Epidemic spreading in scale-free networks including the effect of individual vigilance
International Nuclear Information System (INIS)
Gong Yong-Wang; Song Yu-Rong; Jiang Guo-Ping
2012-01-01
In this paper, we study the epidemic spreading in scale-free networks and propose a new susceptible-infected-recovered (SIR) model that includes the effect of individual vigilance. In our model, the effective spreading rate is dynamically adjusted with the time evolution at the vigilance period. Using the mean-field theory, an analytical result is derived. It shows that individual vigilance has no effect on the epidemic threshold. The numerical simulations agree well with the analytical result. Furthermore, we investigate the effect of individual vigilance on the epidemic spreading speed. It is shown that individual vigilance can slow the epidemic spreading speed effectively and delay the arrival of peak epidemic infection. (general)
Bursting synchronization in scale-free networks
International Nuclear Information System (INIS)
Batista, C.A.S.; Batista, A.M.; Pontes, J.C.A. de; Lopes, S.R.; Viana, R.L.
2009-01-01
Neuronal networks in some areas of the brain cortex present the scale-free property, i.e., the neuron connectivity is distributed according to a power-law, such that neurons are more likely to couple with other already well-connected ones. Neuron activity presents two timescales, a fast one related to action-potential spiking, and a slow timescale in which bursting takes place. Some pathological conditions are related with the synchronization of the bursting activity in a weak sense, meaning the adjustment of the bursting phase due to coupling. Hence it has been proposed that an externally applied time-periodic signal be applied in order to control undesirable synchronized bursting rhythms. We investigated this kind of intervention using a two-dimensional map to describe neurons with spiking-bursting activity in a scale-free network.
Zhang, Zhongzhi; Dong, Yuze; Sheng, Yibin
2015-10-01
Random walks including non-nearest-neighbor jumps appear in many real situations such as the diffusion of adatoms and have found numerous applications including PageRank search algorithm; however, related theoretical results are much less for this dynamical process. In this paper, we present a study of mixed random walks in a family of fractal scale-free networks, where both nearest-neighbor and next-nearest-neighbor jumps are included. We focus on trapping problem in the network family, which is a particular case of random walks with a perfect trap fixed at the central high-degree node. We derive analytical expressions for the average trapping time (ATT), a quantitative indicator measuring the efficiency of the trapping process, by using two different methods, the results of which are consistent with each other. Furthermore, we analytically determine all the eigenvalues and their multiplicities for the fundamental matrix characterizing the dynamical process. Our results show that although next-nearest-neighbor jumps have no effect on the leading scaling of the trapping efficiency, they can strongly affect the prefactor of ATT, providing insight into better understanding of random-walk process in complex systems.
The prisoner's dilemma in structured scale-free networks
International Nuclear Information System (INIS)
Li Xing; Wu Yonghui; Zhang Zhongzhi; Zhou Shuigeng; Rong Zhihai
2009-01-01
The conventional wisdom is that scale-free networks are prone to cooperation spreading. In this paper we investigate the cooperative behavior on the structured scale-free network. In contrast to the conventional wisdom that scale-free networks are prone to cooperation spreading, the evolution of cooperation is inhibited on the structured scale-free network when the prisoner's dilemma (PD) game is modeled. First, we demonstrate that neither the scale-free property nor the high clustering coefficient is responsible for the inhibition of cooperation spreading on the structured scale-free network. Then we provide one heuristic method to argue that the lack of age correlations and its associated 'large-world' behavior in the structured scale-free network inhibit the spread of cooperation. These findings may help enlighten further studies on the evolutionary dynamics of the PD game in scale-free networks
Gradient networks on uncorrelated random scale-free networks
International Nuclear Information System (INIS)
Pan Guijun; Yan Xiaoqing; Huang Zhongbing; Ma Weichuan
2011-01-01
Uncorrelated random scale-free (URSF) networks are useful null models for checking the effects of scale-free topology on network-based dynamical processes. Here, we present a comparative study of the jamming level of gradient networks based on URSF networks and Erdos-Renyi (ER) random networks. We find that the URSF networks are less congested than ER random networks for the average degree (k)>k c (k c ∼ 2 denotes a critical connectivity). In addition, by investigating the topological properties of the two kinds of gradient networks, we discuss the relations between the topological structure and the transport efficiency of the gradient networks. These findings show that the uncorrelated scale-free structure might allow more efficient transport than the random structure.
Emergence of Scale-Free Syntax Networks
Corominas-Murtra, Bernat; Valverde, Sergi; Solé, Ricard V.
The evolution of human language allowed the efficient propagation of nongenetic information, thus creating a new form of evolutionary change. Language development in children offers the opportunity of exploring the emergence of such complex communication system and provides a window to understanding the transition from protolanguage to language. Here we present the first analysis of the emergence of syntax in terms of complex networks. A previously unreported, sharp transition is shown to occur around two years of age from a (pre-syntactic) tree-like structure to a scale-free, small world syntax network. The observed combinatorial patterns provide valuable data to understand the nature of the cognitive processes involved in the acquisition of syntax, introducing a new ingredient to understand the possible biological endowment of human beings which results in the emergence of complex language. We explore this problem by using a minimal, data-driven model that is able to capture several statistical traits, but some key features related to the emergence of syntactic complexity display important divergences.
Effects of degree correlation on scale-free gradient networks
International Nuclear Information System (INIS)
Pan Guijun; Yan Xiaoqing; Ma Weichuan; Luo Yihui; Huang Zhongbing
2010-01-01
We have studied the effects of degree correlation on congestion pressure in scale-free gradient networks. It is observed that the jamming coefficient J is insensitive to the degree correlation coefficient r for assortative and strongly disassortative scale-free networks, and J markedly decreases with an increase in r for weakly disassortative scale-free networks. We have also investigated the effects of degree correlation on the topology structure of scale-free gradient networks, and discussed the relation between the topology structure properties and transport efficiency of gradient networks.
Power Laws, Scale-Free Networks and Genome Biology
Koonin, Eugene V; Karev, Georgy P
2006-01-01
Power Laws, Scale-free Networks and Genome Biology deals with crucial aspects of the theoretical foundations of systems biology, namely power law distributions and scale-free networks which have emerged as the hallmarks of biological organization in the post-genomic era. The chapters in the book not only describe the interesting mathematical properties of biological networks but moves beyond phenomenology, toward models of evolution capable of explaining the emergence of these features. The collection of chapters, contributed by both physicists and biologists, strives to address the problems in this field in a rigorous but not excessively mathematical manner and to represent different viewpoints, which is crucial in this emerging discipline. Each chapter includes, in addition to technical descriptions of properties of biological networks and evolutionary models, a more general and accessible introduction to the respective problems. Most chapters emphasize the potential of theoretical systems biology for disco...
Chaotic Modes in Scale Free Opinion Networks
Kusmartsev, Feo V.; Kürten, Karl E.
2010-12-01
In this paper, we investigate processes associated with formation of public opinion in varies directed random, scale free and small-world social networks. The important factor of the opinion formation is the existence of contrarians which were discovered by Granovetter in various social psychology experiments1,2,3 long ago and later introduced in sociophysics by Galam.4 When the density of contrarians increases the system behavior drastically changes at some critical value. At high density of contrarians the system can never arrive to a consensus state and periodically oscillates with different periods depending on specific structure of the network. At small density of the contrarians the behavior is manifold. It depends primary on the initial state of the system. If initially the majority of the population agrees with each other a state of stable majority may be easily reached. However when originally the population is divided in nearly equal parts consensus can never be reached. We model the emergence of collective decision making by considering N interacting agents, whose opinions are described by two state Ising spin variable associated with YES and NO. We show that the dynamical behaviors are very sensitive not only to the density of the contrarians but also to the network topology. We find that a phase of social chaos may arise in various dynamical processes of opinion formation in many realistic models. We compare the prediction of the theory with data describing the dynamics of the average opinion of the USA population collected on a day-by-day basis by varies media sources during the last six month before the final Obama-McCain election. The qualitative ouctome is in reasonable agreement with the prediction of our theory. In fact, the analyses of these data made within the paradigm of our theory indicates that even in this campaign there were chaotic elements where the public opinion migrated in an unpredictable chaotic way. The existence of such a phase
Sandpile on scale-free networks with assortative mixing
International Nuclear Information System (INIS)
Yin Yanping; Zhang Duanming; Pan Guijun; He Minhua; Tan Jin
2007-01-01
We numerically investigate the Bak-Tang-Wiesenfeld sandpile model on scale-free networks with assortative mixing, where the threshold height of each node is equal to its degree. It is observed that a large fraction of multiple topplings are included in avalanches on assortative networks, which is absent on uncorrelated networks. We introduce a parameter F-bar(a) to characterize the fraction of multiple topplings in avalanches of area a. The fraction of multiple topplings increases dramatically with the degree of assortativity and has a peak for small a whose height also increase with the assortativity of the networks. Unlike the case on uncorrelated networks, the distributions of avalanche size, area and duration do not follow pure power law, but deviate more obviously from pure power law with the growing degree of assortativity. The results show that the assortative mixing has a strong influence on the behavior of avalanche dynamics on complex networks
Search in spatial scale-free networks
International Nuclear Information System (INIS)
Thadakamalla, H P; Albert, R; Kumara, S R T
2007-01-01
We study the decentralized search problem in a family of parameterized spatial network models that are heterogeneous in node degree. We investigate several algorithms and illustrate that some of these algorithms exploit the heterogeneity in the network to find short paths by using only local information. In addition, we demonstrate that the spatial network model belongs to a classof searchable networks for a wide range of parameter space. Further, we test these algorithms on the US airline network which belongs to this class of networks and demonstrate that searchability is a generic property of the US airline network. These results provide insights on designing the structure of distributed networks that need effective decentralized search algorithms
Fractal scale-free networks resistant to disease spread
International Nuclear Information System (INIS)
Zhang, Zhongzhi; Zhou, Shuigeng; Zou, Tao; Chen, Guisheng
2008-01-01
The conventional wisdom is that scale-free networks are prone to epidemic propagation; in the paper we demonstrate that, on the contrary, disease spreading is inhibited in fractal scale-free networks. We first propose a novel network model and show that it simultaneously has the following rich topological properties: scale-free degree distribution, tunable clustering coefficient, 'large-world' behavior, and fractal scaling. Existing network models do not display these characteristics. Then, we investigate the susceptible–infected–removed (SIR) model of the propagation of diseases in our fractal scale-free networks by mapping it to the bond percolation process. We establish the existence of non-zero tunable epidemic thresholds by making use of the renormalization group technique, which implies that power law degree distribution does not suffice to characterize the epidemic dynamics on top of scale-free networks. We argue that the epidemic dynamics are determined by the topological properties, especially the fractality and its accompanying 'large-world' behavior
Weighted Scale-Free Network Properties of Ecological Network
International Nuclear Information System (INIS)
Lee, Jae Woo; Maeng, Seong Eun
2013-01-01
We investigate the scale-free network properties of the bipartite ecological network, in particular, the plant-pollinator network. In plant-pollinator network, the pollinators visit the plant to get the nectars. In contrast to the other complex network, the plant-pollinator network has not only the trophic relationships among the interacting partners but also the complexities of the coevolutionary effects. The interactions between the plant and pollinators are beneficial relations. The plant-pollinator network is a bipartite and weighted network. The networks have two types of the nodes: plant and pollinator. We consider the visiting frequency of a pollinator to a plant as the weighting value of the link. We defined the strength of a node as the sum of the weighting value of the links. We reported the cumulative distribution function (CDF) of the degree and the strength of the plant-pollinator network. The CDF of the plants followed stretched exponential functions for both degree and strength, but the CDF of the pollinators showed the power law for both degree and strength. The average strength of the links showed the nonlinear dependence on the degree of the networks.
Epidemic spreading on adaptively weighted scale-free networks.
Sun, Mengfeng; Zhang, Haifeng; Kang, Huiyan; Zhu, Guanghu; Fu, Xinchu
2017-04-01
We introduce three modified SIS models on scale-free networks that take into account variable population size, nonlinear infectivity, adaptive weights, behavior inertia and time delay, so as to better characterize the actual spread of epidemics. We develop new mathematical methods and techniques to study the dynamics of the models, including the basic reproduction number, and the global asymptotic stability of the disease-free and endemic equilibria. We show the disease-free equilibrium cannot undergo a Hopf bifurcation. We further analyze the effects of local information of diseases and various immunization schemes on epidemic dynamics. We also perform some stochastic network simulations which yield quantitative agreement with the deterministic mean-field approach.
Emergence of cooperation in non-scale-free networks
International Nuclear Information System (INIS)
Zhang, Yichao; Aziz-Alaoui, M A; Bertelle, Cyrille; Zhou, Shi; Wang, Wenting
2014-01-01
Evolutionary game theory is one of the key paradigms behind many scientific disciplines from science to engineering. Previous studies proposed a strategy updating mechanism, which successfully demonstrated that the scale-free network can provide a framework for the emergence of cooperation. Instead, individuals in random graphs and small-world networks do not favor cooperation under this updating rule. However, a recent empirical result shows the heterogeneous networks do not promote cooperation when humans play a prisoner’s dilemma. In this paper, we propose a strategy updating rule with payoff memory. We observe that the random graphs and small-world networks can provide even better frameworks for cooperation than the scale-free networks in this scenario. Our observations suggest that the degree heterogeneity may be neither a sufficient condition nor a necessary condition for the widespread cooperation in complex networks. Also, the topological structures are not sufficed to determine the level of cooperation in complex networks. (paper)
Quantifying the connectivity of scale-free and biological networks
Energy Technology Data Exchange (ETDEWEB)
Shiner, J.S. E-mail: shiner@alumni.duke.edu; Davison, Matt E-mail: mdavison@uwo.ca
2004-07-01
Scale-free and biological networks follow a power law distribution p{sub k}{proportional_to}k{sup -{alpha}} for the probability that a node is connected to k other nodes; the corresponding ranges for {alpha} (biological: 1<{alpha}<2; scale-free: 2<{alpha}{<=}3) yield a diverging variance for the connectivity k and lack of predictability for the average connectivity. Predictability can be achieved with the Renyi, Tsallis and Landsberg-Vedral extended entropies and corresponding 'disorders' for correctly chosen values of the entropy index q. Escort distributions p{sub k}{proportional_to}k{sup -{alpha}}{sup q} with q>3/{alpha} also yield a nondiverging variance and predictability. It is argued that the Tsallis entropies may be the appropriate quantities for the study of scale-free and biological networks.
Optimal defense resource allocation in scale-free networks
Zhang, Xuejun; Xu, Guoqiang; Xia, Yongxiang
2018-02-01
The robustness research of networked systems has drawn widespread attention in the past decade, and one of the central topics is to protect the network from external attacks through allocating appropriate defense resource to different nodes. In this paper, we apply a specific particle swarm optimization (PSO) algorithm to optimize the defense resource allocation in scale-free networks. Results reveal that PSO based resource allocation shows a higher robustness than other resource allocation strategies such as uniform, degree-proportional, and betweenness-proportional allocation strategies. Furthermore, we find that assigning less resource to middle-degree nodes under small-scale attack while more resource to low-degree nodes under large-scale attack is conductive to improving the network robustness. Our work provides an insight into the optimal defense resource allocation pattern in scale-free networks and is helpful for designing a more robust network.
Innovation diffusion equations on correlated scale-free networks
Energy Technology Data Exchange (ETDEWEB)
Bertotti, M.L., E-mail: marialetizia.bertotti@unibz.it [Free University of Bozen–Bolzano, Faculty of Science and Technology, Bolzano (Italy); Brunner, J., E-mail: johannes.brunner@tis.bz.it [TIS Innovation Park, Bolzano (Italy); Modanese, G., E-mail: giovanni.modanese@unibz.it [Free University of Bozen–Bolzano, Faculty of Science and Technology, Bolzano (Italy)
2016-07-29
Highlights: • The Bass diffusion model can be formulated on scale-free networks. • In the trickle-down version, the hubs adopt earlier and act as monitors. • We improve the equations in order to describe trickle-up diffusion. • Innovation is generated at the network periphery, and hubs can act as stiflers. • We compare diffusion times, in dependence on the scale-free exponent. - Abstract: We introduce a heterogeneous network structure into the Bass diffusion model, in order to study the diffusion times of innovation or information in networks with a scale-free structure, typical of regions where diffusion is sensitive to geographic and logistic influences (like for instance Alpine regions). We consider both the diffusion peak times of the total population and of the link classes. In the familiar trickle-down processes the adoption curve of the hubs is found to anticipate the total adoption in a predictable way. In a major departure from the standard model, we model a trickle-up process by introducing heterogeneous publicity coefficients (which can also be negative for the hubs, thus turning them into stiflers) and a stochastic term which represents the erratic generation of innovation at the periphery of the network. The results confirm the robustness of the Bass model and expand considerably its range of applicability.
Innovation diffusion equations on correlated scale-free networks
International Nuclear Information System (INIS)
Bertotti, M.L.; Brunner, J.; Modanese, G.
2016-01-01
Highlights: • The Bass diffusion model can be formulated on scale-free networks. • In the trickle-down version, the hubs adopt earlier and act as monitors. • We improve the equations in order to describe trickle-up diffusion. • Innovation is generated at the network periphery, and hubs can act as stiflers. • We compare diffusion times, in dependence on the scale-free exponent. - Abstract: We introduce a heterogeneous network structure into the Bass diffusion model, in order to study the diffusion times of innovation or information in networks with a scale-free structure, typical of regions where diffusion is sensitive to geographic and logistic influences (like for instance Alpine regions). We consider both the diffusion peak times of the total population and of the link classes. In the familiar trickle-down processes the adoption curve of the hubs is found to anticipate the total adoption in a predictable way. In a major departure from the standard model, we model a trickle-up process by introducing heterogeneous publicity coefficients (which can also be negative for the hubs, thus turning them into stiflers) and a stochastic term which represents the erratic generation of innovation at the periphery of the network. The results confirm the robustness of the Bass model and expand considerably its range of applicability.
Cascading failure in the wireless sensor scale-free networks
Liu, Hao-Ran; Dong, Ming-Ru; Yin, Rong-Rong; Han, Li
2015-05-01
In the practical wireless sensor networks (WSNs), the cascading failure caused by a failure node has serious impact on the network performance. In this paper, we deeply research the cascading failure of scale-free topology in WSNs. Firstly, a cascading failure model for scale-free topology in WSNs is studied. Through analyzing the influence of the node load on cascading failure, the critical load triggering large-scale cascading failure is obtained. Then based on the critical load, a control method for cascading failure is presented. In addition, the simulation experiments are performed to validate the effectiveness of the control method. The results show that the control method can effectively prevent cascading failure. Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. F2014203239), the Autonomous Research Fund of Young Teacher in Yanshan University (Grant No. 14LGB017) and Yanshan University Doctoral Foundation, China (Grant No. B867).
Adaptive local routing strategy on a scale-free network
International Nuclear Information System (INIS)
Feng, Liu; Han, Zhao; Ming, Li; Yan-Bo, Zhu; Feng-Yuan, Ren
2010-01-01
Due to the heterogeneity of the structure on a scale-free network, making the betweennesses of all nodes become homogeneous by reassigning the weights of nodes or edges is very difficult. In order to take advantage of the important effect of high degree nodes on the shortest path communication and preferentially deliver packets by them to increase the probability to destination, an adaptive local routing strategy on a scale-free network is proposed, in which the node adjusts the forwarding probability with the dynamical traffic load (packet queue length) and the degree distribution of neighbouring nodes. The critical queue length of a node is set to be proportional to its degree, and the node with high degree has a larger critical queue length to store and forward more packets. When the queue length of a high degree node is shorter than its critical queue length, it has a higher probability to forward packets. After higher degree nodes are saturated (whose queue lengths are longer than their critical queue lengths), more packets will be delivered by the lower degree nodes around them. The adaptive local routing strategy increases the probability of a packet finding its destination quickly, and improves the transmission capacity on the scale-free network by reducing routing hops. The simulation results show that the transmission capacity of the adaptive local routing strategy is larger than that of three previous local routing strategies. (general)
Network synchronization: optimal and pessimal scale-free topologies
Energy Technology Data Exchange (ETDEWEB)
Donetti, Luca [Departamento de Electronica y Tecnologia de Computadores and Instituto de Fisica Teorica y Computacional Carlos I, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Hurtado, Pablo I; Munoz, Miguel A [Departamento de Electromagnetismo y Fisica de la Materia and Instituto Carlos I de Fisica Teorica y Computacional Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain)], E-mail: mamunoz@onsager.ugr.es
2008-06-06
By employing a recently introduced optimization algorithm we construct optimally synchronizable (unweighted) networks for any given scale-free degree distribution. We explore how the optimization process affects degree-degree correlations and observe a generic tendency toward disassortativity. Still, we show that there is not a one-to-one correspondence between synchronizability and disassortativity. On the other hand, we study the nature of optimally un-synchronizable networks, that is, networks whose topology minimizes the range of stability of the synchronous state. The resulting 'pessimal networks' turn out to have a highly assortative string-like structure. We also derive a rigorous lower bound for the Laplacian eigenvalue ratio controlling synchronizability, which helps understanding the impact of degree correlations on network synchronizability.
Network synchronization: optimal and pessimal scale-free topologies
International Nuclear Information System (INIS)
Donetti, Luca; Hurtado, Pablo I; Munoz, Miguel A
2008-01-01
By employing a recently introduced optimization algorithm we construct optimally synchronizable (unweighted) networks for any given scale-free degree distribution. We explore how the optimization process affects degree-degree correlations and observe a generic tendency toward disassortativity. Still, we show that there is not a one-to-one correspondence between synchronizability and disassortativity. On the other hand, we study the nature of optimally un-synchronizable networks, that is, networks whose topology minimizes the range of stability of the synchronous state. The resulting 'pessimal networks' turn out to have a highly assortative string-like structure. We also derive a rigorous lower bound for the Laplacian eigenvalue ratio controlling synchronizability, which helps understanding the impact of degree correlations on network synchronizability
Improved Efficient Routing Strategy on Scale-Free Networks
Jiang, Zhong-Yuan; Liang, Man-Gui
Since the betweenness of nodes in complex networks can theoretically represent the traffic load of nodes under the currently used routing strategy, we propose an improved efficient (IE) routing strategy to enhance to the network traffic capacity based on the betweenness centrality. Any node with the highest betweenness is susceptible to traffic congestion. An efficient way to improve the network traffic capacity is to redistribute the heavy traffic load from these central nodes to non-central nodes, so in this paper, we firstly give a path cost function by considering the sum of node betweenness with a tunable parameter β along the actual path. Then, by minimizing the path cost, our IE routing strategy achieved obvious improvement on the network transport efficiency. Simulations on scale-free Barabási-Albert (BA) networks confirmed the effectiveness of our strategy, when compared with the efficient routing (ER) and the shortest path (SP) routing.
Parameters affecting the resilience of scale-free networks to random failures.
Energy Technology Data Exchange (ETDEWEB)
Link, Hamilton E.; LaViolette, Randall A.; Lane, Terran (University of New Mexico, Albuquerque, NM); Saia, Jared (University of New Mexico, Albuquerque, NM)
2005-09-01
It is commonly believed that scale-free networks are robust to massive numbers of random node deletions. For example, Cohen et al. in (1) study scale-free networks including some which approximate the measured degree distribution of the Internet. Their results suggest that if each node in this network failed independently with probability 0.99, most of the remaining nodes would still be connected in a giant component. In this paper, we show that a large and important subclass of scale-free networks are not robust to massive numbers of random node deletions. In particular, we study scale-free networks which have minimum node degree of 1 and a power-law degree distribution beginning with nodes of degree 1 (power-law networks). We show that, in a power-law network approximating the Internet's reported distribution, when the probability of deletion of each node is 0.5 only about 25% of the surviving nodes in the network remain connected in a giant component, and the giant component does not persist beyond a critical failure rate of 0.9. The new result is partially due to improved analytical accommodation of the large number of degree-0 nodes that result after node deletions. Our results apply to power-law networks with a wide range of power-law exponents, including Internet-like networks. We give both analytical and empirical evidence that such networks are not generally robust to massive random node deletions.
Cooperative Dynamics in Lattice-Embedded Scale-Free Networks
International Nuclear Information System (INIS)
Shang Lihui; Zhang Mingji; Yang Yanqing
2009-01-01
We investigate cooperative behaviors of lattice-embedded scale-free networking agents in the prisoner's dilemma game model by employing two initial strategy distribution mechanisms, which are specific distribution to the most connected sites (hubs) and random distribution. Our study indicates that the game dynamics crucially depends on the underlying spatial network structure with different strategy distribution mechanism. The cooperators' specific distribution contributes to an enhanced level of cooperation in the system compared with random one, and cooperation is robust to cooperators' specific distribution but fragile to defectors' specific distribution. Especially, unlike the specific case, increasing heterogeneity of network does not always favor the emergence of cooperation under random mechanism. Furthermore, we study the geographical effects and find that the graphically constrained network structure tends to improve the evolution of cooperation in random case and in specific one for a large temptation to defect.
Scale-Free Networks and Commercial Air Carrier Transportation in the United States
Conway, Sheila R.
2004-01-01
Network science, or the art of describing system structure, may be useful for the analysis and control of large, complex systems. For example, networks exhibiting scale-free structure have been found to be particularly well suited to deal with environmental uncertainty and large demand growth. The National Airspace System may be, at least in part, a scalable network. In fact, the hub-and-spoke structure of the commercial segment of the NAS is an often-cited example of an existing scale-free network After reviewing the nature and attributes of scale-free networks, this assertion is put to the test: is commercial air carrier transportation in the United States well explained by this model? If so, are the positive attributes of these networks, e.g. those of efficiency, flexibility and robustness, fully realized, or could we effect substantial improvement? This paper first outlines attributes of various network types, then looks more closely at the common carrier air transportation network from perspectives of the traveler, the airlines, and Air Traffic Control (ATC). Network models are applied within each paradigm, including discussion of implied strengths and weaknesses of each model. Finally, known limitations of scalable networks are discussed. With an eye towards NAS operations, utilizing the strengths and avoiding the weaknesses of scale-free networks are addressed.
Self-Organization in Coupled Map Scale-Free Networks
International Nuclear Information System (INIS)
Xiao-Ming, Liang; Zong-Hua, Liu; Hua-Ping, Lü
2008-01-01
We study the self-organization of phase synchronization in coupled map scale-free networks with chaotic logistic map at each node and find that a variety of ordered spatiotemporal patterns emerge spontaneously in a regime of coupling strength. These ordered behaviours will change with the increase of the average links and are robust to both the system size and parameter mismatch. A heuristic theory is given to explain the mechanism of self-organization and to figure out the regime of coupling for the ordered spatiotemporal patterns
Opinion Spreading with Mobility on Scale-Free Networks
International Nuclear Information System (INIS)
Qiang, Guo; Xing-Wen, Chen; Jian-Guo, Liu; Bing-Hong, Wang; Tao, Zhou; Yu-Hua, Yao
2008-01-01
A continuum opinion dynamic model is presented based on two rules. The first one considers the mobilities of the individuals, the second one supposes that the individuals update their opinions independently. The results of the model indicate that the bounded confidence in c , separating consensus and incoherent states, of a scale-free network is much smaller than the one of a lattice. If the system can reach the consensus state, the sum of all individuals' opinion change O c (t) quickly decreases in an exponential form, while if it reaches the incoherent state finally O c (t) decreases slowly and has the punctuated equilibrium characteristic
Intermittent exploration on a scale-free network
International Nuclear Information System (INIS)
Ramezanpour, A
2007-02-01
We study an intermittent random walk on a random network of scale-free degree distribution. The walk is a combination of simple random walks of duration t w and random long-range jumps. While the time the walker needs to cover all the nodes increases with t w , the corresponding time for the edges displays a non monotonic behavior with a minimum for some nontrivial value of t w . This is a heterogeneity-induced effect that is not observed in homogeneous small-world networks. The optimal t w increases with the degree of assortativity in the network. Depending on the nature of degree correlations and the elapsed time the walker finds an over/underestimate of the degree distribution exponent. (author)
Complex networks with scale-free nature and hierarchical modularity
Shekatkar, Snehal M.; Ambika, G.
2015-09-01
Generative mechanisms which lead to empirically observed structure of networked systems from diverse fields like biology, technology and social sciences form a very important part of study of complex networks. The structure of many networked systems like biological cell, human society and World Wide Web markedly deviate from that of completely random networks indicating the presence of underlying processes. Often the main process involved in their evolution is the addition of links between existing nodes having a common neighbor. In this context we introduce an important property of the nodes, which we call mediating capacity, that is generic to many networks. This capacity decreases rapidly with increase in degree, making hubs weak mediators of the process. We show that this property of nodes provides an explanation for the simultaneous occurrence of the observed scale-free structure and hierarchical modularity in many networked systems. This also explains the high clustering and small-path length seen in real networks as well as non-zero degree-correlations. Our study also provides insight into the local process which ultimately leads to emergence of preferential attachment and hence is also important in understanding robustness and control of real networks as well as processes happening on real networks.
Scale-free networks of earthquakes and aftershocks
International Nuclear Information System (INIS)
Baiesi, Marco; Paczuski, Maya
2004-01-01
We propose a metric to quantify correlations between earthquakes. The metric consists of a product involving the time interval and spatial distance between two events, as well as the magnitude of the first one. According to this metric, events typically are strongly correlated to only one or a few preceding ones. Thus a classification of events as foreshocks, main shocks, or aftershocks emerges automatically without imposing predetermined space-time windows. In the simplest network construction, each earthquake receives an incoming link from its most correlated predecessor. The number of aftershocks for any event, identified by its outgoing links, is found to be scale free with exponent γ=2.0(1). The original Omori law with p=1 emerges as a robust feature of seismicity, holding up to years even for aftershock sequences initiated by intermediate magnitude events. The broad distribution of distances between earthquakes and their linked aftershocks suggests that aftershock collection with fixed space windows is not appropriate
Opinion formation on multiplex scale-free networks
Nguyen, Vu Xuan; Xiao, Gaoxi; Xu, Xin-Jian; Li, Guoqi; Wang, Zhen
2018-01-01
Most individuals, if not all, live in various social networks. The formation of opinion systems is an outcome of social interactions and information propagation occurring in such networks. We study the opinion formation with a new rule of pairwise interactions in the novel version of the well-known Deffuant model on multiplex networks composed of two layers, each of which is a scale-free network. It is found that in a duplex network composed of two identical layers, the presence of the multiplexity helps either diminish or enhance opinion diversity depending on the relative magnitudes of tolerance ranges characterizing the degree of openness/tolerance on both layers: there is a steady separation between different regions of tolerance range values on two network layers where multiplexity plays two different roles, respectively. Additionally, the two critical tolerance ranges follow a one-sum rule; that is, each of the layers reaches a complete consensus only if the sum of the tolerance ranges on the two layers is greater than a constant approximately equaling 1, the double of the critical bound on a corresponding isolated network. A further investigation of the coupling between constituent layers quantified by a link overlap parameter reveals that as the layers are loosely coupled, the two opinion systems co-evolve independently, but when the inter-layer coupling is sufficiently strong, a monotonic behavior is observed: an increase in the tolerance range of a layer causes a decline in the opinion diversity on the other layer regardless of the magnitudes of tolerance ranges associated with the layers in question.
Scale free effects in world currency exchange network
Górski, A. Z.; Drożdż, S.; Kwapień, J.
2008-11-01
A large collection of daily time series for 60 world currencies' exchange rates is considered. The correlation matrices are calculated and the corresponding Minimal Spanning Tree (MST) graphs are constructed for each of those currencies used as reference for the remaining ones. It is shown that multiplicity of the MST graphs' nodes to a good approximation develops a power like, scale free distribution with the scaling exponent similar as for several other complex systems studied so far. Furthermore, quantitative arguments in favor of the hierarchical organization of the world currency exchange network are provided by relating the structure of the above MST graphs and their scaling exponents to those that are derived from an exactly solvable hierarchical network model. A special status of the USD during the period considered can be attributed to some departures of the MST features, when this currency (or some other tied to it) is used as reference, from characteristics typical to such a hierarchical clustering of nodes towards those that correspond to the random graphs. Even though in general the basic structure of the MST is robust with respect to changing the reference currency some trace of a systematic transition from somewhat dispersed - like the USD case - towards more compact MST topology can be observed when correlations increase.
Small-World and Scale-Free Network Models for IoT Systems
Directory of Open Access Journals (Sweden)
Insoo Sohn
2017-01-01
Full Text Available It is expected that Internet of Things (IoT revolution will enable new solutions and business for consumers and entrepreneurs by connecting billions of physical world devices with varying capabilities. However, for successful realization of IoT, challenges such as heterogeneous connectivity, ubiquitous coverage, reduced network and device complexity, enhanced power savings, and enhanced resource management have to be solved. All these challenges are heavily impacted by the IoT network topology supported by massive number of connected devices. Small-world networks and scale-free networks are important complex network models with massive number of nodes and have been actively used to study the network topology of brain networks, social networks, and wireless networks. These models, also, have been applied to IoT networks to enhance synchronization, error tolerance, and more. However, due to interdisciplinary nature of the network science, with heavy emphasis on graph theory, it is not easy to study the various tools provided by complex network models. Therefore, in this paper, we attempt to introduce basic concepts of graph theory, including small-world networks and scale-free networks, and provide system models that can be easily implemented to be used as a powerful tool in solving various research problems related to IoT.
Complex Quantum Network Manifolds in Dimension d > 2 are Scale-Free
Bianconi, Ginestra; Rahmede, Christoph
2015-09-01
In quantum gravity, several approaches have been proposed until now for the quantum description of discrete geometries. These theoretical frameworks include loop quantum gravity, causal dynamical triangulations, causal sets, quantum graphity, and energetic spin networks. Most of these approaches describe discrete spaces as homogeneous network manifolds. Here we define Complex Quantum Network Manifolds (CQNM) describing the evolution of quantum network states, and constructed from growing simplicial complexes of dimension . We show that in d = 2 CQNM are homogeneous networks while for d > 2 they are scale-free i.e. they are characterized by large inhomogeneities of degrees like most complex networks. From the self-organized evolution of CQNM quantum statistics emerge spontaneously. Here we define the generalized degrees associated with the -faces of the -dimensional CQNMs, and we show that the statistics of these generalized degrees can either follow Fermi-Dirac, Boltzmann or Bose-Einstein distributions depending on the dimension of the -faces.
THE BUILDUP OF A SCALE-FREE PHOTOSPHERIC MAGNETIC NETWORK
Energy Technology Data Exchange (ETDEWEB)
Thibault, K.; Charbonneau, P. [Departement de Physique, Universite de Montreal, 2900 Edouard-Montpetit, Montreal, Quebec H3C 3J7 (Canada); Crouch, A. D., E-mail: kim@astro.umontreal.ca-a, E-mail: paulchar@astro.umontreal.ca-b, E-mail: ash@cora.nwra.com-c [CORA/NWRA, 3380 Mitchell Lane, Boulder, CO 80301 (United States)
2012-10-01
We use a global Monte Carlo simulation of the formation of the solar photospheric magnetic network to investigate the origin of the scale invariance characterizing magnetic flux concentrations visible on high-resolution magnetograms. The simulations include spatially and temporally homogeneous injection of small-scale magnetic elements over the whole photosphere, as well as localized episodic injection associated with the emergence and decay of active regions. Network elements form in response to cumulative pairwise aggregation or cancellation of magnetic elements, undergoing a random walk on the sphere and advected on large spatial scales by differential rotation and a poleward meridional flow. The resulting size distribution of simulated network elements is in very good agreement with observational inferences. We find that the fractal index and size distribution of network elements are determined primarily by these post-emergence surface mechanisms, and carry little or no memory of the scales at which magnetic flux is injected in the simulation. Implications for models of dynamo action in the Sun are briefly discussed.
THE BUILDUP OF A SCALE-FREE PHOTOSPHERIC MAGNETIC NETWORK
International Nuclear Information System (INIS)
Thibault, K.; Charbonneau, P.; Crouch, A. D.
2012-01-01
We use a global Monte Carlo simulation of the formation of the solar photospheric magnetic network to investigate the origin of the scale invariance characterizing magnetic flux concentrations visible on high-resolution magnetograms. The simulations include spatially and temporally homogeneous injection of small-scale magnetic elements over the whole photosphere, as well as localized episodic injection associated with the emergence and decay of active regions. Network elements form in response to cumulative pairwise aggregation or cancellation of magnetic elements, undergoing a random walk on the sphere and advected on large spatial scales by differential rotation and a poleward meridional flow. The resulting size distribution of simulated network elements is in very good agreement with observational inferences. We find that the fractal index and size distribution of network elements are determined primarily by these post-emergence surface mechanisms, and carry little or no memory of the scales at which magnetic flux is injected in the simulation. Implications for models of dynamo action in the Sun are briefly discussed.
The Buildup of a Scale-free Photospheric Magnetic Network
Thibault, K.; Charbonneau, P.; Crouch, A. D.
2012-10-01
We use a global Monte Carlo simulation of the formation of the solar photospheric magnetic network to investigate the origin of the scale invariance characterizing magnetic flux concentrations visible on high-resolution magnetograms. The simulations include spatially and temporally homogeneous injection of small-scale magnetic elements over the whole photosphere, as well as localized episodic injection associated with the emergence and decay of active regions. Network elements form in response to cumulative pairwise aggregation or cancellation of magnetic elements, undergoing a random walk on the sphere and advected on large spatial scales by differential rotation and a poleward meridional flow. The resulting size distribution of simulated network elements is in very good agreement with observational inferences. We find that the fractal index and size distribution of network elements are determined primarily by these post-emergence surface mechanisms, and carry little or no memory of the scales at which magnetic flux is injected in the simulation. Implications for models of dynamo action in the Sun are briefly discussed.
Self-Organized Criticality in a Simple Neuron Model Based on Scale-Free Networks
International Nuclear Information System (INIS)
Lin Min; Wang Gang; Chen Tianlun
2006-01-01
A simple model for a set of interacting idealized neurons in scale-free networks is introduced. The basic elements of the model are endowed with the main features of a neuron function. We find that our model displays power-law behavior of avalanche sizes and generates long-range temporal correlation. More importantly, we find different dynamical behavior for nodes with different connectivity in the scale-free networks.
Impacts of hybrid synapses on the noise-delayed decay in scale-free neural networks
International Nuclear Information System (INIS)
Yilmaz, Ergin
2014-01-01
Highlights: • We investigate the NDD phenomenon in a hybrid scale-free network. • Electrical synapses are more impressive on the emergence of NDD. • Electrical synapses are more efficient in suppressing of the NDD. • Average degree has two opposite effects on the appearance time of the first spike. - Abstract: We study the phenomenon of noise-delayed decay in a scale-free neural network consisting of excitable FitzHugh–Nagumo neurons. In contrast to earlier works, where only electrical synapses are considered among neurons, we primarily examine the effects of hybrid synapses on the noise-delayed decay in this study. We show that the electrical synaptic coupling is more impressive than the chemical coupling in determining the appearance time of the first-spike and more efficient on the mitigation of the delay time in the detection of a suprathreshold input signal. We obtain that hybrid networks including inhibitory chemical synapses have higher signal detection capabilities than those of including excitatory ones. We also find that average degree exhibits two different effects, which are strengthening and weakening the noise-delayed decay effect depending on the noise intensity
Convergence speed of consensus problems over undirected scale-free networks
International Nuclear Information System (INIS)
Sun Wei; Dou Li-Hua
2010-01-01
Scale-free networks and consensus behaviour among multiple agents have both attracted much attention. To investigate the consensus speed over scale-free networks is the major topic of the present work. A novel method is developed to construct scale-free networks due to their remarkable power-law degree distributions, while preserving the diversity of network topologies. The time cost or iterations for networks to reach a certain level of consensus is discussed, considering the influence from power-law parameters. They are both demonstrated to be reversed power-law functions of the algebraic connectivity, which is viewed as a measurement on convergence speed of the consensus behaviour. The attempts of tuning power-law parameters may speed up the consensus procedure, but it could also make the network less robust over time delay at the same time. Large scale of simulations are supportive to the conclusions. (general)
Effect of trap position on the efficiency of trapping in treelike scale-free networks
International Nuclear Information System (INIS)
Zhang Zhongzhi; Lin Yuan; Ma Youjun
2011-01-01
The conventional wisdom is that the role and impact of nodes on dynamical processes in scale-free networks are not homogenous, because of the presence of highly connected nodes at the tail of their power-law degree distribution. In this paper, we explore the influence of different nodes as traps on the trapping efficiency of the trapping problem taking place on scale-free networks. To this end, we study in detail the trapping problem in two families of deterministically growing scale-free networks with treelike structure: one family is non-fractal, the other is fractal. In the first part of this work, we attack a special case of random walks on the two network families with a perfect trap located at a hub, i.e. node with the highest degree. The second study addresses the case with trap distributed uniformly over all nodes in the networks. For these two cases, we compute analytically the mean trapping time (MTT), a quantitative indicator characterizing the trapping efficiency of the trapping process. We show that in the non-fractal scale-free networks the MTT for both cases follows different scalings with the network order (number of network nodes), implying that trap's position has a significant effect on the trapping efficiency. In contrast, it is presented that for both cases in the fractal scale-free networks, the two leading scalings exhibit the same dependence on the network order, suggesting that the location of trap has no essential impact on the trapping efficiency. We also show that for both cases of the trapping problem, the trapping efficiency is more efficient in the non-fractal scale-free networks than in their fractal counterparts.
Different behaviors of epidemic spreading in scale-free networks with identical degree sequence
Energy Technology Data Exchange (ETDEWEB)
Chu Xiangwei; Guan Jihong [School of Electronics and Information, Tongji University, 4800 Cao' an Road, Shanghai 201804 (China); Zhang Zhongzhi; Zhou Shuigeng [School of Computer Science, Fudan University, Shanghai 200433 (China); Li Mo, E-mail: zhangzz@fudan.edu.c, E-mail: jhguan@tongj.edu.c, E-mail: sgzhou@fudan.edu.c [Software School, Fudan University, Shanghai 200433 (China)
2010-02-12
Recently, the study of dynamical behaviors of the susceptible-infected (SI) disease model in complex networks, especially in Barabasi-Albert (BA) scale-free networks, has attracted much attention. Although some interesting phenomena have been observed, the formative reasons for those particular dynamical behaviors are still not well understood, despite the speculation that topological properties (for example the degree distribution) have a strong impact on epidemic spreading. In this paper, we study the evolution behaviors of epidemic spreading on a class of scale-free networks sharing identical degree sequence, and observe significantly different evolution behaviors in the whole family of networks. We show that the power-law degree distribution does not suffice to characterize the dynamical behaviors of disease diffusion on scale-free networks.
Different behaviors of epidemic spreading in scale-free networks with identical degree sequence
International Nuclear Information System (INIS)
Chu Xiangwei; Guan Jihong; Zhang Zhongzhi; Zhou Shuigeng; Li Mo
2010-01-01
Recently, the study of dynamical behaviors of the susceptible-infected (SI) disease model in complex networks, especially in Barabasi-Albert (BA) scale-free networks, has attracted much attention. Although some interesting phenomena have been observed, the formative reasons for those particular dynamical behaviors are still not well understood, despite the speculation that topological properties (for example the degree distribution) have a strong impact on epidemic spreading. In this paper, we study the evolution behaviors of epidemic spreading on a class of scale-free networks sharing identical degree sequence, and observe significantly different evolution behaviors in the whole family of networks. We show that the power-law degree distribution does not suffice to characterize the dynamical behaviors of disease diffusion on scale-free networks.
Some scale-free networks could be robust under selective node attacks
Zheng, Bojin; Huang, Dan; Li, Deyi; Chen, Guisheng; Lan, Wenfei
2011-04-01
It is a mainstream idea that scale-free network would be fragile under the selective attacks. Internet is a typical scale-free network in the real world, but it never collapses under the selective attacks of computer viruses and hackers. This phenomenon is different from the deduction of the idea above because this idea assumes the same cost to delete an arbitrary node. Hence this paper discusses the behaviors of the scale-free network under the selective node attack with different cost. Through the experiments on five complex networks, we show that the scale-free network is possibly robust under the selective node attacks; furthermore, the more compact the network is, and the larger the average degree is, then the more robust the network is; with the same average degrees, the more compact the network is, the more robust the network is. This result would enrich the theory of the invulnerability of the network, and can be used to build robust social, technological and biological networks, and also has the potential to find the target of drugs.
Discretized kinetic theory on scale-free networks
Bertotti, Maria Letizia; Modanese, Giovanni
2016-10-01
The network of interpersonal connections is one of the possible heterogeneous factors which affect the income distribution emerging from micro-to-macro economic models. In this paper we equip our model discussed in [1, 2] with a network structure. The model is based on a system of n differential equations of the kinetic discretized-Boltzmann kind. The network structure is incorporated in a probabilistic way, through the introduction of a link density P(α) and of correlation coefficients P(β|α), which give the conditioned probability that an individual with α links is connected to one with β links. We study the properties of the equations and give analytical results concerning the existence, normalization and positivity of the solutions. For a fixed network with P(α) = c/α q , we investigate numerically the dependence of the detailed and marginal equilibrium distributions on the initial conditions and on the exponent q. Our results are compatible with those obtained from the Bouchaud-Mezard model and from agent-based simulations, and provide additional information about the dependence of the individual income on the level of connectivity.
Networks, complexity and internet regulation scale-free law
Guadamuz, Andres
2013-01-01
This book, then, starts with a general statement: that regulators should try, wherever possible, to use the physical methodological tools presently available in order to draft better legislation. While such an assertion may be applied to the law in general, this work will concentrate on the much narrower area of Internet regulation and the science of complex networks The Internet is the subject of this book not only because it is my main area of research, but also because –without...
Emergence of fractal scale-free networks from stochastic evolution on the Cayley tree
Energy Technology Data Exchange (ETDEWEB)
Chełminiak, Przemysław, E-mail: geronimo@amu.edu.pl
2013-11-29
An unexpected recognition of fractal topology in some real-world scale-free networks has evoked again an interest in the mechanisms stimulating their evolution. To explain this phenomenon a few models of a deterministic construction as well as a probabilistic growth controlled by a tunable parameter have been proposed so far. A quite different approach based on the fully stochastic evolution of the fractal scale-free networks presented in this Letter counterpoises these former ideas. It is argued that the diffusive evolution of the network on the Cayley tree shapes its fractality, self-similarity and the branching number criticality without any control parameter. The last attribute of the scale-free network is an intrinsic property of the skeleton, a special type of spanning tree which determines its fractality.
Generating clustered scale-free networks using Poisson based localization of edges
Türker, İlker
2018-05-01
We introduce a variety of network models using a Poisson-based edge localization strategy, which result in clustered scale-free topologies. We first verify the success of our localization strategy by realizing a variant of the well-known Watts-Strogatz model with an inverse approach, implying a small-world regime of rewiring from a random network through a regular one. We then apply the rewiring strategy to a pure Barabasi-Albert model and successfully achieve a small-world regime, with a limited capacity of scale-free property. To imitate the high clustering property of scale-free networks with higher accuracy, we adapted the Poisson-based wiring strategy to a growing network with the ingredients of both preferential attachment and local connectivity. To achieve the collocation of these properties, we used a routine of flattening the edges array, sorting it, and applying a mixing procedure to assemble both global connections with preferential attachment and local clusters. As a result, we achieved clustered scale-free networks with a computational fashion, diverging from the recent studies by following a simple but efficient approach.
Emergence of super cooperation of prisoner's dilemma games on scale-free networks.
Directory of Open Access Journals (Sweden)
Angsheng Li
Full Text Available Recently, the authors proposed a quantum prisoner's dilemma game based on the spatial game of Nowak and May, and showed that the game can be played classically. By using this idea, we proposed three generalized prisoner's dilemma (GPD, for short games based on the weak Prisoner's dilemma game, the full prisoner's dilemma game and the normalized Prisoner's dilemma game, written by GPDW, GPDF and GPDN respectively. Our games consist of two players, each of which has three strategies: cooperator (C, defector (D and super cooperator (denoted by Q, and have a parameter γ to measure the entangled relationship between the two players. We found that our generalised prisoner's dilemma games have new Nash equilibrium principles, that entanglement is the principle of emergence and convergence (i.e., guaranteed emergence of super cooperation in evolutions of our generalised prisoner's dilemma games on scale-free networks, that entanglement provides a threshold for a phase transition of super cooperation in evolutions of our generalised prisoner's dilemma games on scale-free networks, that the role of heterogeneity of the scale-free networks in cooperations and super cooperations is very limited, and that well-defined structures of scale-free networks allow coexistence of cooperators and super cooperators in the evolutions of the weak version of our generalised prisoner's dilemma games.
The Mathematics of Networks Science: Scale-Free, Power-Law Graphs and Continuum Theoretical Analysis
Padula, Janice
2012-01-01
When hoping to initiate or sustain students' interest in mathematics teachers should always consider relevance, relevance to students' lives and in the middle and later years of instruction in high school and university, accessibility. A topic such as the mathematics behind networks science, more specifically scale-free graphs, is up-to-date,…
Node-node correlations and transport properties in scale-free networks
Obregon, Bibiana; Guzman, Lev
2011-03-01
We study some transport properties of complex networks. We focus our attention on transport properties of scale-free and small-world networks and compare two types of transport: Electric and max-flow cases. In particular, we construct scale-free networks, with a given degree sequence, to estimate the distribution of conductances for different values of assortative/dissortative mixing. For the electric case we find that the distributions of conductances are affect ed by the assortative mixing of the network whereas for the max-flow case, the distributions almost do not show changes when node-node correlations are altered. Finally, we compare local and global transport in terms of the average conductance for the small-world (Watts-Strogatz) model
International Nuclear Information System (INIS)
Liu, Chen; Wang, Jiang; Wang, Lin; Yu, Haitao; Deng, Bin; Wei, Xile; Tsang, Kaiming; Chan, Wailok
2014-01-01
Highlights: • Synchronization transitions in hybrid scale-free neuronal networks are investigated. • Multiple synchronization transitions can be induced by the time delay. • Effect of synchronization transitions depends on the ratio of the electrical and chemical synapses. • Coupling strength and the density of inter-neuronal links can enhance the synchronization. -- Abstract: The impacts of information transmission delay on the synchronization transitions in scale-free neuronal networks with electrical and chemical hybrid synapses are investigated. Numerical results show that multiple appearances of synchronization regions transitions can be induced by different information transmission delays. With the time delay increasing, the synchronization of neuronal activities can be enhanced or destroyed, irrespective of the probability of chemical synapses in the whole hybrid neuronal network. In particular, for larger probability of electrical synapses, the regions of synchronous activities appear broader with stronger synchronization ability of electrical synapses compared with chemical ones. Moreover, it can be found that increasing the coupling strength can promote synchronization monotonously, playing the similar role of the increasing the probability of the electrical synapses. Interestingly, the structures and parameters of the scale-free neuronal networks, especially the structural evolvement plays a more subtle role in the synchronization transitions. In the network formation process, it is found that every new vertex is attached to the more old vertices already present in the network, the more synchronous activities will be emerge
Fractional parentage analysis and a scale-free reproductive network of brown trout.
Koyano, Hitoshi; Serbezov, Dimitar; Kishino, Hirohisa; Schweder, Tore
2013-11-07
In this study, we developed a method of fractional parentage analysis using microsatellite markers. We propose a method for calculating parentage probability, which considers missing data and genotyping errors due to null alleles and other causes, by regarding observed alleles as realizations of random variables which take values in the set of alleles at the locus and developing a method for simultaneously estimating the true and null allele frequencies of all alleles at each locus. We then applied our proposed method to a large sample collected from a wild population of brown trout (Salmo trutta). On analyzing the data using our method, we found that the reproductive success of brown trout obeyed a power law, indicating that when the parent-offspring relationship is regarded as a link, the reproductive system of brown trout is a scale-free network. Characteristics of the reproductive network of brown trout include individuals with large bodies as hubs in the network and different power exponents of degree distributions between males and females. © 2013 Elsevier Ltd. All rights reserved.
Walking Across Wikipedia: A Scale-Free Network Model of Semantic Memory Retrieval
Directory of Open Access Journals (Sweden)
Graham William Thompson
2014-02-01
Full Text Available Semantic knowledge has been investigated using both online and offline methods. One common online method is category recall, in which members of a semantic category like animals are retrieved in a given period of time. The order, timing, and number of retrievals are used as assays of semantic memory processes. One common offline method is corpus analysis, in which the structure of semantic knowledge is extracted from texts using co-occurrence or encyclopedic methods. Online measures of semantic processing, as well as offline measures of semantic structure, have yielded data resembling inverse power law distributions. The aim of the present study is to investigate whether these patterns in data might be related. A semantic network model of animal knowledge is formulated on the basis of Wikipedia pages and their overlap in word probability distributions. The network is scale-free, in that node degree is related to node frequency as an inverse power law. A random walk over this network is shown to simulate a number of results from a category recall experiment, including power law-like distributions of inter-response intervals. Results are discussed in terms of theories of semantic structure and processing.
Mobile user forecast and power-law acceleration invariance of scale-free networks
International Nuclear Information System (INIS)
Guo Jin-Li; Guo Zhao-Hua; Liu Xue-Jiao
2011-01-01
This paper studies and predicts the number growth of China's mobile users by using the power-law regression. We find that the number growth of the mobile users follows a power law. Motivated by the data on the evolution of the mobile users, we consider scenarios of self-organization of accelerating growth networks into scale-free structures and propose a directed network model, in which the nodes grow following a power-law acceleration. The expressions for the transient and the stationary average degree distributions are obtained by using the Poisson process. This result shows that the model generates appropriate power-law connectivity distributions. Therefore, we find a power-law acceleration invariance of the scale-free networks. The numerical simulations of the models agree with the analytical results well. (interdisciplinary physics and related areas of science and technology)
Evaluating the transport in small-world and scale-free networks
International Nuclear Information System (INIS)
Juárez-López, R.; Obregón-Quintana, B.; Hernández-Pérez, R.; Reyes-Ramírez, I.; Guzmán-Vargas, L.
2014-01-01
We present a study of some properties of transport in small-world and scale-free networks. Particularly, we compare two types of transport: subject to friction (electrical case) and in the absence of friction (maximum flow). We found that in clustered networks based on the Watts–Strogatz (WS) model, for both transport types the small-world configurations exhibit the best trade-off between local and global levels. For non-clustered WS networks the local transport is independent of the rewiring parameter, while the transport improves globally. Moreover, we analyzed both transport types in scale-free networks considering tendencies in the assortative or disassortative mixing of nodes. We construct the distribution of the conductance G and flow F to evaluate the effects of the assortative (disassortative) mixing, finding that for scale-free networks, as we introduce different levels of the degree–degree correlations, the power-law decay in the conductances is altered, while for the flow, the power-law tail remains unchanged. In addition, we analyze the effect on the conductance and the flow of the minimum degree and the shortest path between the source and destination nodes, finding notable differences between these two types of transport
Sparse cliques trump scale-free networks in coordination and competition
Gianetto, David A.; Heydari, Babak
2016-02-01
Cooperative behavior, a natural, pervasive and yet puzzling phenomenon, can be significantly enhanced by networks. Many studies have shown how global network characteristics affect cooperation; however, it is difficult to understand how this occurs based on global factors alone, low-level network building blocks, or motifs are necessary. In this work, we systematically alter the structure of scale-free and clique networks and show, through a stochastic evolutionary game theory model, that cooperation on cliques increases linearly with community motif count. We further show that, for reactive stochastic strategies, network modularity improves cooperation in the anti-coordination Snowdrift game and the Prisoner’s Dilemma game but not in the Stag Hunt coordination game. We also confirm the negative effect of the scale-free graph on cooperation when effective payoffs are used. On the flip side, clique graphs are highly cooperative across social environments. Adding cycles to the acyclic scale-free graph increases cooperation when multiple games are considered; however, cycles have the opposite effect on how forgiving agents are when playing the Prisoner’s Dilemma game.
Epidemic spreading in weighted scale-free networks with community structure
International Nuclear Information System (INIS)
Chu, Xiangwei; Guan, Jihong; Zhang, Zhongzhi; Zhou, Shuigeng
2009-01-01
Many empirical studies reveal that the weights and community structure are ubiquitous in various natural and artificial networks. In this paper, based on the SI disease model, we investigate the epidemic spreading in weighted scale-free networks with community structure. Two exponents, α and β, are introduced to weight the internal edges and external edges, respectively; and a tunable probability parameter q is also introduced to adjust the strength of community structure. We find the external weighting exponent β plays a much more important role in slackening the epidemic spreading and reducing the danger brought by the epidemic than the internal weighting exponent α. Moreover, a novel result we find is that the strong community structure is no longer helpful for slackening the danger brought by the epidemic in the weighted cases. In addition, we show the hierarchical dynamics of the epidemic spreading in the weighted scale-free networks with communities which is also displayed in the famous BA scale-free networks
Consensus of Multi-Agent Systems with Prestissimo Scale-Free Networks
International Nuclear Information System (INIS)
Yang Hongyong; Lu Lan; Cao Kecai; Zhang Siying
2010-01-01
In this paper, the relations of the network topology and the moving consensus of multi-agent systems are studied. A consensus-prestissimo scale-free network model with the static preferential-consensus attachment is presented on the rewired link of the regular network. The effects of the static preferential-consensus BA network on the algebraic connectivity of the topology graph are compared with the regular network. The robustness gain to delay is analyzed for variable network topology with the same scale. The time to reach the consensus is studied for the dynamic network with and without communication delays. By applying the computer simulations, it is validated that the speed of the convergence of multi-agent systems can be greatly improved in the preferential-consensus BA network model with different configuration. (interdisciplinary physics and related areas of science and technology)
Simulating the wealth distribution with a Richest-Following strategy on scale-free network
Hu, Mao-Bin; Jiang, Rui; Wu, Qing-Song; Wu, Yong-Hong
2007-07-01
In this paper, we investigate the wealth distribution with agents playing evolutionary games on a scale-free social network adopting the Richest-Following strategy. Pareto's power-law distribution (1897) of wealth is demonstrated with power factor in agreement with that of US or Japan. Moreover, the agent's personal wealth is proportional to its number of contacts (connectivity), and this leads to the phenomenon that the rich gets richer and the poor gets relatively poorer, which agrees with the Matthew Effect.
Truncation of power law behavior in 'scale-free' network models due to information filtering
International Nuclear Information System (INIS)
Mossa, Stefano; Barthelemy, Marc; Eugene Stanley, H.; Nunes Amaral, Luis A.
2002-01-01
We formulate a general model for the growth of scale-free networks under filtering information conditions--that is, when the nodes can process information about only a subset of the existing nodes in the network. We find that the distribution of the number of incoming links to a node follows a universal scaling form, i.e., that it decays as a power law with an exponential truncation controlled not only by the system size but also by a feature not previously considered, the subset of the network 'accessible' to the node. We test our model with empirical data for the World Wide Web and find agreement
Trajectory Control of Scale-Free Dynamical Networks with Exogenous Disturbances
International Nuclear Information System (INIS)
Yang Hongyong; Zhang Shun; Zong Guangdeng
2011-01-01
In this paper, the trajectory control of multi-agent dynamical systems with exogenous disturbances is studied. Suppose multiple agents composing of a scale-free network topology, the performance of rejecting disturbances for the low degree node and high degree node is analyzed. Firstly, the consensus of multi-agent systems without disturbances is studied by designing a pinning control strategy on a part of agents, where this pinning control can bring multiple agents' states to an expected consensus track. Then, the influence of the disturbances is considered by developing disturbance observers, and disturbance observers based control (DOBC) are developed for disturbances generated by an exogenous system to estimate the disturbances. Asymptotical consensus of the multi-agent systems with disturbances under the composite controller can be achieved for scale-free network topology. Finally, by analyzing examples of multi-agent systems with scale-free network topology and exogenous disturbances, the verities of the results are proved. Under the DOBC with the designed parameters, the trajectory convergence of multi-agent systems is researched by pinning two class of the nodes. We have found that it has more stronger robustness to exogenous disturbances for the high degree node pinned than that of the low degree node pinned. (interdisciplinary physics and related areas of science and technology)
Utilizing Maximal Independent Sets as Dominating Sets in Scale-Free Networks
Derzsy, N.; Molnar, F., Jr.; Szymanski, B. K.; Korniss, G.
Dominating sets provide key solution to various critical problems in networked systems, such as detecting, monitoring, or controlling the behavior of nodes. Motivated by graph theory literature [Erdos, Israel J. Math. 4, 233 (1966)], we studied maximal independent sets (MIS) as dominating sets in scale-free networks. We investigated the scaling behavior of the size of MIS in artificial scale-free networks with respect to multiple topological properties (size, average degree, power-law exponent, assortativity), evaluated its resilience to network damage resulting from random failure or targeted attack [Molnar et al., Sci. Rep. 5, 8321 (2015)], and compared its efficiency to previously proposed dominating set selection strategies. We showed that, despite its small set size, MIS provides very high resilience against network damage. Using extensive numerical analysis on both synthetic and real-world (social, biological, technological) network samples, we demonstrate that our method effectively satisfies four essential requirements of dominating sets for their practical applicability on large-scale real-world systems: 1.) small set size, 2.) minimal network information required for their construction scheme, 3.) fast and easy computational implementation, and 4.) resiliency to network damage. Supported by DARPA, DTRA, and NSF.
Rzhetsky, A; Gomez, S M
2001-10-01
Current growth in the field of genomics has provided a number of exciting approaches to the modeling of evolutionary mechanisms within the genome. Separately, dynamical and statistical analyses of networks such as the World Wide Web and the social interactions existing between humans have shown that these networks can exhibit common fractal properties-including the property of being scale-free. This work attempts to bridge these two fields and demonstrate that the fractal properties of molecular networks are linked to the fractal properties of their underlying genomes. We suggest a stochastic model capable of describing the evolutionary growth of metabolic or signal-transduction networks. This model generates networks that share important statistical properties (so-called scale-free behavior) with real molecular networks. In particular, the frequency of vertices connected to exactly k other vertices follows a power-law distribution. The shape of this distribution remains invariant to changes in network scale: a small subgraph has the same distribution as the complete graph from which it is derived. Furthermore, the model correctly predicts that the frequencies of distinct DNA and protein domains also follow a power-law distribution. Finally, the model leads to a simple equation linking the total number of different DNA and protein domains in a genome with both the total number of genes and the overall network topology. MatLab (MathWorks, Inc.) programs described in this manuscript are available on request from the authors. ar345@columbia.edu.
Scale-free models for the structure of business firm networks.
Kitsak, Maksim; Riccaboni, Massimo; Havlin, Shlomo; Pammolli, Fabio; Stanley, H Eugene
2010-03-01
We study firm collaborations in the life sciences and the information and communication technology sectors. We propose an approach to characterize industrial leadership using k -shell decomposition, with top-ranking firms in terms of market value in higher k -shell layers. We find that the life sciences industry network consists of three distinct components: a "nucleus," which is a small well-connected subgraph, "tendrils," which are small subgraphs consisting of small degree nodes connected exclusively to the nucleus, and a "bulk body," which consists of the majority of nodes. Industrial leaders, i.e., the largest companies in terms of market value, are in the highest k -shells of both networks. The nucleus of the life sciences sector is very stable: once a firm enters the nucleus, it is likely to stay there for a long time. At the same time we do not observe the above three components in the information and communication technology sector. We also conduct a systematic study of these three components in random scale-free networks. Our results suggest that the sizes of the nucleus and the tendrils in scale-free networks decrease as the exponent of the power-law degree distribution lambda increases, and disappear for lambda>or=3 . We compare the k -shell structure of random scale-free model networks with two real-world business firm networks in the life sciences and in the information and communication technology sectors. We argue that the observed behavior of the k -shell structure in the two industries is consistent with the coexistence of both preferential and random agreements in the evolution of industrial networks.
Heuristic algorithm for determination of local properties of scale-free networks
Mitrovic, M
2006-01-01
Complex networks are everywhere. Many phenomena in nature can be modeled as networks: - brain structures - protein-protein interaction networks - social interactions - the Internet and WWW. They can be represented in terms of nodes and edges connecting them. Important characteristics: - these networks are not random; they have a structured architecture. Structure of different networks are similar: - all have power law degree distribution (scale-free property) - despite large size there is usually relatively short path between any two nodes (small world property). Global characteristics: - degree distribution, clustering coefficient and the diameter. Local structure: - frequency of subgraphs of given type (subgraph of order k is a part of the network consisting of k nodes and edges between them). There are different types of subgraphs of the same order.
Effect of clustering on attack vulnerability of interdependent scale-free networks
International Nuclear Information System (INIS)
Li, Rui-qi; Sun, Shi-wen; Ma, Yi-lin; Wang, Li; Xia, Cheng-yi
2015-01-01
In order to deeply understand the complex interdependent systems, it is of great concern to take clustering coefficient, which is an important feature of many real-world systems, into account. Previous study mainly focused on the impact of clustering on interdependent networks under random attacks, while we extend the study to the case of the more realistic attacking strategy, targeted attack. A system composed of two interdependent scale-free networks with tunable clustering is provided. The effects of coupling strength and coupling preference on attack vulnerability are explored. Numerical simulation results demonstrate that interdependent links between two networks make the entire system much more fragile to attacks. Also, it is found that clustering significantly increases the vulnerability of interdependent scale-free networks. Moreover, for fully coupled network, disassortative coupling is found to be most vulnerable to random attacks, while the random and assortative coupling have little difference. Additionally, enhancing coupling strength can greatly enhance the fragility of interdependent networks against targeted attacks. These results can not only improve the deep understanding of structural complexity of complex systems, but also provide insights into the guidance of designing resilient infrastructures.
Non-equilibrium mean-field theories on scale-free networks
International Nuclear Information System (INIS)
Caccioli, Fabio; Dall'Asta, Luca
2009-01-01
Many non-equilibrium processes on scale-free networks present anomalous critical behavior that is not explained by standard mean-field theories. We propose a systematic method to derive stochastic equations for mean-field order parameters that implicitly account for the degree heterogeneity. The method is used to correctly predict the dynamical critical behavior of some binary spin models and reaction–diffusion processes. The validity of our non-equilibrium theory is further supported by showing its relation with the generalized Landau theory of equilibrium critical phenomena on networks
Teschendorff, Andrew E.; Banerji, Christopher R. S.; Severini, Simone; Kuehn, Reimer; Sollich, Peter
2015-01-01
One of the key characteristics of cancer cells is an increased phenotypic plasticity, driven by underlying genetic and epigenetic perturbations. However, at a systems-level it is unclear how these perturbations give rise to the observed increased plasticity. Elucidating such systems-level principles is key for an improved understanding of cancer. Recently, it has been shown that signaling entropy, an overall measure of signaling pathway promiscuity, and computable from integrating a sample's gene expression profile with a protein interaction network, correlates with phenotypic plasticity and is increased in cancer compared to normal tissue. Here we develop a computational framework for studying the effects of network perturbations on signaling entropy. We demonstrate that the increased signaling entropy of cancer is driven by two factors: (i) the scale-free (or near scale-free) topology of the interaction network, and (ii) a subtle positive correlation between differential gene expression and node connectivity. Indeed, we show that if protein interaction networks were random graphs, described by Poisson degree distributions, that cancer would generally not exhibit an increased signaling entropy. In summary, this work exposes a deep connection between cancer, signaling entropy and interaction network topology. PMID:25919796
International Nuclear Information System (INIS)
Hao Yinghang; Gong, Yubing; Wang Li; Ma Xiaoguang; Yang Chuanlu
2011-01-01
Research highlights: → Single synchronization transition for gap-junctional coupling. → Multiple synchronization transitions for chemical synaptic coupling. → Gap junctions and chemical synapses have different impacts on synchronization transition. → Chemical synapses may play a dominant role in neurons' information processing. - Abstract: In this paper, we have studied time delay- and coupling strength-induced synchronization transitions in scale-free modified Hodgkin-Huxley (MHH) neuron networks with gap-junctions and chemical synaptic coupling. It is shown that the synchronization transitions are much different for these two coupling types. For gap-junctions, the neurons exhibit a single synchronization transition with time delay and coupling strength, while for chemical synapses, there are multiple synchronization transitions with time delay, and the synchronization transition with coupling strength is dependent on the time delay lengths. For short delays we observe a single synchronization transition, whereas for long delays the neurons exhibit multiple synchronization transitions as the coupling strength is varied. These results show that gap junctions and chemical synapses have different impacts on the pattern formation and synchronization transitions of the scale-free MHH neuronal networks, and chemical synapses, compared to gap junctions, may play a dominant and more active function in the firing activity of the networks. These findings would be helpful for further understanding the roles of gap junctions and chemical synapses in the firing dynamics of neuronal networks.
Energy Technology Data Exchange (ETDEWEB)
Hao Yinghang [School of Physics, Ludong University, Yantai 264025 (China); Gong, Yubing, E-mail: gongyubing09@hotmail.co [School of Physics, Ludong University, Yantai 264025 (China); Wang Li; Ma Xiaoguang; Yang Chuanlu [School of Physics, Ludong University, Yantai 264025 (China)
2011-04-15
Research highlights: Single synchronization transition for gap-junctional coupling. Multiple synchronization transitions for chemical synaptic coupling. Gap junctions and chemical synapses have different impacts on synchronization transition. Chemical synapses may play a dominant role in neurons' information processing. - Abstract: In this paper, we have studied time delay- and coupling strength-induced synchronization transitions in scale-free modified Hodgkin-Huxley (MHH) neuron networks with gap-junctions and chemical synaptic coupling. It is shown that the synchronization transitions are much different for these two coupling types. For gap-junctions, the neurons exhibit a single synchronization transition with time delay and coupling strength, while for chemical synapses, there are multiple synchronization transitions with time delay, and the synchronization transition with coupling strength is dependent on the time delay lengths. For short delays we observe a single synchronization transition, whereas for long delays the neurons exhibit multiple synchronization transitions as the coupling strength is varied. These results show that gap junctions and chemical synapses have different impacts on the pattern formation and synchronization transitions of the scale-free MHH neuronal networks, and chemical synapses, compared to gap junctions, may play a dominant and more active function in the firing activity of the networks. These findings would be helpful for further understanding the roles of gap junctions and chemical synapses in the firing dynamics of neuronal networks.
Synchronization in scale-free networks: The role of finite-size effects
Torres, D.; Di Muro, M. A.; La Rocca, C. E.; Braunstein, L. A.
2015-06-01
Synchronization problems in complex networks are very often studied by researchers due to their many applications to various fields such as neurobiology, e-commerce and completion of tasks. In particular, scale-free networks with degree distribution P(k)∼ k-λ , are widely used in research since they are ubiquitous in Nature and other real systems. In this paper we focus on the surface relaxation growth model in scale-free networks with 2.5< λ <3 , and study the scaling behavior of the fluctuations, in the steady state, with the system size N. We find a novel behavior of the fluctuations characterized by a crossover between two regimes at a value of N=N* that depends on λ: a logarithmic regime, found in previous research, and a constant regime. We propose a function that describes this crossover, which is in very good agreement with the simulations. We also find that, for a system size above N* , the fluctuations decrease with λ, which means that the synchronization of the system improves as λ increases. We explain this crossover analyzing the role of the network's heterogeneity produced by the system size N and the exponent of the degree distribution.
Improved routing strategies for data traffic in scale-free networks
International Nuclear Information System (INIS)
Wu, Zhi-Xi; Peng, Gang; Wong, Wing-Ming; Yeung, Kai-Hau
2008-01-01
We study the information packet routing process in scale-free networks by mimicking Internet traffic delivery. We incorporate both the global shortest paths information and local degree information of the network in the dynamic process, via two tunable parameters, α and β, to guide the packet routing. We measure the performance of the routing method by both the average transit times of packets and the critical packet generation rate (above which packet aggregation occurs in the network). We found that the routing strategies which integrate ingredients of both global and local topological information of the underlying networks perform much better than the traditional shortest path routing protocol taking into account the global topological information only. Moreover, by doing comparative studies with some related works, we found that the performance of our proposed method shows universal efficiency characteristic against the amount of traffic
An efficient strategy for enhancing traffic capacity by removing links in scale-free networks
International Nuclear Information System (INIS)
Huang, Wei; Chow, Tommy W S
2010-01-01
An efficient link-removal strategy, called the variance-of-neighbor-degree-reduction (VNDR) strategy, for enhancing the traffic capacity of scale-free networks is proposed in this paper. The VNDR strategy, which considers the important role of hub nodes, balances the amounts of packets routed from each node to the node's neighbors. Compared against the outcomes of strategies that remove links among hub nodes, our results show that the traffic capacity can be greatly enhanced, especially under the shortest path routing strategy. It is also found that the average transport time is effectively reduced by using the VNDR strategy only under the shortest path routing strategy
Spreading dynamics of an e-commerce preferential information model on scale-free networks
Wan, Chen; Li, Tao; Guan, Zhi-Hong; Wang, Yuanmei; Liu, Xiongding
2017-02-01
In order to study the influence of the preferential degree and the heterogeneity of underlying networks on the spread of preferential e-commerce information, we propose a novel susceptible-infected-beneficial model based on scale-free networks. The spreading dynamics of the preferential information are analyzed in detail using the mean-field theory. We determine the basic reproductive number and equilibria. The theoretical analysis indicates that the basic reproductive number depends mainly on the preferential degree and the topology of the underlying networks. We prove the global stability of the information-elimination equilibrium. The permanence of preferential information and the global attractivity of the information-prevailing equilibrium are also studied in detail. Some numerical simulations are presented to verify the theoretical results.
International Nuclear Information System (INIS)
Gong Yubing; Xie Yanhang; Lin Xiu; Hao Yinghang; Ma Xiaoguang
2010-01-01
Research highlights: → Chemical delay and chemical coupling can tame chaotic bursting. → Chemical delay-induced transitions from bursting synchronization to intermittent multiple spiking synchronizations. → Chemical coupling-induced different types of delay-dependent firing transitions. - Abstract: Chemical synaptic connections are more common than electric ones in neurons, and information transmission delay is especially significant for the synapses of chemical type. In this paper, we report a phenomenon of ordering spatiotemporal chaos and synchronization transitions by the delays and coupling through chemical synapses of modified Hodgkin-Huxley (MHH) neurons on scale-free networks. As the delay τ is increased, the neurons exhibit transitions from bursting synchronization (BS) to intermittent multiple spiking synchronizations (SS). As the coupling g syn is increased, the neurons exhibit different types of firing transitions, depending on the values of τ. For a smaller τ, there are transitions from spatiotemporal chaotic bursting (SCB) to BS or SS; while for a larger τ, there are transitions from SCB to intermittent multiple SS. These findings show that the delays and coupling through chemical synapses can tame the chaotic firings and repeatedly enhance the firing synchronization of neurons, and hence could play important roles in the firing activity of the neurons on scale-free networks.
Synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling.
Directory of Open Access Journals (Sweden)
Qingyun Wang
Full Text Available This paper investigates the dependence of synchronization transitions of bursting oscillations on the information transmission delay over scale-free neuronal networks with attractive and repulsive coupling. It is shown that for both types of coupling, the delay always plays a subtle role in either promoting or impairing synchronization. In particular, depending on the inherent oscillation period of individual neurons, regions of irregular and regular propagating excitatory fronts appear intermittently as the delay increases. These delay-induced synchronization transitions are manifested as well-expressed minima in the measure for spatiotemporal synchrony. For attractive coupling, the minima appear at every integer multiple of the average oscillation period, while for the repulsive coupling, they appear at every odd multiple of the half of the average oscillation period. The obtained results are robust to the variations of the dynamics of individual neurons, the system size, and the neuronal firing type. Hence, they can be used to characterize attractively or repulsively coupled scale-free neuronal networks with delays.
International Nuclear Information System (INIS)
Chen Xiaojie; Fu Feng; Wang Long
2008-01-01
We study the evolutionary Prisoner's dilemma game on scale-free networks, focusing on the influence of different initial distributions for cooperators and defectors on the evolution of cooperation. To address this issue, we consider three types of initial distributions for defectors: uniform distribution at random, occupying the most connected nodes, and occupying the lowest-degree nodes, respectively. It is shown that initial configurations for defectors can crucially influence the cooperation level and the evolution speed of cooperation. Interestingly, the situation where defectors initially occupy the lowest-degree vertices can exhibit the most robust cooperation, compared with two other distributions. That is, the cooperation level is least affected by the initial percentage of defectors. Moreover, in this situation, the whole system evolves fastest to the prevalent cooperation. Besides, we obtain the critical values of initial frequency of defectors above which the extinction of cooperators occurs for the respective initial distributions. Our results might be helpful in explaining the maintenance of high cooperation in scale-free networks
Coupling effects on turning points of infectious diseases epidemics in scale-free networks.
Kim, Kiseong; Lee, Sangyeon; Lee, Doheon; Lee, Kwang Hyung
2017-05-31
Pandemic is a typical spreading phenomenon that can be observed in the human society and is dependent on the structure of the social network. The Susceptible-Infective-Recovered (SIR) model describes spreading phenomena using two spreading factors; contagiousness (β) and recovery rate (γ). Some network models are trying to reflect the social network, but the real structure is difficult to uncover. We have developed a spreading phenomenon simulator that can input the epidemic parameters and network parameters and performed the experiment of disease propagation. The simulation result was analyzed to construct a new marker VRTP distribution. We also induced the VRTP formula for three of the network mathematical models. We suggest new marker VRTP (value of recovered on turning point) to describe the coupling between the SIR spreading and the Scale-free (SF) network and observe the aspects of the coupling effects with the various of spreading and network parameters. We also derive the analytic formulation of VRTP in the fully mixed model, the configuration model, and the degree-based model respectively in the mathematical function form for the insights on the relationship between experimental simulation and theoretical consideration. We discover the coupling effect between SIR spreading and SF network through devising novel marker VRTP which reflects the shifting effect and relates to entropy.
Cascading Dynamics of Heterogenous Scale-Free Networks with Recovery Mechanism
Directory of Open Access Journals (Sweden)
Shudong Li
2013-01-01
Full Text Available In network security, how to use efficient response methods against cascading failures of complex networks is very important. In this paper, concerned with the highest-load attack (HL and random attack (RA on one edge, we define five kinds of weighting strategies to assign the external resources for recovering the edges from cascading failures in heterogeneous scale-free (SF networks. The influence of external resources, the tolerance parameter, and the different weighting strategies on SF networks against cascading failures is investigated carefully. We find that, under HL attack, the fourth kind of weighting method can more effectively improve the integral robustness of SF networks, simultaneously control the spreading velocity, and control the outburst of cascading failures in SF networks than other methods. Moreover, the third method is optimal if we only knew the local structure of SF networks and the uniform assignment is the worst. The simulations of the real-world autonomous system in, Internet have also supported our findings. The results are useful for using efficient response strategy against the emergent accidents and controlling the cascading failures in the real-world networks.
Dynamics of epidemic spreading model with drug-resistant variation on scale-free networks
Wan, Chen; Li, Tao; Zhang, Wu; Dong, Jing
2018-03-01
Considering the influence of the virus' drug-resistant variation, a novel SIVRS (susceptible-infected-variant-recovered-susceptible) epidemic spreading model with variation characteristic on scale-free networks is proposed in this paper. By using the mean-field theory, the spreading dynamics of the model is analyzed in detail. Then, the basic reproductive number R0 and equilibriums are derived. Studies show that the existence of disease-free equilibrium is determined by the basic reproductive number R0. The relationships between the basic reproductive number R0, the variation characteristic and the topology of the underlying networks are studied in detail. Furthermore, our studies prove the global stability of the disease-free equilibrium, the permanence of epidemic and the global attractivity of endemic equilibrium. Numerical simulations are performed to confirm the analytical results.
Effects of adaptive degrees of trust on coevolution of quantum strategies on scale-free networks
Li, Qiang; Chen, Minyou; Perc, Matjaž; Iqbal, Azhar; Abbott, Derek
2013-10-01
We study the impact of adaptive degrees of trust on the evolution of cooperation in the quantum prisoner's dilemma game. In addition to the strategies, links between players are also subject to evolution. Starting with a scale-free interaction network, players adjust trust towards their neighbors based on received payoffs. The latter governs the strategy adoption process, while trust governs the rewiring of links. As soon as the degree of trust towards a neighbor drops to zero, the link is rewired to another randomly chosen player within the network. We find that for small temptations to defect cooperators always dominate, while for intermediate and strong temptations a single quantum strategy is able to outperform all other strategies. In general, reciprocal trust remains within close relationships and favors the dominance of a single strategy. Due to coevolution, the power-law degree distributions transform to Poisson distributions.
The Medieval inquisition: scale-free networks and the suppression of heresy
Ormerod, Paul; Roach, Andrew P.
2004-08-01
Qualitative evidence suggests that heresy within the medieval Church had many of the characteristics of a scale-free network. From the perspective of the Church, heresy can be seen as an infectious disease. The disease persisted for long periods of time, breaking out again even when the Church believed it to have been eradicated. A principal mechanism of heresy was through a small number of individuals with very large numbers of social contacts. Initial attempts by the inquisition to suppress heresy by general persecution, or even mass slaughter, of populations thought to harbour the ‘disease’ failed. Gradually, however, inquisitors learned about the nature of the social networks by which heresy both spread and persisted. Eventually, a policy of targeting key individuals was implemented, which proved to be much more successful.
A local adaptive algorithm for emerging scale-free hierarchical networks
International Nuclear Information System (INIS)
Gomez Portillo, I J; Gleiser, P M
2010-01-01
In this work we study a growing network model with chaotic dynamical units that evolves using a local adaptive rewiring algorithm. Using numerical simulations we show that the model allows for the emergence of hierarchical networks. First, we show that the networks that emerge with the algorithm present a wide degree distribution that can be fitted by a power law function, and thus are scale-free networks. Using the LaNet-vi visualization tool we present a graphical representation that reveals a central core formed only by hubs, and also show the presence of a preferential attachment mechanism. In order to present a quantitative analysis of the hierarchical structure we analyze the clustering coefficient. In particular, we show that as the network grows the clustering becomes independent of system size, and also presents a power law decay as a function of the degree. Finally, we compare our results with a similar version of the model that has continuous non-linear phase oscillators as dynamical units. The results show that local interactions play a fundamental role in the emergence of hierarchical networks.
International Nuclear Information System (INIS)
Wu, An-Cai
2014-01-01
Recent empirical analyses of some realistic dynamical networks have demonstrated that their degree distributions are stable scale-free (SF), but the instantaneous well-connected hubs at one point of time can quickly become weakly connected. Motivated by these empirical results, we propose a simple toy dynamical agent-to-agent contact network model, in which each agent stays at one node of a static underlay network and the nearest neighbors swap their positions with each other. Although the degree distribution of the dynamical network model at any one time is equal to that in the static underlay network, the numbers and identities of each agent’s contacts will change over time. It is found that the dynamic interaction tends to suppress epidemic spreading in terms of larger epidemic threshold, smaller prevalence (the fraction of infected individuals) and smaller velocity of epidemic outbreak. Furthermore, the dynamic interaction results in the prevalence to undergo a phase transition at a finite threshold of the epidemic spread rate in the thermodynamic limit, which is in contradiction to the absence of an epidemic threshold in static SF networks. Some of these findings obtained from heterogeneous mean-field theory are in good agreement with numerical simulations. (paper)
Quantum phase transition of the transverse-field quantum Ising model on scale-free networks.
Yi, Hangmo
2015-01-01
I investigate the quantum phase transition of the transverse-field quantum Ising model in which nearest neighbors are defined according to the connectivity of scale-free networks. Using a continuous-time quantum Monte Carlo simulation method and the finite-size scaling analysis, I identify the quantum critical point and study its scaling characteristics. For the degree exponent λ=6, I obtain results that are consistent with the mean-field theory. For λ=4.5 and 4, however, the results suggest that the quantum critical point belongs to a non-mean-field universality class. Further simulations indicate that the quantum critical point remains mean-field-like if λ>5, but it continuously deviates from the mean-field theory as λ becomes smaller.
A dynamic routing strategy with limited buffer on scale-free network
Wang, Yufei; Liu, Feng
2016-04-01
In this paper, we propose an integrated routing strategy based on global static topology information and local dynamic data packet queue lengths to improve the transmission efficiency of scale-free networks. The proposed routing strategy is a combination of a global static routing strategy (based on the shortest path algorithm) and local dynamic queue length management, in which, instead of using an infinite buffer, the queue length of each node i in the proposed routing strategy is limited by a critical queue length Qic. When the network traffic is lower and the queue length of each node i is shorter than its critical queue length Qic, it forwards packets according to the global routing table. With increasing network traffic, when the buffers of the nodes with higher degree are full, they do not receive packets due to their limited buffers and the packets have to be delivered to the nodes with lower degree. The global static routing strategy can shorten the transmission time that it takes a packet to reach its destination, and the local limited queue length can balance the network traffic. The optimal critical queue lengths of nodes have been analysed. Simulation results show that the proposed routing strategy can get better performance than that of the global static strategy based on topology, and almost the same performance as that of the global dynamic routing strategy with less complexity.
Dynamics of an epidemic model with quarantine on scale-free networks
Kang, Huiyan; Liu, Kaihui; Fu, Xinchu
2017-12-01
Quarantine strategies are frequently used to control or reduce the transmission risks of epidemic diseases such as SARS, tuberculosis and cholera. In this paper, we formulate a susceptible-exposed-infected-quarantined-recovered model on a scale-free network incorporating the births and deaths of individuals. Considering that the infectivity is related to the degrees of infectious nodes, we introduce quarantined rate as a function of degree into the model, and quantify the basic reproduction number, which is shown to be dependent on some parameters, such as quarantined rate, infectivity and network structures. A theoretical result further indicates the heterogeneity of networks and higher infectivity will raise the disease transmission risk while quarantine measure will contribute to the prevention of epidemic spreading. Meanwhile, the contact assumption between susceptibles and infectives may impact the disease transmission. Furthermore, we prove that the basic reproduction number serves as a threshold value for the global stability of the disease-free and endemic equilibria and the uniform persistence of the disease on the network by constructing appropriate Lyapunov functions. Finally, some numerical simulations are illustrated to perform and complement our analytical results.
Efficient routing on scale-free networks based on local information
International Nuclear Information System (INIS)
Yin Chuanyang; Wang Binghong; Wang Wenxu; Zhou Tao; Yang Huijie
2006-01-01
In this Letter, we propose a new routing strategy with a single tunable parameter α only based on local information of network topology. The probability that a given node i with degree k i receives packets from its neighbors is proportional to k i α . In order to maximize the packets handling capacity of underlying structure that can be measured by the critical point of continuous phase transition from free flow to congestion, the optimal value of α is sought out. Through investigating the distributions of queue length on each node in free state, we give an explanation why the delivering capacity of the network can be enhanced by choosing the optimal α. Furthermore, dynamic properties right after the critical point are also studied. Interestingly, it is found that although the system enters the congestion state, it still possesses partial delivering capability which does not depend on α. This phenomenon suggests that the capacity of the scale-free network can be enhanced by increasing the forwarding ability of small important nodes which bear severe congestion
Jiang, Zhong-Yuan; Ma, Jian-Feng
Existing routing strategies such as the global dynamic routing [X. Ling, M. B. Hu, R. Jiang and Q. S. Wu, Phys. Rev. E 81, 016113 (2010)] can achieve very high traffic capacity at the cost of extremely long packet traveling delay. In many real complex networks, especially for real-time applications such as the instant communication software, extremely long packet traveling time is unacceptable. In this work, we propose to assign a finite Time-to-Live (TTL) parameter for each packet. To guarantee every packet to arrive at its destination within its TTL, we assume that a packet is retransmitted by its source once its TTL expires. We employ source routing mechanisms in the traffic model to avoid the routing-flaps induced by the global dynamic routing. We compose extensive simulations to verify our proposed mechanisms. With small TTL, the effects of packet retransmission on network traffic capacity are obvious, and the phase transition from flow free state to congested state occurs. For the purpose of reducing the computation frequency of the routing table, we employ a computing cycle Tc within which the routing table is recomputed once. The simulation results show that the traffic capacity decreases with increasing Tc. Our work provides a good insight into the understanding of effects of packet retransmission with finite packet lifetime on traffic capacity in scale-free networks.
International Nuclear Information System (INIS)
Lin Min; Wang Gang; Chen Tianlun
2007-01-01
A modified evolution model of self-organized criticality on generalized Barabasi-Albert (GBA) scale-free networks is investigated. In our model, we find that spatial and temporal correlations exhibit critical behaviors. More importantly, these critical behaviors change with the parameter b, which weights the distance in comparison with the degree in the GBA network evolution.
Spin glass behavior of the antiferromagnetic Heisenberg model on scale free network
International Nuclear Information System (INIS)
Surungan, Tasrief; Zen, Freddy P; Williams, Anthony G
2015-01-01
Randomness and frustration are considered to be the key ingredients for the existence of spin glass (SG) phase. In a canonical system, these ingredients are realized by the random mixture of ferromagnetic (FM) and antiferromagnetic (AF) couplings. The study by Bartolozzi et al. [Phys. Rev. B73, 224419 (2006)] who observed the presence of SG phase on the AF Ising model on scale free network (SFN) is stimulating. It is a new type of SG system where randomness and frustration are not caused by the presence of FM and AF couplings. To further elaborate this type of system, here we study Heisenberg model on AF SFN and search for the SG phase. The canonical SG Heisenberg model is not observed in d-dimensional regular lattices for (d ≤ 3). We can make an analogy for the connectivity density (m) of SFN with the dimensionality of the regular lattice. It should be plausible to find the critical value of m for the existence of SG behaviour, analogous to the lower critical dimension (d l ) for the canonical SG systems. Here we study system with m = 2, 3, 4 and 5. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter. We observed SG phase for each value of m and estimated its corersponding critical temperature. (paper)
Fast sparsely synchronized brain rhythms in a scale-free neural network.
Kim, Sang-Yoon; Lim, Woochang
2015-08-01
We consider a directed version of the Barabási-Albert scale-free network model with symmetric preferential attachment with the same in- and out-degrees and study the emergence of sparsely synchronized rhythms for a fixed attachment degree in an inhibitory population of fast-spiking Izhikevich interneurons. Fast sparsely synchronized rhythms with stochastic and intermittent neuronal discharges are found to appear for large values of J (synaptic inhibition strength) and D (noise intensity). For an intensive study we fix J at a sufficiently large value and investigate the population states by increasing D. For small D, full synchronization with the same population-rhythm frequency fp and mean firing rate (MFR) fi of individual neurons occurs, while for large D partial synchronization with fp>〈fi〉 (〈fi〉: ensemble-averaged MFR) appears due to intermittent discharge of individual neurons; in particular, the case of fp>4〈fi〉 is referred to as sparse synchronization. For the case of partial and sparse synchronization, MFRs of individual neurons vary depending on their degrees. As D passes a critical value D* (which is determined by employing an order parameter), a transition to unsynchronization occurs due to the destructive role of noise to spoil the pacing between sparse spikes. For D
Fast sparsely synchronized brain rhythms in a scale-free neural network
Kim, Sang-Yoon; Lim, Woochang
2015-08-01
We consider a directed version of the Barabási-Albert scale-free network model with symmetric preferential attachment with the same in- and out-degrees and study the emergence of sparsely synchronized rhythms for a fixed attachment degree in an inhibitory population of fast-spiking Izhikevich interneurons. Fast sparsely synchronized rhythms with stochastic and intermittent neuronal discharges are found to appear for large values of J (synaptic inhibition strength) and D (noise intensity). For an intensive study we fix J at a sufficiently large value and investigate the population states by increasing D . For small D , full synchronization with the same population-rhythm frequency fp and mean firing rate (MFR) fi of individual neurons occurs, while for large D partial synchronization with fp> ( : ensemble-averaged MFR) appears due to intermittent discharge of individual neurons; in particular, the case of fp>4 is referred to as sparse synchronization. For the case of partial and sparse synchronization, MFRs of individual neurons vary depending on their degrees. As D passes a critical value D* (which is determined by employing an order parameter), a transition to unsynchronization occurs due to the destructive role of noise to spoil the pacing between sparse spikes. For D
International Nuclear Information System (INIS)
Aldana, Maximino; Larralde, Hernan
2004-01-01
We investigate the nature of the phase transition from an ordered to a disordered state that occurs in a family of neural network models with noise. These models are closely related to the majority voter model, where a ferromagneticlike interaction between the elements prevails. Each member of the family is distinguished by the network topology, which is determined by the probability distribution of the number of incoming links. We show that for homogeneous random topologies, the phase transition belongs to the standard mean-field universality class, characterized by the order parameter exponent β=1/2. However, for scale-free networks we obtain phase transition exponents ranging from 1/2 to infinity. Furthermore, we show the existence of a phase transition even for values of the scale-free exponent in the interval (1.5,2], where the average network connectivity diverges
Scale-free behavior of networks with the copresence of preferential and uniform attachment rules
Pachon, Angelica; Sacerdote, Laura; Yang, Shuyi
2018-05-01
Complex networks in different areas exhibit degree distributions with a heavy upper tail. A preferential attachment mechanism in a growth process produces a graph with this feature. We herein investigate a variant of the simple preferential attachment model, whose modifications are interesting for two main reasons: to analyze more realistic models and to study the robustness of the scale-free behavior of the degree distribution. We introduce and study a model which takes into account two different attachment rules: a preferential attachment mechanism (with probability 1 - p) that stresses the rich get richer system, and a uniform choice (with probability p) for the most recent nodes, i.e. the nodes belonging to a window of size w to the left of the last born node. The latter highlights a trend to select one of the last added nodes when no information is available. The recent nodes can be either a given fixed number or a proportion (αn) of the total number of existing nodes. In the first case, we prove that this model exhibits an asymptotically power-law degree distribution. The same result is then illustrated through simulations in the second case. When the window of recent nodes has a constant size, we herein prove that the presence of the uniform rule delays the starting time from which the asymptotic regime starts to hold. The mean number of nodes of degree k and the asymptotic degree distribution are also determined analytically. Finally, a sensitivity analysis on the parameters of the model is performed.
Critical behavior and correlations on scale-free small-world networks: Application to network design
Ostilli, M.; Ferreira, A. L.; Mendes, J. F. F.
2011-06-01
We analyze critical phenomena on networks generated as the union of hidden variable models (networks with any desired degree sequence) with arbitrary graphs. The resulting networks are general small worlds similar to those à la Watts and Strogatz, but with a heterogeneous degree distribution. We prove that the critical behavior (thermal or percolative) remains completely unchanged by the presence of finite loops (or finite clustering). Then, we show that, in large but finite networks, correlations of two given spins may be strong, i.e., approximately power-law-like, at any temperature. Quite interestingly, if γ is the exponent for the power-law distribution of the vertex degree, for γ⩽3 and with or without short-range couplings, such strong correlations persist even in the thermodynamic limit, contradicting the common opinion that, in mean-field models, correlations always disappear in this limit. Finally, we provide the optimal choice of rewiring under which percolation phenomena in the rewired network are best performed, a natural criterion to reach best communication features, at least in noncongested regimes.
International Nuclear Information System (INIS)
Xie Wei-Hao; Zhou Bin; Liu En-Xiao; Lu Wei-Dang; Zhou Ting
2015-01-01
Many real communication networks, such as oceanic monitoring network and land environment observation network, can be described as space stereo multi-layer structure, and the traffic in these networks is concurrent. Understanding how traffic dynamics depend on these real communication networks and finding an effective routing strategy that can fit the circumstance of traffic concurrency and enhance the network performance are necessary. In this light, we propose a traffic model for space stereo multi-layer complex network and introduce two kinds of global forward-predicting dynamic routing strategies, global forward-predicting hybrid minimum queue (HMQ) routing strategy and global forward-predicting hybrid minimum degree and queue (HMDQ) routing strategy, for traffic concurrency space stereo multi-layer scale-free networks. By applying forward-predicting strategy, the proposed routing strategies achieve better performances in traffic concurrency space stereo multi-layer scale-free networks. Compared with the efficient routing strategy and global dynamic routing strategy, HMDQ and HMQ routing strategies can optimize the traffic distribution, alleviate the number of congested packets effectively and reach much higher network capacity. (paper)
Zhu, Zheng; Andresen, Juan Carlos; Moore, M. A.; Katzgraber, Helmut G.
2014-02-01
We study the equilibrium and nonequilibrium properties of Boolean decision problems with competing interactions on scale-free networks in an external bias (magnetic field). Previous studies at zero field have shown a remarkable equilibrium stability of Boolean variables (Ising spins) with competing interactions (spin glasses) on scale-free networks. When the exponent that describes the power-law decay of the connectivity of the network is strictly larger than 3, the system undergoes a spin-glass transition. However, when the exponent is equal to or less than 3, the glass phase is stable for all temperatures. First, we perform finite-temperature Monte Carlo simulations in a field to test the robustness of the spin-glass phase and show that the system has a spin-glass phase in a field, i.e., exhibits a de Almeida-Thouless line. Furthermore, we study avalanche distributions when the system is driven by a field at zero temperature to test if the system displays self-organized criticality. Numerical results suggest that avalanches (damage) can spread across the whole system with nonzero probability when the decay exponent of the interaction degree is less than or equal to 2, i.e., that Boolean decision problems on scale-free networks with competing interactions can be fragile when not in thermal equilibrium.
Epidemic outbreaks in growing scale-free networks with local structure
Ni, Shunjiang; Weng, Wenguo; Shen, Shifei; Fan, Weicheng
2008-09-01
The class of generative models has already attracted considerable interest from researchers in recent years and much expanded the original ideas described in BA model. Most of these models assume that only one node per time step joins the network. In this paper, we grow the network by adding n interconnected nodes as a local structure into the network at each time step with each new node emanating m new edges linking the node to the preexisting network by preferential attachment. This successfully generates key features observed in social networks. These include power-law degree distribution pk∼k, where μ=(n-1)/m is a tuning parameter defined as the modularity strength of the network, nontrivial clustering, assortative mixing, and modular structure. Moreover, all these features are dependent in a similar way on the parameter μ. We then study the susceptible-infected epidemics on this network with identical infectivity, and find that the initial epidemic behavior is governed by both of the infection scheme and the network structure, especially the modularity strength. The modularity of the network makes the spreading velocity much lower than that of the BA model. On the other hand, increasing the modularity strength will accelerate the propagation velocity.
Topology of the Italian airport network: A scale-free small-world network with a fractal structure?
International Nuclear Information System (INIS)
Guida, Michele; Maria, Funaro
2007-01-01
In this paper, for the first time we analyze the structure of the Italian Airport Network (IAN) looking at it as a mathematical graph and investigate its topological properties. We find that it has very remarkable features, being like a scale-free network, since both the degree and the 'betweenness centrality' distributions follow a typical power-law known in literature as a Double Pareto Law. From a careful analysis of the data, the Italian Airport Network turns out to have a self-similar structure. In short, it is characterized by a fractal nature, whose typical dimensions can be easily determined from the values of the power-law scaling exponents. Moreover, we show that, according to the period examined, these distributions exhibit a number of interesting features, such as the existence of some 'hubs', i.e. in the graph theory's jargon, nodes with a very large number of links, and others most probably associated with geographical constraints. Also, we find that the IAN can be classified as a small-world network because the average distance between reachable pairs of airports grows at most as the logarithm of the number of airports. The IAN does not show evidence of 'communities' and this result could be the underlying reason behind the smallness of the value of the clustering coefficient, which is related to the probability that two nearest neighbors of a randomly chosen airport are connected
Directory of Open Access Journals (Sweden)
Fengjie Xie
Full Text Available In this work, we study an evolutionary prisoner's dilemma game (PDG on Barabási-Albert scale-free networks with limited player interactions, and explore the effect of interaction style and degree on cooperation. The results show that high-degree preference interaction, namely the most applicable interaction in the real world, is less beneficial for emergence of cooperation on scale-free networks than random interaction. Besides, cooperation on scale-free networks is enhanced with the increase of interaction degree regardless whether the interaction is high-degree preference or random. If the interaction degree is very low, the cooperation level on scale-free networks is much lower than that on regular ring networks, which is against the common belief that scale-free networks must be more beneficial for cooperation. Our analysis indicates that the interaction relations, the strategy and the game payoff of high-connectivity players play important roles in the evolution of cooperation on scale-free networks. A certain number of interactions are necessary for scale-free networks to exhibit strong capability of facilitating cooperation. Our work provides important insight for members on how to interact with others in a social organization.
Directory of Open Access Journals (Sweden)
Ying-Shen Juang
2012-01-01
Full Text Available Coordinate rotation digital computer (CORDIC is an efficient algorithm for computations of trigonometric functions. Scaling-free-CORDIC is one of the famous CORDIC implementations with advantages of speed and area. In this paper, a novel direct digital frequency synthesizer (DDFS based on scaling-free CORDIC is presented. The proposed multiplier-less architecture with small ROM and pipeline data path has advantages of high data rate, high precision, high performance, and less hardware cost. The design procedure with performance and hardware analysis for optimization has also been given. It is verified by Matlab simulations and then implemented with field programmable gate array (FPGA by Verilog. The spurious-free dynamic range (SFDR is over 86.85 dBc, and the signal-to-noise ratio (SNR is more than 81.12 dB. The scaling-free CORDIC-based architecture is suitable for VLSI implementations for the DDFS applications in terms of hardware cost, power consumption, SNR, and SFDR. The proposed DDFS is very suitable for medical instruments and body care area network systems.
Energy Technology Data Exchange (ETDEWEB)
Yilmaz, Ergin, E-mail: erginyilmaz@yahoo.com [Department of Biomedical Engineering, Engineering Faculty, Bülent Ecevit University, 67100 Zonguldak (Turkey); Ozer, Mahmut [Department of Electrical and Electronics Engineering, Engineering Faculty, Bülent Ecevit University, 67100 Zonguldak (Turkey)
2013-08-01
We consider a scale-free network of stochastic HH neurons driven by a subthreshold periodic stimulus and investigate how the collective spiking regularity or the collective temporal coherence changes with the stimulus frequency, the intrinsic noise (or the cell size), the network average degree and the coupling strength. We show that the best temporal coherence is obtained for a certain level of the intrinsic noise when the frequencies of the external stimulus and the subthreshold oscillations of the network elements match. We also find that the collective regularity exhibits a resonance-like behavior depending on both the coupling strength and the network average degree at the optimal values of the stimulus frequency and the cell size, indicating that the best temporal coherence also requires an optimal coupling strength and an optimal average degree of the connectivity.
Mapping Koch curves into scale-free small-world networks
International Nuclear Information System (INIS)
Zhang Zhongzhi; Gao Shuyang; Zhou Shuigeng; Chen Lichao; Zhang Hongjuan; Guan Jihong
2010-01-01
The class of Koch fractals is one of the most interesting families of fractals, and the study of complex networks is a central issue in the scientific community. In this paper, inspired by the famous Koch fractals, we propose a mapping technique converting Koch fractals into a family of deterministic networks called Koch networks. This novel class of networks incorporates some key properties characterizing a majority of real-life networked systems-a power-law distribution with exponent in the range between 2 and 3, a high clustering coefficient, a small diameter and average path length and degree correlations. Besides, we enumerate the exact numbers of spanning trees, spanning forests and connected spanning subgraphs in the networks. All these features are obtained exactly according to the proposed generation algorithm of the networks considered. The network representation approach could be used to investigate the complexity of some real-world systems from the perspective of complex networks.
Ma, Fei; Su, Jing; Yao, Bing
2018-05-01
The problem of determining and calculating the number of spanning trees of any finite graph (model) is a great challenge, and has been studied in various fields, such as discrete applied mathematics, theoretical computer science, physics, chemistry and the like. In this paper, firstly, thank to lots of real-life systems and artificial networks built by all kinds of functions and combinations among some simpler and smaller elements (components), we discuss some helpful network-operation, including link-operation and merge-operation, to design more realistic and complicated network models. Secondly, we present a method for computing the total number of spanning trees. As an accessible example, we apply this method to space of trees and cycles respectively, and our results suggest that it is indeed a better one for such models. In order to reflect more widely practical applications and potentially theoretical significance, we study the enumerating method in some existing scale-free network models. On the other hand, we set up a class of new models displaying scale-free feature, that is to say, following P(k) k-γ, where γ is the degree exponent. Based on detailed calculation, the degree exponent γ of our deterministic scale-free models satisfies γ > 3. In the rest of our discussions, we not only calculate analytically the solutions of average path length, which indicates our models have small-world property being prevailing in amounts of complex systems, but also derive the number of spanning trees by means of the recursive method described in this paper, which clarifies our method is convenient to research these models.
Coupling effects on turning points of infectious diseases epidemics in scale-free networks
Kim, Kiseong; Lee, Sangyeon; Lee, Doheon; Lee, Kwang Hyung
2017-01-01
Background Pandemic is a typical spreading phenomenon that can be observed in the human society and is dependent on the structure of the social network. The Susceptible-Infective-Recovered (SIR) model describes spreading phenomena using two spreading factors; contagiousness (?) and recovery rate (?). Some network models are trying to reflect the social network, but the real structure is difficult to uncover. Methods We have developed a spreading phenomenon simulator that can input the epidemi...
Emergence of scale-free close-knit friendship structure in online social networks.
Directory of Open Access Journals (Sweden)
Ai-Xiang Cui
Full Text Available Although the structural properties of online social networks have attracted much attention, the properties of the close-knit friendship structures remain an important question. Here, we mainly focus on how these mesoscale structures are affected by the local and global structural properties. Analyzing the data of four large-scale online social networks reveals several common structural properties. It is found that not only the local structures given by the indegree, outdegree, and reciprocal degree distributions follow a similar scaling behavior, the mesoscale structures represented by the distributions of close-knit friendship structures also exhibit a similar scaling law. The degree correlation is very weak over a wide range of the degrees. We propose a simple directed network model that captures the observed properties. The model incorporates two mechanisms: reciprocation and preferential attachment. Through rate equation analysis of our model, the local-scale and mesoscale structural properties are derived. In the local-scale, the same scaling behavior of indegree and outdegree distributions stems from indegree and outdegree of nodes both growing as the same function of the introduction time, and the reciprocal degree distribution also shows the same power-law due to the linear relationship between the reciprocal degree and in/outdegree of nodes. In the mesoscale, the distributions of four closed triples representing close-knit friendship structures are found to exhibit identical power-laws, a behavior attributed to the negligible degree correlations. Intriguingly, all the power-law exponents of the distributions in the local-scale and mesoscale depend only on one global parameter, the mean in/outdegree, while both the mean in/outdegree and the reciprocity together determine the ratio of the reciprocal degree of a node to its in/outdegree. Structural properties of numerical simulated networks are analyzed and compared with each of the four
Emergence of scale-free close-knit friendship structure in online social networks.
Cui, Ai-Xiang; Zhang, Zi-Ke; Tang, Ming; Hui, Pak Ming; Fu, Yan
2012-01-01
Although the structural properties of online social networks have attracted much attention, the properties of the close-knit friendship structures remain an important question. Here, we mainly focus on how these mesoscale structures are affected by the local and global structural properties. Analyzing the data of four large-scale online social networks reveals several common structural properties. It is found that not only the local structures given by the indegree, outdegree, and reciprocal degree distributions follow a similar scaling behavior, the mesoscale structures represented by the distributions of close-knit friendship structures also exhibit a similar scaling law. The degree correlation is very weak over a wide range of the degrees. We propose a simple directed network model that captures the observed properties. The model incorporates two mechanisms: reciprocation and preferential attachment. Through rate equation analysis of our model, the local-scale and mesoscale structural properties are derived. In the local-scale, the same scaling behavior of indegree and outdegree distributions stems from indegree and outdegree of nodes both growing as the same function of the introduction time, and the reciprocal degree distribution also shows the same power-law due to the linear relationship between the reciprocal degree and in/outdegree of nodes. In the mesoscale, the distributions of four closed triples representing close-knit friendship structures are found to exhibit identical power-laws, a behavior attributed to the negligible degree correlations. Intriguingly, all the power-law exponents of the distributions in the local-scale and mesoscale depend only on one global parameter, the mean in/outdegree, while both the mean in/outdegree and the reciprocity together determine the ratio of the reciprocal degree of a node to its in/outdegree. Structural properties of numerical simulated networks are analyzed and compared with each of the four real networks. This
The role of detachment of in-links in scale-free networks
International Nuclear Information System (INIS)
Lansky, P; Polito, F; Sacerdote, L
2014-01-01
Real-world networks may exhibit a detachment phenomenon determined by the canceling of previously existing connections. We discuss a tractable extension of the Yule model to account for this feature. Analytical results are derived and discussed both asymptotically and for a finite number of links. Comparison with the original model is performed in the supercritical case. The first-order asymptotic tail behavior of the two models is similar but differences arise in the second-order term. We explicitly refer to world wide web modeling and we show the agreement of the proposed model on very recent data. However, other possible network applications are also mentioned. (paper)
Stability of an SAIRS alcoholism model on scale-free networks
Xiang, Hong; Liu, Ying-Ping; Huo, Hai-Feng
2017-05-01
A new SAIRS alcoholism model with birth and death on complex heterogeneous networks is proposed. The total population of our model is partitioned into four compartments: the susceptible individual, the light problem alcoholic, the heavy problem alcoholic and the recovered individual. The spread of alcoholism threshold R0 is calculated by the next generation matrix method. When R0 alcohol free equilibrium is globally asymptotically stable, then the alcoholics will disappear. When R0 > 1, the alcoholism equilibrium is global attractivity, then the number of alcoholics will remain stable and alcoholism will become endemic. Furthermore, the modified SAIRS alcoholism model on weighted contact network is introduced. Dynamical behavior of the modified model is also studied. Numerical simulations are also presented to verify and extend theoretical results. Our results show that it is very important to treat alcoholics to control the spread of the alcoholism.
Esquivel-Gómez, Jose de Jesus; Barajas-Ramírez, Juan Gonzalo
2018-01-01
One of the most effective mechanisms to contain the spread of an infectious disease through a population is the implementation of quarantine policies. However, its efficiency is affected by different aspects, for example, the structure of the underlining social network where highly connected individuals are more likely to become infected; therefore, the speed of the transmission of the decease is directly determined by the degree distribution of the network. Another aspect that influences the effectiveness of the quarantine is the self-protection processes of the individuals in the population, that is, they try to avoid contact with potentially infected individuals. In this paper, we investigate the efficiency of quarantine and self-protection processes in preventing the spreading of infectious diseases over complex networks with a power-law degree distribution [ P ( k ) ˜ k - ν ] for different ν values. We propose two alternative scale-free models that result in power-law degree distributions above and below the exponent ν = 3 associated with the conventional Barabási-Albert model. Our results show that the exponent ν determines the effectiveness of these policies in controlling the spreading process. More precisely, we show that for the ν exponent below three, the quarantine mechanism loses effectiveness. However, the efficiency is improved if the quarantine is jointly implemented with a self-protection process driving the number of infected individuals significantly lower.
On routing strategy with finite-capacity effect on scale-free networks
International Nuclear Information System (INIS)
Tang, S.; Jiang, X.; Ma, L.; Zhang, Z.; Zheng, Z.
2010-01-01
We propose a class of systems with finite-capacity effect to investigate routing-strategy optimization. The local topology and the variable capacity, two crucial elements for routing, are naturally coupled by considering the interactions among packets. We show how the combination of these two elements controls the normal and efficient functioning of routing in the frame of condensation and coverage, respectively. Specifically, it is shown that the dynamic behaviors of diffusing packets exhibit condensation, for which exact results of the stationary state and phase transition are given. Further, we explore the diffusion coverage of routed packets through simulation. Various alternatives for the strategy parameters are illustrated to apply standard techniques to alleviate condensation and accelerate coverage. Our results provide a practical way for the design of optimal routing strategies in complex networks by the manipulation of a few parameters. (author)
Epidemic metapopulation model with traffic routing in scale-free networks
International Nuclear Information System (INIS)
Huang, Wei; Chen, Shengyong
2011-01-01
In this paper, we propose a model incorporating both the traffic routing dynamics and the virus prevalence dynamics. In this model, each packet may be isolated from the network on its transporting path, which means that the packet cannot be successfully delivered to its destination. In contrast, a successful transport means that a packet can be delivered from source to destination without being isolated. The effects of model parameters on the delivery success rate and the delivery failure rate are intensively studied and analyzed. Several routing strategies are performed for our model. Results show that the shortest path routing strategy is the most effective for enhancing the delivery success rate, especially when each packet is only allowed to be delivered to the neighbor with the lowest degree along the shortest path. We also find that, by minimizing the sum of the nodes' degree along the transporting path, we can also obtain a satisfactory delivery success rate
Energy Technology Data Exchange (ETDEWEB)
Perumalla, Kalyan S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Alam, Maksudul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2017-10-01
A novel parallel algorithm is presented for generating random scale-free networks using the preferential-attachment model. The algorithm, named cuPPA, is custom-designed for single instruction multiple data (SIMD) style of parallel processing supported by modern processors such as graphical processing units (GPUs). To the best of our knowledge, our algorithm is the first to exploit GPUs, and also the fastest implementation available today, to generate scale free networks using the preferential attachment model. A detailed performance study is presented to understand the scalability and runtime characteristics of the cuPPA algorithm. In one of the best cases, when executed on an NVidia GeForce 1080 GPU, cuPPA generates a scale free network of a billion edges in less than 2 seconds.
Directory of Open Access Journals (Sweden)
Bordeaux John M
2011-05-01
Full Text Available Abstract Background Global transcriptional analysis of loblolly pine (Pinus taeda L. is challenging due to limited molecular tools. PtGen2, a 26,496 feature cDNA microarray, was fabricated and used to assess drought-induced gene expression in loblolly pine propagule roots. Statistical analysis of differential expression and weighted gene correlation network analysis were used to identify drought-responsive genes and further characterize the molecular basis of drought tolerance in loblolly pine. Results Microarrays were used to interrogate root cDNA populations obtained from 12 genotype × treatment combinations (four genotypes, three watering regimes. Comparison of drought-stressed roots with roots from the control treatment identified 2445 genes displaying at least a 1.5-fold expression difference (false discovery rate = 0.01. Genes commonly associated with drought response in pine and other plant species, as well as a number of abiotic and biotic stress-related genes, were up-regulated in drought-stressed roots. Only 76 genes were identified as differentially expressed in drought-recovered roots, indicating that the transcript population can return to the pre-drought state within 48 hours. Gene correlation analysis predicts a scale-free network topology and identifies eleven co-expression modules that ranged in size from 34 to 938 members. Network topological parameters identified a number of central nodes (hubs including those with significant homology (E-values ≤ 2 × 10-30 to 9-cis-epoxycarotenoid dioxygenase, zeatin O-glucosyltransferase, and ABA-responsive protein. Identified hubs also include genes that have been associated previously with osmotic stress, phytohormones, enzymes that detoxify reactive oxygen species, and several genes of unknown function. Conclusion PtGen2 was used to evaluate transcriptome responses in loblolly pine and was leveraged to identify 2445 differentially expressed genes responding to severe drought stress in
2011-01-01
Background Global transcriptional analysis of loblolly pine (Pinus taeda L.) is challenging due to limited molecular tools. PtGen2, a 26,496 feature cDNA microarray, was fabricated and used to assess drought-induced gene expression in loblolly pine propagule roots. Statistical analysis of differential expression and weighted gene correlation network analysis were used to identify drought-responsive genes and further characterize the molecular basis of drought tolerance in loblolly pine. Results Microarrays were used to interrogate root cDNA populations obtained from 12 genotype × treatment combinations (four genotypes, three watering regimes). Comparison of drought-stressed roots with roots from the control treatment identified 2445 genes displaying at least a 1.5-fold expression difference (false discovery rate = 0.01). Genes commonly associated with drought response in pine and other plant species, as well as a number of abiotic and biotic stress-related genes, were up-regulated in drought-stressed roots. Only 76 genes were identified as differentially expressed in drought-recovered roots, indicating that the transcript population can return to the pre-drought state within 48 hours. Gene correlation analysis predicts a scale-free network topology and identifies eleven co-expression modules that ranged in size from 34 to 938 members. Network topological parameters identified a number of central nodes (hubs) including those with significant homology (E-values ≤ 2 × 10-30) to 9-cis-epoxycarotenoid dioxygenase, zeatin O-glucosyltransferase, and ABA-responsive protein. Identified hubs also include genes that have been associated previously with osmotic stress, phytohormones, enzymes that detoxify reactive oxygen species, and several genes of unknown function. Conclusion PtGen2 was used to evaluate transcriptome responses in loblolly pine and was leveraged to identify 2445 differentially expressed genes responding to severe drought stress in roots. Many of the
Ma, Fei; Yao, Bing
2017-10-01
It is always an open, demanding and difficult task for generating available model to simulate dynamical functions and reveal inner principles from complex systems and networks. In this article, due to lots of real-life and artificial networks are built from series of simple and small groups (components), we discuss some interesting and helpful network-operation to generate more realistic network models. In view of community structure (modular topology), we present a class of sparse network models N(t , m) . At the moment, we capture the fact the N(t , 4) has not only scale-free feature, which means that the probability that a randomly selected vertex with degree k decays as a power-law, following P(k) ∼k-γ, where γ is the degree exponent, but also small-world property, which indicates that the typical distance between two uniform randomly chosen vertices grows proportionally to logarithm of the order of N(t , 4) , namely, relatively shorter diameter and lower average path length, simultaneously displays higher clustering coefficient. Next, as a new topological parameter correlating to reliability, synchronization capability and diffusion properties of networks, the number of spanning trees over a network is studied in more detail, an exact analytical solution for the number of spanning trees of the N(t , 4) is obtained. Based on the network-operation, part hub-vertex linking with each other will be helpful for structuring various network models and investigating the rules related with real-life networks.
Liu, Penghui; Liu, Jing
2017-06-28
Understanding the emergence of cooperation has long been a challenge across disciplines. Even if network reciprocity reflected the importance of population structure in promoting cooperation, it remains an open question how population structures can be optimized, thereby enhancing cooperation. In this paper, we attempt to apply the evolutionary algorithm (EA) to solve this highly complex problem. However, as it is hard to evaluate the fitness (cooperation level) of population structures, simply employing the canonical evolutionary algorithm (EA) may fail in optimization. Thus, we propose a new EA variant named mlEA-C PD -SFN to promote the cooperation level of scale-free networks (SFNs) in the Prisoner's Dilemma Game (PDG). Meanwhile, to verify the preceding conclusions may not be applied to this problem, we also provide the optimization results of the comparative experiment (EA cluster ), which optimizes the clustering coefficient of structures. Even if preceding research concluded that highly clustered scale-free networks enhance cooperation, we find EA cluster does not perform desirably, while mlEA-C PD -SFN performs efficiently in different optimization environments. We hope that mlEA-C PD -SFN may help promote the structure of species in nature and that more general properties that enhance cooperation can be learned from the output structures.
Ma, Fei; Su, Jing; Hao, Yongxing; Yao, Bing; Yan, Guanghui
2018-02-01
The problem of uncovering the internal operating function of network models is intriguing, demanded and attractive in researches of complex networks. Notice that, in the past two decades, a great number of artificial models are built to try to answer the above mentioned task. Based on the different growth ways, these previous models can be divided into two categories, one type, possessing the preferential attachment, follows a power-law P(k) ∼k-γ, 2 motivated from a new attachment way, vertex-edge-growth network-operation, more precisely, the couple of both them. We report that this model is sparse, small world and hierarchical. And then, not only is scale-free feature in our model, but also lies the degree parameter γ(≈ 3 . 242) out the typical range. Note that, we suggest that the coexistence of multiple vertex growth ways will have a prominent effect on the power-law parameter γ, and the preferential attachment plays a dominate role on the development of networks over time. At the end of this paper, we obtain an exact analytical expression for the total number of spanning trees of models and also capture spanning trees entropy which we have compared with those of their corresponding component elements.
International Nuclear Information System (INIS)
Xie, Huijuan; Gong, Yubing
2017-01-01
In this paper, we numerically study the effect of spike-timing-dependent plasticity (STDP) on multiple coherence resonances (MCR) and synchronization transitions (ST) induced by time delay in adaptive scale-free Hodgkin–Huxley neuronal networks. It is found that STDP has a big influence on MCR and ST induced by time delay and on the effect of network average degree on the MCR and ST. MCR is enhanced or suppressed as the adjusting rate A p of STDP decreases or increases, and there is optimal A p by which ST becomes strongest. As network average degree 〈k〉 increases, ST is enhanced and there is optimal 〈k〉 at which MCR becomes strongest. Moreover, for a larger A p value, ST is enhanced more rapidly with increasing 〈k〉 and the optimal 〈k〉 for MCR increases. These results show that STDP can either enhance or suppress MCR, and there is optimal STDP that can most strongly enhance ST induced by time delay in the adaptive neuronal networks. These findings could find potential implication for the information processing and transmission in neural systems.
A scale-free structure prior for graphical models with applications in functional genomics.
Directory of Open Access Journals (Sweden)
Paul Sheridan
Full Text Available The problem of reconstructing large-scale, gene regulatory networks from gene expression data has garnered considerable attention in bioinformatics over the past decade with the graphical modeling paradigm having emerged as a popular framework for inference. Analysis in a full Bayesian setting is contingent upon the assignment of a so-called structure prior-a probability distribution on networks, encoding a priori biological knowledge either in the form of supplemental data or high-level topological features. A key topological consideration is that a wide range of cellular networks are approximately scale-free, meaning that the fraction, , of nodes in a network with degree is roughly described by a power-law with exponent between and . The standard practice, however, is to utilize a random structure prior, which favors networks with binomially distributed degree distributions. In this paper, we introduce a scale-free structure prior for graphical models based on the formula for the probability of a network under a simple scale-free network model. Unlike the random structure prior, its scale-free counterpart requires a node labeling as a parameter. In order to use this prior for large-scale network inference, we design a novel Metropolis-Hastings sampler for graphical models that includes a node labeling as a state space variable. In a simulation study, we demonstrate that the scale-free structure prior outperforms the random structure prior at recovering scale-free networks while at the same time retains the ability to recover random networks. We then estimate a gene association network from gene expression data taken from a breast cancer tumor study, showing that scale-free structure prior recovers hubs, including the previously unknown hub SLC39A6, which is a zinc transporter that has been implicated with the spread of breast cancer to the lymph nodes. Our analysis of the breast cancer expression data underscores the value of the scale-free
Label-based routing for a family of scale-free, modular, planar and unclustered graphs
International Nuclear Information System (INIS)
Comellas, Francesc; Miralles, Alicia
2011-01-01
We give an optimal labeling and routing algorithm for a family of scale-free, modular and planar graphs with zero clustering. The relevant properties of this family match those of some networks associated with technological and biological systems with a low clustering, including some electronic circuits and protein networks. The existence of an efficient routing protocol for this graph model should help when designing communication algorithms in real networks and also in the understanding of their dynamic processes.
Generating hierarchical scale free-graphs from fractals
Komjáthy, J.; Simon, K.
2011-01-01
Motivated by the hierarchial network model of E. Ravasz, A.-L. Barabási, and T. Vicsek, we introduce deterministic scale-free networks derived from a graph directed self-similar fractal ¿. With rigorous mathematical results we verify that our model captures some of the most important features of
Second Parrondo's Paradox in Scale Free Networks
Toyota, Norihito
2012-01-01
Parrondo's paradox occurs in sequences of games in which a winning expectation value of a payoff may be obtained by playing two games in a random order, even though each game in the sequence may be lost when played individually.Several variations of Parrondo's games apparently with the same paradoxical property have been introduced by G.P. Harmer and D. Abbott; history dependence, one dimensional line, two dimensional lattice and so on. I have shown that Parrondo's paradox does not occur in s...
Scale-free music of the brain.
Directory of Open Access Journals (Sweden)
Dan Wu
Full Text Available BACKGROUND: There is growing interest in the relation between the brain and music. The appealing similarity between brainwaves and the rhythms of music has motivated many scientists to seek a connection between them. A variety of transferring rules has been utilized to convert the brainwaves into music; and most of them are mainly based on spectra feature of EEG. METHODOLOGY/PRINCIPAL FINDINGS: In this study, audibly recognizable scale-free music was deduced from individual Electroencephalogram (EEG waveforms. The translation rules include the direct mapping from the period of an EEG waveform to the duration of a note, the logarithmic mapping of the change of average power of EEG to music intensity according to the Fechner's law, and a scale-free based mapping from the amplitude of EEG to music pitch according to the power law. To show the actual effect, we applied the deduced sonification rules to EEG segments recorded during rapid-eye movement sleep (REM and slow-wave sleep (SWS. The resulting music is vivid and different between the two mental states; the melody during REM sleep sounds fast and lively, whereas that in SWS sleep is slow and tranquil. 60 volunteers evaluated 25 music pieces, 10 from REM, 10 from SWS and 5 from white noise (WN, 74.3% experienced a happy emotion from REM and felt boring and drowsy when listening to SWS, and the average accuracy for all the music pieces identification is 86.8%(kappa = 0.800, P<0.001. We also applied the method to the EEG data from eyes closed, eyes open and epileptic EEG, and the results showed these mental states can be identified by listeners. CONCLUSIONS/SIGNIFICANCE: The sonification rules may identify the mental states of the brain, which provide a real-time strategy for monitoring brain activities and are potentially useful to neurofeedback therapy.
Generating hierarchial scale-free graphs from fractals
Energy Technology Data Exchange (ETDEWEB)
Komjathy, Julia, E-mail: komyju@math.bme.hu [Department of Stochastics, Institute of Mathematics, Technical University of Budapest, H-1529 P.O. Box 91 (Hungary); Simon, Karoly, E-mail: simonk@math.bme.hu [Department of Stochastics, Institute of Mathematics, Technical University of Budapest, H-1529 P.O. Box 91 (Hungary)
2011-08-15
Highlights: > We generate deterministic scale-free networks using graph-directed self similar IFS. > Our model exhibits similar clustering, power law decay properties to real networks. > The average length of shortest path and the diameter of the graph are determined. > Using this model, we generate random graphs with prescribed power law exponent. - Abstract: Motivated by the hierarchial network model of E. Ravasz, A.-L. Barabasi, and T. Vicsek, we introduce deterministic scale-free networks derived from a graph directed self-similar fractal {Lambda}. With rigorous mathematical results we verify that our model captures some of the most important features of many real networks: the scale-free and the high clustering properties. We also prove that the diameter is the logarithm of the size of the system. We point out a connection between the power law exponent of the degree distribution and some intrinsic geometric measure theoretical properties of the underlying fractal. Using our (deterministic) fractal {Lambda} we generate random graph sequence sharing similar properties.
Discrete scale-free distributions and associated limit theorems
International Nuclear Information System (INIS)
Hopcraft, K I; Jakeman, E; Matthews, J O
2004-01-01
Consideration is given to the convergence properties of sums of identical, independently distributed random variables drawn from a class of discrete distributions with power-law tails, which are relevant to scale-free networks. Different limiting distributions, and rates of convergence to these limits, are identified and depend on the index of the tail. For indices ≥2, the topology evolves to a random Poisson network, but the rate of convergence can be extraordinarily slow and unlikely to be yet evident for the current size of the WWW for example. It is shown that treating discrete scale-free behaviour with continuum or mean-field approximations can lead to incorrect results. (letter to the editor)
Entanglement percolation on a quantum internet with scale-free and clustering characters
International Nuclear Information System (INIS)
Wu Liang; Zhu Shiqun
2011-01-01
The applicability of entanglement percolation protocol to real Internet structure is investigated. If the current Internet can be used directly in the quantum regime, the protocol can provide a way to establish long-distance entanglement when the links are pure nonmaximally entangled states. This applicability is primarily due to the combination of scale-free degree distribution and a high level of clustering, both of which are widely observed in many natural and artificial networks including the current Internet. It suggests that the topology of real Internet may play an important role in entanglement establishment.
Entanglement percolation on a quantum internet with scale-free and clustering characters
Energy Technology Data Exchange (ETDEWEB)
Wu Liang; Zhu Shiqun [School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006 (China)
2011-11-15
The applicability of entanglement percolation protocol to real Internet structure is investigated. If the current Internet can be used directly in the quantum regime, the protocol can provide a way to establish long-distance entanglement when the links are pure nonmaximally entangled states. This applicability is primarily due to the combination of scale-free degree distribution and a high level of clustering, both of which are widely observed in many natural and artificial networks including the current Internet. It suggests that the topology of real Internet may play an important role in entanglement establishment.
Particle swarm optimization with scale-free interactions.
Directory of Open Access Journals (Sweden)
Chen Liu
Full Text Available The particle swarm optimization (PSO algorithm, in which individuals collaborate with their interacted neighbors like bird flocking to search for the optima, has been successfully applied in a wide range of fields pertaining to searching and convergence. Here we employ the scale-free network to represent the inter-individual interactions in the population, named SF-PSO. In contrast to the traditional PSO with fully-connected topology or regular topology, the scale-free topology used in SF-PSO incorporates the diversity of individuals in searching and information dissemination ability, leading to a quite different optimization process. Systematic results with respect to several standard test functions demonstrate that SF-PSO gives rise to a better balance between the convergence speed and the optimum quality, accounting for its much better performance than that of the traditional PSO algorithms. We further explore the dynamical searching process microscopically, finding that the cooperation of hub nodes and non-hub nodes play a crucial role in optimizing the convergence process. Our work may have implications in computational intelligence and complex networks.
A high-level and scalable approach for generating scale-free graphs using active objects
K. Azadbakht (Keyvan); N. Bezirgiannis (Nikolaos); F.S. de Boer (Frank); Aliakbary, S. (Sadegh)
2016-01-01
textabstractThe Barabasi-Albert model (BA) is designed to generate scale-free networks using the preferential attachment mechanism. In the preferential attachment (PA) model, new nodes are sequentially introduced to the network and they attach preferentially to existing nodes. PA is a classical
Neutral Theory and Scale-Free Neural Dynamics
Martinello, Matteo; Hidalgo, Jorge; Maritan, Amos; di Santo, Serena; Plenz, Dietmar; Muñoz, Miguel A.
2017-10-01
Neural tissues have been consistently observed to be spontaneously active and to generate highly variable (scale-free distributed) outbursts of activity in vivo and in vitro. Understanding whether these heterogeneous patterns of activity stem from the underlying neural dynamics operating at the edge of a phase transition is a fascinating possibility, as criticality has been argued to entail many possible important functional advantages in biological computing systems. Here, we employ a well-accepted model for neural dynamics to elucidate an alternative scenario in which diverse neuronal avalanches, obeying scaling, can coexist simultaneously, even if the network operates in a regime far from the edge of any phase transition. We show that perturbations to the system state unfold dynamically according to a "neutral drift" (i.e., guided only by stochasticity) with respect to the background of endogenous spontaneous activity, and that such a neutral dynamics—akin to neutral theories of population genetics and of biogeography—implies marginal propagation of perturbations and scale-free distributed causal avalanches. We argue that causal information, not easily accessible to experiments, is essential to elucidate the nature and statistics of neural avalanches, and that neutral dynamics is likely to play an important role in the cortex functioning. We discuss the implications of these findings to design new empirical approaches to shed further light on how the brain processes and stores information.
Betweenness-based algorithm for a partition scale-free graph
International Nuclear Information System (INIS)
Zhang Bai-Da; Wu Jun-Jie; Zhou Jing; Tang Yu-Hua
2011-01-01
Many real-world networks are found to be scale-free. However, graph partition technology, as a technology capable of parallel computing, performs poorly when scale-free graphs are provided. The reason for this is that traditional partitioning algorithms are designed for random networks and regular networks, rather than for scale-free networks. Multilevel graph-partitioning algorithms are currently considered to be the state of the art and are used extensively. In this paper, we analyse the reasons why traditional multilevel graph-partitioning algorithms perform poorly and present a new multilevel graph-partitioning paradigm, top down partitioning, which derives its name from the comparison with the traditional bottom—up partitioning. A new multilevel partitioning algorithm, named betweenness-based partitioning algorithm, is also presented as an implementation of top—down partitioning paradigm. An experimental evaluation of seven different real-world scale-free networks shows that the betweenness-based partitioning algorithm significantly outperforms the existing state-of-the-art approaches. (interdisciplinary physics and related areas of science and technology)
Degree and connectivity of the Internet's scale-free topology
International Nuclear Information System (INIS)
Zhang Lian-Ming; Wu Xiang-Sheng; Deng Xiao-Heng; Yu Jian-Ping
2011-01-01
This paper theoretically and empirically studies the degree and connectivity of the Internet's scale-free topology at an autonomous system (AS) level. The basic features of scale-free networks influence the normalization constant of degree distribution p(k). It develops a new mathematic model for describing the power-law relationships of Internet topology. From this model we theoretically obtain formulas to calculate the average degree, the ratios of the k min -degree (minimum degree) nodes and the k max -degree (maximum degree) nodes, and the fraction of the degrees (or links) in the hands of the richer (top best-connected) nodes. It finds that the average degree is larger for a smaller power-law exponent λ and a larger minimum or maximum degree. The ratio of the k min -degree nodes is larger for larger λ and smaller k min or k max . The ratio of the k max -degree ones is larger for smaller λ and k max or larger k min . The richer nodes hold most of the total degrees of Internet AS-level topology. In addition, it is revealed that the increased rate of the average degree or the ratio of the k min -degree nodes has power-law decay with the increase of k min . The ratio of the k max -degree nodes has a power-law decay with the increase of k max , and the fraction of the degrees in the hands of the richer 27% nodes is about 73% (the ‘73/27 rule’). Finally, empirically calculations are made, based on the empirical data extracted from the Border Gateway Protocol, of the average degree, ratio and fraction using this method and other methods, and find that this method is rigorous and effective for Internet AS-level topology. (interdisciplinary physics and related areas of science and technology)
The Vulnerability of Some Networks including Cycles via Domination Parameters
Directory of Open Access Journals (Sweden)
Tufan Turaci
2016-01-01
Full Text Available Let G=(V(G,E(G be an undirected simple connected graph. A network is usually represented by an undirected simple graph where vertices represent processors and edges represent links between processors. Finding the vulnerability values of communication networks modeled by graphs is important for network designers. The vulnerability value of a communication network shows the resistance of the network after the disruption of some centers or connection lines until a communication breakdown. The domination number and its variations are the most important vulnerability parameters for network vulnerability. Some variations of domination numbers are the 2-domination number, the bondage number, the reinforcement number, the average lower domination number, the average lower 2-domination number, and so forth. In this paper, we study the vulnerability of cycles and related graphs, namely, fans, k-pyramids, and n-gon books, via domination parameters. Then, exact solutions of the domination parameters are obtained for the above-mentioned graphs.
Improving Estimation of Betweenness Centrality for Scale-Free Graphs
Energy Technology Data Exchange (ETDEWEB)
Bromberger, Seth A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Klymko, Christine F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Henderson, Keith A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pearce, Roger [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sanders, Geoff [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-11-07
Betweenness centrality is a graph statistic used to nd vertices that are participants in a large number of shortest paths in a graph. This centrality measure is commonly used in path and network interdiction problems and its complete form requires the calculation of all-pairs shortest paths for each vertex. This leads to a time complexity of O(jV jjEj), which is impractical for large graphs. Estimation of betweenness centrality has focused on performing shortest-path calculations on a subset of randomly- selected vertices. This reduces the complexity of the centrality estimation to O(jSjjEj); jSj < jV j, which can be scaled appropriately based on the computing resources available. An estimation strategy that uses random selection of vertices for seed selection is fast and simple to implement, but may not provide optimal estimation of betweenness centrality when the number of samples is constrained. Our experimentation has identi ed a number of alternate seed-selection strategies that provide lower error than random selection in common scale-free graphs. These strategies are discussed and experimental results are presented.
Poor—rich demarcation of Matthew effect on scale-free systems and its application
International Nuclear Information System (INIS)
Dong, Yan; Sui-Ran, Yu; Ming, Dong; Bouras, Abdelaziz
2011-01-01
In a scale-free network, only a minority of nodes are connected very often, while the majority of nodes are connected rarely. However, what is the ratio of minority nodes to majority nodes resulting from the Matthew effect? In this paper, based on a simple preferential random model, the poor-rich demarcation points are found to vary in a limited range, and form a poor-rich demarcation interval that approximates to k/m in [3,4]. As a result, the (cumulative) degree distribution of a scale-free network can be divided into three intervals: the poor interval, the demarcation interval and the rich interval. The inequality of the degree distribution in each interval is measured. Finally, the Matthew effect is applied to the ABC analysis of project management. (general)
Li, Meng-Wen; Fan, Xin-Sheng; Zhang, Ling-Shan; Wang, Cong-Jun
2017-09-01
The applications of prescriptions including Ginseng Radix et Rhizoma and Trogopterus Dung in contemporary literatures from 1949 to 2016 are compiled and the data mining techniques containing scale-free complex network method are utilized to explore its practical characteristics, with comparison between modern and ancient ones. The results indicate that malignant neoplasms, coronary heart disease which present Qi deficiency and blood stasis type are the main diseases treated by prescriptions including Ginseng Radix et Rhizoma and Trogopterus Dung according to the reports during 1949 to 2016. The complex network connection shows that Glycyrrhizae Radixet Rhizoma, Angelicae Sinensis Radix, Astragali Radix, Typhae Pollen, Salviae Miltiorrhizae Radix et Rhizoma are the primary drugs related to Ginseng Radix et Rhizoma and Trogopterus Dung. The next are Paeoniae Radix Alba, Atractylodis Macrocephalae Rhizoma, Persicae Semen, Foria, et al. Carthami Flos, Notoginseng Radix et Rhizoma, Cyperi Rhizoma, Bupleuri Radix are the peripheral ones. Also, Ginseng Radix et Rhizoma-Glycyrrhizae Radixet Rhizoma, Trogopterus Dung-Glycyrrhizae Radixet Rhizoma, Ginseng Radix et Rhizoma-Angelicae Sinensis Radix, Trogopterus Dung-Angelicae Sinensis Radix, Ginseng Radix et Rhizoma-Astragali Radix, Trogopterus Dung-Astragali Radix are the main paired drugs. The paired drugs including Ginseng Radix et Rhizoma-Trogopterus Dung-Glycyrrhizae Radixet Rhizoma, Ginseng Radix et Rhizoma-Trogopterus Dung-Angelicae Sinensis Radix, Ginseng Radix et Rhizoma-Trogopterus Dung-Astragali Radix, Ginseng Radix et Rhizoma-Trogopterus Dung-Typhae Pollen have a higher support degree. The main compatible drugs are different in ancient and modern prescriptions including Ginseng Radix et Rhizoma and Trogopterus Dung. Notoginseng Radix et Rhizoma, Typhae Pollen, Salviae Miltiorrhizae Radix et Rhizoma, Astragali Radix are utilized frequently in modern prescriptions while less used in ancient ones. It is also shown
Vaccination intervention on epidemic dynamics in networks
Peng, Xiao-Long; Xu, Xin-Jian; Fu, Xinchu; Zhou, Tao
2013-02-01
Vaccination is an important measure available for preventing or reducing the spread of infectious diseases. In this paper, an epidemic model including susceptible, infected, and imperfectly vaccinated compartments is studied on Watts-Strogatz small-world, Barabási-Albert scale-free, and random scale-free networks. The epidemic threshold and prevalence are analyzed. For small-world networks, the effective vaccination intervention is suggested and its influence on the threshold and prevalence is analyzed. For scale-free networks, the threshold is found to be strongly dependent both on the effective vaccination rate and on the connectivity distribution. Moreover, so long as vaccination is effective, it can linearly decrease the epidemic prevalence in small-world networks, whereas for scale-free networks it acts exponentially. These results can help in adopting pragmatic treatment upon diseases in structured populations.
Network optimization including gas lift and network parameters under subsurface uncertainty
Energy Technology Data Exchange (ETDEWEB)
Schulze-Riegert, R.; Baffoe, J.; Pajonk, O. [SPT Group GmbH, Hamburg (Germany); Badalov, H.; Huseynov, S. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE; Trick, M. [SPT Group, Calgary, AB (Canada)
2013-08-01
Optimization of oil and gas field production systems poses a great challenge to field development due to complex and multiple interactions between various operational design parameters and subsurface uncertainties. Conventional analytical methods are capable of finding local optima based on single deterministic models. They are less applicable for efficiently generating alternative design scenarios in a multi-objective context. Practical implementations of robust optimization workflows integrate the evaluation of alternative design scenarios and multiple realizations of subsurface uncertainty descriptions. Production or economic performance indicators such as NPV (Net Present Value) are linked to a risk-weighted objective function definition to guide the optimization processes. This work focuses on an integrated workflow using a reservoir-network simulator coupled to an optimization framework. The work will investigate the impact of design parameters while considering the physics of the reservoir, wells, and surface facilities. Subsurface uncertainties are described by well parameters such as inflow performance. Experimental design methods are used to investigate parameter sensitivities and interactions. Optimization methods are used to find optimal design parameter combinations which improve key performance indicators of the production network system. The proposed workflow will be applied to a representative oil reservoir coupled to a network which is modelled by an integrated reservoir-network simulator. Gas-lift will be included as an explicit measure to improve production. An objective function will be formulated for the net present value of the integrated system including production revenue and facility costs. Facility and gas lift design parameters are tuned to maximize NPV. Well inflow performance uncertainties are introduced with an impact on gas lift performance. Resulting variances on NPV are identified as a risk measure for the optimized system design. A
Trading leads to scale-free self-organization
Ebert, M.; Paul, W.
2012-12-01
Financial markets display scale-free behavior in many different aspects. The power-law behavior of part of the distribution of individual wealth has been recognized by Pareto as early as the nineteenth century. Heavy-tailed and scale-free behavior of the distribution of returns of different financial assets have been confirmed in a series of works. The existence of a Pareto-like distribution of the wealth of market participants has been connected with the scale-free distribution of trading volumes and price-returns. The origin of the Pareto-like wealth distribution, however, remained obscure. Here we show that in a market where the imbalance of supply and demand determines the direction of prize changes, it is the process of trading itself that spontaneously leads to a self-organization of the market with a Pareto-like wealth distribution for the market participants and at the same time to a scale-free behavior of return fluctuations and trading volume distributions.
Strategic Factor Markets Scale Free Resources and Economic Performance
DEFF Research Database (Denmark)
Geisler Asmussen, Christian
2015-01-01
This paper analyzes how scale free resources, which can be acquired by multiple firms simultaneously and deployed against one another in product market competition, will be priced in strategic factor markets, and what the consequences are for the acquiring firms' performance. Based on a game-theo...
Programming scale-free optics in disordered ferroelectrics.
Parravicini, Jacopo; Conti, Claudio; Agranat, Aharon J; DelRe, Eugenio
2012-06-15
Using the history dependence of a dipolar glass hosted in a compositionally disordered lithium-enriched potassium tantalate niobate (KTN:Li) crystal, we demonstrate scale-free optical propagation at tunable temperatures. The operating equilibration temperature is determined by previous crystal spiralling in the temperature/cooling-rate phase space.
Programming scale-free optics in disordered ferroelectrics
Parravicini, Jacopo; Conti, Claudio; Agranat, Aharon J.; DelRe, Eugenio
2012-01-01
Using the history-dependence of a dipolar glass hosted in a compositionally-disordered lithium-enriched potassium-tantalate-niobate (KTN:Li) crystal, we demonstrate scale-free optical propagation at tunable temperatures. The operating equilibration temperature is determined by previous crystal spiralling in the temperature/cooling-rate phase-space.
The scale-free dynamics of eukaryotic cells.
Directory of Open Access Journals (Sweden)
Miguel A Aon
Full Text Available Temporal organization of biological processes requires massively parallel processing on a synchronized time-base. We analyzed time-series data obtained from the bioenergetic oscillatory outputs of Saccharomyces cerevisiae and isolated cardiomyocytes utilizing Relative Dispersional (RDA and Power Spectral (PSA analyses. These analyses revealed broad frequency distributions and evidence for long-term memory in the observed dynamics. Moreover RDA and PSA showed that the bioenergetic dynamics in both systems show fractal scaling over at least 3 orders of magnitude, and that this scaling obeys an inverse power law. Therefore we conclude that in S. cerevisiae and cardiomyocytes the dynamics are scale-free in vivo. Applying RDA and PSA to data generated from an in silico model of mitochondrial function indicated that in yeast and cardiomyocytes the underlying mechanisms regulating the scale-free behavior are similar. We validated this finding in vivo using single cells, and attenuating the activity of the mitochondrial inner membrane anion channel with 4-chlorodiazepam to show that the oscillation of NAD(PH and reactive oxygen species (ROS can be abated in these two evolutionarily distant species. Taken together these data strongly support our hypothesis that the generation of ROS, coupled to redox cycling, driven by cytoplasmic and mitochondrial processes, are at the core of the observed rhythmicity and scale-free dynamics. We argue that the operation of scale-free bioenergetic dynamics plays a fundamental role to integrate cellular function, while providing a framework for robust, yet flexible, responses to the environment.
Directory of Open Access Journals (Sweden)
Xiaolin Liu
Full Text Available Loss of consciousness in anesthetized healthy participants and in patients with unresponsive wakefulness syndrome (UWS is associated with substantial alterations of functional connectivity across large-scale brain networks. Yet, a prominent distinction between the two cases is that after anesthesia, brain connectivity and consciousness are spontaneously restored, whereas in patients with UWS this restoration fails to occur, but why? A possible explanation is that the self-organizing capability of the brain is compromised in patients with UWS but not in healthy participants undergoing anesthesia. According to the theory of self-organized criticality, many natural complex systems, including the brain, evolve spontaneously to a critical state wherein system behaviors display spatial and/or temporal scale-invariant characteristics. Here we tested the hypothesis that the scale-free property of brain network organization is in fact fundamentally different between anesthetized healthy participants and UWS patients. We introduced a novel, computationally efficient approach to determine anatomical-functional parcellation of the whole-brain network at increasingly finer spatial scales. We found that in healthy participants, scale-free distributions of node size and node degree were present across wakefulness, propofol sedation, and recovery, despite significant propofol-induced functional connectivity changes. In patients with UWS, the scale-free distribution of node degree was absent, reflecting a fundamental difference between the two groups in adaptive reconfiguration of functional interaction between network components. The maintenance of scale-invariance across propofol sedation in healthy participants suggests the presence of persistent, on-going self-organizing processes to a critical state--a capacity that is compromised in patients with UWS.
Emergence of scale-free characteristics in socio-ecological systems with bounded rationality.
Kasthurirathna, Dharshana; Piraveenan, Mahendra
2015-06-11
Socio-ecological systems are increasingly modelled by games played on complex networks. While the concept of Nash equilibrium assumes perfect rationality, in reality players display heterogeneous bounded rationality. Here we present a topological model of bounded rationality in socio-ecological systems, using the rationality parameter of the Quantal Response Equilibrium. We argue that system rationality could be measured by the average Kullback--Leibler divergence between Nash and Quantal Response Equilibria, and that the convergence towards Nash equilibria on average corresponds to increased system rationality. Using this model, we show that when a randomly connected socio-ecological system is topologically optimised to converge towards Nash equilibria, scale-free and small world features emerge. Therefore, optimising system rationality is an evolutionary reason for the emergence of scale-free and small-world features in socio-ecological systems. Further, we show that in games where multiple equilibria are possible, the correlation between the scale-freeness of the system and the fraction of links with multiple equilibria goes through a rapid transition when the average system rationality increases. Our results explain the influence of the topological structure of socio-ecological systems in shaping their collective cognitive behaviour, and provide an explanation for the prevalence of scale-free and small-world characteristics in such systems.
Faster Parallel Traversal of Scale Free Graphs at Extreme Scale with Vertex Delegates
Pearce, Roger
2014-11-01
© 2014 IEEE. At extreme scale, irregularities in the structure of scale-free graphs such as social network graphs limit our ability to analyze these important and growing datasets. A key challenge is the presence of high-degree vertices (hubs), that leads to parallel workload and storage imbalances. The imbalances occur because existing partitioning techniques are not able to effectively partition high-degree vertices. We present techniques to distribute storage, computation, and communication of hubs for extreme scale graphs in distributed memory supercomputers. To balance the hub processing workload, we distribute hub data structures and related computation among a set of delegates. The delegates coordinate using highly optimized, yet portable, asynchronous broadcast and reduction operations. We demonstrate scalability of our new algorithmic technique using Breadth-First Search (BFS), Single Source Shortest Path (SSSP), K-Core Decomposition, and Page-Rank on synthetically generated scale-free graphs. Our results show excellent scalability on large scale-free graphs up to 131K cores of the IBM BG/P, and outperform the best known Graph500 performance on BG/P Intrepid by 15%
Faster Parallel Traversal of Scale Free Graphs at Extreme Scale with Vertex Delegates
Pearce, Roger; Gokhale, Maya; Amato, Nancy M.
2014-01-01
© 2014 IEEE. At extreme scale, irregularities in the structure of scale-free graphs such as social network graphs limit our ability to analyze these important and growing datasets. A key challenge is the presence of high-degree vertices (hubs), that leads to parallel workload and storage imbalances. The imbalances occur because existing partitioning techniques are not able to effectively partition high-degree vertices. We present techniques to distribute storage, computation, and communication of hubs for extreme scale graphs in distributed memory supercomputers. To balance the hub processing workload, we distribute hub data structures and related computation among a set of delegates. The delegates coordinate using highly optimized, yet portable, asynchronous broadcast and reduction operations. We demonstrate scalability of our new algorithmic technique using Breadth-First Search (BFS), Single Source Shortest Path (SSSP), K-Core Decomposition, and Page-Rank on synthetically generated scale-free graphs. Our results show excellent scalability on large scale-free graphs up to 131K cores of the IBM BG/P, and outperform the best known Graph500 performance on BG/P Intrepid by 15%
Vulnerability of complex networks
Mishkovski, Igor; Biey, Mario; Kocarev, Ljupco
2011-01-01
We consider normalized average edge betweenness of a network as a metric of network vulnerability. We suggest that normalized average edge betweenness together with is relative difference when certain number of nodes and/or edges are removed from the network is a measure of network vulnerability, called vulnerability index. Vulnerability index is calculated for four synthetic networks: Erdős-Rényi (ER) random networks, Barabási-Albert (BA) model of scale-free networks, Watts-Strogatz (WS) model of small-world networks, and geometric random networks. Real-world networks for which vulnerability index is calculated include: two human brain networks, three urban networks, one collaboration network, and two power grid networks. We find that WS model of small-world networks and biological networks (human brain networks) are the most robust networks among all networks studied in the paper.
Emergence of scale-free leadership structure in social recommender systems.
Zhou, Tao; Medo, Matúš; Cimini, Giulio; Zhang, Zi-Ke; Zhang, Yi-Cheng
2011-01-01
The study of the organization of social networks is important for the understanding of opinion formation, rumor spreading, and the emergence of trends and fashion. This paper reports empirical analysis of networks extracted from four leading sites with social functionality (Delicious, Flickr, Twitter and YouTube) and shows that they all display a scale-free leadership structure. To reproduce this feature, we propose an adaptive network model driven by social recommending. Artificial agent-based simulations of this model highlight a "good get richer" mechanism where users with broad interests and good judgments are likely to become popular leaders for the others. Simulations also indicate that the studied social recommendation mechanism can gradually improve the user experience by adapting to tastes of its users. Finally we outline implications for real online resource-sharing systems.
Generate the scale-free brain music from BOLD signals.
Lu, Jing; Guo, Sijia; Chen, Mingming; Wang, Weixia; Yang, Hua; Guo, Daqing; Yao, Dezhong
2018-01-01
Many methods have been developed to translate a human electroencephalogram (EEG) into music. In addition to EEG, functional magnetic resonance imaging (fMRI) is another method used to study the brain and can reflect physiological processes. In 2012, we established a method to use simultaneously recorded fMRI and EEG signals to produce EEG-fMRI music, which represents a step toward scale-free brain music. In this study, we used a neural mass model, the Jansen-Rit model, to simulate activity in several cortical brain regions. The interactions between different brain regions were represented by the average normalized diffusion tensor imaging (DTI) structural connectivity with a coupling coefficient that modulated the coupling strength. Seventy-eight brain regions were adopted from the Automated Anatomical Labeling (AAL) template. Furthermore, we used the Balloon-Windkessel hemodynamic model to transform neural activity into a blood-oxygen-level dependent (BOLD) signal. Because the fMRI BOLD signal changes slowly, we used a sampling rate of 250 Hz to produce the temporal series for music generation. Then, the BOLD music was generated for each region using these simulated BOLD signals. Because the BOLD signal is scale free, these music pieces were also scale free, which is similar to classic music. Here, to simulate the case of an epileptic patient, we changed the parameter that determined the amplitude of the excitatory postsynaptic potential (EPSP) in the neural mass model. Finally, we obtained BOLD music for healthy and epileptic patients. The differences in levels of arousal between the 2 pieces of music may provide a potential tool for discriminating the different populations if the differences can be confirmed by more real data. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.
The analysis of HIV/AIDS drug-resistant on networks
Liu, Maoxing
2014-01-01
In this paper, we present an Human Immunodeficiency Virus (HIV)/Acquired Immune Deficiency Syndrome (AIDS) drug-resistant model using an ordinary differential equation (ODE) model on scale-free networks. We derive the threshold for the epidemic to be zero in infinite scale-free network. We also prove the stability of disease-free equilibrium (DFE) and persistence of HIV/AIDS infection. The effects of two immunization schemes, including proportional scheme and targeted vaccination, are studied and compared. We find that targeted strategy compare favorably to a proportional condom using has prominent effect to control HIV/AIDS spread on scale-free networks.
Scale-free, axisymmetry galaxy models with little angular momentum
International Nuclear Information System (INIS)
Richstone, D.O.
1980-01-01
Two scale-free models of elliptical galaxies are constructed using a self-consistent field approach developed by Schwarschild. Both models have concentric, oblate spheroidal, equipotential surfaces, with a logarithmic potential dependence on central distance. The axial ratio of the equipotential surfaces is 4:3, and the extent ratio of density level surfaces id 2.5:1 (corresponding to an E6 galaxy). Each model satisfies the Poisson and steady state Boltzmann equaion for time scales of order 100 galactic years
The Model of the Software Running on a Computer Equipment Hardware Included in the Grid network
Directory of Open Access Journals (Sweden)
T. A. Mityushkina
2012-12-01
Full Text Available A new approach to building a cloud computing environment using Grid networks is proposed in this paper. The authors describe the functional capabilities, algorithm, model of software running on a computer equipment hardware included in the Grid network, that will allow to implement cloud computing environment using Grid technologies.
Energy Technology Data Exchange (ETDEWEB)
Chen, Y W [Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433 (China); Zhang, L F [Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433 (China); Huang, J P [Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433 (China)
2007-07-20
By using theoretical analysis and computer simulations, we develop the Watts-Strogatz network model by including degree distribution, in an attempt to improve the comparison between characteristic path lengths and clustering coefficients predicted by the original Watts-Strogatz network model and those of the real networks with the small-world property. Good agreement between the predictions of the theoretical analysis and those of the computer simulations has been shown. It is found that the developed Watts-Strogatz network model can fit the real small-world networks more satisfactorily. Some other interesting results are also reported by adjusting the parameters in a model degree-distribution function. The developed Watts-Strogatz network model is expected to help in the future analysis of various social problems as well as financial markets with the small-world property.
International Nuclear Information System (INIS)
Chen, Y W; Zhang, L F; Huang, J P
2007-01-01
By using theoretical analysis and computer simulations, we develop the Watts-Strogatz network model by including degree distribution, in an attempt to improve the comparison between characteristic path lengths and clustering coefficients predicted by the original Watts-Strogatz network model and those of the real networks with the small-world property. Good agreement between the predictions of the theoretical analysis and those of the computer simulations has been shown. It is found that the developed Watts-Strogatz network model can fit the real small-world networks more satisfactorily. Some other interesting results are also reported by adjusting the parameters in a model degree-distribution function. The developed Watts-Strogatz network model is expected to help in the future analysis of various social problems as well as financial markets with the small-world property
Zhu, Zheng; Andresen, Juan Carlos; Janzen, Katharina; Katzgraber, Helmut G.
2013-03-01
We study the equilibrium and nonequilibrium properties of Boolean decision problems with competing interactions on scale-free graphs in a magnetic field. Previous studies at zero field have shown a remarkable equilibrium stability of Boolean variables (Ising spins) with competing interactions (spin glasses) on scale-free networks. When the exponent that describes the power-law decay of the connectivity of the network is strictly larger than 3, the system undergoes a spin-glass transition. However, when the exponent is equal to or less than 3, the glass phase is stable for all temperatures. First we perform finite-temperature Monte Carlo simulations in a field to test the robustness of the spin-glass phase and show, in agreement with analytical calculations, that the system exhibits a de Almeida-Thouless line. Furthermore, we study avalanches in the system at zero temperature to see if the system displays self-organized criticality. This would suggest that damage (avalanches) can spread across the whole system with nonzero probability, i.e., that Boolean decision problems on scale-free networks with competing interactions are fragile when not in thermal equilibrium.
Design and Optimization of Capacitated Supply Chain Networks Including Quality Measures
Directory of Open Access Journals (Sweden)
Krystel K. Castillo-Villar
2014-01-01
Full Text Available This paper presents (1 a novel capacitated model for supply chain network design which considers manufacturing, distribution, and quality costs (named SCND-COQ model and (2 five combinatorial optimization methods, based on nonlinear optimization, heuristic, and metaheuristic approaches, which are used to solve realistic instances of practical size. The SCND-COQ model is a mixed-integer nonlinear problem which can be used at a strategic planning level to design a supply chain network that maximizes the total profit subject to meeting an overall quality level of the final product at minimum costs. The SCND-COQ model computes the quality-related costs for the whole supply chain network considering the interdependencies among business entities. The effectiveness of the proposed solution approaches is shown using numerical experiments. These methods allow solving more realistic (capacitated supply chain network design problems including quality-related costs (inspections, rework, opportunity costs, and others within a reasonable computational time.
Scale-Free Relationships between Social and Landscape Factors in Urban Systems
Directory of Open Access Journals (Sweden)
Chunzhu Wei
2017-01-01
Full Text Available Urban planners and ecologists have long debated the relationship between the structure of urban landscapes and social activities. There have, however, been very few discussions as to whether any such relationships might depend on the scales of observation. This work applies a hierarchical zoning technique to data from the city of Quito, Ecuador, to examine how relationships between typical spatial landscape metrics and social indicators depend on zoning scales. Our results showed that the estimates of both landscape heterogeneity features and social indicators significantly depend on the zoning scale. The mean values of the typical landscape metrics and the social indicators all exhibited predictable responses to a changing zoning scale, suggesting a consistent and significant scaling relationship within the multiple zoning scales. Yet relationships between these pairs of variables remain notably invariant to scale. This quantitative demonstration of the scale-free nature of the relationship between landscape characteristics and social indicators furthers our understanding of the relationships between landscape structures and social aspects of urban spaces, including deprivation and public service accessibility. The relationships between social indicators and one typical landscape aggregation metric (represented as the percentage of like adjacencies were nevertheless significantly dependent on scale, suggesting the importance of zoning scale decisions for analyzing the relationships between the social indicators and the landscape characteristics related with landscape adjacency. Aside from this typical landscape aggregation metric, the general invariance to the zoning scale of relationships between landscape structures and socioeconomic indicators in Quito suggests the importance of applying these scale-free relationships in understanding complex socio-ecological systems in other cities, which are shaped by the conflated influences of both
Power-law citation distributions are not scale-free.
Golosovsky, Michael
2017-09-01
We analyze time evolution of statistical distributions of citations to scientific papers published in the same year. While these distributions seem to follow the power-law dependence we find that they are nonstationary and the exponent of the power-law fit decreases with time and does not come to saturation. We attribute the nonstationarity of citation distributions to different longevity of the low-cited and highly cited papers. By measuring citation trajectories of papers we found that citation careers of the low-cited papers come to saturation after 10-15 years while those of the highly cited papers continue to increase indefinitely: The papers that exceed some citation threshold become runaways. Thus, we show that although citation distribution can look as a power-law dependence, it is not scale free and there is a hidden dynamic scale associated with the onset of runaways. We compare our measurements to our recently developed model of citation dynamics based on copying-redirection-triadic closure and find explanations to our empirical observations.
Universal Scaling Relations in Scale-Free Structure Formation
Guszejnov, Dávid; Hopkins, Philip F.; Grudić, Michael Y.
2018-04-01
A large number of astronomical phenomena exhibit remarkably similar scaling relations. The most well-known of these is the mass distribution dN/dM∝M-2 which (to first order) describes stars, protostellar cores, clumps, giant molecular clouds, star clusters and even dark matter halos. In this paper we propose that this ubiquity is not a coincidence and that it is the generic result of scale-free structure formation where the different scales are uncorrelated. We show that all such systems produce a mass function proportional to M-2 and a column density distribution with a power law tail of dA/d lnΣ∝Σ-1. In the case where structure formation is controlled by gravity the two-point correlation becomes ξ2D∝R-1. Furthermore, structures formed by such processes (e.g. young star clusters, DM halos) tend to a ρ∝R-3 density profile. We compare these predictions with observations, analytical fragmentation cascade models, semi-analytical models of gravito-turbulent fragmentation and detailed "full physics" hydrodynamical simulations. We find that these power-laws are good first order descriptions in all cases.
Energy Technology Data Exchange (ETDEWEB)
Niknam, Taher; Meymand, Hamed Zeinoddini; Nayeripour, Majid [Electrical and Electronic Engineering Department, Shiraz University of Technology, Shiraz (Iran)
2010-08-15
Fuel cell power plants (FCPPs) have been taken into a great deal of consideration in recent years. The continuing growth of the power demand together with environmental constraints is increasing interest to use FCPPs in power system. Since FCPPs are usually connected to distribution network, the effect of FCPPs on distribution network is more than other sections of power system. One of the most important issues in distribution networks is optimal operation management (OOM) which can be affected by FCPPs. This paper proposes a new approach for optimal operation management of distribution networks including FCCPs. In the article, we consider the total electrical energy losses, the total electrical energy cost and the total emission as the objective functions which should be minimized. Whereas the optimal operation in distribution networks has a nonlinear mixed integer optimization problem, the optimal solution could be obtained through an evolutionary method. We use a new evolutionary algorithm based on Fuzzy Adaptive Particle Swarm Optimization (FAPSO) to solve the optimal operation problem and compare this method with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), Ant Colony Optimization (ACO) and Tabu Search (TS) over two distribution test feeders. (author)
2011-04-07
... Builder Cabinet Group Including On-Site Leased Workers From Reserves Network, Reliable Staffing, and Third Dimension Waverly, OH; Masco Builder Cabinet Group Including On-Site Leased Workers From Reserves Network... Group including on-site leased workers from Reserves Network, Jackson, Ohio. The workers produce...
Routing strategies in traffic network and phase transition in network ...
Indian Academy of Sciences (India)
The dynamics of information traffic over scale-free networks has been investigated systematically. A series of routing strategies of data packets have been proposed, including the local routing strategy, the next-nearest-neighbour routing strategy, and the mixed routing strategy based on local static and dynamic information.
Multi-Type Directed Scale-Free Percolation
International Nuclear Information System (INIS)
Shang Yilun
2012-01-01
In this paper, we study a long-range percolation model on the lattice ℤ d with multi-type vertices and directed edges. Each vertex x in ℤ d is independently assigned a non-negative weight W x and a type ψ x , where (W x ) xinℤ d are i.i.d. random variables, and (ψ x ) xinℤ d are also i.i.d. Conditionally on weights and types, and given λ, α > 0, the edges are independent and the probability that there is a directed edge from x to y is given by p xy = 1 - exp(-λφ ψ x ψ y W x W y /|x-y| α ), where φ ij 's are entries from a type matrix Φ. We show that, when the tail of the distribution of W x is regularly varying with exponent τ - 1, the tails of the out/in-degree distributions are both regularly varying with exponent γ = α(τ - 1)/d. We formulate conditions under which there exist critical values λ c WCC in (0, ∞) and λ c SCC in (0, ∞) such that an infinite weak component and an infinite strong component emerge, respectively, when λ exceeds them. A phase transition is established for the shortest path lengths of directed and undirected edges in the infinite component at the point γ = 2, where the out/in-degrees switch from having finite to infinite variances. The random graph model studied here features some structures of multi-type vertices and directed edges which appear naturally in many real-world networks, such as the SNS networks and computer communication networks. (condensed matter: structural, mechanical, and thermal properties)
Including Internet insurance as part of a hospital computer network security plan.
Riccardi, Ken
2002-01-01
Cyber attacks on a hospital's computer network is a new crime to be reckoned with. Should your hospital consider internet insurance? The author explains this new phenomenon and presents a risk assessment for determining network vulnerabilities.
Sync in Complex Dynamical Networks: Stability, Evolution, Control, and Application
Li, Xiang
2005-01-01
In the past few years, the discoveries of small-world and scale-free properties of many natural and artificial complex networks have stimulated significant advances in better understanding the relationship between the topology and the collective dynamics of complex networks. This paper reports recent progresses in the literature of synchronization of complex dynamical networks including stability criteria, network synchronizability and uniform synchronous criticality in different topologies, ...
Strategic Factor Markets Scale Free Resources and Economic Performance
DEFF Research Database (Denmark)
Geisler Asmussen, Christian
2015-01-01
-theoretic model, it shows how the impact of strategic factor markets on economic profits is influenced by product market rivalry, preexisting competitive (dis)advantages, and the interaction of acquired resources with those preexisting asymmetries. New insights include the result that resource suppliers will aim...
2011-12-21
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-605-000] Power Network New Mexico, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... Power Network New Mexico, LLC's application for market-based rate authority, with an accompanying rate...
Statistical evaluation of waveform collapse reveals scale-free properties of neuronal avalanches
Directory of Open Access Journals (Sweden)
Aleena eShaukat
2016-04-01
Full Text Available Neural avalanches are a prominent form of brain activity characterized by network-wide bursts whose statistics follow a power-law distribution with a slope near 3/2. Recent work suggests that avalanches of different durations can be rescaled and thus collapsed together. This collapse mirrors work in statistical physics where it is proposed to form a signature of systems evolving in a critical state. However, no rigorous statistical test has been proposed to examine the degree to which neuronal avalanches collapse together. Here, we describe a statistical test based on functional data analysis, where raw avalanches are first smoothed with a Fourier basis, then rescaled using a time-warping function. Finally, an F ratio test combined with a bootstrap permutation is employed to determine if avalanches collapse together in a statistically reliable fashion. To illustrate this approach, we recorded avalanches from cortical cultures on multielectrode arrays as in previous work. Analyses show that avalanches of various durations can be collapsed together in a statistically robust fashion. However, a principal components analysis revealed that the offset of avalanches resulted in marked variance in the time-warping function, thus arguing for limitations to the strict fractal nature of avalanche dynamics. We compared these results with those obtained from cultures treated with an AMPA/NMDA receptor antagonist (APV/DNQX, which yield a power-law of avalanche durations with a slope greater than 3/2. When collapsed together, these avalanches showed marked misalignments both at onset and offset time-points. In sum, the proposed statistical evaluation suggests the presence of scale-free avalanche waveforms and constitutes an avenue for examining critical dynamics in neuronal systems.
Interactions between the Design and Operation of Shale Gas Networks, Including CO2 Sequestration
Directory of Open Access Journals (Sweden)
Sharifzadeh Mahdi
2017-04-01
Full Text Available As the demand for energy continues to increase, shale gas, as an unconventional source of methane (CH4, shows great potential for commercialization. However, due to the ultra-low permeability of shale gas reservoirs, special procedures such as horizontal drilling, hydraulic fracturing, periodic well shut-in, and carbon dioxide (CO2 injection may be required in order to boost gas production, maximize economic benefits, and ensure safe and environmentally sound operation. Although intensive research is devoted to this emerging technology, many researchers have studied shale gas design and operational decisions only in isolation. In fact, these decisions are highly interactive and should be considered simultaneously. Therefore, the research question addressed in this study includes interactions between design and operational decisions. In this paper, we first establish a full-physics model for a shale gas reservoir. Next, we conduct a sensitivity analysis of important design and operational decisions such as well length, well arrangement, number of fractures, fracture distance, CO2 injection rate, and shut-in scheduling in order to gain in-depth insights into the complex behavior of shale gas networks. The results suggest that the case with the highest shale gas production may not necessarily be the most profitable design; and that drilling, fracturing, and CO2 injection have great impacts on the economic viability of this technology. In particular, due to the high costs, enhanced gas recovery (EGR using CO2 does not appear to be commercially competitive, unless tax abatements or subsidies are available for CO2 sequestration. It was also found that the interactions between design and operational decisions are significant and that these decisions should be optimized simultaneously.
Development of Next Generation Heating System for Scale Free Steel Reheating
Energy Technology Data Exchange (ETDEWEB)
Dr. Arvind C. Thekdi
2011-01-27
The work carried out under this project includes development and design of components, controls, and economic modeling tools that would enable the steel industry to reduce energy intensity through reduction of scale formation during the steel reheating process. Application of scale free reheating offers savings in energy used for production of steel that is lost as scale, and increase in product yield for the global steel industry. The technology can be applied to a new furnace application as well as retrofit design for conversion of existing steel reheating furnaces. The development work has resulted in the knowledge base that will enable the steel industry and steel forging industry us to reheat steel with 75% to 95% reduction in scale formation and associated energy savings during the reheating process. Scale reduction also results in additional energy savings associated with higher yield from reheat furnaces. Energy used for steel production ranges from 9 MM Btu/ton to 16.6 MM Btu/ton or the industry average of approximately 13 MM Btu/ton. Hence, reduction in scale at reheating stage would represent a substantial energy reduction for the steel industry. Potential energy savings for the US steel industry could be in excess of 25 Trillion Btu/year when the technology is applied to all reheating processes. The development work has resulted in new design of reheating process and the required burners and control systems that would allow use of this technology for steel reheating in steel as well as steel forging industries.
Automatic reconstruction of fault networks from seismicity catalogs including location uncertainty
International Nuclear Information System (INIS)
Wang, Y.
2013-01-01
Within the framework of plate tectonics, the deformation that arises from the relative movement of two plates occurs across discontinuities in the earth's crust, known as fault zones. Active fault zones are the causal locations of most earthquakes, which suddenly release tectonic stresses within a very short time. In return, fault zones slowly grow by accumulating slip due to such earthquakes by cumulated damage at their tips, and by branching or linking between pre-existing faults of various sizes. Over the last decades, a large amount of knowledge has been acquired concerning the overall phenomenology and mechanics of individual faults and earthquakes: A deep physical and mechanical understanding of the links and interactions between and among them is still missing, however. One of the main issues lies in our failure to always succeed in assigning an earthquake to its causative fault. Using approaches based in pattern-recognition theory, more insight into the relationship between earthquakes and fault structure can be gained by developing an automatic fault network reconstruction approach using high resolution earthquake data sets at largely different scales and by considering individual event uncertainties. This thesis introduces the Anisotropic Clustering of Location Uncertainty Distributions (ACLUD) method to reconstruct active fault networks on the basis of both earthquake locations and their estimated individual uncertainties. This method consists in fitting a given set of hypocenters with an increasing amount of finite planes until the residuals of the fit compare with location uncertainties. After a massive search through the large solution space of possible reconstructed fault networks, six different validation procedures are applied in order to select the corresponding best fault network. Two of the validation steps (cross-validation and Bayesian Information Criterion (BIC)) process the fit residuals, while the four others look for solutions that
Directory of Open Access Journals (Sweden)
Grosso Juan M.
2016-09-01
Full Text Available This paper proposes a reliability-based economic model predictive control (MPC strategy for the management of generalised flow-based networks, integrating some ideas on network service reliability, dynamic safety stock planning, and degradation of equipment health. The proposed strategy is based on a single-layer economic optimisation problem with dynamic constraints, which includes two enhancements with respect to existing approaches. The first enhancement considers chance-constraint programming to compute an optimal inventory replenishment policy based on a desired risk acceptability level, leading to dynamical allocation of safety stocks in flow-based networks to satisfy non-stationary flow demands. The second enhancement computes a smart distribution of the control effort and maximises actuators’ availability by estimating their degradation and reliability. The proposed approach is illustrated with an application of water transport networks using the Barcelona network as the case study considered.
Automatic reconstruction of fault networks from seismicity catalogs including location uncertainty
Energy Technology Data Exchange (ETDEWEB)
Wang, Y.
2013-07-01
Within the framework of plate tectonics, the deformation that arises from the relative movement of two plates occurs across discontinuities in the earth's crust, known as fault zones. Active fault zones are the causal locations of most earthquakes, which suddenly release tectonic stresses within a very short time. In return, fault zones slowly grow by accumulating slip due to such earthquakes by cumulated damage at their tips, and by branching or linking between pre-existing faults of various sizes. Over the last decades, a large amount of knowledge has been acquired concerning the overall phenomenology and mechanics of individual faults and earthquakes: A deep physical and mechanical understanding of the links and interactions between and among them is still missing, however. One of the main issues lies in our failure to always succeed in assigning an earthquake to its causative fault. Using approaches based in pattern-recognition theory, more insight into the relationship between earthquakes and fault structure can be gained by developing an automatic fault network reconstruction approach using high resolution earthquake data sets at largely different scales and by considering individual event uncertainties. This thesis introduces the Anisotropic Clustering of Location Uncertainty Distributions (ACLUD) method to reconstruct active fault networks on the basis of both earthquake locations and their estimated individual uncertainties. This method consists in fitting a given set of hypocenters with an increasing amount of finite planes until the residuals of the fit compare with location uncertainties. After a massive search through the large solution space of possible reconstructed fault networks, six different validation procedures are applied in order to select the corresponding best fault network. Two of the validation steps (cross-validation and Bayesian Information Criterion (BIC)) process the fit residuals, while the four others look for solutions that
Directory of Open Access Journals (Sweden)
Enrique Campbell
2016-04-01
Full Text Available The core idea behind sectorization of Water Supply Networks (WSNs is to establish areas partially isolated from the rest of the network to improve operational control. Besides the benefits associated with sectorization, some drawbacks must be taken into consideration by water operators: the economic investment associated with both boundary valves and flowmeters and the reduction of both pressure and system resilience. The target of sectorization is to properly balance these negative and positive aspects. Sectorization methodologies addressing the economic aspects mainly consider costs of valves and flowmeters and of energy, and the benefits in terms of water saving linked to pressure reduction. However, sectorization entails other benefits, such as the reduction of domestic consumption, the reduction of burst frequency and the enhanced capacity to detect and intervene over future leakage events. We implement a development proposed by the International Water Association (IWA to estimate the aforementioned benefits. Such a development is integrated in a novel sectorization methodology based on a social network community detection algorithm, combined with a genetic algorithm optimization method and Monte Carlo simulation. The methodology is implemented over a fraction of the WSN of Managua city, capital of Nicaragua, generating a net benefit of 25,572 $/year.
Cosmological Simulations with Scale-Free Initial Conditions. I. Adiabatic Hydrodynamics
International Nuclear Information System (INIS)
Owen, J.M.; Weinberg, D.H.; Evrard, A.E.; Hernquist, L.; Katz, N.
1998-01-01
We analyze hierarchical structure formation based on scale-free initial conditions in an Einstein endash de Sitter universe, including a baryonic component with Ω bary = 0.05. We present three independent, smoothed particle hydrodynamics (SPH) simulations, performed at two resolutions (32 3 and 64 3 dark matter and baryonic particles) and with two different SPH codes (TreeSPH and P3MSPH). Each simulation is based on identical initial conditions, which consist of Gaussian-distributed initial density fluctuations that have a power spectrum P(k) ∝ k -1 . The baryonic material is modeled as an ideal gas subject only to shock heating and adiabatic heating and cooling; radiative cooling and photoionization heating are not included. The evolution is expected to be self-similar in time, and under certain restrictions we identify the expected scalings for many properties of the distribution of collapsed objects in all three realizations. The distributions of dark matter masses, baryon masses, and mass- and emission-weighted temperatures scale quite reliably. However, the density estimates in the central regions of these structures are determined by the degree of numerical resolution. As a result, mean gas densities and Bremsstrahlung luminosities obey the expected scalings only when calculated within a limited dynamic range in density contrast. The temperatures and luminosities of the groups show tight correlations with the baryon masses, which we find can be well represented by power laws. The Press-Schechter (PS) approximation predicts the distribution of group dark matter and baryon masses fairly well, though it tends to overestimate the baryon masses. Combining the PS mass distribution with the measured relations for T(M) and L(M) predicts the temperature and luminosity distributions fairly accurately, though there are some discrepancies at high temperatures/luminosities. In general the three simulations agree well for the properties of resolved groups, where a group
Scaling Techniques for Massive Scale-Free Graphs in Distributed (External) Memory
Pearce, Roger; Gokhale, Maya; Amato, Nancy M.
2013-01-01
We present techniques to process large scale-free graphs in distributed memory. Our aim is to scale to trillions of edges, and our research is targeted at leadership class supercomputers and clusters with local non-volatile memory, e.g., NAND Flash
Directory of Open Access Journals (Sweden)
H. L. Sneha
2013-01-01
Full Text Available The current focus in defense arena is towards the stealth technology with an emphasis to control the radar cross-section (RCS. The scattering from the antennas mounted over the platform is of prime importance especially for a low-observable aerospace vehicle. This paper presents the analysis of the scattering cross section of a uniformly spaced linear dipole array. Two types of feed networks, that is, series and parallel feed networks, are considered. The total RCS of phased array with either kind of feed network is obtained by following the signal as it enters through the aperture and travels through the feed network. The RCS estimation of array is done including the mutual coupling effect between the dipole elements in three configurations, that is, side-by-side, collinear, and parallel-in-echelon. The results presented can be useful while designing a phased array with optimum performance towards low observability.
Endogenous network of firms and systemic risk
Ma, Qianting; He, Jianmin; Li, Shouwei
2018-02-01
We construct an endogenous network characterized by commercial credit relationships connecting the upstream and downstream firms. Simulation results indicate that the endogenous network model displays a scale-free property which exists in real-world firm systems. In terms of the network structure, with the expansion of the scale of network nodes, the systemic risk increases significantly, while the heterogeneities of network nodes have no effect on systemic risk. As for firm micro-behaviors, including the selection range of trading partners, actual output, labor requirement, price of intermediate products and employee salaries, increase of all these parameters will lead to higher systemic risk.
Directory of Open Access Journals (Sweden)
John M Zempel
2012-06-01
Full Text Available Like many complex dynamic systems, the brain exhibits scale-free dynamics that follow power law scaling. Broadband power spectral density (PSD of brain electrical activity exhibits state-dependent power law scaling with a log frequency exponent that varies across frequency ranges. Widely divergent naturally occurring neural states, awake and slow wave sleep (SWS periods, were used evaluate the nature of changes in scale-free indices. We demonstrate two analytic approaches to characterizing electrocorticographic (ECoG data obtained during Awake and SWS states. A data driven approach was used, characterizing all available frequency ranges. Using an Equal Error State Discriminator (EESD, a single frequency range did not best characterize state across data from all six subjects, though the ability to distinguish awake and SWS states in individual subjects was excellent. Multisegment piecewise linear fits were used to characterize scale-free slopes across the entire frequency range (0.2-200 Hz. These scale-free slopes differed between Awake and SWS states across subjects, particularly at frequencies below 10 Hz and showed little difference at frequencies above 70 Hz. A Multivariate Maximum Likelihood Analysis (MMLA method using the multisegment slope indices successfully categorized ECoG data in most subjects, though individual variation was seen. The ECoG spectrum is not well characterized by a single linear fit across a defined set of frequencies, but is best described by a set of discrete linear fits across the full range of available frequencies. With increasing computational tractability, the use of scale-free slope values to characterize EEG data will have practical value in clinical and research EEG studies.
Janssen, G.M.C.M.; Valstar, J.R.; Zee, van der S.E.A.T.M.
2008-01-01
Traveltime determinations have found increasing application in the characterization of groundwater systems. No algorithms are available, however, to optimally design sampling strategies including this information type. We propose a first-order methodology to include groundwater age or tracer arrival
2011-01-12
...,287B; TA-W-71,287C] Masco Builder Cabinet Group Including On-Site Leased Workers From Reserves Network, Jackson, OH; Masco Builder Cabinet Group, Waverly, OH; Masco Builder Cabinet Group, Seal Township, OH; Masco Builder Cabinet Group, Seaman, OH; Amended Certification Regarding Eligibility To Apply for Worker...
Utilizing scale-free networks to support the search for scientific publications
Hauff, C.; Nürnberger, Andreas; de Jong, Franciska M.G.; Kraaij, W.
2006-01-01
When searching for scientic publications, users today often rely on search engines such as Yahoo.com. Whereas searching for publications whose titles are known is considered to be an easy task, users who are looking for important publications in research elds they are unfamiliar with face greater
Multi-granularity immunization strategy based on SIRS model in scale-free network
Nian, Fuzhong; Wang, Ke
2015-04-01
In this paper, a new immunization strategy was established to prevent the epidemic spreading based on the principle of "Multi-granularity" and "Pre-warning Mechanism", which send different pre-warning signal with the risk rank of the susceptible node to be infected. The pre-warning means there is a higher risk that the susceptible node is more likely to be infected. The multi-granularity means the susceptible node is linked with multi-infected nodes. In our model, the effect of the different situation of the multi-granularity immunizations is compared and different spreading rates are adopted to describe the epidemic behavior of nodes. In addition the threshold value of epidemic outbreak is investigated, which makes the result more convincing. The theoretical analysis and the simulations indicate that the proposed immunization strategy is effective and it is also economic and feasible.
Factors That Affect the Centrality Controllability of Scale-Free Networks
Hu, Dong; Sun, Xian; Li, Ping; Chen, Yan; Zhang, Jie
2015-12-01
Not Available Supported by Foundations of SiChuan Educational Committee under Grant No 13ZB0198, the National Natural Science Foundation of China under Grant Nos 61104224, 81373531, 61104143 and 61573107, and The Science and Technology Fund Project of SWPU (2013XJR011).
Fluctuation-driven flocking movement in three dimensions and scale-free correlation.
Niizato, Takayuki; Gunji, Yukio-Pegio
2012-01-01
Recent advances in the study of flocking behavior have permitted more sophisticated analyses than previously possible. The concepts of "topological distances" and "scale-free correlations" are important developments that have contributed to this improvement. These concepts require us to reconsider the notion of a neighborhood when applied to theoretical models. Previous work has assumed that individuals interact with neighbors within a certain radius (called the "metric distance"). However, other work has shown that, assuming topological interactions, starlings interact on average with the six or seven nearest neighbors within a flock. Accounting for this observation, we previously proposed a metric-topological interaction model in two dimensions. The goal of our model was to unite these two interaction components, the metric distance and the topological distance, into one rule. In our previous study, we demonstrated that the metric-topological interaction model could explain a real bird flocking phenomenon called scale-free correlation, which was first reported by Cavagna et al. In this study, we extended our model to three dimensions while also accounting for variations in speed. This three-dimensional metric-topological interaction model displayed scale-free correlation for velocity and orientation. Finally, we introduced an additional new feature of the model, namely, that a flock can store and release its fluctuations.
Fluctuation-driven flocking movement in three dimensions and scale-free correlation.
Directory of Open Access Journals (Sweden)
Takayuki Niizato
Full Text Available Recent advances in the study of flocking behavior have permitted more sophisticated analyses than previously possible. The concepts of "topological distances" and "scale-free correlations" are important developments that have contributed to this improvement. These concepts require us to reconsider the notion of a neighborhood when applied to theoretical models. Previous work has assumed that individuals interact with neighbors within a certain radius (called the "metric distance". However, other work has shown that, assuming topological interactions, starlings interact on average with the six or seven nearest neighbors within a flock. Accounting for this observation, we previously proposed a metric-topological interaction model in two dimensions. The goal of our model was to unite these two interaction components, the metric distance and the topological distance, into one rule. In our previous study, we demonstrated that the metric-topological interaction model could explain a real bird flocking phenomenon called scale-free correlation, which was first reported by Cavagna et al. In this study, we extended our model to three dimensions while also accounting for variations in speed. This three-dimensional metric-topological interaction model displayed scale-free correlation for velocity and orientation. Finally, we introduced an additional new feature of the model, namely, that a flock can store and release its fluctuations.
Scaling Techniques for Massive Scale-Free Graphs in Distributed (External) Memory
Pearce, Roger
2013-05-01
We present techniques to process large scale-free graphs in distributed memory. Our aim is to scale to trillions of edges, and our research is targeted at leadership class supercomputers and clusters with local non-volatile memory, e.g., NAND Flash. We apply an edge list partitioning technique, designed to accommodate high-degree vertices (hubs) that create scaling challenges when processing scale-free graphs. In addition to partitioning hubs, we use ghost vertices to represent the hubs to reduce communication hotspots. We present a scaling study with three important graph algorithms: Breadth-First Search (BFS), K-Core decomposition, and Triangle Counting. We also demonstrate scalability on BG/P Intrepid by comparing to best known Graph500 results. We show results on two clusters with local NVRAM storage that are capable of traversing trillion-edge scale-free graphs. By leveraging node-local NAND Flash, our approach can process thirty-two times larger datasets with only a 39% performance degradation in Traversed Edges Per Second (TEPS). © 2013 IEEE.
Furtak-Wrona, K.; Kozik-Ostrówka, P.; Jadwiszczak, K.; Maigret, J. E.; Aguié-Béghin, V.; Coqueret, X.
2018-01-01
A water-based polyurethane (PUR) acrylate water emulsion was selected as a radiation curable matrix for preparing nanocomposites including cellulose nanocrystals (CNC) prepared by controlled hydrolysis of Ramie fibers. Cross-linking polymerization of samples prepared in the form of films or of 1 mm-thick bars was either initiated by exposure to the 395 nm light of a high intensity LED lamp or by treatment with low energy electron beam (EB). The conversion level of acrylate functions in samples submitted to increasing radiation doses was monitored by Fourier Transform Infrared Spectroscopy (FTIR). Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) were used to characterize changes in the glass transition temperature of the PUR-CNC nanocomposites as a function of acrylate conversion and of CNC content. Micromechanical testing indicates the positive effect of 1 wt% CNC on Young's modulus and on the tensile strength at break (σ) of cured nanocomposites. The presence of CNC in the PUR acrylate matrix was shown to double the σ value of the nanocomposite cured to an acrylate conversion level of 85% by treatment with a 25 kGy dose under EB, whereas no increase of σ was observed in UV-cured samples exhibiting the same acrylate conversion level. The occurrence of grafting reactions inducing covalent linkages between the polysaccharide nanofiller and the PUR acrylate matrix during the EB treatment is advanced as an explanation to account for the improvement observed in samples cured under ionizing radiation.
International Nuclear Information System (INIS)
Furtak-Wrona, K.; Kozik-Ostrówka, P.; Jadwiszczak, K.; Maigret, J.E.; Aguié-Béghin, V.; Coqueret, X.
2018-01-01
A water-based polyurethane (PUR) acrylate water emulsion was selected as a radiation curable matrix for preparing nanocomposites including cellulose nanocrystals (CNC) prepared by controlled hydrolysis of Ramie fibers. Cross-linking polymerization of samples prepared in the form of films or of 1 mm-thick bars was either initiated by exposure to the 395 nm light of a high intensity LED lamp or by treatment with low energy electron beam (EB). The conversion level of acrylate functions in samples submitted to increasing radiation doses was monitored by Fourier Transform Infrared Spectroscopy (FTIR). Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) were used to characterize changes in the glass transition temperature of the PUR-CNC nanocomposites as a function of acrylate conversion and of CNC content. Micromechanical testing indicates the positive effect of 1 wt% CNC on Young's modulus and on the tensile strength at break (σ) of cured nanocomposites. The presence of CNC in the PUR acrylate matrix was shown to double the σ value of the nanocomposite cured to an acrylate conversion level of 85% by treatment with a 25 kGy dose under EB, whereas no increase of σ was observed in UV-cured samples exhibiting the same acrylate conversion level. The occurrence of grafting reactions inducing covalent linkages between the polysaccharide nanofiller and the PUR acrylate matrix during the EB treatment is advanced as an explanation to account for the improvement observed in samples cured under ionizing radiation. - Highlights: • Nanocomposites were prepared from o/w PUR acrylate emulsion and CNC suspension. • Nanocomposite and reference materials were cured to the same conversion by UV or EB. • Introducing 1 wt% CNC in EB-cured composites doubles the tensile strength. • UV-cured nanocomposites did not show significant improvement in tensile strength.
Lubashevsky, I.; Kanemoto, S.
2010-07-01
A continuous time model for multiagent systems governed by reinforcement learning with scale-free memory is developed. The agents are assumed to act independently of one another in optimizing their choice of possible actions via trial-and-error search. To gain awareness about the action value the agents accumulate in their memory the rewards obtained from taking a specific action at each moment of time. The contribution of the rewards in the past to the agent current perception of action value is described by an integral operator with a power-law kernel. Finally a fractional differential equation governing the system dynamics is obtained. The agents are considered to interact with one another implicitly via the reward of one agent depending on the choice of the other agents. The pairwise interaction model is adopted to describe this effect. As a specific example of systems with non-transitive interactions, a two agent and three agent systems of the rock-paper-scissors type are analyzed in detail, including the stability analysis and numerical simulation. Scale-free memory is demonstrated to cause complex dynamics of the systems at hand. In particular, it is shown that there can be simultaneously two modes of the system instability undergoing subcritical and supercritical bifurcation, with the latter one exhibiting anomalous oscillations with the amplitude and period growing with time. Besides, the instability onset via this supercritical mode may be regarded as “altruism self-organization”. For the three agent system the instability dynamics is found to be rather irregular and can be composed of alternate fragments of oscillations different in their properties.
Kouchri, Farrokh Mohammadzadeh
2012-11-06
A Voice over Internet Protocol (VoIP) communications system, a method of managing a communications network in such a system and a program product therefore. The system/network includes an ENERGY STAR (E-star) aware softswitch and E-star compliant communications devices at system endpoints. The E-star aware softswitch allows E-star compliant communications devices to enter and remain in power saving mode. The E-star aware softswitch spools messages and forwards only selected messages (e.g., calls) to the devices in power saving mode. When the E-star compliant communications devices exit power saving mode, the E-star aware softswitch forwards spooled messages.
Directory of Open Access Journals (Sweden)
Supriya Aggarwal
2012-01-01
Full Text Available One of the most important steps in spectral analysis is filtering, where window functions are generally used to design filters. In this paper, we modify the existing architecture for realizing the window functions using CORDIC processor. Firstly, we modify the conventional CORDIC algorithm to reduce its latency and area. The proposed CORDIC algorithm is completely scale-free for the range of convergence that spans the entire coordinate space. Secondly, we realize the window functions using a single CORDIC processor as against two serially connected CORDIC processors in existing technique, thus optimizing it for area and latency. The linear CORDIC processor is replaced by a shift-add network which drastically reduces the number of pipelining stages required in the existing design. The proposed design on an average requires approximately 64% less pipeline stages and saves up to 44.2% area. Currently, the processor is designed to implement Blackman windowing architecture, which with slight modifications can be extended to other widow functions as well. The details of the proposed architecture are discussed in the paper.
Energy Technology Data Exchange (ETDEWEB)
Guerrero Angulo, Jose Oscar [Universidad Autonoma de Sinaloa (Mexico); Arreguin Cortes, Felipe [Instituto Mexicano de Tecnologia del Agua, Jiutepec, Morelos (Mexico)
2002-03-01
This paper presents a hydraulic simulation model for drinking water networks, including elements that are currently not considered household connections, spatially variable flowrate distribution pipelines, and tee secondary network. This model is determined by solving the equations needed for a conventional model following an indirect procedure for the solution of large equations systems. Household connection performance is considered as dependent of water pressure and the way in which users operate the taps of such intakes. This approach allows a better a acquaintance with the drinking water supply networks performance as well as solving problems that demand a more precise hydraulic simulation, such as water quality variations, leaks in networks, and the influence of home water tanks as regulating devices. [Spanish] Se presenta un modelo de simulacion hidraulica para redes de agua potable en el cual se incluyen elementos que no se toman en cuenta actualmente, como las tomas domiciliarias, los tubos de distribucion con gastos espacialmente variado y la red secundaria, resolviendo el numero de ecuaciones que seria necesario plantear en un modelo convencional mediante un procedimiento indirecto para la solucion de grandes sistemas de ecuaciones. En las tomas domiciliarias se considera que su funcionamiento depende de las presiones y la forma en que los usuarios operan las llaves de las mismas. Este planteamiento permite conocer mejor el funcionamiento de las redes de abastecimiento de agua potable y solucionar problemas que requieren de una simulacion hidraulica mas precisa, como el comportamiento de la calidad del agua, las fugas en las redes y la influencia reguladora de los tinacos de las casas.
Scale-Free Brain-Wave Music from Simultaneously EEG and fMRI Recordings
Lu, Jing; Wu, Dan; Yang, Hua; Luo, Cheng; Li, Chaoyi; Yao, Dezhong
2012-01-01
In the past years, a few methods have been developed to translate human EEG to music. In 2009, PloS One 4 e5915, we developed a method to generate scale-free brainwave music where the amplitude of EEG was translated to music pitch according to the power law followed by both of them, the period of an EEG waveform is translated directly to the duration of a note, and the logarithm of the average power change of EEG is translated to music intensity according to the Fechner's law. In this work, we proposed to adopt simultaneously-recorded fMRI signal to control the intensity of the EEG music, thus an EEG-fMRI music is generated by combining two different and simultaneous brain signals. And most importantly, this approach further realized power law for music intensity as fMRI signal follows it. Thus the EEG-fMRI music makes a step ahead in reflecting the physiological process of the scale-free brain. PMID:23166768
Scale-free brain-wave music from simultaneously EEG and fMRI recordings.
Lu, Jing; Wu, Dan; Yang, Hua; Luo, Cheng; Li, Chaoyi; Yao, Dezhong
2012-01-01
In the past years, a few methods have been developed to translate human EEG to music. In 2009, PloS One 4 e5915, we developed a method to generate scale-free brainwave music where the amplitude of EEG was translated to music pitch according to the power law followed by both of them, the period of an EEG waveform is translated directly to the duration of a note, and the logarithm of the average power change of EEG is translated to music intensity according to the Fechner's law. In this work, we proposed to adopt simultaneously-recorded fMRI signal to control the intensity of the EEG music, thus an EEG-fMRI music is generated by combining two different and simultaneous brain signals. And most importantly, this approach further realized power law for music intensity as fMRI signal follows it. Thus the EEG-fMRI music makes a step ahead in reflecting the physiological process of the scale-free brain.
Strawhun, Jenna; Adams, Natasha; Huss, Matthew T
2013-01-01
Because the first antistalking statute was enacted in California in 1990, stalking research has been expanded immensely, yet been largely confined to exploring traditional pursuit tactics. This study instead examined the prevalence and correlates of cyberstalking behaviors while examining the phenomenon in a more inclusive manner than previous studies focusing on cyberstalking by including social networking avenues. In addition to a measure assessing cyberstalking-related behaviors, questionnaires assessing pathological aspects of personality, including attachment style, interpersonal jealousy, interpersonal violence, and anger were also provided to participants. Results indicate that, given preliminary evidence, cyberstalking-related behaviors are related to past measures of traditional stalking and cyberstalking, although prior attachment, jealousy, and violence issues within relationships are significant predictors of cyberstalking-related behaviors. In addition, unexpected gender differences emerged. For example, women admitted greater frequencies of cyberstalking perpetration than males, signaling that further research on frequency and motivation for cyberstalking among the sexes is necessary.
Böbel, A.; Knapek, C. A.; Räth, C.
2018-05-01
Experiments of the recrystallization processes in two-dimensional complex plasmas are analyzed to rigorously test a recently developed scale-free phase transition theory. The "fractal-domain-structure" (FDS) theory is based on the kinetic theory of Frenkel. It assumes the formation of homogeneous domains, separated by defect lines, during crystallization and a fractal relationship between domain area and boundary length. For the defect number fraction and system energy a scale-free power-law relation is predicted. The long-range scaling behavior of the bond-order correlation function shows clearly that the complex plasma phase transitions are not of the Kosterlitz, Thouless, Halperin, Nelson, and Young type. Previous preliminary results obtained by counting the number of dislocations and applying a bond-order metric for structural analysis are reproduced. These findings are supplemented by extending the use of the bond-order metric to measure the defect number fraction and furthermore applying state-of-the-art analysis methods, allowing a systematic testing of the FDS theory with unprecedented scrutiny: A morphological analysis of lattice structure is performed via Minkowski tensor methods. Minkowski tensors form a complete family of additive, motion covariant and continuous morphological measures that are sensitive to nonlinear properties. The FDS theory is rigorously confirmed and predictions of the theory are reproduced extremely well. The predicted scale-free power-law relation between defect fraction number and system energy is verified for one more order of magnitude at high energies compared to the inherently discontinuous bond-order metric. It is found that the fractal relation between crystalline domain area and circumference is independent of the experiment, the particular Minkowski tensor method, and the particular choice of parameters. Thus, the fractal relationship seems to be inherent to two-dimensional phase transitions in complex plasmas. Minkowski
Hysteresis-controlled instability waves in a scale-free driven current sheet model
Directory of Open Access Journals (Sweden)
V. M. Uritsky
2005-01-01
Full Text Available Magnetospheric dynamics is a complex multiscale process whose statistical features can be successfully reproduced using high-dimensional numerical transport models exhibiting the phenomenon of self-organized criticality (SOC. Along this line of research, a 2-dimensional driven current sheet (DCS model has recently been developed that incorporates an idealized current-driven instability with a resistive MHD plasma system (Klimas et al., 2004a, b. The dynamics of the DCS model is dominated by the scale-free diffusive energy transport characterized by a set of broadband power-law distribution functions similar to those governing the evolution of multiscale precipitation regions of energetic particles in the nighttime sector of aurora (Uritsky et al., 2002b. The scale-free DCS behavior is supported by localized current-driven instabilities that can communicate in an avalanche fashion over arbitrarily long distances thus producing current sheet waves (CSW. In this paper, we derive the analytical expression for CSW speed as a function of plasma parameters controlling local anomalous resistivity dynamics. The obtained relation indicates that the CSW propagation requires sufficiently high initial current densities, and predicts a deceleration of CSWs moving from inner plasma sheet regions toward its northern and southern boundaries. We also show that the shape of time-averaged current density profile in the DCS model is in agreement with steady-state spatial configuration of critical avalanching models as described by the singular diffusion theory of the SOC. Over shorter time scales, SOC dynamics is associated with rather complex spatial patterns and, in particular, can produce bifurcated current sheets often seen in multi-satellite observations.
Scale-free brain quartet: artistic filtering of multi-channel brainwave music.
Wu, Dan; Li, Chaoyi; Yao, Dezhong
2013-01-01
To listen to the brain activities as a piece of music, we proposed the scale-free brainwave music (SFBM) technology, which translated scalp EEGs into music notes according to the power law of both EEG and music. In the present study, the methodology was extended for deriving a quartet from multi-channel EEGs with artistic beat and tonality filtering. EEG data from multiple electrodes were first translated into MIDI sequences by SFBM, respectively. Then, these sequences were processed by a beat filter which adjusted the duration of notes in terms of the characteristic frequency. And the sequences were further filtered from atonal to tonal according to a key defined by the analysis of the original music pieces. Resting EEGs with eyes closed and open of 40 subjects were utilized for music generation. The results revealed that the scale-free exponents of the music before and after filtering were different: the filtered music showed larger variety between the eyes-closed (EC) and eyes-open (EO) conditions, and the pitch scale exponents of the filtered music were closer to 1 and thus it was more approximate to the classical music. Furthermore, the tempo of the filtered music with eyes closed was significantly slower than that with eyes open. With the original materials obtained from multi-channel EEGs, and a little creative filtering following the composition process of a potential artist, the resulted brainwave quartet opened a new window to look into the brain in an audible musical way. In fact, as the artistic beat and tonal filters were derived from the brainwaves, the filtered music maintained the essential properties of the brain activities in a more musical style. It might harmonically distinguish the different states of the brain activities, and therefore it provided a method to analyze EEGs from a relaxed audio perspective.
Cascade phenomenon against subsequent failures in complex networks
Jiang, Zhong-Yuan; Liu, Zhi-Quan; He, Xuan; Ma, Jian-Feng
2018-06-01
Cascade phenomenon may lead to catastrophic disasters which extremely imperil the network safety or security in various complex systems such as communication networks, power grids, social networks and so on. In some flow-based networks, the load of failed nodes can be redistributed locally to their neighboring nodes to maximally preserve the traffic oscillations or large-scale cascading failures. However, in such local flow redistribution model, a small set of key nodes attacked subsequently can result in network collapse. Then it is a critical problem to effectively find the set of key nodes in the network. To our best knowledge, this work is the first to study this problem comprehensively. We first introduce the extra capacity for every node to put up with flow fluctuations from neighbors, and two extra capacity distributions including degree based distribution and average distribution are employed. Four heuristic key nodes discovering methods including High-Degree-First (HDF), Low-Degree-First (LDF), Random and Greedy Algorithms (GA) are presented. Extensive simulations are realized in both scale-free networks and random networks. The results show that the greedy algorithm can efficiently find the set of key nodes in both scale-free and random networks. Our work studies network robustness against cascading failures from a very novel perspective, and methods and results are very useful for network robustness evaluations and protections.
International Nuclear Information System (INIS)
Reynolds, A M
2009-01-01
The movement patterns of a diverse range of animals have scale-free characteristics. These characteristics provide necessary but not sufficient conditions for the presence of movement patterns that can be approximated by Levy walks. Nevertheless, it has been widely assumed that the occurrence of scale-free animal movements can indeed be attributed to the presence of Levy walks. This is, in part, because it is known that the super-diffusive properties of Levy walks can be advantageous in random search scenarios when searchers have little or no prior knowledge of target locations. However, fractional Brownian motions (fBms) and fractional Levy motions (fLms) are both scale-free and super-diffusive, and so it is possible that these motions rather than Levy walks underlie some or all occurrences of scale-free animal movement patterns. Here this possibility is examined in numerical simulations through a determination of the searching efficiencies of fBm and fLm searches. It is shown that these searches are less efficient than Levy walk searches. This finding does not rule out the possibility that some animals with scale-free movement patterns are executing fBm and fLm searches, but it does make Levy walk searches the more likely possibility.
Directory of Open Access Journals (Sweden)
C W Lin
2015-03-01
Full Text Available The Visinin-like 1 (VSNL1 gene encodes Visinin-like protein 1, a peripheral biomarker for Alzheimer disease (AD. Little is known, however, about normal VSNL1 expression in brain and the biologic networks in which it participates. Frontal cortex gray matter from 209 subjects without neurodegenerative or psychiatric illness, ranging in age from 16–91, were processed on Affymetrix GeneChip 1.1 ST and Human SNP Array 6.0. VSNL1 expression was unaffected by age and sex, and not significantly associated with SNPs in cis or trans. VSNL1 was significantly co-expressed with genes in pathways for Calcium Signaling, AD, Long Term Potentiation, Long Term Depression, and Trafficking of AMPA Receptors. The association with AD was driven, in part, by correlation with amyloid precursor protein (APP expression. These findings provide an unbiased link between VSNL1 and molecular mechanisms of AD, including pathways implicated in synaptic pathology in AD. Whether APP may drive increased VSNL1 expression, VSNL1 drives increased APP expression, or both are downstream of common pathogenic regulators will need to be evaluated in model systems.
International Nuclear Information System (INIS)
Youngdahl, C.K.; Kot, C.A.
1977-01-01
Pressure pulses in the intermediate sodium system of a liquid-metal-cooled fast breeder reactor, such as may originate from a sodium/water reaction in a steam generator, are propagated through the complex sodium piping network to system components such as the pump and intermediate heat exchanger. To assess the effects of such pulses on continued reliable operation of these components and to contribute to system designs which result in the mitigation of these effects, Pressure Transient Analysis (PTA) computer codes are being developed for accurately computing the transmission of pressure pulses through a complicated fluid transport system, consisting of piping, fittings and junctions, and components. PTA-1 provides an extension of the well-accepted and verified fluid hammer formulation for computing hydraulic transients in elastic or rigid piping systems to include plastic deformation effects. The accuracy of the modeling of pipe plasticity effects on transient propagation has been validated using results from two sets of Stanford Research Institute experiments. Validation of PTA-1 using the latter set of experiments is described briefly. The comparisons of PTA-1 computations with experiments show that (1) elastic-plastic deformation of LMFBR-type piping can have a significant qualitative and quantitative effect on pressure pulse propagation, even in simple systems; (2) classical fluid-hammer theory gives erroneous results when applied to situations where piping deforms plastically; and (3) the computational model incorporated in PTA-1 for predicting plastic deformation and its effect on transient propagation is accurate
Collective fluctuations in networks of noisy components
International Nuclear Information System (INIS)
Masuda, Naoki; Kawamura, Yoji; Kori, Hiroshi
2010-01-01
Collective dynamics result from interactions among noisy dynamical components. Examples include heartbeats, circadian rhythms and various pattern formations. Because of noise in each component, collective dynamics inevitably involve fluctuations, which may crucially affect the functioning of the system. However, the relation between the fluctuations in isolated individual components and those in collective dynamics is not clear. Here, we study a linear dynamical system of networked components subjected to independent Gaussian noise and analytically show that the connectivity of networks determines the intensity of fluctuations in the collective dynamics. Remarkably, in general directed networks including scale-free networks, the fluctuations decrease more slowly with system size than the standard law stated by the central limit theorem. They even remain finite for a large system size when global directionality of the network exists. Moreover, such non-trivial behavior appears even in undirected networks when nonlinear dynamical systems are considered. We demonstrate it with a coupled oscillator system.
U.S. Environmental Protection Agency — The HIGHWAYS layer contains the Highway network, using NAVTEQ Functional Class=1,2,3 which includes major routes between minor cities or towns, and through city...
Barkaoui, Abdelwahed; Chamekh, Abdessalem; Merzouki, Tarek; Hambli, Ridha; Mkaddem, Ali
2014-03-01
The complexity and heterogeneity of bone tissue require a multiscale modeling to understand its mechanical behavior and its remodeling mechanisms. In this paper, a novel multiscale hierarchical approach including microfibril scale based on hybrid neural network (NN) computation and homogenization equations was developed to link nanoscopic and macroscopic scales to estimate the elastic properties of human cortical bone. The multiscale model is divided into three main phases: (i) in step 0, the elastic constants of collagen-water and mineral-water composites are calculated by averaging the upper and lower Hill bounds; (ii) in step 1, the elastic properties of the collagen microfibril are computed using a trained NN simulation. Finite element calculation is performed at nanoscopic levels to provide a database to train an in-house NN program; and (iii) in steps 2-10 from fibril to continuum cortical bone tissue, homogenization equations are used to perform the computation at the higher scales. The NN outputs (elastic properties of the microfibril) are used as inputs for the homogenization computation to determine the properties of mineralized collagen fibril. The mechanical and geometrical properties of bone constituents (mineral, collagen, and cross-links) as well as the porosity were taken in consideration. This paper aims to predict analytically the effective elastic constants of cortical bone by modeling its elastic response at these different scales, ranging from the nanostructural to mesostructural levels. Our findings of the lowest scale's output were well integrated with the other higher levels and serve as inputs for the next higher scale modeling. Good agreement was obtained between our predicted results and literature data. Copyright © 2013 John Wiley & Sons, Ltd.
Directory of Open Access Journals (Sweden)
Go Myong-Hyun
2011-07-01
Full Text Available Abstract Mathematical models are useful tools for understanding and predicting epidemics. A recent innovative modeling study by Stehle and colleagues addressed the issue of how complex models need to be to ensure accuracy. The authors collected data on face-to-face contacts during a two-day conference. They then constructed a series of dynamic social contact networks, each of which was used to model an epidemic generated by a fast-spreading airborne pathogen. Intriguingly, Stehle and colleagues found that increasing model complexity did not always increase accuracy. Specifically, the most detailed contact network and a simplified version of this network generated very similar results. These results are extremely interesting and require further exploration to determine their generalizability. Please see related article BMC Medicine, 2011, 9:87
Blower, Sally; Go, Myong-Hyun
2011-07-19
Mathematical models are useful tools for understanding and predicting epidemics. A recent innovative modeling study by Stehle and colleagues addressed the issue of how complex models need to be to ensure accuracy. The authors collected data on face-to-face contacts during a two-day conference. They then constructed a series of dynamic social contact networks, each of which was used to model an epidemic generated by a fast-spreading airborne pathogen. Intriguingly, Stehle and colleagues found that increasing model complexity did not always increase accuracy. Specifically, the most detailed contact network and a simplified version of this network generated very similar results. These results are extremely interesting and require further exploration to determine their generalizability.
Blower, Sally; Go, Myong-Hyun
2011-01-01
Abstract Mathematical models are useful tools for understanding and predicting epidemics. A recent innovative modeling study by Stehle and colleagues addressed the issue of how complex models need to be to ensure accuracy. The authors collected data on face-to-face contacts during a two-day conference. They then constructed a series of dynamic social contact networks, each of which was used to model an epidemic generated by a fast-spreading airborne pathogen. Intriguingly, Stehle and colleagu...
Complex quantum network geometries: Evolution and phase transitions
Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao
2015-08-01
Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.
Datta, D P
2003-01-01
We show that the generic 1/f spectrum problem acquires a natural explanation in a class of scale free solutions to the ordinary differential equations. We prove the existence and uniqueness of this class of solutions and show how this leads to a nonstandard, fuzzy extension of the ordinary framework of calculus, and hence, that of the classical dynamics and quantum mechanics. The exceptional role of the golden mean irrational number is also explained.
International Nuclear Information System (INIS)
Datta, Dhurjati Prasad
2003-01-01
We show that the generic 1/f spectrum problem acquires a natural explanation in a class of scale free solutions to the ordinary differential equations. We prove the existence and uniqueness of this class of solutions and show how this leads to a nonstandard, fuzzy extension of the ordinary framework of calculus, and hence, that of the classical dynamics and quantum mechanics. The exceptional role of the golden mean irrational number is also explained
Network rewiring dynamics with convergence towards a star network.
Whigham, P A; Dick, G; Parry, M
2016-10-01
Network rewiring as a method for producing a range of structures was first introduced in 1998 by Watts & Strogatz ( Nature 393 , 440-442. (doi:10.1038/30918)). This approach allowed a transition from regular through small-world to a random network. The subsequent interest in scale-free networks motivated a number of methods for developing rewiring approaches that converged to scale-free networks. This paper presents a rewiring algorithm (RtoS) for undirected, non-degenerate, fixed size networks that transitions from regular, through small-world and scale-free to star-like networks. Applications of the approach to models for the spread of infectious disease and fixation time for a simple genetics model are used to demonstrate the efficacy and application of the approach.
Immunization of Epidemics in Multiplex Networks
Zhao, Dawei; Wang, Lianhai; Li, Shudong; Wang, Zhen; Wang, Lin; Gao, Bo
2014-01-01
Up to now, immunization of disease propagation has attracted great attention in both theoretical and experimental researches. However, vast majority of existing achievements are limited to the simple assumption of single layer networked population, which seems obviously inconsistent with recent development of complex network theory: each node could possess multiple roles in different topology connections. Inspired by this fact, we here propose the immunization strategies on multiplex networks, including multiplex node-based random (targeted) immunization and layer node-based random (targeted) immunization. With the theory of generating function, theoretical analysis is developed to calculate the immunization threshold, which is regarded as the most critical index for the effectiveness of addressed immunization strategies. Interestingly, both types of random immunization strategies show more efficiency in controlling disease spreading on multiplex Erdös-Rényi (ER) random networks; while targeted immunization strategies provide better protection on multiplex scale-free (SF) networks. PMID:25401755
Immunization of epidemics in multiplex networks.
Zhao, Dawei; Wang, Lianhai; Li, Shudong; Wang, Zhen; Wang, Lin; Gao, Bo
2014-01-01
Up to now, immunization of disease propagation has attracted great attention in both theoretical and experimental researches. However, vast majority of existing achievements are limited to the simple assumption of single layer networked population, which seems obviously inconsistent with recent development of complex network theory: each node could possess multiple roles in different topology connections. Inspired by this fact, we here propose the immunization strategies on multiplex networks, including multiplex node-based random (targeted) immunization and layer node-based random (targeted) immunization. With the theory of generating function, theoretical analysis is developed to calculate the immunization threshold, which is regarded as the most critical index for the effectiveness of addressed immunization strategies. Interestingly, both types of random immunization strategies show more efficiency in controlling disease spreading on multiplex Erdös-Rényi (ER) random networks; while targeted immunization strategies provide better protection on multiplex scale-free (SF) networks.
Immunization of epidemics in multiplex networks.
Directory of Open Access Journals (Sweden)
Dawei Zhao
Full Text Available Up to now, immunization of disease propagation has attracted great attention in both theoretical and experimental researches. However, vast majority of existing achievements are limited to the simple assumption of single layer networked population, which seems obviously inconsistent with recent development of complex network theory: each node could possess multiple roles in different topology connections. Inspired by this fact, we here propose the immunization strategies on multiplex networks, including multiplex node-based random (targeted immunization and layer node-based random (targeted immunization. With the theory of generating function, theoretical analysis is developed to calculate the immunization threshold, which is regarded as the most critical index for the effectiveness of addressed immunization strategies. Interestingly, both types of random immunization strategies show more efficiency in controlling disease spreading on multiplex Erdös-Rényi (ER random networks; while targeted immunization strategies provide better protection on multiplex scale-free (SF networks.
McAteer, R. T. James
2015-08-01
My soul is spiraling in frozen fractals all around, And one thought crystallizes like an icy blast, I'm never going back, the past is in the past.Elsa, from Disney’s Frozen, characterizes two fundamental aspects of scale-free processes in Nature: fractals are everywhere in space; fractals can be used to probe changes in time. Self-Organized Criticality provides a powerful set of tools to study scale-free processes. It connects spatial fractals (more generically, multifractals) to temporal evolution. The drawback is that this usually results in scale-free, unit-less, indices, which can be difficult to connect to everyday physics. Here, I show a novel method that connects one of the most powerful SOC tools - the wavelet transform modulus maxima approach to calculating multifractality - to one of the most powerful equations in all of physics - Ampere’s law. In doing so I show how the multifractal spectra can be expressed in terms of current density, and how current density can then be used for the prediction of future energy release from such a system.Our physical understanding of the solar magnetic field structure, and hence our ability to predict solar activity, is limited by the type of data currently available. I show that the multifractal spectrum provides a powerful physical connection between the details of photospheric magnetic gradients of current data and the coronal magnetic structure. By decomposing Ampere’s law and comparing it to the wavelet transform modulus maximum method, I show how the scale-free Holder exponent provides a direct measure of current density across all relevant sizes. The prevalence of this current density across various scales is connected to its stability in time, and hence to the ability of the magnetic structure to store and then release energy. Hence (spatial) multifractals inform us of (future) solar activity.Finally I discuss how such an approach can be used in any study of scale-free processes, and highlight the necessary
Epidemic dynamics and endemic states in complex networks
Pastor-Satorras, Romualdo; Vespignani, Alessandro
2001-01-01
We study by analytical methods and large scale simulations a dynamical model for the spreading of epidemics in complex networks. In networks with exponentially bounded connectivity we recover the usual epidemic behavior with a threshold defining a critical point below which the infection prevalence is null. On the contrary, on a wide range of scale-free networks we observe the absence of an epidemic threshold and its associated critical behavior. This implies that scale-free networks are pron...
Molecular ecological network analyses.
Deng, Ye; Jiang, Yi-Huei; Yang, Yunfeng; He, Zhili; Luo, Feng; Zhou, Jizhong
2012-05-30
Understanding the interaction among different species within a community and their responses to environmental changes is a central goal in ecology. However, defining the network structure in a microbial community is very challenging due to their extremely high diversity and as-yet uncultivated status. Although recent advance of metagenomic technologies, such as high throughout sequencing and functional gene arrays, provide revolutionary tools for analyzing microbial community structure, it is still difficult to examine network interactions in a microbial community based on high-throughput metagenomics data. Here, we describe a novel mathematical and bioinformatics framework to construct ecological association networks named molecular ecological networks (MENs) through Random Matrix Theory (RMT)-based methods. Compared to other network construction methods, this approach is remarkable in that the network is automatically defined and robust to noise, thus providing excellent solutions to several common issues associated with high-throughput metagenomics data. We applied it to determine the network structure of microbial communities subjected to long-term experimental warming based on pyrosequencing data of 16 S rRNA genes. We showed that the constructed MENs under both warming and unwarming conditions exhibited topological features of scale free, small world and modularity, which were consistent with previously described molecular ecological networks. Eigengene analysis indicated that the eigengenes represented the module profiles relatively well. In consistency with many other studies, several major environmental traits including temperature and soil pH were found to be important in determining network interactions in the microbial communities examined. To facilitate its application by the scientific community, all these methods and statistical tools have been integrated into a comprehensive Molecular Ecological Network Analysis Pipeline (MENAP), which is open
Emergence of scale-free characteristics in socio-ecological systems with bounded rationality
Kasthurirathna, Dharshana; Piraveenan, Mahendra
2015-01-01
Socio?ecological systems are increasingly modelled by games played on complex networks. While the concept of Nash equilibrium assumes perfect rationality, in reality players display heterogeneous bounded rationality. Here we present a topological model of bounded rationality in socio-ecological systems, using the rationality parameter of the Quantal Response Equilibrium. We argue that system rationality could be measured by the average Kullback?-Leibler divergence between Nash and Quantal Res...
Directory of Open Access Journals (Sweden)
Ernesto Michelangelo Giglio
2011-06-01
Full Text Available O artigo apresenta uma proposta e defesa da inclusão do ator consumidor nos raciocínios e pesquisas sobre redes, a partir da teoria das redes sociais. A proposta decorre da análise e reflexão sobre 82 artigos de redes selecionados, cujos objetivos incluíam o consumidor. Esta análise mostrou que o consumidor está ausente como ator, tanto teoricamente, quanto nas sugestões gerenciais. Seu papel na rede é secundário e são raros os estudos sobre a gestão de sua participação. Entre as causas dessa ausência, destacam-se a dominância de modelos sócio técnicos de redes na bibliografia e o uso de teorias da psicologia do indivíduo, quando se aborda o consumidor, o que se entende como inadequado num raciocínio de redes a partir das redes sociais. Nas conclusões, propõe-se um conjunto de princípios que inclui o consumidor como ator da rede, ampliando o campo de reflexões e de pesquisas da área. --- Proposed Reference Table to Include the Consumer in Network Concepts --- Abstract --- The article presents a model that includes the consumer in the principles and research on networks, using the concepts of social networks. The model arises from the analysis and reflections of 82 articles about networks, whose objectives included the consumer. It showed that he/she is absent as an actor in both theoretically and management proposals. His/her role in the network is secondary and there are few studies into the management of his/her participation. Among the causes of this absence we identify the dominance of socio-technical models in the bibliography and the use of theories of individual psychology, which are inadequate in a reasoning of social networks. Finally we propose a set of principles that includes the consumer as an actor in a network, widening the reflections and research in this area.
The impact of awareness on epidemic spreading in networks.
Wu, Qingchu; Fu, Xinchu; Small, Michael; Xu, Xin-Jian
2012-03-01
We explore the impact of awareness on epidemic spreading through a population represented by a scale-free network. Using a network mean-field approach, a mathematical model for epidemic spreading with awareness reactions is proposed and analyzed. We focus on the role of three forms of awareness including local, global, and contact awareness. By theoretical analysis and simulation, we show that the global awareness cannot decrease the likelihood of an epidemic outbreak while both the local awareness and the contact awareness can. Also, the influence degree of the local awareness on disease dynamics is closely related with the contact awareness.
Directory of Open Access Journals (Sweden)
Andy M Reynolds
2007-04-01
Full Text Available During their trajectories in still air, fruit flies (Drosophila melanogaster explore their landscape using a series of straight flight paths punctuated by rapid 90 degrees body-saccades [1]. Some saccades are triggered by visual expansion associated with collision avoidance. Yet many saccades are not triggered by visual cues, but rather appear spontaneously. Our analysis reveals that the control of these visually independent saccades and the flight intervals between them constitute an optimal scale-free active searching strategy. Two characteristics of mathematical optimality that are apparent during free-flight in Drosophila are inter-saccade interval lengths distributed according to an inverse square law, which does not vary across landscape scale, and 90 degrees saccade angles, which increase the likelihood that territory will be revisited and thereby reduce the likelihood that near-by targets will be missed. We also show that searching is intermittent, such that active searching phases randomly alternate with relocation phases. Behaviorally, this intermittency is reflected in frequently occurring short, slow speed inter-saccade intervals randomly alternating with rarer, longer, faster inter-saccade intervals. Searching patterns that scale similarly across orders of magnitude of length (i.e., scale-free have been revealed in animals as diverse as microzooplankton, bumblebees, albatrosses, and spider monkeys, but these do not appear to be optimised with respect to turning angle, whereas Drosophila free-flight search does. Also, intermittent searching patterns, such as those reported here for Drosophila, have been observed in foragers such as planktivorous fish and ground foraging birds. Our results with freely flying Drosophila may constitute the first reported example of searching behaviour that is both scale-free and intermittent.
Directory of Open Access Journals (Sweden)
Kazuo eNakashima
2014-05-01
Full Text Available Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs are master regulators of gene expression. ABRE-binding protein (AREB and ABRE-binding factor (ABF TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein (DREB TFs and NAC TFs are also involved in stress responses including drought, heat and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these transcription factors in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.
Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo
2014-01-01
Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA) is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs) are master regulators of gene expression. ABRE-binding protein and ABRE-binding factor TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein TFs and NAC TFs are also involved in stress responses including drought, heat, and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these TFs in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.
Biased trapping issue on weighted hierarchical networks
Indian Academy of Sciences (India)
archical networks which are based on the classic scale-free hierarchical networks. ... Weighted hierarchical networks; weight-dependent walks; mean first passage ..... The weighted networks can mimic some real-world natural and social systems to ... the Priority Academic Program Development of Jiangsu Higher Education ...
Bhaskar, A. T.; Vichare, G.
2017-12-01
Here, an attempt is made to develop a prediction model for SYMH and ASYH geomagnetic indices using Artificial Neural Network (ANN). SYMH and ASYH indices represent longitudinal symmetric and asymmetric component of the ring current. The ring current state depends on its past conditions therefore, it is necessary to consider its history for prediction. To account this effect Nonlinear Autoregressive Network with eXogenous inputs (NARX) is implemented. This network considers input history of 30 minutes and output feedback of 120 minutes. Solar wind parameters mainly velocity, density and interplanetary magnetic field are used as inputs. SYMH and ASYH indices during geomagnetic storms of 1998-2013, having minimum SYMH training two independent networks. We present the prediction of SYMH and ASYH indices during 9 geomagnetic storms of solar cycle 24 including the recent largest storm occurred on St. Patrick's day, 2015. The present prediction model reproduces the entire time profile of SYMH and ASYH indices along with small variations of 10-30 minutes to good extent within noise level, indicating significant contribution of interplanetary sources and past state of the magnetosphere. However, during the main phase of major storms, residuals (observed-modeled) are found to be large, suggesting influence of internal factors such as magnetospheric processes.
Maximum entropy networks are more controllable than preferential attachment networks
International Nuclear Information System (INIS)
Hou, Lvlin; Small, Michael; Lao, Songyang
2014-01-01
A maximum entropy (ME) method to generate typical scale-free networks has been recently introduced. We investigate the controllability of ME networks and Barabási–Albert preferential attachment networks. Our experimental results show that ME networks are significantly more easily controlled than BA networks of the same size and the same degree distribution. Moreover, the control profiles are used to provide insight into control properties of both classes of network. We identify and classify the driver nodes and analyze the connectivity of their neighbors. We find that driver nodes in ME networks have fewer mutual neighbors and that their neighbors have lower average degree. We conclude that the properties of the neighbors of driver node sensitively affect the network controllability. Hence, subtle and important structural differences exist between BA networks and typical scale-free networks of the same degree distribution. - Highlights: • The controllability of maximum entropy (ME) and Barabási–Albert (BA) networks is investigated. • ME networks are significantly more easily controlled than BA networks of the same degree distribution. • The properties of the neighbors of driver node sensitively affect the network controllability. • Subtle and important structural differences exist between BA networks and typical scale-free networks
Energy Technology Data Exchange (ETDEWEB)
Kuhlemann, Verena [Emory Univ., Atlanta, GA (United States); Vassilevski, Panayot S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2013-10-28
Matrix-vector multiplication is the key operation in any Krylov-subspace iteration method. We are interested in Krylov methods applied to problems associated with the graph Laplacian arising from large scale-free graphs. Furthermore, computations with graphs of this type on parallel distributed-memory computers are challenging. This is due to the fact that scale-free graphs have a degree distribution that follows a power law, and currently available graph partitioners are not efficient for such an irregular degree distribution. The lack of a good partitioning leads to excessive interprocessor communication requirements during every matrix-vector product. Here, we present an approach to alleviate this problem based on embedding the original irregular graph into a more regular one by disaggregating (splitting up) vertices in the original graph. The matrix-vector operations for the original graph are performed via a factored triple matrix-vector product involving the embedding graph. And even though the latter graph is larger, we are able to decrease the communication requirements considerably and improve the performance of the matrix-vector product.
Reciprocity and the Emergence of Power Laws in Social Networks
Schnegg, Michael
Research in network science has shown that many naturally occurring and technologically constructed networks are scale free, that means a power law degree distribution emerges from a growth model in which each new node attaches to the existing network with a probability proportional to its number of links (= degree). Little is known about whether the same principles of local attachment and global properties apply to societies as well. Empirical evidence from six ethnographic case studies shows that complex social networks have significantly lower scaling exponents γ ~ 1 than have been assumed in the past. Apparently humans do not only look for the most prominent players to play with. Moreover cooperation in humans is characterized through reciprocity, the tendency to give to those from whom one has received in the past. Both variables — reciprocity and the scaling exponent — are negatively correlated (r = -0.767, sig = 0.075). If we include this effect in simulations of growing networks, degree distributions emerge that are much closer to those empirically observed. While the proportion of nodes with small degrees decreases drastically as we introduce reciprocity, the scaling exponent is more robust and changes only when a relatively large proportion of attachment decisions follow this rule. If social networks are less scale free than previously assumed this has far reaching implications for policy makers, public health programs and marketing alike.
Squids old and young: Scale-free design for a simple billboard
Packard, Andrew
2011-03-01
Squids employ a large range of brightness-contrast spatial frequencies in their camouflage and signalling displays. The 'billboard' of coloured elements ('spots'=chromatophore organs) in the skin is built autopoietically-probably by lateral inhibitory processes-and enlarges as much as 10,000-fold during development. The resulting two-dimensional array is a fractal-like colour/size hierarchy lying in several layers of a multilayered network. Dynamic control of the array by muscles and nerves produces patterns that recall 'half-tone' processing (cf. ink-jet printer). In the more sophisticated (loliginid) squids, patterns also combine 'continuous tones' (cf. dye-sublimation printer). Physiologists and engineers can exploit the natural colour-coding of the integument to understand nerve and muscle system dynamics, examined here at the level of the ensemble. Integrative functions of the whole (H) are analysed in terms of the power spectrum within and between ensembles and of spontaneous waves travelling through the billboard. Video material may be obtained from the author at the above address.
Exploring network operations for data and information networks
Yao, Bing; Su, Jing; Ma, Fei; Wang, Xiaomin; Zhao, Xiyang; Yao, Ming
2017-01-01
Barabási and Albert, in 1999, formulated scale-free models based on some real networks: World-Wide Web, Internet, metabolic and protein networks, language or sexual networks. Scale-free networks not only appear around us, but also have high qualities in the world. As known, high quality information networks can transfer feasibly and efficiently data, clearly, their topological structures are very important for data safety. We build up network operations for constructing large scale of dynamic networks from smaller scale of network models having good property and high quality. We focus on the simplest operators to formulate complex operations, and are interesting on the closeness of operations to desired network properties.
Pacemaker-driven stochastic resonance on diffusive and complex networks of bistable oscillators
Energy Technology Data Exchange (ETDEWEB)
Perc, Matjaz; Gosak, Marko [Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroska cesta 160, SI-2000 Maribor (Slovenia)], E-mail: matjaz.perc@uni-mb.si
2008-05-15
We study the phenomenon of stochastic resonance on diffusive, small-world and scale-free networks consisting of bistable overdamped oscillators. Important thereby is the fact that the external subthreshold periodic forcing is introduced only to a single oscillator of the network. Hence, the forcing acts as a pacemaker trying to impose its rhythm on the whole network through the unit to which it is introduced. Without the addition of additive spatiotemporal noise, however, the whole network, including the unit that is directly exposed to the pacemaker, remains trapped forever in one of the two stable steady states of the local dynamics. We show that the correlation between the frequency of subthreshold pacemaker activity and the response of the network is resonantly dependent on the intensity of additive noise. The reported pacemaker-driven stochastic resonance depends most significantly on the coupling strength and the underlying network structure. Namely, the outreach of the pacemaker obeys the classic diffusion law in the case of nearest-neighbor interactions, thus being proportional to the square root of the coupling strength, whereas it becomes superdiffusive by an appropriate small-world or scale-free topology of the interaction network. In particular, the scale-free topology is identified as being optimal for the dissemination of localized rhythmic activity across the whole network. Also, we show that the ratio between the clustering coefficient and the characteristic path length is the crucial quantity defining the ability of a small-world network to facilitate the outreach of the pacemaker-emitted subthreshold rhythm. We additionally confirm these findings by using the FitzHugh-Nagumo excitable system as an alternative to the bistable overdamped oscillator.
Pacemaker-driven stochastic resonance on diffusive and complex networks of bistable oscillators
International Nuclear Information System (INIS)
Perc, Matjaz; Gosak, Marko
2008-01-01
We study the phenomenon of stochastic resonance on diffusive, small-world and scale-free networks consisting of bistable overdamped oscillators. Important thereby is the fact that the external subthreshold periodic forcing is introduced only to a single oscillator of the network. Hence, the forcing acts as a pacemaker trying to impose its rhythm on the whole network through the unit to which it is introduced. Without the addition of additive spatiotemporal noise, however, the whole network, including the unit that is directly exposed to the pacemaker, remains trapped forever in one of the two stable steady states of the local dynamics. We show that the correlation between the frequency of subthreshold pacemaker activity and the response of the network is resonantly dependent on the intensity of additive noise. The reported pacemaker-driven stochastic resonance depends most significantly on the coupling strength and the underlying network structure. Namely, the outreach of the pacemaker obeys the classic diffusion law in the case of nearest-neighbor interactions, thus being proportional to the square root of the coupling strength, whereas it becomes superdiffusive by an appropriate small-world or scale-free topology of the interaction network. In particular, the scale-free topology is identified as being optimal for the dissemination of localized rhythmic activity across the whole network. Also, we show that the ratio between the clustering coefficient and the characteristic path length is the crucial quantity defining the ability of a small-world network to facilitate the outreach of the pacemaker-emitted subthreshold rhythm. We additionally confirm these findings by using the FitzHugh-Nagumo excitable system as an alternative to the bistable overdamped oscillator
Unified Model for Generation Complex Networks with Utility Preferential Attachment
International Nuclear Information System (INIS)
Wu Jianjun; Gao Ziyou; Sun Huijun
2006-01-01
In this paper, based on the utility preferential attachment, we propose a new unified model to generate different network topologies such as scale-free, small-world and random networks. Moreover, a new network structure named super scale network is found, which has monopoly characteristic in our simulation experiments. Finally, the characteristics of this new network are given.
Energy Technology Data Exchange (ETDEWEB)
Rasgado Casique, Jose Pepe; Silva Farias, Jose Luis [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: jrasgado@iie.org.mx; jlsilva@iie.org.mx
2010-11-15
This article presents a methodology for conducting electrical studies in industrial networks. The methodology included the study of arc flash as a very important area of current basic electrical studies, such as power flow, short circuit and coordination. The aim of this study is to determine the Personal Protective Equipment (PPE) and flash protection boundary for personnel working with or near energized equipment, based on the IEEE Std 1584-2004 and NFPA-70E- 2004. Also included are criteria and recommendations to reduce incident energy level (cal/cm{sup 2}). At work we used a distribution network for industrial type test. The studies were carried out using a commercial program for the analysis of electrical networks. [Spanish] En este articulo se presenta una metodologia para llevar a cabo los estudios electricos en redes industriales. En la metodologia se incluye al estudio de arco electrico como un area muy importante de los estudios electricos basicos actuales, como: flujos de potencia, cortocircuito y coordinacion de protecciones. El objetivo de dicho estudio es determinar el Equipo de Proteccion Personal (EPP) apropiado y los limites de proteccion para el personal que opera con o cerca de equipo energizado, con base en las normas IEEE Std. 1584-2004 y la NFPA-70E-2004. Ademas, se incluyen criterios y recomendaciones para disminuir el nivel de energia incidente (cal/cm{sup 2}). En el trabajo se utilizo una red de distribucion tipo industrial de prueba. Los estudios se llevaron a cabo utilizando un programa comercial para el analisis de redes electricas.
Systematic network assessment of the carcinogenic activities of cadmium
International Nuclear Information System (INIS)
Chen, Peizhan; Duan, Xiaohua; Li, Mian; Huang, Chao; Li, Jingquan; Chu, Ruiai; Ying, Hao; Song, Haiyun; Jia, Xudong; Ba, Qian; Wang, Hui
2016-01-01
Cadmium has been defined as type I carcinogen for humans, but the underlying mechanisms of its carcinogenic activity and its influence on protein-protein interactions in cells are not fully elucidated. The aim of the current study was to evaluate, systematically, the carcinogenic activity of cadmium with systems biology approaches. From a literature search of 209 studies that performed with cellular models, 208 proteins influenced by cadmium exposure were identified. All of these were assessed by Western blotting and were recognized as key nodes in network analyses. The protein-protein functional interaction networks were constructed with NetBox software and visualized with Cytoscape software. These cadmium-rewired genes were used to construct a scale-free, highly connected biological protein interaction network with 850 nodes and 8770 edges. Of the network, nine key modules were identified and 60 key signaling pathways, including the estrogen, RAS, PI3K-Akt, NF-κB, HIF-1α, Jak-STAT, and TGF-β signaling pathways, were significantly enriched. With breast cancer, colorectal and prostate cancer cellular models, we validated the key node genes in the network that had been previously reported or inferred form the network by Western blotting methods, including STAT3, JNK, p38, SMAD2/3, P65, AKT1, and HIF-1α. These results suggested the established network was robust and provided a systematic view of the carcinogenic activities of cadmium in human. - Highlights: • A cadmium-influenced network with 850 nodes and 8770 edges was established. • The cadmium-rewired gene network was scale-free and highly connected. • Nine modules were identified, and 60 key signaling pathways related to cadmium-induced carcinogenesis were found. • Key mediators in the network were validated in multiple cellular models.
Systematic network assessment of the carcinogenic activities of cadmium
Energy Technology Data Exchange (ETDEWEB)
Chen, Peizhan; Duan, Xiaohua; Li, Mian; Huang, Chao [Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Li, Jingquan; Chu, Ruiai; Ying, Hao; Song, Haiyun [Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing (China); Jia, Xudong [Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing (China); Ba, Qian, E-mail: qba@sibs.ac.cn [Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing (China); Wang, Hui, E-mail: huiwang@sibs.ac.cn [Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing (China); School of Life Science and Technology, ShanghaiTech University, Shanghai (China)
2016-11-01
Cadmium has been defined as type I carcinogen for humans, but the underlying mechanisms of its carcinogenic activity and its influence on protein-protein interactions in cells are not fully elucidated. The aim of the current study was to evaluate, systematically, the carcinogenic activity of cadmium with systems biology approaches. From a literature search of 209 studies that performed with cellular models, 208 proteins influenced by cadmium exposure were identified. All of these were assessed by Western blotting and were recognized as key nodes in network analyses. The protein-protein functional interaction networks were constructed with NetBox software and visualized with Cytoscape software. These cadmium-rewired genes were used to construct a scale-free, highly connected biological protein interaction network with 850 nodes and 8770 edges. Of the network, nine key modules were identified and 60 key signaling pathways, including the estrogen, RAS, PI3K-Akt, NF-κB, HIF-1α, Jak-STAT, and TGF-β signaling pathways, were significantly enriched. With breast cancer, colorectal and prostate cancer cellular models, we validated the key node genes in the network that had been previously reported or inferred form the network by Western blotting methods, including STAT3, JNK, p38, SMAD2/3, P65, AKT1, and HIF-1α. These results suggested the established network was robust and provided a systematic view of the carcinogenic activities of cadmium in human. - Highlights: • A cadmium-influenced network with 850 nodes and 8770 edges was established. • The cadmium-rewired gene network was scale-free and highly connected. • Nine modules were identified, and 60 key signaling pathways related to cadmium-induced carcinogenesis were found. • Key mediators in the network were validated in multiple cellular models.
Pheromone Static Routing Strategy for Complex Networks
Hu, Mao-Bin; Henry, Y. K. Lau; Ling, Xiang; Jiang, Rui
2012-12-01
We adopt the concept of using pheromones to generate a set of static paths that can reach the performance of global dynamic routing strategy [Phys. Rev. E 81 (2010) 016113]. The path generation method consists of two stages. In the first stage, a pheromone is dropped to the nodes by packets forwarded according to the global dynamic routing strategy. In the second stage, pheromone static paths are generated according to the pheromone density. The output paths can greatly improve traffic systems' overall capacity on different network structures, including scale-free networks, small-world networks and random graphs. Because the paths are static, the system needs much less computational resources than the global dynamic routing strategy.
Veroniki, Areti Angeliki; Straus, Sharon E; Fyraridis, Alexandros; Tricco, Andrea C
2016-08-01
To present a novel and simple graphical approach to improve the presentation of the treatment ranking in a network meta-analysis (NMA) including multiple outcomes. NMA simultaneously compares many relevant interventions for a clinical condition from a network of trials, and allows ranking of the effectiveness and/or safety of each intervention. There are numerous ways to present the NMA results, which can challenge their interpretation by research users. The rank-heat plot is a novel graph that can be used to quickly recognize which interventions are most likely the best or worst interventions with respect to their effectiveness and/or safety for a single or multiple outcome(s) and may increase interpretability. Using empirical NMAs, we show that the need for a concise and informative presentation of results is imperative, particularly as the number of competing treatments and outcomes in an NMA increases. The rank-heat plot is an efficient way to present the results of ranking statistics, particularly when a large amount of data is available, and it is targeted to users from various backgrounds. Copyright © 2016 Elsevier Inc. All rights reserved.
Lucchin, Francesco; Matarrese, Sabino; Melott, Adrian L.; Moscardini, Lauro
1994-01-01
We calculate reduced moments (xi bar)(sub q) of the matter density fluctuations, up to order q = 5, from counts in cells produced by particle-mesh numerical simulations with scale-free Gaussian initial conditions. We use power-law spectra P(k) proportional to k(exp n) with indices n = -3, -2, -1, 0, 1. Due to the supposed absence of characteristic times or scales in our models, all quantities are expected to depend on a single scaling variable. For each model, the moments at all times can be expressed in terms of the variance (xi bar)(sub 2), alone. We look for agreement with the hierarchical scaling ansatz, according to which ((xi bar)(sub q)) proportional to ((xi bar)(sub 2))(exp (q - 1)). For n less than or equal to -2 models, we find strong deviations from the hierarchy, which are mostly due to the presence of boundary problems in the simulations. A small, residual signal of deviation from the hierarchical scaling is however also found in n greater than or equal to -1 models. The wide range of spectra considered and the large dynamic range, with careful checks of scaling and shot-noise effects, allows us to reliably detect evolution away from the perturbation theory result.
Pinning synchronization of delayed complex dynamical networks with nonlinear coupling
Cheng, Ranran; Peng, Mingshu; Yu, Weibin
2014-11-01
In this paper, we find that complex networks with the Watts-Strogatz or scale-free BA random topological architecture can be synchronized more easily by pin-controlling fewer nodes than regular systems. Theoretical analysis is included by means of Lyapunov functions and linear matrix inequalities (LMI) to make all nodes reach complete synchronization. Numerical examples are also provided to illustrate the importance of our theoretical analysis, which implies that there exists a gap between the theoretical prediction and numerical results about the minimum number of pinning controlled nodes.
Directory of Open Access Journals (Sweden)
Deussing Jan M
2010-10-01
Full Text Available Abstract Background The pivotal role of stress in the precipitation of psychiatric diseases such as depression is generally accepted. This study aims at the identification of genes that are directly or indirectly responding to stress. Inbred mouse strains that had been evidenced to differ in their stress response as well as in their response to antidepressant treatment were chosen for RNA profiling after stress exposure. Gene expression and regulation was determined by microarray analyses and further evaluated by bioinformatics tools including pathway and cluster analyses. Results Forced swimming as acute stressor was applied to C57BL/6J and DBA/2J mice and resulted in sets of regulated genes in the paraventricular nucleus of the hypothalamus (PVN, 4 h or 8 h after stress. Although the expression changes between the mouse strains were quite different, they unfolded in phases over time in both strains. Our search for connections between the regulated genes resulted in potential novel signalling pathways in stress. In particular, Guanine nucleotide binding protein, alpha inhibiting 2 (GNAi2 and Amyloid β (A4 precursor protein (APP were detected as stress-regulated genes, and together with other genes, seem to be integrated into stress-responsive pathways and gene networks in the PVN. Conclusions This search for stress-regulated genes in the PVN revealed its impact on interesting genes (GNAi2 and APP and a novel gene network. In particular the expression of APP in the PVN that is governing stress hormone balance, is of great interest. The reported neuroprotective role of this molecule in the CNS supports the idea that a short acute stress can elicit positive adaptational effects in the brain.
DEFF Research Database (Denmark)
Brewka, Lukasz Jerzy; Gavler, Anders; Wessing, Henrik
2012-01-01
of the network where quality of service signaling is bridged. This article proposes strategies for generalized multi-protocol label switching control over next emerging passive optical network standard, i.e., the 10-gigabit-capable passive optical network. Node management and resource allocation approaches...... are discussed, and possible issues are raised. The analysis shows that consideration of a 10-gigabit-capable passive optical network as a generalized multi-protocol label switching controlled domain is valid and may advance end-to-end quality of service provisioning for passive optical network based customers.......End-to-end quality of service provisioning is still a challenging task despite many years of research and development in this area. Considering a generalized multi-protocol label switching based core/metro network and resource reservation protocol capable home gateways, it is the access part...
Robustness and structure of complex networks
Shao, Shuai
This dissertation covers the two major parts of my PhD research on statistical physics and complex networks: i) modeling a new type of attack -- localized attack, and investigating robustness of complex networks under this type of attack; ii) discovering the clustering structure in complex networks and its influence on the robustness of coupled networks. Complex networks appear in every aspect of our daily life and are widely studied in Physics, Mathematics, Biology, and Computer Science. One important property of complex networks is their robustness under attacks, which depends crucially on the nature of attacks and the structure of the networks themselves. Previous studies have focused on two types of attack: random attack and targeted attack, which, however, are insufficient to describe many real-world damages. Here we propose a new type of attack -- localized attack, and study the robustness of complex networks under this type of attack, both analytically and via simulation. On the other hand, we also study the clustering structure in the network, and its influence on the robustness of a complex network system. In the first part, we propose a theoretical framework to study the robustness of complex networks under localized attack based on percolation theory and generating function method. We investigate the percolation properties, including the critical threshold of the phase transition pc and the size of the giant component Pinfinity. We compare localized attack with random attack and find that while random regular (RR) networks are more robust against localized attack, Erdoḧs-Renyi (ER) networks are equally robust under both types of attacks. As for scale-free (SF) networks, their robustness depends crucially on the degree exponent lambda. The simulation results show perfect agreement with theoretical predictions. We also test our model on two real-world networks: a peer-to-peer computer network and an airline network, and find that the real-world networks
Network topology and interbank credit risk
International Nuclear Information System (INIS)
González-Avella, Juan Carlos; Hoffmann de Quadros, Vanessa; Iglesias, José Roberto
2016-01-01
Modern financial systems are greatly entangled. They exhibit a complex interdependence, including a network of bilateral exposures in the interbank market. The most frequent interaction consists in operations where institutions with surplus liquidity lend to those with a liquidity shortage. These loans may be interpreted as links between the banks and the links display features in some way representative of scale-free networks. While the interbank market is responsible for efficient liquidity allocation, it also introduces the possibility for systemic risk via financial contagion. Insolvency of one bank can propagate through links leading to insolvency of other banks. In this paper, we explore the characteristics of financial contagion in interbank networks whose distribution of links approaches a power law, as well as we improve previous models by introducing a simple mechanism to describe banks’ balance sheets, that are obtained from information on network connectivity. By varying the parameters for the creation of the network, several interbank networks are built, in which the concentration of debt and credit comes from the distribution of links. The results suggest that more connected networks that have a high concentration of credit are more resilient to contagion than other types of networks analyzed.
Unemo, Magnus; Ison, Catherine A; Cole, Michelle; Spiteri, Gianfranco; van de Laar, Marita; Khotenashvili, Lali
2013-12-01
Antimicrobial resistance (AMR) in Neisseria gonorrhoeae has emerged for essentially all antimicrobials following their introduction into clinical practice. During the latest decade, susceptibility to the last remaining options for antimicrobial monotherapy, the extended-spectrum cephalosporins (ESC), has markedly decreased internationally and treatment failures with these ESCs have been verified. In response to this developing situation, WHO and the European Centre for Disease Prevention and Control (ECDC) have published global and region-specific response plans, respectively. One main component of these action/response plans is to enhance the surveillance of AMR and treatment failures. This paper describes the perspectives from the diverse WHO European Region (53 countries), including the independent countries of the former Soviet Union, regarding gonococcal AMR surveillance networks. The WHO European Region has a high prevalence of resistance to all previously recommended antimicrobials, and most of the first strictly verified treatment failures with cefixime and ceftriaxone were also reported from Europe. In the European Union/European Economic Area (EU/EEA), the European gonococcal antimicrobial surveillance programme (Euro-GASP) funded by the ECDC is running. In 2011, the Euro-GASP included 21/31 (68%) EU/EEA countries, and the programme is further strengthened annually. However, in the non-EU/EEA countries, internationally reported and quality assured gonococcal AMR data are lacking in 87% of the countries and, worryingly, appropriate support for establishment of a GASP is still lacking. Accordingly, national and international support, including political and financial commitment, for gonococcal AMR surveillance in the non-EU/EEA countries of the WHO European Region is essential.
A neighbourhood evolving network model
International Nuclear Information System (INIS)
Cao, Y.J.; Wang, G.Z.; Jiang, Q.Y.; Han, Z.X.
2006-01-01
Many social, technological, biological and economical systems are best described by evolved network models. In this short Letter, we propose and study a new evolving network model. The model is based on the new concept of neighbourhood connectivity, which exists in many physical complex networks. The statistical properties and dynamics of the proposed model is analytically studied and compared with those of Barabasi-Albert scale-free model. Numerical simulations indicate that this network model yields a transition between power-law and exponential scaling, while the Barabasi-Albert scale-free model is only one of its special (limiting) cases. Particularly, this model can be used to enhance the evolving mechanism of complex networks in the real world, such as some social networks development
Persistent homology of complex networks
International Nuclear Information System (INIS)
Horak, Danijela; Maletić, Slobodan; Rajković, Milan
2009-01-01
Long-lived topological features are distinguished from short-lived ones (considered as topological noise) in simplicial complexes constructed from complex networks. A new topological invariant, persistent homology, is determined and presented as a parameterized version of a Betti number. Complex networks with distinct degree distributions exhibit distinct persistent topological features. Persistent topological attributes, shown to be related to the robust quality of networks, also reflect the deficiency in certain connectivity properties of networks. Random networks, networks with exponential connectivity distribution and scale-free networks were considered for homological persistency analysis
Deployment of check-in nodes in complex networks
Jiang, Zhong-Yuan; Ma, Jian-Feng
2017-01-01
In many real complex networks such as the city road networks and highway networks, vehicles often have to pass through some specially functioned nodes to receive check-in like services such as gas supplement at gas stations. Based on existing network structures, to guarantee every shortest path including at least a check-in node, the location selection of all check-in nodes is very essential and important to make vehicles to easily visit these check-in nodes, and it is still remains an open problem in complex network studies. In this work, we aim to find possible solutions for this problem. We first convert it into a set cover problem which is NP-complete and propose to employ the greedy algorithm to achieve an approximate result. Inspired by heuristic information of network structure, we discuss other four check-in node location deployment methods including high betweenness first (HBF), high degree first (HDF), random and low degree first (LDF). Finally, we compose extensive simulations in classical scale-free networks, random networks and real network models, and the results can well confirm the effectiveness of the greedy algorithm. This work has potential applications into many real networks.
Percolation of interdependent network of networks
International Nuclear Information System (INIS)
Havlin, Shlomo; Stanley, H. Eugene; Bashan, Amir; Gao, Jianxi; Kenett, Dror Y.
2015-01-01
Complex networks appear in almost every aspect of science and technology. Previous work in network theory has focused primarily on analyzing single networks that do not interact with other networks, despite the fact that many real-world networks interact with and depend on each other. Very recently an analytical framework for studying the percolation properties of interacting networks has been introduced. Here we review the analytical framework and the results for percolation laws for a Network Of Networks (NONs) formed by n interdependent random networks. The percolation properties of a network of networks differ greatly from those of single isolated networks. In particular, because the constituent networks of a NON are connected by node dependencies, a NON is subject to cascading failure. When there is strong interdependent coupling between networks, the percolation transition is discontinuous (first-order) phase transition, unlike the well-known continuous second-order transition in single isolated networks. Moreover, although networks with broader degree distributions, e.g., scale-free networks, are more robust when analyzed as single networks, they become more vulnerable in a NON. We also review the effect of space embedding on network vulnerability. It is shown that for spatially embedded networks any finite fraction of dependency nodes will lead to abrupt transition
Epidemic dynamics and endemic states in complex networks
Pastor-Satorras, Romualdo; Vespignani, Alessandro
2001-06-01
We study by analytical methods and large scale simulations a dynamical model for the spreading of epidemics in complex networks. In networks with exponentially bounded connectivity we recover the usual epidemic behavior with a threshold defining a critical point below that the infection prevalence is null. On the contrary, on a wide range of scale-free networks we observe the absence of an epidemic threshold and its associated critical behavior. This implies that scale-free networks are prone to the spreading and the persistence of infections whatever spreading rate the epidemic agents might possess. These results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks.
Epidemic dynamics and endemic states in complex networks
International Nuclear Information System (INIS)
Pastor-Satorras, Romualdo; Vespignani, Alessandro
2001-01-01
We study by analytical methods and large scale simulations a dynamical model for the spreading of epidemics in complex networks. In networks with exponentially bounded connectivity we recover the usual epidemic behavior with a threshold defining a critical point below that the infection prevalence is null. On the contrary, on a wide range of scale-free networks we observe the absence of an epidemic threshold and its associated critical behavior. This implies that scale-free networks are prone to the spreading and the persistence of infections whatever spreading rate the epidemic agents might possess. These results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks
Identification of global oil trade patterns: An empirical research based on complex network theory
International Nuclear Information System (INIS)
Ji, Qiang; Zhang, Hai-Ying; Fan, Ying
2014-01-01
Highlights: • A global oil trade core network is analyzed using complex network theory. • The global oil export core network displays a scale-free behaviour. • The current global oil trade network can be divided into three trading blocs. • The global oil trade network presents a ‘robust and yet fragile’ characteristic. - Abstract: The Global oil trade pattern becomes increasingly complex, which has become one of the most important factors affecting every country’s energy strategy and economic development. In this paper, a global oil trade core network is constructed to analyze the overall features, regional characteristics and stability of the oil trade using complex network theory. The results indicate that the global oil export core network displays a scale-free behaviour, in which the trade position of nodes presents obvious heterogeneity and the ‘hub nodes’ play a ‘bridge’ role in the formation process of the trade network. The current global oil trade network can be divided into three trading blocs, including the ‘South America-West Africa-North America’ trading bloc, the ‘Middle East–Asian–Pacific region’ trading bloc, and ‘the former Soviet Union–North Africa–Europe’ trading bloc. Geopolitics and diplomatic relations are the two main reasons for this regional oil trade structure. Moreover, the global oil trade network presents a ‘robust but yet fragile’ characteristic, and the impacts of trade interruption always tend to spread throughout the whole network even if the occurrence of export disruptions is localised
Bianconi, Ginestra
2009-03-01
In this paper we generalize the concept of random networks to describe network ensembles with nontrivial features by a statistical mechanics approach. This framework is able to describe undirected and directed network ensembles as well as weighted network ensembles. These networks might have nontrivial community structure or, in the case of networks embedded in a given space, they might have a link probability with a nontrivial dependence on the distance between the nodes. These ensembles are characterized by their entropy, which evaluates the cardinality of networks in the ensemble. In particular, in this paper we define and evaluate the structural entropy, i.e., the entropy of the ensembles of undirected uncorrelated simple networks with given degree sequence. We stress the apparent paradox that scale-free degree distributions are characterized by having small structural entropy while they are so widely encountered in natural, social, and technological complex systems. We propose a solution to the paradox by proving that scale-free degree distributions are the most likely degree distribution with the corresponding value of the structural entropy. Finally, the general framework we present in this paper is able to describe microcanonical ensembles of networks as well as canonical or hidden-variable network ensembles with significant implications for the formulation of network-constructing algorithms.
U.S. Environmental Protection Agency — The MROADS layer contains the Major Roads network using NAVTEQ Functional Class=1,2,3,4, where 4 represents routes connecting minor towns or villages and collecting...
U.S. Environmental Protection Agency — The INTERSTATES layer contains the Interstate Highway network, using NAVTEQ Functional Class=1 for United States and Canada. This 5 layer SDC dataset represents a...
Asnaashari, Maryam; Farhoosh, Reza; Farahmandfar, Reza
2016-10-01
As a result of concerns regarding possible health hazards of synthetic antioxidants, gallic acid and methyl gallate may be introduced as natural antioxidants to improve oxidative stability of marine oil. Since conventional modelling could not predict the oxidative parameters precisely, artificial neural network (ANN) and neuro-fuzzy inference system (ANFIS) modelling with three inputs, including type of antioxidant (gallic acid and methyl gallate), temperature (35, 45 and 55 °C) and concentration (0, 200, 400, 800 and 1600 mg L(-1) ) and four outputs containing induction period (IP), slope of initial stage of oxidation curve (k1 ) and slope of propagation stage of oxidation curve (k2 ) and peroxide value at the IP (PVIP ) were performed to predict the oxidation parameters of Kilka oil triacylglycerols and were compared to multiple linear regression (MLR). The results showed ANFIS was the best model with high coefficient of determination (R(2) = 0.99, 0.99, 0.92 and 0.77 for IP, k1 , k2 and PVIP , respectively). So, the RMSE and MAE values for IP were 7.49 and 4.92 in ANFIS model. However, they were to be 15.95 and 10.88 and 34.14 and 3.60 for the best MLP structure and MLR, respectively. So, MLR showed the minimum accuracy among the constructed models. Sensitivity analysis based on the ANFIS model suggested a high sensitivity of oxidation parameters, particularly the induction period on concentrations of gallic acid and methyl gallate due to their high antioxidant activity to retard oil oxidation and enhanced Kilka oil shelf life. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Yu, Cuiping; Luo, Chaochao; Qu, Bo; Khudhair, Nagam; Gu, Xinyu; Zang, Yanli; Wang, Chunmei; Zhang, Na; Li, Qingzhang; Gao, Xuejun
2014-12-15
14-3-3γ, an isoform of the 14-3-3 protein family, was proved to be a positive regulator of mTOR pathway. Here, we analyzed the function of 14-3-3γ in protein synthesis using bovine mammary epithelial cells (BMECs). We found that 14-3-3γ interacted with eIF1AX and RPS7 by 14-3-3γ coimmunoprecipitation (CoIP) and matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight (MALDI-TOF/TOF) peptide mass fingerprinting analysis. These interactions of 14-3-3γ with eIF1AX and RPS7 were further confirmed by colocalization and fluorescence resonance energy transfer (FRET) analysis. We also found that methionine could promote protein synthesis and trigger the protein expression levels of 14-3-3γ, eIF1AX and RPS7. Analysis of overexpression and inhibition of 14-3-3γ confirmed that it positively affected the protein expression levels of eIF1AX, RPS7, Stat5 and mTOR pathway to promote protein synthesis and cell proliferation in BMECs. We further showed that overexpression of eIF1AX and RPS7 also triggered protein translation and cell proliferation. From these results, we conclude that molecular network including eIF1AX, RPS7, and 14-3-3γ regulates protein translation and cell proliferation in BMECs. Copyright © 2014 Elsevier Inc. All rights reserved.
False Positive and False Negative Effects on Network Attacks
Shang, Yilun
2018-01-01
Robustness against attacks serves as evidence for complex network structures and failure mechanisms that lie behind them. Most often, due to detection capability limitation or good disguises, attacks on networks are subject to false positives and false negatives, meaning that functional nodes may be falsely regarded as compromised by the attacker and vice versa. In this work, we initiate a study of false positive/negative effects on network robustness against three fundamental types of attack strategies, namely, random attacks (RA), localized attacks (LA), and targeted attack (TA). By developing a general mathematical framework based upon the percolation model, we investigate analytically and by numerical simulations of attack robustness with false positive/negative rate (FPR/FNR) on three benchmark models including Erdős-Rényi (ER) networks, random regular (RR) networks, and scale-free (SF) networks. We show that ER networks are equivalently robust against RA and LA only when FPR equals zero or the initial network is intact. We find several interesting crossovers in RR and SF networks when FPR is taken into consideration. By defining the cost of attack, we observe diminishing marginal attack efficiency for RA, LA, and TA. Our finding highlights the potential risk of underestimating or ignoring FPR in understanding attack robustness. The results may provide insights into ways of enhancing robustness of network architecture and improve the level of protection of critical infrastructures.
Li, Jianan; Zhou, Qizhi; Campos, Luiza C
2017-12-01
Greater duckweed (Spirodela polyrhiza) based lab-scale free water constructed wetland (CW) was employed for removing four emerging pharmaceuticals and personal care products (PPCPs) (i.e. DEET, paracetamol, caffeine and triclosan). Orthogonal design was used to test the effect of light intensity, aeration, E.coli abundance and plant biomass on the target compounds. Synthetic wastewater contaminated with the target compounds at concentration of 25 μg/L was prepared, and both batch and continuous flow experiments were conducted. Up to 100% removals were achieved for paracetamol (PAR), caffeine (CAF) and tricolsan (TCS) while the highest removal for DEET was 32.2% in batch tests. Based on orthogonal Duncan analysis, high light intensity (240 μmolmm -2 s -1 ), full aeration, high plant biomass (1.00 kg/m 2 ) and high E.coli abundance (1.0 × 10 6 CFU/100 mL) favoured elimination of the PPCPs. Batch verification test achieved removals of 17.1%, 98.8%, 96.4% and 95.4% for DEET, PAR, CAF and TCS respectively. Continuous flow tests with CW only and CW followed by stabilization tank (CW-ST) were carried out. Final removals of the PPCP contaminants were 32.6%, 97.7%, 98.0% and 100% for DEET, PAR, CAF and TCS, respectively, by CW system alone, while 43.3%, 97.5%, 98.2% and 100%, respectively, were achieved by CW-ST system. By adding the ST tank, PPCP concentrations decreased significantly faster (p < 0.05) compared with continuous flow CW alone. In addition, after removing aerators during continuous flow CW experiments, the treatment systems presented good stability for the PPCP removals. CW-ST showed better chemical oxygen demand (COD) and total organic carbon (TOC) removals (89.3%, 91.2%, respectively) than CW only (79.4%, 85.2%, respectively). However, poor DEET removal (<50%) and high E.coli abundance (up to 1.7 log increase) in the final treated water indicated further treatment processes may be required. Statistical analysis showed significant correlations
Network Theory: A Primer and Questions for Air Transportation Systems Applications
Holmes, Bruce J.
2004-01-01
A new understanding (with potential applications to air transportation systems) has emerged in the past five years in the scientific field of networks. This development emerges in large part because we now have a new laboratory for developing theories about complex networks: The Internet. The premise of this new understanding is that most complex networks of interest, both of nature and of human contrivance, exhibit a fundamentally different behavior than thought for over two hundred years under classical graph theory. Classical theory held that networks exhibited random behavior, characterized by normal, (e.g., Gaussian or Poisson) degree distributions of the connectivity between nodes by links. The new understanding turns this idea on its head: networks of interest exhibit scale-free (or small world) degree distributions of connectivity, characterized by power law distributions. The implications of scale-free behavior for air transportation systems include the potential that some behaviors of complex system architectures might be analyzed through relatively simple approximations of local elements of the system. For air transportation applications, this presentation proposes a framework for constructing topologies (architectures) that represent the relationships between mobility, flight operations, aircraft requirements, and airspace capacity, and the related externalities in airspace procedures and architectures. The proposed architectures or topologies may serve as a framework for posing comparative and combinative analyses of performance, cost, security, environmental, and related metrics.
Dense power-law networks and simplicial complexes
Courtney, Owen T.; Bianconi, Ginestra
2018-05-01
There is increasing evidence that dense networks occur in on-line social networks, recommendation networks and in the brain. In addition to being dense, these networks are often also scale-free, i.e., their degree distributions follow P (k ) ∝k-γ with γ ∈(1 ,2 ] . Models of growing networks have been successfully employed to produce scale-free networks using preferential attachment, however these models can only produce sparse networks as the numbers of links and nodes being added at each time step is constant. Here we present a modeling framework which produces networks that are both dense and scale-free. The mechanism by which the networks grow in this model is based on the Pitman-Yor process. Variations on the model are able to produce undirected scale-free networks with exponent γ =2 or directed networks with power-law out-degree distribution with tunable exponent γ ∈(1 ,2 ) . We also extend the model to that of directed two-dimensional simplicial complexes. Simplicial complexes are generalization of networks that can encode the many body interactions between the parts of a complex system and as such are becoming increasingly popular to characterize different data sets ranging from social interacting systems to the brain. Our model produces dense directed simplicial complexes with power-law distribution of the generalized out-degrees of the nodes.
Multifractal analysis of complex networks
International Nuclear Information System (INIS)
Wang Dan-Ling; Yu Zu-Guo; Anh V
2012-01-01
Complex networks have recently attracted much attention in diverse areas of science and technology. Many networks such as the WWW and biological networks are known to display spatial heterogeneity which can be characterized by their fractal dimensions. Multifractal analysis is a useful way to systematically describe the spatial heterogeneity of both theoretical and experimental fractal patterns. In this paper, we introduce a new box-covering algorithm for multifractal analysis of complex networks. This algorithm is used to calculate the generalized fractal dimensions D q of some theoretical networks, namely scale-free networks, small world networks, and random networks, and one kind of real network, namely protein—protein interaction networks of different species. Our numerical results indicate the existence of multifractality in scale-free networks and protein—protein interaction networks, while the multifractal behavior is not clear-cut for small world networks and random networks. The possible variation of D q due to changes in the parameters of the theoretical network models is also discussed. (general)
Fitness for synchronization of network motifs
DEFF Research Database (Denmark)
Vega, Y.M.; Vázquez-Prada, M.; Pacheco, A.F.
2004-01-01
We study the synchronization of Kuramoto's oscillators in small parts of networks known as motifs. We first report on the system dynamics for the case of a scale-free network and show the existence of a non-trivial critical point. We compute the probability that network motifs synchronize, and fi...... that the fitness for synchronization correlates well with motifs interconnectedness and structural complexity. Possible implications for present debates about network evolution in biological and other systems are discussed....
Pollack, Murray M.; Holubkov, Richard; Funai, Tomohiko; Clark, Amy; Moler, Frank; Shanley, Thomas; Meert, Kathy; Newth, Christopher J. L.; Carcillo, Joseph; Berger, John T.; Doctor, Allan; Berg, Robert A.; Dalton, Heidi; Wessel, David L.; Harrison, Rick E.; Dean, J. Michael; Jenkins, Tammara L.
2015-01-01
Importance Functional status assessment methods are important as outcome measures for pediatric critical care studies. Objective To investigate the relationships between the 2 functional status assessment methods appropriate for large-sample studies, the Functional Status Scale (FSS) and the Pediatric Overall Performance Category and Pediatric Cerebral Performance Category (POPC/PCPC) scales. Design, Setting, and Participants Prospective cohort study with random patient selection at 7 sites and 8 children’s hospitals with general/medical and cardiac/cardiovascular pediatric intensive care units (PICUs) in the Collaborative Pediatric Critical Care Research Network. Participants included all PICU patients younger than 18 years. Main Outcomes and Measures Functional Status Scale and POPC/PCPC scores determined at PICU admission (baseline) and PICU discharge. We investigated the association between the baseline and PICU discharge POPC/PCPC scores and the baseline and PICU discharge FSS scores, the dispersion of FSS scores within each of the POPC/PCPC ratings, and the relationship between the FSS neurologic components (FSS-CNS) and the PCPC. Results We included 5017 patients. We found a significant (P < .001) difference between FSS scores in each POPC or PCPC interval, with an FSS score increase with each worsening POPC/PCPC rating. The FSS scores for the good and mild disability POPC/PCPC ratings were similar and increased by 2 to 3 points for the POPC/PCPC change from mild to moderate disability, 5 to 6 points for moderate to severe disability, and 8 to 9 points for severe disability to vegetative state or coma. The dispersion of FSS scores within each POPC and PCPC rating was substantial and increased with worsening POPC and PCPC scores. We also found a significant (P < .001) difference between the FSS-CNS scores between each of the PCPC ratings with increases in the FSS-CNS score for each higher PCPC rating. Conclusions and Relevance The FSS and POPC/PCPC system
2002-04-01
Cost- benefit analyses of walking- and cycling track net-works in three Norwegian cities are presented in this study. A project group working with a National Cycling Strategy in Norway initialised the study. Motivation for starting the study is the P...
Robustness of networks against propagating attacks under vaccination strategies
International Nuclear Information System (INIS)
Hasegawa, Takehisa; Masuda, Naoki
2011-01-01
We study the effect of vaccination on the robustness of networks against propagating attacks that obey the susceptible–infected–removed model. By extending the generating function formalism developed by Newman (2005 Phys. Rev. Lett. 95 108701), we analytically determine the robustness of networks that depends on the vaccination parameters. We consider the random defense where nodes are vaccinated randomly and the degree-based defense where hubs are preferentially vaccinated. We show that, when vaccines are inefficient, the random graph is more robust against propagating attacks than the scale-free network. When vaccines are relatively efficient, the scale-free network with the degree-based defense is more robust than the random graph with the random defense and the scale-free network with the random defense
Multiscale unfolding of real networks by geometric renormalization
García-Pérez, Guillermo; Boguñá, Marián; Serrano, M. Ángeles
2018-06-01
Symmetries in physical theories denote invariance under some transformation, such as self-similarity under a change of scale. The renormalization group provides a powerful framework to study these symmetries, leading to a better understanding of the universal properties of phase transitions. However, the small-world property of complex networks complicates application of the renormalization group by introducing correlations between coexisting scales. Here, we provide a framework for the investigation of complex networks at different resolutions. The approach is based on geometric representations, which have been shown to sustain network navigability and to reveal the mechanisms that govern network structure and evolution. We define a geometric renormalization group for networks by embedding them into an underlying hidden metric space. We find that real scale-free networks show geometric scaling under this renormalization group transformation. We unfold the networks in a self-similar multilayer shell that distinguishes the coexisting scales and their interactions. This in turn offers a basis for exploring critical phenomena and universality in complex networks. It also affords us immediate practical applications, including high-fidelity smaller-scale replicas of large networks and a multiscale navigation protocol in hyperbolic space, which betters those on single layers.
Efficient weighting strategy for enhancing synchronizability of complex networks
Wang, Youquan; Yu, Feng; Huang, Shucheng; Tu, Juanjuan; Chen, Yan
2018-04-01
Networks with high propensity to synchronization are desired in many applications ranging from biology to engineering. In general, there are two ways to enhance the synchronizability of a network: link rewiring and/or link weighting. In this paper, we propose a new link weighting strategy based on the concept of the neighborhood subgroup. The neighborhood subgroup of a node i through node j in a network, i.e. Gi→j, means that node u belongs to Gi→j if node u belongs to the first-order neighbors of j (not include i). Our proposed weighting schema used the local and global structural properties of the networks such as the node degree, betweenness centrality and closeness centrality measures. We applied the method on scale-free and Watts-Strogatz networks of different structural properties and show the good performance of the proposed weighting scheme. Furthermore, as model networks cannot capture all essential features of real-world complex networks, we considered a number of undirected and unweighted real-world networks. To the best of our knowledge, the proposed weighting strategy outperformed the previously published weighting methods by enhancing the synchronizability of these real-world networks.
International Nuclear Information System (INIS)
Chełminiak, Przemysław
2012-01-01
A new approach to the assemblage of complex networks displaying the scale-free architecture is proposed. While the growth and the preferential attachment of incoming nodes assure an emergence of such networks according to the Barabási–Albert model, it is argued here that the preferential linking condition needs not to be a principal rule. To assert this statement a simple computer model based on random walks on fractal lattices is introduced. It is shown that the model successfully reproduces the degree distributions, the ultra-small-worldness and the high clustering arising from the topology of scale-free networks. -- Highlights: ► A new mechanism of evolution for scale-free complex networks is proposed. ► The preferential attachment rule is not necessary to construct such networks. ► It is shown that they reveal some basic properties of classical scale-free nets.
Energy Technology Data Exchange (ETDEWEB)
Hernandez-Bermejo, B. [Departamento de Fisica, Universidad Rey Juan Carlos, Escuela Superior de Ciencias Experimentales y Tecnologia, Edificio Departamental II, Calle Tulipan S/N, 28933-Mostoles-Madrid (Spain)], E-mail: benito.hernandez@urjc.es; Marco-Blanco, J. [Departamento de Fisica, Universidad Rey Juan Carlos, Escuela Superior de Ciencias Experimentales y Tecnologia, Edificio Departamental II, Calle Tulipan S/N, 28933-Mostoles-Madrid (Spain); Romance, M. [Departamento de Matematica Aplicada, Universidad Rey Juan Carlos, Escuela Superior de Ciencias Experimentales y Tecnologia, Edificio Departamental II, Calle Tulipan S/N, 28933-Mostoles-Madrid (Spain)
2009-02-23
Estimates for the efficiency of a tree are derived, leading to new analytical expressions for Barabasi-Albert trees efficiency. These expressions are used to investigate the dynamic behaviour of such networks. It is proved that the preferential attachment leads to an asymptotic conservation of efficiency as the Barabasi-Albert trees grow.
International Nuclear Information System (INIS)
Hernandez-Bermejo, B.; Marco-Blanco, J.; Romance, M.
2009-01-01
Estimates for the efficiency of a tree are derived, leading to new analytical expressions for Barabasi-Albert trees efficiency. These expressions are used to investigate the dynamic behaviour of such networks. It is proved that the preferential attachment leads to an asymptotic conservation of efficiency as the Barabasi-Albert trees grow
Rauno Lindholm, Daniel; Boisen Devantier, Lykke; Nyborg, Karoline Lykke; Høgsbro, Andreas; Fries, de; Skovlund, Louise
2016-01-01
The purpose of this project was to examine what influencing factor that has had an impact on the presumed increasement of the use of networking among academics on the labour market and how it is expressed. On the basis of the influence from globalization on the labour market it can be concluded that the globalization has transformed the labour market into a market based on the organization of networks. In this new organization there is a greater emphasis on employees having social qualificati...
Systemic risk on different interbank network topologies
Lenzu, Simone; Tedeschi, Gabriele
2012-09-01
In this paper we develop an interbank market with heterogeneous financial institutions that enter into lending agreements on different network structures. Credit relationships (links) evolve endogenously via a fitness mechanism based on agents' performance. By changing the agent's trust on its neighbor's performance, interbank linkages self-organize themselves into very different network architectures, ranging from random to scale-free topologies. We study which network architecture can make the financial system more resilient to random attacks and how systemic risk spreads over the network. To perturb the system, we generate a random attack via a liquidity shock. The hit bank is not automatically eliminated, but its failure is endogenously driven by its incapacity to raise liquidity in the interbank network. Our analysis shows that a random financial network can be more resilient than a scale free one in case of agents' heterogeneity.
Power-Hop: A Pervasive Observation for Real Complex Networks
2016-03-14
e.g., power grid, the Internet and the web-graph), social (e.g., friendship networks — Facebook , Gowalla—and co- authorship networks ), urban (e.g...Mislove A., Cha M. and Gummadi K.P. On the evolution of user interaction in Facebook . In Proc. Workshop on Online Social Networks 2009. doi...scale-free distribution is pervasive and describes a large variety of networks , ranging from social and urban to technological and biological networks
The complex network reliability and influential nodes
Li, Kai; He, Yongfeng
2017-08-01
In order to study the complex network node important degree and reliability, considering semi-local centrality, betweenness centrality and PageRank algorithm, through the simulation method to gradually remove nodes and recalculate the importance in the random network, small world network and scale-free network. Study the relationship between the largest connected component and node removed proportion, the research results show that betweenness centrality and PageRank algorithm based on the global information network are more effective for evaluating the importance of nodes, and the reliability of the network is related to the network topology.
Identifying Vulnerable Nodes of Complex Networks in Cascading Failures Induced by Node-Based Attacks
Directory of Open Access Journals (Sweden)
Shudong Li
2013-01-01
Full Text Available In the research on network security, distinguishing the vulnerable components of networks is very important for protecting infrastructures systems. Here, we probe how to identify the vulnerable nodes of complex networks in cascading failures, which was ignored before. Concerned with random attack (RA and highest load attack (HL on nodes, we model cascading dynamics of complex networks. Then, we introduce four kinds of weighting methods to characterize the nodes of networks including Barabási-Albert scale-free networks (SF, Watts-Strogatz small-world networks (WS, Erdos-Renyi random networks (ER, and two real-world networks. The simulations show that, for SF networks under HL attack, the nodes with small value of the fourth kind of weight are the most vulnerable and the ones with small value of the third weight are also vulnerable. Also, the real-world autonomous system with power-law distribution verifies these findings. Moreover, for WS and ER networks under both RA and HL attack, when the nodes have low tolerant ability, the ones with small value of the fourth kind of weight are more vulnerable and also the ones with high degree are easier to break down. The results give us important theoretical basis for digging the potential safety loophole and making protection strategy.
Scaling Laws in Chennai Bus Network
Chatterjee, Atanu; Ramadurai, Gitakrishnan
2015-01-01
In this paper, we study the structural properties of the complex bus network of Chennai. We formulate this extensive network structure by identifying each bus stop as a node, and a bus which stops at any two adjacent bus stops as an edge connecting the nodes. Rigorous statistical analysis of this data shows that the Chennai bus network displays small-world properties and a scale-free degree distribution with the power-law exponent, $\\gamma > 3$.
Controllability of Train Service Network
Directory of Open Access Journals (Sweden)
Xuelei Meng
2015-01-01
Full Text Available Train service network is a network form of train service plan. The controllability of the train service plan determines the recovery possibility of the train service plan in emergencies. We first build the small-world model for train service network and analyze the scale-free character of it. Then based on the linear network controllability theory, we discuss the LB model adaptability in train service network controllability analysis. The LB model is improved and we construct the train service network and define the connotation of the driver nodes based on the immune propagation and cascading failure in the train service network. An algorithm to search for the driver nodes, turning the train service network into a bipartite graph, is proposed and applied in the train service network. We analyze the controllability of the train service network of China with the method and the results of the computing case prove the feasibility of it.
Extraction of network topology from multi-electrode recordings: Is there a small-world effect?
Directory of Open Access Journals (Sweden)
Felipe eGerhard
2011-02-01
Full Text Available The simultaneous recording of the activity of many neurons poses challenges for multivariate data analysis. Here, we propose a general scheme of reconstruction of the functional network from spike train recordings. Effective, causal interactions are estimated by fitting Generalized Linear Models (GLMs on the neural responses, incorporating effects of the neurons' self-history, of input from other neurons in the recorded network and of modulation by an external stimulus. The coupling terms arising from synaptic input can be transformed by thresholding into a binary connectivity matrix which is directed. Each link between two neurons represents a causal influence from one neuron to the other, given the observation of all other neurons from the population. The resulting graph is analyzed with respect to small-world and scale-free properties using quantitative measures for directed networks. Such graph-theoretic analyses have been performed on many complex dynamic networks, including the connectivity structure between different brain areas. Only few studies have attempted to look at the structure of cortical neural networks on the level of individual neurons. Here, using multi-electrode recordings from the visual system of the awake monkey, we find that cortical networks lack scale-free behavior, but show a small, but significant small-world structure. Assuming a simple distance-dependent probabilistic wiring between neurons, we find that this connectivity structure can account for all of the networks' observed small-world-ness. Moreover, for multi-electrode recordings the sampling of neurons is not uniform across the population. We show that the small-world-ness obtained by such a localized sub-sampling overestimates the strength of the true small-world-structure of the network. This bias is likely to be present in all previous experiments based on multi-electrode recordings.
Cosplicing network analysis of mammalian brain RNA-Seq data utilizing WGCNA and Mantel correlations
Directory of Open Access Journals (Sweden)
Ovidiu Dan Iancu
2015-05-01
Full Text Available Across species and tissues and especially in the mammalian brain, production of gene isoforms is widespread. While gene expression coordination has been previously described as a scale-free coexpression network, the properties of transcriptome-wide isoform production coordination have been less studied. Here we evaluate the system-level properties of cosplicing in mouse, macaque and human brain gene expression data using a novel network inference procedure. Genes are represented as vectors/lists of exon counts and distance measures sensitive to exon inclusion rates quantifies differences across samples. For all gene pairs, distance matrices are correlated across samples, resulting in cosplicing or co-transcriptional network matrices. We show that networks including cosplicing information are scale-free and distinct from coexpression. In the networks capturing cosplicing we find a set of novel hubs with unique characteristics distinguishing them from coexpression hubs: heavy representation in neurobiological functional pathways, strong overlap with markers of neurons and neuroglia, long coding lengths, and high number of both exons and annotated transcripts. Further, the cosplicing hubs are enriched in genes associated with autism spectrum disorders. Cosplicing hub homologs across eukaryotes show dramatically increasing intronic lengths but stable coding region lengths. Shared transcription factor binding sites increase coexpression but not cosplicing; the reverse is true for splicing-factor binding sites. Genes with protein-protein interactions have strong coexpression and cosplicing. Additional factors affecting the networks include shared microRNA binding sites, spatial colocalization within the striatum, and sharing a chromosomal folding domain. Cosplicing network patterns remain relatively stable across species.
Network theory and its applications in economic systems
Huang, Xuqing
This dissertation covers the two major parts of my Ph.D. research: i) developing theoretical framework of complex networks; and ii) applying complex networks models to quantitatively analyze economics systems. In part I, we focus on developing theories of interdependent networks, which includes two chapters: 1) We develop a mathematical framework to study the percolation of interdependent networks under targeted-attack and find that when the highly connected nodes are protected and have lower probability to fail, in contrast to single scale-free (SF) networks where the percolation threshold pc = 0, coupled SF networks are significantly more vulnerable with pc significantly larger than zero. 2) We analytically demonstrates that clustering, which quantifies the propensity for two neighbors of the same vertex to also be neighbors of each other, significantly increases the vulnerability of the system. In part II, we apply the complex networks models to study economics systems, which also includes two chapters: 1) We study the US corporate governance network, in which nodes representing directors and links between two directors representing their service on common company boards, and propose a quantitative measure of information and influence transformation in the network. Thus we are able to identify the most influential directors in the network. 2) We propose a bipartite networks model to simulate the risk propagation process among commercial banks during financial crisis. With empirical bank's balance sheet data in 2007 as input to the model, we find that our model efficiently identifies a significant portion of the actual failed banks reported by Federal Deposit Insurance Corporation during the financial crisis between 2008 and 2011. The results suggest that complex networks model could be useful for systemic risk stress testing for financial systems. The model also identifies that commercial rather than residential real estate assets are major culprits for the
Directory of Open Access Journals (Sweden)
Brenton J Prettejohn
2011-03-01
Full Text Available Many simulations of networks in computational neuroscience assume completely homogenous random networks of the Erd"{o}s-R'{e}nyi type, or regular networks, despite it being recognized for some time that anatomical brain networks are more complex in their connectivity and can, for example, exhibit the `scale-free' and `small-world' properties. We review the most well known algorithms for constructing networks with given non-homogeneous statistical properties and provide simple pseudo-code for reproducing such networks in software simulations. We also review some useful mathematical results and approximations associated with the statistics that describe these network models, including degree distribution, average path length and clustering coefficient. We demonstrate how such results can be used as partial verification and validation of implementations. Finally, we discuss a sometimes overlooked modeling choice that can be crucially important for the properties of simulated networks: that of network directedness. The most well known network algorithms produce undirected networks, and we emphasize this point by highlighting how simple adaptations can instead produce directed networks.
Network features and pathway analyses of a signal transduction cascade
Directory of Open Access Journals (Sweden)
Ryoji Yanashima
2009-05-01
Full Text Available The scale-free and small-world network models reflect the functional units of networks. However, when we investigated the network properties of a signaling pathway using these models, no significant differences were found between the original undirected graphs and the graphs in which inactive proteins were eliminated from the gene expression data. We analyzed signaling networks by focusing on those pathways that best reflected cellular function. Therefore, our analysis of pathways started from the ligands and progressed to transcription factors and cytoskeletal proteins. We employed the Python module to assess the target network. This involved comparing the original and restricted signaling cascades as a directed graph using microarray gene expression profiles of late onset Alzheimer's disease. The most commonly used method of shortest-path analysis neglects to consider the influences of alternative pathways that can affect the activation of transcription factors or cytoskeletal proteins. We therefore introduced included k-shortest paths and k-cycles in our network analysis using the Python modules, which allowed us to attain a reasonable computational time and identify k-shortest paths. This technique reflected results found in vivo and identified pathways not found when shortest path or degree analysis was applied. Our module enabled us to comprehensively analyse the characteristics of biomolecular networks and also enabled analysis of the effects of diseases considering the feedback loop and feedforward loop control structures as an alternative path.
Improved Degree Search Algorithms in Unstructured P2P Networks
Directory of Open Access Journals (Sweden)
Guole Liu
2012-01-01
Full Text Available Searching and retrieving the demanded correct information is one important problem in networks; especially, designing an efficient search algorithm is a key challenge in unstructured peer-to-peer (P2P networks. Breadth-first search (BFS and depth-first search (DFS are the current two typical search methods. BFS-based algorithms show the perfect performance in the aspect of search success rate of network resources, while bringing the huge search messages. On the contrary, DFS-based algorithms reduce the search message quantity and also cause the dropping of search success ratio. To address the problem that only one of performances is excellent, we propose two memory function degree search algorithms: memory function maximum degree algorithm (MD and memory function preference degree algorithm (PD. We study their performance including the search success rate and the search message quantity in different networks, which are scale-free networks, random graph networks, and small-world networks. Simulations show that the two performances are both excellent at the same time, and the performances are improved at least 10 times.
A Network Design Approach to Countering Terrorism
2015-09-01
2003). More and more scale-free networks have been discovered. How can such diverse systems have the same architecture and properties? Part of the...Rabei Ousmane Sayed Ahmed (a.k.a. the Egyptian ) convinced the group to pursuit jihad at home, where they had the material resources to act (Atran, 2010
GENERAL: Epidemic spreading on networks with vaccination
Shi, Hong-Jing; Duan, Zhi-Sheng; Chen, Guan-Rong; Li, Rong
2009-08-01
In this paper, a new susceptible-infected-susceptible (SIS) model on complex networks with imperfect vaccination is proposed. Two types of epidemic spreading patterns (the recovered individuals have or have not immunity) on scale-free networks are discussed. Both theoretical and numerical analyses are presented. The epidemic thresholds related to the vaccination rate, the vaccination-invalid rate and the vaccination success rate on scale-free networks are demonstrated, showing different results from the reported observations. This reveals that whether or not the epidemic can spread over a network under vaccination control is determined not only by the network structure but also by the medicine's effective duration. Moreover, for a given infective rate, the proportion of individuals to vaccinate can be calculated theoretically for the case that the recovered nodes have immunity. Finally, simulated results are presented to show how to control the disease prevalence.
Promotion of cooperation in the form C0C1D classified by 'degree grads' in a scale-free network
International Nuclear Information System (INIS)
Zhao, Li; Ye, Xiang-Jun; Huang, Zi-Gang; Sun, Jin-Tu; Yang, Lei; Wang, Ying-Hai; Do, Younghae
2010-01-01
In this paper, we revisit the issue of the public goods game (PGG) on a heterogeneous graph. By introducing a new effective topology parameter, 'degree grads' ψ, we clearly classify the agents into three kinds, namely, C 0 , C 1 , and D. The mechanism for the heterogeneous topology promoting cooperation is discussed in detail from the perspective of C 0 C 1 D, which reflects the fact that the unreasoning imitation behaviour of C 1 agents, who are 'cheated' by the well-paid C 0 agents inhabiting special positions, stabilizes the formation of the cooperation community. The analytical and simulation results for certain parameters are found to coincide well with each other. The C 0 C 1 D case provides a picture of the actual behaviours in real society and thus is potentially of interest
Transportation Network Topologies
Holmes, Bruce J.; Scott, John
2004-01-01
A discomforting reality has materialized on the transportation scene: our existing air and ground infrastructures will not scale to meet our nation's 21st century demands and expectations for mobility, commerce, safety, and security. The consequence of inaction is diminished quality of life and economic opportunity in the 21st century. Clearly, new thinking is required for transportation that can scale to meet to the realities of a networked, knowledge-based economy in which the value of time is a new coin of the realm. This paper proposes a framework, or topology, for thinking about the problem of scalability of the system of networks that comprise the aviation system. This framework highlights the role of integrated communication-navigation-surveillance systems in enabling scalability of future air transportation networks. Scalability, in this vein, is a goal of the recently formed Joint Planning and Development Office for the Next Generation Air Transportation System. New foundations for 21st thinking about air transportation are underpinned by several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems. Complexity science and modern network theory give rise to one of the technological developments of importance. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of scalability, efficiency, robustness, resilience, and other metrics. The paper offers an air transportation system topology as framework for transportation system innovation. Successful outcomes of innovation in air transportation could lay the foundations for new paradigms for aircraft and their operating capabilities, air transportation system architectures, and airspace architectures and procedural concepts. The topology proposed considers air transportation as a system of networks, within which
Directory of Open Access Journals (Sweden)
Jeremi K Ochab
Full Text Available The timing and dynamics of many diverse behaviors of mammals, e.g., patterns of animal foraging or human communication in social networks exhibit complex self-similar properties reproducible over multiple time scales. In this paper, we analyze spontaneous locomotor activity of healthy individuals recorded in two different conditions: during a week of regular sleep and a week of chronic partial sleep deprivation. After separating activity from rest with a pre-defined activity threshold, we have detected distinct statistical features of duration times of these two states. The cumulative distributions of activity periods follow a stretched exponential shape, and remain similar for both control and sleep deprived individuals. In contrast, rest periods, which follow power-law statistics over two orders of magnitude, have significantly distinct distributions for these two groups and the difference emerges already after the first night of shortened sleep. We have found steeper distributions for sleep deprived individuals, which indicates fewer long rest periods and more turbulent behavior. This separation of power-law exponents is the main result of our investigations, and might constitute an objective measure demonstrating the severity of sleep deprivation and the effects of sleep disorders.
Directory of Open Access Journals (Sweden)
Leonid A Safonov
Full Text Available A neuron embedded in an intact brain, unlike an isolated neuron, participates in network activity at various spatial resolutions. Such multiple scale spatial dynamics is potentially reflected in multiple time scales of temporal dynamics. We identify such multiple dynamical time scales of the inter-spike interval (ISI fluctuations of neurons of waking/sleeping rats by means of multiscale analysis. The time scale of large non-Gaussianity in the ISI fluctuations, measured with the Castaing method, ranges up to several minutes, markedly escaping the low-pass filtering characteristics of neurons. A comparison between neural activity during waking and sleeping reveals that non-Gaussianity is stronger during waking than sleeping throughout the entire range of scales observed. We find a remarkable property of near scale independence of the magnitude correlations as the primary cause of persistent non-Gaussianity. Such scale-invariance of correlations is characteristic of multiplicative cascade processes and raises the possibility of the existence of a scale independent memory preserving mechanism.
Coevolutionary modeling in network formation
Al-Shyoukh, Ibrahim
2014-12-03
Network coevolution, the process of network topology evolution in feedback with dynamical processes over the network nodes, is a common feature of many engineered and natural networks. In such settings, the change in network topology occurs at a comparable time scale to nodal dynamics. Coevolutionary modeling offers the possibility to better understand how and why network structures emerge. For example, social networks can exhibit a variety of structures, ranging from almost uniform to scale-free degree distributions. While current models of network formation can reproduce these structures, coevolutionary modeling can offer a better understanding of the underlying dynamics. This paper presents an overview of recent work on coevolutionary models of network formation, with an emphasis on the following three settings: (i) dynamic flow of benefits and costs, (ii) transient link establishment costs, and (iii) latent preferential attachment.
Coevolutionary modeling in network formation
Al-Shyoukh, Ibrahim; Chasparis, Georgios; Shamma, Jeff S.
2014-01-01
Network coevolution, the process of network topology evolution in feedback with dynamical processes over the network nodes, is a common feature of many engineered and natural networks. In such settings, the change in network topology occurs at a comparable time scale to nodal dynamics. Coevolutionary modeling offers the possibility to better understand how and why network structures emerge. For example, social networks can exhibit a variety of structures, ranging from almost uniform to scale-free degree distributions. While current models of network formation can reproduce these structures, coevolutionary modeling can offer a better understanding of the underlying dynamics. This paper presents an overview of recent work on coevolutionary models of network formation, with an emphasis on the following three settings: (i) dynamic flow of benefits and costs, (ii) transient link establishment costs, and (iii) latent preferential attachment.
Topology and computational performance of attractor neural networks
International Nuclear Information System (INIS)
McGraw, Patrick N.; Menzinger, Michael
2003-01-01
To explore the relation between network structure and function, we studied the computational performance of Hopfield-type attractor neural nets with regular lattice, random, small-world, and scale-free topologies. The random configuration is the most efficient for storage and retrieval of patterns by the network as a whole. However, in the scale-free case retrieval errors are not distributed uniformly among the nodes. The portion of a pattern encoded by the subset of highly connected nodes is more robust and efficiently recognized than the rest of the pattern. The scale-free network thus achieves a very strong partial recognition. The implications of these findings for brain function and social dynamics are suggestive
An evolving network model with community structure
International Nuclear Information System (INIS)
Li Chunguang; Maini, Philip K
2005-01-01
Many social and biological networks consist of communities-groups of nodes within which connections are dense, but between which connections are sparser. Recently, there has been considerable interest in designing algorithms for detecting community structures in real-world complex networks. In this paper, we propose an evolving network model which exhibits community structure. The network model is based on the inner-community preferential attachment and inter-community preferential attachment mechanisms. The degree distributions of this network model are analysed based on a mean-field method. Theoretical results and numerical simulations indicate that this network model has community structure and scale-free properties
Research of Innovation Diffusion on Industrial Networks
Directory of Open Access Journals (Sweden)
Yongtai Chen
2014-01-01
Full Text Available The real value of innovation consists in its diffusion on industrial network. The factors which affect the diffusion of innovation on industrial network are the topology of industrial network and rules of diffusion. Industrial network is a complex network which has scale-free and small-world characters; its structure has some affection on threshold, length of path, enterprise’s status, and information share of innovation diffusion. Based on the cost and attitude to risk of technical innovation, we present the “avalanche” diffusing model of technical innovation on industrial network.
Disease spreading in real-life networks
Gallos, Lazaros; Argyrakis, Panos
2002-08-01
In recent years the scientific community has shown a vivid interest in the network structure and dynamics of real-life organized systems. Many such systems, covering an extremely wide range of applications, have been recently shown to exhibit scale-free character in their connectivity distribution, meaning that they obey a power law. Modeling of epidemics on lattices and small-world networks suffers from the presence of a critical infection threshold, above which the entire population is infected. For scale-free networks, the original assumption was that the formation of a giant cluster would lead to an epidemic spreading in the same way as in simpler networks. Here we show that modeling epidemics on a scale-free network can greatly improve the predictions on the rate and efficiency of spreading, as compared to lattice models and small-world networks. We also show that the dynamics of a disease are greatly influenced by the underlying population structure. The exact same model can describe a plethora of networks, such as social networks, virus spreading in the Web, rumor spreading, signal transmission etc.
International Nuclear Information System (INIS)
Trimble, G.D.; Turner, W.J.
1976-04-01
The three one-dimensional conservation equations of mass, momentum and energy are solved by a stable finite difference scheme which allows the time step to be varied in response to accuracy requirements. Consideration of numerical stability is not necessary. Slip between the phases is allowed and descriptions of complex hydraulic components can be added into specially provided user routines. Intrinsic choking using any of the nine slip models is possible. A pipe or fuel model and detailed surface heat transfer are included. (author)
Marchant, Jennifer L; Ruff, Christian C; Driver, Jon
2012-01-01
The brain seeks to combine related inputs from different senses (e.g., hearing and vision), via multisensory integration. Temporal information can indicate whether stimuli in different senses are related or not. A recent human fMRI study (Noesselt et al. [2007]: J Neurosci 27:11431–11441) used auditory and visual trains of beeps and flashes with erratic timing, manipulating whether auditory and visual trains were synchronous or unrelated in temporal pattern. A region of superior temporal sulcus (STS) showed higher BOLD signal for the synchronous condition. But this could not be related to performance, and it remained unclear if the erratic, unpredictable nature of the stimulus trains was important. Here we compared synchronous audiovisual trains to asynchronous trains, while using a behavioral task requiring detection of higher-intensity target events in either modality. We further varied whether the stimulus trains had predictable temporal pattern or not. Synchrony (versus lag) between auditory and visual trains enhanced behavioral sensitivity (d') to intensity targets in either modality, regardless of predictable versus unpredictable patterning. The analogous contrast in fMRI revealed BOLD increases in several brain areas, including the left STS region reported by Noesselt et al. [2007: J Neurosci 27:11431–11441]. The synchrony effect on BOLD here correlated with the subject-by-subject impact on performance. Predictability of temporal pattern did not affect target detection performance or STS activity, but did lead to an interaction with audiovisual synchrony for BOLD in inferior parietal cortex. PMID:21953980
Effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons
Energy Technology Data Exchange (ETDEWEB)
Li, Chun-Hsien, E-mail: chli@nknucc.nknu.edu.tw [Department of Mathematics, National Kaohsiung Normal University, Yanchao District, Kaohsiung City 82444, Taiwan (China); Yang, Suh-Yuh, E-mail: syyang@math.ncu.edu.tw [Department of Mathematics, National Central University, Jhongli District, Taoyuan City 32001, Taiwan (China)
2015-10-23
This work is devoted to investigate the effects of network structure on the synchronizability of nonlinearly coupled dynamical network of Hindmarsh–Rose neurons with a sigmoidal coupling function. We mainly focus on the networks that exhibit the small-world character or scale-free property. By checking the first nonzero eigenvalue of the outer-coupling matrix, which is closely related to the synchronization threshold, the synchronizabilities of three specific network ensembles with prescribed network structures are compared. Interestingly, we find that networks with more connections will not necessarily result in better synchronizability. - Highlights: • We investigate the effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons. • We mainly consider the networks that exhibit the small-world character or scale-free property. • The synchronizability of three specific network ensembles with prescribed network structures are compared. • Networks with more connections will not necessarily result in better synchronizability.
Effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons
International Nuclear Information System (INIS)
Li, Chun-Hsien; Yang, Suh-Yuh
2015-01-01
This work is devoted to investigate the effects of network structure on the synchronizability of nonlinearly coupled dynamical network of Hindmarsh–Rose neurons with a sigmoidal coupling function. We mainly focus on the networks that exhibit the small-world character or scale-free property. By checking the first nonzero eigenvalue of the outer-coupling matrix, which is closely related to the synchronization threshold, the synchronizabilities of three specific network ensembles with prescribed network structures are compared. Interestingly, we find that networks with more connections will not necessarily result in better synchronizability. - Highlights: • We investigate the effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons. • We mainly consider the networks that exhibit the small-world character or scale-free property. • The synchronizability of three specific network ensembles with prescribed network structures are compared. • Networks with more connections will not necessarily result in better synchronizability
A gene network simulator to assess reverse engineering algorithms.
Di Camillo, Barbara; Toffolo, Gianna; Cobelli, Claudio
2009-03-01
In the context of reverse engineering of biological networks, simulators are helpful to test and compare the accuracy of different reverse-engineering approaches in a variety of experimental conditions. A novel gene-network simulator is presented that resembles some of the main features of transcriptional regulatory networks related to topology, interaction among regulators of transcription, and expression dynamics. The simulator generates network topology according to the current knowledge of biological network organization, including scale-free distribution of the connectivity and clustering coefficient independent of the number of nodes in the network. It uses fuzzy logic to represent interactions among the regulators of each gene, integrated with differential equations to generate continuous data, comparable to real data for variety and dynamic complexity. Finally, the simulator accounts for saturation in the response to regulation and transcription activation thresholds and shows robustness to perturbations. It therefore provides a reliable and versatile test bed for reverse engineering algorithms applied to microarray data. Since the simulator describes regulatory interactions and expression dynamics as two distinct, although interconnected aspects of regulation, it can also be used to test reverse engineering approaches that use both microarray and protein-protein interaction data in the process of learning. A first software release is available at http://www.dei.unipd.it/~dicamill/software/netsim as an R programming language package.
Social power and opinion formation in complex networks
Jalili, Mahdi
2013-02-01
In this paper we investigate the effects of social power on the evolution of opinions in model networks as well as in a number of real social networks. A continuous opinion formation model is considered and the analysis is performed through numerical simulation. Social power is given to a proportion of agents selected either randomly or based on their degrees. As artificial network structures, we consider scale-free networks constructed through preferential attachment and Watts-Strogatz networks. Numerical simulations show that scale-free networks with degree-based social power on the hub nodes have an optimal case where the largest number of the nodes reaches a consensus. However, given power to a random selection of nodes could not improve consensus properties. Introducing social power in Watts-Strogatz networks could not significantly change the consensus profile.
Chambers, Joseph
2010-01-01
The state of the art in aeronautical engineering has been continually accelerated by the development of advanced analysis and design tools. Used in the early design stages for aircraft and spacecraft, these methods have provided a fundamental understanding of physical phenomena and enabled designers to predict and analyze critical characteristics of new vehicles, including the capability to control or modify unsatisfactory behavior. For example, the relatively recent emergence and routine use of extremely powerful digital computer hardware and software has had a major impact on design capabilities and procedures. Sophisticated new airflow measurement and visualization systems permit the analyst to conduct micro- and macro-studies of properties within flow fields on and off the surfaces of models in advanced wind tunnels. Trade studies of the most efficient geometrical shapes for aircraft can be conducted with blazing speed within a broad scope of integrated technical disciplines, and the use of sophisticated piloted simulators in the vehicle development process permits the most important segment of operations the human pilot to make early assessments of the acceptability of the vehicle for its intended mission. Knowledgeable applications of these tools of the trade dramatically reduce risk and redesign, and increase the marketability and safety of new aerospace vehicles. Arguably, one of the more viable and valuable design tools since the advent of flight has been testing of subscale models. As used herein, the term "model" refers to a physical article used in experimental analyses of a larger full-scale vehicle. The reader is probably aware that many other forms of mathematical and computer-based models are also used in aerospace design; however, such topics are beyond the intended scope of this document. Model aircraft have always been a source of fascination, inspiration, and recreation for humans since the earliest days of flight. Within the scientific
Weighted Scaling in Non-growth Random Networks
International Nuclear Information System (INIS)
Chen Guang; Yang Xuhua; Xu Xinli
2012-01-01
We propose a weighted model to explain the self-organizing formation of scale-free phenomenon in non-growth random networks. In this model, we use multiple-edges to represent the connections between vertices and define the weight of a multiple-edge as the total weights of all single-edges within it and the strength of a vertex as the sum of weights for those multiple-edges attached to it. The network evolves according to a vertex strength preferential selection mechanism. During the evolution process, the network always holds its total number of vertices and its total number of single-edges constantly. We show analytically and numerically that a network will form steady scale-free distributions with our model. The results show that a weighted non-growth random network can evolve into scale-free state. It is interesting that the network also obtains the character of an exponential edge weight distribution. Namely, coexistence of scale-free distribution and exponential distribution emerges.
Research on Evolutionary Mechanism of Agile Supply Chain Network via Complex Network Theory
Directory of Open Access Journals (Sweden)
Nai-Ru Xu
2016-01-01
Full Text Available The paper establishes the evolutionary mechanism model of agile supply chain network by means of complex network theory which can be used to describe the growth process of the agile supply chain network and analyze the complexity of the agile supply chain network. After introducing the process and the suitability of taking complex network theory into supply chain network research, the paper applies complex network theory into the agile supply chain network research, analyzes the complexity of agile supply chain network, presents the evolutionary mechanism of agile supply chain network based on complex network theory, and uses Matlab to simulate degree distribution, average path length, clustering coefficient, and node betweenness. Simulation results show that the evolution result displays the scale-free property. It lays the foundations of further research on agile supply chain network based on complex network theory.
Multiplex congruence network of natural numbers.
Yan, Xiao-Yong; Wang, Wen-Xu; Chen, Guan-Rong; Shi, Ding-Hua
2016-03-31
Congruence theory has many applications in physical, social, biological and technological systems. Congruence arithmetic has been a fundamental tool for data security and computer algebra. However, much less attention was devoted to the topological features of congruence relations among natural numbers. Here, we explore the congruence relations in the setting of a multiplex network and unveil some unique and outstanding properties of the multiplex congruence network. Analytical results show that every layer therein is a sparse and heterogeneous subnetwork with a scale-free topology. Counterintuitively, every layer has an extremely strong controllability in spite of its scale-free structure that is usually difficult to control. Another amazing feature is that the controllability is robust against targeted attacks to critical nodes but vulnerable to random failures, which also differs from ordinary scale-free networks. The multi-chain structure with a small number of chain roots arising from each layer accounts for the strong controllability and the abnormal feature. The multiplex congruence network offers a graphical solution to the simultaneous congruences problem, which may have implication in cryptography based on simultaneous congruences. Our work also gains insight into the design of networks integrating advantages of both heterogeneous and homogeneous networks without inheriting their limitations.
Vulnerability of complex networks under intentional attack with incomplete information
International Nuclear Information System (INIS)
Wu, J; Deng, H Z; Tan, Y J; Zhu, D Z
2007-01-01
We study the vulnerability of complex networks under intentional attack with incomplete information, which means that one can only preferentially attack the most important nodes among a local region of a network. The known random failure and the intentional attack are two extreme cases of our study. Using the generating function method, we derive the exact value of the critical removal fraction f c of nodes for the disintegration of networks and the size of the giant component. To validate our model and method, we perform simulations of intentional attack with incomplete information in scale-free networks. We show that the attack information has an important effect on the vulnerability of scale-free networks. We also demonstrate that hiding a fraction of the nodes information is a cost-efficient strategy for enhancing the robustness of complex networks
Self-similarity and scaling theory of complex networks
Song, Chaoming
Scale-free networks have been studied extensively due to their relevance to many real systems as diverse as the World Wide Web (WWW), the Internet, biological and social networks. We present a novel approach to the analysis of scale-free networks, revealing that their structure is self-similar. This result is achieved by the application of a renormalization procedure which coarse-grains the system into boxes containing nodes within a given "size". Concurrently, we identify a power-law relation between the number of boxes needed to cover the network and the size of the box defining a self-similar exponent, which classifies fractal and non-fractal networks. By using the concept of renormalization as a mechanism for the growth of fractal and non-fractal modular networks, we show that the key principle that gives rise to the fractal architecture of networks is a strong effective "repulsion" between the most connected nodes (hubs) on all length scales, rendering them very dispersed. We show that a robust network comprised of functional modules, such as a cellular network, necessitates a fractal topology, suggestive of a evolutionary drive for their existence. These fundamental properties help to understand the emergence of the scale-free property in complex networks.
Optimal topologies for maximizing network transmission capacity
Chen, Zhenhao; Wu, Jiajing; Rong, Zhihai; Tse, Chi K.
2018-04-01
It has been widely demonstrated that the structure of a network is a major factor that affects its traffic dynamics. In this work, we try to identify the optimal topologies for maximizing the network transmission capacity, as well as to build a clear relationship between structural features of a network and the transmission performance in terms of traffic delivery. We propose an approach for designing optimal network topologies against traffic congestion by link rewiring and apply them on the Barabási-Albert scale-free, static scale-free and Internet Autonomous System-level networks. Furthermore, we analyze the optimized networks using complex network parameters that characterize the structure of networks, and our simulation results suggest that an optimal network for traffic transmission is more likely to have a core-periphery structure. However, assortative mixing and the rich-club phenomenon may have negative impacts on network performance. Based on the observations of the optimized networks, we propose an efficient method to improve the transmission capacity of large-scale networks.
The complexity of classical music networks
Rolla, Vitor; Kestenberg, Juliano; Velho, Luiz
2018-02-01
Previous works suggest that musical networks often present the scale-free and the small-world properties. From a musician's perspective, the most important aspect missing in those studies was harmony. In addition to that, the previous works made use of outdated statistical methods. Traditionally, least-squares linear regression is utilised to fit a power law to a given data set. However, according to Clauset et al. such a traditional method can produce inaccurate estimates for the power law exponent. In this paper, we present an analysis of musical networks which considers the existence of chords (an essential element of harmony). Here we show that only 52.5% of music in our database presents the scale-free property, while 62.5% of those pieces present the small-world property. Previous works argue that music is highly scale-free; consequently, it sounds appealing and coherent. In contrast, our results show that not all pieces of music present the scale-free and the small-world properties. In summary, this research is focused on the relationship between musical notes (Do, Re, Mi, Fa, Sol, La, Si, and their sharps) and accompaniment in classical music compositions. More information about this research project is available at https://eden.dei.uc.pt/~vitorgr/MS.html.
Quantum Google algorithm. Construction and application to complex networks
Paparo, G. D.; Müller, M.; Comellas, F.; Martin-Delgado, M. A.
2014-07-01
We review the main findings on the ranking capabilities of the recently proposed Quantum PageRank algorithm (G.D. Paparo et al., Sci. Rep. 2, 444 (2012) and G.D. Paparo et al., Sci. Rep. 3, 2773 (2013)) applied to large complex networks. The algorithm has been shown to identify unambiguously the underlying topology of the network and to be capable of clearly highlighting the structure of secondary hubs of networks. Furthermore, it can resolve the degeneracy in importance of the low-lying part of the list of rankings. Examples of applications include real-world instances from the WWW, which typically display a scale-free network structure and models of hierarchical networks. The quantum algorithm has been shown to display an increased stability with respect to a variation of the damping parameter, present in the Google algorithm, and a more clearly pronounced power-law behaviour in the distribution of importance among the nodes, as compared to the classical algorithm.
Dynamical Response of Networks Under External Perturbations: Exact Results
Chinellato, David D.; Epstein, Irving R.; Braha, Dan; Bar-Yam, Yaneer; de Aguiar, Marcus A. M.
2015-04-01
We give exact statistical distributions for the dynamic response of influence networks subjected to external perturbations. We consider networks whose nodes have two internal states labeled 0 and 1. We let nodes be frozen in state 0, in state 1, and the remaining nodes change by adopting the state of a connected node with a fixed probability per time step. The frozen nodes can be interpreted as external perturbations to the subnetwork of free nodes. Analytically extending and to be smaller than 1 enables modeling the case of weak coupling. We solve the dynamical equations exactly for fully connected networks, obtaining the equilibrium distribution, transition probabilities between any two states and the characteristic time to equilibration. Our exact results are excellent approximations for other topologies, including random, regular lattice, scale-free and small world networks, when the numbers of fixed nodes are adjusted to take account of the effect of topology on coupling to the environment. This model can describe a variety of complex systems, from magnetic spins to social networks to population genetics, and was recently applied as a framework for early warning signals for real-world self-organized economic market crises.
Self-Healing Networks: Redundancy and Structure
Quattrociocchi, Walter; Caldarelli, Guido; Scala, Antonio
2014-01-01
We introduce the concept of self-healing in the field of complex networks modelling; in particular, self-healing capabilities are implemented through distributed communication protocols that exploit redundant links to recover the connectivity of the system. We then analyze the effect of the level of redundancy on the resilience to multiple failures; in particular, we measure the fraction of nodes still served for increasing levels of network damages. Finally, we study the effects of redundancy under different connectivity patterns—from planar grids, to small-world, up to scale-free networks—on healing performances. Small-world topologies show that introducing some long-range connections in planar grids greatly enhances the resilience to multiple failures with performances comparable to the case of the most resilient (and least realistic) scale-free structures. Obvious applications of self-healing are in the important field of infrastructural networks like gas, power, water, oil distribution systems. PMID:24533065
Complex networks-based energy-efficient evolution model for wireless sensor networks
Energy Technology Data Exchange (ETDEWEB)
Zhu Hailin [Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, P.O. Box 106, Beijing 100876 (China)], E-mail: zhuhailin19@gmail.com; Luo Hong [Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, P.O. Box 106, Beijing 100876 (China); Peng Haipeng; Li Lixiang; Luo Qun [Information Secure Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China)
2009-08-30
Based on complex networks theory, we present two self-organized energy-efficient models for wireless sensor networks in this paper. The first model constructs the wireless sensor networks according to the connectivity and remaining energy of each sensor node, thus it can produce scale-free networks which have a performance of random error tolerance. In the second model, we not only consider the remaining energy, but also introduce the constraint of links to each node. This model can make the energy consumption of the whole network more balanced. Finally, we present the numerical experiments of the two models.
Complex networks-based energy-efficient evolution model for wireless sensor networks
International Nuclear Information System (INIS)
Zhu Hailin; Luo Hong; Peng Haipeng; Li Lixiang; Luo Qun
2009-01-01
Based on complex networks theory, we present two self-organized energy-efficient models for wireless sensor networks in this paper. The first model constructs the wireless sensor networks according to the connectivity and remaining energy of each sensor node, thus it can produce scale-free networks which have a performance of random error tolerance. In the second model, we not only consider the remaining energy, but also introduce the constraint of links to each node. This model can make the energy consumption of the whole network more balanced. Finally, we present the numerical experiments of the two models.
Datta, D P
2003-01-01
A new class of finitely differentiable scale free solutions to the simplest class of ordinary differential equations is presented. Consequently, the real number set gets replaced by an extended physical set, each element of which is endowed with an equivalence class of infinitesimally separated neighbours in the form of random fluctuations. We show how a sense of time and evolution is intrinsically defined by the infinite continued fraction of the golden mean irrational number (Radical radicand 5 -1)/2, which plays a key role in this extended SL(2,R) formalism of calculus analogous to El Naschie's theory of E sup ( supinfinity sup ) spacetime manifold. Time may thereby undergo random inversions generating well defined random scales, thus allowing a dynamical system to evolve self similarly over the set of multiple scales. The late time stochastic fluctuations of a dynamical system enjoys the generic 1/f spectrum. A universal form of the related probability density is also derived. We prove that the golden mea...
International Nuclear Information System (INIS)
Datta, Dhurjati Prasad
2003-01-01
A new class of finitely differentiable scale free solutions to the simplest class of ordinary differential equations is presented. Consequently, the real number set gets replaced by an extended physical set, each element of which is endowed with an equivalence class of infinitesimally separated neighbours in the form of random fluctuations. We show how a sense of time and evolution is intrinsically defined by the infinite continued fraction of the golden mean irrational number (Radical radicand 5 -1)/2, which plays a key role in this extended SL(2,R) formalism of calculus analogous to El Naschie's theory of E (∞) spacetime manifold. Time may thereby undergo random inversions generating well defined random scales, thus allowing a dynamical system to evolve self similarly over the set of multiple scales. The late time stochastic fluctuations of a dynamical system enjoys the generic 1/f spectrum. A universal form of the related probability density is also derived. We prove that the golden mean number is intrinsically random, letting all measurements in the physical universe fundamentally uncertain. The present analysis offers an explanation of the universal occurrence of the golden mean in diverse natural and biological processes as well as the mass spectrum of high energy particle physics
International Nuclear Information System (INIS)
Li, Bin; Li, Feng; Liu, Hongqi; Cai, Hui; Mao, Xinyong; Peng, Fangyu
2014-01-01
This study presents a novel measurement strategy and an error-compensation model for the measurement of large-scale free-form surfaces in on-machine laser measurement systems. To improve the measurement accuracy, the effects of the scan depth, surface roughness, incident angle and azimuth angle on the measurement results were investigated experimentally, and a practical measurement strategy considering the position and orientation of the sensor is presented. Also, a semi-quantitative model based on geometrical optics is proposed to compensate for the measurement error associated with the incident angle. The normal vector of the measurement point is determined using a cross-curve method from the acquired surface data. Then, the azimuth angle and incident angle are calculated to inform the measurement strategy and error-compensation model, respectively. The measurement strategy and error-compensation model are verified through the measurement of a large propeller blade on a heavy machine tool in a factory environment. The results demonstrate that the strategy and the model are effective in increasing the measurement accuracy. (paper)
Directory of Open Access Journals (Sweden)
Angel Garrido
2011-01-01
Full Text Available In this paper, we analyze a few interrelated concepts about graphs, such as their degree, entropy, or their symmetry/asymmetry levels. These concepts prove useful in the study of different types of Systems, and particularly, in the analysis of Complex Networks. A System can be defined as any set of components functioning together as a whole. A systemic point of view allows us to isolate a part of the world, and so, we can focus on those aspects that interact more closely than others. Network Science analyzes the interconnections among diverse networks from different domains: physics, engineering, biology, semantics, and so on. Current developments in the quantitative analysis of Complex Networks, based on graph theory, have been rapidly translated to studies of brain network organization. The brain's systems have complex network features—such as the small-world topology, highly connected hubs and modularity. These networks are not random. The topology of many different networks shows striking similarities, such as the scale-free structure, with the degree distribution following a Power Law. How can very different systems have the same underlying topological features? Modeling and characterizing these networks, looking for their governing laws, are the current lines of research. So, we will dedicate this Special Issue paper to show measures of symmetry in Complex Networks, and highlight their close relation with measures of information and entropy.
Epidemic spreading in networks with nonrandom long-range interactions
Estrada, Ernesto; Kalala-Mutombo, Franck; Valverde-Colmeiro, Alba
2011-09-01
An “infection,” understood here in a very broad sense, can be propagated through the network of social contacts among individuals. These social contacts include both “close” contacts and “casual” encounters among individuals in transport, leisure, shopping, etc. Knowing the first through the study of the social networks is not a difficult task, but having a clear picture of the network of casual contacts is a very hard problem in a society of increasing mobility. Here we assume, on the basis of several pieces of empirical evidence, that the casual contacts between two individuals are a function of their social distance in the network of close contacts. Then, we assume that we know the network of close contacts and infer the casual encounters by means of nonrandom long-range (LR) interactions determined by the social proximity of the two individuals. This approach is then implemented in a susceptible-infected-susceptible (SIS) model accounting for the spread of infections in complex networks. A parameter called “conductance” controls the feasibility of those casual encounters. In a zero conductance network only contagion through close contacts is allowed. As the conductance increases the probability of having casual encounters also increases. We show here that as the conductance parameter increases, the rate of propagation increases dramatically and the infection is less likely to die out. This increment is particularly marked in networks with scale-free degree distributions, where infections easily become epidemics. Our model provides a general framework for studying epidemic spreading in networks with arbitrary topology with and without casual contacts accounted for by means of LR interactions.
Epidemic spreading in networks with nonrandom long-range interactions.
Estrada, Ernesto; Kalala-Mutombo, Franck; Valverde-Colmeiro, Alba
2011-09-01
An "infection," understood here in a very broad sense, can be propagated through the network of social contacts among individuals. These social contacts include both "close" contacts and "casual" encounters among individuals in transport, leisure, shopping, etc. Knowing the first through the study of the social networks is not a difficult task, but having a clear picture of the network of casual contacts is a very hard problem in a society of increasing mobility. Here we assume, on the basis of several pieces of empirical evidence, that the casual contacts between two individuals are a function of their social distance in the network of close contacts. Then, we assume that we know the network of close contacts and infer the casual encounters by means of nonrandom long-range (LR) interactions determined by the social proximity of the two individuals. This approach is then implemented in a susceptible-infected-susceptible (SIS) model accounting for the spread of infections in complex networks. A parameter called "conductance" controls the feasibility of those casual encounters. In a zero conductance network only contagion through close contacts is allowed. As the conductance increases the probability of having casual encounters also increases. We show here that as the conductance parameter increases, the rate of propagation increases dramatically and the infection is less likely to die out. This increment is particularly marked in networks with scale-free degree distributions, where infections easily become epidemics. Our model provides a general framework for studying epidemic spreading in networks with arbitrary topology with and without casual contacts accounted for by means of LR interactions.
The circadian rhythm induced by the heterogeneous network structure of the suprachiasmatic nucleus
Gu, Changgui; Yang, Huijie
2016-05-01
In mammals, the master clock is located in the suprachiasmatic nucleus (SCN), which is composed of about 20 000 nonidentical neuronal oscillators expressing different intrinsic periods. These neurons are coupled through neurotransmitters to form a network consisting of two subgroups, i.e., a ventrolateral (VL) subgroup and a dorsomedial (DM) subgroup. The VL contains about 25% SCN neurons that receive photic input from the retina, and the DM comprises the remaining 75% SCN neurons which are coupled to the VL. The synapses from the VL to the DM are evidently denser than that from the DM to the VL, in which the VL dominates the DM. Therefore, the SCN is a heterogeneous network where the neurons of the VL are linked with a large number of SCN neurons. In the present study, we mimicked the SCN network based on Goodwin model considering four types of networks including an all-to-all network, a Newman-Watts (NW) small world network, an Erdös-Rényi (ER) random network, and a Barabási-Albert (BA) scale free network. We found that the circadian rhythm was induced in the BA, ER, and NW networks, while the circadian rhythm was absent in the all-to-all network with weak cellular coupling, where the amplitude of the circadian rhythm is largest in the BA network which is most heterogeneous in the network structure. Our finding provides an alternative explanation for the induction or enhancement of circadian rhythm by the heterogeneity of the network structure.
The architecture of dynamic reservoir in the echo state network
Cui, Hongyan; Liu, Xiang; Li, Lixiang
2012-09-01
Echo state network (ESN) has recently attracted increasing interests because of its superior capability in modeling nonlinear dynamic systems. In the conventional echo state network model, its dynamic reservoir (DR) has a random and sparse topology, which is far from the real biological neural networks from both structural and functional perspectives. We hereby propose three novel types of echo state networks with new dynamic reservoir topologies based on complex network theory, i.e., with a small-world topology, a scale-free topology, and a mixture of small-world and scale-free topologies, respectively. We then analyze the relationship between the dynamic reservoir structure and its prediction capability. We utilize two commonly used time series to evaluate the prediction performance of the three proposed echo state networks and compare them to the conventional model. We also use independent and identically distributed time series to analyze the short-term memory and prediction precision of these echo state networks. Furthermore, we study the ratio of scale-free topology and the small-world topology in the mixed-topology network, and examine its influence on the performance of the echo state networks. Our simulation results show that the proposed echo state network models have better prediction capabilities, a wider spectral radius, but retain almost the same short-term memory capacity as compared to the conventional echo state network model. We also find that the smaller the ratio of the scale-free topology over the small-world topology, the better the memory capacities.
PageRank model of opinion formation on Ulam networks
Chakhmakhchyan, L.; Shepelyansky, D.
2013-12-01
We consider a PageRank model of opinion formation on Ulam networks, generated by the intermittency map and the typical Chirikov map. The Ulam networks generated by these maps have certain similarities with such scale-free networks as the World Wide Web (WWW), showing an algebraic decay of the PageRank probability. We find that the opinion formation process on Ulam networks has certain similarities but also distinct features comparing to the WWW. We attribute these distinctions to internal differences in network structure of the Ulam and WWW networks. We also analyze the process of opinion formation in the frame of generalized Sznajd model which protects opinion of small communities.
A Directed Network of Greek and Roman Mythology
Choi, Yeon-Mu; Kim, Hyun-Joo
2005-01-01
We study the Greek and Roman mythology using the network theory. We construct a directed network by using a dictionary of Greek and Roman mythology in which the nodes represent the entries listed in the dictionary and we make directional links from an entry to other entries that appear in its explanatory part. We find that this network is clearly not a random network but a directed scale-free network. Also measuring the various quantities which characterize the mythology network, we analyze t...
Efficient transmission of subthreshold signals in complex networks of spiking neurons.
Torres, Joaquin J; Elices, Irene; Marro, J
2015-01-01
We investigate the efficient transmission and processing of weak, subthreshold signals in a realistic neural medium in the presence of different levels of the underlying noise. Assuming Hebbian weights for maximal synaptic conductances--that naturally balances the network with excitatory and inhibitory synapses--and considering short-term synaptic plasticity affecting such conductances, we found different dynamic phases in the system. This includes a memory phase where population of neurons remain synchronized, an oscillatory phase where transitions between different synchronized populations of neurons appears and an asynchronous or noisy phase. When a weak stimulus input is applied to each neuron, increasing the level of noise in the medium we found an efficient transmission of such stimuli around the transition and critical points separating different phases for well-defined different levels of stochasticity in the system. We proved that this intriguing phenomenon is quite robust, as it occurs in different situations including several types of synaptic plasticity, different type and number of stored patterns and diverse network topologies, namely, diluted networks and complex topologies such as scale-free and small-world networks. We conclude that the robustness of the phenomenon in different realistic scenarios, including spiking neurons, short-term synaptic plasticity and complex networks topologies, make very likely that it could also occur in actual neural systems as recent psycho-physical experiments suggest.
Efficient transmission of subthreshold signals in complex networks of spiking neurons.
Directory of Open Access Journals (Sweden)
Joaquin J Torres
Full Text Available We investigate the efficient transmission and processing of weak, subthreshold signals in a realistic neural medium in the presence of different levels of the underlying noise. Assuming Hebbian weights for maximal synaptic conductances--that naturally balances the network with excitatory and inhibitory synapses--and considering short-term synaptic plasticity affecting such conductances, we found different dynamic phases in the system. This includes a memory phase where population of neurons remain synchronized, an oscillatory phase where transitions between different synchronized populations of neurons appears and an asynchronous or noisy phase. When a weak stimulus input is applied to each neuron, increasing the level of noise in the medium we found an efficient transmission of such stimuli around the transition and critical points separating different phases for well-defined different levels of stochasticity in the system. We proved that this intriguing phenomenon is quite robust, as it occurs in different situations including several types of synaptic plasticity, different type and number of stored patterns and diverse network topologies, namely, diluted networks and complex topologies such as scale-free and small-world networks. We conclude that the robustness of the phenomenon in different realistic scenarios, including spiking neurons, short-term synaptic plasticity and complex networks topologies, make very likely that it could also occur in actual neural systems as recent psycho-physical experiments suggest.
COMPLEX NETWORK SIMULATION OF FOREST NETWORK SPATIAL PATTERN IN PEARL RIVER DELTA
Directory of Open Access Journals (Sweden)
Y. Zeng
2017-09-01
Full Text Available Forest network-construction uses for the method and model with the scale-free features of complex network theory based on random graph theory and dynamic network nodes which show a power-law distribution phenomenon. The model is suitable for ecological disturbance by larger ecological landscape Pearl River Delta consistent recovery. Remote sensing and GIS spatial data are available through the latest forest patches. A standard scale-free network node distribution model calculates the area of forest network’s power-law distribution parameter value size; The recent existing forest polygons which are defined as nodes can compute the network nodes decaying index value of the network’s degree distribution. The parameters of forest network are picked up then make a spatial transition to GIS real world models. Hence the connection is automatically generated by minimizing the ecological corridor by the least cost rule between the near nodes. Based on scale-free network node distribution requirements, select the number compared with less, a huge point of aggregation as a future forest planning network’s main node, and put them with the existing node sequence comparison. By this theory, the forest ecological projects in the past avoid being fragmented, scattered disorderly phenomena. The previous regular forest networks can be reduced the required forest planting costs by this method. For ecological restoration of tropical and subtropical in south China areas, it will provide an effective method for the forest entering city project guidance and demonstration with other ecological networks (water, climate network, etc. for networking a standard and base datum.
Jamming in complex networks with degree correlation
International Nuclear Information System (INIS)
Pastore y Piontti, Ana L.; Braunstein, Lidia A.; Macri, Pablo A.
2010-01-01
We study the effects of the degree-degree correlations on the pressure congestion J when we apply a dynamical process on scale free complex networks using the gradient network approach. We find that the pressure congestion for disassortative (assortative) networks is lower (bigger) than the one for uncorrelated networks which allow us to affirm that disassortative networks enhance transport through them. This result agree with the fact that many real world transportation networks naturally evolve to this kind of correlation. We explain our results showing that for the disassortative case the clusters in the gradient network turn out to be as much elongated as possible, reducing the pressure congestion J and observing the opposite behavior for the assortative case. Finally we apply our model to real world networks, and the results agree with our theoretical model.
Constraints and entropy in a model of network evolution
Tee, Philip; Wakeman, Ian; Parisis, George; Dawes, Jonathan; Kiss, István Z.
2017-11-01
Barabási-Albert's "Scale Free" model is the starting point for much of the accepted theory of the evolution of real world communication networks. Careful comparison of the theory with a wide range of real world networks, however, indicates that the model is in some cases, only a rough approximation to the dynamical evolution of real networks. In particular, the exponent γ of the power law distribution of degree is predicted by the model to be exactly 3, whereas in a number of real world networks it has values between 1.2 and 2.9. In addition, the degree distributions of real networks exhibit cut offs at high node degree, which indicates the existence of maximal node degrees for these networks. In this paper we propose a simple extension to the "Scale Free" model, which offers better agreement with the experimental data. This improvement is satisfying, but the model still does not explain why the attachment probabilities should favor high degree nodes, or indeed how constraints arrive in non-physical networks. Using recent advances in the analysis of the entropy of graphs at the node level we propose a first principles derivation for the "Scale Free" and "constraints" model from thermodynamic principles, and demonstrate that both preferential attachment and constraints could arise as a natural consequence of the second law of thermodynamics.
Cognitive strategies take advantage of the cooperative potential of heterogeneous networks
International Nuclear Information System (INIS)
Vukov, Jeromos; Santos, Francisco C; Pacheco, Jorge M
2012-01-01
Understanding the emergence and maintenance of cooperation is one of the most challenging topics of our time. Evolutionary game theory offers a very flexible framework within which to address this challenge. Here we use the prisoner's dilemma game to investigate the performance of individuals who are capable of adopting reactive strategies in communities structurally organized by means of Barabási-Albert scale-free networks. We find that basic cognitive abilities, such as the capability to distinguish their partners and act according to their previous actions, enable cooperation to thrive. This result is particularly significant whenever fear is the leading social tension, as this fosters retaliation, thus enforcing and sustaining cooperation. Being able to simultaneously reward fellow cooperators and punish defectors proves instrumental in achieving cooperation and the welfare of the community. As a result, central individuals can successfully lead the community and turn defective players into cooperative ones. Finally, even when participation costs—known to be detrimental to cooperation in scale-free networks—are explicitly included, we find that basic cognitive abilities have enough potential to help cooperation to prevail. (paper)
Broad-scale small-world network topology induces optimal synchronization of flexible oscillators
International Nuclear Information System (INIS)
Markovič, Rene; Gosak, Marko; Marhl, Marko
2014-01-01
The discovery of small-world and scale-free properties of many man-made and natural complex networks has attracted increasing attention. Of particular interest is how the structural properties of a network facilitate and constrain its dynamical behavior. In this paper we study the synchronization of weakly coupled limit-cycle oscillators in dependence on the network topology as well as the dynamical features of individual oscillators. We show that flexible oscillators, characterized by near zero values of divergence, express maximal correlation in broad-scale small-world networks, whereas the non-flexible (rigid) oscillators are best correlated in more heterogeneous scale-free networks. We found that the synchronization behavior is governed by the interplay between the networks global efficiency and the mutual frequency adaptation. The latter differs for flexible and rigid oscillators. The results are discussed in terms of evolutionary advantages of broad-scale small-world networks in biological systems
DETECTION OF TOPOLOGICAL PATTERNS IN PROTEIN NETWORKS.
Energy Technology Data Exchange (ETDEWEB)
MASLOV,S.SNEPPEN,K.
2003-11-17
interesting property of many biological networks that was recently brought to attention of the scientific community [3, 4, 5] is an extremely broad distribution of node connectivities defined as the number of immediate neighbors of a given node in the network. While the majority of nodes have just a few edges connecting them to other nodes in the network, there exist some nodes, that we will refer to as ''hubs'', with an unusually large number of neighbors. The connectivity of the most connected hub in such a network is typically several orders of magnitude larger than the average connectivity in the network. Often the distribution of connectivities of individual nodes can be approximated by a scale-free power law form [3] in which case the network is referred to as scale-free. Among biological networks distributions of node connectivities in metabolic [4], protein interaction [5], and brain functional [6] networks can be reasonably approximated by a power law extending for several orders of magnitude. The set of connectivities of individual nodes is an example of a low-level (single-node) topological property of a network. While it answers the question about how many neighbors a given node has, it gives no information about the identity of those neighbors. It is clear that most functional properties of networks are defined at a higher topological level in the exact pattern of connections of nodes to each other. However, such multi-node connectivity patterns are rather difficult to quantify and compare between networks. In this work we concentrate on multi-node topological properties of protein networks. These networks (as any other biological networks) lack the top-down design. Instead, selective forces of biological evolution shape them from raw material provided by random events such as mutations within individual genes, and gene duplications. As a result their connections are characterized by a large degree of randomness. One may wonder which
Cyber War Game in Temporal Networks
2016-02-09
Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-free networks . Physical review letters. 2001; 86(14):3200. doi: 10.1103/PhysRevLett...topology) and remaining resource level of nodes. We use epidemic spreading based on susceptible-infected-removed (SIR) model [6, 21] to describe attackers...86.3200 PMID: 11290142 31. Valdez LD, Macri PA, Braunstein LA. Intermittent social distancing strategy for epidemic control. Physi- cal Review E. 2012 22
Structural Behavioral Study on the General Aviation Network Based on Complex Network
Zhang, Liang; Lu, Na
2017-12-01
The general aviation system is an open and dissipative system with complex structures and behavioral features. This paper has established the system model and network model for general aviation. We have analyzed integral attributes and individual attributes by applying the complex network theory and concluded that the general aviation network has influential enterprise factors and node relations. We have checked whether the network has small world effect, scale-free property and network centrality property which a complex network should have by applying degree distribution of functions and proved that the general aviation network system is a complex network. Therefore, we propose to achieve the evolution process of the general aviation industrial chain to collaborative innovation cluster of advanced-form industries by strengthening network multiplication effect, stimulating innovation performance and spanning the structural hole path.
Modern network science of neurological disorders.
Stam, Cornelis J
2014-10-01
Modern network science has revealed fundamental aspects of normal brain-network organization, such as small-world and scale-free patterns, hierarchical modularity, hubs and rich clubs. The next challenge is to use this knowledge to gain a better understanding of brain disease. Recent developments in the application of network science to conditions such as Alzheimer's disease, multiple sclerosis, traumatic brain injury and epilepsy have challenged the classical concept of neurological disorders being either 'local' or 'global', and have pointed to the overload and failure of hubs as a possible final common pathway in neurological disorders.
Modeling of contact tracing in social networks
Tsimring, Lev S.; Huerta, Ramón
2003-07-01
Spreading of certain infections in complex networks is effectively suppressed by using intelligent strategies for epidemic control. One such standard epidemiological strategy consists in tracing contacts of infected individuals. In this paper, we use a recently introduced generalization of the standard susceptible-infectious-removed stochastic model for epidemics in sparse random networks which incorporates an additional (traced) state. We describe a deterministic mean-field description which yields quantitative agreement with stochastic simulations on random graphs. We also discuss the role of contact tracing in epidemics control in small-world and scale-free networks. Effectiveness of contact tracing grows as the rewiring probability is reduced.
Structure and growth of weighted networks
Energy Technology Data Exchange (ETDEWEB)
Riccaboni, Massimo [Department of Computer and Management Sciences, University of Trento, Trento (Italy); Schiavo, Stefano [Department of Economics, University of Trento, Trento (Italy)], E-mail: massimo.riccaboni@unitn.it, E-mail: stefano.schiavo@unitn.it
2010-02-15
We develop a simple theoretical framework for the evolution of weighted networks that is consistent with a number of stylized features of real-world data. In our framework, the Barabasi-Albert model of network evolution is extended by assuming that link weights evolve according to a geometric Brownian motion. Our model is verified by means of simulations and real-world trade data. We show that the model correctly predicts the intensity and growth distribution of links, the size-variance relationship of the growth of link weights, the relationship between the degree and strength of nodes, and the scale-free structure of the network.
Iannone, Eugenio
2011-01-01
Many argue that telecommunications network infrastructure is the most impressive and important technology ever developed. Analyzing the telecom market's constantly evolving trends, research directions, infrastructure, and vital needs, Telecommunication Networks responds with revolutionized engineering strategies to optimize network construction. Omnipresent in society, telecom networks integrate a wide range of technologies. These include quantum field theory for the study of optical amplifiers, software architectures for network control, abstract algebra required to design error correction co
Gossip spread in social network Models
Johansson, Tobias
2017-04-01
Gossip almost inevitably arises in real social networks. In this article we investigate the relationship between the number of friends of a person and limits on how far gossip about that person can spread in the network. How far gossip travels in a network depends on two sets of factors: (a) factors determining gossip transmission from one person to the next and (b) factors determining network topology. For a simple model where gossip is spread among people who know the victim it is known that a standard scale-free network model produces a non-monotonic relationship between number of friends and expected relative spread of gossip, a pattern that is also observed in real networks (Lind et al., 2007). Here, we study gossip spread in two social network models (Toivonen et al., 2006; Vázquez, 2003) by exploring the parameter space of both models and fitting them to a real Facebook data set. Both models can produce the non-monotonic relationship of real networks more accurately than a standard scale-free model while also exhibiting more realistic variability in gossip spread. Of the two models, the one given in Vázquez (2003) best captures both the expected values and variability of gossip spread.
Toroczkai, Zoltan; Anghel, Marian; Bassler, Kevin; Korniss, Gyorgy
2003-03-01
The dynamics of human, and most biological populations is characterized by competition for resources. By its own nature, this dynamics creates the group of "elites", formed by those agents who have strategies that are the most successful in the given situation, and therefore the rest of the agents will tend to follow, imitate, or interact with them, creating a social structure of leadership in the agent society. These inter-agent communications generate a complex social network with small-world character which itself forms the substrate for a second network, the action network. The latter is a highly dynamic, adaptive, directed network, defined by those inter-agent communication links on the substrate along which the passed information /prediction is acted upon by the other agents. By using the minority game for competition dynamics, here we show that when the substrate network is highly connected, the action network spontaneously develops hubs with a broad distribution of out-degrees, defining a robust leadership structure that is scale-free. Furthermore, in certain, realistic parameter ranges, facilitated by information passing on the action network, agents can spontaneously generate a high degree of cooperation making the collective almost maximally efficient.
Topology of the Erasmus student mobility network
Derzsi, A.; Derzsy, N.; Káptalan, E.; Néda, Z.
2011-07-01
The collaboration network generated by the Erasmus student mobilities in the year 2003 is analyzed and modeled. Nodes of this bipartite network are European universities and links are the Erasmus mobilities between these universities. This network is a complex directed and weighted graph. The non-directed and non-weighted projection of this network does not exhibit a scale-free nature, but proves to be a small-word type random network with a giant component. The connectivity data indicates an exponential degree distribution, a relatively high clustering coefficient and a small radius. It can be easily modeled by using a simple configuration model and arguing the exponential degree distribution. The weighted and directed version of the network can also be described by means of simple random network models.
Scaling in public transport networks
Directory of Open Access Journals (Sweden)
C. von Ferber
2005-01-01
Full Text Available We analyse the statistical properties of public transport networks. These networks are defined by a set of public transport routes (bus lines and the stations serviced by these. For larger networks these appear to possess a scale-free structure, as it is demonstrated e.g. by the Zipf law distribution of the number of routes servicing a given station or for the distribution of the number of stations which can be visited from a chosen one without changing the means of transport. Moreover, a rather particular feature of the public transport network is that many routes service common subsets of stations. We discuss the possibility of new scaling laws that govern intrinsic properties of such subsets.
Evolution of opinions on social networks in the presence of competing committed groups.
Xie, Jierui; Emenheiser, Jeffrey; Kirby, Matthew; Sreenivasan, Sameet; Szymanski, Boleslaw K; Korniss, Gyorgy
2012-01-01
Public opinion is often affected by the presence of committed groups of individuals dedicated to competing points of view. Using a model of pairwise social influence, we study how the presence of such groups within social networks affects the outcome and the speed of evolution of the overall opinion on the network. Earlier work indicated that a single committed group within a dense social network can cause the entire network to quickly adopt the group's opinion (in times scaling logarithmically with the network size), so long as the committed group constitutes more than about 10% of the population (with the findings being qualitatively similar for sparse networks as well). Here we study the more general case of opinion evolution when two groups committed to distinct, competing opinions A and B, and constituting fractions pA and pB of the total population respectively, are present in the network. We show for stylized social networks (including Erdös-Rényi random graphs and Barabási-Albert scale-free networks) that the phase diagram of this system in parameter space (pA,pB) consists of two regions, one where two stable steady-states coexist, and the remaining where only a single stable steady-state exists. These two regions are separated by two fold-bifurcation (spinodal) lines which meet tangentially and terminate at a cusp (critical point). We provide further insights to the phase diagram and to the nature of the underlying phase transitions by investigating the model on infinite (mean-field limit), finite complete graphs and finite sparse networks. For the latter case, we also derive the scaling exponent associated with the exponential growth of switching times as a function of the distance from the critical point.
Alexandrov, Natalia (Technical Monitor); Kuby, Michael; Tierney, Sean; Roberts, Tyler; Upchurch, Christopher
2005-01-01
This report reviews six classes of models that are used for studying transportation network topologies. The report is motivated by two main questions. First, what can the "new science" of complex networks (scale-free, small-world networks) contribute to our understanding of transport network structure, compared to more traditional methods? Second, how can geographic information systems (GIS) contribute to studying transport networks? The report defines terms that can be used to classify different kinds of models by their function, composition, mechanism, spatial and temporal dimensions, certainty, linearity, and resolution. Six broad classes of models for analyzing transport network topologies are then explored: GIS; static graph theory; complex networks; mathematical programming; simulation; and agent-based modeling. Each class of models is defined and classified according to the attributes introduced earlier. The paper identifies some typical types of research questions about network structure that have been addressed by each class of model in the literature.
Evolution of weighted complex bus transit networks with flow
Huang, Ailing; Xiong, Jie; Shen, Jinsheng; Guan, Wei
2016-02-01
Study on the intrinsic properties and evolutional mechanism of urban public transit networks (PTNs) has great significance for transit planning and control, particularly considering passengers’ dynamic behaviors. This paper presents an empirical analysis for exploring the complex properties of Beijing’s weighted bus transit network (BTN) based on passenger flow in L-space, and proposes a bi-level evolution model to simulate the development of transit routes from the view of complex network. The model is an iterative process that is driven by passengers’ travel demands and dual-controlled interest mechanism, which is composed of passengers’ spatio-temporal requirements and cost constraint of transit agencies. Also, the flow’s dynamic behaviors, including the evolutions of travel demand, sectional flow attracted by a new link and flow perturbation triggered in nearby routes, are taken into consideration in the evolutional process. We present the numerical experiment to validate the model, where the main parameters are estimated by using distribution functions that are deduced from real-world data. The results obtained have proven that our model can generate a BTN with complex properties, such as the scale-free behavior or small-world phenomenon, which shows an agreement with our empirical results. Our study’s results can be exploited to optimize the real BTN’s structure and improve the network’s robustness.
International Nuclear Information System (INIS)
Liu Zonghua; Lai Yingcheng; Ye Nong
2002-01-01
We consider growing networks with algebraic preferential attachment and address two questions: (1) what is the effect of temporal fluctuations in the number of new links acquired by the network? and (2) what is the network tolerance against random failures and intentional attacks? We find that the fluctuations generally have little effect on the network properties, although they lead to a plateau behavior for small degrees in the connectivity distribution. Formulas are derived for the evolution and distribution of the network connectivity, which are tested by numerical simulations. Numerical study of the effect of failures and attacks suggests that networks constructed under algebraic preferential attachment are more robust than scale-free networks
Fast network centrality analysis using GPUs
Directory of Open Access Journals (Sweden)
Shi Zhiao
2011-05-01
Full Text Available Abstract Background With the exploding volume of data generated by continuously evolving high-throughput technologies, biological network analysis problems are growing larger in scale and craving for more computational power. General Purpose computation on Graphics Processing Units (GPGPU provides a cost-effective technology for the study of large-scale biological networks. Designing algorithms that maximize data parallelism is the key in leveraging the power of GPUs. Results We proposed an efficient data parallel formulation of the All-Pairs Shortest Path problem, which is the key component for shortest path-based centrality computation. A betweenness centrality algorithm built upon this formulation was developed and benchmarked against the most recent GPU-based algorithm. Speedup between 11 to 19% was observed in various simulated scale-free networks. We further designed three algorithms based on this core component to compute closeness centrality, eccentricity centrality and stress centrality. To make all these algorithms available to the research community, we developed a software package gpu-fan (GPU-based Fast Analysis of Networks for CUDA enabled GPUs. Speedup of 10-50× compared with CPU implementations was observed for simulated scale-free networks and real world biological networks. Conclusions gpu-fan provides a significant performance improvement for centrality computation in large-scale networks. Source code is available under the GNU Public License (GPL at http://bioinfo.vanderbilt.edu/gpu-fan/.
Rasmita Panigrahi; Trilochan Rout
2012-01-01
Classifying nodes in a network is a task with wide range of applications .it can be particularly useful in epidemics detection .Many resources are invested in the task of epidemics and precisely allow human investigators to work more efficiently. This work creates random and scale- free graphs the simulations with varying relative infectiousness and graph size performed. By using computer simulations it should be possible to model such epidemic Phenomena and to better understand the role play...
Unified synchronization criteria in an array of coupled neural networks with hybrid impulses.
Wang, Nan; Li, Xuechen; Lu, Jianquan; Alsaadi, Fuad E
2018-05-01
This paper investigates the problem of globally exponential synchronization of coupled neural networks with hybrid impulses. Two new concepts on average impulsive interval and average impulsive gain are proposed to deal with the difficulties coming from hybrid impulses. By employing the Lyapunov method combined with some mathematical analysis, some efficient unified criteria are obtained to guarantee the globally exponential synchronization of impulsive networks. Our method and criteria are proved to be effective for impulsively coupled neural networks simultaneously with synchronizing impulses and desynchronizing impulses, and we do not need to discuss these two kinds of impulses separately. Moreover, by using our average impulsive interval method, we can obtain an interesting and valuable result for the case of average impulsive interval T a =∞. For some sparse impulsive sequences with T a =∞, the impulses can happen for infinite number of times, but they do not have essential influence on the synchronization property of networks. Finally, numerical examples including scale-free networks are exploited to illustrate our theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.
Convergent evolution of gene networks by single-gene duplications in higher eukaryotes
Amoutzias, Gregory D; Robertson, David L; Oliver, Stephen G; Bornberg-Bauer, Erich
2004-01-01
By combining phylogenetic, proteomic and structural information, we have elucidated the evolutionary driving forces for the gene-regulatory interaction networks of basic helix–loop–helix transcription factors. We infer that recurrent events of single-gene duplication and domain rearrangement repeatedly gave rise to distinct networks with almost identical hub-based topologies, and multiple activators and repressors. We thus provide the first empirical evidence for scale-free protein networks e...
Evaluating North American Electric Grid Reliability Using the Barabasi-Albert Network Model
Chassin, David P.; Posse, Christian
2004-01-01
The reliability of electric transmission systems is examined using a scale-free model of network structure and failure propagation. The topologies of the North American eastern and western electric networks are analyzed to estimate their reliability based on the Barabasi-Albert network model. A commonly used power system reliability index is computed using a simple failure propagation model. The results are compared to the values of power system reliability indices previously obtained using s...
Network evolution by nonlinear preferential rewiring of edges
Xu, Xin-Jian; Hu, Xiao-Ming; Zhang, Li-Jie
2011-06-01
The mathematical framework for small-world networks proposed in a seminal paper by Watts and Strogatz sparked a widespread interest in modeling complex networks in the past decade. However, most of research contributing to static models is in contrast to real-world dynamic networks, such as social and biological networks, which are characterized by rearrangements of connections among agents. In this paper, we study dynamic networks evolved by nonlinear preferential rewiring of edges. The total numbers of vertices and edges of the network are conserved, but edges are continuously rewired according to the nonlinear preference. Assuming power-law kernels with exponents α and β, the network structures in stationary states display a distinct behavior, depending only on β. For β>1, the network is highly heterogeneous with the emergence of starlike structures. For β<1, the network is widely homogeneous with a typical connectivity. At β=1, the network is scale free with an exponential cutoff.
Saramäki, Jari
2013-01-01
The concept of temporal networks is an extension of complex networks as a modeling framework to include information on when interactions between nodes happen. Many studies of the last decade examine how the static network structure affect dynamic systems on the network. In this traditional approach the temporal aspects are pre-encoded in the dynamic system model. Temporal-network methods, on the other hand, lift the temporal information from the level of system dynamics to the mathematical representation of the contact network itself. This framework becomes particularly useful for cases where there is a lot of structure and heterogeneity both in the timings of interaction events and the network topology. The advantage compared to common static network approaches is the ability to design more accurate models in order to explain and predict large-scale dynamic phenomena (such as, e.g., epidemic outbreaks and other spreading phenomena). On the other hand, temporal network methods are mathematically and concept...
2016-01-01
This volume provides an introduction to and overview of the emerging field of interconnected networks which include multi layer or multiplex networks, as well as networks of networks. Such networks present structural and dynamical features quite different from those observed in isolated networks. The presence of links between different networks or layers of a network typically alters the way such interconnected networks behave – understanding the role of interconnecting links is therefore a crucial step towards a more accurate description of real-world systems. While examples of such dissimilar properties are becoming more abundant – for example regarding diffusion, robustness and competition – the root of such differences remains to be elucidated. Each chapter in this topical collection is self-contained and can be read on its own, thus making it also suitable as reference for experienced researchers wishing to focus on a particular topic.
Ripple-Spreading Network Model Optimization by Genetic Algorithm
Directory of Open Access Journals (Sweden)
Xiao-Bing Hu
2013-01-01
Full Text Available Small-world and scale-free properties are widely acknowledged in many real-world complex network systems, and many network models have been developed to capture these network properties. The ripple-spreading network model (RSNM is a newly reported complex network model, which is inspired by the natural ripple-spreading phenomenon on clam water surface. The RSNM exhibits good potential for describing both spatial and temporal features in the development of many real-world networks where the influence of a few local events spreads out through nodes and then largely determines the final network topology. However, the relationships between ripple-spreading related parameters (RSRPs of RSNM and small-world and scale-free topologies are not as obvious or straightforward as in many other network models. This paper attempts to apply genetic algorithm (GA to tune the values of RSRPs, so that the RSNM may generate these two most important network topologies. The study demonstrates that, once RSRPs are properly tuned by GA, the RSNM is capable of generating both network topologies and therefore has a great flexibility to study many real-world complex network systems.
The topology and dynamics of complex networks
Dezso, Zoltan
We start with a brief introduction about the topological properties of real networks. Most real networks are scale-free, being characterized by a power-law degree distribution. The scale-free nature of real networks leads to unexpected properties such as the vanishing epidemic threshold. Traditional methods aiming to reduce the spreading rate of viruses cannot succeed on eradicating the epidemic on a scale-free network. We demonstrate that policies that discriminate between the nodes, curing mostly the highly connected nodes, can restore a finite epidemic threshold and potentially eradicate the virus. We find that the more biased a policy is towards the hubs, the more chance it has to bring the epidemic threshold above the virus' spreading rate. We continue by studying a large Web portal as a model system for a rapidly evolving network. We find that the visitation pattern of a news document decays as a power law, in contrast with the exponential prediction provided by simple models of site visitation. This is rooted in the inhomogeneous nature of the browsing pattern characterizing individual users: the time interval between consecutive visits by the same user to the site follows a power law distribution, in contrast with the exponential expected for Poisson processes. We show that the exponent characterizing the individual user's browsing patterns determines the power-law decay in a document's visitation. Finally, we turn our attention to biological networks and demonstrate quantitatively that protein complexes in the yeast, Saccharomyces cerevisiae, are comprised of a core in which subunits are highly coexpressed, display the same deletion phenotype (essential or non-essential) and share identical functional classification and cellular localization. The results allow us to define the deletion phenotype and cellular task of most known complexes, and to identify with high confidence the biochemical role of hundreds of proteins with yet unassigned functionality.
Popularity versus similarity in growing networks
Krioukov, Dmitri; Papadopoulos, Fragkiskos; Kitsak, Maksim; Serrano, Mariangeles; Boguna, Marian
2012-02-01
Preferential attachment is a powerful mechanism explaining the emergence of scaling in growing networks. If new connections are established preferentially to more popular nodes in a network, then the network is scale-free. Here we show that not only popularity but also similarity is a strong force shaping the network structure and dynamics. We develop a framework where new connections, instead of preferring popular nodes, optimize certain trade-offs between popularity and similarity. The framework admits a geometric interpretation, in which preferential attachment emerges from local optimization processes. As opposed to preferential attachment, the optimization framework accurately describes large-scale evolution of technological (Internet), social (web of trust), and biological (E.coli metabolic) networks, predicting the probability of new links in them with a remarkable precision. The developed framework can thus be used for predicting new links in evolving networks, and provides a different perspective on preferential attachment as an emergent phenomenon.
Noise enhances information transfer in hierarchical networks.
Czaplicka, Agnieszka; Holyst, Janusz A; Sloot, Peter M A
2013-01-01
We study the influence of noise on information transmission in the form of packages shipped between nodes of hierarchical networks. Numerical simulations are performed for artificial tree networks, scale-free Ravasz-Barabási networks as well for a real network formed by email addresses of former Enron employees. Two types of noise are considered. One is related to packet dynamics and is responsible for a random part of packets paths. The second one originates from random changes in initial network topology. We find that the information transfer can be enhanced by the noise. The system possesses optimal performance when both kinds of noise are tuned to specific values, this corresponds to the Stochastic Resonance phenomenon. There is a non-trivial synergy present for both noisy components. We found also that hierarchical networks built of nodes of various degrees are more efficient in information transfer than trees with a fixed branching factor.
Fujimoto, Richard
2006-01-01
"Network Simulation" presents a detailed introduction to the design, implementation, and use of network simulation tools. Discussion topics include the requirements and issues faced for simulator design and use in wired networks, wireless networks, distributed simulation environments, and fluid model abstractions. Several existing simulations are given as examples, with details regarding design decisions and why those decisions were made. Issues regarding performance and scalability are discussed in detail, describing how one can utilize distributed simulation methods to increase the
The Effects of Observation Errors on the Attack Vulnerability of Complex Networks
2012-11-01
Watts & Strogatz , 1998), or scale-free communities (Lancichinetti & Fortunato, 2009)), a size (25, 50 or 100 nodes) and a density (0.01, 0.02, 0.05...D. J. & Strogatz , S. H., 1998. Collective dynamics of ’small-world’ networks. Nature, 4 June, Volume 393, pp. 440-442. 13. Wu, J., Deng, H.-Z
Barabasi, Albert-Laszlo
2016-01-01
Networks are everywhere, from the Internet, to social networks, and the genetic networks that determine our biological existence. Illustrated throughout in full colour, this pioneering textbook, spanning a wide range of topics from physics to computer science, engineering, economics and the social sciences, introduces network science to an interdisciplinary audience. From the origins of the six degrees of separation to explaining why networks are robust to random failures, the author explores how viruses like Ebola and H1N1 spread, and why it is that our friends have more friends than we do. Using numerous real-world examples, this innovatively designed text includes clear delineation between undergraduate and graduate level material. The mathematical formulas and derivations are included within Advanced Topics sections, enabling use at a range of levels. Extensive online resources, including films and software for network analysis, make this a multifaceted companion for anyone with an interest in network sci...
Kwon, Sungchul; Kim, Yup
2013-01-01
We investigate epidemic spreading in annealed directed scale-free networks with the in-degree (k) distribution P(in)(k)~k(-γ(in)) and the out-degree (ℓ) distribution, P(out)(ℓ)~ℓ(-γ(out)). The correlation of each node on the networks is controlled by the probability r(0≤r≤1) in two different algorithms, the so-called k and ℓ algorithms. For r=1, the k algorithm gives =, whereas the ℓ algorithm gives =. For r=0, = for both algorithms. As the prototype of epidemic spreading, the susceptible-infected-susceptible model and contact process on the networks are analyzed using the heterogeneous mean-field theory and Monte Carlo simulations. The directedness of links and the correlation of the network are found to play important roles in the spreading, so that critical behaviors of both models are distinct from those on undirected scale-free networks.
Spreading gossip in social networks
Lind, Pedro G.; da Silva, Luciano R.; Andrade, José S., Jr.; Herrmann, Hans J.
2007-09-01
We study a simple model of information propagation in social networks, where two quantities are introduced: the spread factor, which measures the average maximal reachability of the neighbors of a given node that interchange information among each other, and the spreading time needed for the information to reach such a fraction of nodes. When the information refers to a particular node at which both quantities are measured, the model can be taken as a model for gossip propagation. In this context, we apply the model to real empirical networks of social acquaintances and compare the underlying spreading dynamics with different types of scale-free and small-world networks. We find that the number of friendship connections strongly influences the probability of being gossiped. Finally, we discuss how the spread factor is able to be applied to other situations.
Spreading gossip in social networks.
Lind, Pedro G; da Silva, Luciano R; Andrade, José S; Herrmann, Hans J
2007-09-01
We study a simple model of information propagation in social networks, where two quantities are introduced: the spread factor, which measures the average maximal reachability of the neighbors of a given node that interchange information among each other, and the spreading time needed for the information to reach such a fraction of nodes. When the information refers to a particular node at which both quantities are measured, the model can be taken as a model for gossip propagation. In this context, we apply the model to real empirical networks of social acquaintances and compare the underlying spreading dynamics with different types of scale-free and small-world networks. We find that the number of friendship connections strongly influences the probability of being gossiped. Finally, we discuss how the spread factor is able to be applied to other situations.
Border trees of complex networks
International Nuclear Information System (INIS)
Villas Boas, Paulino R; Rodrigues, Francisco A; Travieso, Gonzalo; Fontoura Costa, Luciano da
2008-01-01
The comprehensive characterization of the structure of complex networks is essential to understand the dynamical processes which guide their evolution. The discovery of the scale-free distribution and the small-world properties of real networks were fundamental to stimulate more realistic models and to understand important dynamical processes related to network growth. However, the properties of the network borders (nodes with degree equal to 1), one of its most fragile parts, remained little investigated and understood. The border nodes may be involved in the evolution of structures such as geographical networks. Here we analyze the border trees of complex networks, which are defined as the subgraphs without cycles connected to the remainder of the network (containing cycles) and terminating into border nodes. In addition to describing an algorithm for identification of such tree subgraphs, we also consider how their topological properties can be quantified in terms of their depth and number of leaves. We investigate the properties of border trees for several theoretical models as well as real-world networks. Among the obtained results, we found that more than half of the nodes of some real-world networks belong to the border trees. A power-law with cut-off was observed for the distribution of the depth and number of leaves of the border trees. An analysis of the local role of the nodes in the border trees was also performed
DEFF Research Database (Denmark)
Bruun, Jesper; Evans, Robert Harry
2014-01-01
This paper describes the background for, realisation of and author reflections on a network workshop held at ESERA2013. As a new research area in science education, networks offer a unique opportunity to visualise and find patterns and relationships in complicated social or academic network data....... These include student relations and interactions and epistemic and linguistic networks of words, concepts and actions. Network methodology has already found use in science education research. However, while networks hold the potential for new insights, they have not yet found wide use in the science education...... research community. With this workshop, participants were offered a way into network science based on authentic educational research data. The workshop was constructed as an inquiry lesson with emphasis on user autonomy. Learning activities had participants choose to work with one of two cases of networks...
The Laplacian spectrum of neural networks
de Lange, Siemon C.; de Reus, Marcel A.; van den Heuvel, Martijn P.
2014-01-01
The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these “conventional” graph metrics, the eigenvalue spectrum of the normalized Laplacian describes a network's structure directly at a systems level, without referring to individual nodes or connections. In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of the macaque and cat, and the microscopic network of the Caenorhabditis elegans were examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra revealed an integrative community structure in neural brain networks. Extending previous findings of overlap of network attributes across species, similarity of the Laplacian spectra across the cat, macaque and C. elegans neural networks suggests a certain level of consistency in the overall architecture of the anatomical neural networks of these species. Our results further suggest a specific network class for neural networks, distinct from conceptual small-world and scale-free models as well as several empirical networks. PMID:24454286
Cai, Shuiming; Zhou, Peipei; Liu, Zengrong
2014-09-01
This paper concerns the problem of exponential synchronization for a class of general delayed dynamical networks with hybrid coupling via pinning periodically intermittent control. Both the internal delay and coupling delay are taken into account in the network model. Meanwhile, the transmission delay and self-feedback delay are involved in the delayed coupling term. By establishing a new differential inequality, several simple and useful exponential synchronization criteria are derived analytically. It is shown that the controlled synchronization state can vary in comparison with the conventional synchronized solution, and the degree of the node and the inner delayed coupling matrix play important roles in the controlled synchronization state. By choosing different inner delayed coupling matrices and the degrees of the node, different controlled synchronization states can be obtained. Furthermore, the detail pinning schemes deciding what nodes should be chosen as pinned candidates and how many nodes are needed to be pinned for a fixed coupling strength are provided. The simple procedures illuminating how to design suitable intermittent controllers in real application are also given. Numerical simulations, including an undirected scale-free network and a directed small-world network, are finally presented to demonstrate the effectiveness of the theoretical results.
Song, Zhenhua; Zhang, Chi; He, Lingxiao; Sui, Yanfang; Lin, Xiafei; Pan, Jingjing
2018-05-01
Osteoarthritis (OA) is the most common form of joint disease. The development of inflammation have been considered to play a key role during the progression of OA. Regulatory pathways are known to play crucial roles in many pathogenic processes. Thus, deciphering these risk regulatory pathways is critical for elucidating the mechanisms underlying OA. We constructed an OA-specific regulatory network by integrating comprehensive curated transcription and post-transcriptional resource involving transcription factor (TF) and microRNA (miRNA). To deepen our understanding of underlying molecular mechanisms of OA, we developed an integrated systems approach to identify OA-specific risk regulatory pathways. In this study, we identified 89 significantly differentially expressed genes between normal and inflamed areas of OA patients. We found the OA-specific regulatory network was a standard scale-free network with small-world properties. It significant enriched many immune response-related functions including leukocyte differentiation, myeloid differentiation and T cell activation. Finally, 141 risk regulatory pathways were identified based on OA-specific regulatory network, which contains some known regulator of OA. The risk regulatory pathways may provide clues for the etiology of OA and be a potential resource for the discovery of novel OA-associated disease genes. Copyright © 2018 Elsevier Inc. All rights reserved.
Park, Jihoon; Mori, Hiroki; Okuyama, Yuji; Asada, Minoru
2017-01-01
Chaotic itinerancy is a phenomenon in which the state of a nonlinear dynamical system spontaneously explores and attracts certain states in a state space. From this perspective, the diverse behavior of animals and its spontaneous transitions lead to a complex coupled dynamical system, including a physical body and a brain. Herein, a series of simulations using different types of non-linear oscillator networks (i.e., regular, small-world, scale-free, random) with a musculoskeletal model (i.e., a snake-like robot) as a physical body are conducted to understand how the chaotic itinerancy of bodily behavior emerges from the coupled dynamics between the body and the brain. A behavior analysis (behavior clustering) and network analysis for the classified behavior are then applied. The former consists of feature vector extraction from the motions and classification of the movement patterns that emerged from the coupled dynamics. The network structures behind the classified movement patterns are revealed by estimating the "information networks" different from the given non-linear oscillator networks based on the transfer entropy which finds the information flow among neurons. The experimental results show that: (1) the number of movement patterns and their duration depend on the sensor ratio to control the balance of strength between the body and the brain dynamics and on the type of the given non-linear oscillator networks; and (2) two kinds of information networks are found behind two kinds movement patterns with different durations by utilizing the complex network measures, clustering coefficient and the shortest path length with a negative and a positive relationship with the duration periods of movement patterns. The current results seem promising for a future extension of the method to a more complicated body and environment. Several requirements are also discussed.
Directory of Open Access Journals (Sweden)
Jihoon Park
Full Text Available Chaotic itinerancy is a phenomenon in which the state of a nonlinear dynamical system spontaneously explores and attracts certain states in a state space. From this perspective, the diverse behavior of animals and its spontaneous transitions lead to a complex coupled dynamical system, including a physical body and a brain. Herein, a series of simulations using different types of non-linear oscillator networks (i.e., regular, small-world, scale-free, random with a musculoskeletal model (i.e., a snake-like robot as a physical body are conducted to understand how the chaotic itinerancy of bodily behavior emerges from the coupled dynamics between the body and the brain. A behavior analysis (behavior clustering and network analysis for the classified behavior are then applied. The former consists of feature vector extraction from the motions and classification of the movement patterns that emerged from the coupled dynamics. The network structures behind the classified movement patterns are revealed by estimating the "information networks" different from the given non-linear oscillator networks based on the transfer entropy which finds the information flow among neurons. The experimental results show that: (1 the number of movement patterns and their duration depend on the sensor ratio to control the balance of strength between the body and the brain dynamics and on the type of the given non-linear oscillator networks; and (2 two kinds of information networks are found behind two kinds movement patterns with different durations by utilizing the complex network measures, clustering coefficient and the shortest path length with a negative and a positive relationship with the duration periods of movement patterns. The current results seem promising for a future extension of the method to a more complicated body and environment. Several requirements are also discussed.
Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae
Reguly, Teresa; Breitkreutz, Ashton; Boucher, Lorrie; Breitkreutz, Bobby-Joe; Hon, Gary C; Myers, Chad L; Parsons, Ainslie; Friesen, Helena; Oughtred, Rose; Tong, Amy; Stark, Chris; Ho, Yuen; Botstein, David; Andrews, Brenda; Boone, Charles; Troyanskya, Olga G; Ideker, Trey; Dolinski, Kara; Batada, Nizar N; Tyers, Mike
2006-01-01
Background The study of complex biological networks and prediction of gene function has been enabled by high-throughput (HTP) methods for detection of genetic and protein interactions. Sparse coverage in HTP datasets may, however, distort network properties and confound predictions. Although a vast number of well substantiated interactions are recorded in the scientific literature, these data have not yet been distilled into networks that enable system-level inference. Results We describe here a comprehensive database of genetic and protein interactions, and associated experimental evidence, for the budding yeast Saccharomyces cerevisiae, as manually curated from over 31,793 abstracts and online publications. This literature-curated (LC) dataset contains 33,311 interactions, on the order of all extant HTP datasets combined. Surprisingly, HTP protein-interaction datasets currently achieve only around 14% coverage of the interactions in the literature. The LC network nevertheless shares attributes with HTP networks, including scale-free connectivity and correlations between interactions, abundance, localization, and expression. We find that essential genes or proteins are enriched for interactions with other essential genes or proteins, suggesting that the global network may be functionally unified. This interconnectivity is supported by a substantial overlap of protein and genetic interactions in the LC dataset. We show that the LC dataset considerably improves the predictive power of network-analysis approaches. The full LC dataset is available at the BioGRID () and SGD () databases. Conclusion Comprehensive datasets of biological interactions derived from the primary literature provide critical benchmarks for HTP methods, augment functional prediction, and reveal system-level attributes of biological networks. PMID:16762047
Visibility graph analysis on quarterly macroeconomic series of China based on complex network theory
Wang, Na; Li, Dong; Wang, Qiwen
2012-12-01
The visibility graph approach and complex network theory provide a new insight into time series analysis. The inheritance of the visibility graph from the original time series was further explored in the paper. We found that degree distributions of visibility graphs extracted from Pseudo Brownian Motion series obtained by the Frequency Domain algorithm exhibit exponential behaviors, in which the exponential exponent is a binomial function of the Hurst index inherited in the time series. Our simulations presented that the quantitative relations between the Hurst indexes and the exponents of degree distribution function are different for different series and the visibility graph inherits some important features of the original time series. Further, we convert some quarterly macroeconomic series including the growth rates of value-added of three industry series and the growth rates of Gross Domestic Product series of China to graphs by the visibility algorithm and explore the topological properties of graphs associated from the four macroeconomic series, namely, the degree distribution and correlations, the clustering coefficient, the average path length, and community structure. Based on complex network analysis we find degree distributions of associated networks from the growth rates of value-added of three industry series are almost exponential and the degree distributions of associated networks from the growth rates of GDP series are scale free. We also discussed the assortativity and disassortativity of the four associated networks as they are related to the evolutionary process of the original macroeconomic series. All the constructed networks have “small-world” features. The community structures of associated networks suggest dynamic changes of the original macroeconomic series. We also detected the relationship among government policy changes, community structures of associated networks and macroeconomic dynamics. We find great influences of government
Directory of Open Access Journals (Sweden)
Javier Borge-Holthoefer
Full Text Available The number of people using online social networks in their everyday life is continuously growing at a pace never saw before. This new kind of communication has an enormous impact on opinions, cultural trends, information spreading and even in the commercial success of new products. More importantly, social online networks have revealed as a fundamental organizing mechanism in recent country-wide social movements. In this paper, we provide a quantitative analysis of the structural and dynamical patterns emerging from the activity of an online social network around the ongoing May 15th (15M movement in Spain. Our network is made up by users that exchanged tweets in a time period of one month, which includes the birth and stabilization of the 15M movement. We characterize in depth the growth of such dynamical network and find that it is scale-free with communities at the mesoscale. We also find that its dynamics exhibits typical features of critical systems such as robustness and power-law distributions for several quantities. Remarkably, we report that the patterns characterizing the spreading dynamics are asymmetric, giving rise to a clear distinction between information sources and sinks. Our study represents a first step towards the use of data from online social media to comprehend modern societal dynamics.
Borge-Holthoefer, Javier; Rivero, Alejandro; García, Iñigo; Cauhé, Elisa; Ferrer, Alfredo; Ferrer, Darío; Francos, David; Iñiguez, David; Pérez, María Pilar; Ruiz, Gonzalo; Sanz, Francisco; Serrano, Fermín; Viñas, Cristina; Tarancón, Alfonso; Moreno, Yamir
2011-01-01
The number of people using online social networks in their everyday life is continuously growing at a pace never saw before. This new kind of communication has an enormous impact on opinions, cultural trends, information spreading and even in the commercial success of new products. More importantly, social online networks have revealed as a fundamental organizing mechanism in recent country-wide social movements. In this paper, we provide a quantitative analysis of the structural and dynamical patterns emerging from the activity of an online social network around the ongoing May 15th (15M) movement in Spain. Our network is made up by users that exchanged tweets in a time period of one month, which includes the birth and stabilization of the 15M movement. We characterize in depth the growth of such dynamical network and find that it is scale-free with communities at the mesoscale. We also find that its dynamics exhibits typical features of critical systems such as robustness and power-law distributions for several quantities. Remarkably, we report that the patterns characterizing the spreading dynamics are asymmetric, giving rise to a clear distinction between information sources and sinks. Our study represents a first step towards the use of data from online social media to comprehend modern societal dynamics.
Breakdown of interdependent directed networks.
Liu, Xueming; Stanley, H Eugene; Gao, Jianxi
2016-02-02
Increasing evidence shows that real-world systems interact with one another via dependency connectivities. Failing connectivities are the mechanism behind the breakdown of interacting complex systems, e.g., blackouts caused by the interdependence of power grids and communication networks. Previous research analyzing the robustness of interdependent networks has been limited to undirected networks. However, most real-world networks are directed, their in-degrees and out-degrees may be correlated, and they are often coupled to one another as interdependent directed networks. To understand the breakdown and robustness of interdependent directed networks, we develop a theoretical framework based on generating functions and percolation theory. We find that for interdependent Erdős-Rényi networks the directionality within each network increases their vulnerability and exhibits hybrid phase transitions. We also find that the percolation behavior of interdependent directed scale-free networks with and without degree correlations is so complex that two criteria are needed to quantify and compare their robustness: the percolation threshold and the integrated size of the giant component during an entire attack process. Interestingly, we find that the in-degree and out-degree correlations in each network layer increase the robustness of interdependent degree heterogeneous networks that most real networks are, but decrease the robustness of interdependent networks with homogeneous degree distribution and with strong coupling strengths. Moreover, by applying our theoretical analysis to real interdependent international trade networks, we find that the robustness of these real-world systems increases with the in-degree and out-degree correlations, confirming our theoretical analysis.
Topology influences performance in the associative memory neural networks
International Nuclear Information System (INIS)
Lu Jianquan; He Juan; Cao Jinde; Gao Zhiqiang
2006-01-01
To explore how topology affects performance within Hopfield-type associative memory neural networks (AMNNs), we studied the computational performance of the neural networks with regular lattice, random, small-world, and scale-free structures. In this Letter, we found that the memory performance of neural networks obtained through asynchronous updating from 'larger' nodes to 'smaller' nodes are better than asynchronous updating in random order, especially for the scale-free topology. The computational performance of associative memory neural networks linked by the above-mentioned network topologies with the same amounts of nodes (neurons) and edges (synapses) were studied respectively. Along with topologies becoming more random and less locally disordered, we will see that the performance of associative memory neural network is quite improved. By comparing, we show that the regular lattice and random network form two extremes in terms of patterns stability and retrievability. For a network, its patterns stability and retrievability can be largely enhanced by adding a random component or some shortcuts to its structured component. According to the conclusions of this Letter, we can design the associative memory neural networks with high performance and minimal interconnect requirements
Ranking stability and super-stable nodes in complex networks.
Ghoshal, Gourab; Barabási, Albert-László
2011-07-19
Pagerank, a network-based diffusion algorithm, has emerged as the leading method to rank web content, ecological species and even scientists. Despite its wide use, it remains unknown how the structure of the network on which it operates affects its performance. Here we show that for random networks the ranking provided by pagerank is sensitive to perturbations in the network topology, making it unreliable for incomplete or noisy systems. In contrast, in scale-free networks we predict analytically the emergence of super-stable nodes whose ranking is exceptionally stable to perturbations. We calculate the dependence of the number of super-stable nodes on network characteristics and demonstrate their presence in real networks, in agreement with the analytical predictions. These results not only deepen our understanding of the interplay between network topology and dynamical processes but also have implications in all areas where ranking has a role, from science to marketing.
Evolution of quantum and classical strategies on networks by group interactions
International Nuclear Information System (INIS)
Li Qiang; Chen Minyou; Iqbal, Azhar; Abbott, Derek
2012-01-01
In this paper, quantum strategies are introduced within evolutionary games in order to investigate the evolution of quantum and classical strategies on networks in the public goods game. Comparing the results of evolution on a scale-free network and a square lattice, we find that a quantum strategy outperforms the classical strategies, regardless of the network. Moreover, a quantum strategy dominates the population earlier in group interactions than it does in pairwise interactions. In particular, if the hub node in a scale-free network is occupied by a cooperator initially, the strategy of cooperation will prevail in the population. However, in other situations, a quantum strategy can defeat the classical ones and finally becomes the dominant strategy in the population. (paper)
Heterogeneous Epidemic Model for Assessing Data Dissemination in Opportunistic Networks
DEFF Research Database (Denmark)
Rozanova, Liudmila; Alekseev, Vadim; Temerev, Alexander
2014-01-01
that amount of data transferred between network nodes possesses a Pareto distribution, implying scale-free properties. In this context, more heterogeneity in susceptibility means the less severe epidemic progression, and, on the contrary, more heterogeneity in infectivity leads to more severe epidemics...... — assuming that the other parameter (either heterogeneity or susceptibility) stays fixed. The results are general enough to be useful for estimating the epidemic progression with no significant acquired immunity — in the cases where Pareto distribution holds....
Network geometry with flavor: From complexity to quantum geometry
Bianconi, Ginestra; Rahmede, Christoph
2016-03-01
Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d -dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s =-1 ,0 ,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d . In d =1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d >1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t . Interestingly the NGF remains fully classical but
A Complex Network Approach to Distributional Semantic Models.
Directory of Open Access Journals (Sweden)
Akira Utsumi
Full Text Available A number of studies on network analysis have focused on language networks based on free word association, which reflects human lexical knowledge, and have demonstrated the small-world and scale-free properties in the word association network. Nevertheless, there have been very few attempts at applying network analysis to distributional semantic models, despite the fact that these models have been studied extensively as computational or cognitive models of human lexical knowledge. In this paper, we analyze three network properties, namely, small-world, scale-free, and hierarchical properties, of semantic networks created by distributional semantic models. We demonstrate that the created networks generally exhibit the same properties as word association networks. In particular, we show that the distribution of the number of connections in these networks follows the truncated power law, which is also observed in an association network. This indicates that distributional semantic models can provide a plausible model of lexical knowledge. Additionally, the observed differences in the network properties of various implementations of distributional semantic models are consistently explained or predicted by considering the intrinsic semantic features of a word-context matrix and the functions of matrix weighting and smoothing. Furthermore, to simulate a semantic network with the observed network properties, we propose a new growing network model based on the model of Steyvers and Tenenbaum. The idea underlying the proposed model is that both preferential and random attachments are required to reflect different types of semantic relations in network growth process. We demonstrate that this model provides a better explanation of network behaviors generated by distributional semantic models.
New seismograph includes filters
Energy Technology Data Exchange (ETDEWEB)
1979-11-02
The new Nimbus ES-1210 multichannel signal enhancement seismograph from EG and G geometrics has recently been redesigned to include multimode signal fillers on each amplifier. The ES-1210F is a shallow exploration seismograph for near subsurface exploration such as in depth-to-bedrock, geological hazard location, mineral exploration, and landslide investigations.
Nobelist TD LEE Scientist Cooperation Network and Scientist Innovation Ability Model
Fang, Jin-Qing; Liu, Qiang
2013-01-01
Nobelist TD Lee scientist cooperation network (TDLSCN) and their innovation ability are studied. It is found that the TDLSCN not only has the common topological properties both of scale-free and small-world for a general scientist cooperation networks, but also appears the creation multiple-peak phenomenon for number of published paper with year evolution, which become Nobelist TD Lee’s significant mark distinguished from other scientists. This new phenomenon has not been revealed in the scie...
Growing Homophilic Networks Are Natural Navigable Small Worlds.
Malkov, Yury A; Ponomarenko, Alexander
2016-01-01
Navigability, an ability to find a logarithmically short path between elements using only local information, is one of the most fascinating properties of real-life networks. However, the exact mechanism responsible for the formation of navigation properties remained unknown. We show that navigability can be achieved by using only two ingredients present in the majority of networks: network growth and local homophily, giving a persuasive answer how the navigation appears in real-life networks. A very simple algorithm produces hierarchical self-similar optimally wired navigable small world networks with exponential degree distribution by using only local information. Adding preferential attachment produces a scale-free network which has shorter greedy paths, but worse (power law) scaling of the information extraction locality (algorithmic complexity of a search). Introducing saturation of the preferential attachment leads to truncated scale-free degree distribution that offers a good tradeoff between these parameters and can be useful for practical applications. Several features of the model are observed in real-life networks, in particular in the brain neural networks, supporting the earlier suggestions that they are navigable.
Growing Homophilic Networks Are Natural Navigable Small Worlds.
Directory of Open Access Journals (Sweden)
Yury A Malkov
Full Text Available Navigability, an ability to find a logarithmically short path between elements using only local information, is one of the most fascinating properties of real-life networks. However, the exact mechanism responsible for the formation of navigation properties remained unknown. We show that navigability can be achieved by using only two ingredients present in the majority of networks: network growth and local homophily, giving a persuasive answer how the navigation appears in real-life networks. A very simple algorithm produces hierarchical self-similar optimally wired navigable small world networks with exponential degree distribution by using only local information. Adding preferential attachment produces a scale-free network which has shorter greedy paths, but worse (power law scaling of the information extraction locality (algorithmic complexity of a search. Introducing saturation of the preferential attachment leads to truncated scale-free degree distribution that offers a good tradeoff between these parameters and can be useful for practical applications. Several features of the model are observed in real-life networks, in particular in the brain neural networks, supporting the earlier suggestions that they are navigable.
Combined Heuristic Attack Strategy on Complex Networks
Directory of Open Access Journals (Sweden)
Marek Šimon
2017-01-01
Full Text Available Usually, the existence of a complex network is considered an advantage feature and efforts are made to increase its robustness against an attack. However, there exist also harmful and/or malicious networks, from social ones like spreading hoax, corruption, phishing, extremist ideology, and terrorist support up to computer networks spreading computer viruses or DDoS attack software or even biological networks of carriers or transport centers spreading disease among the population. New attack strategy can be therefore used against malicious networks, as well as in a worst-case scenario test for robustness of a useful network. A common measure of robustness of networks is their disintegration level after removal of a fraction of nodes. This robustness can be calculated as a ratio of the number of nodes of the greatest remaining network component against the number of nodes in the original network. Our paper presents a combination of heuristics optimized for an attack on a complex network to achieve its greatest disintegration. Nodes are deleted sequentially based on a heuristic criterion. Efficiency of classical attack approaches is compared to the proposed approach on Barabási-Albert, scale-free with tunable power-law exponent, and Erdős-Rényi models of complex networks and on real-world networks. Our attack strategy results in a faster disintegration, which is counterbalanced by its slightly increased computational demands.
Analytic device including nanostructures
Di Fabrizio, Enzo M.; Fratalocchi, Andrea; Totero Gongora, Juan Sebastian; Coluccio, Maria Laura; Candeloro, Patrizio; Cuda, Gianni
2015-01-01
A device for detecting an analyte in a sample comprising: an array including a plurality of pixels, each pixel including a nanochain comprising: a first nanostructure, a second nanostructure, and a third nanostructure, wherein size of the first nanostructure is larger than that of the second nanostructure, and size of the second nanostructure is larger than that of the third nanostructure, and wherein the first nanostructure, the second nanostructure, and the third nanostructure are positioned on a substrate such that when the nanochain is excited by an energy, an optical field between the second nanostructure and the third nanostructure is stronger than an optical field between the first nanostructure and the second nanostructure, wherein the array is configured to receive a sample; and a detector arranged to collect spectral data from a plurality of pixels of the array.
Saskatchewan resources. [including uranium
Energy Technology Data Exchange (ETDEWEB)
1979-09-01
The production of chemicals and minerals for the chemical industry in Saskatchewan are featured, with some discussion of resource taxation. The commodities mentioned include potash, fatty amines, uranium, heavy oil, sodium sulfate, chlorine, sodium hydroxide, sodium chlorate and bentonite. Following the successful outcome of the Cluff Lake inquiry, the uranium industry is booming. Some developments and production figures for Gulf Minerals, Amok, Cenex and Eldorado are mentioned.
International Nuclear Information System (INIS)
Zhang Li-Sheng; Mi Yuan-Yuan; Gu Wei-Feng; Hu Gang
2014-01-01
All dynamic complex networks have two important aspects, pattern dynamics and network topology. Discovering different types of pattern dynamics and exploring how these dynamics depend on network topologies are tasks of both great theoretical importance and broad practical significance. In this paper we study the oscillatory behaviors of excitable complex networks (ECNs) and find some interesting dynamic behaviors of ECNs in oscillatory probability, the multiplicity of oscillatory attractors, period distribution, and different types of oscillatory patterns (e.g., periodic, quasiperiodic, and chaotic). In these aspects, we further explore strikingly sharp differences among network dynamics induced by different topologies (random or scale-free topologies) and different interaction structures (symmetric or asymmetric couplings). The mechanisms behind these differences are explained physically. (interdisciplinary physics and related areas of science and technology)
Bidirectional selection between two classes in complex social networks.
Zhou, Bin; He, Zhe; Jiang, Luo-Luo; Wang, Nian-Xin; Wang, Bing-Hong
2014-12-19
The bidirectional selection between two classes widely emerges in various social lives, such as commercial trading and mate choosing. Until now, the discussions on bidirectional selection in structured human society are quite limited. We demonstrated theoretically that the rate of successfully matching is affected greatly by individuals' neighborhoods in social networks, regardless of the type of networks. Furthermore, it is found that the high average degree of networks contributes to increasing rates of successful matches. The matching performance in different types of networks has been quantitatively investigated, revealing that the small-world networks reinforces the matching rate more than scale-free networks at given average degree. In addition, our analysis is consistent with the modeling result, which provides the theoretical understanding of underlying mechanisms of matching in complex networks.
Perturbation analysis of complete synchronization in networks of phase oscillators.
Tönjes, Ralf; Blasius, Bernd
2009-08-01
The behavior of weakly coupled self-sustained oscillators can often be well described by phase equations. Here we use the paradigm of Kuramoto phase oscillators which are coupled in a network to calculate first- and second-order corrections to the frequency of the fully synchronized state for nonidentical oscillators. The topology of the underlying coupling network is reflected in the eigenvalues and eigenvectors of the network Laplacian which influence the synchronization frequency in a particular way. They characterize the importance of nodes in a network and the relations between them. Expected values for the synchronization frequency are obtained for oscillators with quenched random frequencies on a class of scale-free random networks and for a Erdös-Rényi random network. We briefly discuss an application of the perturbation theory in the second order to network structural analysis.
A last updating evolution model for online social networks
Bu, Zhan; Xia, Zhengyou; Wang, Jiandong; Zhang, Chengcui
2013-05-01
As information technology has advanced, people are turning to electronic media more frequently for communication, and social relationships are increasingly found on online channels. However, there is very limited knowledge about the actual evolution of the online social networks. In this paper, we propose and study a novel evolution network model with the new concept of “last updating time”, which exists in many real-life online social networks. The last updating evolution network model can maintain the robustness of scale-free networks and can improve the network reliance against intentional attacks. What is more, we also found that it has the “small-world effect”, which is the inherent property of most social networks. Simulation experiment based on this model show that the results and the real-life data are consistent, which means that our model is valid.
Epidemics in networks: a master equation approach
International Nuclear Information System (INIS)
Cotacallapa, M; Hase, M O
2016-01-01
A problem closely related to epidemiology, where a subgraph of ‘infected’ links is defined inside a larger network, is investigated. This subgraph is generated from the underlying network by a random variable, which decides whether a link is able to propagate a disease/information. The relaxation timescale of this random variable is examined in both annealed and quenched limits, and the effectiveness of propagation of disease/information is analyzed. The dynamics of the model is governed by a master equation and two types of underlying network are considered: one is scale-free and the other has exponential degree distribution. We have shown that the relaxation timescale of the contagion variable has a major influence on the topology of the subgraph of infected links, which determines the efficiency of spreading of disease/information over the network. (paper)
Epidemics in networks: a master equation approach
Cotacallapa, M.; Hase, M. O.
2016-02-01
A problem closely related to epidemiology, where a subgraph of ‘infected’ links is defined inside a larger network, is investigated. This subgraph is generated from the underlying network by a random variable, which decides whether a link is able to propagate a disease/information. The relaxation timescale of this random variable is examined in both annealed and quenched limits, and the effectiveness of propagation of disease/information is analyzed. The dynamics of the model is governed by a master equation and two types of underlying network are considered: one is scale-free and the other has exponential degree distribution. We have shown that the relaxation timescale of the contagion variable has a major influence on the topology of the subgraph of infected links, which determines the efficiency of spreading of disease/information over the network.
DEFF Research Database (Denmark)
Korzenevica, Marina
2016-01-01
Following the civil war of 1996–2006, there was a dramatic increase in the labor mobility of young men and the inclusion of young women in formal education, which led to the transformation of the political landscape of rural Nepal. Mobility and schooling represent a level of prestige that rural...... politics. It analyzes how formal education and mobility either challenge or reinforce traditional gendered norms which dictate a lowly position for young married women in the household and their absence from community politics. The article concludes that women are simultaneously excluded and included from...... community politics. On the one hand, their mobility and decision-making powers decrease with the increase in the labor mobility of men and their newly gained education is politically devalued when compared to the informal education that men gain through mobility, but on the other hand, schooling strengthens...
Interdependent networks - Topological percolation research and application in finance
Zhou, Di
This dissertation covers the two major parts of my Ph.D. research: i) developing a theoretical framework of complex networks and applying simulation and numerical methods to study the robustness of the network system, and ii) applying statistical physics concepts and methods to quantitatively analyze complex systems and applying the theoretical framework to study real-world systems. In part I, we focus on developing theories of interdependent networks as well as building computer simulation models, which includes three parts: 1) We report on the effects of topology on failure propagation for a model system consisting of two interdependent networks. We find that the internal node correlations in each of the networks significantly changes the critical density of failures, which can trigger the total disruption of the two-network system. Specifically, we find that the assortativity within a single network decreases the robustness of the entire system. 2) We study the percolation behavior of two interdependent scale-free (SF) networks under random failure of 1-p fraction of nodes. We find that as the coupling strength q between the two networks reduces from 1 (fully coupled) to 0 (no coupling), there exist two critical coupling strengths q1 and q2 , which separate the behaviors of the giant component as a function of p into three different regions, and for q2 relationship both analytically and numerically. We study a starlike network of n Erdos-Renyi (ER), SF networks and a looplike network of n ER networks, and we find for starlike networks, their phase transition regions change with n, but for looplike networks the phase regions change with average degree k . In part II, we apply concepts and methods developed in statistical physics to study economic systems. We analyze stock market indices and foreign exchange daily returns for 60 countries over the period of 1999-2012. We build a multi-layer network model based on different correlation measures, and introduce a
A pathway-based network analysis of hypertension-related genes
Wang, Huan; Hu, Jing-Bo; Xu, Chuan-Yun; Zhang, De-Hai; Yan, Qian; Xu, Ming; Cao, Ke-Fei; Zhang, Xu-Sheng
2016-02-01
Complex network approach has become an effective way to describe interrelationships among large amounts of biological data, which is especially useful in finding core functions and global behavior of biological systems. Hypertension is a complex disease caused by many reasons including genetic, physiological, psychological and even social factors. In this paper, based on the information of biological pathways, we construct a network model of hypertension-related genes of the salt-sensitive rat to explore the interrelationship between genes. Statistical and topological characteristics show that the network has the small-world but not scale-free property, and exhibits a modular structure, revealing compact and complex connections among these genes. By the threshold of integrated centrality larger than 0.71, seven key hub genes are found: Jun, Rps6kb1, Cycs, Creb312, Cdk4, Actg1 and RT1-Da. These genes should play an important role in hypertension, suggesting that the treatment of hypertension should focus on the combination of drugs on multiple genes.
Directory of Open Access Journals (Sweden)
Xiuwen Fu
2018-01-01
Full Text Available Previous research of wireless sensor networks (WSNs invulnerability mainly focuses on the static topology, while ignoring the cascading process of the network caused by the dynamic changes of load. Therefore, given the realistic features of WSNs, in this paper we research the invulnerability of WSNs with respect to cascading failures based on the coupled map lattice (CML. The invulnerability and the cascading process of four types of network topologies (i.e., random network, small-world network, homogenous scale-free network, and heterogeneous scale-free network under various attack schemes (i.e., random attack, max-degree attack, and max-status attack are investigated, respectively. The simulation results demonstrate that the rise of interference R and coupling coefficient ε will increase the risks of cascading failures. Cascading threshold values Rc and εc exist, where cascading failures will spread to the entire network when R>Rc or ε>εc. When facing a random attack or max-status attack, the network with higher heterogeneity tends to have a stronger invulnerability towards cascading failures. Conversely, when facing a max-degree attack, the network with higher uniformity tends to have a better performance. Besides that, we have also proved that the spreading speed of cascading failures is inversely proportional to the average path length of the network and the increase of average degree k can improve the network invulnerability.
Robustness and Optimization of Complex Networks : Reconstructability, Algorithms and Modeling
Liu, D.
2013-01-01
The infrastructure networks, including the Internet, telecommunication networks, electrical power grids, transportation networks (road, railway, waterway, and airway networks), gas networks and water networks, are becoming more and more complex. The complex infrastructure networks are crucial to our
Robust-yet-fragile nature of interdependent networks
Tan, Fei; Xia, Yongxiang; Wei, Zhi
2015-05-01
Interdependent networks have been shown to be extremely vulnerable based on the percolation model. Parshani et al. [Europhys. Lett. 92, 68002 (2010), 10.1209/0295-5075/92/68002] further indicated that the more intersimilar networks are, the more robust they are to random failures. When traffic load is considered, how do the coupling patterns impact cascading failures in interdependent networks? This question has been largely unexplored until now. In this paper, we address this question by investigating the robustness of interdependent Erdös-Rényi random graphs and Barabási-Albert scale-free networks under either random failures or intentional attacks. It is found that interdependent Erdös-Rényi random graphs are robust yet fragile under either random failures or intentional attacks. Interdependent Barabási-Albert scale-free networks, however, are only robust yet fragile under random failures but fragile under intentional attacks. We further analyze the interdependent communication network and power grid and achieve similar results. These results advance our understanding of how interdependency shapes network robustness.
Information communication on complex networks
International Nuclear Information System (INIS)
Igarashi, Akito; Kawamoto, Hiroki; Maruyama, Takahiro; Morioka, Atsushi; Naganuma, Yuki
2013-01-01
Since communication networks such as the Internet, which is regarded as a complex network, have recently become a huge scale and a lot of data pass through them, the improvement of packet routing strategies for transport is one of the most significant themes in the study of computer networks. It is especially important to find routing strategies which can bear as many traffic as possible without congestion in complex networks. First, using neural networks, we introduce a strategy for packet routing on complex networks, where path lengths and queue lengths in nodes are taken into account within a framework of statistical physics. Secondly, instead of using shortest paths, we propose efficient paths which avoid hubs, nodes with a great many degrees, on scale-free networks with a weight of each node. We improve the heuristic algorithm proposed by Danila et. al. which optimizes step by step routing properties on congestion by using the information of betweenness, the probability of paths passing through a node in all optimal paths which are defined according to a rule, and mitigates the congestion. We confirm the new heuristic algorithm which balances traffic on networks by achieving minimization of the maximum betweenness in much smaller number of iteration steps. Finally, We model virus spreading and data transfer on peer-to-peer (P2P) networks. Using mean-field approximation, we obtain an analytical formulation and emulate virus spreading on the network and compare the results with those of simulation. Moreover, we investigate the mitigation of information traffic congestion in the P2P networks.
Curvature and temperature of complex networks.
Krioukov, Dmitri; Papadopoulos, Fragkiskos; Vahdat, Amin; Boguñá, Marián
2009-09-01
We show that heterogeneous degree distributions in observed scale-free topologies of complex networks can emerge as a consequence of the exponential expansion of hidden hyperbolic space. Fermi-Dirac statistics provides a physical interpretation of hyperbolic distances as energies of links. The hidden space curvature affects the heterogeneity of the degree distribution, while clustering is a function of temperature. We embed the internet into the hyperbolic plane and find a remarkable congruency between the embedding and our hyperbolic model. Besides proving our model realistic, this embedding may be used for routing with only local information, which holds significant promise for improving the performance of internet routing.
Statistical Mechanics of Temporal and Interacting Networks
Zhao, Kun
In the last ten years important breakthroughs in the understanding of the topology of complexity have been made in the framework of network science. Indeed it has been found that many networks belong to the universality classes called small-world networks or scale-free networks. Moreover it was found that the complex architecture of real world networks strongly affects the critical phenomena defined on these structures. Nevertheless the main focus of the research has been the characterization of single and static networks. Recently, temporal networks and interacting networks have attracted large interest. Indeed many networks are interacting or formed by a multilayer structure. Example of these networks are found in social networks where an individual might be at the same time part of different social networks, in economic and financial networks, in physiology or in infrastructure systems. Moreover, many networks are temporal, i.e. the links appear and disappear on the fast time scale. Examples of these networks are social networks of contacts such as face-to-face interactions or mobile-phone communication, the time-dependent correlations in the brain activity and etc. Understanding the evolution of temporal and multilayer networks and characterizing critical phenomena in these systems is crucial if we want to describe, predict and control the dynamics of complex system. In this thesis, we investigate several statistical mechanics models of temporal and interacting networks, to shed light on the dynamics of this new generation of complex networks. First, we investigate a model of temporal social networks aimed at characterizing human social interactions such as face-to-face interactions and phone-call communication. Indeed thanks to the availability of data on these interactions, we are now in the position to compare the proposed model to the real data finding good agreement. Second, we investigate the entropy of temporal networks and growing networks , to provide
Modeling the spread of vector-borne diseases on bipartite networks.
Directory of Open Access Journals (Sweden)
Donal Bisanzio
Full Text Available BACKGROUND: Vector-borne diseases for which transmission occurs exclusively between vectors and hosts can be modeled as spreading on a bipartite network. METHODOLOGY/PRINCIPAL FINDINGS: In such models the spreading of the disease strongly depends on the degree distribution of the two classes of nodes. It is sufficient for one of the classes to have a scale-free degree distribution with a slow enough decay for the network to have asymptotically vanishing epidemic threshold. Data on the distribution of Ixodes ricinus ticks on mice and lizards from two independent studies are well described by a scale-free distribution compatible with an asymptotically vanishing epidemic threshold. The commonly used negative binomial, instead, cannot describe the right tail of the empirical distribution. CONCLUSIONS/SIGNIFICANCE: The extreme aggregation of vectors on hosts, described by the power-law decay of the degree distribution, makes the epidemic threshold decrease with the size of the network and vanish asymptotically.
DEFF Research Database (Denmark)
Samson, Audrey; Soon, Winnie
2015-01-01
This paper examines the notion of network affordance within the context of network art. Building on Gibson's theory (Gibson, 1979) we understand affordance as the perceived and actual parameters of a thing. We expand on Gaver's affordance of predictability (Gaver, 1996) to include ecological...... and computational parameters of unpredictability. We illustrate the notion of unpredictability by considering four specific works that were included in a network art exhibiton, SPEED SHOW [2.0] Hong Kong. The paper discusses how the artworks are contingent upon the parameteric relations (Parisi, 2013......), of the network. We introduce network affordance as a dynamic framework that could articulate the experienced tension arising from the (visible) symbolic representation of computational processes and its hidden occurrences. We base our proposal on the experience of both organising the SPEED SHOW and participating...
Topological and functional properties of the small GTPases protein interaction network.
Directory of Open Access Journals (Sweden)
Anna Delprato
Full Text Available Small GTP binding proteins of the Ras superfamily (Ras, Rho, Rab, Arf, and Ran regulate key cellular processes such as signal transduction, cell proliferation, cell motility, and vesicle transport. A great deal of experimental evidence supports the existence of signaling cascades and feedback loops within and among the small GTPase subfamilies suggesting that these proteins function in a coordinated and cooperative manner. The interplay occurs largely through association with bi-partite regulatory and effector proteins but can also occur through the active form of the small GTPases themselves. In order to understand the connectivity of the small GTPases signaling routes, a systems-level approach that analyzes data describing direct and indirect interactions was used to construct the small GTPases protein interaction network. The data were curated from the Search Tool for the Retrieval of Interacting Genes (STRING database and include only experimentally validated interactions. The network method enables the conceptualization of the overall structure as well as the underlying organization of the protein-protein interactions. The interaction network described here is comprised of 778 nodes and 1943 edges and has a scale-free topology. Rac1, Cdc42, RhoA, and HRas are identified as the hubs. Ten sub-network motifs are also identified in this study with themes in apoptosis, cell growth/proliferation, vesicle traffic, cell adhesion/junction dynamics, the nicotinamide adenine dinucleotide phosphate (NADPH oxidase response, transcription regulation, receptor-mediated endocytosis, gene silencing, and growth factor signaling. Bottleneck proteins that bridge signaling paths and proteins that overlap in multiple small GTPase networks are described along with the functional annotation of all proteins in the network.
Directory of Open Access Journals (Sweden)
Fuchun Ren
2015-01-01
Full Text Available Risk and resilience are important and challenging issues in complex network systems since a single failure may trigger a whole collapse of the systems due to cascading effect. New theories, models, and methods are urgently demanded to deal with this challenge. In this paper, a coupled map lattices (CML based approach is adopted to analyze the risk of cascading process in Watts-Strogatz (WS small-world network and Barabási and Albert (BA scale-free network, respectively. Then, to achieve an effective and robust system and provide guidance in countering the cascading failure, a modified CML model with recovery strategy factor is proposed. Numerical simulations are put forward based on small-world CML and scale-free CML. The simulation results reveal that appropriate recovery strategies would significantly improve the resilience of networks.
Agent-based modeling and network dynamics
Namatame, Akira
2016-01-01
The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the gi...
The application of graph theoretical analysis to complex networks in the brain.
Reijneveld, Jaap C; Ponten, Sophie C; Berendse, Henk W; Stam, Cornelis J
2007-11-01
Considering the brain as a complex network of interacting dynamical systems offers new insights into higher level brain processes such as memory, planning, and abstract reasoning as well as various types of brain pathophysiology. This viewpoint provides the opportunity to apply new insights in network sciences, such as the discovery of small world and scale free networks, to data on anatomical and functional connectivity in the brain. In this review we start with some background knowledge on the history and recent advances in network theories in general. We emphasize the correlation between the structural properties of networks and the dynamics of these networks. We subsequently demonstrate through evidence from computational studies, in vivo experiments, and functional MRI, EEG and MEG studies in humans, that both the functional and anatomical connectivity of the healthy brain have many features of a small world network, but only to a limited extent of a scale free network. The small world structure of neural networks is hypothesized to reflect an optimal configuration associated with rapid synchronization and information transfer, minimal wiring costs, resilience to certain types of damage, as well as a balance between local processing and global integration. Eventually, we review the current knowledge on the effects of focal and diffuse brain disease on neural network characteristics, and demonstrate increasing evidence that both cognitive and psychiatric disturbances, as well as risk of epileptic seizures, are correlated with (changes in) functional network architectural features.
Introduction to computer networking
Robertazzi, Thomas G
2017-01-01
This book gives a broad look at both fundamental networking technology and new areas that support it and use it. It is a concise introduction to the most prominent, recent technological topics in computer networking. Topics include network technology such as wired and wireless networks, enabling technologies such as data centers, software defined networking, cloud and grid computing and applications such as networks on chips, space networking and network security. The accessible writing style and non-mathematical treatment makes this a useful book for the student, network and communications engineer, computer scientist and IT professional. • Features a concise, accessible treatment of computer networking, focusing on new technological topics; • Provides non-mathematical introduction to networks in their most common forms today;< • Includes new developments in switching, optical networks, WiFi, Bluetooth, LTE, 5G, and quantum cryptography.
Convergent evolution of gene networks by single-gene duplications in higher eukaryotes.
Amoutzias, Gregory D; Robertson, David L; Oliver, Stephen G; Bornberg-Bauer, Erich
2004-03-01
By combining phylogenetic, proteomic and structural information, we have elucidated the evolutionary driving forces for the gene-regulatory interaction networks of basic helix-loop-helix transcription factors. We infer that recurrent events of single-gene duplication and domain rearrangement repeatedly gave rise to distinct networks with almost identical hub-based topologies, and multiple activators and repressors. We thus provide the first empirical evidence for scale-free protein networks emerging through single-gene duplications, the dominant importance of molecular modularity in the bottom-up construction of complex biological entities, and the convergent evolution of networks.
Geographical constraints to range-based attacks on links in complex networks
International Nuclear Information System (INIS)
Gong Baihua; Liu Jun; Huang Liang; Yang Kongqing; Yang Lei
2008-01-01
In this paper, we studied range-based attacks on links in geographically constrained scale-free networks and found that there is a continuous switching of roles of short- and long-range attacks on links when tuning the geographical constraint strength. Our results demonstrate that the geography has a significant impact on the network efficiency and security; thus one can adjust the geographical structure to optimize the robustness and the efficiency of the networks. We introduce a measurement of the impact of links on the efficiency of the network, and an effective attacking strategy is suggested
A new way to improve the robustness of complex communication networks by allocating redundancy links
International Nuclear Information System (INIS)
Shi Chunhui; Zhuo Yue; Tang Jieying; Long Keping; Peng Yunfeng
2012-01-01
We investigate the robustness of complex communication networks on allocating redundancy links. The protecting key nodes (PKN) strategy is proposed to improve the robustness of complex communication networks against intentional attack. Our numerical simulations show that allocating a few redundant links among key nodes using the PKN strategy will significantly increase the robustness of scale-free complex networks. We have also theoretically proved and demonstrated the effectiveness of the PKN strategy. We expect that our work will help achieve a better understanding of communication networks. (paper)
A directed network of Greek and Roman mythology
Choi, Yeon-Mu; Kim, Hyun-Joo
2007-08-01
We construct a directed network using a dictionary of Greek and Roman mythology in which the nodes represent the entries listed in the dictionary and we make directional links from an entry to other entries that appear in its explanatory part. We find that this network is clearly not a random network but a directed scale-free network in which the distributions of out-degree and in-degree follow a power-law with exponents γout≈3.0 and γin≈2.5, respectively. Also we measure several quantities which describe the topological properties of the network and compare it to that of other real networks.
Robertazzi, Thomas
2012-01-01
Springer Brief Basics of Computer Networking provides a non-mathematical introduction to the world of networks. This book covers both technology for wired and wireless networks. Coverage includes transmission media, local area networks, wide area networks, and network security. Written in a very accessible style for the interested layman by the author of a widely used textbook with many years of experience explaining concepts to the beginner.
Characterizing and predicting the robustness of power-law networks
International Nuclear Information System (INIS)
LaRocca, Sarah; Guikema, Seth D.
2015-01-01
Power-law networks such as the Internet, terrorist cells, species relationships, and cellular metabolic interactions are susceptible to node failures, yet maintaining network connectivity is essential for network functionality. Disconnection of the network leads to fragmentation and, in some cases, collapse of the underlying system. However, the influences of the topology of networks on their ability to withstand node failures are poorly understood. Based on a study of the response of 2000 randomly-generated power-law networks to node failures, we find that networks with higher nodal degree and clustering coefficient, lower betweenness centrality, and lower variability in path length and clustering coefficient maintain their cohesion better during such events. We also find that network robustness, i.e., the ability to withstand node failures, can be accurately predicted a priori for power-law networks across many fields. These results provide a basis for designing new, more robust networks, improving the robustness of existing networks such as the Internet and cellular metabolic pathways, and efficiently degrading networks such as terrorist cells. - Highlights: • Examine relationship between network topology and robustness to failures. • Relationship is statistically significant for scale-free networks. • Use statistical models to estimate robustness to failures for real-world networks
Physics of flow in weighted complex networks
Wu, Zhenhua
This thesis uses concepts from statistical physics to understand the physics of flow in weighted complex networks. The traditional model for random networks is the Erdoḧs-Renyi (ER.) network, where a network of N nodes is created by connecting each of the N(N - 1)/2 pairs of nodes with a probability p. The degree distribution, which is the probability distribution of the number of links per node, is a Poisson distribution. Recent studies of the topology in many networks such as the Internet and the world-wide airport network (WAN) reveal a power law degree distribution, known as a scale-free (SF) distribution. To yield a better description of network dynamics, we study weighted networks, where each link or node is given a number. One asks how the weights affect the static and the dynamic properties of the network. In this thesis, two important dynamic problems are studied: the current flow problem, described by Kirchhoff's laws, and the maximum flow problem, which maximizes the flow between two nodes. Percolation theory is applied to these studies of the dynamics in complex networks. We find that the current flow in disordered media belongs to the same universality class as the optimal path. In a randomly weighted network, we identify the infinite incipient percolation cluster as the "superhighway", which contains most of the traffic in a network. We propose an efficient strategy to improve significantly the global transport by improving the superhighways, which comprise a small fraction of the network. We also propose a network model with correlated weights to describe weighted networks such as the WAN. Our model agrees with WAN data, and provides insight into the advantages of correlated weights in networks. Lastly, the upper critical dimension is evaluated using two different numerical methods, and the result is consistent with the theoretical prediction.
A Risk Based Approach to Node Insertion Within Social Networks
2015-03-26
with a directed network where Aij is not always equivalent to Aji . When this occurs, the indegree and outdegree become nontrivial. In a scale free...piqmjq] ∀ q 6= i, j (13a) piq = Aiq + Aqi∑ j(Aij + Aji ) ∀ i 6= j (13b) mjq = Ajq + Aqj maxk(Ajk + Akj) ∀ j 6= k (13c) 29 piq is the ith, qth entry in...scenario and their associated utility. The average utility for the network is shown by the red line. The black line is representative of zero utility
Scale-free Enterprise Command & Control
National Research Council Canada - National Science Library
Bayne, Jay; Paul, Raymond
2005-01-01
...) services that provide allied teams of commanders, planners and operations personnel with collaborative, grid-based and realtime situation assessment, plan generation, and plan execution services...
Spatial analysis of bus transport networks using network theory
Shanmukhappa, Tanuja; Ho, Ivan Wang-Hei; Tse, Chi Kong
2018-07-01
In this paper, we analyze the bus transport network (BTN) structure considering the spatial embedding of the network for three cities, namely, Hong Kong (HK), London (LD), and Bengaluru (BL). We propose a novel approach called supernode graph structuring for modeling the bus transport network. A static demand estimation procedure is proposed to assign the node weights by considering the points of interests (POIs) and the population distribution in the city over various localized zones. In addition, the end-to-end delay is proposed as a parameter to measure the topological efficiency of the bus networks instead of the shortest distance measure used in previous works. With the aid of supernode graph representation, important network parameters are analyzed for the directed, weighted and geo-referenced bus transport networks. It is observed that the supernode concept has significant advantage in analyzing the inherent topological behavior. For instance, the scale-free and small-world behavior becomes evident with supernode representation as compared to conventional or regular graph representation for the Hong Kong network. Significant improvement in clustering, reduction in path length, and increase in centrality values are observed in all the three networks with supernode representation. The correlation between topologically central nodes and the geographically central nodes reveals the interesting fact that the proposed static demand estimation method for assigning node weights aids in better identifying the geographically significant nodes in the network. The impact of these geographically significant nodes on the local traffic behavior is demonstrated by simulation using the SUMO (Simulation of Urban Mobility) tool which is also supported by real-world empirical data, and our results indicate that the traffic speed around a particular bus stop can reach a jammed state from a free flow state due to the presence of these geographically important nodes. A comparison
Quantum Google in a Complex Network
Paparo, Giuseppe Davide; Müller, Markus; Comellas, Francesc; Martin-Delgado, Miguel Angel
2013-01-01
We investigate the behaviour of the recently proposed Quantum PageRank algorithm, in large complex networks. We find that the algorithm is able to univocally reveal the underlying topology of the network and to identify and order the most relevant nodes. Furthermore, it is capable to clearly highlight the structure of secondary hubs and to resolve the degeneracy in importance of the low lying part of the list of rankings. The quantum algorithm displays an increased stability with respect to a variation of the damping parameter, present in the Google algorithm, and a more clearly pronounced power-law behaviour in the distribution of importance, as compared to the classical algorithm. We test the performance and confirm the listed features by applying it to real world examples from the WWW. Finally, we raise and partially address whether the increased sensitivity of the quantum algorithm persists under coordinated attacks in scale-free and random networks. PMID:24091980
Quantum Google in a Complex Network
Paparo, Giuseppe Davide; Müller, Markus; Comellas, Francesc; Martin-Delgado, Miguel Angel
2013-10-01
We investigate the behaviour of the recently proposed Quantum PageRank algorithm, in large complex networks. We find that the algorithm is able to univocally reveal the underlying topology of the network and to identify and order the most relevant nodes. Furthermore, it is capable to clearly highlight the structure of secondary hubs and to resolve the degeneracy in importance of the low lying part of the list of rankings. The quantum algorithm displays an increased stability with respect to a variation of the damping parameter, present in the Google algorithm, and a more clearly pronounced power-law behaviour in the distribution of importance, as compared to the classical algorithm. We test the performance and confirm the listed features by applying it to real world examples from the WWW. Finally, we raise and partially address whether the increased sensitivity of the quantum algorithm persists under coordinated attacks in scale-free and random networks.
Critical dynamics in associative memory networks
Directory of Open Access Journals (Sweden)
Maximilian eUhlig
2013-07-01
Full Text Available Critical behavior in neural networks is characterized by scale-free avalanche size distributions and can be explained by self-regulatory mechanisms. Theoretical and experimental evidence indicates that information storage capacity reaches its maximum in the critical regime. We study the effect of structural connectivity formed by Hebbian learning on the criticality of network dynamics. The network endowed with Hebbian learning only does not allow for simultaneous information storage and criticality. However, the critical regime is can be stabilized by short-term synaptic dynamics in the form of synaptic depression and facilitation or, alternatively, by homeostatic adaptation of the synaptic weights. We show that a heterogeneous distribution of maximal synaptic strengths does not preclude criticality if the Hebbian learning is alternated with periods of critical dynamics recovery. We discuss the relevance of these findings for the flexibility of memory in aging and with respect to the recent theory of synaptic plasticity.
Evolution of Controllability in Interbank Networks
Delpini, Danilo; Battiston, Stefano; Riccaboni, Massimo; Gabbi, Giampaolo; Pammolli, Fabio; Caldarelli, Guido
2013-04-01
The Statistical Physics of Complex Networks has recently provided new theoretical tools for policy makers. Here we extend the notion of network controllability to detect the financial institutions, i.e. the drivers, that are most crucial to the functioning of an interbank market. The system we investigate is a paradigmatic case study for complex networks since it undergoes dramatic structural changes over time and links among nodes can be observed at several time scales. We find a scale-free decay of the fraction of drivers with increasing time resolution, implying that policies have to be adjusted to the time scales in order to be effective. Moreover, drivers are often not the most highly connected ``hub'' institutions, nor the largest lenders, contrary to the results of other studies. Our findings contribute quantitative indicators which can support regulators in developing more effective supervision and intervention policies.
Networks of networks – An introduction
International Nuclear Information System (INIS)
Kenett, Dror Y.; Perc, Matjaž; Boccaletti, Stefano
2015-01-01
Graphical abstract: Interdependent network reciprocity. Only those blue cooperative domains that are initially present on both networks survive. Abstract: This is an introduction to the special issue titled “Networks of networks” that is in the making at Chaos, Solitons & Fractals. Recent research and reviews attest to the fact that networks of networks are the next frontier in network science [1–7]. Not only are interactions limited and thus inadequately described by well-mixed models, it is also a fact that the networks that should be an integral part of such models are often interconnected, thus making the processes that are unfolding on them interdependent. From the World economy and transportation systems to social media, it is clear that processes taking place in one network might significantly affect what is happening in many other networks. Within an interdependent system, each type of interaction has a certain relevance and meaning, so that treating all the links identically inevitably leads to information loss. Networks of networks, interdependent networks, or multilayer networks are therefore a much better and realistic description of such systems, and this Special Issue is devoted to their structure, dynamics and evolution, as well as to the study of emergent properties in multi-layered systems in general. Topics of interest include but are not limited to the spread of epidemics and information, percolation, diffusion, synchronization, collective behavior, and evolutionary games on networks of networks. Interdisciplinary work on all aspects of networks of networks, regardless of background and motivation, is very welcome.
Weak signal transmission in complex networks and its application in detecting connectivity.
Liang, Xiaoming; Liu, Zonghua; Li, Baowen
2009-10-01
We present a network model of coupled oscillators to study how a weak signal is transmitted in complex networks. Through both theoretical analysis and numerical simulations, we find that the response of other nodes to the weak signal decays exponentially with their topological distance to the signal source and the coupling strength between two neighboring nodes can be figured out by the responses. This finding can be conveniently used to detect the topology of unknown network, such as the degree distribution, clustering coefficient and community structure, etc., by repeatedly choosing different nodes as the signal source. Through four typical networks, i.e., the regular one dimensional, small world, random, and scale-free networks, we show that the features of network can be approximately given by investigating many fewer nodes than the network size, thus our approach to detect the topology of unknown network may be efficient in practical situations with large network size.
Geometric evolution of complex networks with degree correlations
Murphy, Charles; Allard, Antoine; Laurence, Edward; St-Onge, Guillaume; Dubé, Louis J.
2018-03-01
We present a general class of geometric network growth mechanisms by homogeneous attachment in which the links created at a given time t are distributed homogeneously between a new node and the existing nodes selected uniformly. This is achieved by creating links between nodes uniformly distributed in a homogeneous metric space according to a Fermi-Dirac connection probability with inverse temperature β and general time-dependent chemical potential μ (t ) . The chemical potential limits the spatial extent of newly created links. Using a hidden variable framework, we obtain an analytical expression for the degree sequence and show that μ (t ) can be fixed to yield any given degree distributions, including a scale-free degree distribution. Additionally, we find that depending on the order in which nodes appear in the network—its history—the degree-degree correlations can be tuned to be assortative or disassortative. The effect of the geometry on the structure is investigated through the average clustering coefficient 〈c 〉 . In the thermodynamic limit, we identify a phase transition between a random regime where 〈c 〉→0 when β 0 when β >βc .
Integrating Networking into ATLAS
Mc Kee, Shawn Patrick; The ATLAS collaboration
2018-01-01
Networking is foundational to the ATLAS distributed infrastructure and there are many ongoing activities related to networking both within and outside of ATLAS. We will report on the progress in a number of areas exploring ATLAS's use of networking and our ability to monitor the network, analyze metrics from the network, and tune and optimize application and end-host parameters to make the most effective use of the network. Specific topics will include work on Open vSwitch for production systems, network analytics, FTS testing and tuning, and network problem alerting and alarming.
Complexity Characteristics of Currency Networks
Gorski, A. Z.; Drozdz, S.; Kwapien, J.; Oswiecimka, P.
2006-11-01
A large set of daily FOREX time series is analyzed. The corresponding correlation matrices (CM) are constructed for USD, EUR and PLN used as the base currencies. The triangle rule is interpreted as constraints reducing the number of independent returns. The CM spectrum is computed and compared with the cases of shuffled currencies and a fictitious random currency taken as a base currency. The Minimal Spanning Tree (MST) graphs are calculated and the clustering effects for strong currencies are found. It is shown that for MSTs the node rank has power like, scale free behavior. Finally, the scaling exponents are evaluated and found in the range analogous to those identified recently for various complex networks.
Donahue, Gary
2011-01-01
Pick up where certification exams leave off. With this practical, in-depth guide to the entire network infrastructure, you'll learn how to deal with real Cisco networks, rather than the hypothetical situations presented on exams like the CCNA. Network Warrior takes you step by step through the world of routers, switches, firewalls, and other technologies based on the author's extensive field experience. You'll find new content for MPLS, IPv6, VoIP, and wireless in this completely revised second edition, along with examples of Cisco Nexus 5000 and 7000 switches throughout. Topics include: An
How to construct the statistic network? An association network of herbaceous
Directory of Open Access Journals (Sweden)
WenJun Zhang
2012-06-01
constructed network increases. Network compactness also follows the trend. In addition, as the increase of network compactness and connectance, the portion and number of negative association declines dramatically.(2 In an association (interaction network, only a few connections follow the linear relationship. Most connections follow the quasi-linear or non-linear relationships. (3 The association networks constructed from partial linear correlation and linear correlation measures are generally scale-free complex networks. The degree of these networks is power low distributed. (4 Isolated species (families, etc. are likely important in the statistic network. They are the sink species for shaping new network after a community is seriously disturbed. (5 Beween-taxa connections at higher taxonomic level are generally weaker than that at lower taxonomic level.
PREFACE: Complex Networks: from Biology to Information Technology
Barrat, A.; Boccaletti, S.; Caldarelli, G.; Chessa, A.; Latora, V.; Motter, A. E.
2008-06-01
networks consists of an overview of recent studies on hierarchical networks of phase oscillators. By analysing the evolution of the synchronous dynamics, one can infer details about the underlying network topology. Thus a connection between the dynamical and topological properties of the system is established. The paper Network synchronisation: optimal and pessimal scale-free topologies by Donetti et al explores an optimisation algorithm to study the properties of optimally synchronisable unweighted networks with scale-free degree distribution. It is shown that optimisation leads to a tendency towards disassortativity while networks that are optimally 'un-synchronisable' have a highly assortative string-like structure. The paper Critical line in undirected Kauffman Boolean networks—the role of percolation by Fronczak and Fronczak demonstrates that the percolation underlying the process of damage spreading impacts the position of the critical line in random boolean networks. The critical line results from the fact that the ordered behaviour of small clusters shields the chaotic behaviour of the giant component. In Impact of the updating scheme on stationary states of networks, Radicchi et al explore an interpolation between synchronous and asynchronous updating in a one-dimensional chain of Ising spins to locate a phase transition between phases with an absorbing and a fluctuating stationary state. The properties of attractors in the yeast cell-cycle network are also shown to depend sensitively on the updating mode. As this last contribution shows, a large part of the theoretical activity in the field can be applied to the study of biological systems. The section Biological Applications brings together the following contributions: In Applying weighted network measures to microarray distance matrices, Ahnert et al present a new approach to the analysis of weighted networks, which provides a generalisation to any network measure defined on unweighted networks. The
The emergence of “super-groups” in dynamical networks
International Nuclear Information System (INIS)
Yang, Guoli
2016-01-01
We study a model for the generation of networks, where the number of nodes is constant and the edges are inserted into the network gradually based on non-liner preferential attachment. This model combines the ER random model with the BA scale-free networks, leading to a transition of degree distribution from homogeneity to heterogeneity. With the increase of a diversity parameter γ, the insertion of edges will give rise to some “super-groups” which are small groups of nodes with a large proportion of the edges in the network. This model has a huge application in the modelling and analyzing the emergence of “super-groups” in social, technological, and economical networks.
A paradox for traffic dynamics in complex networks with ATIS
International Nuclear Information System (INIS)
Zheng Jianfeng; Gao Ziyou
2008-01-01
In this work, we study the statistical properties of traffic (e.g., vehicles) dynamics in complex networks, by introducing advanced transportation information systems (ATIS). The ATIS can provide the information of traffic flow pattern throughout the network and have an obvious effect on path routing strategy for such vehicles equipped with ATIS. The ATIS can be described by the understanding of link cost functions. Different indices such as efficiency and system total cost are discussed in depth. It is found that, for random networks (scale-free networks), the efficiency is effectively improved (decreased) if ATIS is properly equipped; however the system total cost is largely increased (decreased). It indicates that there exists a paradox between the efficiency and system total cost in complex networks. Furthermore, we report the simulation results by considering different kinds of link cost functions, and the paradox is recovered. Finally, we extend our traffic model, and also find the existence of the paradox
Modeling and Analysis of New Products Diffusion on Heterogeneous Networks
Directory of Open Access Journals (Sweden)
Shuping Li
2014-01-01
Full Text Available We present a heterogeneous networks model with the awareness stage and the decision-making stage to explain the process of new products diffusion. If mass media is neglected in the decision-making stage, there is a threshold whether the innovation diffusion is successful or not, or else it is proved that the network model has at least one positive equilibrium. For networks with the power-law degree distribution, numerical simulations confirm analytical results, and also at the same time, by numerical analysis of the influence of the network structure and persuasive advertisements on the density of adopters, we give two different products propagation strategies for two classes of nodes in scale-free networks.
Modeling the reemergence of information diffusion in social network
Yang, Dingda; Liao, Xiangwen; Shen, Huawei; Cheng, Xueqi; Chen, Guolong
2018-01-01
Information diffusion in networks is an important research topic in various fields. Existing studies either focus on modeling the process of information diffusion, e.g., independent cascade model and linear threshold model, or investigate information diffusion in networks with certain structural characteristics such as scale-free networks and small world networks. However, there are still several phenomena that have not been captured by existing information diffusion models. One of the prominent phenomena is the reemergence of information diffusion, i.e., a piece of information reemerges after the completion of its initial diffusion process. In this paper, we propose an optimized information diffusion model by introducing a new informed state into traditional susceptible-infected-removed model. We verify the proposed model via simulations in real-world social networks, and the results indicate that the model can reproduce the reemergence of information during the diffusion process.
Divisibility patterns of natural numbers on a complex network.
Shekatkar, Snehal M; Bhagwat, Chandrasheel; Ambika, G
2015-09-16
Investigation of divisibility properties of natural numbers is one of the most important themes in the theory of numbers. Various tools have been developed over the centuries to discover and study the various patterns in the sequence of natural numbers in the context of divisibility. In the present paper, we study the divisibility of natural numbers using the framework of a growing complex network. In particular, using tools from the field of statistical inference, we show that the network is scale-free but has a non-stationary degree distribution. Along with this, we report a new kind of similarity pattern for the local clustering, which we call "stretching similarity", in this network. We also show that the various characteristics like average degree, global clustering coefficient and assortativity coefficient of the network vary smoothly with the size of the network. Using analytical arguments we estimate the asymptotic behavior of global clustering and average degree which is validated using numerical analysis.
Network flow of mobile agents enhances the evolution of cooperation
Ichinose, G.; Satotani, Y.; Nagatani, T.
2018-01-01
We study the effect of contingent movement on the persistence of cooperation on complex networks with empty nodes. Each agent plays the Prisoner's Dilemma game with its neighbors and then it either updates the strategy depending on the payoff difference with neighbors or it moves to another empty node if not satisfied with its own payoff. If no neighboring node is empty, each agent stays at the same site. By extensive evolutionary simulations, we show that the medium density of agents enhances cooperation where the network flow of mobile agents is also medium. Moreover, if the movements of agents are more frequent than the strategy updating, cooperation is further promoted. In scale-free networks, the optimal density for cooperation is lower than other networks because agents get stuck at hubs. Our study suggests that keeping a smooth network flow is significant for the persistence of cooperation in ever-changing societies.
Post-Polio Health International including International Ventilator Users Network
... PHI Annual Reports Contact Us Copyright EDUCATION Post-Polio Health newsletter Health Care Considerations Handbook on the Late Effects ... Late Effects of Polio Post-Polio Syndrome (PPS) About Acute Polio Major ...
Traffic dynamics on coupled spatial networks
International Nuclear Information System (INIS)
Du, Wen-Bo; Zhou, Xing-Lian; Chen, Zhen; Cai, Kai-Quan; Cao, Xian-Bin
2014-01-01
With the rapid development of modern traffic, various means of transportation systems make it more convenient and diversified for passengers to travel out. In this paper, we establish a two-layered spatial network model where the low-speed lower layer is a regular lattice and the high-speed upper layer is a scale-free network embedded in the lattice. Passengers will travel along the path with the minimal travel time, and they can transfer from one layer to the other, which will induce extra transfer cost. We extensively investigate the traffic process on these coupled spatial networks and focus on the effect of the parameter α, the speed ratio between two networks. It is found that, as α grows, the network capacity of the coupled networks increases in the early stage and then decreases, indicating that cooperation between the coupled networks will induce the highest network capacity at an optimal α. We then provide an explanation for this non-monotonous dependence from a micro-scope point of view. The travel time reliability is also examined. Both in free-flow state and congestion state, the travel time is linearly related to the Euclidean distance. However, the variance of travel time in the congestion state is remarkably larger than that in the free-flow state, namely, people have to set aside more redundant time in an unreliable traffic system
Effects of traffic generation patterns on the robustness of complex networks
Wu, Jiajing; Zeng, Junwen; Chen, Zhenhao; Tse, Chi K.; Chen, Bokui
2018-02-01
Cascading failures in communication networks with heterogeneous node functions are studied in this paper. In such networks, the traffic dynamics are highly dependent on the traffic generation patterns which are in turn determined by the locations of the hosts. The data-packet traffic model is applied to Barabási-Albert scale-free networks to study the cascading failures in such networks and to explore the effects of traffic generation patterns on network robustness. It is found that placing the hosts at high-degree nodes in a network can make the network more robust against both intentional attacks and random failures. It is also shown that the traffic generation pattern plays an important role in network design.
An analysis of the sectorial influence of CSI300 stocks within the directed network
Mai, Yong; Chen, Huan; Meng, Lei
2014-02-01
This paper uses the Partial Correlation Planar maximally filtered Graph (PCPG) method to construct a directed network for the constituent stocks underlying the China Securities Index 300 (CSI300). We also analyse the impact of individual stocks. We find that the CSI300 market is a scale-free network with a relatively small power law exponent. The volatility of the stock prices has significant impact on other stocks. In the sectorial network, the industrial sector is the most influential one over other sectors, the financial sector only has a modest influence, while the telecommunication services sector’s influence is marginal. In addition, such inter-sector influence displays quarterly stability.
SBA Network Components & Software Inventory
Small Business Administration — SBA’s Network Components & Software Inventory contains a complete inventory of all devices connected to SBA’s network including workstations, servers, routers,...
DEFF Research Database (Denmark)
Hansen, Annette Skovsted
, as a Danida fellow. Today, the older sister works in Nepal and the younger in Seattle, where they still make use of their personal networks including connections to their fellow alumni of technical assistance courses. Inspired by work on social remittances in combination with network theory , I argue......Technical Assistance courses have many functions apart from disseminating knowledge and information, one such function is to engender networks. During the course period, participants meet and establish contact and some of these contacts remain connections between alumni for many years after...... the courses are finished. The alumni networks depend on the uses they are put to by the individual alumni and the support they get from alumni and host countries. The United Nations initiated technical assistance courses in the late 1940s in order to train nationals from developing countries as a means...
Preferential attachment in the evolution of metabolic networks
Directory of Open Access Journals (Sweden)
Elofsson Arne
2005-11-01
Full Text Available Abstract Background Many biological networks show some characteristics of scale-free networks. Scale-free networks can evolve through preferential attachment where new nodes are preferentially attached to well connected nodes. In networks which have evolved through preferential attachment older nodes should have a higher average connectivity than younger nodes. Here we have investigated preferential attachment in the context of metabolic networks. Results The connectivities of the enzymes in the metabolic network of Escherichia coli were determined and representatives for these enzymes were located in 11 eukaryotes, 17 archaea and 46 bacteria. E. coli enzymes which have representatives in eukaryotes have a higher average connectivity while enzymes which are represented only in the prokaryotes, and especially the enzymes only present in βγ-proteobacteria, have lower connectivities than expected by chance. Interestingly, the enzymes which have been proposed as candidates for horizontal gene transfer have a higher average connectivity than the other enzymes. Furthermore, It was found that new edges are added to the highly connected enzymes at a faster rate than to enzymes with low connectivities which is consistent with preferential attachment. Conclusion Here, we have found indications of preferential attachment in the metabolic network of E. coli. A possible biological explanation for preferential attachment growth of metabolic networks is that novel enzymes created through gene duplication maintain some of the compounds involved in the original reaction, throughout its future evolution. In addition, we found that enzymes which are candidates for horizontal gene transfer have a higher average connectivity than other enzymes. This indicates that while new enzymes are attached preferentially to highly connected enzymes, these highly connected enzymes have sometimes been introduced into the E. coli genome by horizontal gene transfer. We speculate
Partially ordered sets in complex networks
International Nuclear Information System (INIS)
Xuan Qi; Du Fang; Wu Tiejun
2010-01-01
In this paper, a partial-order relation is defined among vertices of a network to describe which vertex is more important than another on its contribution to the connectivity of the network. A maximum linearly ordered subset of vertices is defined as a chain and the chains sharing the same end-vertex are grouped as a family. Through combining the same vertices appearing in different chains, a directed chain graph is obtained. Based on these definitions, a series of new network measurements, such as chain length distribution, family diversity distribution, as well as the centrality of families, are proposed. By studying the partially ordered sets in three kinds of real-world networks, many interesting results are revealed. For instance, the similar approximately power-law chain length distribution may be attributed to a chain-based positive feedback mechanism, i.e. new vertices prefer to participate in longer chains, which can be inferred by combining the notable preferential attachment rule with a well-ordered recommendation manner. Moreover, the relatively large average incoming degree of the chain graphs may indicate an efficient substitution mechanism in these networks. Most of the partially ordered set-based properties cannot be explained by the current well-known scale-free network models; therefore, we are required to propose more appropriate network models in the future.
Comparison of immunization strategies in geographical networks
Energy Technology Data Exchange (ETDEWEB)
Wang Bing; Aihara, Kazuyuki [Institute of Industrial Science, The University of Tokyo, Tokyo (Japan)] [ERATO Aihara Complexity Modelling Project, JST, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 (Japan); Kim, Beom Jun, E-mail: beomjun@skku.ed [BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)] [Department of Computational Biology, School of Computer Science and Communication, Royal Institute of Technology, 100 44 Stockholm (Sweden)
2009-10-12
The epidemic spread and immunizations in geographically embedded scale-free (SF) and Watts-Strogatz (WS) networks are numerically investigated. We make a realistic assumption that it takes time which we call the detection time, for a vertex to be identified as infected, and implement two different immunization strategies: one is based on connection neighbors (CN) of the infected vertex with the exact information of the network structure utilized and the other is based on spatial neighbors (SN) with only geographical distances taken into account. We find that the decrease of the detection time is crucial for a successful immunization in general. Simulation results show that for both SF networks and WS networks, the SN strategy always performs better than the CN strategy, especially for more heterogeneous SF networks at long detection time. The observation is verified by checking the number of the infected nodes being immunized. We found that in geographical space, the distance preferences in the network construction process and the geographically decaying infection rate are key factors that make the SN immunization strategy outperforms the CN strategy. It indicates that even in the absence of the full knowledge of network connectivity we can still stop the epidemic spread efficiently only by using geographical information as in the SN strategy, which may have potential applications for preventing the real epidemic spread.
An evolving network model with modular growth
International Nuclear Information System (INIS)
Zou Zhi-Yun; Liu Peng; Lei Li; Gao Jian-Zhi
2012-01-01
In this paper, we propose an evolving network model growing fast in units of module, according to the analysis of the evolution characteristics in real complex networks. Each module is a small-world network containing several interconnected nodes and the nodes between the modules are linked by preferential attachment on degree of nodes. We study the modularity measure of the proposed model, which can be adjusted by changing the ratio of the number of inner-module edges and the number of inter-module edges. In view of the mean-field theory, we develop an analytical function of the degree distribution, which is verified by a numerical example and indicates that the degree distribution shows characteristics of the small-world network and the scale-free network distinctly at different segments. The clustering coefficient and the average path length of the network are simulated numerically, indicating that the network shows the small-world property and is affected little by the randomness of the new module. (interdisciplinary physics and related areas of science and technology)
Comparison of immunization strategies in geographical networks
International Nuclear Information System (INIS)
Wang Bing; Aihara, Kazuyuki; Kim, Beom Jun
2009-01-01
The epidemic spread and immunizations in geographically embedded scale-free (SF) and Watts-Strogatz (WS) networks are numerically investigated. We make a realistic assumption that it takes time which we call the detection time, for a vertex to be identified as infected, and implement two different immunization strategies: one is based on connection neighbors (CN) of the infected vertex with the exact information of the network structure utilized and the other is based on spatial neighbors (SN) with only geographical distances taken into account. We find that the decrease of the detection time is crucial for a successful immunization in general. Simulation results show that for both SF networks and WS networks, the SN strategy always performs better than the CN strategy, especially for more heterogeneous SF networks at long detection time. The observation is verified by checking the number of the infected nodes being immunized. We found that in geographical space, the distance preferences in the network construction process and the geographically decaying infection rate are key factors that make the SN immunization strategy outperforms the CN strategy. It indicates that even in the absence of the full knowledge of network connectivity we can still stop the epidemic spread efficiently only by using geographical information as in the SN strategy, which may have potential applications for preventing the real epidemic spread.
Overspill avalanching in a dense reservoir network
Mamede, George L.; Araújo, Nuno A. M.; Schneider, Christian M.; de Araújo, José Carlos; Herrmann, Hans J.
2012-01-01
Sustainability of communities, agriculture, and industry is strongly dependent on an effective storage and supply of water resources. In some regions the economic growth has led to a level of water demand that can only be accomplished through efficient reservoir networks. Such infrastructures are not always planned at larger scale but rather made by farmers according to their local needs of irrigation during droughts. Based on extensive data from the upper Jaguaribe basin, one of the world’s largest system of reservoirs, located in the Brazilian semiarid northeast, we reveal that surprisingly it self-organizes into a scale-free network exhibiting also a power-law in the distribution of the lakes and avalanches of discharges. With a new self-organized-criticality-type model we manage to explain the novel critical exponents. Implementing a flow model we are able to reproduce the measured overspill evolution providing a tool for catastrophe mitigation and future planning. PMID:22529343
Biological impacts and context of network theory
Energy Technology Data Exchange (ETDEWEB)
Almaas, E
2007-01-05
Many complex systems can be represented and analyzed as networks, and examples that have benefited from this approach span the natural sciences. For instance, we now know that systems as disparate as the World-Wide Web, the Internet, scientific collaborations, food webs, protein interactions and metabolism all have common features in their organization, the most salient of which are their scale-free connectivity distributions and their small-world behavior. The recent availability of large scale datasets that span the proteome or metabolome of an organism have made it possible to elucidate some of the organizational principles and rules that govern their function, robustness and evolution. We expect that combining the currently separate layers of information from gene regulatory-, signal transduction-, protein interaction- and metabolic networks will dramatically enhance our understanding of cellular function and dynamics.
Social network analysis of Iranian researchers in the field of violence.
Salamati, Payman; Soheili, Faramarz
2016-10-01
The social network analysis (SNA) is a paradigm for analyzing structural patterns in social re- lations, testing knowledge sharing process and identifying bottlenecks of information flow. The purpose of this study was to determine the status of research in the fleld of violence in Iran using SNA. Research population included all the papers with at least one Iranian affiliation published in violence fleld indexed in SCIE, PubMed and Scopus databases. The co-word maps, co-authorship network and structural holes were drawn using related software. In the next step, the active authors and some measures of our network including degree centrality (DC), closeness, eigenvector, betweeness, density, diameter, compactness and size of the main component were assessed. Likewise, the trend of the published articles was evaluated based on the number of documents and their citations from 1972 to 2014. Five hundred and seventy one records were obtained. The five main clusters and hot spots were mental health, violence, war, psychiatric disorders and suicide. The co-authorship network was complex, tangled and scale free. The top nine authors with cut point role and top ten active authors were identified. The mean (standard deviation) of normalized DC, closeness, eigenvector and betweeness were 0.449 (0.805), 0.609 (0.214), 2.373 (7.353) and 0.338 (1.122), respectively. The density, diameter and mean compactness of our co-authorship network were 0.0494, 3.955 and 0.125, respectively. The main component consisted of 216 nodes that formed 17% of total size of the network. Both the number of the documents and their citations has increased in the field of violence in the recent years. Although the number of the documents has recently increased in the field of violence, the information flow is slow and there are not many relations among the authors in the network. However, the active authors have ability to influence the flow of knowledge within the network.
National Research Council Canada - National Science Library
2002-01-01
.... Remote Network Access (RNA) includes or is associated with all communication devices/software, firewalls, intrusion detection systems and virus protection applications to ensure security of the OIG, DoD, Network from remote...
Neural Networks: Implementations and Applications
Vonk, E.; Veelenturf, L.P.J.; Jain, L.C.
1996-01-01
Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas
Study on the complex network characteristics of urban road system based on GIS
Gao, Zhonghua; Chen, Zhenjie; Liu, Yongxue; Huang, Kang
2007-06-01
Urban road system is the basic bone of urban transportation and one of the most important factors that influent and controls the urban configuration. In this paper, an approach of modeling, analyzing and optimizing urban road system is described based on complex network theory and GIS technology. The urban road system is studied on three focuses: building the urban road network, modeling the computational procedures based on urban road networks and analyzing the urban road system of Changzhou City as the study case. The conclusion is that the urban road network is a scale-free network with small-world characteristic, and there is still space for development of the whole network as a small-world network, also the key road crosses should be kept expedite.
Passenger flow analysis of Beijing urban rail transit network using fractal approach
Li, Xiaohong; Chen, Peiwen; Chen, Feng; Wang, Zijia
2018-04-01
To quantify the spatiotemporal distribution of passenger flow and the characteristics of an urban rail transit network, we introduce four radius fractal dimensions and two branch fractal dimensions by combining a fractal approach with passenger flow assignment model. These fractal dimensions can numerically describe the complexity of passenger flow in the urban rail transit network and its change characteristics. Based on it, we establish a fractal quantification method to measure the fractal characteristics of passenger follow in the rail transit network. Finally, we validate the reasonability of our proposed method by using the actual data of Beijing subway network. It has been shown that our proposed method can effectively measure the scale-free range of the urban rail transit network, network development and the fractal characteristics of time-varying passenger flow, which further provides a reference for network planning and analysis of passenger flow.
Robustness of pinning a general complex dynamical network
International Nuclear Information System (INIS)
Wang Lei; Sun Youxian
2010-01-01
This Letter studies the robustness problem of pinning a general complex dynamical network toward an assigned synchronous evolution. Several synchronization criteria are presented to guarantee the convergence of the pinning process locally and globally by construction of Lyapunov functions. In particular, if a pinning strategy has been designed for synchronization of a given complex dynamical network, then no matter what uncertainties occur among the pinned nodes, synchronization can still be guaranteed through the pinning. The analytical results show that pinning control has a certain robustness against perturbations on network architecture: adding, deleting and changing the weights of edges. Numerical simulations illustrated by scale-free complex networks verify the theoretical results above-acquired.
Modeling structure and resilience of the dark network.
De Domenico, Manlio; Arenas, Alex
2017-02-01
While the statistical and resilience properties of the Internet are no longer changing significantly across time, the Darknet, a network devoted to keep anonymous its traffic, still experiences rapid changes to improve the security of its users. Here we study the structure of the Darknet and find that its topology is rather peculiar, being characterized by a nonhomogeneous distribution of connections, typical of scale-free networks; very short path lengths and high clustering, typical of small-world networks; and lack of a core of highly connected nodes. We propose a model to reproduce such features, demonstrating that the mechanisms used to improve cybersecurity are responsible for the observed topology. Unexpectedly, we reveal that its peculiar structure makes the Darknet much more resilient than the Internet (used as a benchmark for comparison at a descriptive level) to random failures, targeted attacks, and cascade failures, as a result of adaptive changes in response to the attempts of dismantling the network across time.
Learning Networks, Networked Learning
Sloep, Peter; Berlanga, Adriana
2010-01-01
Sloep, P. B., & Berlanga, A. J. (2011). Learning Networks, Networked Learning [Redes de Aprendizaje, Aprendizaje en Red]. Comunicar, XIX(37), 55-63. Retrieved from http://dx.doi.org/10.3916/C37-2011-02-05
Mapping and discrimination of networks in the complexity-entropy plane
Wiedermann, Marc; Donges, Jonathan F.; Kurths, Jürgen; Donner, Reik V.
2017-10-01
Complex networks are usually characterized in terms of their topological, spatial, or information-theoretic properties and combinations of the associated metrics are used to discriminate networks into different classes or categories. However, even with the present variety of characteristics at hand it still remains a subject of current research to appropriately quantify a network's complexity and correspondingly discriminate between different types of complex networks, like infrastructure or social networks, on such a basis. Here we explore the possibility to classify complex networks by means of a statistical complexity measure that has formerly been successfully applied to distinguish different types of chaotic and stochastic time series. It is composed of a network's averaged per-node entropic measure characterizing the network's information content and the associated Jenson-Shannon divergence as a measure of disequilibrium. We study 29 real-world networks and show that networks of the same category tend to cluster in distinct areas of the resulting complexity-entropy plane. We demonstrate that within our framework, connectome networks exhibit among the highest complexity while, e.g., transportation and infrastructure networks display significantly lower values. Furthermore, we demonstrate the utility of our framework by applying it to families of random scale-free and Watts-Strogatz model networks. We then show in a second application that the proposed framework is useful to objectively construct threshold-based networks, such as functional climate networks or recurrence networks, by choosing the threshold such that the statistical network complexity is maximized.
Grooming network cohesion and the role of individuals in a captive chimpanzee group.
Kanngiesser, Patricia; Sueur, Cédric; Riedl, Katrin; Grossmann, Johannes; Call, Josep
2011-08-01
Social network analysis offers new tools to study the social structure of primate groups. We used social network analysis to investigate the cohesiveness of a grooming network in a captive chimpanzee group (N = 17) and the role that individuals may play in it. Using data from a year-long observation, we constructed an unweighted social network of preferred grooming interactions by retaining only those dyads that groomed above the group mean. This choice of criterion was validated by the finding that the properties of the unweighted network correlated with the properties of a weighted network (i.e. a network representing the frequency of grooming interactions) constructed from the same data. To investigate group cohesion, we tested the resilience of the unweighted grooming network to the removal of central individuals (i.e. individuals with high betweenness centrality). The network fragmented more after the removal of individuals with high betweenness centrality than after the removal of random individuals. Central individuals played a pivotal role in maintaining the network's cohesiveness, and we suggest that this may be a typical property of affiliative networks like grooming networks. We found that the grooming network correlated with kinship and age, and that individuals with higher social status occupied more central positions in the network. Overall, the grooming network showed a heterogeneous structure, yet did not exhibit scale-free properties similar to many other primate networks. We discuss our results in light of recent findings on animal social networks and chimpanzee grooming. © 2010 Wiley-Liss, Inc.
CLIC expands to include the Southern Hemisphere
Roberto Cantoni
2010-01-01
Australia has recently joined the CLIC collaboration: the enlargement will bring new expertise and resources to the project, and is especially welcome in the wake of CERN budget redistributions following the recent adoption of the Medium Term Plan. The countries involved in CLIC collaboration With the signing of a Memorandum of Understanding on 26 August 2010, the ACAS network (Australian Collaboration for Accelerator Science) became the 40th member of in the multilateral CLIC collaboration making Australia the 22nd country to join the collaboration. “The new MoU was signed by the ACAS network, which includes the Australian Synchrotron and the University of Melbourne”, explains Jean-Pierre Delahaye, CLIC Study Leader. “Thanks to their expertise, the Australian institutes will contribute greatly to the CLIC damping rings and the two-beam test modules." Institutes from any country wishing to join the CLIC collaboration are invited to assume responsibility o...
Should Broca's area include Brodmann area 47?
Ardila, Alfredo; Bernal, Byron; Rosselli, Monica
2017-02-01
Understanding brain organization of speech production has been a principal goal of neuroscience. Historically, brain speech production has been associated with so-called Broca’s area (Brodmann area –BA- 44 and 45), however, modern neuroimaging developments suggest speech production is associated with networks rather than with areas. The purpose of this paper was to analyze the connectivity of BA47 ( pars orbitalis) in relation to language . A meta-analysis was conducted to assess the language network in which BA47 is involved. The Brainmap database was used. Twenty papers corresponding to 29 experimental conditions with a total of 373 subjects were included. Our results suggest that BA47 participates in a “frontal language production system” (or extended Broca’s system). The BA47 connectivity found is also concordant with a minor role in language semantics. BA47 plays a central role in the language production system.
Search for Directed Networks by Different Random Walk Strategies
Zhu, Zi-Qi; Jin, Xiao-Ling; Huang, Zhi-Long
2012-03-01
A comparative study is carried out on the efficiency of five different random walk strategies searching on directed networks constructed based on several typical complex networks. Due to the difference in search efficiency of the strategies rooted in network clustering, the clustering coefficient in a random walker's eye on directed networks is defined and computed to be half of the corresponding undirected networks. The search processes are performed on the directed networks based on Erdös—Rényi model, Watts—Strogatz model, Barabási—Albert model and clustered scale-free network model. It is found that self-avoiding random walk strategy is the best search strategy for such directed networks. Compared to unrestricted random walk strategy, path-iteration-avoiding random walks can also make the search process much more efficient. However, no-triangle-loop and no-quadrangle-loop random walks do not improve the search efficiency as expected, which is different from those on undirected networks since the clustering coefficient of directed networks are smaller than that of undirected networks.
Cooperation in the prisoner's dilemma game on tunable community networks
Liu, Penghui; Liu, Jing
2017-04-01
Community networks have attracted lots of attention as they widely exist in the real world and are essential to study properties of networks. As the game theory illustrates the competitive relationship among individuals, studying the iterated prisoner's dilemma games (PDG) on community networks is meaningful. In this paper, we focus on investigating the relationship between the cooperation level of community networks and that of their communities in the prisoner's dilemma games. With this purpose in mind, a type of tunable community networks whose communities inherit not only the scale-free property, but also the characteristic of adjustable cooperation level of Holme and Kim (HK) networks is designed. Both uniform and non-uniform community networks are investigated. We find out that cooperation enhancement of communities can improve the cooperation level of the whole networks. Moreover, simulation results indicate that a large community is a better choice than a small community to improve the cooperation level of the whole networks. Thus, improving the cooperation level of community networks can be divided into a number of sub-problems targeting at improving the cooperation level of individual communities, which can save the computation cost and deal with the problem of improving the cooperation level of huge community networks. Moreover, as the larger community is a better choice, it is reasonable to start with large communities, according to the greedy strategy when the number of nodes can participate in the enhancement is limited.
Lynch, Clifford
1997-01-01
Discusses the state of the Internet. Highlights include the magnitude of the infrastructure, costs, its increasing pace, constraints in international links, provision of network capacity to homes and small businesses, cable television modems, political and cultural problems, the digital library concept, search engines, the failure of personal…
Distribution of shortest path lengths in a class of node duplication network models
Steinbock, Chanania; Biham, Ofer; Katzav, Eytan
2017-09-01
We present analytical results for the distribution of shortest path lengths (DSPL) in a network growth model which evolves by node duplication (ND). The model captures essential properties of the structure and growth dynamics of social networks, acquaintance networks, and scientific citation networks, where duplication mechanisms play a major role. Starting from an initial seed network, at each time step a random node, referred to as a mother node, is selected for duplication. Its daughter node is added to the network, forming a link to the mother node, and with probability p to each one of its neighbors. The degree distribution of the resulting network turns out to follow a power-law distribution, thus the ND network is a scale-free network. To calculate the DSPL we derive a master equation for the time evolution of the probability Pt(L =ℓ ) , ℓ =1 ,2 ,⋯ , where L is the distance between a pair of nodes and t is the time. Finding an exact analytical solution of the master equation, we obtain a closed form expression for Pt(L =ℓ ) . The mean distance 〈L〉 t and the diameter Δt are found to scale like lnt , namely, the ND network is a small-world network. The variance of the DSPL is also found to scale like lnt . Interestingly, the mean distance and the diameter exhibit properties of a small-world network, rather than the ultrasmall-world network behavior observed in other scale-free networks, in which 〈L〉 t˜lnlnt .
Effects of behavioral patterns and network topology structures on Parrondo’s paradox
Ye, Ye; Cheong, Kang Hao; Cen, Yu-Wan; Xie, Neng-Gang
2016-11-01
A multi-agent Parrondo’s model based on complex networks is used in the current study. For Parrondo’s game A, the individual interaction can be categorized into five types of behavioral patterns: the Matthew effect, harmony, cooperation, poor-competition-rich-cooperation and a random mode. The parameter space of Parrondo’s paradox pertaining to each behavioral pattern, and the gradual change of the parameter space from a two-dimensional lattice to a random network and from a random network to a scale-free network was analyzed. The simulation results suggest that the size of the region of the parameter space that elicits Parrondo’s paradox is positively correlated with the heterogeneity of the degree distribution of the network. For two distinct sets of probability parameters, the microcosmic reasons underlying the occurrence of the paradox under the scale-free network are elaborated. Common interaction mechanisms of the asymmetric structure of game B, behavioral patterns and network topology are also revealed.
Hazard tolerance of spatially distributed complex networks
International Nuclear Information System (INIS)
Dunn, Sarah; Wilkinson, Sean
2017-01-01
In this paper, we present a new methodology for quantifying the reliability of complex systems, using techniques from network graph theory. In recent years, network theory has been applied to many areas of research and has allowed us to gain insight into the behaviour of real systems that would otherwise be difficult or impossible to analyse, for example increasingly complex infrastructure systems. Although this work has made great advances in understanding complex systems, the vast majority of these studies only consider a systems topological reliability and largely ignore their spatial component. It has been shown that the omission of this spatial component can have potentially devastating consequences. In this paper, we propose a number of algorithms for generating a range of synthetic spatial networks with different topological and spatial characteristics and identify real-world networks that share the same characteristics. We assess the influence of nodal location and the spatial distribution of highly connected nodes on hazard tolerance by comparing our generic networks to benchmark networks. We discuss the relevance of these findings for real world networks and show that the combination of topological and spatial configurations renders many real world networks vulnerable to certain spatial hazards. - Highlights: • We develop a method for quantifying the reliability of real-world systems. • We assess the spatial resilience of synthetic spatially distributed networks. • We form algorithms to generate spatial scale-free and exponential networks. • We show how these “synthetic” networks are proxies for real world systems. • Conclude that many real world systems are vulnerable to spatially coherent hazard.
Effects of network topology on wealth distributions
International Nuclear Information System (INIS)
Garlaschelli, Diego; Loffredo, Maria I
2008-01-01
We focus on the problem of how the wealth is distributed among the units of a networked economic system. We first review the empirical results documenting that in many economies the wealth distribution is described by a combination of the log-normal and power-law behaviours. We then focus on the Bouchaud-Mezard model of wealth exchange, describing an economy of interacting agents connected through an exchange network. We report analytical and numerical results showing that the system self-organizes towards a stationary state whose associated wealth distribution depends crucially on the underlying interaction network. In particular, we show that if the network displays a homogeneous density of links, the wealth distribution displays either the log-normal or the power-law form. This means that the first-order topological properties alone (such as the scale-free property) are not enough to explain the emergence of the empirically observed mixed form of the wealth distribution. In order to reproduce this nontrivial pattern, the network has to be heterogeneously divided into regions with a variable density of links. We show new results detailing how this effect is related to the higher-order correlation properties of the underlying network. In particular, we analyse assortativity by degree and the pairwise wealth correlations, and discuss the effects that these properties have on each other
Fitness-driven deactivation in network evolution
International Nuclear Information System (INIS)
Xu, Xin-Jian; Peng, Xiao-Long; Fu, Xin-Chu; Small, Michael
2010-01-01
Individual nodes in evolving real-world networks typically experience growth and decay—that is, the popularity and influence of individuals peaks and then fades. In this paper, we study this phenomenon via an intrinsic nodal fitness function and an intuitive ageing mechanism. Each node of the network is endowed with a fitness which represents its activity. All the nodes have two discrete stages: active and inactive. The evolution of the network combines the addition of new active nodes randomly connected to existing active ones and the deactivation of old active nodes with a possibility inversely proportional to their fitnesses. We obtain a structured exponential network when the fitness distribution of the individuals is homogeneous and a structured scale-free network with heterogeneous fitness distributions. Furthermore, we recover two universal scaling laws of the clustering coefficient for both cases, C(k) ∼ k −1 and C ∼ n −1 , where k and n refer to the node degree and the number of active individuals, respectively. These results offer a new simple description of the growth and ageing of networks where intrinsic features of individual nodes drive their popularity, and hence degree
Explosive synchronization transitions in complex neural networks
Chen, Hanshuang; He, Gang; Huang, Feng; Shen, Chuansheng; Hou, Zhonghuai
2013-09-01
It has been recently reported that explosive synchronization transitions can take place in networks of phase oscillators [Gómez-Gardeñes et al. Phys. Rev. Lett. 106, 128701 (2011)] and chaotic oscillators [Leyva et al. Phys. Rev. Lett. 108, 168702 (2012)]. Here, we investigate the effect of a microscopic correlation between the dynamics and the interacting topology of coupled FitzHugh-Nagumo oscillators on phase synchronization transition in Barabási-Albert (BA) scale-free networks and Erdös-Rényi (ER) random networks. We show that, if natural frequencies of the oscillations are positively correlated with node degrees and the width of the frequency distribution is larger than a threshold value, a strong hysteresis loop arises in the synchronization diagram of BA networks, indicating the evidence of an explosive transition towards synchronization of relaxation oscillators system. In contrast to the results in BA networks, in more homogeneous ER networks, the synchronization transition is always of continuous type regardless of the width of the frequency distribution. Moreover, we consider the effect of degree-mixing patterns on the nature of the synchronization transition, and find that the degree assortativity is unfavorable for the occurrence of such an explosive transition.
Google matrix, dynamical attractors, and Ulam networks.
Shepelyansky, D L; Zhirov, O V
2010-03-01
We study the properties of the Google matrix generated by a coarse-grained Perron-Frobenius operator of the Chirikov typical map with dissipation. The finite-size matrix approximant of this operator is constructed by the Ulam method. This method applied to the simple dynamical model generates directed Ulam networks with approximate scale-free scaling and characteristics being in certain features similar to those of the world wide web with approximate scale-free degree distributions as well as two characteristics similar to the web: a power-law decay in PageRank that mirrors the decay of PageRank on the world wide web and a sensitivity to the value alpha in PageRank. The simple dynamical attractors play here the role of popular websites with a strong concentration of PageRank. A variation in the Google parameter alpha or other parameters of the dynamical map can drive the PageRank of the Google matrix to a delocalized phase with a strange attractor where the Google search becomes inefficient.
Wang, Le; Tan, Nana; Hu, Jiayao; Wang, Huan; Duan, Dongzhu; Ma, Lin; Xiao, Jian; Wang, Xiaoling
2017-12-28
Osmanthus fragrans has been used as folk medicine for thousands of years. The extracts of Osmanthus fragrans flowers were reported to have various bioactivities including free radical scavenging, anti-inflammation, neuroprotection and antitumor effects. However, there is still lack of knowledge about its essential oil. In this work, we analyzed the chemical composition of the essential oil from Osmanthus fragrans var. thunbergii by GC-MS. A complex network approach was applied to investigate the interrelationships between the ingredients, target proteins, and related pathways for the essential oil. Statistical characteristics of the networks were further studied to explore the main active ingredients and potential bioactivities of O. fragrans var. thunbergii essential oil. A total of 44 ingredients were selected from the chemical composition of O. fragrans var. thunbergii essential oil, and that 191 potential target proteins together with 70 pathways were collected for these compounds. An ingredient-target-pathway network was constructed based on these data and showed scale-free property as well as power-law degree distribution. Eugenol and geraniol were screened as main active ingredients with much higher degree values. Potential neuroprotective and anti-tumor effect of the essential oil were also found. A core subnetwork was extracted from the ingredient-target-pathway network, and indicated that eugenol and geraniol contributed most to the neuroprotection of this essential oil. Furthermore, a pathway-based protein association network was built and exhibited small-world property. MAPK1 and MAPK3 were considered as key proteins with highest scores of centrality indices, which might play an important role in the anti-tumor effect of the essential oil. This work predicted the main active ingredients and bioactivities of O. fragrans var. thunbergii essential oil, which would benefit the development and utilization of Osmanthus fragrans flowers. The application of
Intelligent networked teleoperation control
Li, Zhijun; Su, Chun-Yi
2015-01-01
This book describes a unified framework for networked teleoperation systems involving multiple research fields: networked control systems for linear and nonlinear forms, bilateral teleoperation, trilateral teleoperation, multilateral teleoperation and cooperative teleoperation. It closely examines networked control as a field at the intersection of systems & control and robotics and presents a number of experimental case studies on testbeds for robotic systems, including networked haptic devices, robotic network systems and sensor network systems. The concepts and results outlined are easy to understand, even for readers fairly new to the subject. As such, the book offers a valuable reference work for researchers and engineers in the fields of systems & control and robotics.
Energy-Aware Topology Evolution Model with Link and Node Deletion in Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Xiaojuan Luo
2012-01-01
Full Text Available Based on the complex network theory, a new topological evolving model is proposed. In the evolution of the topology of sensor networks, the energy-aware mechanism is taken into account, and the phenomenon of change of the link and node in the network is discussed. Theoretical analysis and numerical simulation are conducted to explore the topology characteristics and network performance with different node energy distribution. We find that node energy distribution has the weak effect on the degree distribution P(k that evolves into the scale-free state, nodes with more energy carry more connections, and degree correlation is nontrivial disassortative. Moreover, the results show that, when nodes energy is more heterogeneous, the network is better clustered and enjoys higher performance in terms of the network efficiency and the average path length for transmitting data.
Traffic Dynamics of Computer Networks
Fekete, Attila
2008-10-01
Two important aspects of the Internet, namely the properties of its topology and the characteristics of its data traffic, have attracted growing attention of the physics community. My thesis has considered problems of both aspects. First I studied the stochastic behavior of TCP, the primary algorithm governing traffic in the current Internet, in an elementary network scenario consisting of a standalone infinite-sized buffer and an access link. The effect of the fast recovery and fast retransmission (FR/FR) algorithms is also considered. I showed that my model can be extended further to involve the effect of link propagation delay, characteristic of WAN. I continued my thesis with the investigation of finite-sized semi-bottleneck buffers, where packets can be dropped not only at the link, but also at the buffer. I demonstrated that the behavior of the system depends only on a certain combination of the parameters. Moreover, an analytic formula was derived that gives the ratio of packet loss rate at the buffer to the total packet loss rate. This formula makes it possible to treat buffer-losses as if they were link-losses. Finally, I studied computer networks from a structural perspective. I demonstrated through fluid simulations that the distribution of resources, specifically the link bandwidth, has a serious impact on the global performance of the network. Then I analyzed the distribution of edge betweenness in a growing scale-free tree under the condition that a local property, the in-degree of the "younger" node of an arbitrary edge, is known in order to find an optimum distribution of link capacity. The derived formula is exact even for finite-sized networks. I also calculated the conditional expectation of edge betweenness, rescaled for infinite networks.
Glen, D. V.
1985-04-01
Local networks, related standards activities of the Institute of Electrical and Electronics Engineers the American National Standards Institute and other elements are presented. These elements include: (1) technology choices such as topology, transmission media, and access protocols; (2) descriptions of standards for the 802 local area networks (LAN's); high speed local networks (HSLN's) and military specification local networks; and (3) intra- and internetworking using bridges and gateways with protocols Interconnection (OSI) reference model. The convergence of LAN/PBX technology is also described.
Using networking and communications software in business
McBride, PK
2014-01-01
Using Networking and Communications Software in Business covers the importance of networks in a business firm, the benefits of computer communications within a firm, and the cost-benefit in putting up networks in businesses. The book is divided into six parts. Part I looks into the nature and varieties of networks, networking standards, and network software. Part II discusses the planning of a networked system, which includes analyzing the requirements for the network system, the hardware for the network, and network management. The installation of the network system and the network managemen
Cooperation among cancer cells as public goods games on Voronoi networks.
Archetti, Marco
2016-05-07
Cancer cells produce growth factors that diffuse and sustain tumour proliferation, a form of cooperation that can be studied using mathematical models of public goods in the framework of evolutionary game theory. Cell populations, however, form heterogeneous networks that cannot be described by regular lattices or scale-free networks, the types of graphs generally used in the study of cooperation. To describe the dynamics of growth factor production in populations of cancer cells, I study public goods games on Voronoi networks, using a range of non-linear benefits that account for the known properties of growth factors, and different types of diffusion gradients. The results are surprisingly similar to those obtained on regular graphs and different from results on scale-free networks, revealing that network heterogeneity per se does not promote cooperation when public goods diffuse beyond one-step neighbours. The exact shape of the diffusion gradient is not crucial, however, whereas the type of non-linear benefit is an essential determinant of the dynamics. Public goods games on Voronoi networks can shed light on intra-tumour heterogeneity, the evolution of resistance to therapies that target growth factors, and new types of cell therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Traveling and Pinned Fronts in Bistable Reaction-Diffusion Systems on Networks
Kouvaris, Nikos E.; Kori, Hiroshi; Mikhailov, Alexander S.
2012-01-01
Traveling fronts and stationary localized patterns in bistable reaction-diffusion systems have been broadly studied for classical continuous media and regular lattices. Analogs of such non-equilibrium patterns are also possible in networks. Here, we consider traveling and stationary patterns in bistable one-component systems on random Erdös-Rényi, scale-free and hierarchical tree networks. As revealed through numerical simulations, traveling fronts exist in network-organized systems. They represent waves of transition from one stable state into another, spreading over the entire network. The fronts can furthermore be pinned, thus forming stationary structures. While pinning of fronts has previously been considered for chains of diffusively coupled bistable elements, the network architecture brings about significant differences. An important role is played by the degree (the number of connections) of a node. For regular trees with a fixed branching factor, the pinning conditions are analytically determined. For large Erdös-Rényi and scale-free networks, the mean-field theory for stationary patterns is constructed. PMID:23028746
National Research Council Canada - National Science Library
Schott, Brian
2004-01-01
...: Declarative Languages and Execution Environment includes topographical soldier interface and a sensor network simulation environment for algorithm development, deployment planning, and operational support. Finally, Task 3...
International Nuclear Information System (INIS)
Markovic, R; Gosak, M; Marhl, M
2013-01-01
The problem of making a network of dynamical systems synchronize onto a common evolution is the subject of much ongoing research in several scientific disciplines. It is nowadays a well-known fact that the synchronization processes are gradually influenced by the interaction topology between the dynamically interacting units. A complex coupling configuration can significantly affect the synchronization abilities of a networked system. However, the question arises what is the optimal network topology that provides enhancement of the synchronization features under given circumstances. In order to address this issue we make use of a network model in which we can smoothly tune the topology from a highly heterogeneous and efficient scale-free network to a homogeneous and less efficient network. The network is then populated with Poincaré oscillators, a paradigmatic model for limit-cycle oscillations. This oscillator model exhibits a parameter that enables changes of the limit cycle attraction and is thus immediately related to flexibility/rigidity properties of the oscillator. Our results reveal that for weak attractions of the limit cycle, intermediate homogeneous topology ensures maximal synchronization, whereas highly heterogeneous scale-free topology ensures maximal synchronization for strong attractions of the limit cycle. We argue that the flexibility/rigidity of individual nodes of the networks defines the topology, where maximal global coherence is achieved.
Global stability of an SIR model with differential infectivity on complex networks
Yuan, Xinpeng; Wang, Fang; Xue, Yakui; Liu, Maoxing
2018-06-01
In this paper, an SIR model with birth and death on complex networks is analyzed, where infected individuals are divided into m groups according to their infection and contact between human is treated as a scale-free social network. We obtain the basic reproduction number R0 as well as the effects of various immunization schemes. The results indicate that the disease-free equilibrium is locally and globally asymptotically stable in some conditions, otherwise disease-free equilibrium is unstable and exists an unique endemic equilibrium that is globally asymptotically stable. Our theoretical results are confirmed by numerical simulations and a promising way for infectious diseases control is suggested.
The topology of a causal network for the Chinese financial system
Gao, Bo; Ren, Ruo-en
2013-07-01
The paper builds a causal network for the Chinese financial system based on the Granger causality of company risks, studies its different topologies in crisis and bull period, and applies the centrality to explain individual risk and prevent systemic risk. The results show that this causal network possesses both small-world phenomenon and scale-free property, and has a little different average distance, clustering coefficient, and degree distribution in different periods, and financial institutions with high centrality not only have large individual risk, but also are important for systemic risk immunization.
Maximal planar networks with large clustering coefficient and power-law degree distribution
International Nuclear Information System (INIS)
Zhou Tao; Yan Gang; Wang Binghong
2005-01-01
In this article, we propose a simple rule that generates scale-free networks with very large clustering coefficient and very small average distance. These networks are called random Apollonian networks (RANs) as they can be considered as a variation of Apollonian networks. We obtain the analytic results of power-law exponent γ=3 and clustering coefficient C=(46/3)-36 ln (3/2)≅0.74, which agree with the simulation results very well. We prove that the increasing tendency of average distance of RANs is a little slower than the logarithm of the number of nodes in RANs. Since most real-life networks are both scale-free and small-world networks, RANs may perform well in mimicking the reality. The RANs possess hierarchical structure as C(k)∼k -1 that are in accord with the observations of many real-life networks. In addition, we prove that RANs are maximal planar networks, which are of particular practicability for layout of printed circuits and so on. The percolation and epidemic spreading process are also studied and the comparisons between RANs and Barabasi-Albert (BA) as well as Newman-Watts (NW) networks are shown. We find that, when the network order N (the total number of nodes) is relatively small (as N∼10 4 ), the performance of RANs under intentional attack is not sensitive to N, while that of BA networks is much affected by N. And the diseases spread slower in RANs than BA networks in the early stage of the suseptible-infected process, indicating that the large clustering coefficient may slow the spreading velocity, especially in the outbreaks
Complex network description of the ionosphere
Lu, Shikun; Zhang, Hao; Li, Xihai; Li, Yihong; Niu, Chao; Yang, Xiaoyun; Liu, Daizhi
2018-03-01
Complex networks have emerged as an essential approach of geoscience to generate novel insights into the nature of geophysical systems. To investigate the dynamic processes in the ionosphere, a directed complex network is constructed, based on a probabilistic graph of the vertical total electron content (VTEC) from 2012. The results of the power-law hypothesis test show that both the out-degree and in-degree distribution of the ionospheric network are not scale-free. Thus, the distribution of the interactions in the ionosphere is homogenous. None of the geospatial positions play an eminently important role in the propagation of the dynamic ionospheric processes. The spatial analysis of the ionospheric network shows that the interconnections principally exist between adjacent geographical locations, indicating that the propagation of the dynamic processes primarily depends on the geospatial distance in the ionosphere. Moreover, the joint distribution of the edge distances with respect to longitude and latitude directions shows that the dynamic processes travel further along the longitude than along the latitude in the ionosphere. The analysis of small-world-ness indicates that the ionospheric network possesses the small-world property, which can make the ionosphere stable and efficient in the propagation of dynamic processes.
On cost-effective communication network designing
Zhang, Guo-Qiang
2010-02-01
How to efficiently design a communication network is a paramount task for network designing and engineering. It is, however, not a single objective optimization process as perceived by most previous researches, i.e., to maximize its transmission capacity, but a multi-objective optimization process, with lowering its cost to be another important objective. These two objectives are often contradictive in that optimizing one objective may deteriorate the other. After a deep investigation of the impact that network topology, node capability scheme and routing algorithm as well as their interplays have on the two objectives, this letter presents a systematic approach to achieve a cost-effective design by carefully choosing the three designing aspects. Only when routing algorithm and node capability scheme are elegantly chosen can BA-like scale-free networks have the potential of achieving good tradeoff between the two objectives. Random networks, on the other hand, have the built-in character for a cost-effective design, especially when other aspects cannot be determined beforehand.
Importance of individual events in temporal networks
International Nuclear Information System (INIS)
Takaguchi, Taro; Masuda, Naoki; Sato, Nobuo; Yano, Kazuo
2012-01-01
Records of time-stamped social interactions between pairs of individuals (e.g. face-to-face conversations, e-mail exchanges and phone calls) constitute a so-called temporal network. A remarkable difference between temporal networks and conventional static networks is that time-stamped events rather than links are the unit elements generating the collective behavior of nodes. We propose an importance measure for single interaction events. By generalizing the concept of the advance of events proposed by Kossinets et al (2008 Proc. 14th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining p 435), we propose that an event is central when it carries new information about others to the two nodes involved in the event. We find that the proposed measure properly quantifies the importance of events in connecting nodes along time-ordered paths. Because of strong heterogeneity in the importance of events present in real data, a small fraction of highly important events is necessary and sufficient to sustain the connectivity of temporal networks. Nevertheless, in contrast to the behavior of scale-free networks against link removal, this property mainly results from bursty activity patterns and not heterogeneous degree distributions. (paper)
Rumor propagation with heterogeneous transmission in social networks
Vega-Oliveros, Didier A.; Costa, Luciano da F.; Rodrigues, Francisco A.
2017-02-01
Rumor models consider that information transmission occurs with the same probability between each pair of nodes. However, this assumption is not observed in social networks, which contain influential spreaders. To overcome this limitation, we assume that central individuals have a higher capacity to convince their neighbors than peripheral subjects. From extensive numerical simulations we find that spreading is improved in scale-free networks when the transmission probability is proportional to the PageRank, degree, and betweenness centrality. In addition, the results suggest that spreading can be controlled by adjusting the transmission probabilities of the most central nodes. Our results provide a conceptual framework for understanding the interplay between rumor propagation and heterogeneous transmission in social networks.