeuwen’s Reading Images (2006), plays a crucial role in distinguishing between ‘narrative’, action-oriented processes and ‘conceptual’, state-oriented processes. The use of this concept in image analysis has usually focused...... on the most salient vectors, and this works well, but many images contain a plethora of vectors, which makes their structure quite different from the linguistic transitivity structures with which Kress and van Leeuwen have compared ‘narrative’ images. It can also be asked whether facial expression vectors...... should be taken into account in discussing ‘reactions’, which Kress and van Leeuwen link only to eyeline vectors. Finally, the question can be raised as to whether actions are always realized by vectors. Drawing on a re-reading of Rudolf Arnheim’s account of vectors, these issues are outlined...

  16. A Semisupervised Support Vector Machines Algorithm for BCI Systems

    Directory of Open Access Journals (Sweden)

    Jianzhao Qin

    2007-07-01

    Full Text Available As an emerging technology, brain-computer interfaces (BCIs bring us new communication interfaces which translate brain activities into control signals for devices like computers, robots, and so forth. In this study, we propose a semisupervised support vector machine (SVM algorithm for brain-computer interface (BCI systems, aiming at reducing the time-consuming training process. In this algorithm, we apply a semisupervised SVM for translating the features extracted from the electrical recordings of brain into control signals. This SVM classifier is built from a small labeled data set and a large unlabeled data set. Meanwhile, to reduce the time for training semisupervised SVM, we propose a batch-mode incremental learning method, which can also be easily applied to the online BCI systems. Additionally, it is suggested in many studies that common spatial pattern (CSP is very effective in discriminating two different brain states. However, CSP needs a sufficient labeled data set. In order to overcome the drawback of CSP, we suggest a two-stage feature extraction method for the semisupervised learning algorithm. We apply our algorithm to two BCI experimental data sets. The offline data analysis results demonstrate the effectiveness of our algorithm.

  17. Two-Dimensional Solution Surface for Weighted Support Vector Machines.

    Science.gov (United States)

    Shin, Seung Jun; Wu, Yichao; Zhang, Hao Helen

    2014-04-03

    The support vector machine (SVM) is a popular learning method for binary classification. Standard SVMs treat all the data points equally, but in some practical problems it is more natural to assign different weights to observations from different classes. This leads to a broader class of learning, the so-called weighted SVMs (WSVMs), and one of their important applications is to estimate class probabilities besides learning the classification boundary. There are two parameters associated with the WSVM optimization problem: one is the regularization parameter and the other is the weight parameter. In this paper we first establish that the WSVM solutions are jointly piecewise-linear with respect to both the regularization and weight parameter. We then develop a state-of-the-art algorithm that can compute the entire trajectory of the WSVM solutions for every pair of the regularization parameter and the weight parameter, at a feasible computational cost. The derived two-dimensional solution surface provides theoretical insight on the behavior of the WSVM solutions. Numerically, the algorithm can greatly facilitate the implementation of the WSVM and automate the selection process of the optimal regularization parameter. We illustrate the new algorithm on various examples.

  18. Identifying translation initiation sites in prokaryotes using support vector machine.

    Science.gov (United States)

    Gao, Tingting; Yang, Zhixia; Wang, Yong; Jing, Ling

    2010-02-21

    Gene identification in genomes has been a fundamental and long-standing task in bioinformatics and computational biology. Many computational methods have been developed to predict genes in prokaryote genomes by identifying translation initiation site (TIS) in transcript data. However, the pseudo-TISs at the genome level make these methods suffer from a high number of false positive predictions. In addition, most of the existing tools use an unsupervised learning framework, whose predictive accuracy may depend on the choice of specific organism. In this paper, we present a supervised learning method, support vector machine (SVM), to identify translation initiation site at the genome level. The features are extracted from the sequence data by modeling the sequence segment around predicted TISs as a position specific weight matrix (PSWM). We train the parameters of our SVM through well constructed positive and negative TIS datasets. Then we apply the method to recognize translation initiation sites in E. coli, B. subtilis, and validate our method on two GC-rich bacteria genomes: Pseudomonas aeruginosa and Burkholderia pseudomallei K96243. We show that translation initiation sites can be recognized accurately at the genome level by our method, irrespective of their GC content. Furthermore, we compare our method with four existing methods and demonstrate that our method outperform these methods by obtaining better performance in all the four organisms. (c) 2009. Published by Elsevier Ltd.

  19. A Support Vector Regression Approach for Investigating Multianticipative Driving Behavior

    Directory of Open Access Journals (Sweden)

    Bin Lu

    2015-01-01

    Full Text Available This paper presents a Support Vector Regression (SVR approach that can be applied to predict the multianticipative driving behavior using vehicle trajectory data. Building upon the SVR approach, a multianticipative car-following model is developed and enhanced in learning speed and predication accuracy. The model training and validation are conducted by using the field trajectory data extracted from the Next Generation Simulation (NGSIM project. During the model training and validation tests, the estimation results show that the SVR model performs as well as IDM model with respect to the model prediction accuracy. In addition, this paper performs a relative importance analysis to quantify the multianticipation in terms of the different stimuli to which drivers react in platoon car following. The analysis results confirm that drivers respond to the behavior of not only the immediate leading vehicle in front but also the second, third, and even fourth leading vehicles. Specifically, in congested traffic conditions, drivers are observed to be more sensitive to the relative speed than to the gap. These findings provide insight into multianticipative driving behavior and illustrate the necessity of taking into account multianticipative car-following model in microscopic traffic simulation.

  20. Incremental support vector machines for fast reliable image recognition

    Energy Technology Data Exchange (ETDEWEB)

    Makili, L., E-mail: makili_le@yahoo.com [Instituto Superior Politécnico da Universidade Katyavala Bwila, Benguela (Angola); Vega, J. [Asociación EURATOM/CIEMAT para Fusión, Madrid (Spain); Dormido-Canto, S. [Dpto. Informática y Automática – UNED, Madrid (Spain)

    2013-10-15

    Highlights: ► A conformal predictor using SVM as the underlying algorithm was implemented. ► It was applied to image recognition in the TJ–II's Thomson Scattering Diagnostic. ► To improve time efficiency an approach to incremental SVM training has been used. ► Accuracy is similar to the one reached when standard SVM is used. ► Computational time saving is significant for large training sets. -- Abstract: This paper addresses the reliable classification of images in a 5-class problem. To this end, an automatic recognition system, based on conformal predictors and using Support Vector Machines (SVM) as the underlying algorithm has been developed and applied to the recognition of images in the Thomson Scattering Diagnostic of the TJ–II fusion device. Using such conformal predictor based classifier is a computationally intensive task since it implies to train several SVM models to classify a single example and to perform this training from scratch takes a significant amount of time. In order to improve the classification time efficiency, an approach to the incremental training of SVM has been used as the underlying algorithm. Experimental results show that the overall performance of the new classifier is high, comparable to the one corresponding to the use of standard SVM as the underlying algorithm and there is a significant improvement in time efficiency.

  1. Spatio-temporal avalanche forecasting with Support Vector Machines

    Directory of Open Access Journals (Sweden)

    A. Pozdnoukhov

    2011-02-01

    Full Text Available This paper explores the use of the Support Vector Machine (SVM as a data exploration tool and a predictive engine for spatio-temporal forecasting of snow avalanches. Based on the historical observations of avalanche activity, meteorological conditions and snowpack observations in the field, an SVM is used to build a data-driven spatio-temporal forecast for the local mountain region. It incorporates the outputs of simple physics-based and statistical approaches used to interpolate meteorological and snowpack-related data over a digital elevation model of the region. The interpretation of the produced forecast is discussed, and the quality of the model is validated using observations and avalanche bulletins of the recent years. The insight into the model behaviour is presented to highlight the interpretability of the model, its abilities to produce reliable forecasts for individual avalanche paths and sensitivity to input data. Estimates of prediction uncertainty are obtained with ensemble forecasting. The case study was carried out using data from the avalanche forecasting service in the Locaber region of Scotland, where avalanches are forecast on a daily basis during the winter months.

  2. Voice Activity Detection Using Fuzzy Entropy and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    R. Johny Elton

    2016-08-01

    Full Text Available This paper proposes support vector machine (SVM based voice activity detection using FuzzyEn to improve detection performance under noisy conditions. The proposed voice activity detection (VAD uses fuzzy entropy (FuzzyEn as a feature extracted from noise-reduced speech signals to train an SVM model for speech/non-speech classification. The proposed VAD method was tested by conducting various experiments by adding real background noises of different signal-to-noise ratios (SNR ranging from −10 dB to 10 dB to actual speech signals collected from the TIMIT database. The analysis proves that FuzzyEn feature shows better results in discriminating noise and corrupted noisy speech. The efficacy of the SVM classifier was validated using 10-fold cross validation. Furthermore, the results obtained by the proposed method was compared with those of previous standardized VAD algorithms as well as recently developed methods. Performance comparison suggests that the proposed method is proven to be more efficient in detecting speech under various noisy environments with an accuracy of 93.29%, and the FuzzyEn feature detects speech efficiently even at low SNR levels.

  3. Using support vector machine models for crash injury severity analysis.

    Science.gov (United States)

    Li, Zhibin; Liu, Pan; Wang, Wei; Xu, Chengcheng

    2012-03-01

    The study presented in this paper investigated the possibility of using support vector machine (SVM) models for crash injury severity analysis. Based on crash data collected at 326 freeway diverge areas, a SVM model was developed for predicting the injury severity associated with individual crashes. An ordered probit (OP) model was also developed using the same dataset. The research team compared the performance of the SVM model and the OP model. It was found that the SVM model produced better prediction performance for crash injury severity than did the OP model. The percent of correct prediction for the SVM model was found to be 48.8%, which was higher than that produced by the OP model (44.0%). Even though the SVM model may suffer from the multi-class classification problem, it still provides better prediction results for small proportion injury severities than the OP model does. The research also investigated the potential of using the SVM model for evaluating the impacts of external factors on crash injury severities. The sensitivity analysis results show that the SVM model produced comparable results regarding the impacts of variables on crash injury severity as compared to the OP model. For several variables such as the length of the exit ramp and the shoulder width of the freeway mainline, the results of the SVM model are more reasonable than those of the OP model. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Multivariate Lesion-Symptom Mapping Using Support Vector Regression

    Science.gov (United States)

    Zhang, Yongsheng; Kimberg, Daniel Y.; Coslett, H. Branch; Schwartz, Myrna F.; Wang, Ze

    2014-01-01

    Lesion analysis is a classic approach to study brain functions. Because brain function is a result of coherent activations of a collection of functionally related voxels, lesion-symptom relations are generally contributed by multiple voxels simultaneously. Although voxel-based lesion symptom mapping (VLSM) has made substantial contributions to the understanding of brain-behavior relationships, a better understanding of the brain-behavior relationship contributed by multiple brain regions needs a multivariate lesion symptom mapping (MLSM). The purpose of this paper was to develop an MLSM using a machine learning-based multivariate regression algorithm: support vector regression (SVR). In the proposed SVR-LSM, the symptom relation to the entire lesion map as opposed to each isolated voxel is modeled using a non-linear function, so the inter-voxel correlations are intrinsically considered, resulting in a potentially more sensitive way to examine lesion-symptom relationships. To explore the relative merits of VLSM and SVR-LSM we used both approaches in the analysis of a synthetic dataset. SVR-LSM showed much higher sensitivity and specificity for detecting the synthetic lesion-behavior relations than VLSM. When applied to lesion data and language measures from patients with brain damages, SVR-LSM reproduced the essential pattern of previous findings identified by VLSM and showed higher sensitivity than VLSM for identifying the lesion-behavior relations. Our data also showed the possibility of using lesion data to predict continuous behavior scores. PMID:25044213

  5. Mixed kernel function support vector regression for global sensitivity analysis

    Science.gov (United States)

    Cheng, Kai; Lu, Zhenzhou; Wei, Yuhao; Shi, Yan; Zhou, Yicheng

    2017-11-01

    Global sensitivity analysis (GSA) plays an important role in exploring the respective effects of input variables on an assigned output response. Amongst the wide sensitivity analyses in literature, the Sobol indices have attracted much attention since they can provide accurate information for most models. In this paper, a mixed kernel function (MKF) based support vector regression (SVR) model is employed to evaluate the Sobol indices at low computational cost. By the proposed derivation, the estimation of the Sobol indices can be obtained by post-processing the coefficients of the SVR meta-model. The MKF is constituted by the orthogonal polynomials kernel function and Gaussian radial basis kernel function, thus the MKF possesses both the global characteristic advantage of the polynomials kernel function and the local characteristic advantage of the Gaussian radial basis kernel function. The proposed approach is suitable for high-dimensional and non-linear problems. Performance of the proposed approach is validated by various analytical functions and compared with the popular polynomial chaos expansion (PCE). Results demonstrate that the proposed approach is an efficient method for global sensitivity analysis.

  6. Explaining Support Vector Machines: A Color Based Nomogram.

    Directory of Open Access Journals (Sweden)

    Vanya Van Belle

    Full Text Available Support vector machines (SVMs are very popular tools for classification, regression and other problems. Due to the large choice of kernels they can be applied with, a large variety of data can be analysed using these tools. Machine learning thanks its popularity to the good performance of the resulting models. However, interpreting the models is far from obvious, especially when non-linear kernels are used. Hence, the methods are used as black boxes. As a consequence, the use of SVMs is less supported in areas where interpretability is important and where people are held responsible for the decisions made by models.In this work, we investigate whether SVMs using linear, polynomial and RBF kernels can be explained such that interpretations for model-based decisions can be provided. We further indicate when SVMs can be explained and in which situations interpretation of SVMs is (hitherto not possible. Here, explainability is defined as the ability to produce the final decision based on a sum of contributions which depend on one single or at most two input variables.Our experiments on simulated and real-life data show that explainability of an SVM depends on the chosen parameter values (degree of polynomial kernel, width of RBF kernel and regularization constant. When several combinations of parameter values yield the same cross-validation performance, combinations with a lower polynomial degree or a larger kernel width have a higher chance of being explainable.This work summarizes SVM classifiers obtained with linear, polynomial and RBF kernels in a single plot. Linear and polynomial kernels up to the second degree are represented exactly. For other kernels an indication of the reliability of the approximation is presented. The complete methodology is available as an R package and two apps and a movie are provided to illustrate the possibilities offered by the method.

  7. A Wavelet Kernel-Based Primal Twin Support Vector Machine for Economic Development Prediction

    Directory of Open Access Journals (Sweden)

    Fang Su

    2013-01-01

    Full Text Available Economic development forecasting allows planners to choose the right strategies for the future. This study is to propose economic development prediction method based on the wavelet kernel-based primal twin support vector machine algorithm. As gross domestic product (GDP is an important indicator to measure economic development, economic development prediction means GDP prediction in this study. The wavelet kernel-based primal twin support vector machine algorithm can solve two smaller sized quadratic programming problems instead of solving a large one as in the traditional support vector machine algorithm. Economic development data of Anhui province from 1992 to 2009 are used to study the prediction performance of the wavelet kernel-based primal twin support vector machine algorithm. The comparison of mean error of economic development prediction between wavelet kernel-based primal twin support vector machine and traditional support vector machine models trained by the training samples with the 3–5 dimensional input vectors, respectively, is given in this paper. The testing results show that the economic development prediction accuracy of the wavelet kernel-based primal twin support vector machine model is better than that of traditional support vector machine.

  8. Metropolitan area network support at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    DeMar, Phil; Andrews, Chuck; Bobyshev, Andrey; Crawford, Matt; Colon, Orlando; Fry, Steve; Grigaliunas, Vyto; Lamore, Donna; Petravick, Don; /Fermilab

    2007-09-01

    Advances in wide area network service offerings, coupled with comparable developments in local area network technology have enabled many research sites to keep their offsite network bandwidth ahead of demand. For most sites, the more difficult and costly aspect of increasing wide area network capacity is the local loop, which connects the facility LAN to the wide area service provider(s). Fermilab, in coordination with neighboring Argonne National Laboratory, has chosen to provide its own local loop access through leasing of dark fiber to nearby network exchange points, and procuring dense wave division multiplexing (DWDM) equipment to provide data channels across those fibers. Installing and managing such optical network infrastructure has broadened the Laboratory's network support responsibilities to include operating network equipment that is located off-site, and is technically much different than classic LAN network equipment. Effectively, the Laboratory has assumed the role of a local service provider. This paper will cover Fermilab's experiences with deploying and supporting a Metropolitan Area Network (MAN) infrastructure to satisfy its offsite networking needs. The benefits and drawbacks of providing and supporting such a service will be discussed.

  9. Integrating Decision Support and Social Networks

    Directory of Open Access Journals (Sweden)

    Francisco Antunes

    2012-01-01

    Full Text Available We elaborate on the shifting of decision support systems towards social networking, which is based on the concepts of Web 2.0 and Semantic Web technology. As the characteristics of the relevant components are different from traditional decision support systems, we present necessary adaptations when adopting social networks for decision support within an organization. We also present organizational obstacles when adopting/using such systems and clues to overcome them.

  10. Ensemble Feature Learning of Genomic Data Using Support Vector Machine.

    Directory of Open Access Journals (Sweden)

    Ali Anaissi

    Full Text Available The identification of a subset of genes having the ability to capture the necessary information to distinguish classes of patients is crucial in bioinformatics applications. Ensemble and bagging methods have been shown to work effectively in the process of gene selection and classification. Testament to that is random forest which combines random decision trees with bagging to improve overall feature selection and classification accuracy. Surprisingly, the adoption of these methods in support vector machines has only recently received attention but mostly on classification not gene selection. This paper introduces an ensemble SVM-Recursive Feature Elimination (ESVM-RFE for gene selection that follows the concepts of ensemble and bagging used in random forest but adopts the backward elimination strategy which is the rationale of RFE algorithm. The rationale behind this is, building ensemble SVM models using randomly drawn bootstrap samples from the training set, will produce different feature rankings which will be subsequently aggregated as one feature ranking. As a result, the decision for elimination of features is based upon the ranking of multiple SVM models instead of choosing one particular model. Moreover, this approach will address the problem of imbalanced datasets by constructing a nearly balanced bootstrap sample. Our experiments show that ESVM-RFE for gene selection substantially increased the classification performance on five microarray datasets compared to state-of-the-art methods. Experiments on the childhood leukaemia dataset show that an average 9% better accuracy is achieved by ESVM-RFE over SVM-RFE, and 5% over random forest based approach. The selected genes by the ESVM-RFE algorithm were further explored with Singular Value Decomposition (SVD which reveals significant clusters with the selected data.

  11. Ensemble Feature Learning of Genomic Data Using Support Vector Machine.

    Science.gov (United States)

    Anaissi, Ali; Goyal, Madhu; Catchpoole, Daniel R; Braytee, Ali; Kennedy, Paul J

    2016-01-01

    The identification of a subset of genes having the ability to capture the necessary information to distinguish classes of patients is crucial in bioinformatics applications. Ensemble and bagging methods have been shown to work effectively in the process of gene selection and classification. Testament to that is random forest which combines random decision trees with bagging to improve overall feature selection and classification accuracy. Surprisingly, the adoption of these methods in support vector machines has only recently received attention but mostly on classification not gene selection. This paper introduces an ensemble SVM-Recursive Feature Elimination (ESVM-RFE) for gene selection that follows the concepts of ensemble and bagging used in random forest but adopts the backward elimination strategy which is the rationale of RFE algorithm. The rationale behind this is, building ensemble SVM models using randomly drawn bootstrap samples from the training set, will produce different feature rankings which will be subsequently aggregated as one feature ranking. As a result, the decision for elimination of features is based upon the ranking of multiple SVM models instead of choosing one particular model. Moreover, this approach will address the problem of imbalanced datasets by constructing a nearly balanced bootstrap sample. Our experiments show that ESVM-RFE for gene selection substantially increased the classification performance on five microarray datasets compared to state-of-the-art methods. Experiments on the childhood leukaemia dataset show that an average 9% better accuracy is achieved by ESVM-RFE over SVM-RFE, and 5% over random forest based approach. The selected genes by the ESVM-RFE algorithm were further explored with Singular Value Decomposition (SVD) which reveals significant clusters with the selected data.

  12. Noninvasive extraction of fetal electrocardiogram based on Support Vector Machine

    Science.gov (United States)

    Fu, Yumei; Xiang, Shihan; Chen, Tianyi; Zhou, Ping; Huang, Weiyan

    2015-10-01

    The fetal electrocardiogram (FECG) signal has important clinical value for diagnosing the fetal heart diseases and choosing suitable therapeutics schemes to doctors. So, the noninvasive extraction of FECG from electrocardiogram (ECG) signals becomes a hot research point. A new method, the Support Vector Machine (SVM) is utilized for the extraction of FECG with limited size of data. Firstly, the theory of the SVM and the principle of the extraction based on the SVM are studied. Secondly, the transformation of maternal electrocardiogram (MECG) component in abdominal composite signal is verified to be nonlinear and fitted with the SVM. Then, the SVM is trained, and the training results are compared with the real data to ensure the effect of the training. Meanwhile, the parameters of the SVM are optimized to achieve the best performance so that the learning machine can be utilized to fit the unknown samples. Finally, the FECG is extracted by removing the optimal estimation of MECG component from the abdominal composite signal. In order to evaluate the performance of FECG extraction based on the SVM, the Signal-to-Noise Ratio (SNR) and the visual test are used. The experimental results show that the FECG with good quality can be extracted, its SNR ratio is significantly increased as high as 9.2349 dB and the time cost is significantly decreased as short as 0.802 seconds. Compared with the traditional method, the noninvasive extraction method based on the SVM has a simple realization, the shorter treatment time and the better extraction quality under the same conditions.

  13. Conceptualization of the social support and the social support network

    OpenAIRE

    Aranda B., Carolina; Instituto de Investigación en salud ocupacional, Departamento de salud pública, Universidad de Guadalajara, México; Pando M., Manuel; Instituto de Investigación en salud ocupacional, Departamento de salud pública, Universidad de Guadalajara, México

    2014-01-01

    Many are the concepts and approaches whose have been proposed in the study of the social support as social support networks, as well as the use of some of these concepts to relate either social support or social support networks to the conditions and its importance in the protective role of it. The route on the conceptualization of both variables occurs since the fifties to the most current, closing with some brief conclusions. Numerosos son los conceptos y abordajes que se han propuesto e...

  14. Estimating transmitted waves of floating breakwater using support vector regression model

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Hegde, A.V.; Kumar, V.; Patil, S.G.

    to diameter of pipes (S/D). The radial basis functions performed well than the polynomial function in the regressive support vector machine as the kernel function for the given set of data. The support vector regression model gives the correlation coefficients...

  15. A Comparison Study of Extreme Learning Machine and Least Squares Support Vector Machine for Structural Impact Localization

    OpenAIRE

    Qingsong Xu

    2014-01-01

    Extreme learning machine (ELM) is a learning algorithm for single-hidden layer feedforward neural network dedicated to an extremely fast learning. However, the performance of ELM in structural impact localization is unknown yet. In this paper, a comparison study of ELM with least squares support vector machine (LSSVM) is presented for the application on impact localization of a plate structure with surface-mounted piezoelectric sensors. Both basic and kernel-based ELM regression models have b...

  16. Research Application of Support Vector Machine in Fault Diagnosis of Certain Type Engine

    Directory of Open Access Journals (Sweden)

    Donghua FENG

    2014-02-01

    Full Text Available For the engine fault diagnosis in real problems, the number of samples available are limited, and the progress of research on the theory of the most limited to assume that the data samples, so that the network training data examples, in engineering applications has been slow, in this paper, the application of support vector machine in fault diagnosis of engine, the segmentation of the training sample set, in order to achieve the optimal analysis of the machine, the reasoning ability best. First introduced the two classification method of support vector machine and multi classification method based on two classification methods of the study, and applied to the fault diagnosis of engine, and then the simulation test for this method, and compared with the existing methods, the results show the effectiveness of the classification method, the results of the analysis also can use the tree diagram or table form, simple and intuitive; but also can save the contribution to some extent in time.

  17. Support vector machines for TEC seismo-ionospheric anomalies detection

    Directory of Open Access Journals (Sweden)

    M. Akhoondzadeh

    2013-02-01

    Full Text Available Using time series prediction methods, it is possible to pursue the behaviors of earthquake precursors in the future and to announce early warnings when the differences between the predicted value and the observed value exceed the predefined threshold value. Support Vector Machines (SVMs are widely used due to their many advantages for classification and regression tasks. This study is concerned with investigating the Total Electron Content (TEC time series by using a SVM to detect seismo-ionospheric anomalous variations induced by the three powerful earthquakes of Tohoku (11 March 2011, Haiti (12 January 2010 and Samoa (29 September 2009. The duration of TEC time series dataset is 49, 46 and 71 days, for Tohoku, Haiti and Samoa earthquakes, respectively, with each at time resolution of 2 h. In the case of Tohoku earthquake, the results show that the difference between the predicted value obtained from the SVM method and the observed value reaches the maximum value (i.e., 129.31 TECU at earthquake time in a period of high geomagnetic activities. The SVM method detected a considerable number of anomalous occurrences 1 and 2 days prior to the Haiti earthquake and also 1 and 5 days before the Samoa earthquake in a period of low geomagnetic activities. In order to show that the method is acting sensibly with regard to the results extracted during nonevent and event TEC data, i.e., to perform some null-hypothesis tests in which the methods would also be calibrated, the same period of data from the previous year of the Samoa earthquake date has been taken into the account. Further to this, in this study, the detected TEC anomalies using the SVM method were compared to the previous results (Akhoondzadeh and Saradjian, 2011; Akhoondzadeh, 2012 obtained from the mean, median, wavelet and Kalman filter methods. The SVM detected anomalies are similar to those detected using the previous methods. It can be concluded that SVM can be a suitable learning method

  18. A hybrid least squares support vector machines and GMDH approach for river flow forecasting

    Science.gov (United States)

    Samsudin, R.; Saad, P.; Shabri, A.

    2010-06-01

    This paper proposes a novel hybrid forecasting model, which combines the group method of data handling (GMDH) and the least squares support vector machine (LSSVM), known as GLSSVM. The GMDH is used to determine the useful input variables for LSSVM model and the LSSVM model which works as time series forecasting. In this study the application of GLSSVM for monthly river flow forecasting of Selangor and Bernam River are investigated. The results of the proposed GLSSVM approach are compared with the conventional artificial neural network (ANN) models, Autoregressive Integrated Moving Average (ARIMA) model, GMDH and LSSVM models using the long term observations of monthly river flow discharge. The standard statistical, the root mean square error (RMSE) and coefficient of correlation (R) are employed to evaluate the performance of various models developed. Experiment result indicates that the hybrid model was powerful tools to model discharge time series and can be applied successfully in complex hydrological modeling.

  19. River Flow Forecasting: a Hybrid Model of Self Organizing Maps and Least Square Support Vector Machine

    Science.gov (United States)

    Ismail, S.; Samsudin, R.; Shabri, A.

    2010-10-01

    Successful river flow time series forecasting is a major goal and an essential procedure that is necessary in water resources planning and management. This study introduced a new hybrid model based on a combination of two familiar non-linear method of mathematical modeling: Self Organizing Map (SOM) and Least Square Support Vector Machine (LSSVM) model referred as SOM-LSSVM model. The hybrid model uses the SOM algorithm to cluster the training data into several disjointed clusters and the individual LSSVM is used to forecast the river flow. The feasibility of this proposed model is evaluated to actual river flow data from Bernam River located in Selangor, Malaysia. Their results have been compared to those obtained using LSSVM and artificial neural networks (ANN) models. The experiment results show that the SOM-LSSVM model outperforms other models for forecasting river flow. It also indicates that the proposed model can forecast more precisely and provides a promising alternative technique in river flow forecasting.

  20. Signal Detection for QPSK Based Cognitive Radio Systems using Support Vector Machines

    Directory of Open Access Journals (Sweden)

    M. T. Mushtaq

    2015-04-01

    Full Text Available Cognitive radio based network enables opportunistic dynamic spectrum access by sensing, adopting and utilizing the unused portion of licensed spectrum bands. Cognitive radio is intelligent enough to adapt the communication parameters of the unused licensed spectrum. Spectrum sensing is one of the most important tasks of the cognitive radio cycle. In this paper, the auto-correlation function kernel based Support Vector Machine (SVM classifier along with Welch's Periodogram detector is successfully implemented for the detection of four QPSK (Quadrature Phase Shift Keying based signals propagating through an AWGN (Additive White Gaussian Noise channel. It is shown that the combination of statistical signal processing and machine learning concepts improve the spectrum sensing process and spectrum sensing is possible even at low Signal to Noise Ratio (SNR values up to -50 dB.

  1. Parameter Selection Method for Support Vector Regression Based on Adaptive Fusion of the Mixed Kernel Function

    Directory of Open Access Journals (Sweden)

    Hailun Wang

    2017-01-01

    Full Text Available Support vector regression algorithm is widely used in fault diagnosis of rolling bearing. A new model parameter selection method for support vector regression based on adaptive fusion of the mixed kernel function is proposed in this paper. We choose the mixed kernel function as the kernel function of support vector regression. The mixed kernel function of the fusion coefficients, kernel function parameters, and regression parameters are combined together as the parameters of the state vector. Thus, the model selection problem is transformed into a nonlinear system state estimation problem. We use a 5th-degree cubature Kalman filter to estimate the parameters. In this way, we realize the adaptive selection of mixed kernel function weighted coefficients and the kernel parameters, the regression parameters. Compared with a single kernel function, unscented Kalman filter (UKF support vector regression algorithms, and genetic algorithms, the decision regression function obtained by the proposed method has better generalization ability and higher prediction accuracy.

  2. Using a Geographical-Information-System-Based Decision Support to Enhance Malaria Vector Control in Zambia

    Directory of Open Access Journals (Sweden)

    Emmanuel Chanda

    2012-01-01

    Full Text Available Geographic information systems (GISs with emerging technologies are being harnessed for studying spatial patterns in vector-borne diseases to reduce transmission. To implement effective vector control, increased knowledge on interactions of epidemiological and entomological malaria transmission determinants in the assessment of impact of interventions is critical. This requires availability of relevant spatial and attribute data to support malaria surveillance, monitoring, and evaluation. Monitoring the impact of vector control through a GIS-based decision support (DSS has revealed spatial relative change in prevalence of infection and vector susceptibility to insecticides and has enabled measurement of spatial heterogeneity of trend or impact. The revealed trends and interrelationships have allowed the identification of areas with reduced parasitaemia and increased insecticide resistance thus demonstrating the impact of resistance on vector control. The GIS-based DSS provides opportunity for rational policy formulation and cost-effective utilization of limited resources for enhanced malaria vector control.

  3. Social networks, support cliques, and kinship.

    Science.gov (United States)

    Dunbar, R I; Spoors, M

    1995-09-01

    Data on the number of adults that an individual contacts at least once a month in a set of British populations yield estimates of network sizes that correspond closely to those of the typical "sympathy group" size in humans. Men and women do not differ in their total network size, but women have more females and more kin in their networks than men do. Kin account for a significantly higher proportion of network members than would be expected by chance. The number of kin in the network increases in proportion to the size of the family; as a result, people from large families have proportionately fewer non-kin in their networks, suggesting that there is either a time constraint or a cognitive constraint on network size. A small inner clique of the network functions as a support group from whom an individual is particularly likely to seek advice or assistance in time of need. Kin do not account for a significantly higher proportion of the support clique than they do for the wider network of regular social contacts for either men or women, but each sex exhibits a strong preference for members of their own sex.

  4. Using Network Science to Support Design Research

    DEFF Research Database (Denmark)

    Parraguez Ruiz, Pedro; Maier, Anja

    2016-01-01

    A network-based perspective on designing permits research on the complexity of product, process, and people interactions. Strengthened by the latest advances in information technologies and accessibility of data, a network-based perspective and use of appropriate network analysis metrics, theories......, and tools allow us to explore new data-driven research approaches in design. These approaches allow us to move from counting to connecting, meaning to explicitly link disconnected pieces of data, information, and knowledge, and thus to answer far-reaching research questions with strong industrial...... and societal impact. This chapter contributes to the use of network science in empirical studies of design organisations. It focuses on introducing a network-based perspective on the design process and in particular on making use of network science to support design research and practice. The main contribution...

  5. On the existence of efficient solutions to vector optimization problem of traffic flow on network

    Directory of Open Access Journals (Sweden)

    T. A. Bozhanova

    2009-09-01

    Full Text Available We studied traffic flow models in vector-valued optimization statement where the flow is controlled at the nodes of network. We considered the case when an objective mapping possesses a weakened property of upper semicontinuity and made no assumptions on the interior of the ordering cone. The sufficient conditions for the existence of efficient controls of the traffic problems are derived. The existence of efficient solutions of vector optimization problem for traffic flow on network are also proved.

  6. On the existence of efficient solutions to vector optimization problem of traffic flow on network

    OpenAIRE

    T. A. Bozhanova

    2009-01-01

    We studied traffic flow models in vector-valued optimization statement where the flow is controlled at the nodes of network. We considered the case when an objective mapping possesses a weakened property of upper semicontinuity and made no assumptions on the interior of the ordering cone. The sufficient conditions for the existence of efficient controls of the traffic problems are derived. The existence of efficient solutions of vector optimization problem for traffic flow on network are also...

  7. Signal detection using support vector machines in the presence of ultrasonic speckle

    Science.gov (United States)

    Kotropoulos, Constantine L.; Pitas, Ioannis

    2002-04-01

    Support Vector Machines are a general algorithm based on guaranteed risk bounds of statistical learning theory. They have found numerous applications, such as in classification of brain PET images, optical character recognition, object detection, face verification, text categorization and so on. In this paper we propose the use of support vector machines to segment lesions in ultrasound images and we assess thoroughly their lesion detection ability. We demonstrate that trained support vector machines with a Radial Basis Function kernel segment satisfactorily (unseen) ultrasound B-mode images as well as clinical ultrasonic images.

  8. Insect cell transformation vectors that support high level expression and promoter assessment in insect cell culture

    Science.gov (United States)

    A somatic transformation vector, pDP9, was constructed that provides a simplified means of producing permanently transformed cultured insect cells that support high levels of protein expression of foreign genes. The pDP9 plasmid vector incorporates DNA sequences from the Junonia coenia densovirus th...

  9. Infinite ensemble of support vector machines for prediction of ...

    African Journals Online (AJOL)

    LBDs) risk associated with the industrial jobs. Many researchers have demonstrated the use of artificial neural networks (ANNs) to predict musculoskeletal disorders risk associated with occupational exposures. In order to improve the accuracy ...

  10. Developing networks to support science teachers work

    DEFF Research Database (Denmark)

    Sillasen, Martin Krabbe; Valero, Paola

    2012-01-01

    In educational research literature constructing networks among practitioners has been suggested as a strategy to support teachers’ professional development (Huberman, 1995; Jackson & Temperley, 2007; Van Driel, Beijaard, & Verloop, 2001). The purpose of this paper is to report on a study about how...... networks provide opportunities for teachers from different schools to collaborate on improving the quality of their own science teaching practices. These networks exist at the meso-level of the educational system between the micro-realities of teachers’ individual practice and the macro-level, where...... to develop collaborative activities in primary science teacher communities in schools to improve individual teachers practice and in networks between teachers from different schools in each municipality. Each network was organized and moderated by a municipal science coordinator....

  11. Object Recognition System-on-Chip Using the Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Houzet Dominique

    2005-01-01

    Full Text Available The first aim of this work is to propose the design of a system-on-chip (SoC platform dedicated to digital image and signal processing, which is tuned to implement efficiently multiply-and-accumulate (MAC vector/matrix operations. The second aim of this work is to implement a recent promising neural network method, namely, the support vector machine (SVM used for real-time object recognition, in order to build a vision machine. With such a reconfigurable and programmable SoC platform, it is possible to implement any SVM function dedicated to any object recognition problem. The final aim is to obtain an automatic reconfiguration of the SoC platform, based on the results of the learning phase on an objects' database, which makes it possible to recognize practically any object without manual programming. Recognition can be of any kind that is from image to signal data. Such a system is a general-purpose automatic classifier. Many applications can be considered as a classification problem, but are usually treated specifically in order to optimize the cost of the implemented solution. The cost of our approach is more important than a dedicated one, but in a near future, hundreds of millions of gates will be common and affordable compared to the design cost. What we are proposing here is a general-purpose classification neural network implemented on a reconfigurable SoC platform. The first version presented here is limited in size and thus in object recognition performances, but can be easily upgraded according to technology improvements.

  12. Social relations: network, support and relational strain

    DEFF Research Database (Denmark)

    Due, P; Holstein, B; Lund, Rikke

    1999-01-01

    We introduce a conceptual framework with social relations as the main concept and the structure and the function of social relations as subconcepts. The structure of social relations covers aspects of formal relations and social network. The function of social relations covers social support......,011. The postal questionnaires were answered by a random sample in each of the age groups. The results show marked age and gender differences in both the structure and the function of social relations. The social network, measured as weekly contacts, weakens with age and so does instrumental support. Emotional...... support is unrelated to this decline in contact frequency and appears to be at the same level for younger and older individuals. Relational strain, measured as conflicts, declines with age for all kinds of social relations. The weakening of the social network with age does not seem to affect the level...

  13. A support vector machine approach to detect financial statement fraud in South Africa: A first look

    CSIR Research Space (South Africa)

    Moepya, SO

    2014-04-01

    Full Text Available Auditors face the difficult task of detecting companies that issue manipulated financial statements. In recent years, machine learning methods have provided a feasible solution to this task. This study develops support vector machine (SVM) models...

  14. A Corporate Credit Rating Model Using Support Vector Domain Combined with Fuzzy Clustering Algorithm

    Directory of Open Access Journals (Sweden)

    Xuesong Guo

    2012-01-01

    Full Text Available Corporate credit-rating prediction using statistical and artificial intelligence techniques has received considerable attentions in the literature. Different from the thoughts of various techniques for adopting support vector machines as binary classifiers originally, a new method, based on support vector domain combined with fuzzy clustering algorithm for multiclassification, is proposed in the paper to accomplish corporate credit rating. By data preprocessing using fuzzy clustering algorithm, only the boundary data points are selected as training samples to accomplish support vector domain specification to reduce computational cost and also achieve better performance. To validate the proposed methodology, real-world cases are used for experiments, with results compared with conventional multiclassification support vector machine approaches and other artificial intelligence techniques. The results show that the proposed model improves the performance of corporate credit-rating with less computational consumption.

  15. Using Support Vector Machines to Automatically Extract Open Water Signatures from POLDER Multi-Angle Data Over Boreal Regions

    Science.gov (United States)

    Pierce, J.; Diaz-Barrios, M.; Pinzon, J.; Ustin, S. L.; Shih, P.; Tournois, S.; Zarco-Tejada, P. J.; Vanderbilt, V. C.; Perry, G. L.; Brass, James A. (Technical Monitor)

    2002-01-01

    This study used Support Vector Machines to classify multiangle POLDER data. Boreal wetland ecosystems cover an estimated 90 x 10(exp 6) ha, about 36% of global wetlands, and are a major source of trace gases emissions to the atmosphere. Four to 20 percent of the global emission of methane to the atmosphere comes from wetlands north of 4 degrees N latitude. Large uncertainties in emissions exist because of large spatial and temporal variation in the production and consumption of methane. Accurate knowledge of the areal extent of open water and inundated vegetation is critical to estimating magnitudes of trace gas emissions. Improvements in land cover mapping have been sought using physical-modeling approaches, neural networks, and active microwave, examples that demonstrate the difficulties of separating open water, inundated vegetation and dry upland vegetation. Here we examine the feasibility of using a support vector machine to classify POLDER data representing open water, inundated vegetation and dry upland vegetation.

  16. Online Order Priority Evaluation Based on Hybrid Harmony Search Algorithm of Optimized Support Vector Machines

    OpenAIRE

    Yuanyuan Zhao; Qian Chen

    2014-01-01

    To make production plan, online order priority evaluation is the current priority weakness of online order evaluation model. This thesis proposes an online order priority evaluation model based on hybrid harmony search algorithm of optimized support vector machine (HHS-SVM). Firstly, an online order priority evaluation index system is build, and then support vector machine is adopted to build an online order priority evaluation model; secondly, harmony search algorithm is used to optimize the...

  17. An Enhanced MEMS Error Modeling Approach Based on Nu-Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Deepak Bhatt

    2012-07-01

    Full Text Available Micro Electro Mechanical System (MEMS-based inertial sensors have made possible the development of a civilian land vehicle navigation system by offering a low-cost solution. However, the accurate modeling of the MEMS sensor errors is one of the most challenging tasks in the design of low-cost navigation systems. These sensors exhibit significant errors like biases, drift, noises; which are negligible for higher grade units. Different conventional techniques utilizing the Gauss Markov model and neural network method have been previously utilized to model the errors. However, Gauss Markov model works unsatisfactorily in the case of MEMS units due to the presence of high inherent sensor errors. On the other hand, modeling the random drift utilizing Neural Network (NN is time consuming, thereby affecting its real-time implementation. We overcome these existing drawbacks by developing an enhanced Support Vector Machine (SVM based error model. Unlike NN, SVMs do not suffer from local minimisation or over-fitting problems and delivers a reliable global solution. Experimental results proved that the proposed SVM approach reduced the noise standard deviation by 10–35% for gyroscopes and 61–76% for accelerometers. Further, positional error drifts under static conditions improved by 41% and 80% in comparison to NN and GM approaches.

  18. An enhanced MEMS error modeling approach based on Nu-Support Vector Regression.

    Science.gov (United States)

    Bhatt, Deepak; Aggarwal, Priyanka; Bhattacharya, Prabir; Devabhaktuni, Vijay

    2012-01-01

    Micro Electro Mechanical System (MEMS)-based inertial sensors have made possible the development of a civilian land vehicle navigation system by offering a low-cost solution. However, the accurate modeling of the MEMS sensor errors is one of the most challenging tasks in the design of low-cost navigation systems. These sensors exhibit significant errors like biases, drift, noises; which are negligible for higher grade units. Different conventional techniques utilizing the Gauss Markov model and neural network method have been previously utilized to model the errors. However, Gauss Markov model works unsatisfactorily in the case of MEMS units due to the presence of high inherent sensor errors. On the other hand, modeling the random drift utilizing Neural Network (NN) is time consuming, thereby affecting its real-time implementation. We overcome these existing drawbacks by developing an enhanced Support Vector Machine (SVM) based error model. Unlike NN, SVMs do not suffer from local minimisation or over-fitting problems and delivers a reliable global solution. Experimental results proved that the proposed SVM approach reduced the noise standard deviation by 10-35% for gyroscopes and 61-76% for accelerometers. Further, positional error drifts under static conditions improved by 41% and 80% in comparison to NN and GM approaches.

  19. Support vector machine for classification of walking conditions of persons after stroke with dropped foot.

    Science.gov (United States)

    Lau, Hong-yin; Tong, Kai-yu; Zhu, Hailong

    2009-08-01

    Walking with dropped foot represents a major gait disorder, which is observed in hemiparetic persons after stroke. This study explores the use of support vector machine (SVMs) to classify different walking conditions for hemiparetic subjects. Seven participants with dropped foot (category 4 of functional ambulatory category) walked in five different conditions: level ground, stair ascent, stair descent, upslope, and downslope. The kinematic data were measured by two portable sensor units, each comprising an accelerometer and gyroscope attached to the lower limb on the shank and foot segments. The overall classification accuracy of stair ascent, stair descent, and other walking conditions was 92.9% using input features from the sensor attached to the shank. It was further improved to 97.5% by adding two more inputs from the sensor attached to the foot. Stair ascent was also classified by the inputs from the foot sensor unit with 96% accuracy. The performance of an SVM was shown to be superior to that of other machine learning methods using artificial neural networks (ANN) and radial basis function neural networks (RBF). The results suggested that the SVM classification method could be applied as a tool for pathological gait analysis, pattern recognition, control signals in functional electrical stimulation (FES) and rehabilitation robot, as well as activity monitoring during rehabilitation of daily activities.

  20. Multiscale asymmetric orthogonal wavelet kernel for linear programming support vector learning and nonlinear dynamic systems identification.

    Science.gov (United States)

    Lu, Zhao; Sun, Jing; Butts, Kenneth

    2014-05-01

    Support vector regression for approximating nonlinear dynamic systems is more delicate than the approximation of indicator functions in support vector classification, particularly for systems that involve multitudes of time scales in their sampled data. The kernel used for support vector learning determines the class of functions from which a support vector machine can draw its solution, and the choice of kernel significantly influences the performance of a support vector machine. In this paper, to bridge the gap between wavelet multiresolution analysis and kernel learning, the closed-form orthogonal wavelet is exploited to construct new multiscale asymmetric orthogonal wavelet kernels for linear programming support vector learning. The closed-form multiscale orthogonal wavelet kernel provides a systematic framework to implement multiscale kernel learning via dyadic dilations and also enables us to represent complex nonlinear dynamics effectively. To demonstrate the superiority of the proposed multiscale wavelet kernel in identifying complex nonlinear dynamic systems, two case studies are presented that aim at building parallel models on benchmark datasets. The development of parallel models that address the long-term/mid-term prediction issue is more intricate and challenging than the identification of series-parallel models where only one-step ahead prediction is required. Simulation results illustrate the effectiveness of the proposed multiscale kernel learning.

  1. Modeling a ground-coupled heat pump system by a support vector machine

    Energy Technology Data Exchange (ETDEWEB)

    Esen, Hikmet; Esen, Mehmet [Department of Mechanical Education, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey); Inalli, Mustafa [Department of Mechanical Engineering, Faculty of Engineering, Firat University, 23279 Elazig (Turkey); Sengur, Abdulkadir [Department of Electronic and Computer Science, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey)

    2008-08-15

    This paper reports on a modeling study of ground coupled heat pump (GCHP) system performance (COP) by using a support vector machine (SVM) method. A GCHP system is a multi-variable system that is hard to model by conventional methods. As regards the SVM, it has a superior capability for generalization, and this capability is independent of the dimensionality of the input data. In this study, a SVM based method was intended to adopt GCHP system for efficient modeling. The Lin-kernel SVM method was quite efficient in modeling purposes and did not require a pre-knowledge about the system. The performance of the proposed methodology was evaluated by using several statistical validation parameters. It is found that the root-mean squared (RMS) value is 0.002722, the coefficient of multiple determinations (R{sup 2}) value is 0.999999, coefficient of variation (cov) value is 0.077295, and mean error function (MEF) value is 0.507437 for the proposed Lin-kernel SVM method. The optimum parameters of the SVM method were determined by using a greedy search algorithm. This search algorithm was effective for obtaining the optimum parameters. The simulation results show that the SVM is a good method for prediction of the COP of the GCHP system. The computation of SVM model is faster compared with other machine learning techniques (artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS)); because there are fewer free parameters and only support vectors (only a fraction of all data) are used in the generalization process. (author)

  2. The efficacy of support vector machines (SVM) in robust ...

    Indian Academy of Sciences (India)

    (2006) by applying an SVM statistical learning machine on the time-scale wavelet decomposition methods. We used the data of 108 events in central Japan with magnitude ranging from 3 to 7.4 recorded at KiK-net network stations, for a source–receiver distance of up to 150 km during the period 1998–2011. We applied a ...

  3. A multigene support vector machine predictor for metastasis of cutaneous melanoma.

    Science.gov (United States)

    Wei, Dong

    2018-02-01

    Gene expression profiles of cutaneous melanoma were analyzed to identify critical genes associated with metastasis. Two gene expression datasets were downloaded from Gene Expression Omnibus (GEO) and another dataset was obtained from The Cancer Genome Atlas (TCGA). Differentially expression genes (DEGs) between metastatic and non‑metastatic melanoma were identified by meta‑analysis. A protein‑protein interaction (PPI) network was constructed for the DEGs using information from BioGRID, HPRD and DIP. Betweenness centrality (BC) was calculated for each node in the network and the top feature genes ranked by BC were selected to construct the support vector machine (SVM) classifier using the training set. The SVM classifier was then validated in another independent dataset. Pathway enrichment analysis was performed for the feature genes using Fisher's exact test. A total of 798 DEGs were identified and a PPI network including 337 nodes and 466 edges was then constructed. Top 110 feature genes ranked by BC were included in the SVM classifier. The prediction accuracies for the three datasets were 96.8, 100 and 94.4%, respectively. A total of 11 KEGG pathways and 13 GO biological pathways were significantly over‑represented in the 110 feature genes, including endometrial cancer, regulation of actin cytoskeleton, focal adhesion, ubiquitin mediated proteolysis, regulation of apoptosis and regulation of cell proliferation. A SVM classifier of high prediction accuracy was acquired. Several critical genes implicated in melanoms metastasis were also revealed. These results may advance understanding of the molecular mechanisms underlying metastasis, and also provide potential therapeutic targets.

  4. Support Vector Machine Model for Automatic Detection and Classification of Seismic Events

    Science.gov (United States)

    Barros, Vesna; Barros, Lucas

    2016-04-01

    The automated processing of multiple seismic signals to detect, localize and classify seismic events is a central tool in both natural hazards monitoring and nuclear treaty verification. However, false detections and missed detections caused by station noise and incorrect classification of arrivals are still an issue and the events are often unclassified or poorly classified. Thus, machine learning techniques can be used in automatic processing for classifying the huge database of seismic recordings and provide more confidence in the final output. Applied in the context of the International Monitoring System (IMS) - a global sensor network developed for the Comprehensive Nuclear-Test-Ban Treaty (CTBT) - we propose a fully automatic method for seismic event detection and classification based on a supervised pattern recognition technique called the Support Vector Machine (SVM). According to Kortström et al., 2015, the advantages of using SVM are handleability of large number of features and effectiveness in high dimensional spaces. Our objective is to detect seismic events from one IMS seismic station located in an area of high seismicity and mining activity and classify them as earthquakes or quarry blasts. It is expected to create a flexible and easily adjustable SVM method that can be applied in different regions and datasets. Taken a step further, accurate results for seismic stations could lead to a modification of the model and its parameters to make it applicable to other waveform technologies used to monitor nuclear explosions such as infrasound and hydroacoustic waveforms. As an authorized user, we have direct access to all IMS data and bulletins through a secure signatory account. A set of significant seismic waveforms containing different types of events (e.g. earthquake, quarry blasts) and noise is being analysed to train the model and learn the typical pattern of the signal from these events. Moreover, comparing the performance of the support-vector

  5. Modeling the spread of vector-borne diseases on bipartite networks.

    Directory of Open Access Journals (Sweden)

    Donal Bisanzio

    Full Text Available BACKGROUND: Vector-borne diseases for which transmission occurs exclusively between vectors and hosts can be modeled as spreading on a bipartite network. METHODOLOGY/PRINCIPAL FINDINGS: In such models the spreading of the disease strongly depends on the degree distribution of the two classes of nodes. It is sufficient for one of the classes to have a scale-free degree distribution with a slow enough decay for the network to have asymptotically vanishing epidemic threshold. Data on the distribution of Ixodes ricinus ticks on mice and lizards from two independent studies are well described by a scale-free distribution compatible with an asymptotically vanishing epidemic threshold. The commonly used negative binomial, instead, cannot describe the right tail of the empirical distribution. CONCLUSIONS/SIGNIFICANCE: The extreme aggregation of vectors on hosts, described by the power-law decay of the degree distribution, makes the epidemic threshold decrease with the size of the network and vanish asymptotically.

  6. Social relations: network, support and relational strain.

    Science.gov (United States)

    Due, P; Holstein, B; Lund, R; Modvig, J; Avlund, K

    1999-03-01

    We introduce a conceptual framework with social relations as the main concept and the structure and the function of social relations as subconcepts. The structure of social relations covers aspects of formal relations and social network. The function of social relations covers social support, social anchorage and relational strain. We use this conceptual framework to describe social relations in the Danish population, with questionnaire data from the Danish Longitudinal Health Behaviour Study including a random sample of each of the age groups 25-, 50-, 60-and 70-year olds, N = 2,011. The postal questionnaires were answered by a random sample in each of the age groups. The results show marked age and gender differences in both the structure and the function of social relations. The social network, measured as weekly contacts, weakens with age and so does instrumental support. Emotional support is unrelated to this decline in contact frequency and appears to be at the same level for younger and older individuals. Relational strain, measured as conflicts, declines with age for all kinds of social relations. The weakening of the social network with age does not seem to affect the level of emotional support and in turn seems to be partly compensated for by a simultaneous decline in relational strain.

  7. A Bayesian least-squares support vector machine method for predicting the remaining useful life of a microwave component

    Directory of Open Access Journals (Sweden)

    Fuqiang Sun

    2017-01-01

    Full Text Available Rapid and accurate lifetime prediction of critical components in a system is important to maintaining the system’s reliable operation. To this end, many lifetime prediction methods have been developed to handle various failure-related data collected in different situations. Among these methods, machine learning and Bayesian updating are the most popular ones. In this article, a Bayesian least-squares support vector machine method that combines least-squares support vector machine with Bayesian inference is developed for predicting the remaining useful life of a microwave component. A degradation model describing the change in the component’s power gain over time is developed, and the point and interval remaining useful life estimates are obtained considering a predefined failure threshold. In our case study, the radial basis function neural network approach is also implemented for comparison purposes. The results indicate that the Bayesian least-squares support vector machine method is more precise and stable in predicting the remaining useful life of this type of components.

  8. Distributed Remote Vector Gaussian Source Coding for Wireless Acoustic Sensor Networks

    DEFF Research Database (Denmark)

    Zahedi, Adel; Østergaard, Jan; Jensen, Søren Holdt

    2014-01-01

    encoding multiple sources. We focus on the case where node measurements are in form of noisy linearly mixed combinations of the sources and the acoustic channel mixing matrices are invertible. For this problem, we derive the rate-distortion function for vector Gaussian sources and under covariance......In this paper, we consider the problem of remote vector Gaussian source coding for a wireless acoustic sensor network. Each node receives messages from multiple nodes in the network and decodes these messages using its own measurement of the sound field as side information. The node’s measurement...

  9. A path algorithm for the support vector domain description and its application to medical imaging

    DEFF Research Database (Denmark)

    Sjöstrand, Karl; Hansen, Michael Sass; Larsson, Henrik B. W.

    2007-01-01

    The support vector domain description is a one-class classification method that estimates the distributional support of a data set. A flexible closed boundary function is used to separate trustworthy data on the inside from outliers on the outside. A single regularization parameter determines...

  10. NET: a new framework for the vectorization and examination of network data.

    Science.gov (United States)

    Lasser, Jana; Katifori, Eleni

    2017-01-01

    The analysis of complex networks both in general and in particular as pertaining to real biological systems has been the focus of intense scientific attention in the past and present. In this paper we introduce two tools that provide fast and efficient means for the processing and quantification of biological networks like Drosophila tracheoles or leaf venation patterns: the Network Extraction Tool (NET) to extract data and the Graph-edit-GUI (GeGUI) to visualize and modify networks. NET is especially designed for high-throughput semi-automated analysis of biological datasets containing digital images of networks. The framework starts with the segmentation of the image and then proceeds to vectorization using methodologies from optical character recognition. After a series of steps to clean and improve the quality of the extracted data the framework produces a graph in which the network is represented only by its nodes and neighborhood-relations. The final output contains information about the adjacency matrix of the graph, the width of the edges and the positions of the nodes in space. NET also provides tools for statistical analysis of the network properties, such as the number of nodes or total network length. Other, more complex metrics can be calculated by importing the vectorized network to specialized network analysis packages. GeGUI is designed to facilitate manual correction of non-planar networks as these may contain artifacts or spurious junctions due to branches crossing each other. It is tailored for but not limited to the processing of networks from microscopy images of Drosophila tracheoles. The networks extracted by NET closely approximate the network depicted in the original image. NET is fast, yields reproducible results and is able to capture the full geometry of the network, including curved branches. Additionally GeGUI allows easy handling and visualization of the networks.

  11. Network support for system initiated checkpoints

    Science.gov (United States)

    Chen, Dong; Heidelberger, Philip

    2013-01-29

    A system, method and computer program product for supporting system initiated checkpoints in parallel computing systems. The system and method generates selective control signals to perform checkpointing of system related data in presence of messaging activity associated with a user application running at the node. The checkpointing is initiated by the system such that checkpoint data of a plurality of network nodes may be obtained even in the presence of user applications running on highly parallel computers that include ongoing user messaging activity.

  12. A support vector machine tool for adaptive tomotherapy treatments: Prediction of head and neck patients criticalities.

    Science.gov (United States)

    Guidi, Gabriele; Maffei, Nicola; Vecchi, Claudio; Ciarmatori, Alberto; Mistretta, Grazia Maria; Gottardi, Giovanni; Meduri, Bruno; Baldazzi, Giuseppe; Bertoni, Filippo; Costi, Tiziana

    2015-07-01

    Adaptive radiation therapy (ART) is an advanced field of radiation oncology. Image-guided radiation therapy (IGRT) methods can support daily setup and assess anatomical variations during therapy, which could prevent incorrect dose distribution and unexpected toxicities. A re-planning to correct these anatomical variations should be done daily/weekly, but to be applicable to a large number of patients, still require time consumption and resources. Using unsupervised machine learning on retrospective data, we have developed a predictive network, to identify patients that would benefit of a re-planning. 1200 MVCT of 40 head and neck (H&N) cases were re-contoured, automatically, using deformable hybrid registration and structures mapping. Deformable algorithm and MATLAB(®) homemade machine learning process, developed, allow prediction of criticalities for Tomotherapy treatments. Using retrospective analysis of H&N treatments, we have investigated and predicted tumor shrinkage and organ at risk (OAR) deformations. Support vector machine (SVM) and cluster analysis have identified cases or treatment sessions with potential criticalities, based on dose and volume discrepancies between fractions. During 1st weeks of treatment, 84% of patients shown an output comparable to average standard radiation treatment behavior. Starting from the 4th week, significant morpho-dosimetric changes affect 77% of patients, suggesting need for re-planning. The comparison of treatment delivered and ART simulation was carried out with receiver operating characteristic (ROC) curves, showing monotonous increase of ROC area. Warping methods, supported by daily image analysis and predictive tools, can improve personalization and monitoring of each treatment, thereby minimizing anatomic and dosimetric divergences from initial constraints. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Support vector machine as an alternative method for lithology classification of crystalline rocks

    Science.gov (United States)

    Deng, Chengxiang; Pan, Heping; Fang, Sinan; Amara Konaté, Ahmed; Qin, Ruidong

    2017-03-01

    With the expansion of machine learning algorithms, automatic lithology classification that uses well logging data is becoming significant in formation evaluation and reservoir characterization. In fact, the complicated composition and structural variations of metamorphic rocks result in more nonlinear features in well logging data and elevate requirements to algorithms. Herein, the application of the support vector machine (SVM) in classifying crystalline rocks from Chinese Continental Scientific Drilling Main Hole (CCSD-MH) data was reported. We found that the SVM performs poorly on the lithology classification of crystalline rocks when training samples are imbalanced. The fact is that training samples are generally limited and imbalanced as cores cannot be obtained balanced and at 100 percent. In this paper, we introduced the synthetic minority over-sampling technique (SMOTE) and Borderline-SMOTE to deal with imbalanced data. After experiments generating different quantities of training samples by SMOTE and Borderline-SMOTE, the most suitable classifier was selected to overcome the disadvantage of the SVM. Then, the popular supervised classifier back-propagation neural networks (BPNN), which has been proved competent for lithology classification of crystalline rocks in previous studies, was compared to evaluate the performance of the SVM. Results show that Borderline-SMOTE can improve the SVM with substantially increased accuracy even for minority classes in a reasonable manner, while the SVM outperforms BPNN in aspects of lithology prediction and CCSD-MH data generalization. We demonstrate the potential of the SVM as an alternative to current methods for lithology identification of crystalline rocks.

  14. Estimation of the laser cutting operating cost by support vector regression methodology

    Science.gov (United States)

    Jović, Srđan; Radović, Aleksandar; Šarkoćević, Živče; Petković, Dalibor; Alizamir, Meysam

    2016-09-01

    Laser cutting is a popular manufacturing process utilized to cut various types of materials economically. The operating cost is affected by laser power, cutting speed, assist gas pressure, nozzle diameter and focus point position as well as the workpiece material. In this article, the process factors investigated were: laser power, cutting speed, air pressure and focal point position. The aim of this work is to relate the operating cost to the process parameters mentioned above. CO2 laser cutting of stainless steel of medical grade AISI316L has been investigated. The main goal was to analyze the operating cost through the laser power, cutting speed, air pressure, focal point position and material thickness. Since the laser operating cost is a complex, non-linear task, soft computing optimization algorithms can be used. Intelligent soft computing scheme support vector regression (SVR) was implemented. The performance of the proposed estimator was confirmed with the simulation results. The SVR results are then compared with artificial neural network and genetic programing. According to the results, a greater improvement in estimation accuracy can be achieved through the SVR compared to other soft computing methodologies. The new optimization methods benefit from the soft computing capabilities of global optimization and multiobjective optimization rather than choosing a starting point by trial and error and combining multiple criteria into a single criterion.

  15. Comparative evaluation of support vector machine classification for computer aided detection of breast masses in mammography

    Science.gov (United States)

    Lesniak, J. M.; Hupse, R.; Blanc, R.; Karssemeijer, N.; Székely, G.

    2012-08-01

    False positive (FP) marks represent an obstacle for effective use of computer-aided detection (CADe) of breast masses in mammography. Typically, the problem can be approached either by developing more discriminative features or by employing different classifier designs. In this paper, the usage of support vector machine (SVM) classification for FP reduction in CADe is investigated, presenting a systematic quantitative evaluation against neural networks, k-nearest neighbor classification, linear discriminant analysis and random forests. A large database of 2516 film mammography examinations and 73 input features was used to train the classifiers and evaluate for their performance on correctly diagnosed exams as well as false negatives. Further, classifier robustness was investigated using varying training data and feature sets as input. The evaluation was based on the mean exam sensitivity in 0.05-1 FPs on normals on the free-response receiver operating characteristic curve (FROC), incorporated into a tenfold cross validation framework. It was found that SVM classification using a Gaussian kernel offered significantly increased detection performance (P = 0.0002) compared to the reference methods. Varying training data and input features, SVMs showed improved exploitation of large feature sets. It is concluded that with the SVM-based CADe a significant reduction of FPs is possible outperforming other state-of-the-art approaches for breast mass CADe.

  16. Detection of segments with fetal QRS complex from abdominal maternal ECG recordings using support vector machine

    Science.gov (United States)

    Delgado, Juan A.; Altuve, Miguel; Nabhan Homsi, Masun

    2015-12-01

    This paper introduces a robust method based on the Support Vector Machine (SVM) algorithm to detect the presence of Fetal QRS (fQRS) complexes in electrocardiogram (ECG) recordings provided by the PhysioNet/CinC challenge 2013. ECG signals are first segmented into contiguous frames of 250 ms duration and then labeled in six classes. Fetal segments are tagged according to the position of fQRS complex within each one. Next, segment features extraction and dimensionality reduction are obtained by applying principal component analysis on Haar-wavelet transform. After that, two sub-datasets are generated to separate representative segments from atypical ones. Imbalanced class problem is dealt by applying sampling without replacement on each sub-dataset. Finally, two SVMs are trained and cross-validated using the two balanced sub-datasets separately. Experimental results show that the proposed approach achieves high performance rates in fetal heartbeats detection that reach up to 90.95% of accuracy, 92.16% of sensitivity, 88.51% of specificity, 94.13% of positive predictive value and 84.96% of negative predictive value. A comparative study is also carried out to show the performance of other two machine learning algorithms for fQRS complex estimation, which are K-nearest neighborhood and Bayesian network.

  17. Embedded Hardware-Efficient Real-Time Classification With Cascade Support Vector Machines.

    Science.gov (United States)

    Kyrkou, Christos; Bouganis, Christos-Savvas; Theocharides, Theocharis; Polycarpou, Marios M

    2016-01-01

    Cascade support vector machines (SVMs) are optimized to efficiently handle problems, where the majority of the data belong to one of the two classes, such as image object classification, and hence can provide speedups over monolithic (single) SVM classifiers. However, SVM classification is a computationally demanding task and existing hardware architectures for SVMs only consider monolithic classifiers. This paper proposes the acceleration of cascade SVMs through a hybrid processing hardware architecture optimized for the cascade SVM classification flow, accompanied by a method to reduce the required hardware resources for its implementation, and a method to improve the classification speed utilizing cascade information to further discard data samples. The proposed SVM cascade architecture is implemented on a Spartan-6 field-programmable gate array (FPGA) platform and evaluated for object detection on 800×600 (Super Video Graphics Array) resolution images. The proposed architecture, boosted by a neural network that processes cascade information, achieves a real-time processing rate of 40 frames/s for the benchmark face detection application. Furthermore, the hardware-reduction method results in the utilization of 25% less FPGA custom-logic resources and 20% peak power reduction compared with a baseline implementation.

  18. Identifying organic-rich Marcellus Shale lithofacies by support vector machine classifier in the Appalachian basin

    Science.gov (United States)

    Wang, Guochang; Carr, Timothy R.; Ju, Yiwen; Li, Chaofeng

    2014-03-01

    Unconventional shale reservoirs as the result of extremely low matrix permeability, higher potential gas productivity requires not only sufficient gas-in-place, but also a high concentration of brittle minerals (silica and/or carbonate) that is amenable to hydraulic fracturing. Shale lithofacies is primarily defined by mineral composition and organic matter richness, and its representation as a 3-D model has advantages in recognizing productive zones of shale-gas reservoirs, designing horizontal wells and stimulation strategy, and aiding in understanding depositional process of organic-rich shale. A challenging and key step is to effectively recognize shale lithofacies from well conventional logs, where the relationship is very complex and nonlinear. In the recognition of shale lithofacies, the application of support vector machine (SVM), which underlies statistical learning theory and structural risk minimization principle, is superior to the traditional empirical risk minimization principle employed by artificial neural network (ANN). We propose SVM classifier combined with learning algorithms, such as grid searching, genetic algorithm and particle swarm optimization, and various kernel functions the approach to identify Marcellus Shale lithofacies. Compared with ANN classifiers, the experimental results of SVM classifiers showed higher cross-validation accuracy, better stability and less computational time cost. The SVM classifier with radius basis function as kernel worked best as it is trained by particle swarm optimization. The lithofacies predicted using the SVM classifier are used to build a 3-D Marcellus Shale lithofacies model, which assists in identifying higher productive zones, especially with thermal maturity and natural fractures.

  19. A Unified Framework for GPS Code and Carrier-Phase Multipath Mitigation Using Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Quoc-Huy Phan

    2013-01-01

    Full Text Available Multipath mitigation is a long-standing problem in global positioning system (GPS research and is essential for improving the accuracy and precision of positioning solutions. In this work, we consider multipath error estimation as a regression problem and propose a unified framework for both code and carrier-phase multipath mitigation for ground fixed GPS stations. We use the kernel support vector machine to predict multipath errors, since it is known to potentially offer better-performance traditional models, such as neural networks. The predicted multipath error is then used to correct GPS measurements. We empirically show that the proposed method can reduce the code multipath error standard deviation up to 79% on average, which significantly outperforms other approaches in the literature. A comparative analysis of reduction of double-differential carrier-phase multipath error reveals that a 57% reduction is also achieved. Furthermore, by simulation, we also show that this method is robust to coexisting signals of phenomena (e.g., seismic signals we wish to preserve.

  20. Influence of stimuli colour in SSVEP-based BCI wheelchair control using support vector machines.

    Science.gov (United States)

    Singla, Rajesh; Khosla, Arun; Jha, Rameshwar

    2014-04-01

    This study aims to develop a Steady State Visual Evoked Potential (SSVEP)-based Brain Computer Interface (BCI) system to control a wheelchair, with improving accuracy as the major goal. The developed wheelchair can move in forward, backward, left, right and stop positions. Four different flickering frequencies in the low frequency region were used to elicit the SSVEPs and were displayed on a Liquid Crystal Display (LCD) monitor using LabVIEW. Four colours (green, red, blue and violet) were included in the study to investigate the colour influence in SSVEPs. The Electroencephalogram (EEG) signals recorded from the occipital region were first segmented into 1 s windows and features were extracted by using Fast Fourier Transform (FFT). Three different classifiers, two based on Artificial Neural Network (ANN) and one based on Support Vector Machine (SVM), were compared to yield better accuracy. Twenty subjects participated in the experiment and the accuracy was calculated by considering the number of correct detections produced while performing a pre-defined movement sequence. SSVEP with violet colour showed higher performance than green and red. The One-Against-All (OAA) based multi-class SVM classifier showed better accuracy than the ANN classifiers. The classification accuracy over 20 subjects varies between 75-100%, while information transfer rates (ITR) varies from 12.13-27 bpm for BCI wheelchair control with SSVEPs elicited by violet colour stimuli and classified using OAA-SVM.

  1. Toward Predicting Social Support Needs in Online Health Social Networks.

    Science.gov (United States)

    Choi, Min-Je; Kim, Sung-Hee; Lee, Sukwon; Kwon, Bum Chul; Yi, Ji Soo; Choo, Jaegul; Huh, Jina

    2017-08-02

    While online health social networks (OHSNs) serve as an effective platform for patients to fulfill their various social support needs, predicting the needs of users and providing tailored information remains a challenge. The objective of this study was to discriminate important features for identifying users' social support needs based on knowledge gathered from survey data. This study also provides guidelines for a technical framework, which can be used to predict users' social support needs based on raw data collected from OHSNs. We initially conducted a Web-based survey with 184 OHSN users. From this survey data, we extracted 34 features based on 5 categories: (1) demographics, (2) reading behavior, (3) posting behavior, (4) perceived roles in OHSNs, and (5) values sought in OHSNs. Features from the first 4 categories were used as variables for binary classification. For the prediction outcomes, we used features from the last category: the needs for emotional support, experience-based information, unconventional information, and medical facts. We compared 5 binary classifier algorithms: gradient boosting tree, random forest, decision tree, support vector machines, and logistic regression. We then calculated the scores of the area under the receiver operating characteristic (ROC) curve (AUC) to understand the comparative effectiveness of the used features. The best performance was AUC scores of 0.89 for predicting users seeking emotional support, 0.86 for experience-based information, 0.80 for unconventional information, and 0.83 for medical facts. With the gradient boosting tree as our best performing model, we analyzed the strength of individual features in predicting one's social support need. Among other discoveries, we found that users seeking emotional support tend to post more in OHSNs compared with others. We developed an initial framework for automatically predicting social support needs in OHSNs using survey data. Future work should involve nonsurvey

  2. Ultrasonic fluid quantity measurement in dynamic vehicular applications a support vector machine approach

    CERN Document Server

    Terzic, Jenny; Nagarajah, Romesh; Alamgir, Muhammad

    2013-01-01

    Accurate fluid level measurement in dynamic environments can be assessed using a Support Vector Machine (SVM) approach. SVM is a supervised learning model that analyzes and recognizes patterns. It is a signal classification technique which has far greater accuracy than conventional signal averaging methods. Ultrasonic Fluid Quantity Measurement in Dynamic Vehicular Applications: A Support Vector Machine Approach describes the research and development of a fluid level measurement system for dynamic environments. The measurement system is based on a single ultrasonic sensor. A Support Vector Machines (SVM) based signal characterization and processing system has been developed to compensate for the effects of slosh and temperature variation in fluid level measurement systems used in dynamic environments including automotive applications. It has been demonstrated that a simple ν-SVM model with Radial Basis Function (RBF) Kernel with the inclusion of a Moving Median filter could be used to achieve the high levels...

  3. MATRIX-VECTOR ALGORITHMS FOR NORMALIZING FACTORS IN ALGEBRAIC BAYESIAN NETWORKS LOCAL POSTERIORI INFERENCE

    Directory of Open Access Journals (Sweden)

    A. A. Zolotin

    2015-01-01

    Full Text Available We consider a task of local posteriori inference description by means of matrix-vector equations in algebraical Bayesian networks that represent a class of probabilistic graphical models. Such equations were generally presented in previous publications, however containing normalizing factors that were provided with algorithmic descriptions of their calculations instead of the desired matrix-vector interpretation. To eliminate this gap, the normalized factors were firstly represented as scalar products. Then, it was successfully shown that one of the components in each scalar product can be expressed as a Kronecker degree of a constant two-dimensional vector. Later on, non-normalized posteriori inference matrixoperator transplantation and further transfer within each scalar product yielded a representation of one of the scalar product components as a sequence of tensor products of two-dimensional vectors. The latter vectors have only two possible values in one case and three values in the other. The choice among those values is determined by the structure of input evidence. The second component of each scalar products is the vector with original data. The calculations performed gave the possibility for constructing corresponding vectors; the paper contains a table with proper examples for some of them. Local posteriori inference representation for matrix-vector equations simplify the development of local posteriori inference algorithms, their verification and further implementation based on available libraries. These equations also give the possibility for application of classical mathematical techniques to the obtained results analysis. Finally, the results obtained make it possible to apply the method of postponed calculations. This method helps avoiding construction of big-size vectors; instead, the vectors components can be calculated just in time they are needed by means of bitwise operations.

  4. A support vector machine approach for classification of welding defects from ultrasonic signals

    Science.gov (United States)

    Chen, Yuan; Ma, Hong-Wei; Zhang, Guang-Ming

    2014-07-01

    Defect classification is an important issue in ultrasonic non-destructive evaluation. A layered multi-class support vector machine (LMSVM) classification system, which combines multiple SVM classifiers through a layered architecture, is proposed in this paper. The proposed LMSVM classification system is applied to the classification of welding defects from ultrasonic test signals. The measured ultrasonic defect echo signals are first decomposed into wavelet coefficients by the wavelet packet transform. The energy of the wavelet coefficients at different frequency channels are used to construct the feature vectors. The bees algorithm (BA) is then used for feature selection and SVM parameter optimisation for the LMSVM classification system. The BA-based feature selection optimises the energy feature vectors. The optimised feature vectors are input to the LMSVM classification system for training and testing. Experimental results of classifying welding defects demonstrate that the proposed technique is highly robust, precise and reliable for ultrasonic defect classification.

  5. Application of Hybrid Quantum Tabu Search with Support Vector Regression (SVR for Load Forecasting

    Directory of Open Access Journals (Sweden)

    Cheng-Wen Lee

    2016-10-01

    Full Text Available Hybridizing chaotic evolutionary algorithms with support vector regression (SVR to improve forecasting accuracy is a hot topic in electricity load forecasting. Trapping at local optima and premature convergence are critical shortcomings of the tabu search (TS algorithm. This paper investigates potential improvements of the TS algorithm by applying quantum computing mechanics to enhance the search information sharing mechanism (tabu memory to improve the forecasting accuracy. This article presents an SVR-based load forecasting model that integrates quantum behaviors and the TS algorithm with the support vector regression model (namely SVRQTS to obtain a more satisfactory forecasting accuracy. Numerical examples demonstrate that the proposed model outperforms the alternatives.

  6. Classification of Motor Imagery EEG Signals with Support Vector Machines and Particle Swarm Optimization

    Science.gov (United States)

    Ma, Yuliang; Ding, Xiaohui; She, Qingshan; Luo, Zhizeng; Potter, Thomas; Zhang, Yingchun

    2016-01-01

    Support vector machines are powerful tools used to solve the small sample and nonlinear classification problems, but their ultimate classification performance depends heavily upon the selection of appropriate kernel and penalty parameters. In this study, we propose using a particle swarm optimization algorithm to optimize the selection of both the kernel and penalty parameters in order to improve the classification performance of support vector machines. The performance of the optimized classifier was evaluated with motor imagery EEG signals in terms of both classification and prediction. Results show that the optimized classifier can significantly improve the classification accuracy of motor imagery EEG signals. PMID:27313656

  7. Integrating principal component analysis and vector quantization with support vector regression for sulfur content prediction in HDS process

    Directory of Open Access Journals (Sweden)

    Shokri Saeid

    2015-01-01

    Full Text Available An accurate prediction of sulfur content is very important for the proper operation and product quality control in hydrodesulfurization (HDS process. For this purpose, a reliable data- driven soft sensors utilizing Support Vector Regression (SVR was developed and the effects of integrating Vector Quantization (VQ with Principle Component Analysis (PCA were studied on the assessment of this soft sensor. First, in pre-processing step the PCA and VQ techniques were used to reduce dimensions of the original input datasets. Then, the compressed datasets were used as input variables for the SVR model. Experimental data from the HDS setup were employed to validate the proposed integrated model. The integration of VQ/PCA techniques with SVR model was able to increase the prediction accuracy of SVR. The obtained results show that integrated technique (VQ-SVR was better than (PCA-SVR in prediction accuracy. Also, VQ decreased the sum of the training and test time of SVR model in comparison with PCA. For further evaluation, the performance of VQ-SVR model was also compared to that of SVR. The obtained results indicated that VQ-SVR model delivered the best satisfactory predicting performance (AARE= 0.0668 and R2= 0.995 in comparison with investigated models.

  8. Reliability analysis on resonance for low-pressure compressor rotor blade based on least squares support vector machine with leave-one-out cross-validation

    Directory of Open Access Journals (Sweden)

    Haifeng Gao

    2015-04-01

    Full Text Available This research article analyzes the resonant reliability at the rotating speed of 6150.0 r/min for low-pressure compressor rotor blade. The aim is to improve the computational efficiency of reliability analysis. This study applies least squares support vector machine to predict the natural frequencies of the low-pressure compressor rotor blade considered. To build a more stable and reliable least squares support vector machine model, leave-one-out cross-validation is introduced to search for the optimal parameters of least squares support vector machine. Least squares support vector machine with leave-one-out cross-validation is presented to analyze the resonant reliability. Additionally, the modal analysis at the rotating speed of 6150.0 r/min for the rotor blade is considered as a tandem system to simplify the analysis and design process, and the randomness of influence factors on frequencies, such as material properties, structural dimension, and operating condition, is taken into consideration. Back-propagation neural network is compared to verify the proposed approach based on the same training and testing sets as least squares support vector machine with leave-one-out cross-validation. Finally, the statistical results prove that the proposed approach is considered to be effective and feasible and can be applied to structural reliability analysis.

  9. Applicability of a Nu-Support Vector Regression Model for the Completion of Missing Data in Hydrological Time Series

    Directory of Open Access Journals (Sweden)

    Jakub Langhammer

    2016-11-01

    Full Text Available This paper analyzes the potential of a nu-support vector regression (nu-SVR model for the reconstruction of missing data of hydrological time series from a sensor network. Sensor networks are currently experiencing rapid growth of applications in experimental research and monitoring and provide an opportunity to study the dynamics of hydrological processes in previously ungauged or remote areas. Due to physical vulnerability or limited maintenance, networks are prone to data outages, which can devaluate the unique data sources. This paper analyzes the potential of a nu-SVR model to simulate water levels in a network of sensors in four nested experimental catchments in a mid-latitude montane environment. The model was applied to a range of typical runoff situations, including a single event storm, multi-peak flood event, snowmelt, rain on snow and a low flow period. The simulations based on daily values proved the high efficiency of the nu-SVR modeling approach to simulate the hydrological processes in a network of monitoring stations. The model proved its ability to reliably reconstruct and simulate typical runoff situations, including complex events, such as rain on snow or flooding from recurrent regional rain. The worst model performance was observed at low flow periods and for single peak flows, especially in the high-altitude catchments.

  10. Subpixel urban land cover estimation: comparing cubist, random forests, and support vector regression

    Science.gov (United States)

    Jeffrey T. Walton

    2008-01-01

    Three machine learning subpixel estimation methods (Cubist, Random Forests, and support vector regression) were applied to estimate urban cover. Urban forest canopy cover and impervious surface cover were estimated from Landsat-7 ETM+ imagery using a higher resolution cover map resampled to 30 m as training and reference data. Three different band combinations (...

  11. Individualized prediction of illness course at the first psychotic episode: a support vector machine MRI study.

    LENUS (Irish Health Repository)

    Mourao-Miranda, J

    2012-05-01

    To date, magnetic resonance imaging (MRI) has made little impact on the diagnosis and monitoring of psychoses in individual patients. In this study, we used a support vector machine (SVM) whole-brain classification approach to predict future illness course at the individual level from MRI data obtained at the first psychotic episode.

  12. Experimental comparison of support vector machines with random forests for hyperspectral image land cover classification

    Science.gov (United States)

    Abe, B. T.; Olugbara, O. O.; Marwala, T.

    2014-06-01

    The performances of regular support vector machines and random forests are experimentally compared for hyperspectral imaging land cover classification. Special characteristics of hyperspectral imaging dataset present diverse processing problems to be resolved under robust mathematical formalisms such as image classification. As a result, pixel purity index algorithm is used to obtain endmember spectral responses from Indiana pine hyperspectral image dataset. The generalized reduced gradient optimization algorithm is thereafter executed on the research data to estimate fractional abundances in the hyperspectral image and thereby obtain the numeric values for land cover classification. The Waikato environment for knowledge analysis (WEKA) data mining framework is selected as a tool to carry out the classification process by using support vector machines and random forests classifiers. Results show that performance of support vector machines is comparable to that of random forests. This study makes a positive contribution to the problem of land cover classification by exploring generalized reduced gradient method, support vector machines, and random forests to improve producer accuracy and overall classification accuracy. The performance comparison of these classifiers is valuable for a decision maker to consider tradeoffs in method accuracy versus method complexity.

  13. A Support Vector Machine Approach to Dutch Part-of-Speech Tagging

    NARCIS (Netherlands)

    Poel, Mannes; Stegeman, L.; op den Akker, Hendrikus J.A.; Berthold, M.R.; Shawe-Taylor, J.; Lavrac, N.

    Part-of-Speech tagging, the assignment of Parts-of-Speech to the words in a given context of use, is a basic technique in many systems that handle natural languages. This paper describes a method for supervised training of a Part-of-Speech tagger using a committee of Support Vector Machines on a

  14. Comparison of ν-support vector regression and logistic equation for ...

    African Journals Online (AJOL)

    Jane

    2011-07-04

    Jul 4, 2011 ... Prediction of key state variables using support vector machines in bioprocess. Chem. Eng. Technol. 29: 313-319. Lin, W.Z., Xiao, X., and Chou, K.C., 2009. GPCR-GIA: a web-server for identifying G-protein coupled receptors and their families with grey incidence analysis. Protein Eng Des Sel 22, 699-705.

  15. Sleep–Wake Transition in Narcolepsy and Healthy Controls Using a Support Vector Machine

    DEFF Research Database (Denmark)

    Jensen, Julie B; Sorensen, Helge B D; Kempfner, Jacob

    2014-01-01

    transformation and were given as input to a support vector machine classifier. The classification algorithm was assessed by hold-out validation and 10-fold cross-validation. The data used to validate the classifier were derived from polysomnographic recordings of 47 narcoleptic patients (33 with cataplexy and 14...

  16. Fault Identification in an Unbalanced Distribution System Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Sophi Shilpa Gururajapathy

    2016-12-01

    Full Text Available Fast and effective fault location in distribution system is important to improve the power system reliability. Most of the researches rarely mention about effective fault location consisting of faulted phase, fault type, faulty section and fault distance identification. This work presents a method using support vector machine to identify the faulted phase, fault type, faulty section and distance at the same time. Support vector classification and regression analysis are performed to locate fault. The method uses the voltage sag data during fault condition measured at the primary substation. The faulted phase and the fault type are identified using three-dimensional support vector classification. The possible faulty sections are identified by matching voltage sag at fault condition to the voltage sag in database and the possible sections are ranked using shortest distance principle. The fault distance for the possible faulty sections isthen identified using support vector regression analysis. The performance of the proposed method was tested on an unbalanced distribution system from SaskPower, Canada. The results show that the accuracy of the proposed method is satisfactory.

  17. Support-Vector-based Least Squares for learning non-linear dynamics

    NARCIS (Netherlands)

    de Kruif, B.J.; de Vries, Theodorus J.A.

    2002-01-01

    A function approximator is introduced that is based on least squares support vector machines (LSSVM) and on least squares (LS). The potential indicators for the LS method are chosen as the kernel functions of all the training samples similar to LSSVM. By selecting these as indicator functions the

  18. Parallelization of multicategory support vector machines (PMC-SVM for classifying microarray data

    Directory of Open Access Journals (Sweden)

    Deng Youping

    2006-12-01

    Full Text Available Abstract Background Multicategory Support Vector Machines (MC-SVM are powerful classification systems with excellent performance in a variety of data classification problems. Since the process of generating models in traditional multicategory support vector machines for large datasets is very computationally intensive, there is a need to improve the performance using high performance computing techniques. Results In this paper, Parallel Multicategory Support Vector Machines (PMC-SVM have been developed based on the sequential minimum optimization-type decomposition method for support vector machines (SMO-SVM. It was implemented in parallel using MPI and C++ libraries and executed on both shared memory supercomputer and Linux cluster for multicategory classification of microarray data. PMC-SVM has been analyzed and evaluated using four microarray datasets with multiple diagnostic categories, such as different cancer types and normal tissue types. Conclusion The experiments show that the PMC-SVM can significantly improve the performance of classification of microarray data without loss of accuracy, compared with previous work.

  19. Estimation of the wind turbine yaw error by support vector machines

    DEFF Research Database (Denmark)

    Sheibat-Othman, Nida; Othman, Sami; Tayari, Raoaa

    2015-01-01

    Wind turbine yaw error information is of high importance in controlling wind turbine power and structural load. Normally used wind vanes are imprecise. In this work, the estimation of yaw error in wind turbines is studied using support vector machines for regression (SVR). As the methodology...

  20. Comparison of ν-support vector regression and logistic equation for ...

    African Journals Online (AJOL)

    Due to the complexity and high non-linearity of bioprocess, most simple mathematical models fail to describe the exact behavior of biochemistry systems. As a novel type of learning method, support vector regression (SVR) owns the powerful capability to characterize problems via small sample, nonlinearity, high dimension ...

  1. Reliable Fault Classification of Induction Motors Using Texture Feature Extraction and a Multiclass Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Jia Uddin

    2014-01-01

    Full Text Available This paper proposes a method for the reliable fault detection and classification of induction motors using two-dimensional (2D texture features and a multiclass support vector machine (MCSVM. The proposed model first converts time-domain vibration signals to 2D gray images, resulting in texture patterns (or repetitive patterns, and extracts these texture features by generating the dominant neighborhood structure (DNS map. The principal component analysis (PCA is then used for the purpose of dimensionality reduction of the high-dimensional feature vector including the extracted texture features due to the fact that the high-dimensional feature vector can degrade classification performance, and this paper configures an effective feature vector including discriminative fault features for diagnosis. Finally, the proposed approach utilizes the one-against-all (OAA multiclass support vector machines (MCSVMs to identify induction motor failures. In this study, the Gaussian radial basis function kernel cooperates with OAA MCSVMs to deal with nonlinear fault features. Experimental results demonstrate that the proposed approach outperforms three state-of-the-art fault diagnosis algorithms in terms of fault classification accuracy, yielding an average classification accuracy of 100% even in noisy environments.

  2. Services supporting collaborative alignment of engineering networks

    Science.gov (United States)

    Jansson, Kim; Uoti, Mikko; Karvonen, Iris

    2015-08-01

    Large-scale facilities such as power plants, process factories, ships and communication infrastructures are often engineered and delivered through geographically distributed operations. The competencies required are usually distributed across several contributing organisations. In these complicated projects, it is of key importance that all partners work coherently towards a common goal. VTT and a number of industrial organisations in the marine sector have participated in a national collaborative research programme addressing these needs. The main output of this programme was development of the Innovation and Engineering Maturity Model for Marine-Industry Networks. The recently completed European Union Framework Programme 7 project COIN developed innovative solutions and software services for enterprise collaboration and enterprise interoperability. One area of focus in that work was services for collaborative project management. This article first addresses a number of central underlying research themes and previous research results that have influenced the development work mentioned above. This article presents two approaches for the development of services that support distributed engineering work. Experience from use of the services is analysed, and potential for development is identified. This article concludes with a proposal for consolidation of the two above-mentioned methodologies. This article outlines the characteristics and requirements of future services supporting collaborative alignment of engineering networks.

  3. Cross-coherent vector sensor processing for spatially distributed glider networks.

    Science.gov (United States)

    Nichols, Brendan; Sabra, Karim G

    2015-09-01

    Autonomous underwater gliders fitted with vector sensors can be used as a spatially distributed sensor array to passively locate underwater sources. However, to date, the positional accuracy required for robust array processing (especially coherent processing) is not achievable using dead-reckoning while the gliders remain submerged. To obtain such accuracy, the gliders can be temporarily surfaced to allow for global positioning system contact, but the acoustically active sea surface introduces locally additional sensor noise. This letter demonstrates that cross-coherent array processing, which inherently mitigates the effects of local noise, outperforms traditional incoherent processing source localization methods for this spatially distributed vector sensor network.

  4. Klasifikasi Penerima Program Beras Miskin (Raskin) di Kabupaten Wonosobo dengan Metode Support Vector Machine Menggunakan Libsvm

    OpenAIRE

    Pamuji, Yogi Setiyo; Safitri, Diah; Prahutama, Alan

    2015-01-01

    Beras Miskin (Raskin) Program is a program of social protection, as supporters of other programs such as nutrition improvement, healthy increase, education and productivity improvement of Poor Households. According to Badan Pusat Statistika, there were 14 criteria to determine a household is classified as poor households. Based on these criteria it will be classified of recipient households and non-recipient households of Beras Miskin (Raskin) Program by Support Vector Machine (SVM) method us...

  5. Fatigue crack monitoring of aerospace structure based on binary tree support vector machines

    Science.gov (United States)

    Lu, Shenbo; Zhou, Li

    2017-04-01

    This paper presents a novel method to monitor crack length which based on binary tree support vector machines (BTSVM). In this method, matching pursuit method with Chirplet atom is applied to extract the matching parameters as feature vectors to train and test in the BT-SVM algorithm. Then one simulation of lug joint is carried out for studying the effect of crack extension on Lamb wave signals propagation. Fatigue loading experiments on lug joints are carried out at last. The results show that this new method can monitor the length of fatigue crack effectively.

  6. Support vector machine used to diagnose the fault of rotor broken bars of induction motors

    DEFF Research Database (Denmark)

    Zhitong, Cao; Jiazhong, Fang; Hongpingn, Chen

    2003-01-01

    The data-based machine learning is an important aspect of modern intelligent technology, while statistical learning theory (SLT) is a new tool that studies the machine learning methods in the case of a small number of samples. As a common learning method, support vector machine (SVM) is derived...... from the SLT. Here we were done some analogical experiments of the rotor broken bar faults of induction motors used, analyzed the signals of the sample currents with Fourier transform, and constructed the spectrum characteristics from low frequency to high frequency used as learning sample vectors...

  7. Firms' innovation benefiting from networking and institutional support

    DEFF Research Database (Denmark)

    Schøtt, Thomas; Jensen, Kent Wickstrøm

    2016-01-01

    Firms' networking for innovation is embedded in institutions of society, where national policies are increasingly designed to provide institutional support for firms' networking and thereby benefit innovation. But, globally, what are the quantitative and qualitative effects of institutional support...... for networking and, in turn, for innovation? 68 countries with 18,880 firms were surveyed in the Global Entrepreneurship Monitor, enabling generalization to the firms in the countries around the world. Two-level modeling shows that firms' networking benefits both process and product innovation. Institutional...... support does not significantly affect quantity of networking, but greatly enhances quality of networking in the sense that support for networking in a country enhances the benefits of networking for both process and product innovation. Contrasting low and high support for networking leads to estimating...

  8. A New Classification Method of Infrasound Events Using Hilbert-Huang Transform and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Xueyong Liu

    2014-01-01

    Full Text Available Infrasound is a type of low frequency signal that occurs in nature and results from man-made events, typically ranging in frequency from 0.01 Hz to 20 Hz. In this paper, a classification method based on Hilbert-Huang transform (HHT and support vector machine (SVM is proposed to discriminate between three different natural events. The frequency spectrum characteristics of infrasound signals produced by different events, such as volcanoes, are unique, which lays the foundation for infrasound signal classification. First, the HHT method was used to extract the feature vectors of several kinds of infrasound events from the Hilbert marginal spectrum. Then, the feature vectors were classified by the SVM method. Finally, the present of classification and identification accuracy are given. The simulation results show that the recognition rate is above 97.7%, and that approach is effective for classifying event types for small samples.

  9. Classification of electrocardiogram signals with support vector machines and particle swarm optimization.

    Science.gov (United States)

    Melgani, Farid; Bazi, Yakoub

    2008-09-01

    The aim of this paper is twofold. First, we present a thorough experimental study to show the superiority of the generalization capability of the support vector machine (SVM) approach in the automatic classification of electrocardiogram (ECG) beats. Second, we propose a novel classification system based on particle swarm optimization (PSO) to improve the generalization performance of the SVM classifier. For this purpose, we have optimized the SVM classifier design by searching for the best value of the parameters that tune its discriminant function, and upstream by looking for the best subset of features that feed the classifier. The experiments were conducted on the basis of ECG data from the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database to classify five kinds of abnormal waveforms and normal beats. In particular, they were organized so as to test the sensitivity of the SVM classifier and that of two reference classifiers used for comparison, i.e., the k-nearest neighbor (kNN) classifier and the radial basis function (RBF) neural network classifier, with respect to the curse of dimensionality and the number of available training beats. The obtained results clearly confirm the superiority of the SVM approach as compared to traditional classifiers, and suggest that further substantial improvements in terms of classification accuracy can be achieved by the proposed PSO-SVM classification system. On an average, over three experiments making use of a different total number of training beats (250, 500, and 750, respectively), the PSO-SVM yielded an overall accuracy of 89.72% on 40438 test beats selected from 20 patient records against 85.98%, 83.70%, and 82.34% for the SVM, the kNN, and the RBF classifiers, respectively.

  10. Application of higher order spectral features and support vector machines for bearing faults classification.

    Science.gov (United States)

    Saidi, Lotfi; Ben Ali, Jaouher; Fnaiech, Farhat

    2015-01-01

    Condition monitoring and fault diagnosis of rolling element bearings timely and accurately are very important to ensure the reliability of rotating machinery. This paper presents a novel pattern classification approach for bearings diagnostics, which combines the higher order spectra analysis features and support vector machine classifier. The use of non-linear features motivated by the higher order spectra has been reported to be a promising approach to analyze the non-linear and non-Gaussian characteristics of the mechanical vibration signals. The vibration bi-spectrum (third order spectrum) patterns are extracted as the feature vectors presenting different bearing faults. The extracted bi-spectrum features are subjected to principal component analysis for dimensionality reduction. These principal components were fed to support vector machine to distinguish four kinds of bearing faults covering different levels of severity for each fault type, which were measured in the experimental test bench running under different working conditions. In order to find the optimal parameters for the multi-class support vector machine model, a grid-search method in combination with 10-fold cross-validation has been used. Based on the correct classification of bearing patterns in the test set, in each fold the performance measures are computed. The average of these performance measures is computed to report the overall performance of the support vector machine classifier. In addition, in fault detection problems, the performance of a detection algorithm usually depends on the trade-off between robustness and sensitivity. The sensitivity and robustness of the proposed method are explored by running a series of experiments. A receiver operating characteristic (ROC) curve made the results more convincing. The results indicated that the proposed method can reliably identify different fault patterns of rolling element bearings based on vibration signals. Copyright © 2014 ISA

  11. Predicting domain-domain interaction based on domain profiles with feature selection and support vector machines

    Directory of Open Access Journals (Sweden)

    Liao Li

    2010-10-01

    Full Text Available Abstract Background Protein-protein interaction (PPI plays essential roles in cellular functions. The cost, time and other limitations associated with the current experimental methods have motivated the development of computational methods for predicting PPIs. As protein interactions generally occur via domains instead of the whole molecules, predicting domain-domain interaction (DDI is an important step toward PPI prediction. Computational methods developed so far have utilized information from various sources at different levels, from primary sequences, to molecular structures, to evolutionary profiles. Results In this paper, we propose a computational method to predict DDI using support vector machines (SVMs, based on domains represented as interaction profile hidden Markov models (ipHMM where interacting residues in domains are explicitly modeled according to the three dimensional structural information available at the Protein Data Bank (PDB. Features about the domains are extracted first as the Fisher scores derived from the ipHMM and then selected using singular value decomposition (SVD. Domain pairs are represented by concatenating their selected feature vectors, and classified by a support vector machine trained on these feature vectors. The method is tested by leave-one-out cross validation experiments with a set of interacting protein pairs adopted from the 3DID database. The prediction accuracy has shown significant improvement as compared to InterPreTS (Interaction Prediction through Tertiary Structure, an existing method for PPI prediction that also uses the sequences and complexes of known 3D structure. Conclusions We show that domain-domain interaction prediction can be significantly enhanced by exploiting information inherent in the domain profiles via feature selection based on Fisher scores, singular value decomposition and supervised learning based on support vector machines. Datasets and source code are freely available on

  12. Protein interaction networks at the host–microbe interface in Diaphorina citri, the insect vector of the citrus greening pathogen

    Science.gov (United States)

    Chavez, J. D.; Johnson, R.; Hosseinzadeh, S.; Mahoney, J. E.; Mohr, J. P.; Robison, F.; Zhong, X.; Hall, D. G.; MacCoss, M.; Bruce, J.; Cilia, M.

    2017-01-01

    The Asian citrus psyllid (Diaphorina citri) is the insect vector responsible for the worldwide spread of ‘Candidatus Liberibacter asiaticus’ (CLas), the bacterial pathogen associated with citrus greening disease. Developmental changes in the insect vector impact pathogen transmission, such that D. citri transmission of CLas is more efficient when bacteria are acquired by nymphs when compared with adults. We hypothesize that expression changes in the D. citri immune system and commensal microbiota occur during development and regulate vector competency. In support of this hypothesis, more proteins, with greater fold changes, were differentially expressed in response to CLas in adults when compared with nymphs, including insect proteins involved in bacterial adhesion and immunity. Compared with nymphs, adult insects had a higher titre of CLas and the bacterial endosymbionts Wolbachia, Profftella and Carsonella. All Wolbachia and Profftella proteins differentially expressed between nymphs and adults are upregulated in adults, while most differentially expressed Carsonella proteins are upregulated in nymphs. Discovery of protein interaction networks has broad applicability to the study of host–microbe relationships. Using protein interaction reporter technology, a D. citri haemocyanin protein highly upregulated in response to CLas was found to physically interact with the CLas coenzyme A (CoA) biosynthesis enzyme phosphopantothenoylcysteine synthetase/decarboxylase. CLas pantothenate kinase, which catalyses the rate-limiting step of CoA biosynthesis, was found to interact with a D. citri myosin protein. Two Carsonella enzymes involved in histidine and tryptophan biosynthesis were found to physically interact with D. citri proteins. These co-evolved protein interaction networks at the host–microbe interface are highly specific targets for controlling the insect vector responsible for the spread of citrus greening. PMID:28386418

  13. Modeling and Forecast Biological Oxygen Demand (BOD using Combination Support Vector Machine with Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Abazar Solgi

    2017-06-01

    Full Text Available Introduction: Chemical pollution of surface water is one of the serious issues that threaten the quality of water. This would be more important when the surface waters used for human drinking supply. One of the key parameters used to measure water pollution is BOD. Because many variables affect the water quality parameters and a complex nonlinear relationship between them is established conventional methods can not solve the problem of quality management of water resources. For years, the Artificial Intelligence methods were used for prediction of nonlinear time series and a good performance of them has been reported. Recently, the wavelet transform that is a signal processing method, has shown good performance in hydrological modeling and is widely used. Extensive research has been globally provided in use of Artificial Neural Network and Adaptive Neural Fuzzy Inference System models to forecast the BOD. But support vector machine has not yet been extensively studied. For this purpose, in this study the ability of support vector machine to predict the monthly BOD parameter based on the available data, temperature, river flow, DO and BOD was evaluated. Materials and Methods: SVM was introduced in 1992 by Vapnik that was a Russian mathematician. This method has been built based on the statistical learning theory. In recent years the use of SVM, is highly taken into consideration. SVM was used in applications such as handwriting recognition, face recognition and has good results. Linear SVM is simplest type of SVM, consists of a hyperplane that dataset of positive and negative is separated with maximum distance. The suitable separator has maximum distance from every one of two dataset. So about this machine that its output groups label (here -1 to +1, the aim is to obtain the maximum distance between categories. This is interpreted to have a maximum margin. Wavelet transform is one of methods in the mathematical science that its main idea was

  14. Vector-model-supported optimization in volumetric-modulated arc stereotactic radiotherapy planning for brain metastasis.

    Science.gov (United States)

    Liu, Eva Sau Fan; Wu, Vincent Wing Cheung; Harris, Benjamin; Foote, Matthew; Lehman, Margot; Chan, Lawrence Wing Chi

    2017-01-01

    Long planning time in volumetric-modulated arc stereotactic radiotherapy (VMA-SRT) cases can limit its clinical efficiency and use. A vector model could retrieve previously successful radiotherapy cases that share various common anatomic features with the current case. The prsent study aimed to develop a vector model that could reduce planning time by applying the optimization parameters from those retrieved reference cases. Thirty-six VMA-SRT cases of brain metastasis (gender, male [n = 23], female [n = 13]; age range, 32 to 81 years old) were collected and used as a reference database. Another 10 VMA-SRT cases were planned with both conventional optimization and vector-model-supported optimization, following the oncologists' clinical dose prescriptions. Planning time and plan quality measures were compared using the 2-sided paired Wilcoxon signed rank test with a significance level of 0.05, with positive false discovery rate (pFDR) of less than 0.05. With vector-model-supported optimization, there was a significant reduction in the median planning time, a 40% reduction from 3.7 to 2.2 hours (p = 0.002, pFDR = 0.032), and for the number of iterations, a 30% reduction from 8.5 to 6.0 (p = 0.006, pFDR = 0.047). The quality of plans from both approaches was comparable. From these preliminary results, vector-model-supported optimization can expedite the optimization of VMA-SRT for brain metastasis while maintaining plan quality. Copyright © 2017 American Association of Medical Dosimetrists. All rights reserved.

  15. 47 CFR 54.518 - Support for wide area networks.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Support for wide area networks. 54.518 Section... area networks. To the extent that states, schools, or libraries build or purchase a wide area network to provide telecommunications services, the cost of such wide area networks shall not be eligible for...

  16. Particle swarm optimization-based support vector machine for forecasting dissolved gases content in power transformer oil

    Energy Technology Data Exchange (ETDEWEB)

    Fei Shengwei [School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)], E-mail: feishengwei@sohu.com; Wang Mingjun; Miao Yubin; Tu Jun; Liu Chengliang [School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)

    2009-06-15

    Forecasting of dissolved gases content in power transformer oil is a complicated problem due to its nonlinearity and the small quantity of training data. Support vector machine (SVM) has been successfully employed to solve regression problem of nonlinearity and small sample. However, the practicability of SVM is effected due to the difficulty of selecting appropriate SVM parameters. Particle swarm optimization (PSO) is a new optimization method, which is motivated by social behaviour of organisms such as bird flocking and fish schooling. The method not only has strong global search capability, but also is very easy to implement. Thus, the proposed PSO-SVM model is applied to forecast dissolved gases content in power transformer oil in this paper, among which PSO is used to determine free parameters of support vector machine. The experimental data from several electric power companies in China is used to illustrate the performance of proposed PSO-SVM model. The experimental results indicate that the PSO-SVM method can achieve greater forecasting accuracy than grey model, artificial neural network under the circumstances of small sample.

  17. Particle swarm optimization-based support vector machine for forecasting dissolved gases content in power transformer oil

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Sheng-wei; Wang, Ming-Jun; Miao, Yu-bin; Tu, Jun; Liu, Cheng-liang [School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)

    2009-06-15

    Forecasting of dissolved gases content in power transformer oil is a complicated problem due to its nonlinearity and the small quantity of training data. Support vector machine (SVM) has been successfully employed to solve regression problem of nonlinearity and small sample. However, the practicability of SVM is effected due to the difficulty of selecting appropriate SVM parameters. Particle swarm optimization (PSO) is a new optimization method, which is motivated by social behaviour of organisms such as bird flocking and fish schooling. The method not only has strong global search capability, but also is very easy to implement. Thus, the proposed PSO-SVM model is applied to forecast dissolved gases content in power transformer oil in this paper, among which PSO is used to determine free parameters of support vector machine. The experimental data from several electric power companies in China is used to illustrate the performance of proposed PSO-SVM model. The experimental results indicate that the PSO-SVM method can achieve greater forecasting accuracy than grey model, artificial neural network under the circumstances of small sample. (author)

  18. A Wireless Electronic Nose System Using a Fe2O3 Gas Sensing Array and Least Squares Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Yingguo Cheng

    2011-01-01

    Full Text Available This paper describes the design and implementation of a wireless electronic nose (WEN system which can online detect the combustible gases methane and hydrogen (CH4/H2 and estimate their concentrations, either singly or in mixtures. The system is composed of two wireless sensor nodes—a slave node and a master node. The former comprises a Fe2O3 gas sensing array for the combustible gas detection, a digital signal processor (DSP system for real-time sampling and processing the sensor array data and a wireless transceiver unit (WTU by which the detection results can be transmitted to the master node connected with a computer. A type of Fe2O3 gas sensor insensitive to humidity is developed for resistance to environmental influences. A threshold-based least square support vector regression (LS-SVR estimator is implemented on a DSP for classification and concentration measurements. Experimental results confirm that LS-SVR produces higher accuracy compared with artificial neural networks (ANNs and a faster convergence rate than the standard support vector regression (SVR. The designed WEN system effectively achieves gas mixture analysis in a real-time process.

  19. A wireless electronic nose system using a Fe2O3 gas sensing array and least squares support vector regression.

    Science.gov (United States)

    Song, Kai; Wang, Qi; Liu, Qi; Zhang, Hongquan; Cheng, Yingguo

    2011-01-01

    This paper describes the design and implementation of a wireless electronic nose (WEN) system which can online detect the combustible gases methane and hydrogen (CH(4)/H(2)) and estimate their concentrations, either singly or in mixtures. The system is composed of two wireless sensor nodes--a slave node and a master node. The former comprises a Fe(2)O(3) gas sensing array for the combustible gas detection, a digital signal processor (DSP) system for real-time sampling and processing the sensor array data and a wireless transceiver unit (WTU) by which the detection results can be transmitted to the master node connected with a computer. A type of Fe(2)O(3) gas sensor insensitive to humidity is developed for resistance to environmental influences. A threshold-based least square support vector regression (LS-SVR)estimator is implemented on a DSP for classification and concentration measurements. Experimental results confirm that LS-SVR produces higher accuracy compared with artificial neural networks (ANNs) and a faster convergence rate than the standard support vector regression (SVR). The designed WEN system effectively achieves gas mixture analysis in a real-time process.

  20. Product demand forecasts using wavelet kernel support vector machine and particle swarm optimization in manufacture system

    Science.gov (United States)

    Wu, Qi

    2010-03-01

    Demand forecasts play a crucial role in supply chain management. The future demand for a certain product is the basis for the respective replenishment systems. Aiming at demand series with small samples, seasonal character, nonlinearity, randomicity and fuzziness, the existing support vector kernel does not approach the random curve of the sales time series in the space (quadratic continuous integral space). In this paper, we present a hybrid intelligent system combining the wavelet kernel support vector machine and particle swarm optimization for demand forecasting. The results of application in car sale series forecasting show that the forecasting approach based on the hybrid PSOWv-SVM model is effective and feasible, the comparison between the method proposed in this paper and other ones is also given, which proves that this method is, for the discussed example, better than hybrid PSOv-SVM and other traditional methods.

  1. Privacy Preserving Fall Detection Based on Simple Human Silhouette Extraction and a Linear Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Velislava Spasova

    2016-06-01

    Full Text Available The paper presents a novel fast, real-time and privacy protecting algorithm for fall detection based on geometric properties of the human silhouette and a linear support vector machine. The algorithm uses infrared and visible light imagery in order to detect the human. A simple real-time human silhouette extraction algorithm has been developed and used to extract features for training of the support vector machine. The achieved sensitivity and specificity of the proposed approach are over 97% which match state of the art research in the area of fall detection. The developed solution uses low-cost hardware components and open source software library and is suitable for usage in assistive systems for the home or nursing homes.

  2. Midterm Electricity Market Clearing Price Forecasting Using Two-Stage Multiple Support Vector Machine

    OpenAIRE

    Yan, Xing; Chowdhury, Nurul A.

    2015-01-01

    Currently, there are many techniques available for short-term forecasting of the electricity market clearing price (MCP), but very little work has been done in the area of midterm forecasting of the electricity MCP. The midterm forecasting of the electricity MCP is essential for maintenance scheduling, planning, bilateral contracting, resources reallocation, and budgeting. A two-stage multiple support vector machine (SVM) based midterm forecasting model of the electricity MCP is proposed in t...

  3. Optical diagnosis of colon and cervical cancer by support vector machine

    Science.gov (United States)

    Mukhopadhyay, Sabyasachi; Kurmi, Indrajit; Dey, Rajib; Das, Nandan K.; Pradhan, Sanjay; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K.; Mohanty, Samarendra

    2016-05-01

    A probabilistic robust diagnostic algorithm is very much essential for successful cancer diagnosis by optical spectroscopy. We report here support vector machine (SVM) classification to better discriminate the colon and cervical cancer tissues from normal tissues based on elastic scattering spectroscopy. The efficacy of SVM based classification with different kernel has been tested on multifractal parameters like Hurst exponent, singularity spectrum width in order to classify the cancer tissues.

  4. Enhanced Pose Normalization and Matching of Non-Rigid Objects based on Support Vector Machine Modelling

    OpenAIRE

    Papadakis, Panagiotis

    2013-01-01

    International audience; The estimation of 3D surface correspondence constitutes a fundamental problem in shape matching and analysis applications. In the presence of non-rigid shape deformations, the ambiguity of surface correspondence increases together with the complexity of registration algorithms. In this paper, we alleviate this problem by means of 3D pose normalization using One-Class Support Vector Machines (OCSVM). In detail, we show how OCSVM are employed in order to increase the con...

  5. Wormholes admitting conformal Killing vectors and supported by generalized Chaplygin gas

    Energy Technology Data Exchange (ETDEWEB)

    Kuhfittig, Peter K.F. [Milwaukee School of Engineering, Department of Mathematics, Milwaukee, WI (United States)

    2015-08-15

    When Morris and Thorne first proposed that traversable wormholes may be actual physical objects, they concentrated on the geometry by specifying the shape and redshift functions. This mathematical approach necessarily raises questions regarding the determination of the required stress-energy tensor. This paper discusses a natural way to obtain a complete wormhole solution by assuming that the wormhole (1) is supported by generalized Chaplygin gas and (2) admits conformal Killing vectors. (orig.)

  6. Bidding Strategy with Forecast Technology Based on Support Vector Machine in Electrcity Market

    OpenAIRE

    Gao, C.(Central China Normal University, Wuhan, China); Bompard, E.; Napoli, R.; Wan, Q.

    2007-01-01

    The participants of the electricity market concern very much the market price evolution. Various technologies have been developed for price forecast. SVM (Support Vector Machine) has shown its good performance in market price forecast. Two approaches for forming the market bidding strategies based on SVM are proposed. One is based on the price forecast accuracy, with which the being rejected risk is defined. The other takes into account the impact of the producer's own bid. The risks associat...

  7. Integrated application of uniform design and least-squares support vector machines to transfection optimization

    Directory of Open Access Journals (Sweden)

    Pan Jin-Shui

    2009-05-01

    Full Text Available Abstract Background Transfection in mammalian cells based on liposome presents great challenge for biological professionals. To protect themselves from exogenous insults, mammalian cells tend to manifest poor transfection efficiency. In order to gain high efficiency, we have to optimize several conditions of transfection, such as amount of liposome, amount of plasmid, and cell density at transfection. However, this process may be time-consuming and energy-consuming. Fortunately, several mathematical methods, developed in the past decades, may facilitate the resolution of this issue. This study investigates the possibility of optimizing transfection efficiency by using a method referred to as least-squares support vector machine, which requires only a few experiments and maintains fairly high accuracy. Results A protocol consists of 15 experiments was performed according to the principle of uniform design. In this protocol, amount of liposome, amount of plasmid, and the number of seeded cells 24 h before transfection were set as independent variables and transfection efficiency was set as dependent variable. A model was deduced from independent variables and their respective dependent variable. Another protocol made up by 10 experiments was performed to test the accuracy of the model. The model manifested a high accuracy. Compared to traditional method, the integrated application of uniform design and least-squares support vector machine greatly reduced the number of required experiments. What's more, higher transfection efficiency was achieved. Conclusion The integrated application of uniform design and least-squares support vector machine is a simple technique for obtaining high transfection efficiency. Using this novel method, the number of required experiments would be greatly cut down while higher efficiency would be gained. Least-squares support vector machine may be applicable to many other problems that need to be optimized.

  8. Kernel Subclass Support Vector Description for Face and Human Action Recognition

    OpenAIRE

    Mygdalis, Vasileios; Iosifidis, Alexandros; Tefas, Anastasios; Pitas, Ioannis

    2016-01-01

    In this paper, we present the Kernel Subclass Support Vector Data Description classifier. We focus on face recognition and human action recognition applications, where we argue that sub-classes are formed within the training class. We modify the standard SVDD optimization problem, so that it exploits subclass information in its optimization process. We extend the proposed method to work in feature spaces of arbitrary dimensionality. We evaluate the proposed method in publicly available face r...

  9. An MR Brain Images Classifier System via Particle Swarm Optimization and Kernel Support Vector Machine

    OpenAIRE

    Yudong Zhang; Shuihua Wang; Genlin Ji; Zhengchao Dong

    2013-01-01

    Automated abnormal brain detection is extremely of importance for clinical diagnosis. Over last decades numerous methods had been presented. In this paper, we proposed a novel hybrid system to classify a given MR brain image as either normal or abnormal. The proposed method first employed digital wavelet transform to extract features then used principal component analysis (PCA) to reduce the feature space. Afterwards, we constructed a kernel support vector machine (KSVM) with RBF kernel, usin...

  10. Support Vector Driven Markov Random Fields towards DTI Segmentation of the Human Skeletal Muscle

    OpenAIRE

    Neji, Radhouène; Fleury, Gilles; Deux, J.-F.; Rahmouni, A.; Bassez, G.; Vignaud, A.; Paragios, Nikolaos

    2008-01-01

    International audience; In this paper we propose a classification-based method towards the segmentation of diffusion tensor images. We use Support Vector Machines to classify diffusion tensors and we extend linear classification to the non linear case. To this end, we discuss and evaluate three different classes of kernels on the space of symmetric definite positive matrices that are well suited for the classification of tensor data. We impose spatial constraints by means of a Markov random f...

  11. Interpreting linear support vector machine models with heat map molecule coloring

    Directory of Open Access Journals (Sweden)

    Rosenbaum Lars

    2011-03-01

    Full Text Available Abstract Background Model-based virtual screening plays an important role in the early drug discovery stage. The outcomes of high-throughput screenings are a valuable source for machine learning algorithms to infer such models. Besides a strong performance, the interpretability of a machine learning model is a desired property to guide the optimization of a compound in later drug discovery stages. Linear support vector machines showed to have a convincing performance on large-scale data sets. The goal of this study is to present a heat map molecule coloring technique to interpret linear support vector machine models. Based on the weights of a linear model, the visualization approach colors each atom and bond of a compound according to its importance for activity. Results We evaluated our approach on a toxicity data set, a chromosome aberration data set, and the maximum unbiased validation data sets. The experiments show that our method sensibly visualizes structure-property and structure-activity relationships of a linear support vector machine model. The coloring of ligands in the binding pocket of several crystal structures of a maximum unbiased validation data set target indicates that our approach assists to determine the correct ligand orientation in the binding pocket. Additionally, the heat map coloring enables the identification of substructures important for the binding of an inhibitor. Conclusions In combination with heat map coloring, linear support vector machine models can help to guide the modification of a compound in later stages of drug discovery. Particularly substructures identified as important by our method might be a starting point for optimization of a lead compound. The heat map coloring should be considered as complementary to structure based modeling approaches. As such, it helps to get a better understanding of the binding mode of an inhibitor.

  12. Relevance Vector Machine and Support Vector Machine Classifier Analysis of Scanning Laser Polarimetry Retinal Nerve Fiber Layer Measurements

    Science.gov (United States)

    Bowd, Christopher; Medeiros, Felipe A.; Zhang, Zuohua; Zangwill, Linda M.; Hao, Jiucang; Lee, Te-Won; Sejnowski, Terrence J.; Weinreb, Robert N.; Goldbaum, Michael H.

    2010-01-01

    Purpose To classify healthy and glaucomatous eyes using relevance vector machine (RVM) and support vector machine (SVM) learning classifiers trained on retinal nerve fiber layer (RNFL) thickness measurements obtained by scanning laser polarimetry (SLP). Methods Seventy-two eyes of 72 healthy control subjects (average age = 64.3 ± 8.8 years, visual field mean deviation =−0.71 ± 1.2 dB) and 92 eyes of 92 patients with glaucoma (average age = 66.9 ± 8.9 years, visual field mean deviation =−5.32 ± 4.0 dB) were imaged with SLP with variable corneal compensation (GDx VCC; Laser Diagnostic Technologies, San Diego, CA). RVM and SVM learning classifiers were trained and tested on SLP-determined RNFL thickness measurements from 14 standard parameters and 64 sectors (approximately 5.6° each) obtained in the circumpapillary area under the instrument-defined measurement ellipse (total 78 parameters). Tenfold cross-validation was used to train and test RVM and SVM classifiers on unique subsets of the full 164-eye data set and areas under the receiver operating characteristic (AUROC) curve for the classification of eyes in the test set were generated. AUROC curve results from RVM and SVM were compared to those for 14 SLP software-generated global and regional RNFL thickness parameters. Also reported was the AUROC curve for the GDx VCC software-generated nerve fiber indicator (NFI). Results The AUROC curves for RVM and SVM were 0.90 and 0.91, respectively, and increased to 0.93 and 0.94 when the training sets were optimized with sequential forward and backward selection (resulting in reduced dimensional data sets). AUROC curves for optimized RVM and SVM were significantly larger than those for all individual SLP parameters. The AUROC curve for the NFI was 0.87. Conclusions Results from RVM and SVM trained on SLP RNFL thickness measurements are similar and provide accurate classification of glaucomatous and healthy eyes. RVM may be preferable to SVM, because it provides a

  13. Implementation of algorithms based on support vector machine (SVM for electric systems: topic review

    Directory of Open Access Journals (Sweden)

    Jefferson Jara Estupiñan

    2016-06-01

    Full Text Available Objective: To perform a review of implementation of algorithms based on support vectore machine applied to electric systems. Method: A paper search is done mainly on Biblio­graphic Indexes (BI and Bibliographic Bases with Selection Committee (BBSC about support vector machine. This work shows a qualitative and/or quan­titative description about advances and applications in the electrical environment, approaching topics such as: electrical market prediction, demand predic­tion, non-technical losses (theft, alternative energy source and transformers, among others, in each work the respective citation is done in order to guarantee the copy right and allow to the reader a dynamic mo­vement between the reading and the cited works. Results: A detailed review is done, focused on the searching of implemented algorithms in electric sys­tems and innovating application areas. Conclusion: Support vector machines have a lot of applications due to their multiple benefits, however in the electric energy area; they have not been tota­lly applied, this allow to identify a promising area of researching.

  14. A Parallel Genetic Algorithm Based Feature Selection and Parameter Optimization for Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhi Chen

    2016-01-01

    Full Text Available The extensive applications of support vector machines (SVMs require efficient method of constructing a SVM classifier with high classification ability. The performance of SVM crucially depends on whether optimal feature subset and parameter of SVM can be efficiently obtained. In this paper, a coarse-grained parallel genetic algorithm (CGPGA is used to simultaneously optimize the feature subset and parameters for SVM. The distributed topology and migration policy of CGPGA can help find optimal feature subset and parameters for SVM in significantly shorter time, so as to increase the quality of solution found. In addition, a new fitness function, which combines the classification accuracy obtained from bootstrap method, the number of chosen features, and the number of support vectors, is proposed to lead the search of CGPGA to the direction of optimal generalization error. Experiment results on 12 benchmark datasets show that our proposed approach outperforms genetic algorithm (GA based method and grid search method in terms of classification accuracy, number of chosen features, number of support vectors, and running time.

  15. Landslide susceptibility mapping & prediction using Support Vector Machine for Mandakini River Basin, Garhwal Himalaya, India

    Science.gov (United States)

    Kumar, Deepak; Thakur, Manoj; Dubey, Chandra S.; Shukla, Dericks P.

    2017-10-01

    In recent years, various machine learning techniques have been applied for landslide susceptibility mapping. In this study, three different variants of support vector machine viz., SVM, Proximal Support Vector Machine (PSVM) and L2-Support Vector Machine - Modified Finite Newton (L2-SVM-MFN) have been applied on the Mandakini River Basin in Uttarakhand, India to carry out the landslide susceptibility mapping. Eight thematic layers such as elevation, slope, aspect, drainages, geology/lithology, buffer of thrusts/faults, buffer of streams and soil along with the past landslide data were mapped in GIS environment and used for landslide susceptibility mapping in MATLAB. The study area covering 1625 km2 has merely 0.11% of area under landslides. There are 2009 pixels for past landslides out of which 50% (1000) landslides were considered as training set while remaining 50% as testing set. The performance of these techniques has been evaluated and the computational results show that L2-SVM-MFN obtains higher prediction values (0.829) of receiver operating characteristic curve (AUC-area under the curve) as compared to 0.807 for PSVM model and 0.79 for SVM. The results obtained from L2-SVM-MFN model are found to be superior than other SVM prediction models and suggest the usefulness of this technique to problem of landslide susceptibility mapping where training data is very less. However, these techniques can be used for satisfactory determination of susceptible zones with these inputs.

  16. An Adaptive Support Vector Regression Machine for the State Prognosis of Mechanical Systems

    Directory of Open Access Journals (Sweden)

    Qing Zhang

    2015-01-01

    Full Text Available Due to the unsteady state evolution of mechanical systems, the time series of state indicators exhibits volatile behavior and staged characteristics. To model hidden trends and predict deterioration failure utilizing volatile state indicators, an adaptive support vector regression (ASVR machine is proposed. In ASVR, the width of an error-insensitive tube, which is a constant in the traditional support vector regression, is set as a variable determined by the transient distribution boundary of local regions in the training time series. Thus, the localized regions are obtained using a sliding time window, and their boundaries are defined by a robust measure known as the truncated range. Utilizing an adaptive error-insensitive tube, a stabilized tolerance level for noise is achieved, whether the time series occurs in low-volatility regions or in high-volatility regions. The proposed method is evaluated by vibrational data measured on descaling pumps. The results show that ASVR is capable of capturing the local trends of the volatile time series of state indicators and is superior to the standard support vector regression for state prediction.

  17. Implicit Social Trust Dan Support Vector Regression Untuk Sistem Rekomendasi Berita

    Directory of Open Access Journals (Sweden)

    Melita Widya Ningrum

    2018-01-01

    Full Text Available Situs berita merupakan salah satu situs yang sering diakses masyarakat karena kemampuannya dalam menyajikan informasi terkini dari berbagai topik seperti olahraga, bisnis, politik, teknologi, kesehatan dan hiburan. Masyarakat dapat mencari dan melihat berita yang sedang populer dari seluruh dunia. Di sisi lain, melimpahnya artikel berita yang tersedia dapat menyulitkan pengguna dalam menemukan artikel berita yang sesuai dengan ketertarikannya. Pemilihan artikel berita yang ditampilkan ke halaman utama pengguna menjadi penting karena dapat meningkatkan minat pengguna untuk membaca artikel berita dari situs tersebut. Selain itu, pemilihan artikel berita yang sesuai dapat meminimalisir terjadinya banjir informasi yang tidak relevan. Dalam pemilihan artikel berita dibutuhkan sistem rekomendasi yang memiliki pengetahuan mengenai ketertarikan atau relevansi pengguna akan topik berita tertentu. Pada penelitian ini, peneliti membuat sistem rekomendasi artikel berita pada New York Times berbasis implicit social trust. Social trust dihasilkan dari interaksi antara pengguna dengan teman-temannya  dan bobot kepercayaan teman pengguna pada media sosial Twitter. Data yang diambil merupakan data pengguna Twitter, teman dan jumlah interaksi antar pengguna berupa retweet. Sistem ini memanfaatkan algoritma Support Vector Regression untuk memberikan estimasi penilaian pengguna terhadap suatu topik tertentu. Hasil pengolahan data dengan Support Vector Regression menunjukkan tingkat akurasi dengan MAPE sebesar 0,8243075902233644%.   Keywords : Twitter, Rekomendasi Berita, Social Trust, Support Vector Regression

  18. [Automatic classification method of star spectra data based on manifold fuzzy twin support vector machine].

    Science.gov (United States)

    Liu, Zhong-bao; Gao, Yan-yun; Wang, Jian-zhen

    2015-01-01

    Support vector machine (SVM) with good leaning ability and generalization is widely used in the star spectra data classification. But when the scale of data becomes larger, the shortages of SVM appear: the calculation amount is quite large and the classification speed is too slow. In order to solve the above problems, twin support vector machine (TWSVM) was proposed by Jayadeva. The advantage of TSVM is that the time cost is reduced to 1/4 of that of SVM. While all the methods mentioned above only focus on the global characteristics and neglect the local characteristics. In view of this, an automatic classification method of star spectra data based on manifold fuzzy twin support vector machine (MF-TSVM) is proposed in this paper. In MF-TSVM, manifold-based discriminant analysis (MDA) is used to obtain the global and local characteristics of the input data and the fuzzy membership is introduced to reduce the influences of noise and singular data on the classification results. Comparative experiments with current classification methods, such as C-SVM and KNN, on the SDSS star spectra datasets verify the effectiveness of the proposed method.

  19. Support vector machine based fault classification and location of a long transmission line

    Directory of Open Access Journals (Sweden)

    Papia Ray

    2016-09-01

    Full Text Available This paper investigates support vector machine based fault type and distance estimation scheme in a long transmission line. The planned technique uses post fault single cycle current waveform and pre-processing of the samples is done by wavelet packet transform. Energy and entropy are obtained from the decomposed coefficients and feature matrix is prepared. Then the redundant features from the matrix are taken out by the forward feature selection method and normalized. Test and train data are developed by taking into consideration variables of a simulation situation like fault type, resistance path, inception angle, and distance. In this paper 10 different types of short circuit fault are analyzed. The test data are examined by support vector machine whose parameters are optimized by particle swarm optimization method. The anticipated method is checked on a 400 kV, 300 km long transmission line with voltage source at both the ends. Two cases were examined with the proposed method. The first one is fault very near to both the source end (front and rear and the second one is support vector machine with and without optimized parameter. Simulation result indicates that the anticipated method for fault classification gives high accuracy (99.21% and least fault distance estimation error (0.29%.

  20. A Novel Neural Network Vector Control for Single-Phase Grid-Connected Converters with L, LC and LCL Filters

    Directory of Open Access Journals (Sweden)

    Xingang Fu

    2016-04-01

    Full Text Available This paper investigates a novel recurrent neural network (NN-based vector control approach for single-phase grid-connected converters (GCCs with L (inductor, LC (inductor-capacitor and LCL (inductor-capacitor-inductor filters and provides their comparison study with the conventional standard vector control method. A single neural network controller replaces two current-loop PI controllers, and the NN training approximates the optimal control for the single-phase GCC system. The Levenberg–Marquardt (LM algorithm was used to train the NN controller based on the complete system equations without any decoupling policies. The proposed NN approach can solve the decoupling problem associated with the conventional vector control methods for L, LC and LCL-filter-based single-phase GCCs. Both simulation study and hardware experiments demonstrate that the neural network vector controller shows much more improved performance than that of conventional vector controllers, including faster response speed and lower overshoot. Especially, NN vector control could achieve very good performance using low switch frequency. More importantly, the neural network vector controller is a damping free controller, which is generally required by a conventional vector controller for an LCL-filter-based single-phase grid-connected converter and, therefore, can overcome the inefficiency problem caused by damping policies.

  1. Support vector machines for predictive modeling in heterogeneous catalysis: a comprehensive introduction and overfitting investigation based on two real applications.

    Science.gov (United States)

    Baumes, L A; Serra, J M; Serna, P; Corma, A

    2006-01-01

    This works provides an introduction to support vector machines (SVMs) for predictive modeling in heterogeneous catalysis, describing step by step the methodology with a highlighting of the points which make such technique an attractive approach. We first investigate linear SVMs, working in detail through a simple example based on experimental data derived from a study aiming at optimizing olefin epoxidation catalysts applying high-throughput experimentation. This case study has been chosen to underline SVM features in a visual manner because of the few catalytic variables investigated. It is shown how SVMs transform original data into another representation space of higher dimensionality. The concepts of Vapnik-Chervonenkis dimension and structural risk minimization are introduced. The SVM methodology is evaluated with a second catalytic application, that is, light paraffin isomerization. Finally, we discuss why SVMs is a strategic method, as compared to other machine learning techniques, such as neural networks or induction trees, and why emphasis is put on the problem of overfitting.

  2. A Comparison Study of Extreme Learning Machine and Least Squares Support Vector Machine for Structural Impact Localization

    Directory of Open Access Journals (Sweden)

    Qingsong Xu

    2014-01-01

    Full Text Available Extreme learning machine (ELM is a learning algorithm for single-hidden layer feedforward neural network dedicated to an extremely fast learning. However, the performance of ELM in structural impact localization is unknown yet. In this paper, a comparison study of ELM with least squares support vector machine (LSSVM is presented for the application on impact localization of a plate structure with surface-mounted piezoelectric sensors. Both basic and kernel-based ELM regression models have been developed for the location prediction. Comparative studies of the basic ELM, kernel-based ELM, and LSSVM models are carried out. Results show that the kernel-based ELM requires the shortest learning time and it is capable of producing suboptimal localization accuracy among the three models. Hence, ELM paves a promising way in structural impact detection.

  3. Settlement Prediction of Road Soft Foundation Using a Support Vector Machine (SVM Based on Measured Data

    Directory of Open Access Journals (Sweden)

    Yu Huiling

    2016-01-01

    Full Text Available The suppor1t vector machine (SVM is a relatively new artificial intelligence technique which is increasingly being applied to geotechnical problems and is yielding encouraging results. SVM is a new machine learning method based on the statistical learning theory. A case study based on road foundation engineering project shows that the forecast results are in good agreement with the measured data. The SVM model is also compared with BP artificial neural network model and traditional hyperbola method. The prediction results indicate that the SVM model has a better prediction ability than BP neural network model and hyperbola method. Therefore, settlement prediction based on SVM model can reflect actual settlement process more correctly. The results indicate that it is effective and feasible to use this method and the nonlinear mapping relation between foundation settlement and its influence factor can be expressed well. It will provide a new method to predict foundation settlement.

  4. Yucca Mountain licensing support network archive assistant.

    Energy Technology Data Exchange (ETDEWEB)

    Dunlavy, Daniel M.; Bauer, Travis L.; Verzi, Stephen J.; Basilico, Justin Derrick; Shaneyfelt, Wendy

    2008-03-01

    This report describes the Licensing Support Network (LSN) Assistant--a set of tools for categorizing e-mail messages and documents, and investigating and correcting existing archives of categorized e-mail messages and documents. The two main tools in the LSN Assistant are the LSN Archive Assistant (LSNAA) tool for recategorizing manually labeled e-mail messages and documents and the LSN Realtime Assistant (LSNRA) tool for categorizing new e-mail messages and documents. This report focuses on the LSNAA tool. There are two main components of the LSNAA tool. The first is the Sandia Categorization Framework, which is responsible for providing categorizations for documents in an archive and storing them in an appropriate Categorization Database. The second is the actual user interface, which primarily interacts with the Categorization Database, providing a way for finding and correcting categorizations errors in the database. A procedure for applying the LSNAA tool and an example use case of the LSNAA tool applied to a set of e-mail messages are provided. Performance results of the categorization model designed for this example use case are presented.

  5. A UNIFIED APPROACH FOR DETECTION AND PREVENTION OF DDOS ATTACKS USING ENHANCED SUPPORT VECTOR MACHINES AND FILTERING MECHANISMS

    Directory of Open Access Journals (Sweden)

    T. Subbulakshmi

    2014-10-01

    Full Text Available Distributed Denial of Service (DDoS attacks were considered to be a tremendous threat to the current information security infrastructure. During DDoS attack, multiple malicious hosts that are recruited by the attackers launch a coordinated attack against one host or a network victim, which cause denial of service to legitimate users. The existing techniques suffer from more number of false alarms and more human intervention for attack detection. The objective of this paper is to monitor the network online which automatically initiates detection mechanism if there is any suspicious activity and also defense the hosts from being arrived at the network. Both spoofed and non spoofed IP’s are detected in this approach. Non spoofed IP’s are detected using Enhanced Support Vector Machines (ESVM and spoofed IP’s are detected using Hop Count Filtering (HCF mechanism. The detected IP’s are maintained separately to initiate the defense process. The attack strength is calculated using Lanchester Law which initiates the defense mechanism. Based on the calculated attack strength any of the defense schemes such as Rate based limiting or History based IP filtering is automatically initiated to drop the packets from the suspected IP. The integrated online monitoring approach for detection and defense of DDoS attacks is deployed in an experimental testbed. The online approach is found to be obvious in the field of integrated DDoS detection and defense.

  6. Novel Discrete Compactness-Based Training for Vector Quantization Networks: Enhancing Automatic Brain Tissue Classification

    Directory of Open Access Journals (Sweden)

    Ricardo Pérez-Aguila

    2013-01-01

    Full Text Available An approach for nonsupervised segmentation of Computed Tomography (CT brain slices which is based on the use of Vector Quantization Networks (VQNs is described. Images are segmented via a VQN in such way that tissue is characterized according to its geometrical and topological neighborhood. The main contribution rises from the proposal of a similarity metric which is based on the application of Discrete Compactness (DC which is a factor that provides information about the shape of an object. One of its main strengths lies in the sense of its low sensitivity to variations, due to noise or capture defects, in the shape of an object. We will present, compare, and discuss some examples of segmentation networks trained under Kohonen’s original algorithm and also under our similarity metric. Some experiments are established in order to measure the effectiveness and robustness, under our application of interest, of the proposed networks and similarity metric.

  7. SAMSVM: A tool for misalignment filtration of SAM-format sequences with support vector machine.

    Science.gov (United States)

    Yang, Jianfeng; Ding, Xiaofan; Sun, Xing; Tsang, Shui-Ying; Xue, Hong

    2015-12-01

    Sequence alignment/map (SAM) formatted sequences [Li H, Handsaker B, Wysoker A et al., Bioinformatics 25(16):2078-2079, 2009.] have taken on a main role in bioinformatics since the development of massive parallel sequencing. However, because misalignment of sequences poses a significant problem in analysis of sequencing data that could lead to false positives in variant calling, the exclusion of misaligned reads is a necessity in analysis. In this regard, the multiple features of SAM-formatted sequences can be treated as vectors in a multi-dimension space to allow the application of a support vector machine (SVM). Applying the LIBSVM tools developed by Chang and Lin [Chang C-C, Lin C-J, ACM Trans Intell Syst Technol 2:1-27, 2011.] as a simple interface for support vector classification, the SAMSVM package has been developed in this study to enable misalignment filtration of SAM-formatted sequences. Cross-validation between two simulated datasets processed with SAMSVM yielded accuracies that ranged from 0.89 to 0.97 with F-scores ranging from 0.77 to 0.94 in 14 groups characterized by different mutation rates from 0.001 to 0.1, indicating that the model built using SAMSVM was accurate in misalignment detection. Application of SAMSVM to actual sequencing data resulted in filtration of misaligned reads and correction of variant calling.

  8. Modeling DNA affinity landscape through two-round support vector regression with weighted degree kernels

    KAUST Repository

    Wang, Xiaolei

    2014-12-12

    Background: A quantitative understanding of interactions between transcription factors (TFs) and their DNA binding sites is key to the rational design of gene regulatory networks. Recent advances in high-throughput technologies have enabled high-resolution measurements of protein-DNA binding affinity. Importantly, such experiments revealed the complex nature of TF-DNA interactions, whereby the effects of nucleotide changes on the binding affinity were observed to be context dependent. A systematic method to give high-quality estimates of such complex affinity landscapes is, thus, essential to the control of gene expression and the advance of synthetic biology. Results: Here, we propose a two-round prediction method that is based on support vector regression (SVR) with weighted degree (WD) kernels. In the first round, a WD kernel with shifts and mismatches is used with SVR to detect the importance of subsequences with different lengths at different positions. The subsequences identified as important in the first round are then fed into a second WD kernel to fit the experimentally measured affinities. To our knowledge, this is the first attempt to increase the accuracy of the affinity prediction by applying two rounds of string kernels and by identifying a small number of crucial k-mers. The proposed method was tested by predicting the binding affinity landscape of Gcn4p in Saccharomyces cerevisiae using datasets from HiTS-FLIP. Our method explicitly identified important subsequences and showed significant performance improvements when compared with other state-of-the-art methods. Based on the identified important subsequences, we discovered two surprisingly stable 10-mers and one sensitive 10-mer which were not reported before. Further test on four other TFs in S. cerevisiae demonstrated the generality of our method. Conclusion: We proposed in this paper a two-round method to quantitatively model the DNA binding affinity landscape. Since the ability to modify

  9. A Novel Empirical Mode Decomposition With Support Vector Regression for Wind Speed Forecasting.

    Science.gov (United States)

    Ren, Ye; Suganthan, Ponnuthurai Nagaratnam; Srikanth, Narasimalu

    2016-08-01

    Wind energy is a clean and an abundant renewable energy source. Accurate wind speed forecasting is essential for power dispatch planning, unit commitment decision, maintenance scheduling, and regulation. However, wind is intermittent and wind speed is difficult to predict. This brief proposes a novel wind speed forecasting method by integrating empirical mode decomposition (EMD) and support vector regression (SVR) methods. The EMD is used to decompose the wind speed time series into several intrinsic mode functions (IMFs) and a residue. Subsequently, a vector combining one historical data from each IMF and the residue is generated to train the SVR. The proposed EMD-SVR model is evaluated with a wind speed data set. The proposed EMD-SVR model outperforms several recently reported methods with respect to accuracy or computational complexity.

  10. Using networked technologies to support conferences

    OpenAIRE

    Kelly, B.; Tonkin, E.; Shabajee, P

    2005-01-01

    The increasing availability of WiFi networks in conference venues is an opportunity to provide additional services for conference delegates and to enhance and enrich the learning experience. This paper reviews experiences of use of networked applications in a conference environment and outlines a number of potentially useful technologies. The paper addresses potential concerns over use of networked technologies including dangers of disruption and distraction, legal and copyright issues as wel...

  11. Sediment Analysis Network for Decision Support (SANDS)

    Science.gov (United States)

    Hardin, D. M.; Keiser, K.; Graves, S. J.; Conover, H.; Ebersole, S.

    2009-12-01

    Since the year 2000, Eastern Louisiana, coastal Mississippi, Alabama, and the western Florida panhandle have been affected by 28 tropical storms, seven of which were hurricanes. These tropical cyclones have significantly altered normal coastal processes and characteristics in the Gulf region through sediment disturbance. Although tides, seasonality, and agricultural development influence suspended sediment and sediment deposition over periods of time, tropical storm activity has the capability of moving the largest sediment loads in the shortest periods of time for coastal areas. The importance of sediments upon water quality, coastal erosion, habitats and nutrients has made their study and monitoring vital to decision makers in the region. Currently agencies such as United States Army Corps of Engineers (USACE), NASA, and Geological Survey of Alabama (GSA) are employing a variety of in-situ and airborne based measurements to assess and monitor sediment loading and deposition. These methods provide highly accurate information but are limited in geographic range, are not continuous over a region and, in the case of airborne LIDAR are expensive and do not recur on a regular basis. Multi-temporal and multi-spectral satellite imagery that shows tropical-storm-induced suspended sediment and storm-surge sediment deposits can provide decision makers with immediate and long-term information about the impacts of tropical storms and hurricanes. It can also be valuable for those conducting research and for projects related to coastal issues such as recovery, planning, management, and mitigation. The recently awarded Sediment Analysis Network for Decision Support will generate decision support products using NASA satellite observations from MODIS, Landsat and SeaWiFS instruments to support resource management, planning, and decision making activities in the Gulf of Mexico. Specifically, SANDS will generate decision support products that address the impacts of tropical storms

  12. New networking solutions support GEANT2

    CERN Multimedia

    2006-01-01

    "Researchers across the globe are benefiting from new advanced networking solutions, deployed as part of the GEANT2. For the first time, scientists collaborating on the world's largest particle physics experiment, the Large Hadron Collider (LHC), now have access to point-to-point network connections between distributed research centres." (1 page)

  13. Social networks as ICT collaborative and supportive learning media ...

    African Journals Online (AJOL)

    ... ICT collaborative and supportive learning media utilisation within the Nigerian educational system. The concept of ICT was concisely explained vis-à-vis the social network concept, theory and collaborative and supportive learning media utilisation. Different types of social network are highlighted among which Facebook, ...

  14. An Assessment of the Emerging Networks of Support for Street ...

    African Journals Online (AJOL)

    Nigeria, being asignatory to the Convention on the Rights of the Child (UNCRC, 1989) promulgated the Child Rights Act 2003, which aimed at ameliorating the condition of street children in Nigeria. In line with this, there are emerging networks of support for street children. The extent to which these support networks are ...

  15. Mixed Analog/Digital Matrix-Vector Multiplier for Neural Network Synapses

    DEFF Research Database (Denmark)

    Lehmann, Torsten; Bruun, Erik; Dietrich, Casper

    1996-01-01

    In this work we present a hardware efficient matrix-vector multiplier architecture for artificial neural networks with digitally stored synapse strengths. We present a novel technique for manipulating bipolar inputs based on an analog two's complements method and an accurate current rectifier....../sign detector. Measurements on a CMOS test chip are presented and validates the techniques. Further, we propose to use an analog extension, based on a simple capacitive storage, for enhancing weight resolution during learning. It is shown that the implementation of Hebbian learning and back-propagation learning...

  16. Future networks and technologies supporting innovative communications

    DEFF Research Database (Denmark)

    Prasad, Ramjee

    2012-01-01

    and applications. This paper focuses on the technological aspects of ubiquitous networking and communication technologies, including challenges related to green communications, and security, privacy and trust. The paper proposes a novel concept for a Wireless Innovative System for Dynamically Operating Mega......-communications (WISDOM) that combines the aspects of personal- and cognitive radio- networks to let seamlessly bridge the virtual and physical worlds offering a constant level of all-senses, context-based, rich communication experience over fixed and wireless networks for the end users while realizing a new generation...

  17. Predicting respiratory tumor motion with multi-dimensional adaptive filters and support vector regression

    Energy Technology Data Exchange (ETDEWEB)

    Riaz, Nadeem; Wiersma, Rodney; Mao Weihua; Xing Lei [Department of Radiation Oncology, Stanford University, 875 Blake Wilbur Drive, Stanford, CA 94305-5847 (United States); Shanker, Piyush; Gudmundsson, Olafur; Widrow, Bernard [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States)], E-mail: nriaz@stanford.edu

    2009-10-07

    Intra-fraction tumor tracking methods can improve radiation delivery during radiotherapy sessions. Image acquisition for tumor tracking and subsequent adjustment of the treatment beam with gating or beam tracking introduces time latency and necessitates predicting the future position of the tumor. This study evaluates the use of multi-dimensional linear adaptive filters and support vector regression to predict the motion of lung tumors tracked at 30 Hz. We expand on the prior work of other groups who have looked at adaptive filters by using a general framework of a multiple-input single-output (MISO) adaptive system that uses multiple correlated signals to predict the motion of a tumor. We compare the performance of these two novel methods to conventional methods like linear regression and single-input, single-output adaptive filters. At 400 ms latency the average root-mean-square-errors (RMSEs) for the 14 treatment sessions studied using no prediction, linear regression, single-output adaptive filter, MISO and support vector regression are 2.58, 1.60, 1.58, 1.71 and 1.26 mm, respectively. At 1 s, the RMSEs are 4.40, 2.61, 3.34, 2.66 and 1.93 mm, respectively. We find that support vector regression most accurately predicts the future tumor position of the methods studied and can provide a RMSE of less than 2 mm at 1 s latency. Also, a multi-dimensional adaptive filter framework provides improved performance over single-dimension adaptive filters. Work is underway to combine these two frameworks to improve performance.

  18. Hybrid vector quantization/neural tree network classifiers for speaker recognition

    Science.gov (United States)

    Farrell, Kevin R.; Mammone, Richard J.

    1994-10-01

    A new classification system for text-independent speaker recognition is presented. Text- independent speaker recognition systems generally model each speaker with a single classifier. The traditional methods use unsupervised training algorithms, such as vector quantization (VQ), to model each speaker. Such methods base their decision on the distortion between an observation and the speaker model. Recently, supervised training algorithms, such as neural networks, have been successfully applied to speaker recognition. Here, each speaker is represented by a neural network. Due to their discriminative training, neural networks capture the differences between speakers and use this criteria for decision making. Hence, the output of a neural network can be considered as an interclass measure. The VQ classifier, on the other hand, uses a distortion which is independent of the other speaker models, and can be considered as an intraclass measure. Since these two measures are based on different criteria, they can be effectively combined to yield improved performance. This paper uses data fusion concepts to combine the outputs of the neural tree network and VQ classifiers. The combined system is evaluated for text-independent speaker identification and verification and is shown to outperform either classifier when used individually.

  19. Bidding strategy with forecast technology based on support vector machine in the electricity market

    Science.gov (United States)

    Gao, Ciwei; Bompard, Ettore; Napoli, Roberto; Wan, Qiulan; Zhou, Jian

    2008-06-01

    The participants in the electricity market are concerned very much with the market price evolution. Various technologies have been developed for price forecasting. The SVM (Support Vector Machine) has shown its good performance in market price forecasting. Two approaches for forming the market bidding strategies based on SVM are proposed. One is based on the price forecasting accuracy, with which the rejection risk is defined. The other takes into account the impact of the producer’s own bid. The risks associated with the bidding are controlled by the parameter settings. The proposed approaches have been tested on a numerical example.

  20. Applications of the Chaotic Quantum Genetic Algorithm with Support Vector Regression in Load Forecasting

    Directory of Open Access Journals (Sweden)

    Cheng-Wen Lee

    2017-11-01

    Full Text Available Accurate electricity forecasting is still the critical issue in many energy management fields. The applications of hybrid novel algorithms with support vector regression (SVR models to overcome the premature convergence problem and improve forecasting accuracy levels also deserve to be widely explored. This paper applies chaotic function and quantum computing concepts to address the embedded drawbacks including crossover and mutation operations of genetic algorithms. Then, this paper proposes a novel electricity load forecasting model by hybridizing chaotic function and quantum computing with GA in an SVR model (named SVRCQGA to achieve more satisfactory forecasting accuracy levels. Experimental examples demonstrate that the proposed SVRCQGA model is superior to other competitive models.

  1. DOA Finding with Support Vector Regression Based Forward-Backward Linear Prediction.

    Science.gov (United States)

    Pan, Jingjing; Wang, Yide; Le Bastard, Cédric; Wang, Tianzhen

    2017-05-27

    Direction-of-arrival (DOA) estimation has drawn considerable attention in array signal processing, particularly with coherent signals and a limited number of snapshots. Forward-backward linear prediction (FBLP) is able to directly deal with coherent signals. Support vector regression (SVR) is robust with small samples. This paper proposes the combination of the advantages of FBLP and SVR in the estimation of DOAs of coherent incoming signals with low snapshots. The performance of the proposed method is validated with numerical simulations in coherent scenarios, in terms of different angle separations, numbers of snapshots, and signal-to-noise ratios (SNRs). Simulation results show the effectiveness of the proposed method.

  2. Least squares support vector machines for direction of arrival estimation with error control and validation.

    Energy Technology Data Exchange (ETDEWEB)

    Christodoulou, Christos George (University of New Mexico, Albuquerque, NM); Abdallah, Chaouki T. (University of New Mexico, Albuquerque, NM); Rohwer, Judd Andrew

    2003-02-01

    The paper presents a multiclass, multilabel implementation of least squares support vector machines (LS-SVM) for direction of arrival (DOA) estimation in a CDMA system. For any estimation or classification system, the algorithm's capabilities and performance must be evaluated. Specifically, for classification algorithms, a high confidence level must exist along with a technique to tag misclassifications automatically. The presented learning algorithm includes error control and validation steps for generating statistics on the multiclass evaluation path and the signal subspace dimension. The error statistics provide a confidence level for the classification accuracy.

  3. An Investigation of Feature Models for Music Genre Classification using the Support Vector Classifier

    DEFF Research Database (Denmark)

    Meng, Anders; Shawe-Taylor, John

    2005-01-01

    In music genre classification the decision time is typically of the order of several seconds however most automatic music genre classification systems focus on short time features derived from 10-50ms. This work investigates two models, the multivariate gaussian model and the multivariate...... autoregressive model for modelling short time features. Furthermore, it was investigated how these models can be integrated over a segment of short time features into a kernel such that a support vector machine can be applied. Two kernels with this property were considered, the convolution kernel and product...

  4. Multimodal biometric authentication based on score level fusion using support vector machine

    Science.gov (United States)

    Wang, F.; Han, J.

    2009-03-01

    Fusion of multiple biometrics for human authentication performance improvement has received considerable attention. This paper presents a novel multimodal biometric authentication method integrating face and iris based on score level fusion. For score level fusion, support vector machine (SVM) based fusion rule is applied to combine two matching scores, respectively from Laplacianface based face verifier and phase information based iris verifier, to generate a single scalar score which is used to make the final decision. Experimental results show that the performance of the proposed method can bring obvious improvement comparing to the unimodal biometric identification methods and the previous fused face-iris methods.

  5. An accurate algorithm for estimation of coal reserves based on support vector machine

    Energy Technology Data Exchange (ETDEWEB)

    Deng, X.; Liu, W.; Wang, R. [Wuhan University, Wuhan (China). School of Geology and Geomatics

    2008-09-15

    In an effort to improve the limitations of the present methods of estimating coal reserves an accurate algorithm is presented based on the support vector machine model. By building a thick coal and bulk density model from knowledge of drilling data and eliminating the outer points according to the relation between points and polygons, coal reserves were accurately calculated by summing up all the reserves of a small grid. Two examples for different types of coal mine are given and three-dimensional mineral distribution maps are plotted. The examples validate the reliability and advantages of the method proposed. 9 refs., 1 fig., 1 tab.

  6. Applying the Support Vector Machine Method to Matching IRAS and SDSS Catalogues

    Directory of Open Access Journals (Sweden)

    Chen Cao

    2007-10-01

    Full Text Available This paper presents results of applying a machine learning technique, the Support Vector Machine (SVM, to the astronomical problem of matching the Infra-Red Astronomical Satellite (IRAS and Sloan Digital Sky Survey (SDSS object catalogues. In this study, the IRAS catalogue has much larger positional uncertainties than those of the SDSS. A model was constructed by applying the supervised learning algorithm (SVM to a set of training data. Validation of the model shows a good identification performance (∼ 90% correct, better than that derived from classical cross-matching algorithms, such as the likelihood-ratio method used in previous studies.

  7. PMSVM: An Optimized Support Vector Machine Classification Algorithm Based on PCA and Multilevel Grid Search Methods

    Directory of Open Access Journals (Sweden)

    Yukai Yao

    2015-01-01

    Full Text Available We propose an optimized Support Vector Machine classifier, named PMSVM, in which System Normalization, PCA, and Multilevel Grid Search methods are comprehensively considered for data preprocessing and parameters optimization, respectively. The main goals of this study are to improve the classification efficiency and accuracy of SVM. Sensitivity, Specificity, Precision, and ROC curve, and so forth, are adopted to appraise the performances of PMSVM. Experimental results show that PMSVM has relatively better accuracy and remarkable higher efficiency compared with traditional SVM algorithms.

  8. A Shellcode Detection Method Based on Full Native API Sequence and Support Vector Machine

    Science.gov (United States)

    Cheng, Yixuan; Fan, Wenqing; Huang, Wei; An, Jing

    2017-09-01

    Dynamic monitoring the behavior of a program is widely used to discriminate between benign program and malware. It is usually based on the dynamic characteristics of a program, such as API call sequence or API call frequency to judge. The key innovation of this paper is to consider the full Native API sequence and use the support vector machine to detect the shellcode. We also use the Markov chain to extract and digitize Native API sequence features. Our experimental results show that the method proposed in this paper has high accuracy and low detection rate.

  9. Support Vector Regression Model Based on Empirical Mode Decomposition and Auto Regression for Electric Load Forecasting

    Directory of Open Access Journals (Sweden)

    Hong-Juan Li

    2013-04-01

    Full Text Available Electric load forecasting is an important issue for a power utility, associated with the management of daily operations such as energy transfer scheduling, unit commitment, and load dispatch. Inspired by strong non-linear learning capability of support vector regression (SVR, this paper presents a SVR model hybridized with the empirical mode decomposition (EMD method and auto regression (AR for electric load forecasting. The electric load data of the New South Wales (Australia market are employed for comparing the forecasting performances of different forecasting models. The results confirm the validity of the idea that the proposed model can simultaneously provide forecasting with good accuracy and interpretability.

  10. Performance and optimization of support vector machines in high-energy physics classification problems

    CERN Document Server

    Sahin, Mehmet Özgür; Melzer-Pellmann, Isabell-Alissandra

    2016-01-01

    In this paper we promote the use of Support Vector Machines (SVM) as a machine learning tool for searches in high-energy physics. As an example for a new- physics search we discuss the popular case of Supersymmetry at the Large Hadron Collider. We demonstrate that the SVM is a valuable tool and show that an automated discovery- significance based optimization of the SVM hyper-parameters is a highly efficient way to prepare an SVM for such applications. A new C++ LIBSVM interface called SVM-HINT is developed and available on Github.

  11. Automatic parametrization of Support Vector Machines for short texts polarity detection

    Directory of Open Access Journals (Sweden)

    Aurelio Sanabria Rodríguez

    2017-04-01

    Full Text Available The information from social media is emerging as a valuable source in decision-making, unfortunately the tools to turn these data into useful information still need some work. Using Support Vector Machines for polarity detection in short texts are popular among researchers for their good results, but parameter optimization to train classification models is a complex and costly process. This article compares two algorithms for automated parameter optimization in the process of creating classification models for polarity detection: the recently created Grey Wolf Optimizer and the Grid Search, using accuracy and f-score metrics.

  12. DOA Finding with Support Vector Regression Based Forward–Backward Linear Prediction

    Directory of Open Access Journals (Sweden)

    Jingjing Pan

    2017-05-01

    Full Text Available Direction-of-arrival (DOA estimation has drawn considerable attention in array signal processing, particularly with coherent signals and a limited number of snapshots. Forward–backward linear prediction (FBLP is able to directly deal with coherent signals. Support vector regression (SVR is robust with small samples. This paper proposes the combination of the advantages of FBLP and SVR in the estimation of DOAs of coherent incoming signals with low snapshots. The performance of the proposed method is validated with numerical simulations in coherent scenarios, in terms of different angle separations, numbers of snapshots, and signal-to-noise ratios (SNRs. Simulation results show the effectiveness of the proposed method.

  13. Musical note and instrument classification with likelihood-frequency-time analysis and support vector machines

    OpenAIRE

    ÖZBEK, Mehmet Erdal; Delpha, Claude; Duhamel, P.

    2007-01-01

    In this paper, we analyze the classification performance of a likelihood-frequency-time (LiFT) analysis designed for partial tracking and automatic transcription of music using support vector machines. The LiFT analysis is based on constant-Q filtering of signals with a filter-bank designed to filter 24 quarter-tone frequencies of an octave. Using the LiFT information, features are extracted from the isolated note samples and classification of instruments and notes is performed with linear, p...

  14. Climate Change, Public Health, and Decision Support: The New Threat of Vector-borne Disease

    Science.gov (United States)

    Grant, F.; Kumar, S.

    2011-12-01

    Climate change and vector-borne diseases constitute a massive threat to human development. It will not be enough to cut emissions of greenhouse gases-the tide of the future has already been established. Climate change and vector-borne diseases are already undermining the world's efforts to reduce extreme poverty. It is in the best interests of the world leaders to think in terms of concerted global actions, but adaptation and mitigation must be accomplished within the context of local community conditions, resources, and needs. Failure to act will continue to consign developed countries to completely avoidable health risks and significant expense. Failure to act will also reduce poorest of the world's population-some 2.6 billion people-to a future of diminished opportunity. Northrop Grumman has taken significant steps forward to develop the tools needed to assess climate change impacts on public health, collect relevant data for decision making, model projections at regional and local levels; and, deliver information and knowledge to local and regional stakeholders. Supporting these tools is an advanced enterprise architecture consisting of high performance computing, GIS visualization, and standards-based architecture. To address current deficiencies in local planning and decision making with respect to regional climate change and its effect on human health, our research is focused on performing a dynamical downscaling with the Weather Research and Forecasting (WRF) model to develop decision aids that translate the regional climate data into actionable information for users. For the present climate WRF was forced with the Max Planck Institute European Center/Hamburg Model version 5 (ECHAM5) General Circulation Model 20th century simulation. For the 21th century climate, we used an ECHAM5 simulation with the Special Report on Emissions (SRES) A1B emissions scenario. WRF was run in nested mode at spatial resolution of 108 km, 36 km and 12 km and 28 vertical levels

  15. Performance Monitoring Techniques Supporting Cognitive Optical Networking

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Borkowski, Robert; Zibar, Darko

    2013-01-01

    to solve this issue by realizing a network that can observe, act, learn and optimize its performance, taking into account end-to-end goals. In this letter we present the approach of cognition applied to heterogeneous optical networks developed in the framework of the EU project CHRON: Cognitive...... Heterogeneous Reconfigurable Optical Network. We focus on the approaches developed in the project for optical performance monitoring, which enable the feedback from the physical layer to the cognitive decision system by providing accurate description of the performance of the established lightpaths.......High degree of heterogeneity of future optical networks, such as services with different quality-of-transmission requirements, modulation formats and switching techniques, will pose a challenge for the control and optimization of different parameters. Incorporation of cognitive techniques can help...

  16. Support for School-to-School Networks: How Networking Teachers Perceive Support Activities of a Local Coordinating Agency

    Science.gov (United States)

    Sartory, Katharina; Jungermann, Anja-Kristin; Järvinen, Hanna

    2017-01-01

    External support by a local coordinating agency facilitates the work of school-to-school networks. This study provides an innovative theoretical framework to analyse how support provided by local education offices for school-to-school networks is perceived by the participating teachers. Based on a quantitative survey and qualitative interview data…

  17. Topic detection using paragraph vectors to support active learning in systematic reviews.

    Science.gov (United States)

    Hashimoto, Kazuma; Kontonatsios, Georgios; Miwa, Makoto; Ananiadou, Sophia

    2016-08-01

    Systematic reviews require expert reviewers to manually screen thousands of citations in order to identify all relevant articles to the review. Active learning text classification is a supervised machine learning approach that has been shown to significantly reduce the manual annotation workload by semi-automating the citation screening process of systematic reviews. In this paper, we present a new topic detection method that induces an informative representation of studies, to improve the performance of the underlying active learner. Our proposed topic detection method uses a neural network-based vector space model to capture semantic similarities between documents. We firstly represent documents within the vector space, and cluster the documents into a predefined number of clusters. The centroids of the clusters are treated as latent topics. We then represent each document as a mixture of latent topics. For evaluation purposes, we employ the active learning strategy using both our novel topic detection method and a baseline topic model (i.e., Latent Dirichlet Allocation). Results obtained demonstrate that our method is able to achieve a high sensitivity of eligible studies and a significantly reduced manual annotation cost when compared to the baseline method. This observation is consistent across two clinical and three public health reviews. The tool introduced in this work is available from https://nactem.ac.uk/pvtopic/. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. PreBIND and Textomy – mining the biomedical literature for protein-protein interactions using a support vector machine

    Directory of Open Access Journals (Sweden)

    Baskin Berivan

    2003-03-01

    Full Text Available Abstract Background The majority of experimentally verified molecular interaction and biological pathway data are present in the unstructured text of biomedical journal articles where they are inaccessible to computational methods. The Biomolecular interaction network database (BIND seeks to capture these data in a machine-readable format. We hypothesized that the formidable task-size of backfilling the database could be reduced by using Support Vector Machine technology to first locate interaction information in the literature. We present an information extraction system that was designed to locate protein-protein interaction data in the literature and present these data to curators and the public for review and entry into BIND. Results Cross-validation estimated the support vector machine's test-set precision, accuracy and recall for classifying abstracts describing interaction information was 92%, 90% and 92% respectively. We estimated that the system would be able to recall up to 60% of all non-high throughput interactions present in another yeast-protein interaction database. Finally, this system was applied to a real-world curation problem and its use was found to reduce the task duration by 70% thus saving 176 days. Conclusions Machine learning methods are useful as tools to direct interaction and pathway database back-filling; however, this potential can only be realized if these techniques are coupled with human review and entry into a factual database such as BIND. The PreBIND system described here is available to the public at http://bind.ca. Current capabilities allow searching for human, mouse and yeast protein-interaction information.

  19. Wavelet Entropy and Directed Acyclic Graph Support Vector Machine for Detection of Patients with Unilateral Hearing Loss in MRI Scanning.

    Science.gov (United States)

    Wang, Shuihua; Yang, Ming; Du, Sidan; Yang, Jiquan; Liu, Bin; Gorriz, Juan M; Ramírez, Javier; Yuan, Ti-Fei; Zhang, Yudong

    2016-01-01

    Highlights We develop computer-aided diagnosis system for unilateral hearing loss detection in structural magnetic resonance imaging.Wavelet entropy is introduced to extract image global features from brain images. Directed acyclic graph is employed to endow support vector machine an ability to handle multi-class problems.The developed computer-aided diagnosis system achieves an overall accuracy of 95.1% for this three-class problem of differentiating left-sided and right-sided hearing loss from healthy controls. Aim: Sensorineural hearing loss (SNHL) is correlated to many neurodegenerative disease. Now more and more computer vision based methods are using to detect it in an automatic way. Materials: We have in total 49 subjects, scanned by 3.0T MRI (Siemens Medical Solutions, Erlangen, Germany). The subjects contain 14 patients with right-sided hearing loss (RHL), 15 patients with left-sided hearing loss (LHL), and 20 healthy controls (HC). Method: We treat this as a three-class classification problem: RHL, LHL, and HC. Wavelet entropy (WE) was selected from the magnetic resonance images of each subjects, and then submitted to a directed acyclic graph support vector machine (DAG-SVM). Results: The 10 repetition results of 10-fold cross validation shows 3-level decomposition will yield an overall accuracy of 95.10% for this three-class classification problem, higher than feedforward neural network, decision tree, and naive Bayesian classifier. Conclusions: This computer-aided diagnosis system is promising. We hope this study can attract more computer vision method for detecting hearing loss.

  20. Social Networks and Social Support in Health Promotion Programmes

    OpenAIRE

    Donev, Doncho; Pavlekovic, Gordana; Zaletel Kragelj, Lijana

    2008-01-01

    Social networks and social support are general terms to describe different aspects of social relationships, including those mechanisms, which may protect the individual from the negative effects of stress. The social support is offered by the part of the social network, the people around us, that are ready to help us, and on whose help we can always count. Those enjoying strong social ties appear to be at low risk of psychosocial and physical impairment, whereas a lack of social support has b...

  1. Network Support II: Randomized controlled trial of Network Support treatment and cognitive behavioral therapy for alcohol use disorder.

    Science.gov (United States)

    Litt, Mark D; Kadden, Ronald M; Tennen, Howard; Kabela-Cormier, Elise

    2016-08-01

    The social network of those treated for alcohol use disorder can play a significant role in subsequent drinking behavior, both for better and worse. Network Support treatment was devised to teach ways to reconstruct social networks so that they are more supportive of abstinence and less supportive of drinking. For many patients this may involve engagement with AA, but other strategies are also used. The current trial of Network Support treatment, building on our previous work, was intended to further enhance the ability of patients to construct abstinence-supportive social networks, and to test this approach against a strong control treatment. Patients were 193 men and women with alcohol use disorder recruited from the community and assigned to either 12 weeks of Network Support (NS) or Packaged Cognitive-Behavioral Treatment (PCBT), and followed for 27 months. Results of multilevel analyses indicated that NS yielded better posttreatment results in terms of both proportion of days abstinent and drinking consequences, and equivalent improvements in 90-day abstinence, heavy drinking days and drinks per drinking day. Mediation analyses revealed that NS treatment effects were mediated by pre-post changes in abstinence self-efficacy and in social network variables, especially proportion of non-drinkers in the social network and attendance at Alcoholics Anonymous. It was concluded that helping patients enhance their abstinent social network can be effective, and may provide a useful alternative or adjunctive approach to treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Efficient Mobility Management Signalling in Network Mobility Supported PMIPV6

    Directory of Open Access Journals (Sweden)

    Ananthi Jebaseeli Samuelraj

    2015-01-01

    Full Text Available Proxy Mobile IPV6 (PMIPV6 is a network based mobility management protocol which supports node’s mobility without the contribution from the respective mobile node. PMIPV6 is initially designed to support individual node mobility and it should be enhanced to support mobile network movement. NEMO-BSP is an existing protocol to support network mobility (NEMO in PMIPV6 network. Due to the underlying differences in basic protocols, NEMO-BSP cannot be directly applied to PMIPV6 network. Mobility management signaling and data structures used for individual node’s mobility should be modified to support group nodes’ mobility management efficiently. Though a lot of research work is in progress to implement mobile network movement in PMIPV6, it is not yet standardized and each suffers with different shortcomings. This research work proposes modifications in NEMO-BSP and PMIPV6 to achieve NEMO support in PMIPV6. It mainly concentrates on optimizing the number and size of mobility signaling exchanged while mobile network or mobile network node changes its access point.

  3. SNPs selection using support vector regression and genetic algorithms in GWAS.

    Science.gov (United States)

    de Oliveira, Fabrízzio Condé; Borges, Carlos Cristiano Hasenclever; Almeida, Fernanda Nascimento; e Silva, Fabyano Fonseca; da Silva Verneque, Rui; da Silva, Marcos Vinicius G B; Arbex, Wagner

    2014-01-01

    This paper proposes a new methodology to simultaneously select the most relevant SNPs markers for the characterization of any measurable phenotype described by a continuous variable using Support Vector Regression with Pearson Universal kernel as fitness function of a binary genetic algorithm. The proposed methodology is multi-attribute towards considering several markers simultaneously to explain the phenotype and is based jointly on statistical tools, machine learning and computational intelligence. The suggested method has shown potential in the simulated database 1, with additive effects only, and real database. In this simulated database, with a total of 1,000 markers, and 7 with major effect on the phenotype and the other 993 SNPs representing the noise, the method identified 21 markers. Of this total, 5 are relevant SNPs between the 7 but 16 are false positives. In real database, initially with 50,752 SNPs, we have reduced to 3,073 markers, increasing the accuracy of the model. In the simulated database 2, with additive effects and interactions (epistasis), the proposed method matched to the methodology most commonly used in GWAS. The method suggested in this paper demonstrates the effectiveness in explaining the real phenotype (PTA for milk), because with the application of the wrapper based on genetic algorithm and Support Vector Regression with Pearson Universal, many redundant markers were eliminated, increasing the prediction and accuracy of the model on the real database without quality control filters. The PUK demonstrated that it can replicate the performance of linear and RBF kernels.

  4. Extraction of inland Nypa fruticans (Nipa Palm) using Support Vector Machine

    Science.gov (United States)

    Alberto, R. T.; Serrano, S. C.; Damian, G. B.; Camaso, E. E.; Biagtan, A. R.; Panuyas, N. Z.; Quibuyen, J. S.

    2017-09-01

    Mangroves are considered as one of the major habitats in coastal ecosystem, providing a lot of economic and ecological services in human society. Nypa fruticans (Nipa palm) is one of the important species of mangroves because of its versatility and uniqueness as halophytic palm. However, nipas are not only adaptable in saline areas, they can also managed to thrive away from the coastline depending on the favorable soil types available in the area. Because of this, mapping of this species are not limited alone in the near shore areas, but in areas where this species are present as well. The extraction process of Nypa fruticans were carried out using the available LiDAR data. Support Vector Machine (SVM) classification process was used to extract nipas in inland areas. The SVM classification process in mapping Nypa fruticans produced high accuracy of 95+%. The Support Vector Machine classification process to extract inland nipas was proven to be effective by utilizing different terrain derivatives from LiDAR data.

  5. Probability Distribution and Deviation Information Fusion Driven Support Vector Regression Model and Its Application

    Directory of Open Access Journals (Sweden)

    Changhao Fan

    2017-01-01

    Full Text Available In modeling, only information from the deviation between the output of the support vector regression (SVR model and the training sample is considered, whereas the other prior information of the training sample, such as probability distribution information, is ignored. Probabilistic distribution information describes the overall distribution of sample data in a training sample that contains different degrees of noise and potential outliers, as well as helping develop a high-accuracy model. To mine and use the probability distribution information of a training sample, a new support vector regression model that incorporates probability distribution information weight SVR (PDISVR is proposed. In the PDISVR model, the probability distribution of each sample is considered as the weight and is then introduced into the error coefficient and slack variables of SVR. Thus, the deviation and probability distribution information of the training sample are both used in the PDISVR model to eliminate the influence of noise and outliers in the training sample and to improve predictive performance. Furthermore, examples with different degrees of noise were employed to demonstrate the performance of PDISVR, which was then compared with those of three SVR-based methods. The results showed that PDISVR performs better than the three other methods.

  6. Support-vector-machines-based multidimensional signal classification for fetal activity characterization

    Science.gov (United States)

    Ribes, S.; Voicu, I.; Girault, J. M.; Fournier, M.; Perrotin, F.; Tranquart, F.; Kouamé, D.

    2011-03-01

    Electronic fetal monitoring may be required during the whole pregnancy to closely monitor specific fetal and maternal disorders. Currently used methods suffer from many limitations and are not sufficient to evaluate fetal asphyxia. Fetal activity parameters such as movements, heart rate and associated parameters are essential indicators of the fetus well being, and no current device gives a simultaneous and sufficient estimation of all these parameters to evaluate the fetus well-being. We built for this purpose, a multi-transducer-multi-gate Doppler system and developed dedicated signal processing techniques for fetal activity parameter extraction in order to investigate fetus's asphyxia or well-being through fetal activity parameters. To reach this goal, this paper shows preliminary feasibility of separating normal and compromised fetuses using our system. To do so, data set consisting of two groups of fetal signals (normal and compromised) has been established and provided by physicians. From estimated parameters an instantaneous Manning-like score, referred to as ultrasonic score was introduced and was used together with movements, heart rate and associated parameters in a classification process using Support Vector Machines (SVM) method. The influence of the fetal activity parameters and the performance of the SVM were evaluated using the computation of sensibility, specificity, percentage of support vectors and total classification accuracy. We showed our ability to separate the data into two sets : normal fetuses and compromised fetuses and obtained an excellent matching with the clinical classification performed by physician.

  7. Support Vector Regression-Based Adaptive Divided Difference Filter for Nonlinear State Estimation Problems

    Directory of Open Access Journals (Sweden)

    Hongjian Wang

    2014-01-01

    Full Text Available We present a support vector regression-based adaptive divided difference filter (SVRADDF algorithm for improving the low state estimation accuracy of nonlinear systems, which are typically affected by large initial estimation errors and imprecise prior knowledge of process and measurement noises. The derivative-free SVRADDF algorithm is significantly simpler to compute than other methods and is implemented using only functional evaluations. The SVRADDF algorithm involves the use of the theoretical and actual covariance of the innovation sequence. Support vector regression (SVR is employed to generate the adaptive factor to tune the noise covariance at each sampling instant when the measurement update step executes, which improves the algorithm’s robustness. The performance of the proposed algorithm is evaluated by estimating states for (i an underwater nonmaneuvering target bearing-only tracking system and (ii maneuvering target bearing-only tracking in an air-traffic control system. The simulation results show that the proposed SVRADDF algorithm exhibits better performance when compared with a traditional DDF algorithm.

  8. Support Vector Regression Method for Wind Speed Prediction Incorporating Probability Prior Knowledge

    Directory of Open Access Journals (Sweden)

    Jiqiang Chen

    2014-01-01

    Full Text Available Prior knowledge, such as wind speed probability distribution based on historical data and the wind speed fluctuation between the maximal value and the minimal value in a certain period of time, provides much more information about the wind speed, so it is necessary to incorporate it into the wind speed prediction. First, a method of estimating wind speed probability distribution based on historical data is proposed based on Bernoulli’s law of large numbers. Second, in order to describe the wind speed fluctuation between the maximal value and the minimal value in a certain period of time, the probability distribution estimated by the proposed method is incorporated into the training data and the testing data. Third, a support vector regression model for wind speed prediction is proposed based on standard support vector regression. At last, experiments predicting the wind speed in a certain wind farm show that the proposed method is feasible and effective and the model’s running time and prediction errors can meet the needs of wind speed prediction.

  9. Detection of Pathological and Normal Heartbeat Using Wavelet Packet, Support Vector Machines and Multilayer Perceptron

    Directory of Open Access Journals (Sweden)

    Alejandro J. Orozco-Naranjo

    2013-11-01

    Full Text Available This paper presents the results obtained by developing a methodology to detect 5 types of heartbeats (Normal (N, Right bundle branch block (RBBB, Left bundle branch block (LBBB, Premature atrial contraction (APC and Premature ventricular contraction (PVC, using Wavelet transform packets with non-adaptative mode applied on features extraction from heartbeats. It was used the Shannon function to calculate the entropy and It was added an identification nodes stage per every type of cardiac signal in the Wavelet tree. The using of Wavelet packets transform allows the access to information which results of decomposition of low and high frecuency, giving providing a more integral analysis than achieved by the discrete Wavelet transform. Three families of mother Wavelet were evaluated on transformation: Daubechies, Symlet and Reverse Biorthogonal, which were results from a previous research in that were identified the mother Wavelet that had higher entropy with the cardiac signals. With non-adaptive mode, the computational cost is reduced when Wavelet packets are used; this cost represents the most marked disadvantage from the transform. To classify the heartbeats were used Support Vector Machines and Multilayer Perceptron. The best classification error was achieved employing Support Vector Machine and a radial basis function; it was 2.57 %.

  10. Predicting the biomechanical strength of proximal femur specimens with Minkowski functionals and support vector regression

    Science.gov (United States)

    Yang, Chien-Chun; Nagarajan, Mahesh B.; Huber, Markus B.; Carballido-Gamio, Julio; Bauer, Jan S.; Baum, Thomas; Eckstein, Felix; Lochmüller, Eva-Maria; Link, Thomas M.; Wismüller, Axel

    2014-03-01

    Regional trabecular bone quality estimation for purposes of femoral bone strength prediction is important for improving the clinical assessment of osteoporotic fracture risk. In this study, we explore the ability of 3D Minkowski Functionals derived from multi-detector computed tomography (MDCT) images of proximal femur specimens in predicting their corresponding biomechanical strength. MDCT scans were acquired for 50 proximal femur specimens harvested from human cadavers. An automated volume of interest (VOI)-fitting algorithm was used to define a consistent volume in the femoral head of each specimen. In these VOIs, the trabecular bone micro-architecture was characterized by statistical moments of its BMD distribution and by topological features derived from Minkowski Functionals. A linear multiregression analysis and a support vector regression (SVR) algorithm with a linear kernel were used to predict the failure load (FL) from the feature sets; the predicted FL was compared to the true FL determined through biomechanical testing. The prediction performance was measured by the root mean square error (RMSE) for each feature set. The best prediction result was obtained from the Minkowski Functional surface used in combination with SVR, which had the lowest prediction error (RMSE = 0.939 ± 0.345) and which was significantly lower than mean BMD (RMSE = 1.075 ± 0.279, pfemur specimens with Minkowski Functionals extracted from on MDCT images used in conjunction with support vector regression.

  11. Fault Diagnosis of a Reconfigurable Crawling–Rolling Robot Based on Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Karthikeyan Elangovan

    2017-10-01

    Full Text Available As robots begin to perform jobs autonomously, with minimal or no human intervention, a new challenge arises: robots also need to autonomously detect errors and recover from faults. In this paper, we present a Support Vector Machine (SVM-based fault diagnosis system for a bio-inspired reconfigurable robot named Scorpio. The diagnosis system needs to detect and classify faults while Scorpio uses its crawling and rolling locomotion modes. Specifically, we classify between faulty and non-faulty conditions by analyzing onboard Inertial Measurement Unit (IMU sensor data. The data capture nine different locomotion gaits, which include rolling and crawling modes, at three different speeds. Statistical methods are applied to extract features and to reduce the dimensionality of original IMU sensor data features. These statistical features were given as inputs for training and testing. Additionally, the c-Support Vector Classification (c-SVC and nu-SVC models of SVM, and their fault classification accuracies, were compared. The results show that the proposed SVM approach can be used to autonomously diagnose locomotion gait faults while the reconfigurable robot is in operation.

  12. Human action recognition with group lasso regularized-support vector machine

    Science.gov (United States)

    Luo, Huiwu; Lu, Huanzhang; Wu, Yabei; Zhao, Fei

    2016-05-01

    The bag-of-visual-words (BOVW) and Fisher kernel are two popular models in human action recognition, and support vector machine (SVM) is the most commonly used classifier for the two models. We show two kinds of group structures in the feature representation constructed by BOVW and Fisher kernel, respectively, since the structural information of feature representation can be seen as a prior for the classifier and can improve the performance of the classifier, which has been verified in several areas. However, the standard SVM employs L2-norm regularization in its learning procedure, which penalizes each variable individually and cannot express the structural information of feature representation. We replace the L2-norm regularization with group lasso regularization in standard SVM, and a group lasso regularized-support vector machine (GLRSVM) is proposed. Then, we embed the group structural information of feature representation into GLRSVM. Finally, we introduce an algorithm to solve the optimization problem of GLRSVM by alternating directions method of multipliers. The experiments evaluated on KTH, YouTube, and Hollywood2 datasets show that our method achieves promising results and improves the state-of-the-art methods on KTH and YouTube datasets.

  13. Vision-Based Perception and Classification of Mosquitoes Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Masataka Fuchida

    2017-01-01

    Full Text Available The need for a novel automated mosquito perception and classification method is becoming increasingly essential in recent years, with steeply increasing number of mosquito-borne diseases and associated casualties. There exist remote sensing and GIS-based methods for mapping potential mosquito inhabitants and locations that are prone to mosquito-borne diseases, but these methods generally do not account for species-wise identification of mosquitoes in closed-perimeter regions. Traditional methods for mosquito classification involve highly manual processes requiring tedious sample collection and supervised laboratory analysis. In this research work, we present the design and experimental validation of an automated vision-based mosquito classification module that can deploy in closed-perimeter mosquito inhabitants. The module is capable of identifying mosquitoes from other bugs such as bees and flies by extracting the morphological features, followed by support vector machine-based classification. In addition, this paper presents the results of three variants of support vector machine classifier in the context of mosquito classification problem. This vision-based approach to the mosquito classification problem presents an efficient alternative to the conventional methods for mosquito surveillance, mapping and sample image collection. Experimental results involving classification between mosquitoes and a predefined set of other bugs using multiple classification strategies demonstrate the efficacy and validity of the proposed approach with a maximum recall of 98%.

  14. Performance evaluation of random forest and support vector regressions in natural hazard change detection

    Science.gov (United States)

    Eisavi, Vahid; Homayouni, Saeid

    2016-10-01

    Information on land use and land cover changes is considered as a foremost requirement for monitoring environmental change. Developing change detection methodology in the remote sensing community is an active research topic. However, to the best of our knowledge, no research has been conducted so far on the application of random forest regression (RFR) and support vector regression (SVR) for natural hazard change detection from high-resolution optical remote sensing observations. Hence, the objective of this study is to examine the use of RFR and SVR to discriminate between changed and unchanged areas after a tsunami. For this study, RFR and SVR were applied to two different pilot coastlines in Indonesia and Japan. Two different remotely sensed data sets acquired by Quickbird and Ikonos sensors were used for efficient evaluation of the proposed methodology. The results demonstrated better performance of SVM compared to random forest (RF) with an overall accuracy higher by 3% to 4% and kappa coefficient by 0.05 to 0.07. Using McNemar's test, statistically significant differences (Z≥1.96), at the 5% significance level, between the confusion matrices of the RF classifier and the support vector classifier were observed in both study areas. The high accuracy of change detection obtained in this study confirms that these methods have the potential to be used for detecting changes due to natural hazards.

  15. Adaptive Morphological Feature Extraction and Support Vector Regressive Classification for Bearing Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Jun Shuai

    2017-01-01

    Full Text Available Numerous studies on fault diagnosis have been conducted in recent years because the timely and correct detection of machine fault effectively minimizes the damage resulting in the unexpected breakdown of machineries. The mathematical morphological analysis has been performed to denoise raw signal. However, the improper choice of the length of the structure element (SE will substantially influence the effectiveness of fault feature extraction. Moreover, the classification of fault type is a significant step in intelligent fault diagnosis, and many techniques have already been developed, such as support vector machine (SVM. This study proposes an intelligent fault diagnosis strategy that combines the extraction of morphological feature and support vector regression (SVR classifier. The vibration signal is first processed using various scales of morphological analysis, where the length of SE is determined adaptively. Thereafter, nine statistical features are extracted from the processed signal. Lastly, an SVR classifier is used to identify the health condition of the machinery. The effectiveness of the proposed scheme is validated using the data set from a bearing test rig. Results show the high accuracy of the proposed method despite the influence of noise.

  16. A tool for urban soundscape evaluation applying Support Vector Machines for developing a soundscape classification model.

    Science.gov (United States)

    Torija, Antonio J; Ruiz, Diego P; Ramos-Ridao, Angel F

    2014-06-01

    To ensure appropriate soundscape management in urban environments, the urban-planning authorities need a range of tools that enable such a task to be performed. An essential step during the management of urban areas from a sound standpoint should be the evaluation of the soundscape in such an area. In this sense, it has been widely acknowledged that a subjective and acoustical categorization of a soundscape is the first step to evaluate it, providing a basis for designing or adapting it to match people's expectations as well. In this sense, this work proposes a model for automatic classification of urban soundscapes. This model is intended for the automatic classification of urban soundscapes based on underlying acoustical and perceptual criteria. Thus, this classification model is proposed to be used as a tool for a comprehensive urban soundscape evaluation. Because of the great complexity associated with the problem, two machine learning techniques, Support Vector Machines (SVM) and Support Vector Machines trained with Sequential Minimal Optimization (SMO), are implemented in developing model classification. The results indicate that the SMO model outperforms the SVM model in the specific task of soundscape classification. With the implementation of the SMO algorithm, the classification model achieves an outstanding performance (91.3% of instances correctly classified). © 2013 Elsevier B.V. All rights reserved.

  17. Anticipatory Monitoring and Control of Complex Systems using a Fuzzy based Fusion of Support Vector Regressors

    Energy Technology Data Exchange (ETDEWEB)

    Miltiadis Alamaniotis; Vivek Agarwal

    2014-10-01

    This paper places itself in the realm of anticipatory systems and envisions monitoring and control methods being capable of making predictions over system critical parameters. Anticipatory systems allow intelligent control of complex systems by predicting their future state. In the current work, an intelligent model aimed at implementing anticipatory monitoring and control in energy industry is presented and tested. More particularly, a set of support vector regressors (SVRs) are trained using both historical and observed data. The trained SVRs are used to predict the future value of the system based on current operational system parameter. The predicted values are then inputted to a fuzzy logic based module where the values are fused to obtain a single value, i.e., final system output prediction. The methodology is tested on real turbine degradation datasets. The outcome of the approach presented in this paper highlights the superiority over single support vector regressors. In addition, it is shown that appropriate selection of fuzzy sets and fuzzy rules plays an important role in improving system performance.

  18. Prediction of Skin Sensitization with a Particle Swarm Optimized Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Chenzhong Cao

    2009-07-01

    Full Text Available Skin sensitization is the most commonly reported occupational illness, causing much suffering to a wide range of people. Identification and labeling of environmental allergens is urgently required to protect people from skin sensitization. The guinea pig maximization test (GPMT and murine local lymph node assay (LLNA are the two most important in vivo models for identification of skin sensitizers. In order to reduce the number of animal tests, quantitative structure-activity relationships (QSARs are strongly encouraged in the assessment of skin sensitization of chemicals. This paper has investigated the skin sensitization potential of 162 compounds with LLNA results and 92 compounds with GPMT results using a support vector machine. A particle swarm optimization algorithm was implemented for feature selection from a large number of molecular descriptors calculated by Dragon. For the LLNA data set, the classification accuracies are 95.37% and 88.89% for the training and the test sets, respectively. For the GPMT data set, the classification accuracies are 91.80% and 90.32% for the training and the test sets, respectively. The classification performances were greatly improved compared to those reported in the literature, indicating that the support vector machine optimized by particle swarm in this paper is competent for the identification of skin sensitizers.

  19. Classification of EEG Signals Using a Multiple Kernel Learning Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Xiaoou Li

    2014-07-01

    Full Text Available In this study, a multiple kernel learning support vector machine algorithm is proposed for the identification of EEG signals including mental and cognitive tasks, which is a key component in EEG-based brain computer interface (BCI systems. The presented BCI approach included three stages: (1 a pre-processing step was performed to improve the general signal quality of the EEG; (2 the features were chosen, including wavelet packet entropy and Granger causality, respectively; (3 a multiple kernel learning support vector machine (MKL-SVM based on a gradient descent optimization algorithm was investigated to classify EEG signals, in which the kernel was defined as a linear combination of polynomial kernels and radial basis function kernels. Experimental results showed that the proposed method provided better classification performance compared with the SVM based on a single kernel. For mental tasks, the average accuracies for 2-class, 3-class, 4-class, and 5-class classifications were 99.20%, 81.25%, 76.76%, and 75.25% respectively. Comparing stroke patients with healthy controls using the proposed algorithm, we achieved the average classification accuracies of 89.24% and 80.33% for 0-back and 1-back tasks respectively. Our results indicate that the proposed approach is promising for implementing human-computer interaction (HCI, especially for mental task classification and identifying suitable brain impairment candidates.

  20. Diagnosis of Chronic Kidney Disease Based on Support Vector Machine by Feature Selection Methods.

    Science.gov (United States)

    Polat, Huseyin; Danaei Mehr, Homay; Cetin, Aydin

    2017-04-01

    As Chronic Kidney Disease progresses slowly, early detection and effective treatment are the only cure to reduce the mortality rate. Machine learning techniques are gaining significance in medical diagnosis because of their classification ability with high accuracy rates. The accuracy of classification algorithms depend on the use of correct feature selection algorithms to reduce the dimension of datasets. In this study, Support Vector Machine classification algorithm was used to diagnose Chronic Kidney Disease. To diagnose the Chronic Kidney Disease, two essential types of feature selection methods namely, wrapper and filter approaches were chosen to reduce the dimension of Chronic Kidney Disease dataset. In wrapper approach, classifier subset evaluator with greedy stepwise search engine and wrapper subset evaluator with the Best First search engine were used. In filter approach, correlation feature selection subset evaluator with greedy stepwise search engine and filtered subset evaluator with the Best First search engine were used. The results showed that the Support Vector Machine classifier by using filtered subset evaluator with the Best First search engine feature selection method has higher accuracy rate (98.5%) in the diagnosis of Chronic Kidney Disease compared to other selected methods.

  1. Support vector machines for seizure detection in an animal model of chronic epilepsy

    Science.gov (United States)

    Nandan, Manu; Talathi, Sachin S.; Myers, Stephen; Ditto, William L.; Khargonekar, Pramod P.; Carney, Paul R.

    2010-06-01

    We compare the performance of three support vector machine (SVM) types: weighted SVM, one-class SVM and support vector data description (SVDD) for the application of seizure detection in an animal model of chronic epilepsy. Large EEG datasets (273 h and 91 h respectively, with a sampling rate of 1 kHz) from two groups of rats with chronic epilepsy were used in this study. For each of these EEG datasets, we extracted three energy-based seizure detection features: mean energy, mean curve length and wavelet energy. Using these features we performed twofold cross-validation to obtain the performance statistics: sensitivity (S), specificity (K) and detection latency (τ) as a function of control parameters for the given SVM. Optimal control parameters for each SVM type that produced the best seizure detection statistics were then identified using two independent strategies. Performance of each SVM type is ranked based on the overall seizure detection performance through an optimality index metric (O). We found that SVDD not only performed better than the other SVM types in terms of highest value of the mean optimality index metric (\\skew3\\bar{O} ) but also gave a more reliable performance across the two EEG datasets.

  2. A genetic algorithm-support vector machine method with parameter optimization for selecting the tag SNPs.

    Science.gov (United States)

    Ilhan, Ilhan; Tezel, Gülay

    2013-04-01

    SNPs (Single Nucleotide Polymorphisms) include millions of changes in human genome, and therefore, are promising tools for disease-gene association studies. However, this kind of studies is constrained by the high expense of genotyping millions of SNPs. For this reason, it is required to obtain a suitable subset of SNPs to accurately represent the rest of SNPs. For this purpose, many methods have been developed to select a convenient subset of tag SNPs, but all of them only provide low prediction accuracy. In the present study, a brand new method is developed and introduced as GA-SVM with parameter optimization. This method benefits from support vector machine (SVM) and genetic algorithm (GA) to predict SNPs and to select tag SNPs, respectively. Furthermore, it also uses particle swarm optimization (PSO) algorithm to optimize C and γ parameters of support vector machine. It is experimentally tested on a wide range of datasets, and the obtained results demonstrate that this method can provide better prediction accuracy in identifying tag SNPs compared to other methods at present. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. An Artificial Intelligence Approach for Groutability Estimation Based on Autotuning Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Hong-Hai Tran

    2014-01-01

    Full Text Available Permeation grouting is a commonly used approach for soil improvement in construction engineering. Thus, predicting the results of grouting activities is a crucial task that needs to be carried out in the planning phase of any grouting project. In this research, a novel artificial intelligence approach—autotuning support vector machine—is proposed to forecast the result of grouting activities that employ microfine cement grouts. In the new model, the support vector machine (SVM algorithm is utilized to classify grouting activities into two classes: success and  failure. Meanwhile, the differential evolution (DE optimization algorithm is employed to identify the optimal tuning parameters of the SVM algorithm, namely, the penalty parameter and the kernel function parameter. The integration of the SVM and DE algorithms allows the newly established method to operate automatically without human prior knowledge or tedious processes for parameter setting. An experiment using a set of in situ data samples demonstrates that the newly established method can produce an outstanding prediction performance.

  4. Social Network Supported Process Recommender System

    Science.gov (United States)

    Ye, Yanming; Yin, Jianwei; Xu, Yueshen

    2014-01-01

    Process recommendation technologies have gained more and more attention in the field of intelligent business process modeling to assist the process modeling. However, most of the existing technologies only use the process structure analysis and do not take the social features of processes into account, while the process modeling is complex and comprehensive in most situations. This paper studies the feasibility of social network research technologies on process recommendation and builds a social network system of processes based on the features similarities. Then, three process matching degree measurements are presented and the system implementation is discussed subsequently. Finally, experimental evaluations and future works are introduced. PMID:24672309

  5. Rule extraction from support vector machines using ensemble learning approach: an application for diagnosis of diabetes.

    Science.gov (United States)

    Han, Longfei; Luo, Senlin; Yu, Jianmin; Pan, Limin; Chen, Songjing

    2015-03-01

    Diabetes mellitus is a chronic disease and a worldwide public health challenge. It has been shown that 50-80% proportion of T2DM is undiagnosed. In this paper, support vector machines are utilized to screen diabetes, and an ensemble learning module is added, which turns the "black box" of SVM decisions into comprehensible and transparent rules, and it is also useful for solving imbalance problem. Results on China Health and Nutrition Survey data show that the proposed ensemble learning method generates rule sets with weighted average precision 94.2% and weighted average recall 93.9% for all classes. Furthermore, the hybrid system can provide a tool for diagnosis of diabetes, and it supports a second opinion for lay users.

  6. Rotor Resistance Online Identification of Vector Controlled Induction Motor Based on Neural Network

    Directory of Open Access Journals (Sweden)

    Bo Fan

    2014-01-01

    Full Text Available Rotor resistance identification has been well recognized as one of the most critical factors affecting the theoretical study and applications of AC motor’s control for high performance variable frequency speed adjustment. This paper proposes a novel model for rotor resistance parameters identification based on Elman neural networks. Elman recurrent neural network is capable of performing nonlinear function approximation and possesses the ability of time-variable characteristic adaptation. Those influencing factors of specified parameter are analyzed, respectively, and various work states are covered to ensure the completeness of the training samples. Through signal preprocessing on samples and training dataset, different input parameters identifications with one network are compared and analyzed. The trained Elman neural network, applied in the identification model, is able to efficiently predict the rotor resistance in high accuracy. The simulation and experimental results show that the proposed method owns extensive adaptability and performs very well in its application to vector controlled induction motor. This identification method is able to enhance the performance of induction motor’s variable-frequency speed regulation.

  7. Global Development Network: Supporting Global Research Capacity

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Global Development Network (GDN) is an international organization focused on building research capacity in development. Founded in 1999, GDN is ... The Centre for Research and Technology Development (RESTECH) is a two-year-old science and technology research centre at Maseno University in western Kenya.

  8. Gender differences in the support networks of caregivers.

    Science.gov (United States)

    Hibbard, J; Neufeld, A; Harrison, M J

    1996-09-01

    Nurses in home care and long-term care settings play an important role in assisting family caregivers of elders who are cognitively impaired to sustain personal support while caregiving. Research has shown that such support is associated with positive health status. The characteristics of the caregiver's social network provide information about the potential for support. The purpose of this study was to describe and compare the social networks of men and women caregivers in terms of the composition of the social network and the size of the available, utilized and conflicted social networks. The possible relationship between the demographic characteristics of caregivers and the size and composition of their social networks was also examined. In comparison to men, the conflicted social networks of women were larger and comprised of more family members. For women, age, years of caregiving and socioeconomic status were not significantly related to the size of their social network. However, younger men and men of higher socioeconomic status reported significantly larger available social networks than other men. Knowledge of the gender differences in network size and composition that were identified in this study contributes to nurses' ability to identify caregivers who may be at risk for inadequate social support. In conjunction with the findings from related studies these results have implications for nursing assessment and intervention in home care and long-term care settings.

  9. Supportive Networks: Life Ties for the Elderly.

    Science.gov (United States)

    Pilisuk, Marc; Minkler, Meredith

    1980-01-01

    Summarizes data showing the detrimental effects to the health of the elderly that are associated with diminution of supportive interpersonal ties. Describes six programs that illustrate the range of diversity of tasks involved in the provision of supportive associations for the elderly. (Author/GC)

  10. Independent Component Analysis-Support Vector Machine-Based Computer-Aided Diagnosis System for Alzheimer's with Visual Support.

    Science.gov (United States)

    Khedher, Laila; Illán, Ignacio A; Górriz, Juan M; Ramírez, Javier; Brahim, Abdelbasset; Meyer-Baese, Anke

    2017-05-01

    Computer-aided diagnosis (CAD) systems constitute a powerful tool for early diagnosis of Alzheimer's disease (AD), but limitations on interpretability and performance exist. In this work, a fully automatic CAD system based on supervised learning methods is proposed to be applied on segmented brain magnetic resonance imaging (MRI) from Alzheimer's disease neuroimaging initiative (ADNI) participants for automatic classification. The proposed CAD system possesses two relevant characteristics: optimal performance and visual support for decision making. The CAD is built in two stages: a first feature extraction based on independent component analysis (ICA) on class mean images and, secondly, a support vector machine (SVM) training and classification. The obtained features for classification offer a full graphical representation of the images, giving an understandable logic in the CAD output, that can increase confidence in the CAD support. The proposed method yields classification results up to 89% of accuracy (with 92% of sensitivity and 86% of specificity) for normal controls (NC) and AD patients, 79% of accuracy (with 82% of sensitivity and 76% of specificity) for NC and mild cognitive impairment (MCI), and 85% of accuracy (with 85% of sensitivity and 86% of specificity) for MCI and AD patients.

  11. Supporting MOOC Instruction with Social Network Analysis

    OpenAIRE

    Sinha, Tanmay

    2014-01-01

    With an expansive and ubiquitously available gold mine of educational data, Massive Open Online courses (MOOCs) have become the an important foci of learning analytics research. In this paper, we investigate potential reasons as to why are these digitalized learning repositories being plagued with huge attrition rates. We analyze an ongoing online course offered in Coursera using a social network perspective, with an objective to identify students who are actively participating in course disc...

  12. Supporting Scientific Research with the Energy Sciences Network

    CERN Multimedia

    CERN. Geneva; Monga, Inder

    2016-01-01

    The Energy Sciences Network (ESnet) is a high-performance, unclassified national network built to support scientific research. Funded by the U.S. Department of Energy’s Office of Science (SC) and managed by Lawrence Berkeley National Laboratory, ESnet provides services to more than 40 DOE research sites, including the entire National Laboratory system, its supercomputing facilities, and its major scientific instruments. ESnet also connects to 140 research and commercial networks, permitting DOE-funded scientists to productively collaborate with partners around the world. ESnet Division Director (Interim) Inder Monga and ESnet Networking Engineer David Mitchell will present current ESnet projects and research activities which help support the HEP community. ESnet  helps support the CERN community by providing 100Gbps trans-Atlantic network transport for the LHCONE and LHCOPN services. ESnet is also actively engaged in researching connectivity to cloud computing resources for HEP workflows a...

  13. Prediction of endoplasmic reticulum resident proteins using fragmented amino acid composition and support vector machine

    Directory of Open Access Journals (Sweden)

    Ravindra Kumar

    2017-09-01

    Full Text Available Background The endoplasmic reticulum plays an important role in many cellular processes, which includes protein synthesis, folding and post-translational processing of newly synthesized proteins. It is also the site for quality control of misfolded proteins and entry point of extracellular proteins to the secretory pathway. Hence at any given point of time, endoplasmic reticulum contains two different cohorts of proteins, (i proteins involved in endoplasmic reticulum-specific function, which reside in the lumen of the endoplasmic reticulum, called as endoplasmic reticulum resident proteins and (ii proteins which are in process of moving to the extracellular space. Thus, endoplasmic reticulum resident proteins must somehow be distinguished from newly synthesized secretory proteins, which pass through the endoplasmic reticulum on their way out of the cell. Approximately only 50% of the proteins used in this study as training data had endoplasmic reticulum retention signal, which shows that these signals are not essentially present in all endoplasmic reticulum resident proteins. This also strongly indicates the role of additional factors in retention of endoplasmic reticulum-specific proteins inside the endoplasmic reticulum. Methods This is a support vector machine based method, where we had used different forms of protein features as inputs for support vector machine to develop the prediction models. During training leave-one-out approach of cross-validation was used. Maximum performance was obtained with a combination of amino acid compositions of different part of proteins. Results In this study, we have reported a novel support vector machine based method for predicting endoplasmic reticulum resident proteins, named as ERPred. During training we achieved a maximum accuracy of 81.42% with leave-one-out approach of cross-validation. When evaluated on independent dataset, ERPred did prediction with sensitivity of 72.31% and specificity of 83

  14. Support network and social support for children with special health care need

    Directory of Open Access Journals (Sweden)

    Thaís Araújo Barbosa

    2016-02-01

    Full Text Available Objective: to understand and identify the support network and social support from the perspective of families of children with chronic conditions. Methods: a qualitative study, with content analysis of 134 records, followed by ten semi-structured interviews. Results: the analysis has revealed that the primary caregiver, the mother, participates in a network of limited support, only with the help of her husband, children, grandparents and the child´s godparents. They also have a social network through a multidisciplinary team, which in some cases is not effective. Conclusion: families have a deficient and limited support network and the demand for care rely only on the support of the husband, grandparents, children, and godparents. Social networking refers to the philanthropic institutions, while the aid of public service, basic health unit is basic.

  15. Least square support vector machine for citrus greening by use of near infrared spectroscopy

    Science.gov (United States)

    Liu, Yande; Xiao, Huaichun; Sun, Xudong; Han, Rubing; Ye, Lingyu; Liu, Deli

    2017-02-01

    Citrus greening or Huanglongbing (HLB) is one of most serious citrus diseases in the world. Once a tree is infected, there is no cure. The feasibility was investigated for discriminating citrus greening by use of near infrared (NIR) spectroscopy and least square support vector machine (LS-SVM). The spectra of sound and citrus greening samples were recorded in the wavenumber range of 4000-9000 cm-1. The preprocessing method of second derivative with a gap of seven was adapted to eliminate spectral baseline. The spectral variables were optimized by principal component analysis (PCA) and (UVE) algorithms. The unknown samples were used to access the performance of the models. Compared to the PLS-DA model, the LS-SVM was better with the input vector of the first 15 principal components and linear kernel function. The regularization factor (γ) of linear kernel function was 1.8756, and the operation time of LS-SVM model was 0.86s. The recognition error of the LS-SVM model was zero. The results showed that the combination of LS-SVM and NIR spectroscopy could detect citrus greening nondestructively and rapidly.

  16. Twin Support Vector Machine for Multiple Instance Learning Based on Bag Dissimilarities

    Directory of Open Access Journals (Sweden)

    Divya Tomar

    2016-01-01

    Full Text Available In multiple instance learning (MIL framework, an object is represented by a set of instances referred to as bag. A positive class label is assigned to a bag if it contains at least one positive instance; otherwise a bag is labeled with negative class label. Therefore, the task of MIL is to learn a classifier at bag level rather than at instance level. Traditional supervised learning approaches cannot be applied directly in such kind of situation. In this study, we represent each bag by a vector of its dissimilarities to the other existing bags in the training dataset and propose a multiple instance learning based Twin Support Vector Machine (MIL-TWSVM classifier. We have used different ways to represent the dissimilarity between two bags and performed a comparative analysis of them. The experimental results on ten benchmark MIL datasets demonstrate that the proposed MIL-TWSVM classifier is computationally inexpensive and competitive with state-of-the-art approaches. The significance of the experimental results has been tested by using Friedman statistic and Nemenyi post hoc tests.

  17. Cellular automata for simulating land use changes based on support vector machines

    Science.gov (United States)

    Yang, Qingsheng; Li, Xia; Shi, Xun

    2008-06-01

    Cellular automata (CA) have been increasingly used to simulate urban sprawl and land use dynamics. A major issue in CA is defining appropriate transition rules based on training data. Linear boundaries have been widely used to define the rules. However, urban land use dynamics and many other geographical phenomena are highly complex and require nonlinear boundaries for the rules. In this study, we tested the support vector machines (SVM) as a method for constructing nonlinear transition rules for CA. SVM is good at dealing with nonlinear complex relationships. Its basic idea is to project input vectors to a higher dimensional Hilbert feature space, in which an optimal classifying hyperplane can be constructed through structural risk minimization and margin maximization. The optimal hyperplane is unique and its optimality is global. The proposed SVM-CA model was implemented using Visual Basic, ArcObjects®, and OSU-SVM. A case study simulating the urban development in the Shenzhen City, China demonstrates that the proposed model can achieve high accuracy and overcome some limitations of existing CA models in simulating complex urban systems.

  18. Pulse waveform classification using support vector machine with Gaussian time warp edit distance kernel.

    Science.gov (United States)

    Jia, Danbing; Zhang, Dongyu; Li, Naimin

    2014-01-01

    Advances in signal processing techniques have provided effective tools for quantitative research in traditional Chinese pulse diagnosis. However, because of the inevitable intraclass variations of pulse patterns, the automatic classification of pulse waveforms has remained a difficult problem. Utilizing the new elastic metric, that is, time wrap edit distance (TWED), this paper proposes to address the problem under the support vector machines (SVM) framework by using the Gaussian TWED kernel function. The proposed method, SVM with GTWED kernel (GTWED-SVM), is evaluated on a dataset including 2470 pulse waveforms of five distinct patterns. The experimental results show that the proposed method achieves a lower average error rate than current pulse waveform classification methods.

  19. Morphological analysis of dendrites and spines by hybridization of ridge detection with twin support vector machine.

    Science.gov (United States)

    Wang, Shuihua; Chen, Mengmeng; Li, Yang; Shao, Ying; Zhang, Yudong; Du, Sidan; Wu, Jane

    2016-01-01

    Dendritic spines are described as neuronal protrusions. The morphology of dendritic spines and dendrites has a strong relationship to its function, as well as playing an important role in understanding brain function. Quantitative analysis of dendrites and dendritic spines is essential to an understanding of the formation and function of the nervous system. However, highly efficient tools for the quantitative analysis of dendrites and dendritic spines are currently undeveloped. In this paper we propose a novel three-step cascaded algorithm-RTSVM- which is composed of ridge detection as the curvature structure identifier for backbone extraction, boundary location based on differences in density, the Hu moment as features and Twin Support Vector Machine (TSVM) classifiers for spine classification. Our data demonstrates that this newly developed algorithm has performed better than other available techniques used to detect accuracy and false alarm rates. This algorithm will be used effectively in neuroscience research.

  20. The Quality Prediction in Small-batch Producing Based on Weighted Least Squares Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Zhang Sheng Bo

    2016-01-01

    Full Text Available A novel quality prediction method with mobile time window is proposed for small-batch producing process based on weighted least squares support vector regression (LS-SVR. The design steps and learning algorithm are also addressed. In the method, weighted LS-SVR is taken as the intelligent kernel, with which the small-batch learning is solved well and the nearer sample is set a larger weight, while the farther is set the smaller weight in the history data. A typical machining process of cutting bearing outer race is carried out and the real measured data are used to contrast experiment. The experimental results demonstrate that the prediction accuracy of the weighted LSSVR based model is only 20%-30% that of the standard LS-SVR based one in the same condition. It provides a better candidate for quality prediction of small-batch producing process.

  1. Towards human behavior recognition based on spatio temporal features and support vector machines

    Science.gov (United States)

    Ghabri, Sawsen; Ouarda, Wael; Alimi, Adel M.

    2017-03-01

    Security and surveillance are vital issues in today's world. The recent acts of terrorism have highlighted the urgent need for efficient surveillance. There is indeed a need for an automated system for video surveillance which can detect identity and activity of person. In this article, we propose a new paradigm to recognize an aggressive human behavior such as boxing action. Our proposed system for human activity detection includes the use of a fusion between Spatio Temporal Interest Point (STIP) and Histogram of Oriented Gradient (HoG) features. The novel feature called Spatio Temporal Histogram Oriented Gradient (STHOG). To evaluate the robustness of our proposed paradigm with a local application of HoG technique on STIP points, we made experiments on KTH human action dataset based on Multi Class Support Vector Machines classification. The proposed scheme outperforms basic descriptors like HoG and STIP to achieve 82.26% us an accuracy value of classification rate.

  2. Midterm Electricity Market Clearing Price Forecasting Using Two-Stage Multiple Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Xing Yan

    2015-01-01

    Full Text Available Currently, there are many techniques available for short-term forecasting of the electricity market clearing price (MCP, but very little work has been done in the area of midterm forecasting of the electricity MCP. The midterm forecasting of the electricity MCP is essential for maintenance scheduling, planning, bilateral contracting, resources reallocation, and budgeting. A two-stage multiple support vector machine (SVM based midterm forecasting model of the electricity MCP is proposed in this paper. The first stage is utilized to separate the input data into corresponding price zones by using a single SVM. Then, the second stage is applied utilizing four parallel designed SVMs to forecast the electricity price in four different price zones. Compared to the forecasting model using a single SVM, the proposed model showed improved forecasting accuracy in both peak prices and overall system. PJM interconnection data are used to test the proposed model.

  3. Casing Vibration Fault Diagnosis Based on Variational Mode Decomposition, Local Linear Embedding, and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Yizhou Yang

    2017-01-01

    Full Text Available To diagnose mechanical faults of rotor-bearing-casing system by analyzing its casing vibration signal, this paper proposes a training procedure of a fault classifier based on variational mode decomposition (VMD, local linear embedding (LLE, and support vector machine (SVM. VMD is used first to decompose the casing signal into several modes, which are subsignals usually modulated by fault frequencies. Vibrational features are extracted from both VMD subsignals and the original one. LLE is employed here to reduce the dimensionality of these extracted features and make the samples more separable. Then low-dimensional data sets are used to train the multiclass SVM whose accuracy is tested by classifying the test samples. When the parameters of LLE and SVM are well optimized, this proposed method performs well on experimental data, showing its capacity of diagnosing casing vibration faults.

  4. Data on Support Vector Machines (SVM model to forecast photovoltaic power

    Directory of Open Access Journals (Sweden)

    M. Malvoni

    2016-12-01

    Full Text Available The data concern the photovoltaic (PV power, forecasted by a hybrid model that considers weather variations and applies a technique to reduce the input data size, as presented in the paper entitled “Photovoltaic forecast based on hybrid pca-lssvm using dimensionality reducted data” (M. Malvoni, M.G. De Giorgi, P.M. Congedo, 2015 [1]. The quadratic Renyi entropy criteria together with the principal component analysis (PCA are applied to the Least Squares Support Vector Machines (LS-SVM to predict the PV power in the day-ahead time frame. The data here shared represent the proposed approach results. Hourly PV power predictions for 1,3,6,12, 24 ahead hours and for different data reduction sizes are provided in Supplementary material.

  5. The research and application of visual saliency and adaptive support vector machine in target tracking field.

    Science.gov (United States)

    Chen, Yuantao; Xu, Weihong; Kuang, Fangjun; Gao, Shangbing

    2013-01-01

    The efficient target tracking algorithm researches have become current research focus of intelligent robots. The main problems of target tracking process in mobile robot face environmental uncertainty. They are very difficult to estimate the target states, illumination change, target shape changes, complex backgrounds, and other factors and all affect the occlusion in tracking robustness. To further improve the target tracking's accuracy and reliability, we present a novel target tracking algorithm to use visual saliency and adaptive support vector machine (ASVM). Furthermore, the paper's algorithm has been based on the mixture saliency of image features. These features include color, brightness, and sport feature. The execution process used visual saliency features and those common characteristics have been expressed as the target's saliency. Numerous experiments demonstrate the effectiveness and timeliness of the proposed target tracking algorithm in video sequences where the target objects undergo large changes in pose, scale, and illumination.

  6. Text localization using standard deviation analysis of structure elements and support vector machines

    Science.gov (United States)

    Zagoris, Konstantinos; Chatzichristofis, Savvas A.; Papamarkos, Nikos

    2011-12-01

    A text localization technique is required to successfully exploit document images such as technical articles and letters. The proposed method detects and extracts text areas from document images. Initially a connected components analysis technique detects blocks of foreground objects. Then, a descriptor that consists of a set of suitable document structure elements is extracted from the blocks. This is achieved by incorporating an algorithm called Standard Deviation Analysis of Structure Elements (SDASE) which maximizes the separability between the blocks. Another feature of the SDASE is that its length adapts according to the requirements of the application. Finally, the descriptor of each block is used as input to a trained support vector machines that classify the block as text or not. The proposed technique is also capable of adjusting to the text structure of the documents. Experimental results on benchmarking databases demonstrate the effectiveness of the proposed method.

  7. Support vector regression model for predicting the sorption capacity of lead (II

    Directory of Open Access Journals (Sweden)

    Nusrat Parveen

    2016-09-01

    Full Text Available Biosorption is supposed to be an economical process for the treatment of wastewater containing heavy metals like lead (II. In this research paper, the support vector regression (SVR has been used to predict the sorption capacity of lead (II ions with the independent input parameters being: initial lead ion concentration, pH, temperature and contact time. Tree fern, an agricultural by-product, has been employed as a low cost biosorbent. Comparison between multiple linear regression (MLR and SVR-based models has been made using statistical parameters. It has been found that the SVR model is more accurate and generalized for prediction of the sorption capacity of lead (II ions.

  8. The Research and Application of Visual Saliency and Adaptive Support Vector Machine in Target Tracking Field

    Directory of Open Access Journals (Sweden)

    Yuantao Chen

    2013-01-01

    Full Text Available The efficient target tracking algorithm researches have become current research focus of intelligent robots. The main problems of target tracking process in mobile robot face environmental uncertainty. They are very difficult to estimate the target states, illumination change, target shape changes, complex backgrounds, and other factors and all affect the occlusion in tracking robustness. To further improve the target tracking’s accuracy and reliability, we present a novel target tracking algorithm to use visual saliency and adaptive support vector machine (ASVM. Furthermore, the paper’s algorithm has been based on the mixture saliency of image features. These features include color, brightness, and sport feature. The execution process used visual saliency features and those common characteristics have been expressed as the target’s saliency. Numerous experiments demonstrate the effectiveness and timeliness of the proposed target tracking algorithm in video sequences where the target objects undergo large changes in pose, scale, and illumination.

  9. Prediction of mitochondrial proteins based on genetic algorithm - partial least squares and support vector machine.

    Science.gov (United States)

    Tan, F; Feng, X; Fang, Z; Li, M; Guo, Y; Jiang, L

    2007-11-01

    Mitochondria are essential cell organelles of eukaryotes. Hence, it is vitally important to develop an automated and reliable method for timely identification of novel mitochondrial proteins. In this study, mitochondrial proteins were encoded by dipeptide composition technology; then, the genetic algorithm-partial least square (GA-PLS) method was used to evaluate the dipeptide composition elements which are more important in recognizing mitochondrial proteins; further, these selected dipeptide composition elements were applied to support vector machine (SVM)-based classifiers to predict the mitochondrial proteins. All the models were trained and validated by the jackknife cross-validation test. The prediction accuracy is 85%, suggesting that it performs reasonably well in predicting the mitochondrial proteins. Our results strongly imply that not all the dipeptide compositions are informative and indispensable for predicting proteins. The source code of MATLAB and the dataset are available on request under liml@scu.edu.cn.

  10. Blind multiuser detector for chaos-based CDMA using support vector machine.

    Science.gov (United States)

    Kao, Johnny Wei-Hsun; Berber, Stevan Mirko; Kecman, Vojislav

    2010-08-01

    The algorithm and the results of a blind multiuser detector using a machine learning technique called support vector machine (SVM) on a chaos-based code division multiple access system is presented in this paper. Simulation results showed that the performance achieved by using SVM is comparable to existing minimum mean square error (MMSE) detector under both additive white Gaussian noise (AWGN) and Rayleigh fading conditions. However, unlike the MMSE detector, the SVM detector does not require the knowledge of spreading codes of other users in the system or the estimate of the channel noise variance. The optimization of this algorithm is considered in this paper and its complexity is compared with the MMSE detector. This detector is much more suitable to work in the forward link than MMSE. In addition, original theoretical bit-error rate expressions for the SVM detector under both AWGN and Rayleigh fading are derived to verify the simulation results.

  11. Using support vector machines to identify literacy skills: Evidence from eye movements.

    Science.gov (United States)

    Lou, Ya; Liu, Yanping; Kaakinen, Johanna K; Li, Xingshan

    2017-06-01

    Is inferring readers' literacy skills possible by analyzing their eye movements during text reading? This study used Support Vector Machines (SVM) to analyze eye movement data from 61 undergraduate students who read a multiple-paragraph, multiple-topic expository text. Forward fixation time, first-pass rereading time, second-pass fixation time, and regression path reading time on different regions of the text were provided as features. The SVM classification algorithm assisted in distinguishing high-literacy-skilled readers from low-literacy-skilled readers with 80.3 % accuracy. Results demonstrate the effectiveness of combining eye tracking and machine learning techniques to detect readers with low literacy skills, and suggest that such approaches can be potentially used in predicting other cognitive abilities.

  12. Towards artificial intelligence based diesel engine performance control under varying operating conditions using support vector regression

    Directory of Open Access Journals (Sweden)

    Naradasu Kumar Ravi

    2013-01-01

    Full Text Available Diesel engine designers are constantly on the look-out for performance enhancement through efficient control of operating parameters. In this paper, the concept of an intelligent engine control system is proposed that seeks to ensure optimized performance under varying operating conditions. The concept is based on arriving at the optimum engine operating parameters to ensure the desired output in terms of efficiency. In addition, a Support Vector Machines based prediction model has been developed to predict the engine performance under varying operating conditions. Experiments were carried out at varying loads, compression ratios and amounts of exhaust gas recirculation using a variable compression ratio diesel engine for data acquisition. It was observed that the SVM model was able to predict the engine performance accurately.

  13. Application of the Support Vector Machine to Predict Subclinical Mastitis in Dairy Cattle

    Directory of Open Access Journals (Sweden)

    Nazira Mammadova

    2013-01-01

    Full Text Available This study presented a potentially useful alternative approach to ascertain the presence of subclinical and clinical mastitis in dairy cows using support vector machine (SVM techniques. The proposed method detected mastitis in a cross-sectional representative sample of Holstein dairy cattle milked using an automatic milking system. The study used such suspected indicators of mastitis as lactation rank, milk yield, electrical conductivity, average milking duration, and control season as input data. The output variable was somatic cell counts obtained from milk samples collected monthly throughout the 15 months of the control period. Cattle were judged to be healthy or infected based on those somatic cell counts. This study undertook a detailed scrutiny of the SVM methodology, constructing and examining a model which showed 89% sensitivity, 92% specificity, and 50% error in mastitis detection.

  14. A Numerical Comparison of Rule Ensemble Methods and Support Vector Machines

    Energy Technology Data Exchange (ETDEWEB)

    Meza, Juan C.; Woods, Mark

    2009-12-18

    Machine or statistical learning is a growing field that encompasses many scientific problems including estimating parameters from data, identifying risk factors in health studies, image recognition, and finding clusters within datasets, to name just a few examples. Statistical learning can be described as 'learning from data' , with the goal of making a prediction of some outcome of interest. This prediction is usually made on the basis of a computer model that is built using data where the outcomes and a set of features have been previously matched. The computer model is called a learner, hence the name machine learning. In this paper, we present two such algorithms, a support vector machine method and a rule ensemble method. We compared their predictive power on three supernova type 1a data sets provided by the Nearby Supernova Factory and found that while both methods give accuracies of approximately 95%, the rule ensemble method gives much lower false negative rates.

  15. Bearing Degradation Process Prediction Based on the Support Vector Machine and Markov Model

    Directory of Open Access Journals (Sweden)

    Shaojiang Dong

    2014-01-01

    Full Text Available Predicting the degradation process of bearings before they reach the failure threshold is extremely important in industry. This paper proposed a novel method based on the support vector machine (SVM and the Markov model to achieve this goal. Firstly, the features are extracted by time and time-frequency domain methods. However, the extracted original features are still with high dimensional and include superfluous information, and the nonlinear multifeatures fusion technique LTSA is used to merge the features and reduces the dimension. Then, based on the extracted features, the SVM model is used to predict the bearings degradation process, and the CAO method is used to determine the embedding dimension of the SVM model. After the bearing degradation process is predicted by SVM model, the Markov model is used to improve the prediction accuracy. The proposed method was validated by two bearing run-to-failure experiments, and the results proved the effectiveness of the methodology.

  16. Single Image Super-Resolution by Non-Linear Sparse Representation and Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Yungang Zhang

    2017-02-01

    Full Text Available Sparse representations are widely used tools in image super-resolution (SR tasks. In the sparsity-based SR methods, linear sparse representations are often used for image description. However, the non-linear data distributions in images might not be well represented by linear sparse models. Moreover, many sparsity-based SR methods require the image patch self-similarity assumption; however, the assumption may not always hold. In this paper, we propose a novel method for single image super-resolution (SISR. Unlike most prior sparsity-based SR methods, the proposed method uses non-linear sparse representation to enhance the description of the non-linear information in images, and the proposed framework does not need to assume the self-similarity of image patches. Based on the minimum reconstruction errors, support vector regression (SVR is applied for predicting the SR image. The proposed method was evaluated on various benchmark images, and promising results were obtained.

  17. Control for Ship Course-Keeping Using Optimized Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Weilin Luo

    2016-08-01

    Full Text Available Support vector machines (SVM are proposed in order to obtain a robust controller for ship course-keeping. A cascaded system is constructed by combining the dynamics of the rudder actuator with the dynamics of ship motion. Modeling errors and disturbances are taken into account in the plant. A controller with a simple structure is produced by applying an SVM and L2-gain design. The SVM is used to identify the complicated nonlinear functions and the modeling errors in the plant. The Lagrangian factors in the SVM are obtained using on-line tuning algorithms. L2-gain design is applied to suppress the disturbances. To obtain the optimal parameters in the SVM, then particle swarm optimization (PSO method is incorporated. The stability and robustness of the close-loop system are confirmed by Lyapunov stability analysis. Numerical simulation is performed to demonstrate the validity of the proposed hybrid controller and its superior performance over a conventional PD controller.

  18. Fast Fourier transform-based support vector machine for subcellular localization prediction using different substitution models.

    Science.gov (United States)

    Wang, Zhimeng; Jiang, Lin; Li, Menglong; Sun, Lina; Lin, Rongying

    2007-09-01

    There are approximately 10(9) proteins in a cell. A hotspot in bioinformatics is how to identify a protein subcellular localization, if its sequence is known. In this paper, a method using fast Fourier transform-based support vector machine is developed to predict the subcellular localization of proteins from their physicochemical properties and structural parameters. The prediction accuracies reached 83% in prokaryotic organisms and 84% in eukaryotic organisms with the substitution model of the c-p-v matrix (c, composition; p, polarity; and v, molecular volume). The overall prediction accuracy was also evaluated using the "leave-one-out" jackknife procedure. The influence of the substitution model on prediction accuracy has also been discussed in the work. The source code of the new program is available on request from the authors.

  19. Rapid authentication of adulteration of olive oil by near-infrared spectroscopy using support vector machines

    Science.gov (United States)

    Wu, Jingzhu; Dong, Jingjing; Dong, Wenfei; Chen, Yan; Liu, Cuiling

    2016-10-01

    A classification method of support vector machines with linear kernel was employed to authenticate genuine olive oil based on near-infrared spectroscopy. There were three types of adulteration of olive oil experimented in the study. The adulterated oil was respectively soybean oil, rapeseed oil and the mixture of soybean and rapeseed oil. The average recognition rate of second experiment was more than 90% and that of the third experiment was reach to 100%. The results showed the method had good performance in classifying genuine olive oil and the adulteration with small variation range of adulterated concentration and it was a promising and rapid technique for the detection of oil adulteration and fraud in the food industry.

  20. Fault Detection and Diagnosis in Process Data Using Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Fang Wu

    2014-01-01

    Full Text Available For the complex industrial process, it has become increasingly challenging to effectively diagnose complicated faults. In this paper, a combined measure of the original Support Vector Machine (SVM and Principal Component Analysis (PCA is provided to carry out the fault classification, and compare its result with what is based on SVM-RFE (Recursive Feature Elimination method. RFE is used for feature extraction, and PCA is utilized to project the original data onto a lower dimensional space. PCA T2, SPE statistics, and original SVM are proposed to detect the faults. Some common faults of the Tennessee Eastman Process (TEP are analyzed in terms of the practical system and reflections of the dataset. PCA-SVM and SVM-RFE can effectively detect and diagnose these common faults. In RFE algorithm, all variables are decreasingly ordered according to their contributions. The classification accuracy rate is improved by choosing a reasonable number of features.

  1. Combining PSSM and physicochemical feature for protein structure prediction with support vector machine

    Science.gov (United States)

    Kurniawan, I.; Haryanto, T.; Hasibuan, L. S.; Agmalaro, M. A.

    2017-05-01

    Protein is one of the giant biomolecules that act as the main component of the organism. Protein is formed from building blocks namely amino acids. Hierarchically, the structure of protein is divided into four levels: primary, secondary, tertiary, and quaternary structure. Protein secondary structure is formed by amino acid sequences that would form three-dimensional structures and have information about the tertiary structure and function of proteins. This study used 277,389 protein residue data from enzyme categories. Position-specific scoring matrix (PSSM) profile and physicochemical are used for features. This study developed support vector machine models to predict the protein secondary structure by recognizing patterns of amino acid sequences. The Q3 results showed that the best scores obtained are 93.16% from the dataset that has 260 features with the radial kernel. Combining PSSM and physicochemical feature additions can be used for prediction.

  2. Short-Term Prediction of Air Pollution in Macau Using Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Chi-Man Vong

    2012-01-01

    Full Text Available Forecasting of air pollution is a popular and important topic in recent years due to the health impact caused by air pollution. It is necessary to build an early warning system, which provides forecast and also alerts health alarm to local inhabitants by medical practitioners and the local government. Meteorological and pollutions data collected daily at monitoring stations of Macau can be used in this study to build a forecasting system. Support vector machines (SVMs, a novel type of machine learning technique based on statistical learning theory, can be used for regression and time series prediction. SVM is capable of good generalization while the performance of the SVM model is often hinged on the appropriate choice of the kernel.

  3. A scatter-based prototype framework and multi-class extension of support vector machines.

    Directory of Open Access Journals (Sweden)

    Robert Jenssen

    Full Text Available We provide a novel interpretation of the dual of support vector machines (SVMs in terms of scatter with respect to class prototypes and their mean. As a key contribution, we extend this framework to multiple classes, providing a new joint Scatter SVM algorithm, at the level of its binary counterpart in the number of optimization variables. This enables us to implement computationally efficient solvers based on sequential minimal and chunking optimization. As a further contribution, the primal problem formulation is developed in terms of regularized risk minimization and the hinge loss, revealing the score function to be used in the actual classification of test patterns. We investigate Scatter SVM properties related to generalization ability, computational efficiency, sparsity and sensitivity maps, and report promising results.

  4. Broiler chickens can benefit from machine learning: support vector machine analysis of observational epidemiological data.

    Science.gov (United States)

    Hepworth, Philip J; Nefedov, Alexey V; Muchnik, Ilya B; Morgan, Kenton L

    2012-08-07

    Machine-learning algorithms pervade our daily lives. In epidemiology, supervised machine learning has the potential for classification, diagnosis and risk factor identification. Here, we report the use of support vector machine learning to identify the features associated with hock burn on commercial broiler farms, using routinely collected farm management data. These data lend themselves to analysis using machine-learning techniques. Hock burn, dermatitis of the skin over the hock, is an important indicator of broiler health and welfare. Remarkably, this classifier can predict the occurrence of high hock burn prevalence with accuracy of 0.78 on unseen data, as measured by the area under the receiver operating characteristic curve. We also compare the results with those obtained by standard multi-variable logistic regression and suggest that this technique provides new insights into the data. This novel application of a machine-learning algorithm, embedded in poultry management systems could offer significant improvements in broiler health and welfare worldwide.

  5. Analysis of EEG signals by combining eigenvector methods and multiclass support vector machines.

    Science.gov (United States)

    Derya Ubeyli, Elif

    2008-01-01

    A new approach based on the implementation of multiclass support vector machine (SVM) with the error correcting output codes (ECOC) is presented for classification of electroencephalogram (EEG) signals. In practical applications of pattern recognition, there are often diverse features extracted from raw data which needs recognizing. Decision making was performed in two stages: feature extraction by eigenvector methods and classification using the classifiers trained on the extracted features. The aim of the study is classification of the EEG signals by the combination of eigenvector methods and multiclass SVM. The purpose is to determine an optimum classification scheme for this problem and also to infer clues about the extracted features. The present research demonstrated that the eigenvector methods are the features which well represent the EEG signals and the multiclass SVM trained on these features achieved high classification accuracies.

  6. Application of the Support Vector Machine to Predict Subclinical Mastitis in Dairy Cattle

    Science.gov (United States)

    Mammadova, Nazira

    2013-01-01

    This study presented a potentially useful alternative approach to ascertain the presence of subclinical and clinical mastitis in dairy cows using support vector machine (SVM) techniques. The proposed method detected mastitis in a cross-sectional representative sample of Holstein dairy cattle milked using an automatic milking system. The study used such suspected indicators of mastitis as lactation rank, milk yield, electrical conductivity, average milking duration, and control season as input data. The output variable was somatic cell counts obtained from milk samples collected monthly throughout the 15 months of the control period. Cattle were judged to be healthy or infected based on those somatic cell counts. This study undertook a detailed scrutiny of the SVM methodology, constructing and examining a model which showed 89% sensitivity, 92% specificity, and 50% error in mastitis detection. PMID:24574862

  7. Applying support vector regression analysis on grip force level-related corticomuscular coherence

    DEFF Research Database (Denmark)

    Rong, Yao; Han, Xixuan; Hao, Dongmei

    2014-01-01

    Voluntary motor performance is the result of cortical commands driving muscle actions. Corticomuscular coherence can be used to examine the functional coupling or communication between human brain and muscles. To investigate the effects of grip force level on corticomuscular coherence in an acces......Voluntary motor performance is the result of cortical commands driving muscle actions. Corticomuscular coherence can be used to examine the functional coupling or communication between human brain and muscles. To investigate the effects of grip force level on corticomuscular coherence...... in an accessory muscle, this study proposed an expanded support vector regression (ESVR) algorithm to quantify the coherence between electroencephalogram (EEG) from sensorimotor cortex and surface electromyogram (EMG) from brachioradialis in upper limb. A measure called coherence proportion was introduced...... is more sensitive to grip force level than coherence area. The significantly higher corticomuscular coherence occurred in the alpha (pcontrol the activity...

  8. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Lara del Val

    2015-06-01

    Full Text Available Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM. The preprocessing techniques used are spatial filtering, segmentation—based on a Gaussian Mixture Model (GMM to separate the person from the background, masking—to reduce the dimensions of images—and binarization—to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements.

  9. Support-vector-based emergent self-organising approach for emotional understanding

    Science.gov (United States)

    Nguwi, Yok-Yen; Cho, Siu-Yeung

    2010-12-01

    This study discusses the computational analysis of general emotion understanding from questionnaires methodology. The questionnaires method approaches the subject by investigating the real experience that accompanied the emotions, whereas the other laboratory approaches are generally associated with exaggerated elements. We adopted a connectionist model called support-vector-based emergent self-organising map (SVESOM) to analyse the emotion profiling from the questionnaires method. The SVESOM first identifies the important variables by giving discriminative features with high ranking. The classifier then performs the classification based on the selected features. Experimental results show that the top rank features are in line with the work of Scherer and Wallbott [(1994), 'Evidence for Universality and Cultural Variation of Differential Emotion Response Patterning', Journal of Personality and Social Psychology, 66, 310-328], which approached the emotions physiologically. While the performance measures show that using the full features for classifications can degrade the performance, the selected features provide superior results in terms of accuracy and generalisation.

  10. Prediction of Carbohydrate-Binding Proteins from Sequences Using Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Seizi Someya

    2010-01-01

    Full Text Available Carbohydrate-binding proteins are proteins that can interact with sugar chains but do not modify them. They are involved in many physiological functions, and we have developed a method for predicting them from their amino acid sequences. Our method is based on support vector machines (SVMs. We first clarified the definition of carbohydrate-binding proteins and then constructed positive and negative datasets with which the SVMs were trained. By applying the leave-one-out test to these datasets, our method delivered 0.92 of the area under the receiver operating characteristic (ROC curve. We also examined two amino acid grouping methods that enable effective learning of sequence patterns and evaluated the performance of these methods. When we applied our method in combination with the homology-based prediction method to the annotated human genome database, H-invDB, we found that the true positive rate of prediction was improved.

  11. Supplier Short Term Load Forecasting Using Support Vector Regression and Exogenous Input

    Science.gov (United States)

    Matijaš, Marin; Vukićcević, Milan; Krajcar, Slavko

    2011-09-01

    In power systems, task of load forecasting is important for keeping equilibrium between production and consumption. With liberalization of electricity markets, task of load forecasting changed because each market participant has to forecast their own load. Consumption of end-consumers is stochastic in nature. Due to competition, suppliers are not in a position to transfer their costs to end-consumers; therefore it is essential to keep forecasting error as low as possible. Numerous papers are investigating load forecasting from the perspective of the grid or production planning. We research forecasting models from the perspective of a supplier. In this paper, we investigate different combinations of exogenous input on the simulated supplier loads and show that using points of delivery as a feature for Support Vector Regression leads to lower forecasting error, while adding customer number in different datasets does the opposite.

  12. PENERAPAN SENTIMENT ANALYSIS PADA HASIL EVALUASI DOSEN DENGAN METODE SUPPORT VECTOR MACHINE

    Directory of Open Access Journals (Sweden)

    Valonia Inge Santoso

    2017-01-01

    Full Text Available The quality of lectures can be determined by some feedbacks from students. From the feedbacks, we can give appreciations for those lectures who get good feedback from students, and evaluations for those who get bad feedback. The problem is classifying large size of feedbacks manually isn’t effective and took a lot of time. Therefore, we need a system that can classify feedbacks automatically. These feedbacks will be classified into positive, negative, and neutral, usually called as sentiment analysis. Sentiment analysis implementation can be done by several methods, one of them that has a good accuracy is Support Vector Machine (SVM. SVM performance in this research is measured with the level of accuracy. The number of accuracy indicate the success level of system. The conclusion of this research is factors that affects the accuracy. The factors are the range of each classes and number of unique words in the training document.

  13. Ambient Air Quality Classification by Grey Wolf Optimizer Based Support Vector Machine

    Science.gov (United States)

    Shekhawat, Shalini

    2017-01-01

    With the development of society along with an escalating population, the concerns regarding public health have cropped up. The quality of air becomes primary concern regarding constant increase in the number of vehicles and industrial development. With this concern, several indices have been proposed to indicate the pollutant concentrations. In this paper, we present a mathematical framework to formulate a Cumulative Index (CI) on the basis of an individual concentration of four major pollutants (SO2, NO2, PM2.5, and PM10). Further, a supervised learning algorithm based classifier is proposed. This classifier employs support vector machine (SVM) to classify air quality into two types, that is, good or harmful. The potential inputs for this classifier are the calculated values of CIs. The efficacy of the classifier is tested on the real data of three locations: Kolkata, Delhi, and Bhopal. It is observed that the classifier performs well to classify the quality of air. PMID:28890728

  14. Bio-signal analysis system design with support vector machines based on cloud computing service architecture.

    Science.gov (United States)

    Shen, Chia-Ping; Chen, Wei-Hsin; Chen, Jia-Ming; Hsu, Kai-Ping; Lin, Jeng-Wei; Chiu, Ming-Jang; Chen, Chi-Huang; Lai, Feipei

    2010-01-01

    Today, many bio-signals such as Electroencephalography (EEG) are recorded in digital format. It is an emerging research area of analyzing these digital bio-signals to extract useful health information in biomedical engineering. In this paper, a bio-signal analyzing cloud computing architecture, called BACCA, is proposed. The system has been designed with the purpose of seamless integration into the National Taiwan University Health Information System. Based on the concept of. NET Service Oriented Architecture, the system integrates heterogeneous platforms, protocols, as well as applications. In this system, we add modern analytic functions such as approximated entropy and adaptive support vector machine (SVM). It is shown that the overall accuracy of EEG bio-signal analysis has increased to nearly 98% for different data sets, including open-source and clinical data sets.

  15. Content-Based Discovery for Web Map Service using Support Vector Machine and User Relevance Feedback.

    Science.gov (United States)

    Hu, Kai; Gui, Zhipeng; Cheng, Xiaoqiang; Qi, Kunlun; Zheng, Jie; You, Lan; Wu, Huayi

    2016-01-01

    Many discovery methods for geographic information services have been proposed. There are approaches for finding and matching geographic information services, methods for constructing geographic information service classification schemes, and automatic geographic information discovery. Overall, the efficiency of the geographic information discovery keeps improving., There are however, still two problems in Web Map Service (WMS) discovery that must be solved. Mismatches between the graphic contents of a WMS and the semantic descriptions in the metadata make discovery difficult for human users. End-users and computers comprehend WMSs differently creating semantic gaps in human-computer interactions. To address these problems, we propose an improved query process for WMSs based on the graphic contents of WMS layers, combining Support Vector Machine (SVM) and user relevance feedback. Our experiments demonstrate that the proposed method can improve the accuracy and efficiency of WMS discovery.

  16. Reducing U2R and R2L category false negative rates with support vector machines

    Directory of Open Access Journals (Sweden)

    Maček Nemanja

    2014-01-01

    Full Text Available The KDD Cup '99 is commonly used dataset for training and testing IDS machine learning algorithms. Some of the major downsides of the dataset are the distribution and the proportions of U2R and R2L instances, which represent the most dangerous attack types, as well as the existence of R2L attack instances identical to normal traffic. This enforces minor category detection complexity and causes problems while building a machine learning model capable of detecting these attacks with sufficiently low false negative rate. This paper presents a new support vector machine based intrusion detection system that classifies unknown data instances according both to the feature values and weight factors that represent importance of features towards the classification. Increased detection rate and significantly decreased false negative rate for U2R and R2L categories, that have a very few instances in the training set, have been empirically proven.

  17. Optimization of Filter by using Support Vector Regression Machine with Cuckoo Search Algorithm

    Directory of Open Access Journals (Sweden)

    M. İlarslan

    2014-09-01

    Full Text Available Herein, a new methodology using a 3D Electromagnetic (EM simulator-based Support Vector Regression Machine (SVRM models of base elements is presented for band-pass filter (BPF design. SVRM models of elements, which are as fast as analytical equations and as accurate as a 3D EM simulator, are employed in a simple and efficient Cuckoo Search Algorithm (CSA to optimize an ultra-wideband (UWB microstrip BPF. CSA performance is verified by comparing it with other Meta-Heuristics such as Genetic Algorithm (GA and Particle Swarm Optimization (PSO. As an example of the proposed design methodology, an UWB BPF that operates between the frequencies of 3.1 GHz and 10.6 GHz is designed, fabricated and measured. The simulation and measurement results indicate in conclusion the superior performance of this optimization methodology in terms of improved filter response characteristics like return loss, insertion loss, harmonic suppression and group delay.

  18. Linear and support vector regressions based on geometrical correlation of data

    Directory of Open Access Journals (Sweden)

    Kaijun Wang

    2007-10-01

    Full Text Available Linear regression (LR and support vector regression (SVR are widely used in data analysis. Geometrical correlation learning (GcLearn was proposed recently to improve the predictive ability of LR and SVR through mining and using correlations between data of a variable (inner correlation. This paper theoretically analyzes prediction performance of the GcLearn method and proves that GcLearn LR and SVR will have better prediction performance than traditional LR and SVR for prediction tasks when good inner correlations are obtained and predictions by traditional LR and SVR are far away from their neighbor training data under inner correlation. This gives the applicable condition of GcLearn method.

  19. A Bayesian least squares support vector machines based framework for fault diagnosis and failure prognosis

    Science.gov (United States)

    Khawaja, Taimoor Saleem

    A high-belief low-overhead Prognostics and Health Management (PHM) system is desired for online real-time monitoring of complex non-linear systems operating in a complex (possibly non-Gaussian) noise environment. This thesis presents a Bayesian Least Squares Support Vector Machine (LS-SVM) based framework for fault diagnosis and failure prognosis in nonlinear non-Gaussian systems. The methodology assumes the availability of real-time process measurements, definition of a set of fault indicators and the existence of empirical knowledge (or historical data) to characterize both nominal and abnormal operating conditions. An efficient yet powerful Least Squares Support Vector Machine (LS-SVM) algorithm, set within a Bayesian Inference framework, not only allows for the development of real-time algorithms for diagnosis and prognosis but also provides a solid theoretical framework to address key concepts related to classification for diagnosis and regression modeling for prognosis. SVM machines are founded on the principle of Structural Risk Minimization (SRM) which tends to find a good trade-off between low empirical risk and small capacity. The key features in SVM are the use of non-linear kernels, the absence of local minima, the sparseness of the solution and the capacity control obtained by optimizing the margin. The Bayesian Inference framework linked with LS-SVMs allows a probabilistic interpretation of the results for diagnosis and prognosis. Additional levels of inference provide the much coveted features of adaptability and tunability of the modeling parameters. The two main modules considered in this research are fault diagnosis and failure prognosis. With the goal of designing an efficient and reliable fault diagnosis scheme, a novel Anomaly Detector is suggested based on the LS-SVM machines. The proposed scheme uses only baseline data to construct a 1-class LS-SVM machine which, when presented with online data is able to distinguish between normal behavior

  20. Text localization using standard deviation analysis of structure elements and support vector machines

    Directory of Open Access Journals (Sweden)

    Zagoris Konstantinos

    2011-01-01

    Full Text Available Abstract A text localization technique is required to successfully exploit document images such as technical articles and letters. The proposed method detects and extracts text areas from document images. Initially a connected components analysis technique detects blocks of foreground objects. Then, a descriptor that consists of a set of suitable document structure elements is extracted from the blocks. This is achieved by incorporating an algorithm called Standard Deviation Analysis of Structure Elements (SDASE which maximizes the separability between the blocks. Another feature of the SDASE is that its length adapts according to the requirements of the application. Finally, the descriptor of each block is used as input to a trained support vector machines that classify the block as text or not. The proposed technique is also capable of adjusting to the text structure of the documents. Experimental results on benchmarking databases demonstrate the effectiveness of the proposed method.

  1. Real Time Monitoring System of Pollution Waste on Musi River Using Support Vector Machine (SVM) Method

    Science.gov (United States)

    Fachrurrozi, Muhammad; Saparudin; Erwin

    2017-04-01

    Real-time Monitoring and early detection system which measures the quality standard of waste in Musi River, Palembang, Indonesia is a system for determining air and water pollution level. This system was designed in order to create an integrated monitoring system and provide real time information that can be read. It is designed to measure acidity and water turbidity polluted by industrial waste, as well as to show and provide conditional data integrated in one system. This system consists of inputting and processing the data, and giving output based on processed data. Turbidity, substances, and pH sensor is used as a detector that produce analog electrical direct current voltage (DC). Early detection system works by determining the value of the ammonia threshold, acidity, and turbidity level of water in Musi River. The results is then presented based on the level group pollution by the Support Vector Machine classification method.

  2. Deep vector-based convolutional neural network approach for automatic recognition of colonies of induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Muthu Subash Kavitha

    Full Text Available Pluripotent stem cells can potentially be used in clinical applications as a model for studying disease progress. This tracking of disease-causing events in cells requires constant assessment of the quality of stem cells. Existing approaches are inadequate for robust and automated differentiation of stem cell colonies. In this study, we developed a new model of vector-based convolutional neural network (V-CNN with respect to extracted features of the induced pluripotent stem cell (iPSC colony for distinguishing colony characteristics. A transfer function from the feature vectors to the virtual image was generated at the front of the CNN in order for classification of feature vectors of healthy and unhealthy colonies. The robustness of the proposed V-CNN model in distinguishing colonies was compared with that of the competitive support vector machine (SVM classifier based on morphological, textural, and combined features. Additionally, five-fold cross-validation was used to investigate the performance of the V-CNN model. The precision, recall, and F-measure values of the V-CNN model were comparatively higher than those of the SVM classifier, with a range of 87-93%, indicating fewer false positives and false negative rates. Furthermore, for determining the quality of colonies, the V-CNN model showed higher accuracy values based on morphological (95.5%, textural (91.0%, and combined (93.2% features than those estimated with the SVM classifier (86.7, 83.3, and 83.4%, respectively. Similarly, the accuracy of the feature sets using five-fold cross-validation was above 90% for the V-CNN model, whereas that yielded by the SVM model was in the range of 75-77%. We thus concluded that the proposed V-CNN model outperforms the conventional SVM classifier, which strongly suggests that it as a reliable framework for robust colony classification of iPSCs. It can also serve as a cost-effective quality recognition tool during culture and other experimental

  3. Identification of Type 2 Diabetes-associated combination of SNPs using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Park Keun-Joon

    2010-04-01

    Full Text Available Abstract Background Type 2 diabetes mellitus (T2D, a metabolic disorder characterized by insulin resistance and relative insulin deficiency, is a complex disease of major public health importance. Its incidence is rapidly increasing in the developed countries. Complex diseases are caused by interactions between multiple genes and environmental factors. Most association studies aim to identify individual susceptibility single markers using a simple disease model. Recent studies are trying to estimate the effects of multiple genes and multi-locus in genome-wide association. However, estimating the effects of association is very difficult. We aim to assess the rules for classifying diseased and normal subjects by evaluating potential gene-gene interactions in the same or distinct biological pathways. Results We analyzed the importance of gene-gene interactions in T2D susceptibility by investigating 408 single nucleotide polymorphisms (SNPs in 87 genes involved in major T2D-related pathways in 462 T2D patients and 456 healthy controls from the Korean cohort studies. We evaluated the support vector machine (SVM method to differentiate between cases and controls using SNP information in a 10-fold cross-validation test. We achieved a 65.3% prediction rate with a combination of 14 SNPs in 12 genes by using the radial basis function (RBF-kernel SVM. Similarly, we investigated subpopulation data sets of men and women and identified different SNP combinations with the prediction rates of 70.9% and 70.6%, respectively. As the high-throughput technology for genome-wide SNPs improves, it is likely that a much higher prediction rate with biologically more interesting combination of SNPs can be acquired by using this method. Conclusions Support Vector Machine based feature selection method in this research found novel association between combinations of SNPs and T2D in a Korean population.

  4. Semi-automatic classification of birdsong elements using a linear support vector machine.

    Science.gov (United States)

    Tachibana, Ryosuke O; Oosugi, Naoya; Okanoya, Kazuo

    2014-01-01

    Birdsong provides a unique model for understanding the behavioral and neural bases underlying complex sequential behaviors. However, birdsong analyses require laborious effort to make the data quantitatively analyzable. The previous attempts had succeeded to provide some reduction of human efforts involved in birdsong segment classification. The present study was aimed to further reduce human efforts while increasing classification performance. In the current proposal, a linear-kernel support vector machine was employed to minimize the amount of human-generated label samples for reliable element classification in birdsong, and to enable the classifier to handle highly-dimensional acoustic features while avoiding the over-fitting problem. Bengalese finch's songs in which distinct elements (i.e., syllables) were aligned in a complex sequential pattern were used as a representative test case in the neuroscientific research field. Three evaluations were performed to test (1) algorithm validity and accuracy with exploring appropriate classifier settings, (2) capability to provide accuracy with reducing amount of instruction dataset, and (3) capability in classifying large dataset with minimized manual labeling. The results from the evaluation (1) showed that the algorithm is 99.5% reliable in song syllables classification. This accuracy was indeed maintained in evaluation (2), even when the instruction data classified by human were reduced to one-minute excerpt (corresponding to 300-400 syllables) for classifying two-minute excerpt. The reliability remained comparable, 98.7% accuracy, when a large target dataset of whole day recordings (∼30,000 syllables) was used. Use of a linear-kernel support vector machine showed sufficient accuracies with minimized manually generated instruction data in bird song element classification. The methodology proposed would help reducing laborious processes in birdsong analysis without sacrificing reliability, and therefore can help

  5. Antepartum fetal heart rate feature extraction and classification using empirical mode decomposition and support vector machine

    Directory of Open Access Journals (Sweden)

    Ahmed Shuhaila

    2011-01-01

    Full Text Available Abstract Background Cardiotocography (CTG is the most widely used tool for fetal surveillance. The visual analysis of fetal heart rate (FHR traces largely depends on the expertise and experience of the clinician involved. Several approaches have been proposed for the effective interpretation of FHR. In this paper, a new approach for FHR feature extraction based on empirical mode decomposition (EMD is proposed, which was used along with support vector machine (SVM for the classification of FHR recordings as 'normal' or 'at risk'. Methods The FHR were recorded from 15 subjects at a sampling rate of 4 Hz and a dataset consisting of 90 randomly selected records of 20 minutes duration was formed from these. All records were labelled as 'normal' or 'at risk' by two experienced obstetricians. A training set was formed by 60 records, the remaining 30 left as the testing set. The standard deviations of the EMD components are input as features to a support vector machine (SVM to classify FHR samples. Results For the training set, a five-fold cross validation test resulted in an accuracy of 86% whereas the overall geometric mean of sensitivity and specificity was 94.8%. The Kappa value for the training set was .923. Application of the proposed method to the testing set (30 records resulted in a geometric mean of 81.5%. The Kappa value for the testing set was .684. Conclusions Based on the overall performance of the system it can be stated that the proposed methodology is a promising new approach for the feature extraction and classification of FHR signals.

  6. Forecasting monthly groundwater level fluctuations in coastal aquifers using hybrid Wavelet packet–Support vector regression

    Directory of Open Access Journals (Sweden)

    N. Sujay Raghavendra

    2015-12-01

    Full Text Available This research demonstrates the state-of-the-art capability of Wavelet packet analysis in improving the forecasting efficiency of Support vector regression (SVR through the development of a novel hybrid Wavelet packet–Support vector regression (WP–SVR model for forecasting monthly groundwater level fluctuations observed in three shallow unconfined coastal aquifers. The Sequential Minimal Optimization Algorithm-based SVR model is also employed for comparative study with WP–SVR model. The input variables used for modeling were monthly time series of total rainfall, average temperature, mean tide level, and past groundwater level observations recorded during the period 1996–2006 at three observation wells located near Mangalore, India. The Radial Basis function is employed as a kernel function during SVR modeling. Model parameters are calibrated using the first seven years of data, and the remaining three years data are used for model validation using various input combinations. The performance of both the SVR and WP–SVR models is assessed using different statistical indices. From the comparative result analysis of the developed models, it can be seen that WP–SVR model outperforms the classic SVR model in predicting groundwater levels at all the three well locations (e.g. NRMSE(WP–SVR = 7.14, NRMSE(SVR = 12.27; NSE(WP–SVR = 0.91, NSE(SVR = 0.8 during the test phase with respect to well location at Surathkal. Therefore, using the WP–SVR model is highly acceptable for modeling and forecasting of groundwater level fluctuations.

  7. Software-based microwave CT system consisting of antennas and vector network analyzer.

    Science.gov (United States)

    Ogawa, Takahiro; Miyakawa, Michio

    2011-01-01

    We have developed a software-based microwave CT (SMCT) that consists of antennas and a vector network analyzer. Regardless of the scanner type, SMCT collects the S-parameters at each measurement position in the frequency range of interest. After collecting all the S-parameters, it calculates the shortest path to obtain the projection data for CPMCT. Because of the redundant data in SMCT, the calculation of the projection is easily optimized. Therefore, the system can improve the accuracy and stability of the measurement. Furthermore, the experimental system is constructed at a reasonable cost. Hence, SMCT is useful for imaging experiments for CP-MCT and particularly for basic studies. This paper describes the software-based microwave imaging system, and experimental results show the usefulness of the system.

  8. Contactless vector network analysis using diversity calibration with capacitive and inductive coupled probes

    Directory of Open Access Journals (Sweden)

    T. Zelder

    2007-06-01

    Full Text Available Contactless vector network analysis based on a diversity calibration is investigated for the measurement of embedded devices in planar circuits. Conventional contactless measurement systems based on two probes for each measurement port have the disadvantage that the signal-to-noise system dynamics strongly depends on the distance between the contactless probes.

    In order to avoid a decrease in system dynamics a diversity based measurement system is presented. The measurement setup uses one inductive and two capacitive probes. As an inductive probe a half magnetic loop in combination with a broadband balun is introduced. In order to eliminate systematic errors from the measurement results a diversity calibration algorithm is presented. Simulation and measurement results for a one-port configuration are shown.

  9. Verification and estimation of a posterior probability and probability density function using vector quantization and neural network

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Hee Seok; Kim, Hyun Duck [Kyungnam University, Masan (Korea, Republic of); Lee, Kwang Seok [Chinju National University (Korea, Republic of)

    1996-02-01

    In this paper, we proposed an estimation method of a posterior probability and PDF(Probability density function) using a feed forward neural network and code books of VQ(vector quantization). In this study, We estimates a posterior probability and probability density function, which compose a new parameter with well-known Mel cepstrum and verificate the performance for the five vowels taking from syllables by NN(neural network) and PNN(probabilistic neural network). In case of new parameter, showed the best result by probabilistic neural network and recognition rates are average 83.02%. (author). 7 refs., 4 figs., 3 tabs.

  10. Advanced systems engineering and network planning support

    Science.gov (United States)

    Walters, David H.; Barrett, Larry K.; Boyd, Ronald; Bazaj, Suresh; Mitchell, Lionel; Brosi, Fred

    1990-01-01

    The objective of this task was to take a fresh look at the NASA Space Network Control (SNC) element for the Advanced Tracking and Data Relay Satellite System (ATDRSS) such that it can be made more efficient and responsive to the user by introducing new concepts and technologies appropriate for the 1997 timeframe. In particular, it was desired to investigate the technologies and concepts employed in similar systems that may be applicable to the SNC. The recommendations resulting from this study include resource partitioning, on-line access to subsets of the SN schedule, fluid scheduling, increased use of demand access on the MA service, automating Inter-System Control functions using monitor by exception, increase automation for distributed data management and distributed work management, viewing SN operational control in terms of the OSI Management framework, and the introduction of automated interface management.

  11. Neural networks in support of manned space

    Science.gov (United States)

    Werbos, Paul J.

    1989-01-01

    Many lobbyists in Washington have argued that artificial intelligence (AI) is an alternative to manned space activity. In actuality, this is the opposite of the truth, especially as regards artificial neural networks (ANNs), that form of AI which has the greatest hope of mimicking human abilities in learning, ability to interface with sensors and actuators, flexibility and balanced judgement. ANNs and their relation to expert systems (the more traditional form of AI), and the limitations of both technologies are briefly reviewed. A Few highlights of recent work on ANNs, including an NSF-sponsored workshop on ANNs for control applications are given. Current thinking on ANNs for use in certain key areas (the National Aerospace Plane, teleoperation, the control of large structures, fault diagnostics, and docking) which may be crucial to the long term future of man in space is discussed.

  12. Impact of support networks for breastfeeding: A multicentre study.

    Science.gov (United States)

    Baño-Piñero, Isabel; Martínez-Roche, María Emilia; Canteras-Jordana, Manuel; Carrillo-García, César; Orenes-Piñero, Esteban

    2017-10-10

    The rates of breastfeeding worldwide are slowly improving since 1996. Europe is still trailing behind the global breastfeeding incidence and prevalence rates. Thus, breastfeeding promotion, protection, prolongation and support have become an important challenge as breastfeeding sharply decreases in the first six months of life. The aim of this project is to determine, assess and identify the real impact of breastfeeding support networks in Murcia (Spain). After searching unsuccessfully for a validated questionnaire, a specific one was developed and validated for measuring the impact of formal and informal support networks through five dimensions: satisfaction, consultation, experience, problems and support. The questionnaire was provided to 500 mothers with experience in breastfeeding, who brought their children to baby paediatricians between 2 June and 27 November 2014. Upon completion of the survey and fieldwork, a detailed statistical analysis was conducted. The degree of satisfaction perceived by the users of the services of support breastfeeding networks is remarkable. In addition, mothers who clarified their doubts and discussed their problems with health professionals and/or breastfeeding support networks were more likely to breastfeed for a longer duration compared to those who did not (p=0.005). Furthermore, mothers who sought support in breastfeeding are more likely to breastfeed for more than 6 months (psupport networks have a positive influence in the duration of a women's decision to breastfeed. Copyright © 2017 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  13. Decision support systems and methods for complex networks

    Science.gov (United States)

    Huang, Zhenyu [Richland, WA; Wong, Pak Chung [Richland, WA; Ma, Jian [Richland, WA; Mackey, Patrick S [Richland, WA; Chen, Yousu [Richland, WA; Schneider, Kevin P [Seattle, WA

    2012-02-28

    Methods and systems for automated decision support in analyzing operation data from a complex network. Embodiments of the present invention utilize these algorithms and techniques not only to characterize the past and present condition of a complex network, but also to predict future conditions to help operators anticipate deteriorating and/or problem situations. In particular, embodiments of the present invention characterize network conditions from operation data using a state estimator. Contingency scenarios can then be generated based on those network conditions. For at least a portion of all of the contingency scenarios, risk indices are determined that describe the potential impact of each of those scenarios. Contingency scenarios with risk indices are presented visually as graphical representations in the context of a visual representation of the complex network. Analysis of the historical risk indices based on the graphical representations can then provide trends that allow for prediction of future network conditions.

  14. A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach.

    Science.gov (United States)

    Hua, S; Sun, Z

    2001-04-27

    We have introduced a new method of protein secondary structure prediction which is based on the theory of support vector machine (SVM). SVM represents a new approach to supervised pattern classification which has been successfully applied to a wide range of pattern recognition problems, including object recognition, speaker identification, gene function prediction with microarray expression profile, etc. In these cases, the performance of SVM either matches or is significantly better than that of traditional machine learning approaches, including neural networks.The first use of the SVM approach to predict protein secondary structure is described here. Unlike the previous studies, we first constructed several binary classifiers, then assembled a tertiary classifier for three secondary structure states (helix, sheet and coil) based on these binary classifiers. The SVM method achieved a good performance of segment overlap accuracy SOV=76.2 % through sevenfold cross validation on a database of 513 non-homologous protein chains with multiple sequence alignments, which out-performs existing methods. Meanwhile three-state overall per-residue accuracy Q(3) achieved 73.5 %, which is at least comparable to existing single prediction methods. Furthermore a useful "reliability index" for the predictions was developed. In addition, SVM has many attractive features, including effective avoidance of overfitting, the ability to handle large feature spaces, information condensing of the given data set, etc. The SVM method is conveniently applied to many other pattern classification tasks in biology. Copyright 2001 Academic Press.

  15. Wavelet entropy and directed acyclic graph support vector machine for detection of patients with unilateral hearing loss in MRI scanning

    Directory of Open Access Journals (Sweden)

    Shuihua Wang

    2016-10-01

    Full Text Available (Aim Sensorineural hearing loss (SNHL is correlated to many neurodegenerative disease. Now more and more computer vision based methods are using to detect it in an automatic way. (Materials We have in total 49 subjects, scanned by 3.0T MRI (Siemens Medical Solutions, Erlangen, Germany. The subjects contain 14 patients with right-sided hearing loss (RHL, 15 patients with left-sided hearing loss (LHL, and 20 healthy controls (HC. (Method We treat this as a three-class classification problem: RHL, LHL, and HC. Wavelet entropy (WE was selected from the magnetic resonance images of each subjects, and then submitted to a directed acyclic graph support vector machine (DAG-SVM. (Results The 10 repetition results of 10-fold cross validation shows 3-level decomposition will yield an overall accuracy of 95.10% for this three-class classification problem, higher than feedforward neural network, decision tree, and naive Bayesian classifier. (Conclusions This computer-aided diagnosis system is promising. We hope this study can attract more computer vision method for detecting hearing loss.

  16. Annual Electric Load Forecasting by a Least Squares Support Vector Machine with a Fruit Fly Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Bao Wang

    2012-11-01

    Full Text Available The accuracy of annual electric load forecasting plays an important role in the economic and social benefits of electric power systems. The least squares support vector machine (LSSVM has been proven to offer strong potential in forecasting issues, particularly by employing an appropriate meta-heuristic algorithm to determine the values of its two parameters. However, these meta-heuristic algorithms have the drawbacks of being hard to understand and reaching the global optimal solution slowly. As a novel meta-heuristic and evolutionary algorithm, the fruit fly optimization algorithm (FOA has the advantages of being easy to understand and fast convergence to the global optimal solution. Therefore, to improve the forecasting performance, this paper proposes a LSSVM-based annual electric load forecasting model that uses FOA to automatically determine the appropriate values of the two parameters for the LSSVM model. By taking the annual electricity consumption of China as an instance, the computational result shows that the LSSVM combined with FOA (LSSVM-FOA outperforms other alternative methods, namely single LSSVM, LSSVM combined with coupled simulated annealing algorithm (LSSVM-CSA, generalized regression neural network (GRNN and regression model.

  17. Shallow and Deep-Seated Landslide Differentiation Using Support Vector Machines: A Case Study of the Chuetsu Area, Japan

    Directory of Open Access Journals (Sweden)

    Jie Dou

    2015-01-01

    Full Text Available Landslides are one of the most destructive geological disasters affecting Japan every year, resulting in huge losses in life and property. Numerous susceptibility studies have been conducted to minimize the risk of landslides; however, most of these studies do not differentiate landslide types. This study examines the differences in landslide depth, volume and the risk imposed between shallow and deep-seated landslide types. Shallow and deep-seated landslide prediction is useful in utilizing emergency resources by prioritizing target areas while responding to sediment related disasters. This study utilizes a 2-m DEM derived from airborne Light detection and ranging (Lidar, geological information and support vector machines (SVMs to study the 1225 landslides triggered by the M 6.8 Chuetsu earthquake in Japan and the successive aftershocks. Ten factors, including elevation, slope, aspect, curvature, lithology, distance from the nearest geologic boundary, density of geologic boundaries, distance from drainage network, the compound topographic index (CTI and the stream power index (SPI derived from the DEM and a geological map were analyzed. Iterated over 10 random instances the average training and testing accuracy of landslide type prediction was found to be 89.2 and 77.8%, respectively. We also found that the overall accuracy of SVMs does not rapidly decrease with a decrease in training samples. The trained model was then used to prepare a map showing probable future landslides differentiated into shallow and deep-seated landslides.

  18. Social networks, support and early psychosis: a systematic review.

    Science.gov (United States)

    Gayer-Anderson, C; Morgan, C

    2013-06-01

    Background. There is strong evidence that those with a long-standing psychotic disorder have fewer social contacts and less social support than comparison groups. There is less research on the extent of social contacts and support prior to or at the onset of psychosis. In the light of recent evidence implicating a range of social experiences and contexts at the onset of psychosis, it is relevant to establish whether social networks and support diminished before or at the time of onset and whether the absence of such supports might contribute to risk, either directly or indirectly. We, therefore, conducted a systematic review of this literature to establish what is currently known about the relationship between social networks, support and early psychosis. Methods. We identified all studies investigating social networks and support in first episode psychosis samples and in general population samples with measures of psychotic experiences or schizotype by conducting systematic searches of electronic databases using pre-defined search terms and criteria. Findings were synthesized using non-quantitative approaches. Results. Thirty-eight papers were identified that met inclusion criteria. There was marked methodological heterogeneity, which limits the capacity to draw direct comparisons. Nonetheless, the existing literature suggests social networks (particularly close friends) and support diminished both among first episode samples and among non-clinical samples reporting psychotic experiences or with schizotype traits, compared with varying comparison groups. These differences may be more marked for men and for those from minority ethnic populations. Conclusions. Tentatively, reduced social networks and support appear to pre-date onset of psychotic disorder. However, the substantial methodological heterogeneity among the existing studies makes comparisons difficult and suggests a need for more robust and comparable studies on networks, support and early psychosis.

  19. Supporting Control Room Operators in Highly Automated Future Power Networks

    DEFF Research Database (Denmark)

    Chen, Minjiang; Catterson, Victoria; Syed, Mazheruddin

    2017-01-01

    Operating power systems is an extremely challenging task, not least because power systems have become highly interconnected, as well as the range of network issues that can occur. It is therefore a necessity to develop decision support systems and visualisation that can effectively support the hu...

  20. Recursive cluster elimination based support vector machine for disease state prediction using resting state functional and effective brain connectivity.

    Directory of Open Access Journals (Sweden)

    Gopikrishna Deshpande

    2010-12-01

    Full Text Available Brain state classification has been accomplished using features such as voxel intensities, derived from functional magnetic resonance imaging (fMRI data, as inputs to efficient classifiers such as support vector machines (SVM and is based on the spatial localization model of brain function. With the advent of the connectionist model of brain function, features from brain networks may provide increased discriminatory power for brain state classification.In this study, we introduce a novel framework where in both functional connectivity (FC based on instantaneous temporal correlation and effective connectivity (EC based on causal influence in brain networks are used as features in an SVM classifier. In order to derive those features, we adopt a novel approach recently introduced by us called correlation-purged Granger causality (CPGC in order to obtain both FC and EC from fMRI data simultaneously without the instantaneous correlation contaminating Granger causality. In addition, statistical learning is accelerated and performance accuracy is enhanced by combining recursive cluster elimination (RCE algorithm with the SVM classifier. We demonstrate the efficacy of the CPGC-based RCE-SVM approach using a specific instance of brain state classification exemplified by disease state prediction. Accordingly, we show that this approach is capable of predicting with 90.3% accuracy whether any given human subject was prenatally exposed to cocaine or not, even when no significant behavioral differences were found between exposed and healthy subjects.The framework adopted in this work is quite general in nature with prenatal cocaine exposure being only an illustrative example of the power of this approach. In any brain state classification approach using neuroimaging data, including the directional connectivity information may prove to be a performance enhancer. When brain state classification is used for disease state prediction, our approach may aid the

  1. Support vector machine based decision for mechanical fault condition monitoring in induction motor using an advanced Hilbert-Park transform.

    Science.gov (United States)

    Ben Salem, Samira; Bacha, Khmais; Chaari, Abdelkader

    2012-09-01

    In this work we suggest an original fault signature based on an improved combination of Hilbert and Park transforms. Starting from this combination we can create two fault signatures: Hilbert modulus current space vector (HMCSV) and Hilbert phase current space vector (HPCSV). These two fault signatures are subsequently analysed using the classical fast Fourier transform (FFT). The effects of mechanical faults on the HMCSV and HPCSV spectrums are described, and the related frequencies are determined. The magnitudes of spectral components, relative to the studied faults (air-gap eccentricity and outer raceway ball bearing defect), are extracted in order to develop the input vector necessary for learning and testing the support vector machine with an aim of classifying automatically the various states of the induction motor. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Analysis of Few-Mode Multi-Core Fiber Splice Behavior Using an Optical Vector Network Analyzer

    DEFF Research Database (Denmark)

    Rommel, Simon; Mendinueta, Jose Manuel Delgado; Klaus, Werner

    2017-01-01

    The behavior of splices in a 3-mode 36-core fiber is analyzed using optical vector network analysis. Time-domain response analysis confirms splices may cause significant mode-mixing, while frequency-domain analysis shows splices may affect system level mode-dependent loss both positively...

  3. SVMQA: support-vector-machine-based protein single-model quality assessment.

    Science.gov (United States)

    Manavalan, Balachandran; Lee, Jooyoung

    2017-08-15

    The accurate ranking of predicted structural models and selecting the best model from a given candidate pool remain as open problems in the field of structural bioinformatics. The quality assessment (QA) methods used to address these problems can be grouped into two categories: consensus methods and single-model methods. Consensus methods in general perform better and attain higher correlation between predicted and true quality measures. However, these methods frequently fail to generate proper quality scores for native-like structures which are distinct from the rest of the pool. Conversely, single-model methods do not suffer from this drawback and are better suited for real-life applications where many models from various sources may not be readily available. In this study, we developed a support-vector-machine-based single-model global quality assessment (SVMQA) method. For a given protein model, the SVMQA method predicts TM-score and GDT_TS score based on a feature vector containing statistical potential energy terms and consistency-based terms between the actual structural features (extracted from the three-dimensional coordinates) and predicted values (from primary sequence). We trained SVMQA using CASP8, CASP9 and CASP10 targets and determined the machine parameters by 10-fold cross-validation. We evaluated the performance of our SVMQA method on various benchmarking datasets. Results show that SVMQA outperformed the existing best single-model QA methods both in ranking provided protein models and in selecting the best model from the pool. According to the CASP12 assessment, SVMQA was the best method in selecting good-quality models from decoys in terms of GDTloss. SVMQA method can be freely downloaded from http://lee.kias.re.kr/SVMQA/SVMQA_eval.tar.gz. jlee@kias.re.kr. Supplementary data are available at Bioinformatics online.

  4. Gender differences in brain networks supporting empathy.

    Science.gov (United States)

    Schulte-Rüther, Martin; Markowitsch, Hans J; Shah, N Jon; Fink, Gereon R; Piefke, Martina

    2008-08-01

    Females frequently score higher on standard tests of empathy, social sensitivity, and emotion recognition than do males. It remains to be clarified, however, whether these gender differences are associated with gender specific neural mechanisms of emotional social cognition. We investigated gender differences in an emotion attribution task using functional magnetic resonance imaging. Subjects either focused on their own emotional response to emotion expressing faces (SELF-task) or evaluated the emotional state expressed by the faces (OTHER-task). Behaviorally, females rated SELF-related emotions significantly stronger than males. Across the sexes, SELF- and OTHER-related processing of facial expressions activated a network of medial and lateral prefrontal, temporal, and parietal brain regions involved in emotional perspective taking. During SELF-related processing, females recruited the right inferior frontal cortex and superior temporal sulcus stronger than males. In contrast, there was increased neural activity in the left temporoparietal junction in males (relative to females). When performing the OTHER-task, females showed increased activation of the right inferior frontal cortex while there were no differential activations in males. The data suggest that females recruit areas containing mirror neurons to a higher degree than males during both SELF- and OTHER-related processing in empathic face-to-face interactions. This may underlie facilitated emotional "contagion" in females. Together with the observation that males differentially rely on the left temporoparietal junction (an area mediating the distinction between the SELF and OTHERS) the data suggest that females and males rely on different strategies when assessing their own emotions in response to other people.

  5. Mining protein function from text using term-based support vector machines

    Science.gov (United States)

    Rice, Simon B; Nenadic, Goran; Stapley, Benjamin J

    2005-01-01

    Background Text mining has spurred huge interest in the domain of biology. The goal of the BioCreAtIvE exercise was to evaluate the performance of current text mining systems. We participated in Task 2, which addressed assigning Gene Ontology terms to human proteins and selecting relevant evidence from full-text documents. We approached it as a modified form of the document classification task. We used a supervised machine-learning approach (based on support vector machines) to assign protein function and select passages that support the assignments. As classification features, we used a protein's co-occurring terms that were automatically extracted from documents. Results The results evaluated by curators were modest, and quite variable for different problems: in many cases we have relatively good assignment of GO terms to proteins, but the selected supporting text was typically non-relevant (precision spanning from 3% to 50%). The method appears to work best when a substantial set of relevant documents is obtained, while it works poorly on single documents and/or short passages. The initial results suggest that our approach can also mine annotations from text even when an explicit statement relating a protein to a GO term is absent. Conclusion A machine learning approach to mining protein function predictions from text can yield good performance only if sufficient training data is available, and significant amount of supporting data is used for prediction. The most promising results are for combined document retrieval and GO term assignment, which calls for the integration of methods developed in BioCreAtIvE Task 1 and Task 2. PMID:15960835

  6. Cost-Sensitive Support Vector Machine Using Randomized Dual Coordinate Descent Method for Big Class-Imbalanced Data Classification

    OpenAIRE

    Mingzhu Tang; Chunhua Yang; Kang Zhang; Qiyue Xie

    2014-01-01

    Cost-sensitive support vector machine is one of the most popular tools to deal with class-imbalanced problem such as fault diagnosis. However, such data appear with a huge number of examples as well as features. Aiming at class-imbalanced problem on big data, a cost-sensitive support vector machine using randomized dual coordinate descent method (CSVM-RDCD) is proposed in this paper. The solution of concerned subproblem at each iteration is derived in closed form and the computational cost is...

  7. A Support Vector Machine Classification of Thyroid Bioptic Specimens Using MALDI-MSI Data.

    Science.gov (United States)

    Galli, Manuel; Zoppis, Italo; De Sio, Gabriele; Chinello, Clizia; Pagni, Fabio; Magni, Fulvio; Mauri, Giancarlo

    2016-01-01

    Biomarkers able to characterise and predict multifactorial diseases are still one of the most important targets for all the "omics" investigations. In this context, Matrix-Assisted Laser Desorption/Ionisation-Mass Spectrometry Imaging (MALDI-MSI) has gained considerable attention in recent years, but it also led to a huge amount of complex data to be elaborated and interpreted. For this reason, computational and machine learning procedures for biomarker discovery are important tools to consider, both to reduce data dimension and to provide predictive markers for specific diseases. For instance, the availability of protein and genetic markers to support thyroid lesion diagnoses would impact deeply on society due to the high presence of undetermined reports (THY3) that are generally treated as malignant patients. In this paper we show how an accurate classification of thyroid bioptic specimens can be obtained through the application of a state-of-the-art machine learning approach (i.e., Support Vector Machines) on MALDI-MSI data, together with a particular wrapper feature selection algorithm (i.e., recursive feature elimination). The model is able to provide an accurate discriminatory capability using only 20 out of 144 features, resulting in an increase of the model performances, reliability, and computational efficiency. Finally, tissue areas rather than average proteomic profiles are classified, highlighting potential discriminating areas of clinical interest.

  8. A Support Vector Machine Hydrometeor Classification Algorithm for Dual-Polarization Radar

    Directory of Open Access Journals (Sweden)

    Nicoletta Roberto

    2017-07-01

    Full Text Available An algorithm based on a support vector machine (SVM is proposed for hydrometeor classification. The training phase is driven by the output of a fuzzy logic hydrometeor classification algorithm, i.e., the most popular approach for hydrometer classification algorithms used for ground-based weather radar. The performance of SVM is evaluated by resorting to a weather scenario, generated by a weather model; the corresponding radar measurements are obtained by simulation and by comparing results of SVM classification with those obtained by a fuzzy logic classifier. Results based on the weather model and simulations show a higher accuracy of the SVM classification. Objective comparison of the two classifiers applied to real radar data shows that SVM classification maps are spatially more homogenous (textural indices, energy, and homogeneity increases by 21% and 12% respectively and do not present non-classified data. The improvements found by SVM classifier, even though it is applied pixel-by-pixel, can be attributed to its ability to learn from the entire hyperspace of radar measurements and to the accurate training. The reliability of results and higher computing performance make SVM attractive for some challenging tasks such as its implementation in Decision Support Systems for helping pilots to make optimal decisions about changes inthe flight route caused by unexpected adverse weather.

  9. Segmentation of HER2 protein overexpression in immunohistochemically stained breast cancer images using Support Vector Machines

    Science.gov (United States)

    Pezoa, Raquel; Salinas, Luis; Torres, Claudio; Härtel, Steffen; Maureira-Fredes, Cristián; Arce, Paola

    2016-10-01

    Breast cancer is one of the most common cancers in women worldwide. Patient therapy is widely supported by analysis of immunohistochemically (IHC) stained tissue sections. In particular, the analysis of HER2 overexpression by immunohistochemistry helps to determine when patients are suitable to HER2-targeted treatment. Computational HER2 overexpression analysis is still an open problem and a challenging task principally because of the variability of immunohistochemistry tissue samples and the subjectivity of the specialists to assess the samples. In addition, the immunohistochemistry process can produce diverse artifacts that difficult the HER2 overexpression assessment. In this paper we study the segmentation of HER2 overexpression in IHC stained breast cancer tissue images using a support vector machine (SVM) classifier. We asses the SVM performance using diverse color and texture pixel-level features including the RGB, CMYK, HSV, CIE L*a*b* color spaces, color deconvolution filter and Haralick features. We measure classification performance for three datasets containing a total of 153 IHC images that were previously labeled by a pathologist.

  10. A Support Vector Machine Classification of Thyroid Bioptic Specimens Using MALDI-MSI Data

    Directory of Open Access Journals (Sweden)

    Manuel Galli

    2016-01-01

    Full Text Available Biomarkers able to characterise and predict multifactorial diseases are still one of the most important targets for all the “omics” investigations. In this context, Matrix-Assisted Laser Desorption/Ionisation-Mass Spectrometry Imaging (MALDI-MSI has gained considerable attention in recent years, but it also led to a huge amount of complex data to be elaborated and interpreted. For this reason, computational and machine learning procedures for biomarker discovery are important tools to consider, both to reduce data dimension and to provide predictive markers for specific diseases. For instance, the availability of protein and genetic markers to support thyroid lesion diagnoses would impact deeply on society due to the high presence of undetermined reports (THY3 that are generally treated as malignant patients. In this paper we show how an accurate classification of thyroid bioptic specimens can be obtained through the application of a state-of-the-art machine learning approach (i.e., Support Vector Machines on MALDI-MSI data, together with a particular wrapper feature selection algorithm (i.e., recursive feature elimination. The model is able to provide an accurate discriminatory capability using only 20 out of 144 features, resulting in an increase of the model performances, reliability, and computational efficiency. Finally, tissue areas rather than average proteomic profiles are classified, highlighting potential discriminating areas of clinical interest.

  11. Cognitive Development Optimization Algorithm Based Support Vector Machines for Determining Diabetes

    Directory of Open Access Journals (Sweden)

    Utku Kose

    2016-03-01

    Full Text Available The definition, diagnosis and classification of Diabetes Mellitus and its complications are very important. First of all, the World Health Organization (WHO and other societies, as well as scientists have done lots of studies regarding this subject. One of the most important research interests of this subject is the computer supported decision systems for diagnosing diabetes. In such systems, Artificial Intelligence techniques are often used for several disease diagnostics to streamline the diagnostic process in daily routine and avoid misdiagnosis. In this study, a diabetes diagnosis system, which is formed via both Support Vector Machines (SVM and Cognitive Development Optimization Algorithm (CoDOA has been proposed. Along the training of SVM, CoDOA was used for determining the sigma parameter of the Gauss (RBF kernel function, and eventually, a classification process was made over the diabetes data set, which is related to Pima Indians. The proposed approach offers an alternative solution to the field of Artificial Intelligence-based diabetes diagnosis, and contributes to the related literature on diagnosis processes.

  12. Estimation of Electrically-Evoked Knee Torque from Mechanomyography Using Support Vector Regression.

    Science.gov (United States)

    Ibitoye, Morufu Olusola; Hamzaid, Nur Azah; Abdul Wahab, Ahmad Khairi; Hasnan, Nazirah; Olatunji, Sunday Olusanya; Davis, Glen M

    2016-07-19

    The difficulty of real-time muscle force or joint torque estimation during neuromuscular electrical stimulation (NMES) in physical therapy and exercise science has motivated recent research interest in torque estimation from other muscle characteristics. This study investigated the accuracy of a computational intelligence technique for estimating NMES-evoked knee extension torque based on the Mechanomyographic signals (MMG) of contracting muscles that were recorded from eight healthy males. Simulation of the knee torque was modelled via Support Vector Regression (SVR) due to its good generalization ability in related fields. Inputs to the proposed model were MMG amplitude characteristics, the level of electrical stimulation or contraction intensity, and knee angle. Gaussian kernel function, as well as its optimal parameters were identified with the best performance measure and were applied as the SVR kernel function to build an effective knee torque estimation model. To train and test the model, the data were partitioned into training (70%) and testing (30%) subsets, respectively. The SVR estimation accuracy, based on the coefficient of determination (R²) between the actual and the estimated torque values was up to 94% and 89% during the training and testing cases, with root mean square errors (RMSE) of 9.48 and 12.95, respectively. The knee torque estimations obtained using SVR modelling agreed well with the experimental data from an isokinetic dynamometer. These findings support the realization of a closed-loop NMES system for functional tasks using MMG as the feedback signal source and an SVR algorithm for joint torque estimation.

  13. Decision Support for Countering Terrorist Threats against Transportation Networks

    Directory of Open Access Journals (Sweden)

    Dr. Richard Adler

    2009-01-01

    Full Text Available This article presents a dynamic decision support methodology forcounter-terrorism decision support. The initial sections introduce basic objectives and challenges of terrorism risk analysis and risk management. The remainder of the paper describes TRANSEC, a decision support framework for defining, validating, and monitoring strategies focused on managing terrorism risks to international transportation networks. The methodology and software tools underlying TRANSEC are applicable to other homeland security problems, such as critical infrastructure and border protection.

  14. Strategic Bidding for Electri city Markets Negotiation Using Support Vector Machines

    DEFF Research Database (Denmark)

    Pereira, Rafael; Sousa, Tiago; Pinto, Tiago

    2014-01-01

    ’ research group has developed a multi-agent system: MASCEM (Multi- Agent System for Competitive Electricity Markets), which simulates the electricity markets environment. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players...... by being included in ALBidS and then compared with the application of an Artificial Neural Network, originating promising results. The proposed approach is tested and validated using real electricity markets data from MIBEL - Iberian market operator...

  15. ANALYSIS RESOURCE AWARE FRAMEWORK BY COMBINING SUNSPOT AND IMOTE2 PLATFORM WIRELESS SENSOR NETWORKS USING DISTANCE VECTOR ALGORITHM

    Directory of Open Access Journals (Sweden)

    Muhammad Ilyas Syarif

    2012-07-01

    Full Text Available Efficiency energy and stream data mining on Wireless Sensor Networks (WSNs are a very interesting issue to be discussed. Routing protocols technology and resource-aware can be done to improve energy efficiency. In this paper we try to merge routing protocol technology using routing Distance Vector and Resource-Aware (RA framework on heterogeneity wireless sensor networks by combining sun-SPOT and Imote2 platform wireless sensor networks. RA perform resource monitoring process of the battery, memory and CPU load more optimally and efficiently. The process uses Light-Weight Clustering (LWC and Light Weight Frequent Item (LWF. The results obtained that by adapting Resource-Aware in wireless sensor networks, the lifetime of wireless sensor improve up to ± 16.62%. Efisiensi energi dan stream data mining pada Wireless Sensor Networks (WSN adalah masalah yang sangat menarik untuk dibahas. Teknologi Routing Protocol dan Resource-Aware dapat dilakukan untuk meningkatkan efisiensi energi. Dalam penelitian ini peneliti mencoba untuk menggabungkan teknologi Routing Protocol menggunakan routing Distance Vector dan Resource-Aware (RA framework pada Wireless Sensor Networks heterogen dengan menggabungkan sun-SPOT dan platform Imote2 Wireless Sensor Networks. RA melakukan proses pemantauan sumber daya dari memori, baterai, dan beban CPU lebih optimal dan efisien. Proses ini menggunakan Light-Weight Clustering (LWC dan Light Weight Frequent Item (LWF. Hasil yang diperoleh bahwa dengan mengadaptasi Resource-Aware dalam Wireless Sensor Networks, masa pakai wireless sensor meningkatkan sampai ± 16,62%.

  16. Quantitative analysis of routine chemical constituents in tobacco by near-infrared spectroscopy and support vector machine

    Science.gov (United States)

    Zhang, Yong; Cong, Qian; Xie, Yunfei; Yang, Jingxiu; Zhao, Bing

    2008-12-01

    It is important to monitor quality of tobacco during the production of cigarette. Therefore, in order to scientifically control the tobacco raw material and guarantee the cigarette quality, fast and accurate determination routine chemical of constituents of tobacco, including the total sugar, reducing sugar, Nicotine, the total nitrogen and so on, is needed. In this study, 50 samples of tobacco from different cultivation areas were surveyed by near-infrared (NIR) spectroscopy, and the spectral differences provided enough quantitative analysis information for the tobacco. Partial least squares regression (PLSR), artificial neural network (ANN), and support vector machine (SVM), were applied. The quantitative analysis models of 50 tobacco samples were studied comparatively in this experiment using PLSR, ANN, radial basis function (RBF) SVM regression, and the parameters of the models were also discussed. The spectrum variables of 50 samples had been compressed through the wavelet transformation technology before the models were established. The best experimental results were obtained using the (RBF) SVM regression with γ = 1.5, 1.3, 0.9, and 0.1, separately corresponds to total sugar, reducing sugar, Nicotine, and total nitrogen, respectively. Finally, compared with the back propagation (BP-ANN) and PLSR approach, SVM algorithm showed its excellent generalization for quantitative analysis results, while the number of samples for establishing the model is smaller. The overall results show that NIR spectroscopy combined with SVM can be efficiently utilized for rapid and accurate analysis of routine chemical compositions in tobacco. Simultaneously, the research can serve as the technical support and the foundation of quantitative analysis of other NIR applications.

  17. The Impact of Different Support Vectors on GOSAT-2 CAI-2 L2 Cloud Discrimination

    Directory of Open Access Journals (Sweden)

    Yu Oishi

    2017-11-01

    Full Text Available Greenhouse gases Observing SATellite-2 (GOSAT-2 will be launched in fiscal year 2018. GOSAT-2 will be equipped with two sensors: the Thermal and Near-infrared Sensor for Carbon Observation (TANSO-Fourier Transform Spectrometer 2 (FTS-2 and the TANSO-Cloud and Aerosol Imager 2 (CAI-2. CAI-2 is a push-broom imaging sensor that has forward- and backward-looking bands to observe the optical properties of aerosols and clouds and to monitor the status of urban air pollution and transboundary air pollution over oceans, such as PM2.5 (particles less than 2.5 micrometers in diameter. CAI-2 has important applications for cloud discrimination in each direction. The Cloud and Aerosol Unbiased Decision Intellectual Algorithm (CLAUDIA1, which applies sequential threshold tests to features is used for GOSAT CAI L2 cloud flag processing. If CLAUDIA1 is used with CAI-2, it is necessary to optimize the thresholds in accordance with CAI-2. However, CLAUDIA3 with support vector machines (SVM, a supervised pattern recognition method, was developed, and then we applied CLAUDIA3 for GOSAT-2 CAI-2 L2 cloud discrimination processing. Thus, CLAUDIA3 can automatically find the optimized boundary between clear and cloudy areas. Improvements in CLAUDIA3 using CAI (CLAUDIA3-CAI continue to be made. In this study, we examined the impact of various support vectors (SV on GOSAT-2 CAI-2 L2 cloud discrimination by analyzing (1 the impact of the choice of different time periods for the training data and (2 the impact of different generation procedures for SV on the cloud discrimination efficiency. To generate SV for CLAUDIA3-CAI from MODIS data, there are two times at which features are extracted, corresponding to CAI bands. One procedure is equivalent to generating SV using CAI data. Another procedure generates SV for MODIS cloud discrimination at the beginning, and then extracts decision function, thresholds, and SV corresponding to CAI bands. Our results indicated the following

  18. Filtered selection coupled with support vector machines generate a functionally relevant prediction model for colorectal cancer

    Directory of Open Access Journals (Sweden)

    Gabere MN

    2016-06-01

    Full Text Available Musa Nur Gabere,1 Mohamed Aly Hussein,1 Mohammad Azhar Aziz2 1Department of Bioinformatics, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; 2Colorectal Cancer Research Program, Department of Medical Genomics, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia Purpose: There has been considerable interest in using whole-genome expression profiles for the classification of colorectal cancer (CRC. The selection of important features is a crucial step before training a classifier.Methods: In this study, we built a model that uses support vector machine (SVM to classify cancer and normal samples using Affymetrix exon microarray data obtained from 90 samples of 48 patients diagnosed with CRC. From the 22,011 genes, we selected the 20, 30, 50, 100, 200, 300, and 500 genes most relevant to CRC using the minimum-redundancy–maximum-relevance (mRMR technique. With these gene sets, an SVM model was designed using four different kernel types (linear, polynomial, radial basis function [RBF], and sigmoid.Results: The best model, which used 30 genes and RBF kernel, outperformed other combinations; it had an accuracy of 84% for both ten fold and leave-one-out cross validations in discriminating the cancer samples from the normal samples. With this 30 genes set from mRMR, six classifiers were trained using random forest (RF, Bayes net (BN, multilayer perceptron (MLP, naïve Bayes (NB, reduced error pruning tree (REPT, and SVM. Two hybrids, mRMR + SVM and mRMR + BN, were the best models when tested on other datasets, and they achieved a prediction accuracy of 95.27% and 91.99%, respectively, compared to other mRMR hybrid models (mRMR + RF, mRMR + NB, mRMR + REPT, and mRMR + MLP. Ingenuity pathway analysis was used to analyze the functions of the 30 genes selected for this model and their potential association with CRC: CDH3, CEACAM7, CLDN1, IL8, IL6R, MMP1

  19. Support vector machines for automated snoring detection: proof-of-concept.

    Science.gov (United States)

    Samuelsson, Laura B; Rangarajan, Anusha A; Shimada, Kenji; Krafty, Robert T; Buysse, Daniel J; Strollo, Patrick J; Kravitz, Howard M; Zheng, Huiyong; Hall, Martica H

    2017-03-01

    Snoring has been shown to be associated with adverse physical and mental health, independent of the effects of sleep disordered breathing. Despite increasing evidence for the risks of snoring, few studies on sleep and health include objective measures of snoring. One reason for this methodological limitation is the difficulty of quantifying snoring. Conventional methods may rely on manual scoring of snore events by trained human scorers, but this process is both time- and labor-intensive, making the measurement of objective snoring impractical for large or multi-night studies. The current study is a proof-of-concept to validate the use of support vector machines (SVM), a form of machine learning, for the automated scoring of an objective snoring signal. An SVM algorithm was trained and tested on a set of approximately 150,000 snoring and non-snoring data segments, and F-scores for SVM performance compared to visual scoring performance were calculated using the Wilcoxon signed rank test for paired data. The ability of the SVM algorithm to discriminate snore from non-snore segments of data did not differ statistically from visual scorer performance (SVM F-score = 82.46 ± 7.93 versus average visual F-score = 88.35 ± 4.61, p = 0.2786), supporting SVM snore classification ability comparable to visual scorers. In this proof-of-concept, we established that the SVM algorithm performs comparably to trained visual scorers, supporting the use of SVM for automated snoring detection in future studies.

  20. Identifying changes in the support networks of end-of-life carers using social network analysis.

    Science.gov (United States)

    Leonard, Rosemary; Horsfall, Debbie; Noonan, Kerrie

    2015-06-01

    End-of-life caring is often associated with reduced social networks for both the dying person and for the carer. However, those adopting a community participation and development approach, see the potential for the expansion and strengthening of networks. This paper uses Knox, Savage and Harvey's definitions of three generations social network analysis to analyse the caring networks of people with a terminal illness who are being cared for at home and identifies changes in these caring networks that occurred over the period of caring. Participatory network mapping of initial and current networks was used in nine focus groups. The analysis used key concepts from social network analysis (size, density, transitivity, betweenness and local clustering) together with qualitative analyses of the group's reflections on the maps. The results showed an increase in the size of the networks and that ties between the original members of the network strengthened. The qualitative data revealed the importance between core and peripheral network members and the diverse contributions of the network members. The research supports the value of third generation social network analysis and the potential for end-of-life caring to build social capital. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  1. Social Support and Social Networks in COPD: A Scoping Review.

    Science.gov (United States)

    Barton, Christopher; Effing, Tanya W; Cafarella, Paul

    2015-01-01

    A scoping review was conducted to determine the size and nature of the evidence describing associations between social support and networks on health, management and clinical outcomes amongst patients with COPD. Searches of PubMed, PsychInfo and CINAHL were undertaken for the period 1966-December 2013. A descriptive synthesis of the main findings was undertaken to demonstrate where there is current evidence for associations between social support, networks and health outcomes, and where further research is needed. The search yielded 318 papers of which 287 were excluded after applying selection criteria. Two areas emerged in which there was consistent evidence of benefit of social support; namely mental health and self-efficacy. There was inconsistent evidence for a relationship between perceived social support and quality of life, physical functioning and self-rated health. Hospital readmission was not associated with level of perceived social support. Only a small number of studies (3 articles) have reported on the social network of individuals with COPD. There remains a need to identify the factors that promote and enable social support. In particular, there is a need to further understand the characteristics of social networks within the broader social structural conditions in which COPD patients live and manage their illness.

  2. Computational study of CCR5 antagonist with support vector machines and three dimensional quantitative structure activity relationship methods.

    Science.gov (United States)

    Chen, Yue; Li, Zeng; Chen, Hai-Feng

    2010-03-01

    CCR5 is the key receptor of HIV-1 virus entry into host cells and it becomes an attractive target for antiretroviral drug design. To date, six types of CCR5 antagonist were synthesized and evaluated. To search more potent bio-active compounds, non-linear support vector machine was used to construct the relationship models for 103 oximino-piperidino-piperidine CCR5 antagonists. Then, comparative molecular field analysis and comparative molecular similarity indices analysis models were constructed after alignment with their common substructure. Twenty-one structural diverse compounds, which were not included in the support vector machine, comparative molecular field analysis, and comparative molecular similarity indices analysis models, validated these models. The results show that these models possess good predictive ability. When comparing between support vector machine and 3D-quantitative structure activity relationship models, the results obtained from these two methods are compatible. However, 3D-quantitative structure activity relationship model is significantly better than support vector machine model and previous reported pharmacophore model. These models can help us to make quantitative prediction of their bio-activities before in vitro and in vivo stages.

  3. Novel Approach for Automatic Detection of Atrial Fibrillation Based on Inter Beat Intervals and Support Vector Machine

    DEFF Research Database (Denmark)

    Andersen, Rasmus S.; Poulsen, Erik S.; Puthusserypady, Sadasivan

    2017-01-01

    for AF detection based on Inter Beat Intervals (IBI) extracted from long term electrocardiogram (ECG) recordings. Five time-domain features are extracted from the IBIs and a Support Vector Machine (SVM) is used for classification. The results are compared to a state of the art algorithm based on raw ECG...

  4. A Novel Homogenous Hybridization Scheme for Performance Improvement of Support Vector Machines Regression in Reservoir Characterization

    Directory of Open Access Journals (Sweden)

    Kabiru O. Akande

    2016-01-01

    Full Text Available Hybrid computational intelligence is defined as a combination of multiple intelligent algorithms such that the resulting model has superior performance to the individual algorithms. Therefore, the importance of fusing two or more intelligent algorithms to achieve better performance cannot be overemphasized. In this work, a novel homogenous hybridization scheme is proposed for the improvement of the generalization and predictive ability of support vector machines regression (SVR. The proposed and developed hybrid SVR (HSVR works by considering the initial SVR prediction as a feature extraction process and then employs the SVR output, which is the extracted feature, as its sole descriptor. The developed hybrid model is applied to the prediction of reservoir permeability and the predicted permeability is compared to core permeability which is regarded as standard in petroleum industry. The results show that the proposed hybrid scheme (HSVR performed better than the existing SVR in both generalization and prediction ability. The outcome of this research will assist petroleum engineers to effectively predict permeability of carbonate reservoirs with higher degree of accuracy and will invariably lead to better reservoir. Furthermore, the encouraging performance of this hybrid will serve as impetus for further exploring homogenous hybrid system.

  5. Reference Function Based Spatiotemporal Fuzzy Logic Control Design Using Support Vector Regression Learning

    Directory of Open Access Journals (Sweden)

    Xian-Xia Zhang

    2013-01-01

    Full Text Available This paper presents a reference function based 3D FLC design methodology using support vector regression (SVR learning. The concept of reference function is introduced to 3D FLC for the generation of 3D membership functions (MF, which enhance the capability of the 3D FLC to cope with more kinds of MFs. The nonlinear mathematical expression of the reference function based 3D FLC is derived, and spatial fuzzy basis functions are defined. Via relating spatial fuzzy basis functions of a 3D FLC to kernel functions of an SVR, an equivalence relationship between a 3D FLC and an SVR is established. Therefore, a 3D FLC can be constructed using the learned results of an SVR. Furthermore, the universal approximation capability of the proposed 3D fuzzy system is proven in terms of the finite covering theorem. Finally, the proposed method is applied to a catalytic packed-bed reactor and simulation results have verified its effectiveness.

  6. Multicategory classification of 11 neuromuscular diseases based on microarray data using support vector machine.

    Science.gov (United States)

    Choi, Soo Beom; Park, Jee Soo; Chung, Jai Won; Yoo, Tae Keun; Kim, Deok Won

    2014-01-01

    We applied multicategory machine learning methods to classify 11 neuromuscular disease groups and one control group based on microarray data. To develop multicategory classification models with optimal parameters and features, we performed a systematic evaluation of three machine learning algorithms and four feature selection methods using three-fold cross validation and a grid search. This study included 114 subjects of 11 neuromuscular diseases and 31 subjects of a control group using microarray data with 22,283 probe sets from the National Center for Biotechnology Information (NCBI). We obtained an accuracy of 100%, relative classifier information (RCI) of 1.0, and a kappa index of 1.0 by applying the models of support vector machines one-versus-one (SVM-OVO), SVM one-versus-rest (OVR), and directed acyclic graph SVM (DAGSVM), using the ratio of genes between categories to within-category sums of squares (BW) feature selection method. Each of these three models selected only four features to categorize the 12 groups, resulting in a time-saving and cost-effective strategy for diagnosing neuromuscular diseases. In addition, a gene symbol, SPP1 was selected as the top-ranked gene by the BW method. We confirmed relationships between the gene (SPP1) and Duchenne muscular dystrophy (DMD) from a previous study. With our models as clinically helpful tools, neuromuscular diseases could be classified quickly using a computer, thereby giving a time-saving, cost-effective, and accurate diagnosis.

  7. Biomarkers of Eating Disorders Using Support Vector Machine Analysis of Structural Neuroimaging Data: Preliminary Results

    Directory of Open Access Journals (Sweden)

    Antonio Cerasa

    2015-01-01

    Full Text Available Presently, there are no valid biomarkers to identify individuals with eating disorders (ED. The aim of this work was to assess the feasibility of a machine learning method for extracting reliable neuroimaging features allowing individual categorization of patients with ED. Support Vector Machine (SVM technique, combined with a pattern recognition method, was employed utilizing structural magnetic resonance images. Seventeen females with ED (six with diagnosis of anorexia nervosa and 11 with bulimia nervosa were compared against 17 body mass index-matched healthy controls (HC. Machine learning allowed individual diagnosis of ED versus HC with an Accuracy ≥ 0.80. Voxel-based pattern recognition analysis demonstrated that voxels influencing the classification Accuracy involved the occipital cortex, the posterior cerebellar lobule, precuneus, sensorimotor/premotor cortices, and the medial prefrontal cortex, all critical regions known to be strongly involved in the pathophysiological mechanisms of ED. Although these findings should be considered preliminary given the small size investigated, SVM analysis highlights the role of well-known brain regions as possible biomarkers to distinguish ED from HC at an individual level, thus encouraging the translational implementation of this new multivariate approach in the clinical practice.

  8. Ensembled support vector machines for human papillomavirus risk type prediction from protein secondary structures.

    Science.gov (United States)

    Kim, Sun; Kim, Jeongmi; Zhang, Byoung-Tak

    2009-02-01

    Infection by the human papillomavirus (HPV) is regarded as the major risk factor in the development of cervical cancer. Detection of high-risk HPV is important for understanding its oncogenic mechanisms and for developing novel clinical tools for its diagnosis, treatment, and prevention. Several methods are available to predict the risk types for HPV protein sequences. Nevertheless, no tools can achieve a universally good performance for all domains, including HPV and nor do they provide confidence levels for their decisions. Here, we describe ensembled support vector machines (SVMs) to classify HPV risk types, which assign given proteins into high-, possibly high-, or low-risk type based on their confidence level. Our approach uses protein secondary structures to obtain the differential contribution of subsequences for the risk type, and SVM classifiers are combined with a simple but efficient string kernel to handle HPV protein sequences. In the experiments, we compare our approach with previous methods in accuracy and F1-score, and present the predictions for unknown HPV types, which provides promising results.

  9. Support vector regression methodology for estimating global solar radiation in Algeria

    Science.gov (United States)

    Guermoui, Mawloud; Rabehi, Abdelaziz; Gairaa, Kacem; Benkaciali, Said

    2018-01-01

    Accurate estimation of Daily Global Solar Radiation (DGSR) has been a major goal for solar energy applications. In this paper we show the possibility of developing a simple model based on the Support Vector Regression (SVM-R), which could be used to estimate DGSR on the horizontal surface in Algeria based only on sunshine ratio as input. The SVM model has been developed and tested using a data set recorded over three years (2005-2007). The data was collected at the Applied Research Unit for Renewable Energies (URAER) in Ghardaïa city. The data collected between 2005-2006 are used to train the model while the 2007 data are used to test the performance of the selected model. The measured and the estimated values of DGSR were compared during the testing phase statistically using the Root Mean Square Error (RMSE), Relative Square Error (rRMSE), and correlation coefficient (r2), which amount to 1.59(MJ/m2), 8.46 and 97,4%, respectively. The obtained results show that the SVM-R is highly qualified for DGSR estimation using only sunshine ratio.

  10. LOCUSTRA: accurate prediction of local protein structure using a two-layer support vector machine approach.

    Science.gov (United States)

    Zimmermann, Olav; Hansmann, Ulrich H E

    2008-09-01

    Constraint generation for 3d structure prediction and structure-based database searches benefit from fine-grained prediction of local structure. In this work, we present LOCUSTRA, a novel scheme for the multiclass prediction of local structure that uses two layers of support vector machines (SVM). Using a 16-letter structural alphabet from de Brevern et al. (Proteins: Struct., Funct., Bioinf. 2000, 41, 271-287), we assess its prediction ability for an independent test set of 222 proteins and compare our method to three-class secondary structure prediction and direct prediction of dihedral angles. The prediction accuracy is Q16=61.0% for the 16 classes of the structural alphabet and Q3=79.2% for a simple mapping to the three secondary classes helix, sheet, and coil. We achieve a mean phi(psi) error of 24.74 degrees (38.35 degrees) and a median RMSDA (root-mean-square deviation of the (dihedral) angles) per protein chain of 52.1 degrees. These results compare favorably with related approaches. The LOCUSTRA web server is freely available to researchers at http://www.fz-juelich.de/nic/cbb/service/service.php.

  11. Drought sensitivity mapping using two one-class support vector machine algorithms

    Science.gov (United States)

    Roodposhti, Majid Shadman; Safarrad, Taher; Shahabi, Himan

    2017-09-01

    This paper investigates the use of standardised precipitation index (SPI) and the enhanced vegetation index (EVI) as indicators of soil moisture. On the other hand, we attempted to produce a drought sensitivity map (DSM) for vegetation cover using two one-class support vector machine (OC-SVM) algorithms. In order to achieve promising results a combination of both 30 years statistical data (1978 to 2008) of synoptic stations and 10 years MODIS imagery archive (2001 to 2010) are used within the boundary of Kermanshah province, Iran. The synoptic data and MODIS imagery were used for extraction of SPI and EVI, respectively. The objective is, therefore, to explore meaningful changes of vegetation in response to drought anomalies, in the first step, and further extraction of reliable spatio-temporal patterns of drought sensitivity using efficient classification technique and spatial criteria, in the next step. To this end, four main criteria including elevation, slope, aspect and geomorphic classes are considered for DSM using two OC-SVM algorithms. Results of the analysis showed distinct spatio-temporal patterns of drought impacts on vegetation cover. The receiver operating characteristics (ROC) curves for the proposed DSM was used along with the simple overlay technique for accuracy assessment phase and the area under curve (AUC = 0.80) value was calculated.

  12. Price forecast in the competitive electricity market by support vector machine

    Science.gov (United States)

    Gao, Ciwei; Bompard, Ettore; Napoli, Roberto; Cheng, Haozhong

    2007-08-01

    The electricity market has been widely introduced in many countries all over the world and the study on electricity price forecast technology has drawn a lot of attention. In this paper, with different parameter C i and ε i assigned to each training data, the flexible C i Support Vector Regression (SVR) model is developed in terms of the particularity of the price forecast in electricity market. For Day Ahead Market (DAM) price forecast, the load, time of use index and index of day type are taken as the major factors to characterize the market price, therefore, they are selected as the inputs for the flexible SVR forecast model. For the long-term price forecast, we take the reserve margin Rm, HHI and the fuel price index as the inputs, since they are the major factors that drive the market price variation in long run. For short-term price forecast, besides the detailed analysis with the young Italian electricity market, the new model is tested on the experimental stage of the Spanish market, the New York market and the New England market. The long-term forecast with the SVR model presented is justified by the forecast with the data from the Long Run Market Simulator (LREMS).

  13. Hybrid ARIMA and Support Vector Regression in Short‑term Electricity Price Forecasting

    Directory of Open Access Journals (Sweden)

    Jindřich Pokora

    2017-01-01

    Full Text Available The literature suggests that, in short‑term electricity‑price forecasting, a combination of ARIMA and support vector regression (SVR yields performance improvement over separate use of each method. The objective of the research is to investigate the circumstances under which these hybrid models are superior for day‑ahead hourly price forecasting. Analysis of the Nord Pool market with 16 interconnected areas and 6 investigated monthly periods allows not only for a considerable level of generalizability but also for assessment of the effect of transmission congestion since this causes differences in prices between the Nord Pool areas. The paper finds that SVR, SVRARIMA and ARIMASVR provide similar performance, at the same time, hybrid methods outperform single models in terms of RMSE in 98 % of investigated time series. Furthermore, it seems that higher flexibility of hybrid models improves modeling of price spikes at a slight cost of imprecision during steady periods. Lastly, superiority of hybrid models is pronounced under transmission congestions, measured as first and second moments of the electricity price.

  14. Aeromagnetic gradient compensation method for helicopter based on ɛ-support vector regression algorithm

    Science.gov (United States)

    Wu, Peilin; Zhang, Qunying; Fei, Chunjiao; Fang, Guangyou

    2017-04-01

    Aeromagnetic gradients are typically measured by optically pumped magnetometers mounted on an aircraft. Any aircraft, particularly helicopters, produces significant levels of magnetic interference. Therefore, aeromagnetic compensation is essential, and least square (LS) is the conventional method used for reducing interference levels. However, the LSs approach to solving the aeromagnetic interference model has a few difficulties, one of which is in handling multicollinearity. Therefore, we propose an aeromagnetic gradient compensation method, specifically targeted for helicopter use but applicable on any airborne platform, which is based on the ɛ-support vector regression algorithm. The structural risk minimization criterion intrinsic to the method avoids multicollinearity altogether. Local aeromagnetic anomalies can be retained, and platform-generated fields are suppressed simultaneously by constructing an appropriate loss function and kernel function. The method was tested using an unmanned helicopter and obtained improvement ratios of 12.7 and 3.5 in the vertical and horizontal gradient data, respectively. Both of these values are probably better than those that would have been obtained from the conventional method applied to the same data, had it been possible to do so in a suitable comparative context. The validity of the proposed method is demonstrated by the experimental result.

  15. Diabetic peripheral neuropathy class prediction by multicategory support vector machine model: a cross-sectional study.

    Science.gov (United States)

    Kazemi, Maryam; Moghimbeigi, Abbas; Kiani, Javad; Mahjub, Hossein; Faradmal, Javad

    2016-01-01

    Diabetes is increasing in worldwide prevalence, toward epidemic levels. Diabetic neuropathy, one of the most common complications of diabetes mellitus, is a serious condition that can lead to amputation. This study used a multicategory support vector machine (MSVM) to predict diabetic peripheral neuropathy severity classified into four categories using patients' demographic characteristics and clinical features. In this study, the data were collected at the Diabetes Center of Hamadan in Iran. Patients were enrolled by the convenience sampling method. Six hundred patients were recruited. After obtaining informed consent, a questionnaire collecting general information and a neuropathy disability score (NDS) questionnaire were administered. The NDS was used to classify the severity of the disease. We used MSVM with both one-against-all and one-against-one methods and three kernel functions, radial basis function (RBF), linear, and polynomial, to predict the class of disease with an unbalanced dataset. The synthetic minority class oversampling technique algorithm was used to improve model performance. To compare the performance of the models, the mean of accuracy was used. For predicting diabetic neuropathy, a classifier built from a balanced dataset and the RBF kernel function with a one-against-one strategy predicted the class to which a patient belonged with about 76% accuracy. The results of this study indicate that, in terms of overall classification accuracy, the MSVM model based on a balanced dataset can be useful for predicting the severity of diabetic neuropathy, and it should be further investigated for the prediction of other diseases.

  16. Perbandingan Simple Logistic Classifier dengan Support Vector Machine dalam Memprediksi Kemenangan Atlet

    Directory of Open Access Journals (Sweden)

    Ednawati Rainarli

    2017-10-01

    Full Text Available A coach must be able to select which athlete has a good prospect of winning a game. There are a lot of aspects which influence the athlete in winning a game, so it's not easy by coach to decide it.This research would compare Simple Logistic Classifier (SLC and Support Vector Machine (SVM usage applied to predict winning game of athlete based on health and physical condition record. The data get from 28 sports. The accuracy of SLC and SVM are 80% and 88% meanwhile processing times of SLC and SVM method are 1.6 seconds dan 0.2 seconds.The result shows the SVM usage superior to the SLC both of speed process and the value of accuracy. There were also testing of 24 features used in the classifications process. Based on the test, features selection process can cause decreasing the accuracy value. This result concludes that all features used in this research influence the determination of a victory athletes prediction.

  17. Automatic defect detection for TFT-LCD array process using quasiconformal kernel support vector data description.

    Science.gov (United States)

    Liu, Yi-Hung; Chen, Yan-Jen

    2011-01-01

    Defect detection has been considered an efficient way to increase the yield rate of panels in thin film transistor liquid crystal display (TFT-LCD) manufacturing. In this study we focus on the array process since it is the first and key process in TFT-LCD manufacturing. Various defects occur in the array process, and some of them could cause great damage to the LCD panels. Thus, how to design a method that can robustly detect defects from the images captured from the surface of LCD panels has become crucial. Previously, support vector data description (SVDD) has been successfully applied to LCD defect detection. However, its generalization performance is limited. In this paper, we propose a novel one-class machine learning method, called quasiconformal kernel SVDD (QK-SVDD) to address this issue. The QK-SVDD can significantly improve generalization performance of the traditional SVDD by introducing the quasiconformal transformation into a predefined kernel. Experimental results, carried out on real LCD images provided by an LCD manufacturer in Taiwan, indicate that the proposed QK-SVDD not only obtains a high defect detection rate of 96%, but also greatly improves generalization performance of SVDD. The improvement has shown to be over 30%. In addition, results also show that the QK-SVDD defect detector is able to accomplish the task of defect detection on an LCD image within 60 ms.

  18. Application of Support Vector Machines for Estimating Wall Parameters in Through-Wall Radar Imaging

    Directory of Open Access Journals (Sweden)

    Hua-Mei Zhang

    2015-01-01

    Full Text Available In through-wall radar imaging (TWRI, ambiguities in wall characteristics including the thickness and the relative permittivity will distort the image and shift the imaged target position. To quickly and accurately estimate the wall parameters, an approach based on a support vector machine (SVM is proposed. In TWRI problem, the nonlinearity is embodied in the relationship between backscatter data and the wall parameters, which can be obtained through the SVM training process. Measurement results reveal that once the training phase is completed, the technique only needs no more than one second to estimate wall parameters with acceptable errors. Then through-wall images are reconstructed using a back-projection (BP algorithm by a finite-difference time-domain (FDTD simulation. Noiseless and noisy measurements are discussed; the simulation results demonstrate that noisy contamination has little influence on the imaging quality. Furthermore, the feasibility and the validity are tested by a more realistic situation. The results show that high-quality and focused images are obtained regardless of the errors in the wall parameter estimates.

  19. An Emotion Detection System Based on Multi Least Squares Twin Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Divya Tomar

    2014-01-01

    Full Text Available Posttraumatic stress disorder (PTSD, bipolar manic disorder (BMD, obsessive compulsive disorder (OCD, depression, and suicide are some major problems existing in civilian and military life. The change in emotion is responsible for such type of diseases. So, it is essential to develop a robust and reliable emotion detection system which is suitable for real world applications. Apart from healthcare, importance of automatically recognizing emotions from human speech has grown with the increasing role of spoken language interfaces in human-computer interaction applications. Detection of emotion in speech can be applied in a variety of situations to allocate limited human resources to clients with the highest levels of distress or need, such as in automated call centers or in a nursing home. In this paper, we used a novel multi least squares twin support vector machine classifier in order to detect seven different emotions such as anger, happiness, sadness, anxiety, disgust, panic, and neutral emotions. The experimental result indicates better performance of the proposed technique over other existing approaches. The result suggests that the proposed emotion detection system may be used for screening of mental status.

  20. Study on Parameter Optimization for Support Vector Regression in Solving the Inverse ECG Problem

    Directory of Open Access Journals (Sweden)

    Mingfeng Jiang

    2013-01-01

    Full Text Available The typical inverse ECG problem is to noninvasively reconstruct the transmembrane potentials (TMPs from body surface potentials (BSPs. In the study, the inverse ECG problem can be treated as a regression problem with multi-inputs (body surface potentials and multi-outputs (transmembrane potentials, which can be solved by the support vector regression (SVR method. In order to obtain an effective SVR model with optimal regression accuracy and generalization performance, the hyperparameters of SVR must be set carefully. Three different optimization methods, that is, genetic algorithm (GA, differential evolution (DE algorithm, and particle swarm optimization (PSO, are proposed to determine optimal hyperparameters of the SVR model. In this paper, we attempt to investigate which one is the most effective way in reconstructing the cardiac TMPs from BSPs, and a full comparison of their performances is also provided. The experimental results show that these three optimization methods are well performed in finding the proper parameters of SVR and can yield good generalization performance in solving the inverse ECG problem. Moreover, compared with DE and GA, PSO algorithm is more efficient in parameters optimization and performs better in solving the inverse ECG problem, leading to a more accurate reconstruction of the TMPs.

  1. Multi-time scale stream flow predictions: The support vector machines approach

    Science.gov (United States)

    Asefa, Tirusew; Kemblowski, Mariush; McKee, Mac; Khalil, Abedalrazq

    2006-03-01

    Effective lead-time stream flow forecast is one of the key aspects of successful water resources management in arid regions. In this research, we present new data-driven models based on Statistical Learning Theory that were used to forecast flows at two time scales: seasonal flow volumes and hourly stream flows. The models, known as Support Vector Machines, are learning systems that use a hypothesis space of linear functions in a Kernel induced higher dimensional feature space, and are trained with a learning algorithm from optimization theory. They are based on a principle that aims at minimizing the generalized model error (risk), rather than just the mean square error over a training set. Due to Mercer's condition on the kernels the corresponding optimization problems are convex and hence have no local minima. Empirical results from these models showed a promising performance in solving site-specific, real-time water resources management problems. Stream flow was forecasted using local-climatological data and requiring far less input than physical models. In addition, seasonal flow volume predictions were improved by incorporating atmospheric circulation indicators. Specifically, use of the North-Pacific Sea Surface Temperature Anomalies (SSTA) improved flow volume predictions.

  2. Gas detonation cell width prediction model based on support vector regression

    Directory of Open Access Journals (Sweden)

    Jiyang Yu

    2017-10-01

    Full Text Available Detonation cell width is an important parameter in hydrogen explosion assessments. The experimental data on gas detonation are statistically analyzed to establish a universal method to numerically predict detonation cell widths. It is commonly understood that detonation cell width, λ, is highly correlated with the characteristic reaction zone width, δ. Classical parametric regression methods were widely applied in earlier research to build an explicit semiempirical correlation for the ratio of λ/δ. The obtained correlations formulate the dependency of the ratio λ/δ on a dimensionless effective chemical activation energy and a dimensionless temperature of the gas mixture. In this paper, support vector regression (SVR, which is based on nonparametric machine learning, is applied to achieve functions with better fitness to experimental data and more accurate predictions. Furthermore, a third parameter, dimensionless pressure, is considered as an additional independent variable. It is found that three-parameter SVR can significantly improve the performance of the fitting function. Meanwhile, SVR also provides better adaptability and the model functions can be easily renewed when experimental database is updated or new regression parameters are considered.

  3. Evaluation of low degree polynomial kernel support vector machines for modelling Pore-water pressure responses

    Directory of Open Access Journals (Sweden)

    Babangida Nuraddeen Muhammad

    2016-01-01

    Full Text Available Pore-water pressure (PWP is influenced by climatic changes, especially rainfall. These changes may affect the stability of, particularly unsaturated slopes. Thus monitoring the changes in PWP resulting from climatic factors has become an important part of effective slope management. However, this monitoring requires field instrumentation program, which is resource and labour expensive. Recently, soft computing modelling has become an alternative. Low degree polynomial kernel support vector machine (SVM was evaluated in modelling the PWP changes. The developed model used pore-water pressure and rainfall data collected from an instrumented slope. Wrapper technique was used to select input features and k-fold cross validation was used to calibrate the model parameters. The developed model showed great promise in modelling the pore-water pressure changes. High correlation, with coefficient of determination of 0.9694 between the predicted and observed changes was obtained. The one degree polynomial SVM model yielded competitive result, and can be used to provide lead time records of PWP which can aid in better slope management.

  4. Optimizing Support Vector Machine Parameters with Genetic Algorithm for Credit Risk Assessment

    Science.gov (United States)

    Manurung, Jonson; Mawengkang, Herman; Zamzami, Elviawaty

    2017-12-01

    Support vector machine (SVM) is a popular classification method known to have strong generalization capabilities. SVM can solve the problem of classification and linear regression or nonlinear kernel which can be a learning algorithm for the ability of classification and regression. However, SVM also has a weakness that is difficult to determine the optimal parameter value. SVM calculates the best linear separator on the input feature space according to the training data. To classify data which are non-linearly separable, SVM uses kernel tricks to transform the data into a linearly separable data on a higher dimension feature space. The kernel trick using various kinds of kernel functions, such as : linear kernel, polynomial, radial base function (RBF) and sigmoid. Each function has parameters which affect the accuracy of SVM classification. To solve the problem genetic algorithms are proposed to be applied as the optimal parameter value search algorithm thus increasing the best classification accuracy on SVM. Data taken from UCI repository of machine learning database: Australian Credit Approval. The results show that the combination of SVM and genetic algorithms is effective in improving classification accuracy. Genetic algorithms has been shown to be effective in systematically finding optimal kernel parameters for SVM, instead of randomly selected kernel parameters. The best accuracy for data has been upgraded from kernel Linear: 85.12%, polynomial: 81.76%, RBF: 77.22% Sigmoid: 78.70%. However, for bigger data sizes, this method is not practical because it takes a lot of time.

  5. Applying different independent component analysis algorithms and support vector regression for IT chain store sales forecasting.

    Science.gov (United States)

    Dai, Wensheng; Wu, Jui-Yu; Lu, Chi-Jie

    2014-01-01

    Sales forecasting is one of the most important issues in managing information technology (IT) chain store sales since an IT chain store has many branches. Integrating feature extraction method and prediction tool, such as support vector regression (SVR), is a useful method for constructing an effective sales forecasting scheme. Independent component analysis (ICA) is a novel feature extraction technique and has been widely applied to deal with various forecasting problems. But, up to now, only the basic ICA method (i.e., temporal ICA model) was applied to sale forecasting problem. In this paper, we utilize three different ICA methods including spatial ICA (sICA), temporal ICA (tICA), and spatiotemporal ICA (stICA) to extract features from the sales data and compare their performance in sales forecasting of IT chain store. Experimental results from a real sales data show that the sales forecasting scheme by integrating stICA and SVR outperforms the comparison models in terms of forecasting error. The stICA is a promising tool for extracting effective features from branch sales data and the extracted features can improve the prediction performance of SVR for sales forecasting.

  6. Spatial Support Vector Regression to Detect Silent Errors in the Exascale Era

    Energy Technology Data Exchange (ETDEWEB)

    Subasi, Omer; Di, Sheng; Bautista-Gomez, Leonardo; Balaprakash, Prasanna; Unsal, Osman; Labarta, Jesus; Cristal, Adrian; Cappello, Franck

    2016-01-01

    As the exascale era approaches, the increasing capacity of high-performance computing (HPC) systems with targeted power and energy budget goals introduces significant challenges in reliability. Silent data corruptions (SDCs) or silent errors are one of the major sources that corrupt the executionresults of HPC applications without being detected. In this work, we explore a low-memory-overhead SDC detector, by leveraging epsilon-insensitive support vector machine regression, to detect SDCs that occur in HPC applications that can be characterized by an impact error bound. The key contributions are three fold. (1) Our design takes spatialfeatures (i.e., neighbouring data values for each data point in a snapshot) into training data, such that little memory overhead (less than 1%) is introduced. (2) We provide an in-depth study on the detection ability and performance with different parameters, and we optimize the detection range carefully. (3) Experiments with eight real-world HPC applications show thatour detector can achieve the detection sensitivity (i.e., recall) up to 99% yet suffer a less than 1% of false positive rate for most cases. Our detector incurs low performance overhead, 5% on average, for all benchmarks studied in the paper. Compared with other state-of-the-art techniques, our detector exhibits the best tradeoff considering the detection ability and overheads.

  7. Biomarkers of Eating Disorders Using Support Vector Machine Analysis of Structural Neuroimaging Data: Preliminary Results.

    Science.gov (United States)

    Cerasa, Antonio; Castiglioni, Isabella; Salvatore, Christian; Funaro, Angela; Martino, Iolanda; Alfano, Stefania; Donzuso, Giulia; Perrotta, Paolo; Gioia, Maria Cecilia; Gilardi, Maria Carla; Quattrone, Aldo

    2015-01-01

    Presently, there are no valid biomarkers to identify individuals with eating disorders (ED). The aim of this work was to assess the feasibility of a machine learning method for extracting reliable neuroimaging features allowing individual categorization of patients with ED. Support Vector Machine (SVM) technique, combined with a pattern recognition method, was employed utilizing structural magnetic resonance images. Seventeen females with ED (six with diagnosis of anorexia nervosa and 11 with bulimia nervosa) were compared against 17 body mass index-matched healthy controls (HC). Machine learning allowed individual diagnosis of ED versus HC with an Accuracy ≥ 0.80. Voxel-based pattern recognition analysis demonstrated that voxels influencing the classification Accuracy involved the occipital cortex, the posterior cerebellar lobule, precuneus, sensorimotor/premotor cortices, and the medial prefrontal cortex, all critical regions known to be strongly involved in the pathophysiological mechanisms of ED. Although these findings should be considered preliminary given the small size investigated, SVM analysis highlights the role of well-known brain regions as possible biomarkers to distinguish ED from HC at an individual level, thus encouraging the translational implementation of this new multivariate approach in the clinical practice.

  8. Knowledge-based analysis of microarray gene expression data by using support vector machines

    Energy Technology Data Exchange (ETDEWEB)

    William Grundy; Manuel Ares, Jr.; David Haussler

    2001-06-18

    The authors introduce a method of functionally classifying genes by using gene expression data from DNA microarray hybridization experiments. The method is based on the theory of support vector machines (SVMs). SVMs are considered a supervised computer learning method because they exploit prior knowledge of gene function to identify unknown genes of similar function from expression data. SVMs avoid several problems associated with unsupervised clustering methods, such as hierarchical clustering and self-organizing maps. SVMs have many mathematical features that make them attractive for gene expression analysis, including their flexibility in choosing a similarity function, sparseness of solution when dealing with large data sets, the ability to handle large feature spaces, and the ability to identify outliers. They test several SVMs that use different similarity metrics, as well as some other supervised learning methods, and find that the SVMs best identify sets of genes with a common function using expression data. Finally, they use SVMs to predict functional roles for uncharacterized yeast ORFs based on their expression data.

  9. Unsteady aerodynamic modeling at high angles of attack using support vector machines

    Directory of Open Access Journals (Sweden)

    Wang Qing

    2015-06-01

    Full Text Available Accurate aerodynamic models are the basis of flight simulation and control law design. Mathematically modeling unsteady aerodynamics at high angles of attack bears great difficulties in model structure determination and parameter estimation due to little understanding of the flow mechanism. Support vector machines (SVMs based on statistical learning theory provide a novel tool for nonlinear system modeling. The work presented here examines the feasibility of applying SVMs to high angle-of-attack unsteady aerodynamic modeling field. Mainly, after a review of SVMs, several issues associated with unsteady aerodynamic modeling by use of SVMs are discussed in detail, such as selection of input variables, selection of output variables and determination of SVM parameters. The least squares SVM (LS-SVM models are set up from certain dynamic wind tunnel test data of a delta wing and an aircraft configuration, and then used to predict the aerodynamic responses in other tests. The predictions are in good agreement with the test data, which indicates the satisfying learning and generalization performance of LS-SVMs.

  10. Prediction of Stream Flow in Humid Tropical Rivers by Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Seyam Mohammed

    2017-01-01

    Full Text Available Stream flow (SF prediction is considered as a very complex due to the hydrological systems of surface water are complex and dynamic. The reliable prediction of stream flow (SF can be performed by either conceptual or data-driven based models. In the modelling of hydrological processes, the support vector machine (SVM is a novel, data-driven approach. Hence, six SVM-based models were generated in this study to predict real time hourly SF in the Selangor River Basin from the water level and rainfall of upstream stations. These models composed of six different combinations of input variables and were trained and tested under hourly records of SF, rainfall, and water level over one year (2011. Among the SVM-based models, SVM-M6, which has nine input variables, was the most effective. Under the training and testing data sets, its correlation coefficient and mean absolute error values were 0.992, 0.953, 0.061 and 0.253 respectively.

  11. An UWB LNA Design with PSO Using Support Vector Microstrip Line Model

    Directory of Open Access Journals (Sweden)

    Salih Demirel

    2015-01-01

    Full Text Available A rigorous and novel design procedure is constituted for an ultra-wideband (UWB low noise amplifier (LNA by exploiting the 3D electromagnetic simulator based support vector regression machine (SVRM microstrip line model. First of all, in order to design input and output matching circuits (IMC-OMC, source ZS and load ZL termination impedance of matching circuit, which are necessary to obtain required input VSWR (Vireq, noise (Freq, and gain (GTreq, are determined using performance characterisation of employed transistor, NE3512S02, between 3 and 8 GHz frequencies. After the determination of the termination impedance, to provide this impedance with IMC and OMC, dimensions of microstrip lines are obtained with simple, derivative-free, easily implemented algorithm Particle Swarm Optimization (PSO. In the optimization of matching circuits, highly accurate and fast SVRM model of microstrip line is used instead of analytical formulations. ADCH-80a is used to provide ultra-wideband RF choking in DC bias. During the design process, it is aimed that Vireq = 1.85, Freq = Fmin, and GTreq = GTmax all over operating frequency band. Measurements taken from the realized LNA demonstrate the success of this approximation over the band.

  12. Automatic Defect Detection for TFT-LCD Array Process Using Quasiconformal Kernel Support Vector Data Description

    Directory of Open Access Journals (Sweden)

    Yi-Hung Liu

    2011-09-01

    Full Text Available Defect detection has been considered an efficient way to increase the yield rate of panels in thin film transistor liquid crystal display (TFT-LCD manufacturing. In this study we focus on the array process since it is the first and key process in TFT-LCD manufacturing. Various defects occur in the array process, and some of them could cause great damage to the LCD panels. Thus, how to design a method that can robustly detect defects from the images captured from the surface of LCD panels has become crucial. Previously, support vector data description (SVDD has been successfully applied to LCD defect detection. However, its generalization performance is limited. In this paper, we propose a novel one-class machine learning method, called quasiconformal kernel SVDD (QK-SVDD to address this issue. The QK-SVDD can significantly improve generalization performance of the traditional SVDD by introducing the quasiconformal transformation into a predefined kernel. Experimental results, carried out on real LCD images provided by an LCD manufacturer in Taiwan, indicate that the proposed QK-SVDD not only obtains a high defect detection rate of 96%, but also greatly improves generalization performance of SVDD. The improvement has shown to be over 30%. In addition, results also show that the QK-SVDD defect detector is able to accomplish the task of defect detection on an LCD image within 60 ms.

  13. Decision trees versus support vector machine for classification of androgen receptor ligands.

    Science.gov (United States)

    Panaye, A; Doucet, J P; Devillers, J; Marchand-Geneste, N; Porcher, J M

    2008-01-01

    With the current concern of limiting experimental assays, increased interest now focuses on in silico models able to predict toxicity of chemicals. Endocrine disruptors cover a large number of environmental and industrial chemicals which may affect the functions of natural hormones in humans and wildlife. Structure-activity models are now increasingly used for predicting the endocrine disruption potential of chemicals. In this study, a large set of about 200 chemicals covering a broad range of structural classes was considered in order to categorize their relative binding affinity (RBA) to the androgen receptor. Classification of chemicals into four activity groups, with respect to their log RBA value, was carried out in a cascade of recursive partitioning trees, with descriptors calculated from CODESSA software and encoding topological, geometrical and quantum chemical properties. The hydrophobicity parameter (log P), Balaban index, and descriptors relying on charge distribution (maximum partial charge, nucleophilic index on oxygen atoms, charged surface area, etc.) appear to play a major role in the chemical partitioning. Separation of strongly active compounds was rather straightforward. Similarly, about 90% of the inactive compounds were identified. More intricate was the separation of active compounds into subsets of moderate and weak binders, the task requiring a more complex tree. A comparison was made with support vector machine yielding similar results.

  14. Improving Non-Destructive Concrete Strength Tests Using Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Yi-Fan Shih

    2015-10-01

    Full Text Available Non-destructive testing (NDT methods are important alternatives when destructive tests are not feasible to examine the in situ concrete properties without damaging the structure. The rebound hammer test and the ultrasonic pulse velocity test are two popular NDT methods to examine the properties of concrete. The rebound of the hammer depends on the hardness of the test specimen and ultrasonic pulse travelling speed is related to density, uniformity, and homogeneity of the specimen. Both of these two methods have been adopted to estimate the concrete compressive strength. Statistical analysis has been implemented to establish the relationship between hammer rebound values/ultrasonic pulse velocities and concrete compressive strength. However, the estimated results can be unreliable. As a result, this research proposes an Artificial Intelligence model using support vector machines (SVMs for the estimation. Data from 95 cylinder concrete samples are collected to develop and validate the model. The results show that combined NDT methods (also known as SonReb method yield better estimations than single NDT methods. The results also show that the SVM model is more accurate than the statistical regression model.

  15. Hadoop-Based Distributed System for Online Prediction of Air Pollution Based on Support Vector Machine

    Science.gov (United States)

    Ghaemi, Z.; Farnaghi, M.; Alimohammadi, A.

    2015-12-01

    The critical impact of air pollution on human health and environment in one hand and the complexity of pollutant concentration behavior in the other hand lead the scientists to look for advance techniques for monitoring and predicting the urban air quality. Additionally, recent developments in data measurement techniques have led to collection of various types of data about air quality. Such data is extremely voluminous and to be useful it must be processed at high velocity. Due to the complexity of big data analysis especially for dynamic applications, online forecasting of pollutant concentration trends within a reasonable processing time is still an open problem. The purpose of this paper is to present an online forecasting approach based on Support Vector Machine (SVM) to predict the air quality one day in advance. In order to overcome the computational requirements for large-scale data analysis, distributed computing based on the Hadoop platform has been employed to leverage the processing power of multiple processing units. The MapReduce programming model is adopted for massive parallel processing in this study. Based on the online algorithm and Hadoop framework, an online forecasting system is designed to predict the air pollution of Tehran for the next 24 hours. The results have been assessed on the basis of Processing Time and Efficiency. Quite accurate predictions of air pollutant indicator levels within an acceptable processing time prove that the presented approach is very suitable to tackle large scale air pollution prediction problems.

  16. Review of data mining applications for quality assessment in manufacturing industry: support vector machines

    Directory of Open Access Journals (Sweden)

    Rostami Hamidey

    2015-01-01

    Full Text Available In many modern manufacturing industries, data that characterize the manufacturing process are electronically collected and stored in databases. Due to advances in data collection systems and analysis tools, data mining (DM has widely been applied for quality assessment (QA in manufacturing industries. In DM, the choice of technique to be used in analyzing a dataset and assessing the quality depend on the understanding of the analyst. On the other hand, with the advent of improved and efficient prediction techniques, there is a need for an analyst to know which tool performs better for a particular type of dataset. Although a few review papers have recently been published to discuss DM applications in manufacturing for QA, this paper provides an extensive review to investigate the application of a special DM technique, namely support vector machine (SVM to deal with QA problems. This review provides a comprehensive analysis of the literature from various points of view as DM concepts, data preprocessing, DM applications for each quality task, SVM preliminaries, and application results. Summary tables and figures are also provided besides to the analyses. Finally, conclusions and future research directions are provided.

  17. Voltammetric electronic tongue and support vector machines for identification of selected features in Mexican coffee.

    Science.gov (United States)

    Domínguez, Rocio Berenice; Moreno-Barón, Laura; Muñoz, Roberto; Gutiérrez, Juan Manuel

    2014-09-24

    This paper describes a new method based on a voltammetric electronic tongue (ET) for the recognition of distinctive features in coffee samples. An ET was directly applied to different samples from the main Mexican coffee regions without any pretreatment before the analysis. The resulting electrochemical information was modeled with two different mathematical tools, namely Linear Discriminant Analysis (LDA) and Support Vector Machines (SVM). Growing conditions (i.e., organic or non-organic practices and altitude of crops) were considered for a first classification. LDA results showed an average discrimination rate of 88% ± 6.53% while SVM successfully accomplished an overall accuracy of 96.4% ± 3.50% for the same task. A second classification based on geographical origin of samples was carried out. Results showed an overall accuracy of 87.5% ± 7.79% for LDA and a superior performance of 97.5% ± 3.22% for SVM. Given the complexity of coffee samples, the high accuracy percentages achieved by ET coupled with SVM in both classification problems suggested a potential applicability of ET in the assessment of selected coffee features with a simpler and faster methodology along with a null sample pretreatment. In addition, the proposed method can be applied to authentication assessment while improving cost, time and accuracy of the general procedure.

  18. Diagnostic Method of Diabetes Based on Support Vector Machine and Tongue Images

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhang

    2017-01-01

    Full Text Available Objective. The purpose of this research is to develop a diagnostic method of diabetes based on standardized tongue image using support vector machine (SVM. Methods. Tongue images of 296 diabetic subjects and 531 nondiabetic subjects were collected by the TDA-1 digital tongue instrument. Tongue body and tongue coating were separated by the division-merging method and chrominance-threshold method. With extracted color and texture features of the tongue image as input variables, the diagnostic model of diabetes with SVM was trained. After optimizing the combination of SVM kernel parameters and input variables, the influences of the combinations on the model were analyzed. Results. After normalizing parameters of tongue images, the accuracy rate of diabetes predication was increased from 77.83% to 78.77%. The accuracy rate and area under curve (AUC were not reduced after reducing the dimensions of tongue features with principal component analysis (PCA, while substantially saving the training time. During the training for selecting SVM parameters by genetic algorithm (GA, the accuracy rate of cross-validation was grown from 72% or so to 83.06%. Finally, we compare with several state-of-the-art algorithms, and experimental results show that our algorithm has the best predictive accuracy. Conclusions. The diagnostic method of diabetes on the basis of tongue images in Traditional Chinese Medicine (TCM is of great value, indicating the feasibility of digitalized tongue diagnosis.

  19. Efficient Prediction of Progesterone Receptor Interactome Using a Support Vector Machine Model

    Directory of Open Access Journals (Sweden)

    Ji-Long Liu

    2015-03-01

    Full Text Available Protein-protein interaction (PPI is essential for almost all cellular processes and identification of PPI is a crucial task for biomedical researchers. So far, most computational studies of PPI are intended for pair-wise prediction. Theoretically, predicting protein partners for a single protein is likely a simpler problem. Given enough data for a particular protein, the results can be more accurate than general PPI predictors. In the present study, we assessed the potential of using the support vector machine (SVM model with selected features centered on a particular protein for PPI prediction. As a proof-of-concept study, we applied this method to identify the interactome of progesterone receptor (PR, a protein which is essential for coordinating female reproduction in mammals by mediating the actions of ovarian progesterone. We achieved an accuracy of 91.9%, sensitivity of 92.8% and specificity of 91.2%. Our method is generally applicable to any other proteins and therefore may be of help in guiding biomedical experiments.

  20. Classification of HCV NS5B Polymerase Inhibitors Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Changyuan Yu

    2012-03-01

    Full Text Available Using a support vector machine (SVM, three classification models were built to predict whether a compound is an active or weakly active inhibitor based on a dataset of 386 hepatitis C virus (HCV NS5B polymerase NNIs (non-nucleoside analogue inhibitors fitting into the pocket of the NNI III binding site. For each molecule, global descriptors, 2D and 3D property autocorrelation descriptors were calculated from the program ADRIANA.Code. Three models were developed with the combination of different types of descriptors. Model 2 based on 16 global and 2D autocorrelation descriptors gave the highest prediction accuracy of 88.24% and MCC (Matthews correlation coefficient of 0.789 on test set. Model 1 based on 13 global descriptors showed the highest prediction accuracy of 86.25% and MCC of 0.732 on external test set (including 80 compounds. Some molecular properties such as molecular shape descriptors (InertiaZ, InertiaX and Span, number of rotatable bonds (NRotBond, water solubility (LogS, and hydrogen bonding related descriptors performed important roles in the interactions between the ligand and NS5B polymerase.