A hybridised variable neighbourhood tabu search heuristic to increase security in a utility network
International Nuclear Information System (INIS)
Janssens, Jochen; Talarico, Luca; Sörensen, Kenneth
2016-01-01
We propose a decision model aimed at increasing security in a utility network (e.g., electricity, gas, water or communication network). The network is modelled as a graph, the edges of which are unreliable. We assume that all edges (e.g., pipes, cables) have a certain, not necessarily equal, probability of failure, which can be reduced by selecting edge-specific security strategies. We develop a mathematical programming model and a metaheuristic approach that uses a greedy random adaptive search procedure to find an initial solution and uses tabu search hybridised with iterated local search and a variable neighbourhood descend heuristic to improve this solution. The main goal is to reduce the risk of service failure between an origin and a destination node by selecting the right combination of security measures for each network edge given a limited security budget. - Highlights: • A decision model aimed at increasing security in a utility network is proposed. • The goal is to reduce the risk of service failure given a limited security budget. • An exact approach and a variable neighbourhood tabu search heuristic are developed. • A generator for realistic networks is built and used to test the solution methods. • The hybridised heuristic reduces the total risk on average with 32%.
Heuristic Search Theory and Applications
Edelkamp, Stefan
2011-01-01
Search has been vital to artificial intelligence from the very beginning as a core technique in problem solving. The authors present a thorough overview of heuristic search with a balance of discussion between theoretical analysis and efficient implementation and application to real-world problems. Current developments in search such as pattern databases and search with efficient use of external memory and parallel processing units on main boards and graphics cards are detailed. Heuristic search as a problem solving tool is demonstrated in applications for puzzle solving, game playing, constra
Directory of Open Access Journals (Sweden)
Chao-Chih Lin
2017-10-01
Full Text Available A new transient-based hybrid heuristic approach is developed to optimize a transient generation process and to detect leaks in pipe networks. The approach couples the ordinal optimization approach (OOA and the symbiotic organism search (SOS to solve the optimization problem by means of iterations. A pipe network analysis model (PNSOS is first used to determine steady-state head distribution and pipe flow rates. The best transient generation point and its relevant valve operation parameters are optimized by maximizing the objective function of transient energy. The transient event is created at the chosen point, and the method of characteristics (MOC is used to analyze the transient flow. The OOA is applied to sift through the candidate pipes and the initial organisms with leak information. The SOS is employed to determine the leaks by minimizing the sum of differences between simulated and computed head at the observation points. Two synthetic leaking scenarios, a simple pipe network and a water distribution network (WDN, are chosen to test the performance of leak detection ordinal symbiotic organism search (LDOSOS. Leak information can be accurately identified by the proposed approach for both of the scenarios. The presented technique makes a remarkable contribution to the success of leak detection in the pipe networks.
Finding Multi-step Attacks in Computer Networks using Heuristic Search and Mobile Ambients
Nunes Leal Franqueira, V.
2009-01-01
An important aspect of IT security governance is the proactive and continuous identification of possible attacks in computer networks. This is complicated due to the complexity and size of networks, and due to the fact that usually network attacks are performed in several steps. This thesis proposes
Efficient heuristics for maximum common substructure search.
Englert, Péter; Kovács, Péter
2015-05-26
Maximum common substructure search is a computationally hard optimization problem with diverse applications in the field of cheminformatics, including similarity search, lead optimization, molecule alignment, and clustering. Most of these applications have strict constraints on running time, so heuristic methods are often preferred. However, the development of an algorithm that is both fast enough and accurate enough for most practical purposes is still a challenge. Moreover, in some applications, the quality of a common substructure depends not only on its size but also on various topological features of the one-to-one atom correspondence it defines. Two state-of-the-art heuristic algorithms for finding maximum common substructures have been implemented at ChemAxon Ltd., and effective heuristics have been developed to improve both their efficiency and the relevance of the atom mappings they provide. The implementations have been thoroughly evaluated and compared with existing solutions (KCOMBU and Indigo). The heuristics have been found to greatly improve the performance and applicability of the algorithms. The purpose of this paper is to introduce the applied methods and present the experimental results.
Using heuristic search for optimizing maintenance plans
International Nuclear Information System (INIS)
Mutanen, Teemu
2012-01-01
This work addresses the maintenance action selection process. Maintenance personnel need to evaluate maintenance actions and costs to keep the machines in working condition. Group of actions are evaluated together as maintenance plans. The maintenance plans as output provide information to the user about which actions to take if any and what future actions should be prepared for. The heuristic search method is implemented as part of general use toolbox for analysis of measurements from movable work machines. Impacts from machine's usage restrictions and maintenance activities are analysed. The results show that once put on a temporal perspective, the prioritized order of the actions is different and provide additional information to the user.
Heuristic Decision Making in Network Linking
M.J.W. Harmsen - Van Hout (Marjolein); B.G.C. Dellaert (Benedict); P.J.J. Herings (Jean-Jacques)
2015-01-01
textabstractNetwork formation among individuals constitutes an important part of many OR processes, but relatively little is known about how individuals make their linking decisions in networks. This article provides an investigation of heuristic effects in individual linking decisions for
Solving Large Clustering Problems with Meta-Heuristic Search
DEFF Research Database (Denmark)
Turkensteen, Marcel; Andersen, Kim Allan; Bang-Jensen, Jørgen
In Clustering Problems, groups of similar subjects are to be retrieved from data sets. In this paper, Clustering Problems with the frequently used Minimum Sum-of-Squares Criterion are solved using meta-heuristic search. Tabu search has proved to be a successful methodology for solving optimization...... problems, but applications to large clustering problems are rare. The simulated annealing heuristic has mainly been applied to relatively small instances. In this paper, we implement tabu search and simulated annealing approaches and compare them to the commonly used k-means approach. We find that the meta-heuristic...
Theory of Randomized Search Heuristics in Combinatorial Optimization
DEFF Research Database (Denmark)
The rigorous mathematical analysis of randomized search heuristics(RSHs) with respect to their expected runtime is a growing research area where many results have been obtained in recent years. This class of heuristics includes well-known approaches such as Randomized Local Search (RLS), the Metr......The rigorous mathematical analysis of randomized search heuristics(RSHs) with respect to their expected runtime is a growing research area where many results have been obtained in recent years. This class of heuristics includes well-known approaches such as Randomized Local Search (RLS...... analysis of randomized algorithms to RSHs. Mostly, the expected runtime of RSHs on selected problems is analzyed. Thereby, we understand why and when RSHs are efficient optimizers and, conversely, when they cannot be efficient. The tutorial will give an overview on the analysis of RSHs for solving...
Combined Heuristic Attack Strategy on Complex Networks
Directory of Open Access Journals (Sweden)
Marek Šimon
2017-01-01
Full Text Available Usually, the existence of a complex network is considered an advantage feature and efforts are made to increase its robustness against an attack. However, there exist also harmful and/or malicious networks, from social ones like spreading hoax, corruption, phishing, extremist ideology, and terrorist support up to computer networks spreading computer viruses or DDoS attack software or even biological networks of carriers or transport centers spreading disease among the population. New attack strategy can be therefore used against malicious networks, as well as in a worst-case scenario test for robustness of a useful network. A common measure of robustness of networks is their disintegration level after removal of a fraction of nodes. This robustness can be calculated as a ratio of the number of nodes of the greatest remaining network component against the number of nodes in the original network. Our paper presents a combination of heuristics optimized for an attack on a complex network to achieve its greatest disintegration. Nodes are deleted sequentially based on a heuristic criterion. Efficiency of classical attack approaches is compared to the proposed approach on Barabási-Albert, scale-free with tunable power-law exponent, and Erdős-Rényi models of complex networks and on real-world networks. Our attack strategy results in a faster disintegration, which is counterbalanced by its slightly increased computational demands.
A flow-first route-next heuristic for liner shipping network design
DEFF Research Database (Denmark)
Krogsgaard, Alexander; Pisinger, David; Thorsen, Jesper
2018-01-01
Having a well-designed liner shipping network is paramount to ensure competitive freight rates, adequate capacity on trade-lanes, and reasonable transportation times.The most successful algorithms for liner shipping network design make use of a two-phase approach, where they ﬁrst design the routes...... diﬀerent operators are used to modify the network. Since each iteration of the local search method involves solving a very complex multi-commodity ﬂow problem to route the containers through the network, the ﬂow problem is solved heuristically by use of a fast Lagrange heuristic. Although the Lagrange...... heuristic for ﬂowing containers is 2–5% from the optimal solution, the solution quality is suﬃciently good to guide the variable neighborhood search method in designing the network. Computational results are reported, showing that the developed heuristic is able to ﬁnd improved solutions for large...
Heuristic method for searching global maximum of multimodal unknown function
Energy Technology Data Exchange (ETDEWEB)
Kamei, K; Araki, Y; Inoue, K
1983-06-01
The method is composed of three kinds of searches. They are called g (grasping)-mode search, f (finding)-mode search and c (confirming)-mode search. In the g-mode search and the c-mode search, a heuristic method is used which was extracted from search behaviors of human subjects. In f-mode search, the simplex method is used which is well known as a search method for unimodal unknown function. Each mode search and its transitions are shown in the form of flowchart. The numerical results for one-dimensional through six-dimensional multimodal functions prove the proposed search method to be an effective one. 11 references.
Complex Sequencing Problems and Local Search Heuristics
Brucker, P.; Hurink, Johann L.; Osman, I.H.; Kelly, J.P.
1996-01-01
Many problems can be formulated as complex sequencing problems. We will present problems in flexible manufacturing that have such a formulation and apply local search methods like iterative improvement, simulated annealing and tabu search to solve these problems. Computational results are reported.
Concentrated Hitting Times of Randomized Search Heuristics with Variable Drift
DEFF Research Database (Denmark)
Lehre, Per Kristian; Witt, Carsten
2014-01-01
Drift analysis is one of the state-of-the-art techniques for the runtime analysis of randomized search heuristics (RSHs) such as evolutionary algorithms (EAs), simulated annealing etc. The vast majority of existing drift theorems yield bounds on the expected value of the hitting time for a target...
Heuristics for Relevancy Ranking of Earth Dataset Search Results
Lynnes, Christopher; Quinn, Patrick; Norton, James
2016-01-01
As the Variety of Earth science datasets increases, science researchers find it more challenging to discover and select the datasets that best fit their needs. The most common way of search providers to address this problem is to rank the datasets returned for a query by their likely relevance to the user. Large web page search engines typically use text matching supplemented with reverse link counts, semantic annotations and user intent modeling. However, this produces uneven results when applied to dataset metadata records simply externalized as a web page. Fortunately, data and search provides have decades of experience in serving data user communities, allowing them to form heuristics that leverage the structure in the metadata together with knowledge about the user community. Some of these heuristics include specific ways of matching the user input to the essential measurements in the dataset and determining overlaps of time range and spatial areas. Heuristics based on the novelty of the datasets can prioritize later, better versions of data over similar predecessors. And knowledge of how different user types and communities use data can be brought to bear in cases where characteristics of the user (discipline, expertise) or their intent (applications, research) can be divined. The Earth Observing System Data and Information System has begun implementing some of these heuristics in the relevancy algorithm of its Common Metadata Repository search engine.
Heuristic Artificial Bee Colony Algorithm for Uncovering Community in Complex Networks
Directory of Open Access Journals (Sweden)
Yuquan Guo
2017-01-01
Full Text Available Community structure is important for us to understand the functions and structure of the complex networks. In this paper, Heuristic Artificial Bee Colony (HABC algorithm based on swarm intelligence is proposed for uncovering community. The proposed HABC includes initialization, employed bee searching, onlooker searching, and scout bee searching. In initialization stage, the nectar sources with simple community structure are generated through network dynamic algorithm associated with complete subgraph. In employed bee searching and onlooker searching stages, the searching function is redefined to address the community problem. The efficiency of searching progress can be improved by a heuristic function which is an average agglomerate probability of two neighbor communities. Experiments are carried out on artificial and real world networks, and the results demonstrate that HABC will have better performance in terms of comparing with the state-of-the-art algorithms.
A Heuristic Hierarchical Scheme for Academic Search and Retrieval
DEFF Research Database (Denmark)
Amolochitis, Emmanouil; Christou, Ioannis T.; Tan, Zheng-Hua
2013-01-01
and a graph-theoretic computed score that relates the paper’s index terms with each other. We designed and developed a meta-search engine that submits user queries to standard digital repositories of academic publications and re-ranks the repository results using the hierarchical heuristic scheme. We evaluate......, and by more than 907.5% in terms of LEX. We also re-rank the top-10 results of a subset of the original 58 user queries produced by Google Scholar, Microsoft Academic Search, and ArnetMiner; the results show that PubSearch compares very well against these search engines as well. The proposed scheme can...... be easily plugged in any existing search engine for retrieval of academic publications....
Local search heuristics for the probabilistic dial-a-ride problem
DEFF Research Database (Denmark)
Ho, Sin C.; Haugland, Dag
2011-01-01
evaluation procedure in a pure local search heuristic and in a tabu search heuristic. The quality of the solutions obtained by the two heuristics have been compared experimentally. Computational results confirm that our neighborhood evaluation technique is much faster than the straightforward one...
A local search heuristic for the Multi-Commodity k-splittable Maximum Flow Problem
DEFF Research Database (Denmark)
Gamst, Mette
2014-01-01
, a local search heuristic for solving the problem is proposed. The heuristic is an iterative shortest path procedure on a reduced graph combined with a local search procedure to modify certain path flows and prioritize the different commodities. The heuristic is tested on benchmark instances from...
Refining a Heuristic for Constructing Bayesian Networks from Structured Arguments
Wieten, G.M.; Bex, F.J.; van der Gaag, L.C.; Prakken, H.; Renooij, S.
2018-01-01
Recently, a heuristic was proposed for constructing Bayesian networks (BNs) from structured arguments. This heuristic helps domain experts who are accustomed to argumentation to transform their reasoning into a BN and subsequently weigh their case evidence in a probabilistic manner. While the
Efficient Heuristics for Simulating Population Overflow in Parallel Networks
Zaburnenko, T.S.; Nicola, V.F.
2006-01-01
In this paper we propose a state-dependent importance sampling heuristic to estimate the probability of population overflow in networks of parallel queues. This heuristic approximates the “optimal��? state-dependent change of measure without the need for costly optimization involved in other
Mode analysis of heuristic behavior of searching for multimodal optimum point
Energy Technology Data Exchange (ETDEWEB)
Kamei, K; Araki, Y; Inoue, K
1982-01-01
Describes an experimental study of a heuristic behavior of searching for the global optimum (maximum) point of a two-dimensional, multimodal, nonlinear and unknown function. First, the authors define three modes dealing with the trial purposes, called the purpose modes and show the heuristic search behaviors expressed by the purpose modes which the human subjects select in the search experiments. Second, the authors classify the heuristic search behaviors into three types according to the mode transitions and extracts eight states of searches which cause the mode transitions. Third, a model of the heuristic search behavior is composed of the eight mode transitions. The analysis of the heuristic search behaviors by use of the purpose modes plays an important role in the heuristic search techniques. 6 references.
Choosing a heuristic and root node for edge ordering in BDD-based network reliability analysis
International Nuclear Information System (INIS)
Mo, Yuchang; Xing, Liudong; Zhong, Farong; Pan, Zhusheng; Chen, Zhongyu
2014-01-01
In the Binary Decision Diagram (BDD)-based network reliability analysis, heuristics have been widely used to obtain a reasonably good ordering of edge variables. Orderings generated using different heuristics can lead to dramatically different sizes of BDDs, and thus dramatically different running times and memory usages for the analysis of the same network. Unfortunately, due to the nature of the ordering problem (i.e., being an NP-complete problem) no formal guidelines or rules are available for choosing a good heuristic or for choosing a high-performance root node to perform edge searching using a particular heuristic. In this work, we make novel contributions by proposing heuristic and root node selection methods based on the concept of boundary sets for the BDD-based network reliability analysis. Empirical studies show that the proposed selection methods can help to generate high-performance edge ordering for most of studied cases, enabling the efficient BDD-based reliability analysis of large-scale networks. The proposed methods are demonstrated on different types of networks, including square lattice networks, torus lattice networks and de Bruijn networks
Impact of heuristics in clustering large biological networks.
Shafin, Md Kishwar; Kabir, Kazi Lutful; Ridwan, Iffatur; Anannya, Tasmiah Tamzid; Karim, Rashid Saadman; Hoque, Mohammad Mozammel; Rahman, M Sohel
2015-12-01
Traditional clustering algorithms often exhibit poor performance for large networks. On the contrary, greedy algorithms are found to be relatively efficient while uncovering functional modules from large biological networks. The quality of the clusters produced by these greedy techniques largely depends on the underlying heuristics employed. Different heuristics based on different attributes and properties perform differently in terms of the quality of the clusters produced. This motivates us to design new heuristics for clustering large networks. In this paper, we have proposed two new heuristics and analyzed the performance thereof after incorporating those with three different combinations in a recently celebrated greedy clustering algorithm named SPICi. We have extensively analyzed the effectiveness of these new variants. The results are found to be promising. Copyright © 2015 Elsevier Ltd. All rights reserved.
A proposed heuristic methodology for searching reloading pattern
International Nuclear Information System (INIS)
Choi, K. Y.; Yoon, Y. K.
1993-01-01
A new heuristic method for loading pattern search has been developed to overcome shortcomings of the algorithmic approach. To reduce the size of vast solution space, general shuffling rules, a regionwise shuffling method, and a pattern grouping method were introduced. The entropy theory was applied to classify possible loading patterns into groups with similarity between them. The pattern search program was implemented with use of the PROLOG language. A two-group nodal code MEDIUM-2D was used for analysis of power distribution in the core. The above mentioned methodology has been tested to show effectiveness in reducing of solution space down to a few hundred pattern groups. Burnable poison rods were then arranged in each pattern group in accordance with burnable poison distribution rules, which led to further reduction of the solution space to several scores of acceptable pattern groups. The method of maximizing cycle length (MCL) and minimizing power-peaking factor (MPF) were applied to search for specific useful loading patterns from the acceptable pattern groups. Thus, several specific loading patterns that have low power-peaking factor and large cycle length were successfully searched from the selected pattern groups. (Author)
Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.
Rappoport, Dmitrij; Galvin, Cooper J; Zubarev, Dmitry Yu; Aspuru-Guzik, Alán
2014-03-11
While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reactive potential energy surfaces and are combined here with quantum chemical structure optimizations, which yield the structures and energies of the reaction intermediates and products. Application of heuristics-aided quantum chemical methodology to the formose reaction reproduces the experimentally observed reaction products, major reaction pathways, and autocatalytic cycles.
A comparative study of the A* heuristic search algorithm used to solve efficiently a puzzle game
Iordan, A. E.
2018-01-01
The puzzle game presented in this paper consists in polyhedra (prisms, pyramids or pyramidal frustums) which can be moved using the free available spaces. The problem requires to be found the minimum number of movements in order the game reaches to a goal configuration starting from an initial configuration. Because the problem is enough complex, the principal difficulty in solving it is given by dimension of search space, that leads to necessity of a heuristic search. The improving of the search method consists into determination of a strong estimation by the heuristic function which will guide the search process to the most promising side of the search tree. The comparative study is realized among Manhattan heuristic and the Hamming heuristic using A* search algorithm implemented in Java. This paper also presents the necessary stages in object oriented development of a software used to solve efficiently this puzzle game. The modelling of the software is achieved through specific UML diagrams representing the phases of analysis, design and implementation, the system thus being described in a clear and practical manner. With the purpose to confirm the theoretical results which demonstrates that Manhattan heuristic is more efficient was used space complexity criterion. The space complexity was measured by the number of generated nodes from the search tree, by the number of the expanded nodes and by the effective branching factor. From the experimental results obtained by using the Manhattan heuristic, improvements were observed regarding space complexity of A* algorithm versus Hamming heuristic.
Proximity search heuristics for wind farm optimal layout
DEFF Research Database (Denmark)
Fischetti, Martina; Monaci, Michele
2016-01-01
A heuristic framework for turbine layout optimization in a wind farm is proposed that combines ad-hoc heuristics and mixed-integer linear programming. In our framework, large-scale mixed-integer programming models are used to iteratively refine the current best solution according to the recently...
An adaptive large neighborhood search heuristic for the Electric Vehicle Scheduling Problem
DEFF Research Database (Denmark)
Wen, M.; Linde, Esben; Røpke, Stefan
2016-01-01
to minimizing the total deadheading distance. A mixed integer programming formulation as well as an Adaptive Large Neighborhood Search (ALNS) heuristic for the E-VSP are presented. ALNS is tested on newly generated E-VSP benchmark instances. Result shows that the proposed heuristic can provide good solutions...
Expected Fitness Gains of Randomized Search Heuristics for the Traveling Salesperson Problem.
Nallaperuma, Samadhi; Neumann, Frank; Sudholt, Dirk
2017-01-01
Randomized search heuristics are frequently applied to NP-hard combinatorial optimization problems. The runtime analysis of randomized search heuristics has contributed tremendously to our theoretical understanding. Recently, randomized search heuristics have been examined regarding their achievable progress within a fixed-time budget. We follow this approach and present a fixed-budget analysis for an NP-hard combinatorial optimization problem. We consider the well-known Traveling Salesperson Problem (TSP) and analyze the fitness increase that randomized search heuristics are able to achieve within a given fixed-time budget. In particular, we analyze Manhattan and Euclidean TSP instances and Randomized Local Search (RLS), (1+1) EA and (1+[Formula: see text]) EA algorithms for the TSP in a smoothed complexity setting, and derive the lower bounds of the expected fitness gain for a specified number of generations.
Heuristic urban transportation network design method, a multilayer coevolution approach
Ding, Rui; Ujang, Norsidah; Hamid, Hussain bin; Manan, Mohd Shahrudin Abd; Li, Rong; Wu, Jianjun
2017-08-01
The design of urban transportation networks plays a key role in the urban planning process, and the coevolution of urban networks has recently garnered significant attention in literature. However, most of these recent articles are based on networks that are essentially planar. In this research, we propose a heuristic multilayer urban network coevolution model with lower layer network and upper layer network that are associated with growth and stimulate one another. We first use the relative neighbourhood graph and the Gabriel graph to simulate the structure of rail and road networks, respectively. With simulation we find that when a specific number of nodes are added, the total travel cost ratio between an expanded network and the initial lower layer network has the lowest value. The cooperation strength Λ and the changeable parameter average operation speed ratio Θ show that transit users' route choices change dramatically through the coevolution process and that their decisions, in turn, affect the multilayer network structure. We also note that the simulated relation between the Gini coefficient of the betweenness centrality, Θ and Λ have an optimal point for network design. This research could inspire the analysis of urban network topology features and the assessment of urban growth trends.
Perceived breast cancer risk: heuristic reasoning and search for a dominance structure.
Katapodi, Maria C; Facione, Noreen C; Humphreys, Janice C; Dodd, Marylin J
2005-01-01
Studies suggest that people construct their risk perceptions by using inferential rules called heuristics. The purpose of this study was to identify heuristics that influence perceived breast cancer risk. We examined 11 interviews from women of diverse ethnic/cultural backgrounds who were recruited from community settings. Narratives in which women elaborated about their own breast cancer risk were analyzed with Argument and Heuristic Reasoning Analysis methodology, which is based on applied logic. The availability, simulation, representativeness, affect, and perceived control heuristics, and search for a dominance structure were commonly used for making risk assessments. Risk assessments were based on experiences with an abnormal breast symptom, experiences with affected family members and friends, beliefs about living a healthy lifestyle, and trust in health providers. Assessment of the potential threat of a breast symptom was facilitated by the search for a dominance structure. Experiences with family members and friends were incorporated into risk assessments through the availability, simulation, representativeness, and affect heuristics. Mistrust in health providers led to an inappropriate dependence on the perceived control heuristic. Identified heuristics appear to create predictable biases and suggest that perceived breast cancer risk is based on common cognitive patterns.
Node fingerprinting: an efficient heuristic for aligning biological networks.
Radu, Alex; Charleston, Michael
2014-10-01
With the continuing increase in availability of biological data and improvements to biological models, biological network analysis has become a promising area of research. An emerging technique for the analysis of biological networks is through network alignment. Network alignment has been used to calculate genetic distance, similarities between regulatory structures, and the effect of external forces on gene expression, and to depict conditional activity of expression modules in cancer. Network alignment is algorithmically complex, and therefore we must rely on heuristics, ideally as efficient and accurate as possible. The majority of current techniques for network alignment rely on precomputed information, such as with protein sequence alignment, or on tunable network alignment parameters, which may introduce an increased computational overhead. Our presented algorithm, which we call Node Fingerprinting (NF), is appropriate for performing global pairwise network alignment without precomputation or tuning, can be fully parallelized, and is able to quickly compute an accurate alignment between two biological networks. It has performed as well as or better than existing algorithms on biological and simulated data, and with fewer computational resources. The algorithmic validation performed demonstrates the low computational resource requirements of NF.
Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks
Lee, Charles H.; Cheung, Kar-Ming
2012-01-01
In this paper, we propose to solve the constrained optimization problem in two phases. The first phase uses heuristic methods such as the ant colony method, particle swarming optimization, and genetic algorithm to seek a near optimal solution among a list of feasible initial populations. The final optimal solution can be found by using the solution of the first phase as the initial condition to the SQP algorithm. We demonstrate the above problem formulation and optimization schemes with a large-scale network that includes the DSN ground stations and a number of spacecraft of deep space missions.
Augmented neural networks and problem structure-based heuristics for the bin-packing problem
Kasap, Nihat; Agarwal, Anurag
2012-08-01
In this article, we report on a research project where we applied augmented-neural-networks (AugNNs) approach for solving the classical bin-packing problem (BPP). AugNN is a metaheuristic that combines a priority rule heuristic with the iterative search approach of neural networks to generate good solutions fast. This is the first time this approach has been applied to the BPP. We also propose a decomposition approach for solving harder BPP, in which subproblems are solved using a combination of AugNN approach and heuristics that exploit the problem structure. We discuss the characteristics of problems on which such problem structure-based heuristics could be applied. We empirically show the effectiveness of the AugNN and the decomposition approach on many benchmark problems in the literature. For the 1210 benchmark problems tested, 917 problems were solved to optimality and the average gap between the obtained solution and the upper bound for all the problems was reduced to under 0.66% and computation time averaged below 33 s per problem. We also discuss the computational complexity of our approach.
Blumenthal-Barby, J S; Krieger, Heather
2015-05-01
The role of cognitive biases and heuristics in medical decision making is of growing interest. The purpose of this study was to determine whether studies on cognitive biases and heuristics in medical decision making are based on actual or hypothetical decisions and are conducted with populations that are representative of those who typically make the medical decision; to categorize the types of cognitive biases and heuristics found and whether they are found in patients or in medical personnel; and to critically review the studies based on standard methodological quality criteria. Data sources were original, peer-reviewed, empirical studies on cognitive biases and heuristics in medical decision making found in Ovid Medline, PsycINFO, and the CINAHL databases published in 1980-2013. Predefined exclusion criteria were used to identify 213 studies. During data extraction, information was collected on type of bias or heuristic studied, respondent population, decision type, study type (actual or hypothetical), study method, and study conclusion. Of the 213 studies analyzed, 164 (77%) were based on hypothetical vignettes, and 175 (82%) were conducted with representative populations. Nineteen types of cognitive biases and heuristics were found. Only 34% of studies (n = 73) investigated medical personnel, and 68% (n = 145) confirmed the presence of a bias or heuristic. Each methodological quality criterion was satisfied by more than 50% of the studies, except for sample size and validated instruments/questions. Limitations are that existing terms were used to inform search terms, and study inclusion criteria focused strictly on decision making. Most of the studies on biases and heuristics in medical decision making are based on hypothetical vignettes, raising concerns about applicability of these findings to actual decision making. Biases and heuristics have been underinvestigated in medical personnel compared with patients. © The Author(s) 2014.
AM: An Artificial Intelligence Approach to Discovery in Mathematics as Heuristic Search
1976-07-01
deficiency . The idea of "Intuitions" facets was a flop. Intuitions were meant to model reality, at least little pieces of it, so that AM could...Discovery in Mathematic, as Heuristic Search -323- s Tk2 ** Check examples of Single-ADD, because many examples have recently been found, but not yet
Optimizing Linear Functions with Randomized Search Heuristics - The Robustness of Mutation
DEFF Research Database (Denmark)
Witt, Carsten
2012-01-01
The analysis of randomized search heuristics on classes of functions is fundamental for the understanding of the underlying stochastic process and the development of suitable proof techniques. Recently, remarkable progress has been made in bounding the expected optimization time of the simple (1...
Fitness levels with tail bounds for the analysis of randomized search heuristics
DEFF Research Database (Denmark)
Witt, Carsten
2014-01-01
The fitness-level method, also called the method of f-based partitions, is an intuitive and widely used technique for the running time analysis of randomized search heuristics. It was originally defined to prove upper and lower bounds on the expected running time. Recently, upper tail bounds were...
A reduced-cost iterated local search heuristic for the fixed-charge transportation problem
Buson, Erika; Roberti, Roberto; Toth, Paolo
2014-01-01
The fixed-charge transportation problem (FCTP) is a generalization of the transportation problem where an additional fixed cost is paid for sending a flow from an origin to a destination. We propose an iterated local search heuristic based on the utilization of reduced costs for guiding the restart
Modelling antibody side chain conformations using heuristic database search.
Ritchie, D W; Kemp, G J
1997-01-01
We have developed a knowledge-based system which models the side chain conformations of residues in the variable domains of antibody Fv fragments. The system is written in Prolog and uses an object-oriented database of aligned antibody structures in conjunction with a side chain rotamer library. The antibody database provides 3-dimensional clusters of side chain conformations which can be copied en masse into the model structure. The object-oriented database architecture facilitates a navigational style of database access, necessary to assemble side chains clusters. Around 60% of the model is built using side chain clusters and this eliminates much of the combinatorial complexity associated with many other side chain placement algorithms. Construction and placement of side chain clusters is guided by a heuristic cost function based on a simple model of side chain packing interactions. Even with a simple model, we find that a large proportion of side chain conformations are modelled accurately. We expect our approach could be used with other homologous protein families, in addition to antibodies, both to improve the quality of model structures and to give a "smart start" to the side chain placement problem.
Directory of Open Access Journals (Sweden)
Alexander Safatli
2015-06-01
Full Text Available Summary. Pylogeny is a cross-platform library for the Python programming language that provides an object-oriented application programming interface for phylogenetic heuristic searches. Its primary function is to permit both heuristic search and analysis of the phylogenetic tree search space, as well as to enable the design of novel algorithms to search this space. To this end, the framework supports the structural manipulation of phylogenetic trees, in particular using rearrangement operators such as NNI, SPR, and TBR, the scoring of trees using parsimony and likelihood methods, the construction of a tree search space graph, and the programmatic execution of a few existing heuristic programs. The library supports a range of common phylogenetic file formats and can be used for both nucleotide and protein data. Furthermore, it is also capable of supporting GPU likelihood calculation on nucleotide character data through the BEAGLE library.Availability. Existing development and source code is available for contribution and for download by the public from GitHub (http://github.com/AlexSafatli/Pylogeny. A stable release of this framework is available for download through PyPi (Python Package Index at http://pypi.python.org/pypi/pylogeny.
A greedy construction heuristic for the liner service network design problem
DEFF Research Database (Denmark)
Brouer, Berit Dangaard
is challenging due to the size of a global liner shipping operation and due to the hub-and-spoke network design, where a high percentage of the total cargo is transshipped. We present the first construction heuristic for large scale instances of the LSN-DP. The heuristic is able to find a solution for a real...
Efficient Heuristics for the Simulation of Buffer Overflow in Series and Parallel Queueing Networks
Nicola, V.F.; Zaburnenko, T.S.
2006-01-01
In this paper we propose state-dependent importance sampling heuristics to estimate the probability of population overï¬‚ow in Markovian networks of series and parallel queues. These heuristics capture state-dependence along the boundaries (when one or more queues are empty) which is critical for
Heuristic for solving capacitor allocation problems in electric energy radial distribution networks
Directory of Open Access Journals (Sweden)
Maria A. Biagio
2012-04-01
Full Text Available The goal of the capacitor allocation problem in radial distribution networks is to minimize technical losses with consequential positive impacts on economic and environmental areas. The main objective is to define the size and location of the capacitors while considering load variations in a given horizon. The mathematical formulation for this planning problem is given by an integer nonlinear mathematical programming model that demands great computational effort to be solved. With the goal of solving this problem, this paper proposes a methodology that is composed of heuristics and Tabu Search procedures. The methodology presented explores network system characteristics of the network system reactive loads for identifying regions where procedures of local and intensive searches should be performed. A description of the proposed methodology and an analysis of computational results obtained which are based on several test systems including actual systems are presented. The solutions reached are as good as or better than those indicated by well referenced methodologies. The technique proposed is simple in its use and does not require calibrating an excessive amount of parameters, making it an attractive alternative for companies involved in the planning of radial distribution networks.
A tabu-search heuristic for solving the multi-depot vehicle scheduling problem
Directory of Open Access Journals (Sweden)
Gilmar D'Agostini Oliveira Casalinho
2014-08-01
Full Text Available Currently the logistical problems are relying quite significantly on Operational Research in order to achieve greater efficiency in their operations. Among the problems related to the vehicles scheduling in a logistics system, the Multiple Depot Vehicle Scheduling Problem (MDVSP has been addressed in several studies. The MDVSP presupposes the existence of depots that affect the planning of sequences to which travel must be performed. Often, exact methods cannot solve large instances encountered in practice and in order to take them into account, several heuristic approaches are being developed. The aim of this study was thus to solve the MDVSP using a meta-heuristic based on tabu-search method. The main motivation for this work came from the indication that only recently the use of meta-heuristics is being applied to MDVSP context (Pepin et al. 2008 and, also, the limitations listed by Rohde (2008 in his study, which used the branch-and-bound in one of the steps of the heuristic presented to solve the problem, which has increased the time resolution. The research method for solving this problem was based on adaptations of traditional techniques of Operational Research, and provided resolutions presenting very competitive results for the MDVSP such as the cost of the objective function, number of vehicles used and computational time.
A hybrid adaptive large neighborhood search heuristic for lot-sizing with setup times
DEFF Research Database (Denmark)
Muller, Laurent Flindt; Spoorendonk, Simon; Pisinger, David
2012-01-01
This paper presents a hybrid of a general heuristic framework and a general purpose mixed-integer programming (MIP) solver. The framework is based on local search and an adaptive procedure which chooses between a set of large neighborhoods to be searched. A mixed integer programming solver and its......, and the upper bounds found by the commercial MIP solver ILOG CPLEX using state-of-the-art MIP formulations. Furthermore, we improve the best known solutions on 60 out of 100 and improve the lower bound on all 100 instances from the literature...
Individual Search and Social Networks
Sanjeev Goyal; Stephanie Rosenkranz; Utz Weitzel; Vincent Buskens
2014-01-01
The explosion in online social networks motivates an enquiry into their structure and their welfare effects. A central feature of these networks is information sharing: online social networks lower the cost of getting information from others. These lower costs affect the attractiveness of individual search vis-a-vis a reliance on social networks. The paper reports the findings of an experiment on these effects. Our experiment shows that online networks can have large effects. Information acqu...
Phillips, Carolyn L.
2014-09-01
In a complex self-organizing system, small changes in the interactions between the system's components can result in different emergent macrostructures or macrobehavior. In chemical engineering and material science, such spontaneously self-assembling systems, using polymers, nanoscale or colloidal-scale particles, DNA, or other precursors, are an attractive way to create materials that are precisely engineered at a fine scale. Changes to the interactions can often be described by a set of parameters. Different contiguous regions in this parameter space correspond to different ordered states. Since these ordered states are emergent, often experiment, not analysis, is necessary to create a diagram of ordered states over the parameter space. By issuing queries to points in the parameter space (e.g., performing a computational or physical experiment), ordered states can be discovered and mapped. Queries can be costly in terms of resources or time, however. In general, one would like to learn the most information using the fewest queries. Here we introduce a learning heuristic for issuing queries to map and search a two-dimensional parameter space. Using a method inspired by adaptive mesh refinement, the heuristic iteratively issues batches of queries to be executed in parallel based on past information. By adjusting the search criteria, different types of searches (for example, a uniform search, exploring boundaries, sampling all regions equally) can be flexibly implemented. We show that this method will densely search the space, while preferentially targeting certain features. Using numerical examples, including a study simulating the self-assembly of complex crystals, we show how this heuristic can discover new regions and map boundaries more accurately than a uniformly distributed set of queries.
Yang, S; Wang, D
2000-01-01
This paper presents a constraint satisfaction adaptive neural network, together with several heuristics, to solve the generalized job-shop scheduling problem, one of NP-complete constraint satisfaction problems. The proposed neural network can be easily constructed and can adaptively adjust its weights of connections and biases of units based on the sequence and resource constraints of the job-shop scheduling problem during its processing. Several heuristics that can be combined with the neural network are also presented. In the combined approaches, the neural network is used to obtain feasible solutions, the heuristic algorithms are used to improve the performance of the neural network and the quality of the obtained solutions. Simulations have shown that the proposed neural network and its combined approaches are efficient with respect to the quality of solutions and the solving speed.
Application of a heuristic search method for generation of fuel reload configurations
International Nuclear Information System (INIS)
Galperin, A.; Nissan, E.
1988-01-01
A computerized heuristic search method for the generation and optimization of fuel reload configurations is proposed and investigated. The heuristic knowledge is expressed modularly in the form of ''IF-THEN'' production rules. The method was implemented in a program coded in the Franz LISP programming language and executed under the UNIX operating system. A test problem was formulated, based on a typical light water reactor reload problem with a few simplifications assumed, in order to allow formulation of the reload strategy into a relatively small number of rules. A computer run of the problem was performed with a VAX-780 machine. A set of 312 solutions was generated in -- 20 min of execution time. Testing of a few arbitrarily chosen configurations demonstrated reasonably good performance for the computer-generated solutions. A computerized generator of reload configurations may be used for the fast generation or modification of reload patterns and as a tool for the formulation, tuning, and testing of the heuristic knowledge rules used by an ''expert'' fuel manager
Hierarchical heuristic search using a Gaussian mixture model for UAV coverage planning.
Lin, Lanny; Goodrich, Michael A
2014-12-01
During unmanned aerial vehicle (UAV) search missions, efficient use of UAV flight time requires flight paths that maximize the probability of finding the desired subject. The probability of detecting the desired subject based on UAV sensor information can vary in different search areas due to environment elements like varying vegetation density or lighting conditions, making it likely that the UAV can only partially detect the subject. This adds another dimension of complexity to the already difficult (NP-Hard) problem of finding an optimal search path. We present a new class of algorithms that account for partial detection in the form of a task difficulty map and produce paths that approximate the payoff of optimal solutions. The algorithms use the mode goodness ratio heuristic that uses a Gaussian mixture model to prioritize search subregions. The algorithms search for effective paths through the parameter space at different levels of resolution. We compare the performance of the new algorithms against two published algorithms (Bourgault's algorithm and LHC-GW-CONV algorithm) in simulated searches with three real search and rescue scenarios, and show that the new algorithms outperform existing algorithms significantly and can yield efficient paths that yield payoffs near the optimal.
Heuristic approach to the passive optical network with fibre duct ...
African Journals Online (AJOL)
Integer programming, network flow optimisation, passive optical network, ... This paper uses concepts from network flow optimisation to incorporate fibre duct shar ... [4] studied the survivable constrained ConFL problem and solved a number of.
A meta-heuristic method for solving scheduling problem: crow search algorithm
Adhi, Antono; Santosa, Budi; Siswanto, Nurhadi
2018-04-01
Scheduling is one of the most important processes in an industry both in manufacturingand services. The scheduling process is the process of selecting resources to perform an operation on tasks. Resources can be machines, peoples, tasks, jobs or operations.. The selection of optimum sequence of jobs from a permutation is an essential issue in every research in scheduling problem. Optimum sequence becomes optimum solution to resolve scheduling problem. Scheduling problem becomes NP-hard problem since the number of job in the sequence is more than normal number can be processed by exact algorithm. In order to obtain optimum results, it needs a method with capability to solve complex scheduling problems in an acceptable time. Meta-heuristic is a method usually used to solve scheduling problem. The recently published method called Crow Search Algorithm (CSA) is adopted in this research to solve scheduling problem. CSA is an evolutionary meta-heuristic method which is based on the behavior in flocks of crow. The calculation result of CSA for solving scheduling problem is compared with other algorithms. From the comparison, it is found that CSA has better performance in term of optimum solution and time calculation than other algorithms.
Heuristic rules analysis on the fuel cells design using greedy search
International Nuclear Information System (INIS)
Ortiz, J. J.; Castillo, J. A.; Montes, J. L.; Hernandez, J. L.
2009-10-01
This work approaches the study of one of the heuristic rules of fuel cells design for boiling water nuclear reactors. This rule requires that the minor uranium enrichment is placed in the corners of the fuel cell. Also the search greedy is applied for the fuel cells design where explicitly does not take in count this rule, allowing the possibility to place any uranium enrichment with the condition that it does not contain gadolinium. Results are shown in the quality of the obtained cell by search greedy when it considers the rule and when not. The cell quality is measured with the value of the power pick factor obtained, as well as of the neutrons multiplication factor in an infinite medium. Cells were analyzed with 1 and 2 gadolinium concentrations low operation conditions at 120% of the nominal power of the reactors of the nuclear power plant of Laguna Verde. The results show that not to consider the rule in cells with a single gadolinium concentration, it has as repercussion that the greedy search has a minor performance. On the other hand with cells of two gadolinium concentrations, the performance of the greedy search was better. (Author)
DEFF Research Database (Denmark)
Wen, Min; Krapper, Emil; Larsen, Jesper
2011-01-01
in their fresh meat supply logistics system. The problem consists of a 1‐week planning horizon, heterogeneous vehicles, and drivers with predefined work regulations. These regulations include, among other things, predefined workdays, fixed starting time, maximum weekly working duration, and a break rule......The world's second largest producer of pork, Danish Crown, also provides a fresh meat supply logistics system within Denmark. This is used by the majority of supermarkets in Denmark. This article addresses an integrated vehicle routing and driver scheduling problem arising at Danish Crown....... The objective is to minimize the total delivery cost that is a weighted sum of two kinds of delivery costs. A multilevel variable neighborhood search heuristic is proposed for the problem. In a preprocessing step, the problem size is reduced through an aggregation procedure. Thereafter, the aggregated weekly...
Meta-heuristic cuckoo search algorithm for the correction of faulty array antenna
International Nuclear Information System (INIS)
Khan, S.U.; Qureshi, I.M.
2015-01-01
In this article, we introduce a CSA (Cuckoo Search Algorithm) for compensation of faulty array antenna. It is assumed that the faulty elemental location is also known. When the sensor fails, it disturbs the power pattern, owing to which its SLL (Sidelobe Level) raises and nulls are shifted from their required positions. In this approach, the CSA optimizes the weights of the active elements for the reduction of SLL and null position in the desired direction. The meta-heuristic CSA is used for the control of SLL and steering of nulls at their required positions. The CSA is based on the necessitated kids bloodsucking behavior of cuckoo sort in arrangement with the Levy flight manners. The fitness function is used to reduce the error between the preferred and probable pattern along with null constraints. Imitational consequences for various scenarios are given to exhibit the validity and presentation of the proposed method. (author)
FocusHeuristics - expression-data-driven network optimization and disease gene prediction.
Ernst, Mathias; Du, Yang; Warsow, Gregor; Hamed, Mohamed; Endlich, Nicole; Endlich, Karlhans; Murua Escobar, Hugo; Sklarz, Lisa-Madeleine; Sender, Sina; Junghanß, Christian; Möller, Steffen; Fuellen, Georg; Struckmann, Stephan
2017-02-16
To identify genes contributing to disease phenotypes remains a challenge for bioinformatics. Static knowledge on biological networks is often combined with the dynamics observed in gene expression levels over disease development, to find markers for diagnostics and therapy, and also putative disease-modulatory drug targets and drugs. The basis of current methods ranges from a focus on expression-levels (Limma) to concentrating on network characteristics (PageRank, HITS/Authority Score), and both (DeMAND, Local Radiality). We present an integrative approach (the FocusHeuristics) that is thoroughly evaluated based on public expression data and molecular disease characteristics provided by DisGeNet. The FocusHeuristics combines three scores, i.e. the log fold change and another two, based on the sum and difference of log fold changes of genes/proteins linked in a network. A gene is kept when one of the scores to which it contributes is above a threshold. Our FocusHeuristics is both, a predictor for gene-disease-association and a bioinformatics method to reduce biological networks to their disease-relevant parts, by highlighting the dynamics observed in expression data. The FocusHeuristics is slightly, but significantly better than other methods by its more successful identification of disease-associated genes measured by AUC, and it delivers mechanistic explanations for its choice of genes.
A three-stage heuristic for harvest scheduling with access road network development
Mark M. Clark; Russell D. Meller; Timothy P. McDonald
2000-01-01
In this article we present a new model for the scheduling of forest harvesting with spatial and temporal constraints. Our approach is unique in that we incorporate access road network development into the harvest scheduling selection process. Due to the difficulty of solving the problem optimally, we develop a heuristic that consists of a solution construction stage...
A simple heuristic for Internet-based evidence search in primary care: a randomized controlled trial
Directory of Open Access Journals (Sweden)
Eberbach A
2016-08-01
Full Text Available Andreas Eberbach,1 Annette Becker,1 Justine Rochon,2 Holger Finkemeler,1Achim Wagner,3 Norbert Donner-Banzhoff1 1Department of Family and Community Medicine, Philipp University of Marburg, Marburg, Germany; 2Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany; 3Department of Sport Medicine, Justus-Liebig-University of Giessen, Giessen, Germany Background: General practitioners (GPs are confronted with a wide variety of clinical questions, many of which remain unanswered. Methods: In order to assist GPs in finding quick, evidence-based answers, we developed a learning program (LP with a short interactive workshop based on a simple three-step-heuristic to improve their search and appraisal competence (SAC. We evaluated the LP effectiveness with a randomized controlled trial (RCT. Participants (intervention group [IG] n=20; control group [CG] n=31 rated acceptance and satisfaction and also answered 39 knowledge questions to assess their SAC. We controlled for previous knowledge in content areas covered by the test. Results: Main outcome – SAC: within both groups, the pre–post test shows significant (P=0.00 improvements in correctness (IG 15% vs CG 11% and confidence (32% vs 26% to find evidence-based answers. However, the SAC difference was not significant in the RCT. Other measures: Most workshop participants rated “learning atmosphere” (90%, “skills acquired” (90%, and “relevancy to my practice” (86% as good or very good. The LP-recommendations were implemented by 67% of the IG, whereas 15% of the CG already conformed to LP recommendations spontaneously (odds ratio 9.6, P=0.00. After literature search, the IG showed a (not significantly higher satisfaction regarding “time spent” (IG 80% vs CG 65%, “quality of information” (65% vs 54%, and “amount of information” (53% vs 47%.Conclusion: Long-standing established GPs have a good SAC. Despite high acceptance, strong
A Decentralized Heuristic Approach towards Resource Allocation in Femtocell Networks
Directory of Open Access Journals (Sweden)
Kyung-Geun Lee
2013-06-01
Full Text Available Femtocells represent a novel configuration for existing cellular communication, contributing towards the improvement of coverage and throughput. The dense deployment of these femtocells causes significant femto-macro and femto-femto interference, consequently deteriorating the throughput of femtocells. In this study, we compare two heuristic approaches, i.e., particle swarm optimization (PSO and genetic algorithm (GA, for joint power assignment and resource allocation, within the context of the femtocell environment. The supposition made in this joint optimization is that the discrete power levels are available for the assignment. Furthermore, we have employed two variants of each PSO and GA: inertia weight and constriction factor model for PSO, and twopoint and uniform crossover for GA. The two proposed algorithms are in a decentralized manner, with no involvement of any centralized entity. The comparison is carried out between the two proposed algorithms for the aforementioned joint optimization problem. The contrast includes the performance metrics: including average objective function, min–max throughput of the femtocells, average throughput of the femto users, outage rate and time complexity. The results demonstrate that the decentralized PSO constriction factor outperforms the others in terms of the aforementioned performance metrics.
Heuristic Search for Planning with Different Forced Goal-Ordering Constraints
Directory of Open Access Journals (Sweden)
Jiangfeng Luo
2013-01-01
Full Text Available Planning with forced goal-ordering (FGO constraints has been proposed many times over the years, but there are still major difficulties in realizing these FGOs in plan generation. In certain planning domains, all the FGOs exist in the initial state. No matter which approach is adopted to achieve a subgoal, all the subgoals should be achieved in a given sequence from the initial state. Otherwise, the planning may arrive at a deadlock. For some other planning domains, there is no FGO in the initial state. However, FGO may occur during the planning process if certain subgoal is achieved by an inappropriate approach. This paper contributes to illustrate that it is the excludable constraints among the goal achievement operations (GAO of different subgoals that introduce the FGOs into the planning problem, and planning with FGO is still a challenge for the heuristic search based planners. Then, a novel multistep forward search algorithm is proposed which can solve the planning problem with different FGOs efficiently.
Qin, Junping; Sun, Shiwen; Deng, Qingxu; Liu, Limin; Tian, Yonghong
2017-06-02
Object tracking and detection is one of the most significant research areas for wireless sensor networks. Existing indoor trajectory tracking schemes in wireless sensor networks are based on continuous localization and moving object data mining. Indoor trajectory tracking based on the received signal strength indicator ( RSSI ) has received increased attention because it has low cost and requires no special infrastructure. However, RSSI tracking introduces uncertainty because of the inaccuracies of measurement instruments and the irregularities (unstable, multipath, diffraction) of wireless signal transmissions in indoor environments. Heuristic information includes some key factors for trajectory tracking procedures. This paper proposes a novel trajectory tracking scheme based on Delaunay triangulation and heuristic information (TTDH). In this scheme, the entire field is divided into a series of triangular regions. The common side of adjacent triangular regions is regarded as a regional boundary. Our scheme detects heuristic information related to a moving object's trajectory, including boundaries and triangular regions. Then, the trajectory is formed by means of a dynamic time-warping position-fingerprint-matching algorithm with heuristic information constraints. Field experiments show that the average error distance of our scheme is less than 1.5 m, and that error does not accumulate among the regions.
Perceived breast cancer risk: Heuristic reasoning and search for a dominance structure
Katapodi, M. C.; Facione, N. C.; Humphreys, J. C.; Dodd, MJ.
2005-01-01
Studies suggest that people construct their risk perceptions by using inferential rules called heuristics. The purpose of this study was to identify heuristics that influence perceived breast cancer risk. We examined 11 interviews from women of diverse ethnic/cultural backgrounds who were recruited from community settings. Narratives in which women elaborated about their own breast cancer risk were analyzed with Argument and Heuristic Reasoning Analysis methodology, which is based on applied ...
In Search of Prototypes and Feminist Bank-Tellers: Exploring the Representativeness Heuristic
Nilsson, Håkan
2008-01-01
According to the heuristics and biases approach, the representativeness heuristic (RH) is one of the heuristics available for assessing subjective probabilities (A. Tversky & D. Kahneman, 1974). A subjective probability assessed by the RH is determined by how representative the target object is of the target category. Several aspects of the RH are argued to cause systematic biases, for example: (i) When the RH is used, the category is represented by one single prototypical exemplar. This ...
BinAligner: a heuristic method to align biological networks.
Yang, Jialiang; Li, Jun; Grünewald, Stefan; Wan, Xiu-Feng
2013-01-01
The advances in high throughput omics technologies have made it possible to characterize molecular interactions within and across various species. Alignments and comparison of molecular networks across species will help detect orthologs and conserved functional modules and provide insights on the evolutionary relationships of the compared species. However, such analyses are not trivial due to the complexity of network and high computational cost. Here we develop a mixture of global and local algorithm, BinAligner, for network alignments. Based on the hypotheses that the similarity between two vertices across networks would be context dependent and that the information from the edges and the structures of subnetworks can be more informative than vertices alone, two scoring schema, 1-neighborhood subnetwork and graphlet, were introduced to derive the scoring matrices between networks, besides the commonly used scoring scheme from vertices. Then the alignment problem is formulated as an assignment problem, which is solved by the combinatorial optimization algorithm, such as the Hungarian method. The proposed algorithm was applied and validated in aligning the protein-protein interaction network of Kaposi's sarcoma associated herpesvirus (KSHV) and that of varicella zoster virus (VZV). Interestingly, we identified several putative functional orthologous proteins with similar functions but very low sequence similarity between the two viruses. For example, KSHV open reading frame 56 (ORF56) and VZV ORF55 are helicase-primase subunits with sequence identity 14.6%, and KSHV ORF75 and VZV ORF44 are tegument proteins with sequence identity 15.3%. These functional pairs can not be identified if one restricts the alignment into orthologous protein pairs. In addition, BinAligner identified a conserved pathway between two viruses, which consists of 7 orthologous protein pairs and these proteins are connected by conserved links. This pathway might be crucial for virus packing and
A Heuristic Approach to Intra-Brain Communications Using Chaos in a Recurrent Neural Network Model
Soma, Ken-ichiro; Mori, Ryota; Sato, Ryuichi; Nara, Shigetoshi
2011-09-01
To approach functional roles of chaos in brain, a heuristic model to consider mechanisms of intra-brain communications is proposed. The key idea is to use chaos in firing pattern dynamics of a recurrent neural network consisting of birary state neurons, as propagation medium of pulse signals. Computer experiments and numerical methods are introduced to evaluate signal transport characteristics by calculating correlation functions between sending neurons and receiving neurons of pulse signals.
A Hybrid Tabu Search Heuristic for a Bilevel Competitive Facility Location Model
Küçükaydın, Hande; Aras, Necati; Altınel, I. Kuban
We consider a problem in which a firm or franchise enters a market by locating new facilities where there are existing facilities belonging to a competitor. The firm aims at finding the location and attractiveness of each facility to be opened so as to maximize its profit. The competitor, on the other hand, can react by adjusting the attractiveness of its existing facilities, opening new facilities and/or closing existing ones with the objective of maximizing its own profit. The demand is assumed to be aggregated at certain points in the plane and the facilities of the firm can be located at prespecified candidate sites. We employ Huff's gravity-based rule in modeling the behavior of the customers where the fraction of customers at a demand point that visit a certain facility is proportional to the facility attractiveness and inversely proportional to the distance between the facility site and demand point. We formulate a bilevel mixed-integer nonlinear programming model where the firm entering the market is the leader and the competitor is the follower. In order to find a feasible solution of this model, we develop a hybrid tabu search heuristic which makes use of two exact methods as subroutines: a gradient ascent method and a branch-and-bound algorithm with nonlinear programming relaxation.
Directory of Open Access Journals (Sweden)
Mário Mestria
2013-08-01
Full Text Available The Clustered Traveling Salesman Problem (CTSP is a generalization of the Traveling Salesman Problem (TSP in which the set of vertices is partitioned into disjoint clusters and objective is to find a minimum cost Hamiltonian cycle such that the vertices of each cluster are visited contiguously. The CTSP is NP-hard and, in this context, we are proposed heuristic methods for the CTSP using GRASP, Path Relinking and Variable Neighborhood Descent (VND. The heuristic methods were tested using Euclidean instances with up to 2000 vertices and clusters varying between 4 to 150 vertices. The computational tests were performed to compare the performance of the heuristic methods with an exact algorithm using the Parallel CPLEX software. The computational results showed that the hybrid heuristic method using VND outperforms other heuristic methods.
Neural model of gene regulatory network: a survey on supportive meta-heuristics.
Biswas, Surama; Acharyya, Sriyankar
2016-06-01
Gene regulatory network (GRN) is produced as a result of regulatory interactions between different genes through their coded proteins in cellular context. Having immense importance in disease detection and drug finding, GRN has been modelled through various mathematical and computational schemes and reported in survey articles. Neural and neuro-fuzzy models have been the focus of attraction in bioinformatics. Predominant use of meta-heuristic algorithms in training neural models has proved its excellence. Considering these facts, this paper is organized to survey neural modelling schemes of GRN and the efficacy of meta-heuristic algorithms towards parameter learning (i.e. weighting connections) within the model. This survey paper renders two different structure-related approaches to infer GRN which are global structure approach and substructure approach. It also describes two neural modelling schemes, such as artificial neural network/recurrent neural network based modelling and neuro-fuzzy modelling. The meta-heuristic algorithms applied so far to learn the structure and parameters of neutrally modelled GRN have been reviewed here.
DEFF Research Database (Denmark)
Wen, Min; Krapper, Emil; Larsen, Jesper
things, predefined workdays, fixed starting time, maximum weekly working duration, break rule. The objective is to minimize the total delivery cost. The real-life case study is fi rst introduced and modelled as a mixed integer linear program. A multilevel variable neighborhood search heuristic...... is then proposed for the problem. At the first level, the problem size is reduced through an aggregation procedure. At the second level, the aggregated weekly planning problem is decomposed into daily planning problems, each of which is solved by a variable neighborhood search. At the last level, the solution...
Directory of Open Access Journals (Sweden)
Orhan TÜRKBEY
2002-02-01
Full Text Available Memetic algorithms, which use local search techniques, are hybrid structured algorithms like genetic algorithms among evolutionary algorithms. In this study, for Quadratic Assignment Problem (QAP, a memetic structured algorithm using a local search heuristic like 2-opt is developed. Developed in the algorithm, a crossover operator that has not been used before for QAP is applied whereas, Eshelman procedure is used in order to increase thesolution variability. The developed memetic algorithm is applied on test problems taken from QAP-LIB, the results are compared with the present techniques in the literature.
Energy Technology Data Exchange (ETDEWEB)
Delbem, Alexandre C.B.; Bretas, Newton G. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Dept. de Engenharia Eletrica; Carvalho, Andre C.P.L.F. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Dept. de Ciencias de Computacao e Estatistica
1996-11-01
A search approach using fuzzy heuristics and a neural network parameter was developed for service restoration of a distribution system. The goal was to restore energy for an un-faulted zone after a fault had been identified and isolated. The restoration plan must be carried out in a very short period. However, the combinatorial feature of the problem constrained the application of automatic energy restoration planners. To overcome this problem, an heuristic search approach using fuzzy heuristics was proposed. As a result, a genetic algorithm approach was developed to achieve the optimal energy restoration plan. The effectiveness of these approaches were tested in a simplified distribution system based on the complex distribution system of Sao Carlos city, Sao Paulo State - southeast Brazil. It was noticed that the genetic algorithm provided better performance than the fuzzy heuristic search in this problem. 11 refs., 10 figs.
Directory of Open Access Journals (Sweden)
Jeng-Fung Chen
2014-10-01
Full Text Available Predicting student academic performance with a high accuracy facilitates admission decisions and enhances educational services at educational institutions. This raises the need to propose a model that predicts student performance, based on the results of standardized exams, including university entrance exams, high school graduation exams, and other influential factors. In this study, an approach to the problem based on the artificial neural network (ANN with the two meta-heuristic algorithms inspired by cuckoo birds and their lifestyle, namely, Cuckoo Search (CS and Cuckoo Optimization Algorithm (COA is proposed. In particular, we used previous exam results and other factors, such as the location of the student’s high school and the student’s gender as input variables, and predicted the student academic performance. The standard CS and standard COA were separately utilized to train the feed-forward network for prediction. The algorithms optimized the weights between layers and biases of the neuron network. The simulation results were then discussed and analyzed to investigate the prediction ability of the neural network trained by these two algorithms. The findings demonstrated that both CS and COA have potential in training ANN and ANN-COA obtained slightly better results for predicting student academic performance in this case. It is expected that this work may be used to support student admission procedures and strengthen the service system in educational institutions.
Availability Allocation of Networked Systems Using Markov Model and Heuristics Algorithm
Directory of Open Access Journals (Sweden)
Ruiying Li
2014-01-01
Full Text Available It is a common practice to allocate the system availability goal to reliability and maintainability goals of components in the early design phase. However, the networked system availability is difficult to be allocated due to its complex topology and multiple down states. To solve these problems, a practical availability allocation method is proposed. Network reliability algebraic methods are used to derive the availability expression of the networked topology on the system level, and Markov model is introduced to determine that on the component level. A heuristic algorithm is proposed to obtain the reliability and maintainability allocation values of components. The principles applied in the AGREE reliability allocation method, proposed by the Advisory Group on Reliability of Electronic Equipment, and failure rate-based maintainability allocation method persist in our allocation method. A series system is used to verify the new algorithm, and the result shows that the allocation based on the heuristic algorithm is quite accurate compared to the traditional one. Moreover, our case study of a signaling system number 7 shows that the proposed allocation method is quite efficient for networked systems.
Realistic searches on stretched exponential networks
Indian Academy of Sciences (India)
We consider navigation or search schemes on networks which have a degree distribution of the form () ∝ exp(−). In addition, the linking probability is taken to be dependent on social distances and is governed by a parameter . The searches are realistic in the sense that not all search chains can be completed.
Search for minimal paths in modified networks
International Nuclear Information System (INIS)
Yeh, W.-C.
2002-01-01
The problem of searching for all minimal paths (MPs) in a network obtained by modifying the original network, e.g. for network expansion or reinforcement, is discussed and solved in this study. The existing best-known method to solve this problem was a straightforward approach. It needed extensive comparison and verification, and failed to solve some special but important cases. Therefore, a more efficient, intuitive and generalized method to search for all MPs without an extensive research procedure is proposed. In this presentation, first we develop an intuitive algorithm based upon the reformation of all MPs in the original network to search for all MPs in a modified network. Next, the computational complexity of the proposed algorithm is analyzed and compared with the existing methods. Finally, examples illustrate how all MPs are generated in a modified network based upon the reformation of all of the MPs in the corresponding original network
Directory of Open Access Journals (Sweden)
Vatutin Eduard
2017-12-01
Full Text Available The article deals with the problem of analysis of effectiveness of the heuristic methods with limited depth-first search techniques of decision obtaining in the test problem of getting the shortest path in graph. The article briefly describes the group of methods based on the limit of branches number of the combinatorial search tree and limit of analyzed subtree depth used to solve the problem. The methodology of comparing experimental data for the estimation of the quality of solutions based on the performing of computational experiments with samples of graphs with pseudo-random structure and selected vertices and arcs number using the BOINC platform is considered. It also shows description of obtained experimental results which allow to identify the areas of the preferable usage of selected subset of heuristic methods depending on the size of the problem and power of constraints. It is shown that the considered pair of methods is ineffective in the selected problem and significantly inferior to the quality of solutions that are provided by ant colony optimization method and its modification with combinatorial returns.
Vatutin, Eduard
2017-12-01
The article deals with the problem of analysis of effectiveness of the heuristic methods with limited depth-first search techniques of decision obtaining in the test problem of getting the shortest path in graph. The article briefly describes the group of methods based on the limit of branches number of the combinatorial search tree and limit of analyzed subtree depth used to solve the problem. The methodology of comparing experimental data for the estimation of the quality of solutions based on the performing of computational experiments with samples of graphs with pseudo-random structure and selected vertices and arcs number using the BOINC platform is considered. It also shows description of obtained experimental results which allow to identify the areas of the preferable usage of selected subset of heuristic methods depending on the size of the problem and power of constraints. It is shown that the considered pair of methods is ineffective in the selected problem and significantly inferior to the quality of solutions that are provided by ant colony optimization method and its modification with combinatorial returns.
Search in spatial scale-free networks
International Nuclear Information System (INIS)
Thadakamalla, H P; Albert, R; Kumara, S R T
2007-01-01
We study the decentralized search problem in a family of parameterized spatial network models that are heterogeneous in node degree. We investigate several algorithms and illustrate that some of these algorithms exploit the heterogeneity in the network to find short paths by using only local information. In addition, we demonstrate that the spatial network model belongs to a classof searchable networks for a wide range of parameter space. Further, we test these algorithms on the US airline network which belongs to this class of networks and demonstrate that searchability is a generic property of the US airline network. These results provide insights on designing the structure of distributed networks that need effective decentralized search algorithms
Search engine competition with network externalities
Argenton, C.; Prüfer, J.
2012-01-01
The market for Internet search is not only economically and socially important, it is also highly concentrated. Is this a problem? We study the question of whether “competition is only a free click away.” We argue that the market for Internet search is characterized by indirect network externalities
Search Engine Competition with Network Externalities
Argenton, C.; Prüfer, J.
2011-01-01
The market for Internet search is not only economically and socially important, it is also highly concentrated. Is this a problem? We study the question whether "competition is only a free click away". We argue that the market for Internet search is characterized by indirect network externalities
An adaptive random search for short term generation scheduling with network constraints.
Directory of Open Access Journals (Sweden)
J A Marmolejo
Full Text Available This paper presents an adaptive random search approach to address a short term generation scheduling with network constraints, which determines the startup and shutdown schedules of thermal units over a given planning horizon. In this model, we consider the transmission network through capacity limits and line losses. The mathematical model is stated in the form of a Mixed Integer Non Linear Problem with binary variables. The proposed heuristic is a population-based method that generates a set of new potential solutions via a random search strategy. The random search is based on the Markov Chain Monte Carlo method. The main key of the proposed method is that the noise level of the random search is adaptively controlled in order to exploring and exploiting the entire search space. In order to improve the solutions, we consider coupling a local search into random search process. Several test systems are presented to evaluate the performance of the proposed heuristic. We use a commercial optimizer to compare the quality of the solutions provided by the proposed method. The solution of the proposed algorithm showed a significant reduction in computational effort with respect to the full-scale outer approximation commercial solver. Numerical results show the potential and robustness of our approach.
Directory of Open Access Journals (Sweden)
DOGAN, A.
2018-02-01
Full Text Available Image thresholding is the most crucial step in microscopic image analysis to distinguish bacilli objects causing of tuberculosis disease. Therefore, several bi-level thresholding algorithms are widely used to increase the bacilli segmentation accuracy. However, bi-level microscopic image thresholding problem has not been solved using optimization algorithms. This paper introduces a novel approach for the segmentation problem using heuristic algorithms and presents visual and quantitative comparisons of heuristic and state-of-art thresholding algorithms. In this study, well-known heuristic algorithms such as Firefly Algorithm, Particle Swarm Optimization, Cuckoo Search, Flower Pollination are used to solve bi-level microscopic image thresholding problem, and the results are compared with the state-of-art thresholding algorithms such as K-Means, Fuzzy C-Means, Fast Marching. Kapur's entropy is chosen as the entropy measure to be maximized. Experiments are performed to make comparisons in terms of evaluation metrics and execution time. The quantitative results are calculated based on ground truth segmentation. According to the visual results, heuristic algorithms have better performance and the quantitative results are in accord with the visual results. Furthermore, experimental time comparisons show the superiority and effectiveness of the heuristic algorithms over traditional thresholding algorithms.
On Central Branch/Reinsurance Risk Networks: Exact Results and Heuristics
Directory of Open Access Journals (Sweden)
Florin Avram
2018-04-01
Full Text Available Modeling the interactions between a reinsurer and several insurers, or between a central management branch (CB and several subsidiary business branches, or between a coalition and its members, are fascinating problems, which suggest many interesting questions. Beyond two dimensions, one cannot expect exact answers. Occasionally, reductions to one dimension or heuristic simplifications yield explicit approximations, which may be useful for getting qualitative insights. In this paper, we study two such problems: the ruin problem for a two-dimensional CB network under a new mathematical model, and the problem of valuation of two-dimensional CB networks by optimal dividends. A common thread between these two problems is that the one dimensional reduction exploits the concept of invariant cones. Perhaps the most important contribution of the paper is the questions it raises; for that reason, we have found it useful to complement the particular examples solved by providing one possible formalization of the concept of a multi-dimensional risk network, which seems to us an appropriate umbrella for the kind of questions raised here.
Directory of Open Access Journals (Sweden)
Jinggang Chu
2015-05-01
Full Text Available River basin simulation and multi-reservoir optimal operation have been critical for river basin management. Due to the intense interaction between human activities and river basin systems, the river basin model and multi-reservoir operation model are complicated with a large number of parameters. Therefore, fast and stable optimization algorithms are required for river basin management under the changing conditions of climate and current human activities. This study presents a new global optimization algorithm, named as heuristic dynamically dimensioned search with sensitivity information (HDDS-S, to effectively perform river basin simulation and multi-reservoir optimal operation during river basin management. The HDDS-S algorithm is built on the dynamically dimensioned search (DDS algorithm; and has an improved computational efficiency while maintaining its search capacity compared to the original DDS algorithm. This is mainly due to the non-uniform probability assigned to each decision variable on the basis of its changing sensitivity to the optimization objectives during the adaptive change from global to local search with dimensionality reduced. This study evaluates the new algorithm by comparing its performance with the DDS algorithm on a river basin model calibration problem and a multi-reservoir optimal operation problem. The results obtained indicate that the HDDS-S algorithm outperforms the DDS algorithm in terms of search ability and computational efficiency in the two specific problems. In addition; similar to the DDS algorithm; the HDDS-S algorithm is easy to use as it does not require any parameter tuning and automatically adjusts its search to find good solutions given an available computational budget.
Searching Information Sources in Networks
2017-06-14
with partial observations,” in AAAI Conference on Artificial Intelligence , 2017. [6] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small...critical infrastructure of our society. The failure of the power grid network will have catastrophic impacts on water supplies, transportation
Heuristic space diversity control for improved meta-hyper-heuristic performance
CSIR Research Space (South Africa)
Grobler, J
2015-04-01
Full Text Available This paper expands on the concept of heuristic space diversity and investigates various strategies for the management of heuristic space diversity within the context of a meta-hyper-heuristic algorithm in search of greater performance benefits...
Hemmelmayr, Vera C.; Cordeau, Jean-François; Crainic, Teodor Gabriel
2012-01-01
In this paper, we propose an adaptive large neighborhood search heuristic for the Two-Echelon Vehicle Routing Problem (2E-VRP) and the Location Routing Problem (LRP). The 2E-VRP arises in two-level transportation systems such as those encountered in the context of city logistics. In such systems, freight arrives at a major terminal and is shipped through intermediate satellite facilities to the final customers. The LRP can be seen as a special case of the 2E-VRP in which vehicle routing is performed only at the second level. We have developed new neighborhood search operators by exploiting the structure of the two problem classes considered and have also adapted existing operators from the literature. The operators are used in a hierarchical scheme reflecting the multi-level nature of the problem. Computational experiments conducted on several sets of instances from the literature show that our algorithm outperforms existing solution methods for the 2E-VRP and achieves excellent results on the LRP. PMID:23483764
Hemmelmayr, Vera C; Cordeau, Jean-François; Crainic, Teodor Gabriel
2012-12-01
In this paper, we propose an adaptive large neighborhood search heuristic for the Two-Echelon Vehicle Routing Problem (2E-VRP) and the Location Routing Problem (LRP). The 2E-VRP arises in two-level transportation systems such as those encountered in the context of city logistics. In such systems, freight arrives at a major terminal and is shipped through intermediate satellite facilities to the final customers. The LRP can be seen as a special case of the 2E-VRP in which vehicle routing is performed only at the second level. We have developed new neighborhood search operators by exploiting the structure of the two problem classes considered and have also adapted existing operators from the literature. The operators are used in a hierarchical scheme reflecting the multi-level nature of the problem. Computational experiments conducted on several sets of instances from the literature show that our algorithm outperforms existing solution methods for the 2E-VRP and achieves excellent results on the LRP.
Searching LOGIN, the Local Government Information Network.
Jack, Robert F.
1984-01-01
Describes a computer-based information retrieval and electronic messaging system produced by Control Data Corporation now being used by government agencies and other organizations. Background of Local Government Information Network (LOGIN), database structure, types of LOGIN units, searching LOGIN (intersect, display, and list commands), and how…
Searching in small-world networks
International Nuclear Information System (INIS)
Moura, Alessandro P.S. de; Motter, Adilson E.; Grebogi, Celso
2003-01-01
We study the average time it takes to find a desired node in the Watts-Strogatz family of networks. We consider the case when the look-up time can be neglected and when it is important, where the look-up time is the time needed to choose one among all the neighboring nodes of a node at each step in the search. We show that in both cases, the search time is minimum in the small-world regime, when an appropriate distance between the nodes is defined. Through an analytical model, we show that the search time scales as N 1/D(D+1) for small-world networks, where N is the number of nodes and D is the dimension of the underlying lattice. This model is shown to be in agreement with numerical simulations
A meta-heuristic cuckoo search and eigen permutation approach for ...
Indian Academy of Sciences (India)
Akhilesh Kumar Gupta
2018-04-17
Apr 17, 2018 ... system (HOS) into a simplified lower order model of rea- sonable accuracy by ..... dom walk whose flight step length is dependent on a power law formula often ..... In: IEEE International Conference on Electric. Power and Energy ... hybrid cuckoo search and genetic algorithm for reliability– redundancy ...
Directory of Open Access Journals (Sweden)
MANAR Y. KASHMOLA
2012-06-01
Full Text Available The development of hybrid algorithms for solving complex optimization problems focuses on enhancing the strengths and compensating for the weakness of two or more complementary approaches. The goal is to intelligently combine the key elements of these approaches to find superior solutions to solve optimization problems. Optimal routing in communication network is considering a complex optimization problem. In this paper we propose a hybrid Hopfield Neural Network (HNN and Tabu Search (TS algorithm, this algorithm called hybrid HNN-TS algorithm. The paradigm of this hybridization is embedded. We embed the short-term memory and tabu restriction features from TS algorithm in the HNN model. The short-term memory and tabu restriction control the neuron selection process in the HNN model in order to get around the local minima problem and find an optimal solution using the HNN model to solve complex optimization problem. The proposed algorithm is intended to find the optimal path for packet transmission in the network which is fills in the field of routing problem. The optimal path that will be selected is depending on 4-tuples (delay, cost, reliability and capacity. Test results show that the propose algorithm can find path with optimal cost and a reasonable number of iterations. It also shows that the complexity of the network model won’t be a problem since the neuron selection is done heuristically.
Energy Technology Data Exchange (ETDEWEB)
Cruz Castrejon, J. A; Islas Perez, E; Espinosa Reza, A; Garcia Mendoza, R [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mails: adrian.cruz@iie.org.mx; eislas@iie.org.mx; aer@iie.org.mx; rgarcia@iie.org.mx
2013-03-15
In this paper we present a proposed solution to the problem of finding alternatives to reset faults in radial distribution networks power systems. This solution uses a deterministic method based on the definition of heuristics and whose main objectives are to improve execution time and solution quality. This search is based on the alternate repetition of two stages: a stage that attempts to reset the unconnected areas and other areas trying ballasting overloaded. [Spanish] En este articulo se presenta una propuesta de solucion al problema de busqueda de alternativas de restablecimiento para fallas en redes de distribucion radiales en sistemas electricos de potencia. Esta solucion utiliza un metodo deterministico basado en la definicion de heuristicas y cuyos objetivos principales son: mejorar el tiempo de ejecucion y calidad de la solucion. Esta busqueda se basa en la repeticion alternada de dos etapas: una etapa que intenta restablecer las areas desconectadas y otra que intenta deslastrar las areas sobrecargadas.
Meta-Heuristic Cuckoo Search Algorithm for the Correction of Faulty Array Antenna
Directory of Open Access Journals (Sweden)
Shafqatullah Khan
2015-10-01
Full Text Available When the distribution system is disconnected from the transmission system, the islanded portion of the network comprising DG (Distributed Generation units forms a MG (Micro Grid. It is essential either to shut down the DG units or ensure the stable and the controlled operation of the islanded MG. The frequency and the voltage of the islanded MG vary when it is isolated from the main transmission grid. The voltage and the frequency of the islanded MG can be controlled to the permissible limits by providing the required amount of the active and reactive power by the local available sources in the MG. The main focus of this paper is about the control of the network frequency in the islanded MG by employing PI controllers based STATCOM (Static Compensator and BESS-STATCOM (Battery Energy Storage System Equipped devices. The study is done by using DIgSILENT power factory software version 15.0
Transport energy modeling with meta-heuristic harmony search algorithm, an application to Turkey
Energy Technology Data Exchange (ETDEWEB)
Ceylan, Huseyin; Ceylan, Halim; Haldenbilen, Soner; Baskan, Ozgur [Department of Civil Engineering, Engineering Faculty, Pamukkale University, Muh. Fak. Denizli 20017 (Turkey)
2008-07-15
This study proposes a new method for estimating transport energy demand using a harmony search (HS) approach. HArmony Search Transport Energy Demand Estimation (HASTEDE) models are developed taking population, gross domestic product and vehicle kilometers as an input. The HASTEDE models are in forms of linear, exponential and quadratic mathematical expressions and they are applied to Turkish Transportation sector energy consumption. Optimum or near-optimum values of the HS parameters are obtained with sensitivity analysis (SA). Performance of all models is compared with the Ministry of Energy and Natural Resources (MENR) projections. Results showed that HS algorithm may be used for energy modeling, but SA is required to obtain best values of the HS parameters. The quadratic form of HASTEDE will overestimate transport sector energy consumption by about 26% and linear and exponential forms underestimate by about 21% when they are compared with the MENR projections. This may happen due to the modeling procedure and selected parameters for models, but determining the upper and lower values of transportation sector energy consumption will provide a framework and flexibility for setting up energy policies. (author)
SP-100 shield design automation process using expert system and heuristic search techniques
International Nuclear Information System (INIS)
Marcille, T.F.; Protsik, R.; Deane, N.A.; Hoover, D.G.
1993-01-01
The SP-100 shield subsystem design process has been modified to utilize the GE Corporate Reserch and Development program, ENGINEOUS (Tong 1990). ENGINEOUS is a software system that automates the use of Computer Aided Engineering (CAE) analysis programs in the engineering design process. The shield subsystem design process incorporates a nuclear subsystems design and performance code, a two-dimensional neutral particle transport code, several input processors and two general purpose neutronic output processors. Coupling these programs within ENGINEOUS provides automatic transition paths between applications, with no source code modifications. ENGINEOUS captures human design knowledge, as well as information about the specific CAE applications and stores this information in knowledge base files. The knowledge base information is used by the ENGINEOUS expert system to drive knowledge directed and knowledge supplemented search modules to find an optimum shield design for a given reactor definition, ensuring that specified constraints are satisfied. Alternate designs, not accommodated in the optimization design rules, can readily be explored through the use of a parametric study capability
Job Search, Networks, and Labor Market Performance of Immigrants
Arceo-Gómez, Eva Olimpia
2012-01-01
We develop an on-the-job search model in which immigrants search for jobs through formal channels or networks, and the quality of job offers differs across search methods. The model predicts networks unambiguously lead to a larger share of network jobs in job-to-job transitions, whereas the effect is ambiguous in unemployment-to-job transitions.
Multimodal Logistics Network Design over Planning Horizon through a Hybrid Meta-Heuristic Approach
Shimizu, Yoshiaki; Yamazaki, Yoshihiro; Wada, Takeshi
Logistics has been acknowledged increasingly as a key issue of supply chain management to improve business efficiency under global competition and diversified customer demands. This study aims at improving a quality of strategic decision making associated with dynamic natures in logistics network optimization. Especially, noticing an importance to concern with a multimodal logistics under multiterms, we have extended a previous approach termed hybrid tabu search (HybTS). The attempt intends to deploy a strategic planning more concretely so that the strategic plan can link to an operational decision making. The idea refers to a smart extension of the HybTS to solve a dynamic mixed integer programming problem. It is a two-level iterative method composed of a sophisticated tabu search for the location problem at the upper level and a graph algorithm for the route selection at the lower level. To keep efficiency while coping with the resulting extremely large-scale problem, we invented a systematic procedure to transform the original linear program at the lower-level into a minimum cost flow problem solvable by the graph algorithm. Through numerical experiments, we verified the proposed method outperformed the commercial software. The results indicate the proposed approach can make the conventional strategic decision much more practical and is promising for real world applications.
Improved Degree Search Algorithms in Unstructured P2P Networks
Directory of Open Access Journals (Sweden)
Guole Liu
2012-01-01
Full Text Available Searching and retrieving the demanded correct information is one important problem in networks; especially, designing an efficient search algorithm is a key challenge in unstructured peer-to-peer (P2P networks. Breadth-first search (BFS and depth-first search (DFS are the current two typical search methods. BFS-based algorithms show the perfect performance in the aspect of search success rate of network resources, while bringing the huge search messages. On the contrary, DFS-based algorithms reduce the search message quantity and also cause the dropping of search success ratio. To address the problem that only one of performances is excellent, we propose two memory function degree search algorithms: memory function maximum degree algorithm (MD and memory function preference degree algorithm (PD. We study their performance including the search success rate and the search message quantity in different networks, which are scale-free networks, random graph networks, and small-world networks. Simulations show that the two performances are both excellent at the same time, and the performances are improved at least 10 times.
Huseyin Turan, Hasan; Kasap, Nihat; Savran, Huseyin
2014-03-01
Nowadays, every firm uses telecommunication networks in different amounts and ways in order to complete their daily operations. In this article, we investigate an optimisation problem that a firm faces when acquiring network capacity from a market in which there exist several network providers offering different pricing and quality of service (QoS) schemes. The QoS level guaranteed by network providers and the minimum quality level of service, which is needed for accomplishing the operations are denoted as fuzzy numbers in order to handle the non-deterministic nature of the telecommunication network environment. Interestingly, the mathematical formulation of the aforementioned problem leads to the special case of a well-known two-dimensional bin packing problem, which is famous for its computational complexity. We propose two different heuristic solution procedures that have the capability of solving the resulting nonlinear mixed integer programming model with fuzzy constraints. In conclusion, the efficiency of each algorithm is tested in several test instances to demonstrate the applicability of the methodology.
Directory of Open Access Journals (Sweden)
Nader Ghaffari-Nasab
2010-07-01
Full Text Available During the past two decades, there have been increasing interests on permutation flow shop with different types of objective functions such as minimizing the makespan, the weighted mean flow-time etc. The permutation flow shop is formulated as a mixed integer programming and it is classified as NP-Hard problem. Therefore, a direct solution is not available and meta-heuristic approaches need to be used to find the near-optimal solutions. In this paper, we present a new discrete firefly meta-heuristic to minimize the makespan for the permutation flow shop scheduling problem. The results of implementation of the proposed method are compared with other existing ant colony optimization technique. The preliminary results indicate that the new proposed method performs better than the ant colony for some well known benchmark problems.
Search for Directed Networks by Different Random Walk Strategies
Zhu, Zi-Qi; Jin, Xiao-Ling; Huang, Zhi-Long
2012-03-01
A comparative study is carried out on the efficiency of five different random walk strategies searching on directed networks constructed based on several typical complex networks. Due to the difference in search efficiency of the strategies rooted in network clustering, the clustering coefficient in a random walker's eye on directed networks is defined and computed to be half of the corresponding undirected networks. The search processes are performed on the directed networks based on Erdös—Rényi model, Watts—Strogatz model, Barabási—Albert model and clustered scale-free network model. It is found that self-avoiding random walk strategy is the best search strategy for such directed networks. Compared to unrestricted random walk strategy, path-iteration-avoiding random walks can also make the search process much more efficient. However, no-triangle-loop and no-quadrangle-loop random walks do not improve the search efficiency as expected, which is different from those on undirected networks since the clustering coefficient of directed networks are smaller than that of undirected networks.
Directory of Open Access Journals (Sweden)
Cheng-Yu Yeh
2012-01-01
Full Text Available With the large availability of protein interaction networks and microarray data supported, to identify the linear paths that have biological significance in search of a potential pathway is a challenge issue. We proposed a color-coding method based on the characteristics of biological network topology and applied heuristic search to speed up color-coding method. In the experiments, we tested our methods by applying to two datasets: yeast and human prostate cancer networks and gene expression data set. The comparisons of our method with other existing methods on known yeast MAPK pathways in terms of precision and recall show that we can find maximum number of the proteins and perform comparably well. On the other hand, our method is more efficient than previous ones and detects the paths of length 10 within 40 seconds using CPU Intel 1.73GHz and 1GB main memory running under windows operating system.
Directory of Open Access Journals (Sweden)
Chien-Lin Huang
2015-11-01
Full Text Available This study applies Real-Time Recurrent Learning Neural Network (RTRLNN and Adaptive Network-based Fuzzy Inference System (ANFIS with novel heuristic techniques to develop an advanced prediction model of accumulated total inflow of a reservoir in order to solve the difficulties of future long lead-time highly varied uncertainty during typhoon attacks while using a real-time forecast. For promoting the temporal-spatial forecasted precision, the following original specialized heuristic inputs were coupled: observed-predicted inflow increase/decrease (OPIID rate, total precipitation, and duration from current time to the time of maximum precipitation and direct runoff ending (DRE. This study also investigated the temporal-spatial forecasted error feature to assess the feasibility of the developed models, and analyzed the output sensitivity of both single and combined heuristic inputs to determine whether the heuristic model is susceptible to the impact of future forecasted uncertainty/errors. Validation results showed that the long lead-time–predicted accuracy and stability of the RTRLNN-based accumulated total inflow model are better than that of the ANFIS-based model because of the real-time recurrent deterministic routing mechanism of RTRLNN. Simulations show that the RTRLNN-based model with coupled heuristic inputs (RTRLNN-CHI, average error percentage (AEP/average forecast lead-time (AFLT: 6.3%/49 h can achieve better prediction than the model with non-heuristic inputs (AEP of RTRLNN-NHI and ANFIS-NHI: 15.2%/31.8% because of the full consideration of real-time hydrological initial/boundary conditions. Besides, the RTRLNN-CHI model can promote the forecasted lead-time above 49 h with less than 10% of AEP which can overcome the previous forecasted limits of 6-h AFLT with above 20%–40% of AEP.
Searching for Communities in Bipartite Networks
Barber, Michael J.; Faria, Margarida; Streit, Ludwig; Strogan, Oleg
2008-01-01
Bipartite networks are a useful tool for representing and investigating interaction networks. We consider methods for identifying communities in bipartite networks. Intuitive notions of network community groups are made explicit using Newman's modularity measure. A specialized version of the modularity, adapted to be appropriate for bipartite networks, is presented; a corresponding algorithm is described for identifying community groups through maximizing this measure. The algorithm is applie...
A Search Model with a Quasi-Network
DEFF Research Database (Denmark)
Ejarque, Joao Miguel
This paper adds a quasi-network to a search model of the labor market. Fitting the model to an average unemployment rate and to other moments in the data implies the presence of the network is not noticeable in the basic properties of the unemployment and job finding rates. However, the network...
Heuristic algorithm for determination of local properties of scale-free networks
Mitrovic, M
2006-01-01
Complex networks are everywhere. Many phenomena in nature can be modeled as networks: - brain structures - protein-protein interaction networks - social interactions - the Internet and WWW. They can be represented in terms of nodes and edges connecting them. Important characteristics: - these networks are not random; they have a structured architecture. Structure of different networks are similar: - all have power law degree distribution (scale-free property) - despite large size there is usually relatively short path between any two nodes (small world property). Global characteristics: - degree distribution, clustering coefficient and the diameter. Local structure: - frequency of subgraphs of given type (subgraph of order k is a part of the network consisting of k nodes and edges between them). There are different types of subgraphs of the same order.
A survey on bio inspired meta heuristic based clustering protocols for wireless sensor networks
Datta, A.; Nandakumar, S.
2017-11-01
Recent studies have shown that utilizing a mobile sink to harvest and carry data from a Wireless Sensor Network (WSN) can improve network operational efficiency as well as maintain uniform energy consumption by the sensor nodes in the network. Due to Sink mobility, the path between two sensor nodes continuously changes and this has a profound effect on the operational longevity of the network and a need arises for a protocol which utilizes minimal resources in maintaining routes between the mobile sink and the sensor nodes. Swarm Intelligence based techniques inspired by the foraging behavior of ants, termites and honey bees can be artificially simulated and utilized to solve real wireless network problems. The author presents a brief survey on various bio inspired swarm intelligence based protocols used in routing data in wireless sensor networks while outlining their general principle and operation.
Torres-Ruiz, Francisco J; Marano-Marcolini, Carla; Lopez-Zafra, Esther
2018-06-01
The present paper focuses on the problems that arise in food classification systems (FCSs), especially when the food product type has different levels or grades of quality. Despite the principal function of these systems being to assist the consumer (to inform, clarify and facilitate choice and purchase), they frequently have the opposite effect. Thus, the main aim of the present research involves providing orientations for the design of effective food classification systems. To address this objective, considering the context of food product consumption (related to heuristic processing), we conducted an experimental study with 720 participants. We analysed the usefulness of heuristic elements by a factorial 2 (category length: short and long) × 3 (visual signs: colours, numbers and images) design in relation to recall and recognition activities. The results showed that the elements used to make the classification more effective for consumers vary depending on whether the user seeks to prioritize the recall or the recognition of product categories. Thus, long categories with images significantly improve recognition, and short categories with colours improve recall. A series of recommendations are provided that can help to enhance FCSs and to make them more intuitive and easier to understand for consumers. Implications with regard to theory and practice are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Availability Allocation of Networked Systems Using Markov Model and Heuristics Algorithm
Li, Ruiying; Liu, Xiaoxi; Huang, Ning
2014-01-01
It is a common practice to allocate the system availability goal to reliability and maintainability goals of components in the early design phase. However, the networked system availability is difficult to be allocated due to its complex topology and multiple down states. To solve these problems, a practical availability allocation method is proposed. Network reliability algebraic methods are used to derive the availability expression of the networked topology on the system level, and Markov ...
Energy Technology Data Exchange (ETDEWEB)
Ortiz, J. J.; Castillo, J. A.; Montes, J. L.; Hernandez, J. L., E-mail: juanjose.ortiz@inin.gob.m [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)
2009-10-15
This work approaches the study of one of the heuristic rules of fuel cells design for boiling water nuclear reactors. This rule requires that the minor uranium enrichment is placed in the corners of the fuel cell. Also the search greedy is applied for the fuel cells design where explicitly does not take in count this rule, allowing the possibility to place any uranium enrichment with the condition that it does not contain gadolinium. Results are shown in the quality of the obtained cell by search greedy when it considers the rule and when not. The cell quality is measured with the value of the power pick factor obtained, as well as of the neutrons multiplication factor in an infinite medium. Cells were analyzed with 1 and 2 gadolinium concentrations low operation conditions at 120% of the nominal power of the reactors of the nuclear power plant of Laguna Verde. The results show that not to consider the rule in cells with a single gadolinium concentration, it has as repercussion that the greedy search has a minor performance. On the other hand with cells of two gadolinium concentrations, the performance of the greedy search was better. (Author)
A Computational Investigation of Heuristic Algorithms for 2-Edge-Connectivity Augmentation
DEFF Research Database (Denmark)
Bang-Jensen, Jørgen; Chiarandini, Marco; Morling, Peter
2010-01-01
an equivalent set covering formulation. The results indicate that exact solutions by means of a basic integer programming model can be obtained in reasonably short time even on networks with 800 vertices and around 287,000 edges. Alternatively, an advanced heuristic algorithm based on subgradient...... programming, simple construction heuristics and metaheuristics. As part of the design of heuristics, we consider different neighborhood structures for local search, among which is a very large scale neighborhood. In all cases, we exploit approaches through the graph formulation as well as through...
2012-09-13
46, 1989. [75] S. Melkote and M.S. Daskin . An integrated model of facility location and transportation network design. Transportation Research Part A ... a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT/DS/ENS/12-09 THE AVERAGE NETWORK FLOW PROBLEM...focused thinking (VFT) are used sparingly, as is the case across the entirety of the supply chain literature. We provide a VFT tutorial for supply chain
Korovin, Iakov S.; Tkachenko, Maxim G.
2018-03-01
In this paper we present a heuristic approach, improving the efficiency of methods, used for creation of efficient architecture of water distribution networks. The essence of the approach is a procedure of search space reduction the by limiting the range of available pipe diameters that can be used for each edge of the network graph. In order to proceed the reduction, two opposite boundary scenarios for the distribution of flows are analysed, after which the resulting range is further narrowed by applying a flow rate limitation for each edge of the network. The first boundary scenario provides the most uniform distribution of the flow in the network, the opposite scenario created the net with the highest possible flow level. The parameters of both distributions are calculated by optimizing systems of quadratic functions in a confined space, which can be effectively performed with small time costs. This approach was used to modify the genetic algorithm (GA). The proposed GA provides a variable number of variants of each gene, according to the number of diameters in list, taking into account flow restrictions. The proposed approach was implemented to the evaluation of a well-known test network - the Hanoi water distribution network [1], the results of research were compared with a classical GA with an unlimited search space. On the test data, the proposed trip significantly reduced the search space and provided faster and more obvious convergence in comparison with the classical version of GA.
Heuristic approach to train rescheduling
Directory of Open Access Journals (Sweden)
Mladenović Snežana
2007-01-01
Full Text Available Starting from the defined network topology and the timetable assigned beforehand, the paper considers a train rescheduling in respond to disturbances that have occurred. Assuming that the train trips are jobs, which require the elements of infrastructure - resources, it was done by the mapping of the initial problem into a special case of job shop scheduling problem. In order to solve the given problem, a constraint programming approach has been used. A support to fast finding "enough good" schedules is offered by original separation, bound and search heuristic algorithms. In addition, to improve the time performance, instead of the actual objective function with a large domain, a surrogate objective function is used with a smaller domain, if there is such. .
Melles, S. J.; Jones, N. E.; Schmidt, B. J.
2014-03-01
Conservation and management of fresh flowing waters involves evaluating and managing effects of cumulative impacts on the aquatic environment from disturbances such as: land use change, point and nonpoint source pollution, the creation of dams and reservoirs, mining, and fishing. To assess effects of these changes on associated biotic communities it is necessary to monitor and report on the status of lotic ecosystems. A variety of stream classification methods are available to assist with these tasks, and such methods attempt to provide a systematic approach to modeling and understanding complex aquatic systems at various spatial and temporal scales. Of the vast number of approaches that exist, it is useful to group them into three main types. The first involves modeling longitudinal species turnover patterns within large drainage basins and relating these patterns to environmental predictors collected at reach and upstream catchment scales; the second uses regionalized hierarchical classification to create multi-scale, spatially homogenous aquatic ecoregions by grouping adjacent catchments together based on environmental similarities; and the third approach groups sites together on the basis of similarities in their environmental conditions both within and between catchments, independent of their geographic location. We review the literature with a focus on more recent classifications to examine the strengths and weaknesses of the different approaches. We identify gaps or problems with the current approaches, and we propose an eight-step heuristic process that may assist with development of more flexible and integrated aquatic classifications based on the current understanding, network thinking, and theoretical underpinnings.
Optimal search strategies on complex networks
Di Patti, Francesca; Fanelli, Duccio; Piazza, Francesco
2014-01-01
Complex networks are ubiquitous in nature and play a role of paramount importance in many contexts. Internet and the cyberworld, which permeate our everyday life, are self-organized hierarchical graphs. Urban traffic flows on intricate road networks, which impact both transportation design and epidemic control. In the brain, neurons are cabled through heterogeneous connections, which support the propagation of electric signals. In all these cases, the true challenge is to unveil the mechanism...
Optimal Quantum Spatial Search on Random Temporal Networks.
Chakraborty, Shantanav; Novo, Leonardo; Di Giorgio, Serena; Omar, Yasser
2017-12-01
To investigate the performance of quantum information tasks on networks whose topology changes in time, we study the spatial search algorithm by continuous time quantum walk to find a marked node on a random temporal network. We consider a network of n nodes constituted by a time-ordered sequence of Erdös-Rényi random graphs G(n,p), where p is the probability that any two given nodes are connected: After every time interval τ, a new graph G(n,p) replaces the previous one. We prove analytically that, for any given p, there is always a range of values of τ for which the running time of the algorithm is optimal, i.e., O(sqrt[n]), even when search on the individual static graphs constituting the temporal network is suboptimal. On the other hand, there are regimes of τ where the algorithm is suboptimal even when each of the underlying static graphs are sufficiently connected to perform optimal search on them. From this first study of quantum spatial search on a time-dependent network, it emerges that the nontrivial interplay between temporality and connectivity is key to the algorithmic performance. Moreover, our work can be extended to establish high-fidelity qubit transfer between any two nodes of the network. Overall, our findings show that one can exploit temporality to achieve optimal quantum information tasks on dynamical random networks.
Optimal Quantum Spatial Search on Random Temporal Networks
Chakraborty, Shantanav; Novo, Leonardo; Di Giorgio, Serena; Omar, Yasser
2017-12-01
To investigate the performance of quantum information tasks on networks whose topology changes in time, we study the spatial search algorithm by continuous time quantum walk to find a marked node on a random temporal network. We consider a network of n nodes constituted by a time-ordered sequence of Erdös-Rényi random graphs G (n ,p ), where p is the probability that any two given nodes are connected: After every time interval τ , a new graph G (n ,p ) replaces the previous one. We prove analytically that, for any given p , there is always a range of values of τ for which the running time of the algorithm is optimal, i.e., O (√{n }), even when search on the individual static graphs constituting the temporal network is suboptimal. On the other hand, there are regimes of τ where the algorithm is suboptimal even when each of the underlying static graphs are sufficiently connected to perform optimal search on them. From this first study of quantum spatial search on a time-dependent network, it emerges that the nontrivial interplay between temporality and connectivity is key to the algorithmic performance. Moreover, our work can be extended to establish high-fidelity qubit transfer between any two nodes of the network. Overall, our findings show that one can exploit temporality to achieve optimal quantum information tasks on dynamical random networks.
Directory of Open Access Journals (Sweden)
José Manuel Corujeira Gómez
2014-10-01
Full Text Available The current definition of creativity gives importance to interpersonal communication in innovation strategies, and allows us to question the profiles of professionals –innovation partners– communication skills in the practice session in which they are applied. This text shows shallow results on the application of some of their tactics with a group of students. We tested structural/procedural descriptions of hypothetical effects of communication using indicators proposed by Network Theory in terms topologies provided by the group. Without a conclusive result, we expect this paper helps to the creativity's investigation in the innovation sessions.
Ayvaz, M. Tamer
2007-11-01
This study proposes an inverse solution algorithm through which both the aquifer parameters and the zone structure of these parameters can be determined based on a given set of observations on piezometric heads. In the zone structure identification problem fuzzy c-means ( FCM) clustering method is used. The association of the zone structure with the transmissivity distribution is accomplished through an optimization model. The meta-heuristic harmony search ( HS) algorithm, which is conceptualized using the musical process of searching for a perfect state of harmony, is used as an optimization technique. The optimum parameter zone structure is identified based on three criteria which are the residual error, parameter uncertainty, and structure discrimination. A numerical example given in the literature is solved to demonstrate the performance of the proposed algorithm. Also, a sensitivity analysis is performed to test the performance of the HS algorithm for different sets of solution parameters. Results indicate that the proposed solution algorithm is an effective way in the simultaneous identification of aquifer parameters and their corresponding zone structures.
A Geographical Heuristic Routing Protocol for VANETs
Urquiza-Aguiar, Luis; Tripp-Barba, Carolina; Aguilar Igartua, Mónica
2016-01-01
Vehicular ad hoc networks (VANETs) leverage the communication system of Intelligent Transportation Systems (ITS). Recently, Delay-Tolerant Network (DTN) routing protocols have increased their popularity among the research community for being used in non-safety VANET applications and services like traffic reporting. Vehicular DTN protocols use geographical and local information to make forwarding decisions. However, current proposals only consider the selection of the best candidate based on a local-search. In this paper, we propose a generic Geographical Heuristic Routing (GHR) protocol that can be applied to any DTN geographical routing protocol that makes forwarding decisions hop by hop. GHR includes in its operation adaptations simulated annealing and Tabu-search meta-heuristics, which have largely been used to improve local-search results in discrete optimization. We include a complete performance evaluation of GHR in a multi-hop VANET simulation scenario for a reporting service. Our study analyzes all of the meaningful configurations of GHR and offers a statistical analysis of our findings by means of MANOVA tests. Our results indicate that the use of a Tabu list contributes to improving the packet delivery ratio by around 5% to 10%. Moreover, if Tabu is used, then the simulated annealing routing strategy gets a better performance than the selection of the best node used with carry and forwarding (default operation). PMID:27669254
Realistic searches on stretched exponential networks
Indian Academy of Sciences (India)
simulations on real networks [7–9] have been made also. In these studies, one is interested in the length of the dynamic paths, i.e., the number of steps actually taken to transmit a message or signal to another node. In the real experiments, this is done by fixing a target node and randomly selecting source nodes. The.
An Improved Harmony Search Algorithm for Power Distribution Network Planning
Directory of Open Access Journals (Sweden)
Wei Sun
2015-01-01
Full Text Available Distribution network planning because of involving many variables and constraints is a multiobjective, discrete, nonlinear, and large-scale optimization problem. Harmony search (HS algorithm is a metaheuristic algorithm inspired by the improvisation process of music players. HS algorithm has several impressive advantages, such as easy implementation, less adjustable parameters, and quick convergence. But HS algorithm still has some defects such as premature convergence and slow convergence speed. According to the defects of the standard algorithm and characteristics of distribution network planning, an improved harmony search (IHS algorithm is proposed in this paper. We set up a mathematical model of distribution network structure planning, whose optimal objective function is to get the minimum annual cost and constraint conditions are overload and radial network. IHS algorithm is applied to solve the complex optimization mathematical model. The empirical results strongly indicate that IHS algorithm can effectively provide better results for solving the distribution network planning problem compared to other optimization algorithms.
DEFF Research Database (Denmark)
Gamst, M.
2014-01-01
problem. The methods are computationally evaluated on test instances arising from telecommunications with up to 500 jobs and 500 machines. Results show that solving the integrated job scheduling and constrained network routing problem to optimality is very difficult. The exact solution approach performs......This paper examines the problem of scheduling a number of jobs on a finite set of machines such that the overall profit of executed jobs is maximized. Each job has a certain demand, which must be sent to the executing machine via constrained paths. A job cannot start before all its demands have...... arrived at the machine. Furthermore, two resource demand transmissions cannot use the same edge in the same time period. The problem has application in grid computing, where a number of geographically distributed machines work together for solving large problems. The machines are connected through...
Cooperative and heuristic learning in the international network e-Culturas
Directory of Open Access Journals (Sweden)
Antonio PANTOJA VALLEJO
2011-12-01
Full Text Available 0 0 1 89 495 Instituto Universitario de Ciencias de la Educación 4 1 583 14.0 Normal 0 21 false false false ES JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:Calibri; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-ansi-language:ES; mso-fareast-language:EN-US;} Virtual learning environments, converted to digital platforms, encourage collaboration and interaction between users, while allowing the creative capacity will be increased considerably. On this basis the Intercultural Program e-Culturas is based, being part of the International e-Culturas Network (http://www.e-culturas.org. This is a collaborative networking project that aims to twin children of different nationalities to work a series of cross-cultural materials. In the present paper is explained the basic methodology underlying it.
Electroencephalography epilepsy classifications using hybrid cuckoo search and neural network
Pratiwi, A. B.; Damayanti, A.; Miswanto
2017-07-01
Epilepsy is a condition that affects the brain and causes repeated seizures. This seizure is episodes that can vary and nearly undetectable to long periods of vigorous shaking or brain contractions. Epilepsy often can be confirmed with an electrocephalography (EEG). Neural Networks has been used in biomedic signal analysis, it has successfully classified the biomedic signal, such as EEG signal. In this paper, a hybrid cuckoo search and neural network are used to recognize EEG signal for epilepsy classifications. The weight of the multilayer perceptron is optimized by the cuckoo search algorithm based on its error. The aim of this methods is making the network faster to obtained the local or global optimal then the process of classification become more accurate. Based on the comparison results with the traditional multilayer perceptron, the hybrid cuckoo search and multilayer perceptron provides better performance in term of error convergence and accuracy. The purpose methods give MSE 0.001 and accuracy 90.0 %.
Search for all d-MPs for all d levels in multistate two-terminal networks
International Nuclear Information System (INIS)
Bai, Guanghan; Zuo, Ming J.; Tian, Zhigang
2015-01-01
A general method for reliability evaluation of multistate network is using minimal path vectors. A minimal path (MP) vector to system state d is called a d-MP. Most reported works on generating d-MPs are for a particular d value. However, if all d-MPs for all possible integer d values are required, we need to call such methods multiple times with respect to all d values. A more efficient method is desirable to generate all d-MPs. In this paper, we develop a recursive algorithm based on breadth-first search to search for all the d-MPs for all possible d values. The relationships among d-MPs for different d levels are revealed. Each d-MP candidate can be generated by a combination of one (d-1)-MP and the vector form of one binary minimal path. Thus, we can use binary MPs as building blocks to generate 2-MP candidates, and use 2-MPs and binary MPs as building blocks to generate 3-MP candidates … and so forth. When the d-MPs with respect to the maximum d value have been found, all the d-MPs for all possible d values are obtained. A heuristic for pre-processing the MPs is proposed to improve the efficiency of the algorithm. Through computational experiments, it is found that the proposed algorithm is more efficient than existing algorithms for finding all d-MPs for all possible d values. In addition, we show that the proposed algorithm can also be used to generate a subset of d-MPs for all or some d values given a subset of MPs. The generated subset of d-MPs can be used for lower reliability bound evaluation. - Highlights: • The relationships among d-MPs for different d levels are revealed. • An efficient algorithm is developed to search for all d-MPs for all d levels. • A heuristic for pre-processing the MPs is proposed to improve the efficiency. • The computational efficiency of the algorithm is investigated. • A method to search for subsets of d-MPs is proposed for reliability bounding
The use of conflicts in searching Bayesian networks
Poole, David L.
2013-01-01
This paper discusses how conflicts (as used by the consistency-based diagnosis community) can be adapted to be used in a search-based algorithm for computing prior and posterior probabilities in discrete Bayesian Networks. This is an "anytime" algorithm, that at any stage can estimate the probabilities and give an error bound. Whereas the most popular Bayesian net algorithms exploit the structure of the network for efficiency, we exploit probability distributions for efficiency; this algorith...
How Will Online Affiliate Marketing Networks Impact Search Engine Rankings?
Janssen, David; Heck, Eric
2007-01-01
textabstractIn online affiliate marketing networks advertising web sites offer their affiliates revenues based on provided web site traffic and associated leads and sales. Advertising web sites can have a network of thousands of affiliates providing them with web site traffic through hyperlinks on their web sites. Search engines such as Google, MSN, and Yahoo, consider hyperlinks as a proof of quality and/or reliability of the linked web sites, and therefore use them to determine the relevanc...
Directory of Open Access Journals (Sweden)
Eric Z. Chen
2015-01-01
Full Text Available Error control codes have been widely used in data communications and storage systems. One central problem in coding theory is to optimize the parameters of a linear code and construct codes with best possible parameters. There are tables of best-known linear codes over finite fields of sizes up to 9. Recently, there has been a growing interest in codes over $\\mathbb{F}_{13}$ and other fields of size greater than 9. The main purpose of this work is to present a database of best-known linear codes over the field $\\mathbb{F}_{13}$ together with upper bounds on the minimum distances. To find good linear codes to establish lower bounds on minimum distances, an iterative heuristic computer search algorithm is employed to construct quasi-twisted (QT codes over the field $\\mathbb{F}_{13}$ with high minimum distances. A large number of new linear codes have been found, improving previously best-known results. Tables of $[pm, m]$ QT codes over $\\mathbb{F}_{13}$ with best-known minimum distances as well as a table of lower and upper bounds on the minimum distances for linear codes of length up to 150 and dimension up to 6 are presented.
Core design optimization by integration of a fast 3-D nodal code in a heuristic search procedure
Energy Technology Data Exchange (ETDEWEB)
Geemert, R. van; Leege, P.F.A. de; Hoogenboom, J.E.; Quist, A.J. [Delft University of Technology, NL-2629 JB Delft (Netherlands)
1998-07-01
An automated design tool is being developed for the Hoger Onderwijs Reactor (HOR) in Delft, the Netherlands, which is a 2 MWth swimming-pool type research reactor. As a black box evaluator, the 3-D nodal code SILWER, which up to now has been used only for evaluation of predetermined core designs, is integrated in the core optimization procedure. SILWER is a part of PSl's ELCOS package and features optional additional thermal-hydraulic, control rods and xenon poisoning calculations. This allows for fast and accurate evaluation of different core designs during the optimization search. Special attention is paid to handling the in- and output files for SILWER such that no adjustment of the code itself is required for its integration in the optimization programme. The optimization objective, the safety and operation constraints, as well as the optimization procedure, are discussed. (author)
Core design optimization by integration of a fast 3-D nodal code in a heuristic search procedure
International Nuclear Information System (INIS)
Geemert, R. van; Leege, P.F.A. de; Hoogenboom, J.E.; Quist, A.J.
1998-01-01
An automated design tool is being developed for the Hoger Onderwijs Reactor (HOR) in Delft, the Netherlands, which is a 2 MWth swimming-pool type research reactor. As a black box evaluator, the 3-D nodal code SILWER, which up to now has been used only for evaluation of predetermined core designs, is integrated in the core optimization procedure. SILWER is a part of PSl's ELCOS package and features optional additional thermal-hydraulic, control rods and xenon poisoning calculations. This allows for fast and accurate evaluation of different core designs during the optimization search. Special attention is paid to handling the in- and output files for SILWER such that no adjustment of the code itself is required for its integration in the optimization programme. The optimization objective, the safety and operation constraints, as well as the optimization procedure, are discussed. (author)
Application of Neural Networks to Higgs Boson Search
Czech Academy of Sciences Publication Activity Database
Hakl, František; Hlaváček, M.; Kalous, R.
2003-01-01
Roč. 502, - (2003), s. 489-491 ISSN 0168-9002 R&D Projects: GA MPO RP-4210/69/97 Institutional research plan: AV0Z1030915 Keywords : neural network s * Higgs search * genetic optimization Subject RIV: BA - General Mathematics Impact factor: 1.166, year: 2003
Feed-Forward Neural Networks and Minimal Search Space Learning
Czech Academy of Sciences Publication Activity Database
Neruda, Roman
2005-01-01
Roč. 4, č. 12 (2005), s. 1867-1872 ISSN 1109-2750 R&D Projects: GA ČR GA201/05/0557 Institutional research plan: CEZ:AV0Z10300504 Keywords : search space * feed-forward networks * genetic algorithm s Subject RIV: BA - General Mathematics
An information search model for online social Networks - MOBIRSE
Directory of Open Access Journals (Sweden)
Miguel Angel Niño Zambrano
2015-09-01
Full Text Available Online Social Networks (OSNs have been gaining great importance among Internet users in recent years. These are sites where it is possible to meet people, publish, and share content in a way that is both easy and free of charge. As a result, the volume of information contained in these websites has grown exponentially, and web search has consequently become an important tool for users to easily find information relevant to their social networking objectives. Making use of ontologies and user profiles can make these searches more effective. This article presents a model for Information Retrieval in OSNs (MOBIRSE based on user profile and ontologies which aims to improve the relevance of retrieved information on these websites. The social network Facebook was chosen for a case study and as the instance for the proposed model. The model was validated using measures such as At-k Precision and Kappa statistics, to assess its efficiency.
Gravitational wave searches using the DSN (Deep Space Network)
International Nuclear Information System (INIS)
Nelson, S.J.; Armstrong, J.W.
1988-01-01
The Deep Space Network Doppler spacecraft link is currently the only method available for broadband gravitational wave searches in the 0.01 to 0.001 Hz frequency range. The DSN's role in the worldwide search for gravitational waves is described by first summarizing from the literature current theoretical estimates of gravitational wave strengths and time scales from various astrophysical sources. Current and future detection schemes for ground based and space based detectors are then discussed. Past, present, and future planned or proposed gravitational wave experiments using DSN Doppler tracking are described. Lastly, some major technical challenges to improve gravitational wave sensitivities using the DSN are discussed
2015-01-01
How can we advance knowledge? Which methods do we need in order to make new discoveries? How can we rationally evaluate, reconstruct and offer discoveries as a means of improving the ‘method’ of discovery itself? And how can we use findings about scientific discovery to boost funding policies, thus fostering a deeper impact of scientific discovery itself? The respective chapters in this book provide readers with answers to these questions. They focus on a set of issues that are essential to the development of types of reasoning for advancing knowledge, such as models for both revolutionary findings and paradigm shifts; ways of rationally addressing scientific disagreement, e.g. when a revolutionary discovery sparks considerable disagreement inside the scientific community; frameworks for both discovery and inference methods; and heuristics for economics and the social sciences.
Directory of Open Access Journals (Sweden)
Mohammad Taghi Ameli
2012-01-01
Full Text Available Transmission Network Expansion Planning (TNEP is a basic part of power network planning that determines where, when and how many new transmission lines should be added to the network. So, the TNEP is an optimization problem in which the expansion purposes are optimized. Artificial Intelligence (AI tools such as Genetic Algorithm (GA, Simulated Annealing (SA, Tabu Search (TS and Artificial Neural Networks (ANNs are methods used for solving the TNEP problem. Today, by using the hybridization models of AI tools, we can solve the TNEP problem for large-scale systems, which shows the effectiveness of utilizing such models. In this paper, a new approach to the hybridization model of Probabilistic Neural Networks (PNNs and Harmony Search Algorithm (HSA was used to solve the TNEP problem. Finally, by considering the uncertain role of the load based on a scenario technique, this proposed model was tested on the Garver’s 6-bus network.
A heuristic forecasting model for stock decision
Zhang, D.; Jiang, Q.; Li, X.
2005-01-01
This paper describes a heuristic forecasting model based on neural networks for stock decision-making. Some heuristic strategies are presented for enhancing the learning capability of neural networks and obtaining better trading performance. The China Shanghai Composite Index is used as case study. The forecasting model can forecast the buying and selling signs according to the result of neural network prediction. Results are compared with a benchmark buy-and-hold strategy. ...
A heuristic algorithm for a multi-product four-layer capacitated location-routing problem
Directory of Open Access Journals (Sweden)
Mohsen Hamidi
2014-01-01
Full Text Available The purpose of this study is to solve a complex multi-product four-layer capacitated location-routing problem (LRP in which two specific constraints are taken into account: 1 plants have limited production capacity, and 2 central depots have limited capacity for storing and transshipping products. The LRP represents a multi-product four-layer distribution network that consists of plants, central depots, regional depots, and customers. A heuristic algorithm is developed to solve the four-layer LRP. The heuristic uses GRASP (Greedy Randomized Adaptive Search Procedure and two probabilistic tabu search strategies of intensification and diversification to tackle the problem. Results show that the heuristic solves the problem effectively.
Modeling reproductive decisions with simple heuristics
Directory of Open Access Journals (Sweden)
Peter Todd
2013-10-01
Full Text Available BACKGROUND Many of the reproductive decisions that humans make happen without much planning or forethought, arising instead through the use of simple choice rules or heuristics that involve relatively little information and processing. Nonetheless, these heuristic-guided decisions are typically beneficial, owing to humans' ecological rationality - the evolved fit between our constrained decision mechanisms and the adaptive problems we face. OBJECTIVE This paper reviews research on the ecological rationality of human decision making in the domain of reproduction, showing how fertility-related decisions are commonly made using various simple heuristics matched to the structure of the environment in which they are applied, rather than being made with information-hungry mechanisms based on optimization or rational economic choice. METHODS First, heuristics for sequential mate search are covered; these heuristics determine when to stop the process of mate search by deciding that a good-enough mate who is also mutually interested has been found, using a process of aspiration-level setting and assessing. These models are tested via computer simulation and comparison to demographic age-at-first-marriage data. Next, a heuristic process of feature-based mate comparison and choice is discussed, in which mate choices are determined by a simple process of feature-matching with relaxing standards over time. Parental investment heuristics used to divide resources among offspring are summarized. Finally, methods for testing the use of such mate choice heuristics in a specific population over time are then described.
Complete local search with memory
Ghosh, D.; Sierksma, G.
2000-01-01
Neighborhood search heuristics like local search and its variants are some of the most popular approaches to solve discrete optimization problems of moderate to large size. Apart from tabu search, most of these heuristics are memoryless. In this paper we introduce a new neighborhood search heuristic
A versatile sensor network for urban search and rescue operations
Känsälä, Klaus; Korkalainen, Marko; Mäyrä, Aki
2011-11-01
The presentation is based in the research work carried out in EU funded project SGL for USaR (Second Generation Locator for Urban Search and Rescue Operations). The aim of this project is to develop wireless standalone communication system with embedded sensor network which can be globally used in rescue operations after accidents or terrorist attacks. The system should be able to operate without external support for several days: it should have autonomy with power supply and communication. The devices must be lightweight so that rescue team can easily carry them and finally they must be easy to install and use. The range of the wireless communication must cover an area of several square kilometers. The embedded sensor system must be able to detect sings of life but also detect hazards threatening the rescue operators thus preventing more accidents. It should also support positioning and digital mapping as well as the management of the search and rescue operation. This sensor network for urban search and rescue operations has been tested on a field conditions and it has proven to be robust and reliable and provides an energy efficient way of communication and positioning on harsh conditions.
An LP-based heuristic for the fixed charge transportation problem
DEFF Research Database (Denmark)
Klose, Andreas
2007-01-01
The fixed charge transportation problem consists in finding a minimum cost network flow from a set of suppliers to a set of customers. Beside costs proportional to quantities transported, transportation costs also include a fixed charge. The paper describes a linear programming based heuristic...... approach for computing lower and upper bounds on the minimal cost. To this end, the LP relaxation is iteratively strengthened by means of adding cuts; in each iteration the current LP solution is then used to guide a local search heuristic. In addition to standard polyhedral cuts as lifted cover...
Frequency Assignments for HFDF Receivers in a Search and Rescue Network
1990-03-01
SAR problem where whether or not a signal is detected by RS or HFDF at the various stations is described by probabilities. Daskin assumes the...allows the problem to be formulated with a linear objective function (6:52-53). Daskin also developed a heuristic solution algorithm to solve this...en CM in o CM CM < I Q < - -.~- -^ * . . . ■ . ,■ . :ST.-.r . 5 Frequency Assignments for HFDF Receivers in a Search and
Locating Direction Finders in a Generalized Search and Rescue Network
1991-03-01
David A . Drake and Alfred B. Marsb. Conv-ersation at NationalI Security Agenc, 29 September 1990. 7. Daskin , Mark S. " A M-admum Fpeced Co-:efing...91 7 19 134 .flT/GORjEnSj9I-M LOCATING DIRECTION FIND’RS IN A GENERALIZED SEARCH AND RESCUE NETWORK THESIS Jean M. Steppe Captain, USAF AFIT/GOR/EN S...91-Mk-7 APPROVED FOR PUBLIC RELI ASE: DISTRIBUTION UNLIMITED. 1191-05734 .. 91.. .7 19 134 i i . nMIGOR4M.S/91-MI LOCATING DIRECTION FINDERS IW A
Path searching in switching networks using cellular algorithm
Energy Technology Data Exchange (ETDEWEB)
Koczy, L T; Langer, J; Legendi, T
1981-01-01
After a survey of the important statements in the paper A Mathematical Model of Path Searching in General Type Switching Networks (see IBID., vol.25, no.1, p.31-43, 1981) the authors consider the possible implementation for cellular automata of the algorithm introduced there. The cellular field used consists of 5 neighbour 8 state cells. Running times required by a traditional serial processor and by the cellular field, respectively, are compared. By parallel processing this running time can be reduced. 5 references.
Directory of Open Access Journals (Sweden)
Mohammad Dreidy
2017-01-01
Full Text Available Recently, several environmental problems are beginning to affect all aspects of life. For this reason, many governments and international agencies have expressed great interest in using more renewable energy sources (RESs. However, integrating more RESs with distribution networks resulted in several critical problems vis-à-vis the frequency stability, which might lead to a complete blackout if not properly treated. Therefore, this paper proposed a new Under Frequency Load Shedding (UFLS scheme for islanding distribution network. This scheme uses three meta-heuristics techniques, binary evolutionary programming (BEP, Binary genetic algorithm (BGA, and Binary particle swarm optimization (BPSO, to determine the optimal combination of loads that needs to be shed from the islanded distribution network. Compared with existing UFLS schemes using fixed priority loads, the proposed scheme has the ability to restore the network frequency without any overshooting. Furthermore, in terms of execution time, the simulation results show that the BEP technique is fast enough to shed the optimal combination of loads compared with BGA and BPSO techniques.
Information spread of emergency events: path searching on social networks.
Dai, Weihui; Hu, Hongzhi; Wu, Tunan; Dai, Yonghui
2014-01-01
Emergency has attracted global attentions of government and the public, and it will easily trigger a series of serious social problems if it is not supervised effectively in the dissemination process. In the Internet world, people communicate with each other and form various virtual communities based on social networks, which lead to a complex and fast information spread pattern of emergency events. This paper collects Internet data based on data acquisition and topic detection technology, analyzes the process of information spread on social networks, describes the diffusions and impacts of that information from the perspective of random graph, and finally seeks the key paths through an improved IBF algorithm. Application cases have shown that this algorithm can search the shortest spread paths efficiently, which may help us to guide and control the information dissemination of emergency events on early warning.
Information Spread of Emergency Events: Path Searching on Social Networks
Directory of Open Access Journals (Sweden)
Weihui Dai
2014-01-01
Full Text Available Emergency has attracted global attentions of government and the public, and it will easily trigger a series of serious social problems if it is not supervised effectively in the dissemination process. In the Internet world, people communicate with each other and form various virtual communities based on social networks, which lead to a complex and fast information spread pattern of emergency events. This paper collects Internet data based on data acquisition and topic detection technology, analyzes the process of information spread on social networks, describes the diffusions and impacts of that information from the perspective of random graph, and finally seeks the key paths through an improved IBF algorithm. Application cases have shown that this algorithm can search the shortest spread paths efficiently, which may help us to guide and control the information dissemination of emergency events on early warning.
Virtual Network Embedding via Monte Carlo Tree Search.
Haeri, Soroush; Trajkovic, Ljiljana
2018-02-01
Network virtualization helps overcome shortcomings of the current Internet architecture. The virtualized network architecture enables coexistence of multiple virtual networks (VNs) on an existing physical infrastructure. VN embedding (VNE) problem, which deals with the embedding of VN components onto a physical network, is known to be -hard. In this paper, we propose two VNE algorithms: MaVEn-M and MaVEn-S. MaVEn-M employs the multicommodity flow algorithm for virtual link mapping while MaVEn-S uses the shortest-path algorithm. They formalize the virtual node mapping problem by using the Markov decision process (MDP) framework and devise action policies (node mappings) for the proposed MDP using the Monte Carlo tree search algorithm. Service providers may adjust the execution time of the MaVEn algorithms based on the traffic load of VN requests. The objective of the algorithms is to maximize the profit of infrastructure providers. We develop a discrete event VNE simulator to implement and evaluate performance of MaVEn-M, MaVEn-S, and several recently proposed VNE algorithms. We introduce profitability as a new performance metric that captures both acceptance and revenue to cost ratios. Simulation results show that the proposed algorithms find more profitable solutions than the existing algorithms. Given additional computation time, they further improve embedding solutions.
Automatic Generation of Heuristics for Scheduling
Morris, Robert A.; Bresina, John L.; Rodgers, Stuart M.
1997-01-01
This paper presents a technique, called GenH, that automatically generates search heuristics for scheduling problems. The impetus for developing this technique is the growing consensus that heuristics encode advice that is, at best, useful in solving most, or typical, problem instances, and, at worst, useful in solving only a narrowly defined set of instances. In either case, heuristic problem solvers, to be broadly applicable, should have a means of automatically adjusting to the idiosyncrasies of each problem instance. GenH generates a search heuristic for a given problem instance by hill-climbing in the space of possible multi-attribute heuristics, where the evaluation of a candidate heuristic is based on the quality of the solution found under its guidance. We present empirical results obtained by applying GenH to the real world problem of telescope observation scheduling. These results demonstrate that GenH is a simple and effective way of improving the performance of an heuristic scheduler.
de Jong, Menno D.T.; van der Geest, Thea
2000-01-01
This article is intended to make Web designers more aware of the qualities of heuristics by presenting a framework for analyzing the characteristics of heuristics. The framework is meant to support Web designers in choosing among alternative heuristics. We hope that better knowledge of the
Intelligent System Design Using Hyper-Heuristics
Directory of Open Access Journals (Sweden)
Nelishia Pillay
2015-07-01
Full Text Available Determining the most appropriate search method or artificial intelligence technique to solve a problem is not always evident and usually requires implementation of the different approaches to ascertain this. In some instances a single approach may not be sufficient and hybridization of methods may be needed to find a solution. This process can be time consuming. The paper proposes the use of hyper-heuristics as a means of identifying which method or combination of approaches is needed to solve a problem. The research presented forms part of a larger initiative aimed at using hyper-heuristics to develop intelligent hybrid systems. As an initial step in this direction, this paper investigates this for classical artificial intelligence uninformed and informed search methods, namely depth first search, breadth first search, best first search, hill-climbing and the A* algorithm. The hyper-heuristic determines the search or combination of searches to use to solve the problem. An evolutionary algorithm hyper-heuristic is implemented for this purpose and its performance is evaluated in solving the 8-Puzzle, Towers of Hanoi and Blocks World problems. The hyper-heuristic employs a generational evolutionary algorithm which iteratively refines an initial population using tournament selection to select parents, which the mutation and crossover operators are applied to for regeneration. The hyper-heuristic was able to identify a search or combination of searches to produce solutions for the twenty 8-Puzzle, five Towers of Hanoi and five Blocks World problems. Furthermore, admissible solutions were produced for all problem instances.
A HYBRID HEURISTIC ALGORITHM FOR THE CLUSTERED TRAVELING SALESMAN PROBLEM
Directory of Open Access Journals (Sweden)
Mário Mestria
2016-04-01
Full Text Available ABSTRACT This paper proposes a hybrid heuristic algorithm, based on the metaheuristics Greedy Randomized Adaptive Search Procedure, Iterated Local Search and Variable Neighborhood Descent, to solve the Clustered Traveling Salesman Problem (CTSP. Hybrid Heuristic algorithm uses several variable neighborhood structures combining the intensification (using local search operators and diversification (constructive heuristic and perturbation routine. In the CTSP, the vertices are partitioned into clusters and all vertices of each cluster have to be visited contiguously. The CTSP is -hard since it includes the well-known Traveling Salesman Problem (TSP as a special case. Our hybrid heuristic is compared with three heuristics from the literature and an exact method. Computational experiments are reported for different classes of instances. Experimental results show that the proposed hybrid heuristic obtains competitive results within reasonable computational time.
Social biases determine spatiotemporal sparseness of ciliate mating heuristics.
Clark, Kevin B
2012-01-01
Ciliates become highly social, even displaying animal-like qualities, in the joint presence of aroused conspecifics and nonself mating pheromones. Pheromone detection putatively helps trigger instinctual and learned courtship and dominance displays from which social judgments are made about the availability, compatibility, and fitness representativeness or likelihood of prospective mates and rivals. In earlier studies, I demonstrated the heterotrich Spirostomum ambiguum improves mating competence by effecting preconjugal strategies and inferences in mock social trials via behavioral heuristics built from Hebbian-like associative learning. Heuristics embody serial patterns of socially relevant action that evolve into ordered, topologically invariant computational networks supporting intra- and intermate selection. S. ambiguum employs heuristics to acquire, store, plan, compare, modify, select, and execute sets of mating propaganda. One major adaptive constraint over formation and use of heuristics involves a ciliate's initial subjective bias, responsiveness, or preparedness, as defined by Stevens' Law of subjective stimulus intensity, for perceiving the meaningfulness of mechanical pressures accompanying cell-cell contacts and additional perimating events. This bias controls durations and valences of nonassociative learning, search rates for appropriate mating strategies, potential net reproductive payoffs, levels of social honesty and deception, successful error diagnosis and correction of mating signals, use of insight or analysis to solve mating dilemmas, bioenergetics expenditures, and governance of mating decisions by classical or quantum statistical mechanics. I now report this same social bias also differentially affects the spatiotemporal sparseness, as measured with metric entropy, of ciliate heuristics. Sparseness plays an important role in neural systems through optimizing the specificity, efficiency, and capacity of memory representations. The present
Social biases determine spatiotemporal sparseness of ciliate mating heuristics
2012-01-01
Ciliates become highly social, even displaying animal-like qualities, in the joint presence of aroused conspecifics and nonself mating pheromones. Pheromone detection putatively helps trigger instinctual and learned courtship and dominance displays from which social judgments are made about the availability, compatibility, and fitness representativeness or likelihood of prospective mates and rivals. In earlier studies, I demonstrated the heterotrich Spirostomum ambiguum improves mating competence by effecting preconjugal strategies and inferences in mock social trials via behavioral heuristics built from Hebbian-like associative learning. Heuristics embody serial patterns of socially relevant action that evolve into ordered, topologically invariant computational networks supporting intra- and intermate selection. S. ambiguum employs heuristics to acquire, store, plan, compare, modify, select, and execute sets of mating propaganda. One major adaptive constraint over formation and use of heuristics involves a ciliate’s initial subjective bias, responsiveness, or preparedness, as defined by Stevens’ Law of subjective stimulus intensity, for perceiving the meaningfulness of mechanical pressures accompanying cell-cell contacts and additional perimating events. This bias controls durations and valences of nonassociative learning, search rates for appropriate mating strategies, potential net reproductive payoffs, levels of social honesty and deception, successful error diagnosis and correction of mating signals, use of insight or analysis to solve mating dilemmas, bioenergetics expenditures, and governance of mating decisions by classical or quantum statistical mechanics. I now report this same social bias also differentially affects the spatiotemporal sparseness, as measured with metric entropy, of ciliate heuristics. Sparseness plays an important role in neural systems through optimizing the specificity, efficiency, and capacity of memory representations. The
6th International Conference on Network Analysis
Nikolaev, Alexey; Pardalos, Panos; Prokopyev, Oleg
2017-01-01
This valuable source for graduate students and researchers provides a comprehensive introduction to current theories and applications in optimization methods and network models. Contributions to this book are focused on new efficient algorithms and rigorous mathematical theories, which can be used to optimize and analyze mathematical graph structures with massive size and high density induced by natural or artificial complex networks. Applications to social networks, power transmission grids, telecommunication networks, stock market networks, and human brain networks are presented. Chapters in this book cover the following topics: Linear max min fairness Heuristic approaches for high-quality solutions Efficient approaches for complex multi-criteria optimization problems Comparison of heuristic algorithms New heuristic iterative local search Power in network structures Clustering nodes in random graphs Power transmission grid structure Network decomposition problems Homogeneity hypothesis testing Network analy...
Training Feedforward Neural Networks Using Symbiotic Organisms Search Algorithm
Directory of Open Access Journals (Sweden)
Haizhou Wu
2016-01-01
Full Text Available Symbiotic organisms search (SOS is a new robust and powerful metaheuristic algorithm, which stimulates the symbiotic interaction strategies adopted by organisms to survive and propagate in the ecosystem. In the supervised learning area, it is a challenging task to present a satisfactory and efficient training algorithm for feedforward neural networks (FNNs. In this paper, SOS is employed as a new method for training FNNs. To investigate the performance of the aforementioned method, eight different datasets selected from the UCI machine learning repository are employed for experiment and the results are compared among seven metaheuristic algorithms. The results show that SOS performs better than other algorithms for training FNNs in terms of converging speed. It is also proven that an FNN trained by the method of SOS has better accuracy than most algorithms compared.
Biobotic insect swarm based sensor networks for search and rescue
Bozkurt, Alper; Lobaton, Edgar; Sichitiu, Mihail; Hedrick, Tyson; Latif, Tahmid; Dirafzoon, Alireza; Whitmire, Eric; Verderber, Alexander; Marin, Juan; Xiong, Hong
2014-06-01
The potential benefits of distributed robotics systems in applications requiring situational awareness, such as search-and-rescue in emergency situations, are indisputable. The efficiency of such systems requires robotic agents capable of coping with uncertain and dynamic environmental conditions. For example, after an earthquake, a tremendous effort is spent for days to reach to surviving victims where robotic swarms or other distributed robotic systems might play a great role in achieving this faster. However, current technology falls short of offering centimeter scale mobile agents that can function effectively under such conditions. Insects, the inspiration of many robotic swarms, exhibit an unmatched ability to navigate through such environments while successfully maintaining control and stability. We have benefitted from recent developments in neural engineering and neuromuscular stimulation research to fuse the locomotory advantages of insects with the latest developments in wireless networking technologies to enable biobotic insect agents to function as search-and-rescue agents. Our research efforts towards this goal include development of biobot electronic backpack technologies, establishment of biobot tracking testbeds to evaluate locomotion control efficiency, investigation of biobotic control strategies with Gromphadorhina portentosa cockroaches and Manduca sexta moths, establishment of a localization and communication infrastructure, modeling and controlling collective motion by learning deterministic and stochastic motion models, topological motion modeling based on these models, and the development of a swarm robotic platform to be used as a testbed for our algorithms.
Directory of Open Access Journals (Sweden)
Markowski Marcin
2017-09-01
Full Text Available In recent years elastic optical networks have been perceived as a prospective choice for future optical networks due to better adjustment and utilization of optical resources than is the case with traditional wavelength division multiplexing networks. In the paper we investigate the elastic architecture as the communication network for distributed data centers. We address the problems of optimization of routing and spectrum assignment for large-scale computing systems based on an elastic optical architecture; particularly, we concentrate on anycast user to data center traffic optimization. We assume that computational resources of data centers are limited. For this offline problems we formulate the integer linear programming model and propose a few heuristics, including a meta-heuristic algorithm based on a tabu search method. We report computational results, presenting the quality of approximate solutions and efficiency of the proposed heuristics, and we also analyze and compare some data center allocation scenarios.
Gigerenzer, Gerd; Gaissmaier, Wolfgang
2011-01-01
As reflected in the amount of controversy, few areas in psychology have undergone such dramatic conceptual changes in the past decade as the emerging science of heuristics. Heuristics are efficient cognitive processes, conscious or unconscious, that ignore part of the information. Because using heuristics saves effort, the classical view has been that heuristic decisions imply greater errors than do "rational" decisions as defined by logic or statistical models. However, for many decisions, the assumptions of rational models are not met, and it is an empirical rather than an a priori issue how well cognitive heuristics function in an uncertain world. To answer both the descriptive question ("Which heuristics do people use in which situations?") and the prescriptive question ("When should people rely on a given heuristic rather than a complex strategy to make better judgments?"), formal models are indispensable. We review research that tests formal models of heuristic inference, including in business organizations, health care, and legal institutions. This research indicates that (a) individuals and organizations often rely on simple heuristics in an adaptive way, and (b) ignoring part of the information can lead to more accurate judgments than weighting and adding all information, for instance for low predictability and small samples. The big future challenge is to develop a systematic theory of the building blocks of heuristics as well as the core capacities and environmental structures these exploit.
Mandal, Sudip; Saha, Goutam; Pal, Rajat Kumar
2017-08-01
Correct inference of genetic regulations inside a cell from the biological database like time series microarray data is one of the greatest challenges in post genomic era for biologists and researchers. Recurrent Neural Network (RNN) is one of the most popular and simple approach to model the dynamics as well as to infer correct dependencies among genes. Inspired by the behavior of social elephants, we propose a new metaheuristic namely Elephant Swarm Water Search Algorithm (ESWSA) to infer Gene Regulatory Network (GRN). This algorithm is mainly based on the water search strategy of intelligent and social elephants during drought, utilizing the different types of communication techniques. Initially, the algorithm is tested against benchmark small and medium scale artificial genetic networks without and with presence of different noise levels and the efficiency was observed in term of parametric error, minimum fitness value, execution time, accuracy of prediction of true regulation, etc. Next, the proposed algorithm is tested against the real time gene expression data of Escherichia Coli SOS Network and results were also compared with others state of the art optimization methods. The experimental results suggest that ESWSA is very efficient for GRN inference problem and performs better than other methods in many ways.
A grouping hyper-heuristic framework: application on graph colouring
Elhag, Anas; Özcan, Ender
2015-01-01
Grouping problems are hard to solve combinatorial optimisation problems which require partitioning of objects into a minimum number of subsets while a given objective is simultaneously optimised. Selection hyper-heuristics are high level general purpose search methodologies that operate on a space formed by a set of low level heuristics rather than solutions. Most of the recently proposed selection hyper-heuristics are iterative and make use of two key methods which are employed successively;...
Adaptive Large Neighbourhood Search
DEFF Research Database (Denmark)
Røpke, Stefan
Large neighborhood search is a metaheuristic that has gained popularity in recent years. The heuristic repeatedly moves from solution to solution by first partially destroying the solution and then repairing it. The best solution observed during this search is presented as the final solution....... This tutorial introduces the large neighborhood search metaheuristic and the variant adaptive large neighborhood search that dynamically tunes parameters of the heuristic while it is running. Both heuristics belong to a broader class of heuristics that are searching a solution space using very large...... neighborhoods. The tutorial also present applications of the adaptive large neighborhood search, mostly related to vehicle routing problems for which the heuristic has been extremely successful. We discuss how the heuristic can be parallelized and thereby take advantage of modern desktop computers...
Intelligent process mapping through systematic improvement of heuristics
Ieumwananonthachai, Arthur; Aizawa, Akiko N.; Schwartz, Steven R.; Wah, Benjamin W.; Yan, Jerry C.
1992-01-01
The present system for automatic learning/evaluation of novel heuristic methods applicable to the mapping of communication-process sets on a computer network has its basis in the testing of a population of competing heuristic methods within a fixed time-constraint. The TEACHER 4.1 prototype learning system implemented or learning new postgame analysis heuristic methods iteratively generates and refines the mappings of a set of communicating processes on a computer network. A systematic exploration of the space of possible heuristic methods is shown to promise significant improvement.
Social Networks in the Labour Market--The Sociology of Job Search.
Carson, Edgar
1989-01-01
Reviews literature on nature of social networks in labor market and their implications for job search strategies of dislocated workers. Suggests issues for further research: (1) how the job search changes as unemployment increases; (2) the role of social networks in the labor market; and (3) claims about security and conditions of jobs found…
Directory of Open Access Journals (Sweden)
I PUTU SUDANA
2011-01-01
Full Text Available Prinsip heuristics tidak dapat dikatakan sebagai sebuah pendekatanpengambilan keputusan yang non-rasional, karena penerapan atau penggunaanyang unconscious atau subtle mind tidak dapat dianggap sebagai tindakanyang irrational. Dengan alasan tersebut, terdapat cukup alasan untukmenyatakan bahwa pengklasifikasian pendekatan-pendekatan keputusansemestinya menggunakan terminologi analytical dan experiential, dan bukanmemakai istilah rational dan non-rational seperti yang umumnya diikuti.Penerapan pendekatan heuristics dapat ditemukan pada berbagai disiplin,termasuk bisnis dan akuntansi. Topik heuristics semestinya mendapatperhatian yang cukup luas dari para periset di bidang akuntansi. Bidangbehavioral research in accounting menawarkan banyak kemungkinan untukdikaji, karena prinsip heuristics bertautan erat dengan aspek manusia sebagaipelaku dalam pengambilan keputusan.
Directory of Open Access Journals (Sweden)
De-Xin Yu
2013-01-01
Full Text Available Combined with improved Pallottino parallel algorithm, this paper proposes a large-scale route search method, which considers travelers’ route choice preferences. And urban road network is decomposed into multilayers effectively. Utilizing generalized travel time as road impedance function, the method builds a new multilayer and multitasking road network data storage structure with object-oriented class definition. Then, the proposed path search algorithm is verified by using the real road network of Guangzhou city as an example. By the sensitive experiments, we make a comparative analysis of the proposed path search method with the current advanced optimal path algorithms. The results demonstrate that the proposed method can increase the road network search efficiency by more than 16% under different search proportion requests, node numbers, and computing process numbers, respectively. Therefore, this method is a great breakthrough in the guidance field of urban road network.
A review of parameters and heuristics for guiding metabolic pathfinding.
Kim, Sarah M; Peña, Matthew I; Moll, Mark; Bennett, George N; Kavraki, Lydia E
2017-09-15
Recent developments in metabolic engineering have led to the successful biosynthesis of valuable products, such as the precursor of the antimalarial compound, artemisinin, and opioid precursor, thebaine. Synthesizing these traditionally plant-derived compounds in genetically modified yeast cells introduces the possibility of significantly reducing the total time and resources required for their production, and in turn, allows these valuable compounds to become cheaper and more readily available. Most biosynthesis pathways used in metabolic engineering applications have been discovered manually, requiring a tedious search of existing literature and metabolic databases. However, the recent rapid development of available metabolic information has enabled the development of automated approaches for identifying novel pathways. Computer-assisted pathfinding has the potential to save biochemists time in the initial discovery steps of metabolic engineering. In this paper, we review the parameters and heuristics used to guide the search in recent pathfinding algorithms. These parameters and heuristics capture information on the metabolic network structure, compound structures, reaction features, and organism-specificity of pathways. No one metabolic pathfinding algorithm or search parameter stands out as the best to use broadly for solving the pathfinding problem, as each method and parameter has its own strengths and shortcomings. As assisted pathfinding approaches continue to become more sophisticated, the development of better methods for visualizing pathway results and integrating these results into existing metabolic engineering practices is also important for encouraging wider use of these pathfinding methods.
Heuristic Inquiry: A Personal Journey of Acculturation and Identity Reconstruction
Djuraskovic, Ivana; Arthur, Nancy
2010-01-01
Heuristic methodology attempts to discover the nature and meaning of phenomenon through internal self-search, exploration, and discovery. Heuristic methodology encourages the researcher to explore and pursue the creative journey that begins inside one's being and ultimately uncovers its direction and meaning through internal discovery (Douglass &…
Folksonomical P2P File Sharing Networks Using Vectorized KANSEI Information as Search Tags
Ohnishi, Kei; Yoshida, Kaori; Oie, Yuji
We present the concept of folksonomical peer-to-peer (P2P) file sharing networks that allow participants (peers) to freely assign structured search tags to files. These networks are similar to folksonomies in the present Web from the point of view that users assign search tags to information distributed over a network. As a concrete example, we consider an unstructured P2P network using vectorized Kansei (human sensitivity) information as structured search tags for file search. Vectorized Kansei information as search tags indicates what participants feel about their files and is assigned by the participant to each of their files. A search query also has the same form of search tags and indicates what participants want to feel about files that they will eventually obtain. A method that enables file search using vectorized Kansei information is the Kansei query-forwarding method, which probabilistically propagates a search query to peers that are likely to hold more files having search tags that are similar to the query. The similarity between the search query and the search tags is measured in terms of their dot product. The simulation experiments examine if the Kansei query-forwarding method can provide equal search performance for all peers in a network in which only the Kansei information and the tendency with respect to file collection are different among all of the peers. The simulation results show that the Kansei query forwarding method and a random-walk-based query forwarding method, for comparison, work effectively in different situations and are complementary. Furthermore, the Kansei query forwarding method is shown, through simulations, to be superior to or equal to the random-walk based one in terms of search speed.
Learning Bayesian network classifiers for credit scoring using Markov Chain Monte Carlo search
Baesens, B.; Egmont-Petersen, M.; Castelo, R.; Vanthienen, J.
2001-01-01
In this paper, we will evaluate the power and usefulness of Bayesian network classifiers for credit scoring. Various types of Bayesian network classifiers will be evaluated and contrasted including unrestricted Bayesian network classifiers learnt using Markov Chain Monte Carlo (MCMC) search.
Case-Based Reasoning as a Heuristic Selector in a Hyper-Heuristic for Course Timetabling Problems
Petrovic, Sanja; Qu, Rong
2002-01-01
This paper studies Knowledge Discovery (KD) using Tabu Search and Hill Climbing within Case-Based Reasoning (CBR) as a hyper-heuristic method for course timetabling problems. The aim of the hyper-heuristic is to choose the best heuristic(s) for given timetabling problems according to the knowledge stored in the case base. KD in CBR is a 2-stage iterative process on both case representation and the case base. Experimental results are analysed and related research issues for future work are dis...
Using tree diversity to compare phylogenetic heuristics.
Sul, Seung-Jin; Matthews, Suzanne; Williams, Tiffani L
2009-04-29
Evolutionary trees are family trees that represent the relationships between a group of organisms. Phylogenetic heuristics are used to search stochastically for the best-scoring trees in tree space. Given that better tree scores are believed to be better approximations of the true phylogeny, traditional evaluation techniques have used tree scores to determine the heuristics that find the best scores in the fastest time. We develop new techniques to evaluate phylogenetic heuristics based on both tree scores and topologies to compare Pauprat and Rec-I-DCM3, two popular Maximum Parsimony search algorithms. Our results show that although Pauprat and Rec-I-DCM3 find the trees with the same best scores, topologically these trees are quite different. Furthermore, the Rec-I-DCM3 trees cluster distinctly from the Pauprat trees. In addition to our heatmap visualizations of using parsimony scores and the Robinson-Foulds distance to compare best-scoring trees found by the two heuristics, we also develop entropy-based methods to show the diversity of the trees found. Overall, Pauprat identifies more diverse trees than Rec-I-DCM3. Overall, our work shows that there is value to comparing heuristics beyond the parsimony scores that they find. Pauprat is a slower heuristic than Rec-I-DCM3. However, our work shows that there is tremendous value in using Pauprat to reconstruct trees-especially since it finds identical scoring but topologically distinct trees. Hence, instead of discounting Pauprat, effort should go in improving its implementation. Ultimately, improved performance measures lead to better phylogenetic heuristics and will result in better approximations of the true evolutionary history of the organisms of interest.
Directory of Open Access Journals (Sweden)
Aleksander Mendyk
2015-01-01
Full Text Available The purpose of this work was to develop a mathematical model of the drug dissolution (Q from the solid lipid extrudates based on the empirical approach. Artificial neural networks (ANNs and genetic programming (GP tools were used. Sensitivity analysis of ANNs provided reduction of the original input vector. GP allowed creation of the mathematical equation in two major approaches: (1 direct modeling of Q versus extrudate diameter (d and the time variable (t and (2 indirect modeling through Weibull equation. ANNs provided also information about minimum achievable generalization error and the way to enhance the original dataset used for adjustment of the equations’ parameters. Two inputs were found important for the drug dissolution: d and t. The extrudates length (L was found not important. Both GP modeling approaches allowed creation of relatively simple equations with their predictive performance comparable to the ANNs (root mean squared error (RMSE from 2.19 to 2.33. The direct mode of GP modeling of Q versus d and t resulted in the most robust model. The idea of how to combine ANNs and GP in order to escape ANNs’ black-box drawback without losing their superior predictive performance was demonstrated. Open Source software was used to deliver the state-of-the-art models and modeling strategies.
Nearest Neighbor Search in the Metric Space of a Complex Network for Community Detection
Directory of Open Access Journals (Sweden)
Suman Saha
2016-03-01
Full Text Available The objective of this article is to bridge the gap between two important research directions: (1 nearest neighbor search, which is a fundamental computational tool for large data analysis; and (2 complex network analysis, which deals with large real graphs but is generally studied via graph theoretic analysis or spectral analysis. In this article, we have studied the nearest neighbor search problem in a complex network by the development of a suitable notion of nearness. The computation of efficient nearest neighbor search among the nodes of a complex network using the metric tree and locality sensitive hashing (LSH are also studied and experimented. For evaluation of the proposed nearest neighbor search in a complex network, we applied it to a network community detection problem. Experiments are performed to verify the usefulness of nearness measures for the complex networks, the role of metric tree and LSH to compute fast and approximate node nearness and the the efficiency of community detection using nearest neighbor search. We observed that nearest neighbor between network nodes is a very efficient tool to explore better the community structure of the real networks. Several efficient approximation schemes are very useful for large networks, which hardly made any degradation of results, whereas they save lot of computational times, and nearest neighbor based community detection approach is very competitive in terms of efficiency and time.
The role of heuristics in automated theorem proving J.A Robinson's resolution principle
Coderschi, Roberto
1996-01-01
The aim of this paper is to show how J.A. Robinson's resolution principle was perceived and discussed in the AI community between the mid sixties and the first seventies. During this time the so called ``heuristic search paradigm" was still influential in the AI community, and both resolution principle and certain resolution based, apparently human-like, search strategies were matched with those problem solving heuristic procedures which were representative of the AI heuristic search paradigm.
On the network-based emulation of human visual search
Gerrissen, J.F.
1991-01-01
We describe the design of a computer emulator of human visual search. The emulator mechanism is eventually meant to support ergonomic assessment of the effect of display structure and protocol on search performance. As regards target identification and localization, it mimics a number of
Does the inherence heuristic take us to psychological essentialism?
Marmodoro, Anna; Murphy, Robin A; Baker, A G
2014-10-01
We argue that the claim that essence-based causal explanations emerge, hydra-like, from an inherence heuristic is incomplete. No plausible mechanism for the transition from concrete properties, or cues, to essences is provided. Moreover, the fundamental shotgun and storytelling mechanisms of the inherence heuristic are not clearly enough specified to distinguish them, developmentally, from associative or causal networks.
Pitfalls in Teaching Judgment Heuristics
Shepperd, James A.; Koch, Erika J.
2005-01-01
Demonstrations of judgment heuristics typically focus on how heuristics can lead to poor judgments. However, exclusive focus on the negative consequences of heuristics can prove problematic. We illustrate the problem with the representativeness heuristic and present a study (N = 45) that examined how examples influence understanding of the…
An analysis of generalised heuristics for vehicle routing and personnel rostering problems
Mustafa Misir; Pieter Smet; Greet Vanden Berghe
2015-01-01
The present study investigates the performance of heuristics while solving problems with routing and rostering characteristics. The target problems include scheduling and routing home care, security and maintenance personnel. In analysing the behaviour of the heuristics and determining the requirements for solving the aforementioned problems, the winning hyper-heuristic from the first International Cross-domain Heuristic Search Challenge (CHeSC 2011) is employed. The completely new applicatio...
Mandal, Sudip; Khan, Abhinandan; Saha, Goutam; Pal, Rajat K
2016-01-01
The accurate prediction of genetic networks using computational tools is one of the greatest challenges in the postgenomic era. Recurrent Neural Network is one of the most popular but simple approaches to model the network dynamics from time-series microarray data. To date, it has been successfully applied to computationally derive small-scale artificial and real-world genetic networks with high accuracy. However, they underperformed for large-scale genetic networks. Here, a new methodology has been proposed where a hybrid Cuckoo Search-Flower Pollination Algorithm has been implemented with Recurrent Neural Network. Cuckoo Search is used to search the best combination of regulators. Moreover, Flower Pollination Algorithm is applied to optimize the model parameters of the Recurrent Neural Network formalism. Initially, the proposed method is tested on a benchmark large-scale artificial network for both noiseless and noisy data. The results obtained show that the proposed methodology is capable of increasing the inference of correct regulations and decreasing false regulations to a high degree. Secondly, the proposed methodology has been validated against the real-world dataset of the DNA SOS repair network of Escherichia coli. However, the proposed method sacrifices computational time complexity in both cases due to the hybrid optimization process.
International Nuclear Information System (INIS)
Kauffman, L.H.
1990-01-01
This paper gives a heuristic derivation of the skein relation for the Homfly polynomial in an integral formalism. The derivation is formally correct but highly simplified. In the light of Witten's proposal for invariants of links via functional integrals, it is useful to have a formal pattern to compare with the complexities of the full approach. The formalism is a heuristic. However, it is closely related to the actual structure of the Witten functional integral
Kentzoglanakis, Kyriakos; Poole, Matthew
2012-01-01
In this paper, we investigate the problem of reverse engineering the topology of gene regulatory networks from temporal gene expression data. We adopt a computational intelligence approach comprising swarm intelligence techniques, namely particle swarm optimization (PSO) and ant colony optimization (ACO). In addition, the recurrent neural network (RNN) formalism is employed for modeling the dynamical behavior of gene regulatory systems. More specifically, ACO is used for searching the discrete space of network architectures and PSO for searching the corresponding continuous space of RNN model parameters. We propose a novel solution construction process in the context of ACO for generating biologically plausible candidate architectures. The objective is to concentrate the search effort into areas of the structure space that contain architectures which are feasible in terms of their topological resemblance to real-world networks. The proposed framework is initially applied to the reconstruction of a small artificial network that has previously been studied in the context of gene network reverse engineering. Subsequently, we consider an artificial data set with added noise for reconstructing a subnetwork of the genetic interaction network of S. cerevisiae (yeast). Finally, the framework is applied to a real-world data set for reverse engineering the SOS response system of the bacterium Escherichia coli. Results demonstrate the relative advantage of utilizing problem-specific knowledge regarding biologically plausible structural properties of gene networks over conducting a problem-agnostic search in the vast space of network architectures.
How Will Online Affiliate Marketing Networks Impact Search Engine Rankings?
D. Janssen (David); H.W.G.M. van Heck (Eric)
2007-01-01
textabstractIn online affiliate marketing networks advertising web sites offer their affiliates revenues based on provided web site traffic and associated leads and sales. Advertising web sites can have a network of thousands of affiliates providing them with web site traffic through hyperlinks on
Hyper-heuristics with low level parameter adaptation.
Ren, Zhilei; Jiang, He; Xuan, Jifeng; Luo, Zhongxuan
2012-01-01
Recent years have witnessed the great success of hyper-heuristics applying to numerous real-world applications. Hyper-heuristics raise the generality of search methodologies by manipulating a set of low level heuristics (LLHs) to solve problems, and aim to automate the algorithm design process. However, those LLHs are usually parameterized, which may contradict the domain independent motivation of hyper-heuristics. In this paper, we show how to automatically maintain low level parameters (LLPs) using a hyper-heuristic with LLP adaptation (AD-HH), and exemplify the feasibility of AD-HH by adaptively maintaining the LLPs for two hyper-heuristic models. Furthermore, aiming at tackling the search space expansion due to the LLP adaptation, we apply a heuristic space reduction (SAR) mechanism to improve the AD-HH framework. The integration of the LLP adaptation and the SAR mechanism is able to explore the heuristic space more effectively and efficiently. To evaluate the performance of the proposed algorithms, we choose the p-median problem as a case study. The empirical results show that with the adaptation of the LLPs and the SAR mechanism, the proposed algorithms are able to achieve competitive results over the three heterogeneous classes of benchmark instances.
Tensions in R&D networks : Implications for knowledge search and integration
Ritala, Paavo; Huizingh, Eelko; Almpanopoulou, Argyro; Wijbenga, Paul
R&D Networks comprise different actors with various goals and motivations. Thus, such networks are filled with tensions that emerge from simultaneously existing, competing or contradictory organizing elements and demands. In this study, we examine the knowledge search and integration behaviour of
Gene selection heuristic algorithm for nutrigenomics studies.
Valour, D; Hue, I; Grimard, B; Valour, B
2013-07-15
Large datasets from -omics studies need to be deeply investigated. The aim of this paper is to provide a new method (LEM method) for the search of transcriptome and metabolome connections. The heuristic algorithm here described extends the classical canonical correlation analysis (CCA) to a high number of variables (without regularization) and combines well-conditioning and fast-computing in "R." Reduced CCA models are summarized in PageRank matrices, the product of which gives a stochastic matrix that resumes the self-avoiding walk covered by the algorithm. Then, a homogeneous Markov process applied to this stochastic matrix converges the probabilities of interconnection between genes, providing a selection of disjointed subsets of genes. This is an alternative to regularized generalized CCA for the determination of blocks within the structure matrix. Each gene subset is thus linked to the whole metabolic or clinical dataset that represents the biological phenotype of interest. Moreover, this selection process reaches the aim of biologists who often need small sets of genes for further validation or extended phenotyping. The algorithm is shown to work efficiently on three published datasets, resulting in meaningfully broadened gene networks.
An improved algorithm for searching all minimal cuts in modified networks
International Nuclear Information System (INIS)
Yeh, W.-C.
2008-01-01
A modified network is an updated network after inserting a branch string (a special path) between two nodes in the original network. Modifications are common for network expansion or reinforcement evaluation and planning. The problem of searching all minimal cuts (MCs) in a modified network is discussed and solved in this study. The existing best-known methods for solving this problem either needed extensive comparison and verification or failed to solve some special but important cases. Therefore, a more efficient, intuitive and generalized method for searching all MCs without an extensive research procedure is proposed. In this study, we first develop an intuitive algorithm based upon the reformation of all MCs in the original network to search for all MCs in a modified network. Next, the correctness of the proposed algorithm will be analyzed and proven. The computational complexity of the proposed algorithm is analyzed and compared with the existing best-known methods. Finally, two examples illustrate how all MCs are generated in a modified network using the information of all of the MCs in the corresponding original network
An Empirical Comparison of Seven Iterative and Evolutionary Function Optimization Heuristics
Baluja, Shumeet
1995-01-01
This report is a repository of the results obtained from a large scale empirical comparison of seven iterative and evolution-based optimization heuristics. Twenty-seven static optimization problems, spanning six sets of problem classes which are commonly explored in genetic algorithm literature, are examined. The problem sets include job-shop scheduling, traveling salesman, knapsack, binpacking, neural network weight optimization, and standard numerical optimization. The search spaces in these problems range from 2368 to 22040. The results indicate that using genetic algorithms for the optimization of static functions does not yield a benefit, in terms of the final answer obtained, over simpler optimization heuristics. Descriptions of the algorithms tested and the encodings of the problems are described in detail for reproducibility.
A Search for top quark using artificial neural networks
Energy Technology Data Exchange (ETDEWEB)
Amidi, Erfan [Northeastern Univ., Boston, MA (United States)
1996-02-01
The neural networks method has been applied to 75 pb^{-1} of data collected by the D0 detector at Fermilab during the 1993-1995 p$\\bar{p}$ collider run at √s = 1.8 TeV, to isolate the top quark in the e+jets+E_{T} channel.
Directory of Open Access Journals (Sweden)
Ajay Arunachalam
2016-02-01
Full Text Available Resource Searching is one of the key functional tasks in large complex networks. With the P2P architecture, millions of peers connect together instantly building a communication pattern. Searching in mobile networks faces additional limitations and challenges. Flooding technique can cope up with the churn and searches aggressively by visiting almost all the nodes. But it exponentially increases the network traffic and thus does not scale well. Further the duplicated query messages consume extra battery power and network bandwidth. The blind flooding also suffers from long delay problem in P2P networks. In this paper, we propose optimal density based flooding resource discovery schemes. Our first model takes into account local graph topology information to supplement the resource discovery process while in our extended version we also consider the neighboring node topology information along with the local node information to further effectively use the mobile and network resources. Our proposed method reduces collision at the same time minimizes effect of redundant messages and failures. Overall the methods reduce network overhead, battery power consumption, query delay, routing load, MAC load and bandwidth usage while also achieving good success rate in comparison to the other techniques. We also perform a comprehensive analysis of the resource discovery schemes to verify the impact of varying node speed and different network conditions.
Optimized LTE cell planning for multiple user density subareas using meta-heuristic algorithms
Ghazzai, Hakim; Yaacoub, Elias E.; Alouini, Mohamed-Slim
2014-01-01
Base station deployment in cellular networks is one of the most fundamental problems in network design. This paper proposes a novel method for the cell planning problem for the fourth generation 4G-LTE cellular networks using meta heuristic
Experimental Matching of Instances to Heuristics for Constraint Satisfaction Problems.
Moreno-Scott, Jorge Humberto; Ortiz-Bayliss, José Carlos; Terashima-Marín, Hugo; Conant-Pablos, Santiago Enrique
2016-01-01
Constraint satisfaction problems are of special interest for the artificial intelligence and operations research community due to their many applications. Although heuristics involved in solving these problems have largely been studied in the past, little is known about the relation between instances and the respective performance of the heuristics used to solve them. This paper focuses on both the exploration of the instance space to identify relations between instances and good performing heuristics and how to use such relations to improve the search. Firstly, the document describes a methodology to explore the instance space of constraint satisfaction problems and evaluate the corresponding performance of six variable ordering heuristics for such instances in order to find regions on the instance space where some heuristics outperform the others. Analyzing such regions favors the understanding of how these heuristics work and contribute to their improvement. Secondly, we use the information gathered from the first stage to predict the most suitable heuristic to use according to the features of the instance currently being solved. This approach proved to be competitive when compared against the heuristics applied in isolation on both randomly generated and structured instances of constraint satisfaction problems.
Using a neural network in the search for the Higgs boson
International Nuclear Information System (INIS)
Hultqvist, K.; Jacobsson, R.; Johansson, K.E.
1995-01-01
The search for the Standard Model Higgs boson in high energy e + e - collisions requires analysis techniques which efficiently discriminate against the very large background. A classifier based on a feed-forward neural network has been extensively used in a search in the channel where the Higgs boson is produced in association with neutrinos. The method has significantly improved the sensitivity of the search. With a simple preselection based on event topology followed by a neural network we have obtained a combined background rejection factor of more than 29 000 and a selection efficiency for Higgs particle events of 54%, assuming a mass of 55 GeV/c 2 for the Higgs boson. We describe here the details of the analysis with emphasis on the neural network. (orig.)
Social Networks and their Importance in Job Searching of College Students
Directory of Open Access Journals (Sweden)
Marek Potkány
2015-03-01
Full Text Available At present, in every sphere of human activity, using modern ICT is considered as a matter of course. Several human resources management institutions are aware of the potential of social networks in estabilishing and building relationships with their target groups. It is a trend to create job portals in social networks. These are currently an integrated part of communication with target audience and therefore also an objects of attention and reflexions. It is also the topic of this paper. The goal of this research is to determine the level of use of social networks by college students in Slovakia. Part of the research is also to discover the effect of social networks on job searching of a selected sample of students. The research was conducted on a sample of 407 slovak students. A questioning method in form of an online questionnaire was used. The obtained results were processed using methods of descriptive and test statistics. We studied the significance of gender on the frequency of using the internet to search for job opportunities via social networks, as well as the ability to apprehend the importance of personal presentation on social networks. The statistical testing did not prove any significant difference between men and women in the question of frequency of using internet to search for job opportunities, nor in the ability to apprehend the importance of personal presentation on social networks. A statistically significant difference in gender was proven only in case of using social networks in job searching. Women tend to use social networks to find jobs more often than men. These statements are proved by the results of tests of significance of mean changes at the 5% significance level, which means that they are valid with 95% probability.
Heuristics for the economic dispatch problem
Energy Technology Data Exchange (ETDEWEB)
Flores, Benjamin Carpio [Centro Nacional de Controle de Energia (CENACE), Mexico, D.F. (Mexico). Dept. de Planificacion Economica de Largo Plazo], E-mail: benjamin.carpo@cfe.gob.mx; Laureano Cruces, A L; Lopez Bracho, R; Ramirez Rodriguez, J. [Universidad Autonoma Metropolitana (UAM), Mexico, D.F. (Brazil). Dept. de Sistemas], Emails: clc@correo.azc.uam.mx, rlb@correo.azc.uam.mx, jararo@correo.azc.uam.mx
2009-07-01
This paper presents GRASP (Greedy Randomized Adaptive Search Procedure), Simulated Annealing (SAA), Genetic (GA), and Hybrid Genetic (HGA) Algorithms for the economic dispatch problem (EDP), considering non-convex cost functions and dead zones the only restrictions, showing the results obtained. We also present parameter settings that are specifically applicable to the EDP, and a comparative table of results for each heuristic. It is shown that these methods outperform the classical methods without the need to assume convexity of the target function. (author)
Searching for realism, structure and agency in Actor Network Theory.
Elder-Vass, Dave
2008-09-01
Superficially, Actor Network Theory (ANT) and critical realism (CR) are radically opposed research traditions. Written from a realist perspective, this paper asks whether there might be a basis for finding common ground between these two traditions. It looks in turn at the questions of realism, structure, and agency, analysing the differences between the two perspectives and seeking to identify what each might learn from the other. Overall, the paper argues that there is a great deal that realists can learn from actor network theory; yet ANT remains stunted by its lack of a depth ontology. It fails to recognize the significance of mechanisms, and of their dependence on emergence, and thus lacks both dimensions of the depth that is characteristic of critical realism's ontology. This prevents ANT from recognizing the role and powers of social structure; but on the other hand, realists would do well to heed ANT's call for us to trace the connections through which structures are constantly made and remade. A lack of ontological depth also underpins ANT's practice of treating human and non-human actors symmetrically, yet this remains a valuable provocation to sociologists who neglect non-human entities entirely.
Numerical Algorithms for Personalized Search in Self-organizing Information Networks
Kamvar, Sep
2010-01-01
This book lays out the theoretical groundwork for personalized search and reputation management, both on the Web and in peer-to-peer and social networks. Representing much of the foundational research in this field, the book develops scalable algorithms that exploit the graphlike properties underlying personalized search and reputation management, and delves into realistic scenarios regarding Web-scale data. Sep Kamvar focuses on eigenvector-based techniques in Web search, introducing a personalized variant of Google's PageRank algorithm, and he outlines algorithms--such as the now-famous quad
Network meta-analyses could be improved by searching more sources and by involving a librarian.
Li, Lun; Tian, Jinhui; Tian, Hongliang; Moher, David; Liang, Fuxiang; Jiang, Tongxiao; Yao, Liang; Yang, Kehu
2014-09-01
Network meta-analyses (NMAs) aim to rank the benefits (or harms) of interventions, based on all available randomized controlled trials. Thus, the identification of relevant data is critical. We assessed the conduct of the literature searches in NMAs. Published NMAs were retrieved by searching electronic bibliographic databases and other sources. Two independent reviewers selected studies and five trained reviewers abstracted data regarding literature searches, in duplicate. Search method details were examined using descriptive statistics. Two hundred forty-nine NMAs were included. Eight used previous systematic reviews to identify primary studies without further searching, and five did not report any literature searches. In the 236 studies that used electronic databases to identify primary studies, the median number of databases was 3 (interquartile range: 3-5). MEDLINE, EMBASE, and Cochrane Central Register of Controlled Trials were the most commonly used databases. The most common supplemental search methods included reference lists of included studies (48%), reference lists of previous systematic reviews (40%), and clinical trial registries (32%). None of these supplemental methods was conducted in more than 50% of the NMAs. Literature searches in NMAs could be improved by searching more sources, and by involving a librarian or information specialist. Copyright © 2014 Elsevier Inc. All rights reserved.
Time constrained liner shipping network design
DEFF Research Database (Denmark)
Karsten, Christian Vad; Brouer, Berit Dangaard; Desaulniers, Guy
2017-01-01
We present a mathematical model and a solution method for the liner shipping network design problem. The model takes into account coordination between vessels and transit time restrictions on the cargo flow. The solution method is an improvement heuristic, where an integer program is solved...... iteratively to perform moves in a large neighborhood search. Our improvement heuristic is applicable as a real-time decision support tool for a liner shipping company. It can be used to find improvements to the network when evaluating changes in operating conditions or testing different scenarios...
Heuristic decision making in medicine
Marewski, Julian N.; Gigerenzer, Gerd
2012-01-01
Can less information be more helpful when it comes to making medical decisions? Contrary to the common intuition that more information is always better, the use of heuristics can help both physicians and patients to make sound decisions. Heuristics are simple decision strategies that ignore part of the available information, basing decisions on only a few relevant predictors. We discuss: (i) how doctors and patients use heuristics; and (ii) when heuristics outperform information-greedy methods, such as regressions in medical diagnosis. Furthermore, we outline those features of heuristics that make them useful in health care settings. These features include their surprising accuracy, transparency, and wide accessibility, as well as the low costs and little time required to employ them. We close by explaining one of the statistical reasons why heuristics are accurate, and by pointing to psychiatry as one area for future research on heuristics in health care. PMID:22577307
Heuristic decision making in medicine.
Marewski, Julian N; Gigerenzer, Gerd
2012-03-01
Can less information be more helpful when it comes to making medical decisions? Contrary to the common intuition that more information is always better, the use of heuristics can help both physicians and patients to make sound decisions. Heuristics are simple decision strategies that ignore part of the available information, basing decisions on only a few relevant predictors. We discuss: (i) how doctors and patients use heuristics; and (ii) when heuristics outperform information-greedy methods, such as regressions in medical diagnosis. Furthermore, we outline those features of heuristics that make them useful in health care settings. These features include their surprising accuracy, transparency, and wide accessibility, as well as the low costs and little time required to employ them. We close by explaining one of the statistical reasons why heuristics are accurate, and by pointing to psychiatry as one area for future research on heuristics in health care.
On the Importance of Elimination Heuristics in Lazy Propagation
DEFF Research Database (Denmark)
Madsen, Anders Læsø; Butz, Cory J.
2012-01-01
elimination orders on-line. This paper considers the importance of elimination heuristics in LP when using Variable Elimination (VE) as the message and single marginal computation algorithm. It considers well-known cost measures for selecting the next variable to eliminate and a new cost measure....... The empirical evaluation examines dierent heuristics as well as sequences of cost measures, and was conducted on real-world and randomly generated Bayesian networks. The results show that for most cases performance is robust relative to the cost measure used and in some cases the elimination heuristic can have...
Mastering the game of Go with deep neural networks and tree search
Silver, David; Huang, Aja; Maddison, Chris J.; Guez, Arthur; Sifre, Laurent; van den Driessche, George; Schrittwieser, Julian; Antonoglou, Ioannis; Panneershelvam, Veda; Lanctot, Marc; Dieleman, Sander; Grewe, Dominik; Nham, John; Kalchbrenner, Nal; Sutskever, Ilya; Lillicrap, Timothy; Leach, Madeleine; Kavukcuoglu, Koray; Graepel, Thore; Hassabis, Demis
2016-01-01
The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm, our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the full-sized game of Go, a feat previously thought to be at least a decade away.
Weak Ties and Self-Regulation in Job Search: The Effects of Goal Orientation on Networking
Hatala, John-Paul; Yamkovenko, Bogdan
2016-01-01
The purpose of this study is to empirically investigate the relationship between the self-regulatory variable of goal orientation and the extent to which job seekers reach out to and use weak ties in their job search. Weak ties, as defined by Granovettor, are connections to densely knit networks outside the individual's direct contacts who could…
Mengshoel, Ole J.; Wilkins, David C.; Roth, Dan
2010-01-01
For hard computational problems, stochastic local search has proven to be a competitive approach to finding optimal or approximately optimal problem solutions. Two key research questions for stochastic local search algorithms are: Which algorithms are effective for initialization? When should the search process be restarted? In the present work we investigate these research questions in the context of approximate computation of most probable explanations (MPEs) in Bayesian networks (BNs). We introduce a novel approach, based on the Viterbi algorithm, to explanation initialization in BNs. While the Viterbi algorithm works on sequences and trees, our approach works on BNs with arbitrary topologies. We also give a novel formalization of stochastic local search, with focus on initialization and restart, using probability theory and mixture models. Experimentally, we apply our methods to the problem of MPE computation, using a stochastic local search algorithm known as Stochastic Greedy Search. By carefully optimizing both initialization and restart, we reduce the MPE search time for application BNs by several orders of magnitude compared to using uniform at random initialization without restart. On several BNs from applications, the performance of Stochastic Greedy Search is competitive with clique tree clustering, a state-of-the-art exact algorithm used for MPE computation in BNs.
Directory of Open Access Journals (Sweden)
Veena Anand
2017-01-01
Full Text Available Wireless Sensor Networks (WSN has the disadvantage of limited and non-rechargeable energy resource in WSN creates a challenge and led to development of various clustering and routing algorithms. The paper proposes an approach for improving network lifetime by using Particle swarm optimization based clustering and Harmony Search based routing in WSN. So in this paper, global optimal cluster head are selected and Gateway nodes are introduced to decrease the energy consumption of the CH while sending aggregated data to the Base station (BS. Next, the harmony search algorithm based Local Search strategy finds best routing path for gateway nodes to the Base Station. Finally, the proposed algorithm is presented.
International Nuclear Information System (INIS)
Chan, Apple L.S.; Hanby, Vic I.; Chow, T.T.
2007-01-01
A district cooling system is a sustainable means of distribution of cooling energy through mass production. A cooling medium like chilled water is generated at a central refrigeration plant and supplied to serve a group of consumer buildings through a piping network. Because of the substantial capital investment involved, an optimal design of the distribution piping configuration is one of the crucial factors for successful implementation of the district cooling scheme. In the present study, genetic algorithm (GA) incorporated with local search techniques was developed to find the optimal/near optimal configuration of the piping network in a hypothetical site. The effect of local search, mutation rate and frequency of local search on the performance of the GA in terms of both solution quality and computation time were investigated and presented in this paper
Efficient heuristics for the Rural Postman Problem
Directory of Open Access Journals (Sweden)
GW Groves
2005-06-01
Full Text Available A local search framework for the (undirected Rural Postman Problem (RPP is presented in this paper. The framework allows local search approaches that have been applied successfully to the well–known Travelling Salesman Problem also to be applied to the RPP. New heuristics for the RPP, based on this framework, are introduced and these are capable of solving significantly larger instances of the RPP than have been reported in the literature. Test results are presented for a number of benchmark RPP instances in a bid to compare efficiency and solution quality against known methods.
Heuristics for the Robust Coloring Problem
Directory of Open Access Journals (Sweden)
Miguel Ángel Gutiérrez Andrade
2011-03-01
Full Text Available Let $G$ and $\\bar{G}$ be complementary graphs. Given a penalty function defined on the edges of $G$, we will say that the rigidity of a $k$-coloring of $G$ is the sum of the penalties of the edges of G joining vertices of the same color. Based on the previous definition, the Robust Coloring Problem (RCP is stated as the search of the minimum rigidity $k$-coloring. In this work a comparison of heuristics based on simulated annealing, GRASP and scatter search is presented. These are the best results for the RCP that have been obtained.
Heuristics in Conflict Resolution
Drescher, Christian; Gebser, Martin; Kaufmann, Benjamin; Schaub, Torsten
2010-01-01
Modern solvers for Boolean Satisfiability (SAT) and Answer Set Programming (ASP) are based on sophisticated Boolean constraint solving techniques. In both areas, conflict-driven learning and related techniques constitute key features whose application is enabled by conflict analysis. Although various conflict analysis schemes have been proposed, implemented, and studied both theoretically and practically in the SAT area, the heuristic aspects involved in conflict analysis have not yet receive...
Models and Tabu Search Metaheuristics for Service Network Design with Asset-Balance Requirements
DEFF Research Database (Denmark)
Pedersen, Michael Berliner; Crainic, T.G.; Madsen, Oli B.G.
2009-01-01
This paper focuses on a generic model for service network design, which includes asset positioning and utilization through constraints on asset availability at terminals. We denote these relations as "design-balance constraints" and focus on the design-balanced capacitated multicommodity network...... design model, a generalization of the capacitated multicommodity network design model generally used in service network design applications. Both arc-and cycle-based formulations for the new model are presented. The paper also proposes a tabu search metaheuristic framework for the arc-based formulation....... Results on a wide range of network design problem instances from the literature indicate the proposed method behaves very well in terms of computational efficiency and solution quality....
Upper-Lower Bounds Candidate Sets Searching Algorithm for Bayesian Network Structure Learning
Directory of Open Access Journals (Sweden)
Guangyi Liu
2014-01-01
Full Text Available Bayesian network is an important theoretical model in artificial intelligence field and also a powerful tool for processing uncertainty issues. Considering the slow convergence speed of current Bayesian network structure learning algorithms, a fast hybrid learning method is proposed in this paper. We start with further analysis of information provided by low-order conditional independence testing, and then two methods are given for constructing graph model of network, which is theoretically proved to be upper and lower bounds of the structure space of target network, so that candidate sets are given as a result; after that a search and scoring algorithm is operated based on the candidate sets to find the final structure of the network. Simulation results show that the algorithm proposed in this paper is more efficient than similar algorithms with the same learning precision.
A Bayesian network approach to the database search problem in criminal proceedings
2012-01-01
Background The ‘database search problem’, that is, the strengthening of a case - in terms of probative value - against an individual who is found as a result of a database search, has been approached during the last two decades with substantial mathematical analyses, accompanied by lively debate and centrally opposing conclusions. This represents a challenging obstacle in teaching but also hinders a balanced and coherent discussion of the topic within the wider scientific and legal community. This paper revisits and tracks the associated mathematical analyses in terms of Bayesian networks. Their derivation and discussion for capturing probabilistic arguments that explain the database search problem are outlined in detail. The resulting Bayesian networks offer a distinct view on the main debated issues, along with further clarity. Methods As a general framework for representing and analyzing formal arguments in probabilistic reasoning about uncertain target propositions (that is, whether or not a given individual is the source of a crime stain), this paper relies on graphical probability models, in particular, Bayesian networks. This graphical probability modeling approach is used to capture, within a single model, a series of key variables, such as the number of individuals in a database, the size of the population of potential crime stain sources, and the rarity of the corresponding analytical characteristics in a relevant population. Results This paper demonstrates the feasibility of deriving Bayesian network structures for analyzing, representing, and tracking the database search problem. The output of the proposed models can be shown to agree with existing but exclusively formulaic approaches. Conclusions The proposed Bayesian networks allow one to capture and analyze the currently most well-supported but reputedly counter-intuitive and difficult solution to the database search problem in a way that goes beyond the traditional, purely formulaic expressions
Directory of Open Access Journals (Sweden)
Jian Yang
2016-09-01
Full Text Available In this article, a tree search algorithm is proposed to find the near optimal conflict avoidance solutions for unmanned aerial vehicles. In the dynamic environment, the unmodeled elements, such as wind, would make UAVs deviate from nominal traces. It brings about difficulties for conflict detection and resolution. The back propagation neural networks are utilized to approximate the unmodeled dynamics of the environment. To satisfy the online planning requirement, the search length of the tree search algorithm would be limited. Therefore, the algorithm may not be able to reach the goal states in search process. The midterm reward function for assessing each node is devised, with consideration given to two factors, namely, the safe separation requirement and the mission of each unmanned aerial vehicle. The simulation examples and the comparisons with previous approaches are provided to illustrate the smooth and convincing behaviours of the proposed algorithm.
DEFF Research Database (Denmark)
Pisinger, David; Røpke, Stefan
2010-01-01
Heuristics based on large neighborhood search have recently shown outstanding results in solving various transportation and scheduling problems. Large neighborhood search methods explore a complex neighborhood by use of heuristics. Using large neighborhoods makes it possible to find better...... candidate solutions in each iteration and hence traverse a more promising search path. Starting from the large neighborhood search method,we give an overview of very large scale neighborhood search methods and discuss recent variants and extensions like variable depth search and adaptive large neighborhood...
Exact and Heuristic Algorithms for Runway Scheduling
Malik, Waqar A.; Jung, Yoon C.
2016-01-01
This paper explores the Single Runway Scheduling (SRS) problem with arrivals, departures, and crossing aircraft on the airport surface. Constraints for wake vortex separations, departure area navigation separations and departure time window restrictions are explicitly considered. The main objective of this research is to develop exact and heuristic based algorithms that can be used in real-time decision support tools for Air Traffic Control Tower (ATCT) controllers. The paper provides a multi-objective dynamic programming (DP) based algorithm that finds the exact solution to the SRS problem, but may prove unusable for application in real-time environment due to large computation times for moderate sized problems. We next propose a second algorithm that uses heuristics to restrict the search space for the DP based algorithm. A third algorithm based on a combination of insertion and local search (ILS) heuristics is then presented. Simulation conducted for the east side of Dallas/Fort Worth International Airport allows comparison of the three proposed algorithms and indicates that the ILS algorithm performs favorably in its ability to find efficient solutions and its computation times.
Network module detection: Affinity search technique with the multi-node topological overlap measure.
Li, Ai; Horvath, Steve
2009-07-20
Many clustering procedures only allow the user to input a pairwise dissimilarity or distance measure between objects. We propose a clustering method that can input a multi-point dissimilarity measure d(i1, i2, ..., iP) where the number of points P can be larger than 2. The work is motivated by gene network analysis where clusters correspond to modules of highly interconnected nodes. Here, we define modules as clusters of network nodes with high multi-node topological overlap. The topological overlap measure is a robust measure of interconnectedness which is based on shared network neighbors. In previous work, we have shown that the multi-node topological overlap measure yields biologically meaningful results when used as input of network neighborhood analysis. We adapt network neighborhood analysis for the use of module detection. We propose the Module Affinity Search Technique (MAST), which is a generalized version of the Cluster Affinity Search Technique (CAST). MAST can accommodate a multi-node dissimilarity measure. Clusters grow around user-defined or automatically chosen seeds (e.g. hub nodes). We propose both local and global cluster growth stopping rules. We use several simulations and a gene co-expression network application to argue that the MAST approach leads to biologically meaningful results. We compare MAST with hierarchical clustering and partitioning around medoid clustering. Our flexible module detection method is implemented in the MTOM software which can be downloaded from the following webpage: http://www.genetics.ucla.edu/labs/horvath/MTOM/
A System for Automatically Generating Scheduling Heuristics
Morris, Robert
1996-01-01
The goal of this research is to improve the performance of automated schedulers by designing and implementing an algorithm by automatically generating heuristics by selecting a schedule. The particular application selected by applying this method solves the problem of scheduling telescope observations, and is called the Associate Principal Astronomer. The input to the APA scheduler is a set of observation requests submitted by one or more astronomers. Each observation request specifies an observation program as well as scheduling constraints and preferences associated with the program. The scheduler employs greedy heuristic search to synthesize a schedule that satisfies all hard constraints of the domain and achieves a good score with respect to soft constraints expressed as an objective function established by an astronomer-user.
Heuristics for Multidimensional Packing Problems
DEFF Research Database (Denmark)
Egeblad, Jens
for a minimum height container required for the items. The main contributions of the thesis are three new heuristics for strip-packing and knapsack packing problems where items are both rectangular and irregular. In the two first papers we describe a heuristic for the multidimensional strip-packing problem...... that is based on a relaxed placement principle. The heuristic starts with a random overlapping placement of items and large container dimensions. From the overlapping placement overlap is reduced iteratively until a non-overlapping placement is found and a new problem is solved with a smaller container size...... of this heuristic are among the best published in the literature both for two- and three-dimensional strip-packing problems for irregular shapes. In the third paper, we introduce a heuristic for two- and three-dimensional rectangular knapsack packing problems. The two-dimensional heuristic uses the sequence pair...
Robinson, Karen A; Dunn, Adam G; Tsafnat, Guy; Glasziou, Paul
2014-07-01
Reports of randomized controlled trials (RCTs) should set findings within the context of previous research. The resulting network of citations would also provide an alternative search method for clinicians, researchers, and systematic reviewers seeking to base decisions on all available evidence. We sought to determine the connectedness of citation networks of RCTs by examining direct (referenced trials) and indirect (through references of referenced trials, etc) citation of trials to one another. Meta-analyses were used to create citation networks of RCTs addressing the same clinical questions. The primary measure was the proportion of networks where following citation links between RCTs identifies the complete set of RCTs, forming a single connected citation group. Other measures included the number of disconnected groups (islands) within each network, the number of citations in the network relative to the maximum possible, and the maximum number of links in the path between two connected trials (a measure of indirectness of citations). We included 259 meta-analyses with a total of 2,413 and a median of seven RCTs each. For 46% (118 of 259) of networks, the RCTs formed a single connected citation group-one island. For the other 54% of networks, where at least one RCT group was not cited by others, 39% had two citation islands and 4% (10 of 257) had 10 or more islands. On average, the citation networks had 38% of the possible citations to other trials (if each trial had cited all earlier trials). The number of citation islands and the maximum number of citation links increased with increasing numbers of trials in the network. Available evidence to answer a clinical question may be identified by using network citations created with a small initial corpus of eligible trials. However, the number of islands means that citation networks cannot be relied on for evidence retrieval. Copyright © 2014 Elsevier Inc. All rights reserved.
A Network-Aware Approach for Searching As-You-Type in Social Media (Extended Version)
Lagrée, Paul; Cautis, Bogdan; Vahabi, Hossein
2015-01-01
We present in this paper a novel approach for as-you-type top-$k$ keyword search over social media. We adopt a natural "network-aware" interpretation for information relevance, by which information produced by users who are closer to the seeker is considered more relevant. In practice, this query model poses new challenges for effectiveness and efficiency in online search, even when a complete query is given as input in one keystroke. This is mainly because it requires a joint exploration of ...
A Network-Aware Approach for Searching As-You-Type in Social Media
Lagrée , Paul; Cautis , Bogdan; Vahabi , Hossein
2015-01-01
International audience; We present in this paper a novel approach for as-you-type top-k keyword search over social media. We adopt a natural "network-aware" interpretation for information relevance, by which information produced by users who are closer to the seeker is considered more relevant. In practice, this query model poses new challenges for effectiveness and efficiency in online search, even when a complete query is given as input in one keystroke. This is mainly because it requires a...
A Tutorial on Heuristic Methods
DEFF Research Database (Denmark)
Vidal, Rene Victor Valqui; Werra, D. de; Silver, E.
1980-01-01
In this paper we define a heuristic method as a procedure for solving a well-defined mathematical problem by an intuitive approach in which the structure of the problem can be interpreted and exploited intelligently to obtain a reasonable solution. Issues discussed include: (i) the measurement...... of the quality of a heuristic method, (ii) different types of heuristic procedures, (iii) the interactive role of human beings and (iv) factors that may influence the choice or testing of heuristic methods. A large number of references are included....
He, Jieyue; Li, Chaojun; Ye, Baoliu; Zhong, Wei
2012-06-25
Most computational algorithms mainly focus on detecting highly connected subgraphs in PPI networks as protein complexes but ignore their inherent organization. Furthermore, many of these algorithms are computationally expensive. However, recent analysis indicates that experimentally detected protein complexes generally contain Core/attachment structures. In this paper, a Greedy Search Method based on Core-Attachment structure (GSM-CA) is proposed. The GSM-CA method detects densely connected regions in large protein-protein interaction networks based on the edge weight and two criteria for determining core nodes and attachment nodes. The GSM-CA method improves the prediction accuracy compared to other similar module detection approaches, however it is computationally expensive. Many module detection approaches are based on the traditional hierarchical methods, which is also computationally inefficient because the hierarchical tree structure produced by these approaches cannot provide adequate information to identify whether a network belongs to a module structure or not. In order to speed up the computational process, the Greedy Search Method based on Fast Clustering (GSM-FC) is proposed in this work. The edge weight based GSM-FC method uses a greedy procedure to traverse all edges just once to separate the network into the suitable set of modules. The proposed methods are applied to the protein interaction network of S. cerevisiae. Experimental results indicate that many significant functional modules are detected, most of which match the known complexes. Results also demonstrate that the GSM-FC algorithm is faster and more accurate as compared to other competing algorithms. Based on the new edge weight definition, the proposed algorithm takes advantages of the greedy search procedure to separate the network into the suitable set of modules. Experimental analysis shows that the identified modules are statistically significant. The algorithm can reduce the
Mixed Integer Programming and Heuristic Scheduling for Space Communication
Lee, Charles H.; Cheung, Kar-Ming
2013-01-01
Optimal planning and scheduling for a communication network was created where the nodes within the network are communicating at the highest possible rates while meeting the mission requirements and operational constraints. The planning and scheduling problem was formulated in the framework of Mixed Integer Programming (MIP) to introduce a special penalty function to convert the MIP problem into a continuous optimization problem, and to solve the constrained optimization problem using heuristic optimization. The communication network consists of space and ground assets with the link dynamics between any two assets varying with respect to time, distance, and telecom configurations. One asset could be communicating with another at very high data rates at one time, and at other times, communication is impossible, as the asset could be inaccessible from the network due to planetary occultation. Based on the network's geometric dynamics and link capabilities, the start time, end time, and link configuration of each view period are selected to maximize the communication efficiency within the network. Mathematical formulations for the constrained mixed integer optimization problem were derived, and efficient analytical and numerical techniques were developed to find the optimal solution. By setting up the problem using MIP, the search space for the optimization problem is reduced significantly, thereby speeding up the solution process. The ratio of the dimension of the traditional method over the proposed formulation is approximately an order N (single) to 2*N (arraying), where N is the number of receiving antennas of a node. By introducing a special penalty function, the MIP problem with non-differentiable cost function and nonlinear constraints can be converted into a continuous variable problem, whose solution is possible.
Hybrid fuzzy charged system search algorithm based state estimation in distribution networks
Directory of Open Access Journals (Sweden)
Sachidananda Prasad
2017-06-01
Full Text Available This paper proposes a new hybrid charged system search (CSS algorithm based state estimation in radial distribution networks in fuzzy framework. The objective of the optimization problem is to minimize the weighted square of the difference between the measured and the estimated quantity. The proposed method of state estimation considers bus voltage magnitude and phase angle as state variable along with some equality and inequality constraints for state estimation in distribution networks. A rule based fuzzy inference system has been designed to control the parameters of the CSS algorithm to achieve better balance between the exploration and exploitation capability of the algorithm. The efficiency of the proposed fuzzy adaptive charged system search (FACSS algorithm has been tested on standard IEEE 33-bus system and Indian 85-bus practical radial distribution system. The obtained results have been compared with the conventional CSS algorithm, weighted least square (WLS algorithm and particle swarm optimization (PSO for feasibility of the algorithm.
Multiobjective Optimization of Water Distribution Networks Using Fuzzy Theory and Harmony Search
Directory of Open Access Journals (Sweden)
Zong Woo Geem
2015-07-01
Full Text Available Thus far, various phenomenon-mimicking algorithms, such as genetic algorithm, simulated annealing, tabu search, shuffled frog-leaping, ant colony optimization, harmony search, cross entropy, scatter search, and honey-bee mating, have been proposed to optimally design the water distribution networks with respect to design cost. However, flow velocity constraint, which is critical for structural robustness against water hammer or flow circulation against substance sedimentation, was seldom considered in the optimization formulation because of computational complexity. Thus, this study proposes a novel fuzzy-based velocity reliability index, which is to be maximized while the design cost is simultaneously minimized. The velocity reliability index is included in the existing cost optimization formulation and this extended multiobjective formulation is applied to two bench-mark problems. Results show that the model successfully found a Pareto set of multiobjective design solutions in terms of cost minimization and reliability maximization.
Custom Topology Generation for Network-on-Chip
DEFF Research Database (Denmark)
Stuart, Matthias Bo; Sparsø, Jens
2007-01-01
This paper compares simulated annealing and tabu search for generating custom topologies for applications with periodic behaviour executing on a network-on-chip. The approach differs from previous work by starting from a fixed mapping of IP-cores to routers and performing design space exploration...... around an initial topology. The tabu search has been modified from its normally encountered form to allow easier escaping from local minima. A number of synthetic benchmarks are used for tuning the parameters of both heuristics and for testing the quality of the solutions each heuristic produces...
On the use of harmony search algorithm in the training of wavelet neural networks
Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline
2015-10-01
Wavelet neural networks (WNNs) are a class of feedforward neural networks that have been used in a wide range of industrial and engineering applications to model the complex relationships between the given inputs and outputs. The training of WNNs involves the configuration of the weight values between neurons. The backpropagation training algorithm, which is a gradient-descent method, can be used for this training purpose. Nonetheless, the solutions found by this algorithm often get trapped at local minima. In this paper, a harmony search-based algorithm is proposed for the training of WNNs. The training of WNNs, thus can be formulated as a continuous optimization problem, where the objective is to maximize the overall classification accuracy. Each candidate solution proposed by the harmony search algorithm represents a specific WNN architecture. In order to speed up the training process, the solution space is divided into disjoint partitions during the random initialization step of harmony search algorithm. The proposed training algorithm is tested onthree benchmark problems from the UCI machine learning repository, as well as one real life application, namely, the classification of electroencephalography signals in the task of epileptic seizure detection. The results obtained show that the proposed algorithm outperforms the traditional harmony search algorithm in terms of overall classification accuracy.
General k-opt submoves for the Lin-Kernighan TSP heuristic
DEFF Research Database (Denmark)
Helsgaun, Keld
2009-01-01
Local search with k-exchange neighborhoods, k-opt, is the most widely used heuristic method for the traveling salesman problem (TSP). This paper presents an effective implementation of k-opt in LKH-2, a variant of the Lin–Kernighan TSP heuristic. The effectiveness of the implementation...
An Effective Implementation of K-opt Moves for the Lin-Kernighan TSP Heuristic
DEFF Research Database (Denmark)
Helsgaun, Keld
Local search with k-change neighborhoods, k-opt, is the most widely used heuristic method for the traveling salesman problem (TSP). This report presents an effective implementation of k-opt for the Lin- Kernighan TSP heuristic. The effectiveness of the implementation is demonstrated with extensive...
Khader, Patrick H.; Pachur, Thorsten; Meier, Stefanie; Bien, Siegfried; Jost, Kerstin; Rosler, Frank
2011-01-01
Many of our daily decisions are memory based, that is, the attribute information about the decision alternatives has to be recalled. Behavioral studies suggest that for such decisions we often use simple strategies (heuristics) that rely on controlled and limited information search. It is assumed that these heuristics simplify decision-making by…
Directory of Open Access Journals (Sweden)
Recep Colak
2010-10-01
Full Text Available Computational prediction of functionally related groups of genes (functional modules from large-scale data is an important issue in computational biology. Gene expression experiments and interaction networks are well studied large-scale data sources, available for many not yet exhaustively annotated organisms. It has been well established, when analyzing these two data sources jointly, modules are often reflected by highly interconnected (dense regions in the interaction networks whose participating genes are co-expressed. However, the tractability of the problem had remained unclear and methods by which to exhaustively search for such constellations had not been presented.We provide an algorithmic framework, referred to as Densely Connected Biclustering (DECOB, by which the aforementioned search problem becomes tractable. To benchmark the predictive power inherent to the approach, we computed all co-expressed, dense regions in physical protein and genetic interaction networks from human and yeast. An automatized filtering procedure reduces our output which results in smaller collections of modules, comparable to state-of-the-art approaches. Our results performed favorably in a fair benchmarking competition which adheres to standard criteria. We demonstrate the usefulness of an exhaustive module search, by using the unreduced output to more quickly perform GO term related function prediction tasks. We point out the advantages of our exhaustive output by predicting functional relationships using two examples.We demonstrate that the computation of all densely connected and co-expressed regions in interaction networks is an approach to module discovery of considerable value. Beyond confirming the well settled hypothesis that such co-expressed, densely connected interaction network regions reflect functional modules, we open up novel computational ways to comprehensively analyze the modular organization of an organism based on prevalent and largely
Colak, Recep; Moser, Flavia; Chu, Jeffrey Shih-Chieh; Schönhuth, Alexander; Chen, Nansheng; Ester, Martin
2010-10-25
Computational prediction of functionally related groups of genes (functional modules) from large-scale data is an important issue in computational biology. Gene expression experiments and interaction networks are well studied large-scale data sources, available for many not yet exhaustively annotated organisms. It has been well established, when analyzing these two data sources jointly, modules are often reflected by highly interconnected (dense) regions in the interaction networks whose participating genes are co-expressed. However, the tractability of the problem had remained unclear and methods by which to exhaustively search for such constellations had not been presented. We provide an algorithmic framework, referred to as Densely Connected Biclustering (DECOB), by which the aforementioned search problem becomes tractable. To benchmark the predictive power inherent to the approach, we computed all co-expressed, dense regions in physical protein and genetic interaction networks from human and yeast. An automatized filtering procedure reduces our output which results in smaller collections of modules, comparable to state-of-the-art approaches. Our results performed favorably in a fair benchmarking competition which adheres to standard criteria. We demonstrate the usefulness of an exhaustive module search, by using the unreduced output to more quickly perform GO term related function prediction tasks. We point out the advantages of our exhaustive output by predicting functional relationships using two examples. We demonstrate that the computation of all densely connected and co-expressed regions in interaction networks is an approach to module discovery of considerable value. Beyond confirming the well settled hypothesis that such co-expressed, densely connected interaction network regions reflect functional modules, we open up novel computational ways to comprehensively analyze the modular organization of an organism based on prevalent and largely available large
Heuristics Reasoning in Diagnostic Judgment.
O'Neill, Eileen S.
1995-01-01
Describes three heuristics--short-cut mental strategies that streamline information--relevant to diagnostic reasoning: accessibility, similarity, and anchoring and adjustment. Analyzes factors thought to influence heuristic reasoning and presents interventions to be tested for nursing practice and education. (JOW)
Reexamining Our Bias against Heuristics
McLaughlin, Kevin; Eva, Kevin W.; Norman, Geoff R.
2014-01-01
Using heuristics offers several cognitive advantages, such as increased speed and reduced effort when making decisions, in addition to allowing us to make decision in situations where missing data do not allow for formal reasoning. But the traditional view of heuristics is that they trade accuracy for efficiency. Here the authors discuss sources…
HEURISTIC APPROACHES FOR PORTFOLIO OPTIMIZATION
Manfred Gilli, Evis Kellezi
2000-01-01
The paper first compares the use of optimization heuristics to the classical optimization techniques for the selection of optimal portfolios. Second, the heuristic approach is applied to problems other than those in the standard mean-variance framework where the classical optimization fails.
Wavelength converter placement in optical networks with dynamic traffic
DEFF Research Database (Denmark)
Buron, Jakob Due; Ruepp, Sarah Renée; Wessing, Henrik
2008-01-01
We evaluate the connection provisioning performance of GMPLS-controlled wavelength routed networks under dynamic traffic load and using three different wavelength converter placement heuristics. Results show that a simple uniform placement heuristic matches the performance of complex heuristics...
Search for gravitational waves associated with γ-ray bursts detected by the interplanetary network.
Aasi, J; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J S; Ast, S; Aston, S M; Astone, P; Aufmuth, P; Augustus, H; Aulbert, C; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Baune, C; Bavigadda, V; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Biwer, C; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Buchman, S; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Burman, R; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Calderón Bustillo, J; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castaldi, G; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, D E; Clark, J A; Clayton, J H; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio, M; Conte, A; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Costa, C A; Coughlin, M W; Coulon, J-P; Countryman, S; Couvares, P; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Croce, R P; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Cutler, C; Dahl, K; Dal Canton, T; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; DeBra, D; Debreczeni, G; Degallaix, J; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M; Dickson, J; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Dolique, V; Dominguez, E; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Endrőczi, G; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fazi, D; Fehrmann, H; Fejer, M M; Feldbaum, D; Feroz, F; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gair, J R; Gammaitoni, L; Gaonkar, S; Garufi, F; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Gräf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C J; Gushwa, K; Gustafson, E K; Gustafson, R; Ha, J; Hall, E D; Hamilton, W; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hart, M; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Holt, K; Hopkins, P; Horrom, T; Hoske, D; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Huerta, E; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Idrisy, A; Ingram, D R; Inta, R; Islas, G; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; Jang, H; Jaranowski, P; Ji, Y; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karlen, J; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N G; Kim, N; Kim, S; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, A; Kumar, D Nanda; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lam, P K; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, J; Lee, P J; Leonardi, M; Leong, J R; Leonor, I; Le Roux, A; Leroy, N; Letendre, N; Levin, Y; Levine, B; Lewis, J; Li, T G F; Libbrecht, K; Libson, A; Lin, A C; Littenberg, T B; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lopez, E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Lubinski, M J; Lück, H; Lundgren, A P; Ma, Y; Macdonald, E P; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R; Mageswaran, M; Maglione, C; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mangini, N M; Mansell, G; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Mavalvala, N; May, G; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; McLin, K; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meinders, M; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Miller, J; Minenkov, Y; Mingarelli, C M F; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Moggi, A; Mohan, M; Mohapatra, S R P; Moraru, D; Moreno, G; Morgado, N; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nielsen, A B; Nissanke, S; Nitz, A H; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Oh, J J; Oh, S H; Ohme, F; Omar, S; Oppermann, P; Oram, R; O'Reilly, B; Ortega, W; O'Shaughnessy, R; Osthelder, C; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palashov, O; Palomba, C; Pan, H; Pan, Y; Pankow, C; Paoletti, F; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Pele, A; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poteomkin, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S; Prestegard, T; Price, L R; Prijatelj, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qin, J; Quetschke, V; Quintero, E; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Ramirez, K; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Recchia, S; Reed, C M; Regimbau, T; Reid, S; Reitze, D H; Reula, O; Rhoades, E; Ricci, F; Riesen, R; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Roddy, S B; Rolland, L; Rollins, J G; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J R; Sankar, S; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Scheuer, J; Schilling, R; Schilman, M; Schmidt, P; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Singh, R; Sintes, A M; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, R J E; Smith-Lefebvre, N D; Son, E J; Sorazu, B; Souradeep, T; Staley, A; Stebbins, J; Steinke, M; Steinlechner, J; Steinlechner, S; Stephens, B C; Steplewski, S; Stevenson, S; Stone, R; Stops, D; Strain, K A; Straniero, N; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Tacca, M; Talukder, D; Tanner, D B; Tao, J; Tarabrin, S P; Taylor, R; Tellez, G; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Tshilumba, D; Tuennermann, H; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vyachanin, S P; Wade, A R; Wade, L; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, M; Wang, X; Ward, R L; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Williams, K; Williams, L; Williams, R; Williams, T D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Wolovick, N; Worden, J; Wu, Y; Yablon, J; Yakushin, I; Yam, W; Yamamoto, H; Yancey, C C; Yang, H; Yoshida, S; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J-P; Zhang, Fan; Zhang, L; Zhao, C; Zhu, H; Zhu, X J; Zucker, M E; Zuraw, S; Zweizig, J; Aptekar, R L; Atteia, J L; Cline, T; Connaughton, V; Frederiks, D D; Golenetskii, S V; Hurley, K; Krimm, H A; Marisaldi, M; Pal'shin, V D; Palmer, D; Svinkin, D S; Terada, Y; von Kienlin, A
2014-07-04
We present the results of a search for gravitational waves associated with 223 γ-ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10(-2)M⊙c(2) at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors.
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Blackbum, L.; Camp, J. B.; Gehrels, N.; Graff, P. B.;
2014-01-01
We present the results of a search for gravitational waves associated with 223 gamma ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10(exp-2) solar mass c(exp 2) at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors.
System network planning expansion using mathematical programming, genetic algorithms and tabu search
International Nuclear Information System (INIS)
Sadegheih, A.; Drake, P.R.
2008-01-01
In this paper, system network planning expansion is formulated for mixed integer programming, a genetic algorithm (GA) and tabu search (TS). Compared with other optimization methods, GAs are suitable for traversing large search spaces, since they can do this relatively rapidly and because the use of mutation diverts the method away from local minima, which will tend to become more common as the search space increases in size. GA's give an excellent trade off between solution quality and computing time and flexibility for taking into account specific constraints in real situations. TS has emerged as a new, highly efficient, search paradigm for finding quality solutions to combinatorial problems. It is characterized by gathering knowledge during the search and subsequently profiting from this knowledge. The attractiveness of the technique comes from its ability to escape local optimality. The cost function of this problem consists of the capital investment cost in discrete form, the cost of transmission losses and the power generation costs. The DC load flow equations for the network are embedded in the constraints of the mathematical model to avoid sub-optimal solutions that can arise if the enforcement of such constraints is done in an indirect way. The solution of the model gives the best line additions and also provides information regarding the optimal generation at each generation point. This method of solution is demonstrated on the expansion of a 10 bus bar system to 18 bus bars. Finally, a steady-state genetic algorithm is employed rather than generational replacement, also uniform crossover is used
Dynamic spatial coding within the dorsal frontoparietal network during a visual search task.
Directory of Open Access Journals (Sweden)
Wieland H Sommer
Full Text Available To what extent are the left and right visual hemifields spatially coded in the dorsal frontoparietal attention network? In many experiments with neglect patients, the left hemisphere shows a contralateral hemifield preference, whereas the right hemisphere represents both hemifields. This pattern of spatial coding is often used to explain the right-hemispheric dominance of lesions causing hemispatial neglect. However, pathophysiological mechanisms of hemispatial neglect are controversial because recent experiments on healthy subjects produced conflicting results regarding the spatial coding of visual hemifields. We used an fMRI paradigm that allowed us to distinguish two attentional subprocesses during a visual search task. Either within the left or right hemifield subjects first attended to stationary locations (spatial orienting and then shifted their attentional focus to search for a target line. Dynamic changes in spatial coding of the left and right hemifields were observed within subregions of the dorsal front-parietal network: During stationary spatial orienting, we found the well-known spatial pattern described above, with a bilateral hemifield representation in the right hemisphere and a contralateral preference in the left hemisphere. However, during search, the right hemisphere had a contralateral preference and the left hemisphere equally represented both hemifields. This finding leads to novel perspectives regarding models of visuospatial attention and hemispatial neglect.
Extending Coverage and Lifetime of K-coverage Wireless Sensor Networks Using Improved Harmony Search
Directory of Open Access Journals (Sweden)
Shohreh Ebrahimnezhad
2011-07-01
Full Text Available K-coverage wireless sensor networks try to provide facilities such that each hotspot region is covered by at least k sensors. Because, the fundamental evaluation metrics of such networks are coverage and lifetime, proposing an approach that extends both of them simultaneously has a lot of interests. In this article, it is supposed that two kinds of nodes are available: static and mobile. The proposed method, at first, tries to balance energy among sensor nodes using Improved Harmony Search (IHS algorithm in a k-coverage and connected wireless sensor network in order to achieve a sensor node deployment. Also, this method proposes a suitable place for a gateway node (Sink that collects data from all sensors. Second, in order to prolong the network lifetime, some of the high energy-consuming mobile nodes are moved to the closest positions of low energy-consuming ones and vice versa after a while. This leads increasing the lifetime of network while connectivity and k-coverage are preserved. Through computer simulations, experimental results verified that the proposed IHS-based algorithm found better solution compared to some related methods.
Cañon, Daniel E; Lopez, Diego M; Blobel, Bernd
2014-01-01
Moderation of content in online Health Social Networks (HSN) is critical because information is not only published and produced by experts or health professionals, but also by users of that information. The objective of this paper is to propose a semi-automatic moderation Web Service for assessing the quality (trustworthiness) of health-related videos published on the YouTube social network. The service is relevant for moderators or community managers, who get enabled to control the quality of videos published on their online HSN sites. The HealthTrust metric was selected as the metric to be implemented in the service in order to support the assessment of trustworthiness of videos in Online HSN. The service is a RESTful service which can be integrated into open source Virtual Social Network Platforms, therefore improving trust in the process of searching and publishing content extracted from YouTube. A preliminary pilot evaluation in a simple use case demonstrated that the relevance of videos retrieved using the moderation service was higher compared to the relevance of the videos retrieved using the YouTube search engine.
Multi-dimensional design window search system using neural networks in reactor core design
International Nuclear Information System (INIS)
Kugo, Teruhiko; Nakagawa, Masayuki
2000-02-01
In the reactor core design, many parametric survey calculations should be carried out to decide an optimal set of basic design parameter values. They consume a large amount of computation time and labor in the conventional way. To support directly design work, we investigate a procedure to search efficiently a design window, which is defined as feasible design parameter ranges satisfying design criteria and requirements, in a multi-dimensional space composed of several basic design parameters. We apply the present method to the neutronics and thermal hydraulics fields and develop the multi-dimensional design window search system using it. The principle of the present method is to construct the multilayer neural network to simulate quickly a response of an analysis code through a training process, and to reduce computation time using the neural network without parametric study using analysis codes. The system works on an engineering workstation (EWS) with efficient man-machine interface for pre- and post-processing. This report describes the principle of the present method, the structure of the system, the guidance of the usages of the system, the guideline for the efficient training of neural networks, the instructions of the input data for analysis calculation and so on. (author)
Paranoid thinking as a heuristic.
Preti, Antonio; Cella, Matteo
2010-08-01
Paranoid thinking can be viewed as a human heuristic used by individuals to deal with uncertainty during stressful situations. Under stress, individuals are likely to emphasize the threatening value of neutral stimuli and increase the reliance on paranoia-based heuristic to interpreter events and guide their decisions. Paranoid thinking can also be activated by stress arising from the possibility of losing a good opportunity; this may result in an abnormal allocation of attentional resources to social agents. A better understanding of the interplay between cognitive heuristics and emotional processes may help to detect situations in which paranoid thinking is likely to exacerbate and improve intervention for individuals with delusional disorders.
Heuristic versus statistical physics approach to optimization problems
International Nuclear Information System (INIS)
Jedrzejek, C.; Cieplinski, L.
1995-01-01
Optimization is a crucial ingredient of many calculation schemes in science and engineering. In this paper we assess several classes of methods: heuristic algorithms, methods directly relying on statistical physics such as the mean-field method and simulated annealing; and Hopfield-type neural networks and genetic algorithms partly related to statistical physics. We perform the analysis for three types of problems: (1) the Travelling Salesman Problem, (2) vector quantization, and (3) traffic control problem in multistage interconnection network. In general, heuristic algorithms perform better (except for genetic algorithms) and much faster but have to be specific for every problem. The key to improving the performance could be to include heuristic features into general purpose statistical physics methods. (author)
Structural Sustainability - Heuristic Approach
Rostański, Krzysztof
2017-10-01
Nowadays, we are faced with a challenge of having to join building structures with elements of nature, which seems to be the paradigm of modern planning and design. The questions arise, however, with reference to the following categories: the leading idea, the relation between elements of nature and buildings, the features of a structure combining such elements and, finally, our perception of this structure. If we consider both the overwhelming globalization and our attempts to preserve local values, the only reasonable solution is to develop naturalistic greenery. It can add its uniqueness to any building and to any developed area. Our holistic model, presented in this paper, contains the above mentioned categories within the scope of naturalism. The model is divided into principles, actions related, and possible effects to be obtained. It provides a useful tool for determining the ways and priorities of our design. Although it is not possible to consider all possible actions and solutions in order to support sustainability in any particular design, we can choose, however, a proper mode for our design according to the local conditions by turning to the heuristic method, which helps to choose priorities and targets. Our approach is an attempt to follow the ways of nature as in the natural environment it is optimal solutions that appear and survive, idealism being the domain of mankind only. We try to describe various natural processes in a manner comprehensible to us, which is always a generalization. Such definitions, however, called artificial by naturalists, are presented as art or the current state of knowledge by artists and engineers. Reality, in fact, is always more complicated than its definitions. The heuristic method demonstrates the way how to optimize our design. It requires that all possible information about the local environment should be gathered, as the more is known, the fewer mistakes are made. Following the unquestionable principles, we can
Application of neural network to multi-dimensional design window search
International Nuclear Information System (INIS)
Kugo, T.; Nakagawa, M.
1996-01-01
In the reactor core design, many parametric survey calculations should be carried out to decide an optimal set of basic design parameter values. They consume a large amount of computation time and labor in the conventional way. To support directly such a work, we investigate a procedure to search efficiently a design window, which is defined as feasible design parameter ranges satisfying design criteria and requirements, in a multi-dimensional space composed of several basic design parameters. A principle of the present method is to construct the multilayer neural network to simulate quickly a response of an analysis code through a training process, and to reduce computation time using the neural network as a substitute of an analysis code. We apply the present method to a fuel pin design of high conversion light water reactors for the neutronics and thermal hydraulics fields to demonstrate performances of the method. (author)
Searching for axion stars and Q-balls with a terrestrial magnetometer network
Energy Technology Data Exchange (ETDEWEB)
Jackson Kimball, D. F. [Cal State, East Bay; Budker, D. [UC, Berkeley; Eby, J. [Fermilab; Pospelov, M. [Perimeter Inst. Theor. Phys.; Pustelny, S. [Jagiellonian U.; Scholtes, T. [Fribourg U.; Stadnik, Y. V. [Helmholtz Inst., Mainz; Weis, A. [Fribourg U.; Wickenbrock, A. [Mainz U.
2017-10-11
Light (pseudo-)scalar fields are promising candidates to be the dark matter in the Universe. Under certain initial conditions in the early Universe and/or with certain types of self-interactions, they can form compact dark-matter objects such as axion stars or Q-balls. Direct encounters with such objects can be searched for by using a global network of atomic magnetometers. It is shown that for a range of masses and radii not ruled out by existing observations, the terrestrial encounter rate with axion stars or Q-balls can be sufficiently high (at least once per year) for a detection. Furthermore, it is shown that a global network of atomic magnetometers is sufficiently sensitive to pseudoscalar couplings to atomic spins so that a transit through an axion star or Q-ball could be detected over a broad range of unexplored parameter space.
Heuristic introduction to gravitational waves
International Nuclear Information System (INIS)
Sandberg, V.D.
1982-01-01
The purpose of this article is to provide a rough and somewhat heuristic theoretical background and introduction to gravitational radiation, its generation, and its detection based on Einstein's general theory of relativity
Directory of Open Access Journals (Sweden)
N. Okati
2017-12-01
Full Text Available Node cooperation can protect wireless networks from eavesdropping by using the physical characteristics of wireless channels rather than cryptographic methods. Allocating the proper amount of power to cooperative nodes is a challenging task. In this paper, we use three cooperative nodes, one as relay to increase throughput at the destination and two friendly jammers to degrade eavesdropper’s link. For this scenario, the secrecy rate function is a non-linear non-convex problem. So, in this case, exact optimization methods can only achieve suboptimal solution. In this paper, we applied different meta-heuristic optimization techniques, like Genetic Algorithm (GA, Partial Swarm Optimization (PSO, Bee Algorithm (BA, Tabu Search (TS, Simulated Annealing (SA and Teaching-Learning-Based Optimization (TLBO. They are compared with each other to obtain solution for power allocation in a wiretap wireless network. Although all these techniques find suboptimal solutions, but they appear superlative to exact optimization methods. Finally, we define a Figure of Merit (FOM as a rule of thumb to determine the best meta-heuristic algorithm. This FOM considers quality of solution, number of required iterations to converge, and CPU time.
Directory of Open Access Journals (Sweden)
Jafar Jallad
2018-05-01
Full Text Available In a radial distribution network integrated with distributed generation (DG, frequency and voltage instability could occur due to grid disconnection, which would result in an islanded network. This paper proposes an optimal load shedding scheme to balance the electricity demand and the generated power of DGs. The integration of the Firefly Algorithm and Particle Swarm Optimization (FAPSO is proposed for the application of the planned load shedding and under frequency load shedding (UFLS scheme. In planning mode, the hybrid optimization maximizes the amount of load remaining and improves the voltage profile of load buses within allowable limits. Moreover, the hybrid optimization can be used in UFLS scheme to identify the optimal combination of loads that need to be shed from a network in operation mode. In order to assess the capabilities of the hybrid optimization, the IEEE 33-bus radial distribution system and part of the Malaysian distribution network with different types of DGs were used. The response of the proposed optimization method in planning and operation were compared with other optimization techniques. The simulation results confirmed the effectiveness of the proposed hybrid optimization in planning mode and demonstrated that the proposed UFLS scheme is quick enough to restore the system frequency without overshooting in less execution time.
Directory of Open Access Journals (Sweden)
Zhaoyu Chen
2018-01-01
Full Text Available The network planning is a key factor that directly affects the performance of the wireless networks. Distributed antenna system (DAS is an effective strategy for the network planning. This paper investigates the antenna deployment in a DAS for the high-speed railway communication networks and formulates an optimization problem which is NP-hard for achieving the optimal deployment of the antennas in the DAS. To solve this problem, a scheme based on an improved cuckoo search based on dimension cells (ICSDC algorithm is proposed. ICSDC introduces the dimension cell mechanism to avoid the internal dimension interferences in order to improve the performance of the algorithm. Simulation results show that the proposed ICSDC-based scheme obtains a lower network cost compared with the uniform network planning method. Moreover, ICSDC algorithm has better performance in terms of the convergence rate and accuracy compared with the conventional cuckoo search algorithm, the particle swarm optimization, and the firefly algorithm.
Heuristic reasoning and relative incompleteness
Treur, J.
1993-01-01
In this paper an approach is presented in which heuristic reasoning is interpreted as strategic reasoning. This type of reasoning enables one to derive which hypothesis to investigate, and which observable information to acquire next (to be able to verify the chosen hypothesis). A compositional architecture for reasoning systems that perform such heuristic reasoning is introduced, called SIX (for Strategic Interactive eXpert systems). This compositional architecture enables user interaction a...
Xu, Zhezhuang; Liu, Guanglun; Yan, Haotian; Cheng, Bin; Lin, Feilong
2017-10-27
In wireless sensor and actor networks, when an event is detected, the sensor node needs to transmit an event report to inform the actor. Since the actor moves in the network to execute missions, its location is always unavailable to the sensor nodes. A popular solution is the search strategy that can forward the data to a node without its location information. However, most existing works have not considered the mobility of the node, and thus generate significant energy consumption or transmission delay. In this paper, we propose the trail-based search (TS) strategy that takes advantage of actor's mobility to improve the search efficiency. The main idea of TS is that, when the actor moves in the network, it can leave its trail composed of continuous footprints. The search packet with the event report is transmitted in the network to search the actor or its footprints. Once an effective footprint is discovered, the packet will be forwarded along the trail until it is received by the actor. Moreover, we derive the condition to guarantee the trail connectivity, and propose the redundancy reduction scheme based on TS (TS-R) to reduce nontrivial transmission redundancy that is generated by the trail. The theoretical and numerical analysis is provided to prove the efficiency of TS. Compared with the well-known expanding ring search (ERS), TS significantly reduces the energy consumption and search delay.
Xu, Zhezhuang; Liu, Guanglun; Yan, Haotian; Cheng, Bin; Lin, Feilong
2017-01-01
In wireless sensor and actor networks, when an event is detected, the sensor node needs to transmit an event report to inform the actor. Since the actor moves in the network to execute missions, its location is always unavailable to the sensor nodes. A popular solution is the search strategy that can forward the data to a node without its location information. However, most existing works have not considered the mobility of the node, and thus generate significant energy consumption or transmission delay. In this paper, we propose the trail-based search (TS) strategy that takes advantage of actor’s mobility to improve the search efficiency. The main idea of TS is that, when the actor moves in the network, it can leave its trail composed of continuous footprints. The search packet with the event report is transmitted in the network to search the actor or its footprints. Once an effective footprint is discovered, the packet will be forwarded along the trail until it is received by the actor. Moreover, we derive the condition to guarantee the trail connectivity, and propose the redundancy reduction scheme based on TS (TS-R) to reduce nontrivial transmission redundancy that is generated by the trail. The theoretical and numerical analysis is provided to prove the efficiency of TS. Compared with the well-known expanding ring search (ERS), TS significantly reduces the energy consumption and search delay. PMID:29077017
Application of neural network to multi-dimensional design window search in reactor core design
International Nuclear Information System (INIS)
Kugo, Teruhiko; Nakagawa, Masayuki
1999-01-01
In the reactor core design, many parametric survey calculations should be carried out to decide an optimal set of basic design parameter values. They consume a large amount of computation time and labor in the conventional way. To support design work, we investigate a procedure to search efficiently a design window, which is defined as feasible design parameter ranges satisfying design criteria and requirements, in a multi-dimensional space composed of several basic design parameters. The present method is applied to the neutronics and thermal hydraulics fields. The principle of the present method is to construct the multilayer neural network to simulate quickly a response of an analysis code through a training process, and to reduce computation time using the neural network without parametric study using analysis codes. To verify the applicability of the present method to the neutronics and the thermal hydraulics design, we have applied it to high conversion water reactors and examined effects of the structure of the neural network and the number of teaching patterns on the accuracy of the design window estimated by the neural network. From the results of the applications, a guideline to apply the present method is proposed and the present method can predict an appropriate design window in a reasonable computation time by following the guideline. (author)
Search for all MCs in networks with unreliable nodes and arcs
International Nuclear Information System (INIS)
Yeh, W.-C.
2003-01-01
A simple method is proposed to search for all minimal cutsets (MCs ) for imperfect networks reliability subject to both arc and node failures under the condition that all of the MCs in the network with perfect nodes are given in advance. The proposed method does not require re-enumeration for all of the MCs for additional node failure consideration. All of the MC candidates found in the proposed algorithm are actual MCs without any need for further verification. This algorithm is more effective than the existing algorithm in which every MC candidate is not verified as a MC. No identical MCs are found using the proposed algorithm, which does not duplicate MCs and is more efficient than the existing methods. Only simple concepts are used to implement the proposed algorithm, which makes it easier to understand and implement. With considering unreliable nodes, the proposed method is also more realistic and valuable for reliability analysis in an existing network. The correctness of the proposed algorithm will be analyzed and proven. One example is used to illustrate how all MCs are generated in a network with arc and node failures solved using the proposed algorithm
A lifelong learning hyper-heuristic method for bin packing.
Sim, Kevin; Hart, Emma; Paechter, Ben
2015-01-01
We describe a novel hyper-heuristic system that continuously learns over time to solve a combinatorial optimisation problem. The system continuously generates new heuristics and samples problems from its environment; and representative problems and heuristics are incorporated into a self-sustaining network of interacting entities inspired by methods in artificial immune systems. The network is plastic in both its structure and content, leading to the following properties: it exploits existing knowledge captured in the network to rapidly produce solutions; it can adapt to new problems with widely differing characteristics; and it is capable of generalising over the problem space. The system is tested on a large corpus of 3,968 new instances of 1D bin-packing problems as well as on 1,370 existing problems from the literature; it shows excellent performance in terms of the quality of solutions obtained across the datasets and in adapting to dynamically changing sets of problem instances compared to previous approaches. As the network self-adapts to sustain a minimal repertoire of both problems and heuristics that form a representative map of the problem space, the system is further shown to be computationally efficient and therefore scalable.
An Effective Cuckoo Search Algorithm for Node Localization in Wireless Sensor Network.
Cheng, Jing; Xia, Linyuan
2016-08-31
Localization is an essential requirement in the increasing prevalence of wireless sensor network (WSN) applications. Reducing the computational complexity, communication overhead in WSN localization is of paramount importance in order to prolong the lifetime of the energy-limited sensor nodes and improve localization performance. This paper proposes an effective Cuckoo Search (CS) algorithm for node localization. Based on the modification of step size, this approach enables the population to approach global optimal solution rapidly, and the fitness of each solution is employed to build mutation probability for avoiding local convergence. Further, the approach restricts the population in the certain range so that it can prevent the energy consumption caused by insignificant search. Extensive experiments were conducted to study the effects of parameters like anchor density, node density and communication range on the proposed algorithm with respect to average localization error and localization success ratio. In addition, a comparative study was conducted to realize the same localization task using the same network deployment. Experimental results prove that the proposed CS algorithm can not only increase convergence rate but also reduce average localization error compared with standard CS algorithm and Particle Swarm Optimization (PSO) algorithm.
International Nuclear Information System (INIS)
Abedinia, O.; Amjady, N.; Shafie-khah, M.; Catalão, J.P.S.
2015-01-01
Highlights: • Presenting a Combinatorial Neural Network. • Suggesting a new stochastic search method. • Adapting the suggested method as a training mechanism. • Proposing a new forecast strategy. • Testing the proposed strategy on real-world electricity markets. - Abstract: Electricity price forecast is key information for successful operation of electricity market participants. However, the time series of electricity price has nonlinear, non-stationary and volatile behaviour and so its forecast method should have high learning capability to extract the complex input/output mapping function of electricity price. In this paper, a Combinatorial Neural Network (CNN) based forecasting engine is proposed to predict the future values of price data. The CNN-based forecasting engine is equipped with a new training mechanism for optimizing the weights of the CNN. This training mechanism is based on an efficient stochastic search method, which is a modified version of chemical reaction optimization algorithm, giving high learning ability to the CNN. The proposed price forecast strategy is tested on the real-world electricity markets of Pennsylvania–New Jersey–Maryland (PJM) and mainland Spain and its obtained results are extensively compared with the results obtained from several other forecast methods. These comparisons illustrate effectiveness of the proposed strategy.
Heuristic space diversity management in a meta-hyper-heuristic framework
CSIR Research Space (South Africa)
Grobler, J
2014-07-01
Full Text Available This paper introduces the concept of heuristic space diversity and investigates various strategies for the management of heuristic space diversity within the context of a meta-hyper-heuristic algorithm. Evaluation on a diverse set of floating...
Heuristic methods for shared backup path protection planning
DEFF Research Database (Denmark)
Haahr, Jørgen Thorlund; Stidsen, Thomas Riis; Zachariasen, Martin
2012-01-01
schemes are employed. In contrast to manual intervention, automatic protection schemes such as Shared Backup Path Protection (SBPP) can recover from failure quickly and efficiently. SBPP is a simple but efficient protection scheme that can be implemented in backbone networks with technology available...... present heuristic algorithms and lower bound methods for the SBPP planning problem. Experimental results show that the heuristic algorithms are able to find good quality solutions in minutes. A solution gap of less than 3.5% was achieved for more than half of the benchmark instances (and a gap of less...
Heuristic methods for single link shared backup path protection
DEFF Research Database (Denmark)
Haahr, Jørgen Thorlund; Stidsen, Thomas Riis; Zachariasen, Martin
2014-01-01
schemes are employed. In contrast to manual intervention, automatic protection schemes such as shared backup path protection (SBPP) can recover from failure quickly and efficiently. SBPP is a simple but efficient protection scheme that can be implemented in backbone networks with technology available...... heuristic algorithms and lower bound methods for the SBPP planning problem. Experimental results show that the heuristic algorithms are able to find good quality solutions in minutes. A solution gap of less than 3.5 % was achieved for 5 of 7 benchmark instances (and a gap of less than 11 % for the remaining...
A fault-tolerant small world topology control model in ad hoc networks for search and rescue
Tan, Mian; Fang, Ling; Wu, Yue; Zhang, Bo; Chang, Bowen; Holme, Petter; Zhao, Jing
2018-02-01
Due to their self-organized, multi-hop and distributed characteristics, ad hoc networks are useful in search and rescue. Topology control models need to be designed for energy-efficient, robust and fast communication in ad hoc networks. This paper proposes a topology control model which specializes for search and rescue-Compensation Small World-Repeated Game (CSWRG)-which integrates mobility models, constructing small world networks and a game-theoretic approach to the allocation of resources. Simulation results show that our mobility models can enhance the communication performance of the constructed small-world networks. Our strategy, based on repeated game, can suppress selfish behavior and compensate agents that encounter selfish or faulty neighbors. This model could be useful for the design of ad hoc communication networks.
Study of heuristics in ant system for nuclear reload optimisation
International Nuclear Information System (INIS)
Lima, Alan M.M. de; Schirru, Roberto; Silva, Fernando C. da; Machado, Marcelo D.; Medeiros, Jose A.C.C.
2007-01-01
A Pressurized Water Reactor core must be reloaded every time the fuel burnup reaches a level when it is not possible to sustain nominal power operation. The nuclear core fuel reload optimization consists in finding a burned-up and fresh-fuel-assembly loading pattern that maximizes the number of effective full power days, minimizing the relationship cost/benefit. This problem is NP-hard, meaning that complexity grows exponentially with the number of fuel assemblies in the core. Besides that, the problem is non-linear and its search space is highly discontinual and multimodal. In this work a parallel computational system based on Ant Colony System (ACS) called Artificial-Ant-Colony Networks is used to solve the nuclear reactor core fuel reload optimization problem, with compatibles heuristics. ACS is a system based on artificial agents that uses the reinforcement learning technique and was originally developed to solve the Traveling Salesman Problem, which is conceptually similar to the nuclear fuel reload problem. (author)
Study of heuristics in ant system for nuclear reload optimisation
Energy Technology Data Exchange (ETDEWEB)
Lima, Alan M.M. de; Schirru, Roberto; Silva, Fernando C. da; Machado, Marcelo D.; Medeiros, Jose A.C.C. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear]. E-mail: alan@lmp.ufrj.br; schirru@lmp.ufrj.br; fernando@con.ufrj.br; marcelo@lmp.ufrj.br; canedo@lmp.ufrj.br
2007-07-01
A Pressurized Water Reactor core must be reloaded every time the fuel burnup reaches a level when it is not possible to sustain nominal power operation. The nuclear core fuel reload optimization consists in finding a burned-up and fresh-fuel-assembly loading pattern that maximizes the number of effective full power days, minimizing the relationship cost/benefit. This problem is NP-hard, meaning that complexity grows exponentially with the number of fuel assemblies in the core. Besides that, the problem is non-linear and its search space is highly discontinual and multimodal. In this work a parallel computational system based on Ant Colony System (ACS) called Artificial-Ant-Colony Networks is used to solve the nuclear reactor core fuel reload optimization problem, with compatibles heuristics. ACS is a system based on artificial agents that uses the reinforcement learning technique and was originally developed to solve the Traveling Salesman Problem, which is conceptually similar to the nuclear fuel reload problem. (author)
Sequence-based heuristics for faster annotation of non-coding RNA families.
Weinberg, Zasha; Ruzzo, Walter L
2006-01-01
Non-coding RNAs (ncRNAs) are functional RNA molecules that do not code for proteins. Covariance Models (CMs) are a useful statistical tool to find new members of an ncRNA gene family in a large genome database, using both sequence and, importantly, RNA secondary structure information. Unfortunately, CM searches are extremely slow. Previously, we created rigorous filters, which provably sacrifice none of a CM's accuracy, while making searches significantly faster for virtually all ncRNA families. However, these rigorous filters make searches slower than heuristics could be. In this paper we introduce profile HMM-based heuristic filters. We show that their accuracy is usually superior to heuristics based on BLAST. Moreover, we compared our heuristics with those used in tRNAscan-SE, whose heuristics incorporate a significant amount of work specific to tRNAs, where our heuristics are generic to any ncRNA. Performance was roughly comparable, so we expect that our heuristics provide a high-quality solution that--unlike family-specific solutions--can scale to hundreds of ncRNA families. The source code is available under GNU Public License at the supplementary web site.
Directory of Open Access Journals (Sweden)
Vimal J. Savsani
2017-04-01
The static and dynamic responses to the TTO problems are challenging due to its search space, which is implicit, non-convex, non-linear, and often leading to divergence. Modified meta-heuristics are effective optimization methods to handle such problems in actual fact. In this paper, modified versions of Teaching–Learning-Based Optimization (TLBO, Heat Transfer Search (HTS, Water Wave Optimization (WWO, and Passing Vehicle Search (PVS are proposed by integrating the random mutation-based search technique with them. This paper compares the performance of four modified and four basic meta-heuristics to solve discrete TTO problems.
Heuristic errors in clinical reasoning.
Rylander, Melanie; Guerrasio, Jeannette
2016-08-01
Errors in clinical reasoning contribute to patient morbidity and mortality. The purpose of this study was to determine the types of heuristic errors made by third-year medical students and first-year residents. This study surveyed approximately 150 clinical educators inquiring about the types of heuristic errors they observed in third-year medical students and first-year residents. Anchoring and premature closure were the two most common errors observed amongst third-year medical students and first-year residents. There was no difference in the types of errors observed in the two groups. Errors in clinical reasoning contribute to patient morbidity and mortality Clinical educators perceived that both third-year medical students and first-year residents committed similar heuristic errors, implying that additional medical knowledge and clinical experience do not affect the types of heuristic errors made. Further work is needed to help identify methods that can be used to reduce heuristic errors early in a clinician's education. © 2015 John Wiley & Sons Ltd.
Searching of fuel recharges by means of genetic algorithms and neural networks in BWRs
International Nuclear Information System (INIS)
Ortiz S, J.J.; Montes T, J.L.; Castillo M, J.A.; Perusquia del C, R.
2004-01-01
In this work improvements to the systems RENOR and RECOPIA are presented, that were developed to optimize fuel recharges in boiling water reactors. The RENOR system is based on a Multi state recurrent neural network while RECOPIA is based on a Genetic Algorithm. In the new versions of these systems there is incorporate the execution of the Turned off Margin in Cold and the Excess of Reactivity in Hot. The new systems were applied to an operation cycle of the Unit 1 of the Nuclear Power station of Laguna Verde. The recharges of fuel obtained by both methods are compared among if being observed that RENOR has better performance that RECOPIA, due to the nature of its search process. RECOPIA requires of approximately 1.4 times more time that RENOR to find a satisfactory recharge of fuel. (Author)
Alizadeh Afrouzy, Zahra; Paydar, Mohammad Mahdi; Nasseri, Seyed Hadi; Mahdavi, Iraj
2018-03-01
There are many reasons for the growing interest in developing new product projects for any firm. The most embossed reason is surviving in a highly competitive industry which the customer tastes are changing rapidly. A well-managed supply chain network can provide the most profit for firms due to considering new product development. Along with profit, customer satisfaction and production of new products are goals which lead to a more efficient supply chain. As new products appear in the market, the old products could become obsolete, and then phased out. The most important parameter in a supply chain which considers new and developed products is the time that developed and new products are introduced and old products are phased out. With consideration of the factors noted above, this study proposes to design a tri-objective multi-echelon multi-product multi-period supply chain model, which incorporates product development and new product production and their effects on supply chain configuration. The supply chain under consideration is assumed to consist of suppliers, manufacturers, distributors and customer groups. In terms of overcoming NP-hardness of the proposed model and in order to solve the complicated problem, a non-dominated sorting genetic algorithm is employed. As there is no benchmark available in the literature, the non-dominated ranking genetic algorithm is developed to validate the results obtained and some test problems are provided to show the applicability of the proposed methodology and evaluate the performance of the algorithms.
Evaluation of Voltage Control Approaches for Future Smart Distribution Networks
Directory of Open Access Journals (Sweden)
Pengfei Wang
2017-08-01
Full Text Available This paper evaluates meta-heuristic and deterministic approaches for distribution network voltage control. As part of this evaluation, a novel meta-heuristic algorithm, Cuckoo Search, is applied for distribution network voltage control and compared with a deterministic voltage control algorithm, the oriented discrete coordinate decent method (ODCDM. ODCDM has been adopted in a state-of-the-art industrial product and applied in real distribution networks. These two algorithms have been evaluated under a set of test cases, which were generated to represent the voltage control problems in current and future distribution networks. Sampled test results have been presented, and findings have been discussed regarding the adoption of different optimization algorithms for current and future distribution networks.
Heuristic procedures for transmission planning in competitive electricity markets
International Nuclear Information System (INIS)
Lu, Wene; Bompard, Ettore; Napoli, Roberto; Jiang, Xiuchen
2007-01-01
The network structure of the power system, in an electricity market under the pool model, may have severe impacts on market performance, reducing market efficiency considerably, especially when producers bid strategically. In this context network re-enforcement plays a major role and proper strategies of transmission planning need to be devised. This paper presents, for pool-model electricity markets, two heuristic procedures to select the most effective subset of lines that would reduce the impacts on the market, from a set of predefined candidate lines and within the allowed budget for network expansion. A set of indices that account for the economic impacts of the re-enforcing of the candidate lines, both in terms of construction cost and market efficiency, are proposed and used as sensitivity indices in the heuristic procedure. The proposed methods are applied and compared with reference to an 18-bus test system. (author)
Automated detection of heuristics and biases among pathologists in a computer-based system.
Crowley, Rebecca S; Legowski, Elizabeth; Medvedeva, Olga; Reitmeyer, Kayse; Tseytlin, Eugene; Castine, Melissa; Jukic, Drazen; Mello-Thoms, Claudia
2013-08-01
The purpose of this study is threefold: (1) to develop an automated, computer-based method to detect heuristics and biases as pathologists examine virtual slide cases, (2) to measure the frequency and distribution of heuristics and errors across three levels of training, and (3) to examine relationships of heuristics to biases, and biases to diagnostic errors. The authors conducted the study using a computer-based system to view and diagnose virtual slide cases. The software recorded participant responses throughout the diagnostic process, and automatically classified participant actions based on definitions of eight common heuristics and/or biases. The authors measured frequency of heuristic use and bias across three levels of training. Biases studied were detected at varying frequencies, with availability and search satisficing observed most frequently. There were few significant differences by level of training. For representativeness and anchoring, the heuristic was used appropriately as often or more often than it was used in biased judgment. Approximately half of the diagnostic errors were associated with one or more biases. We conclude that heuristic use and biases were observed among physicians at all levels of training using the virtual slide system, although their frequencies varied. The system can be employed to detect heuristic use and to test methods for decreasing diagnostic errors resulting from cognitive biases.
Energy Technology Data Exchange (ETDEWEB)
Attisha, Michael J. [Brown U.
2006-01-01
The Cryogenic Dark Matter Search (CDMS) experiment is designed to search for dark matter in the form of Weakly Interacting Massive Particles (WIMPs) via their elastic scattering interactions with nuclei. This dissertation presents the CDMS detector technology and the commissioning of two towers of detectors at the deep underground site in Soudan, Minnesota. CDMS detectors comprise crystals of Ge and Si at temperatures of 20 mK which provide ~keV energy resolution and the ability to perform particle identification on an event by event basis. Event identification is performed via a two-fold interaction signature; an ionization response and an athermal phonon response. Phonons and charged particles result in electron recoils in the crystal, while neutrons and WIMPs result in nuclear recoils. Since the ionization response is quenched by a factor ~ 3(2) in Ge(Si) for nuclear recoils compared to electron recoils, the relative amplitude of the two detector responses allows discrimination between recoil types. The primary source of background events in CDMS arises from electron recoils in the outer 50 µm of the detector surface which have a reduced ionization response. We develop a quantitative model of this ‘dead layer’ effect and successfully apply the model to Monte Carlo simulation of CDMS calibration data. Analysis of data from the two tower run March-August 2004 is performed, resulting in the world’s most sensitive limits on the spin-independent WIMP-nucleon cross-section, with a 90% C.L. upper limit of 1.6 × 10^{-43} cm^{2} on Ge for a 60 GeV WIMP. An approach to performing surface event discrimination using neural networks and wavelets is developed. A Bayesian methodology to classifying surface events using neural networks is found to provide an optimized method based on minimization of the expected dark matter limit. The discrete wavelet analysis of CDMS phonon pulses improves surface event discrimination in conjunction with the neural
A novel heuristic algorithm for capacitated vehicle routing problem
Kır, Sena; Yazgan, Harun Reşit; Tüncel, Emre
2017-09-01
The vehicle routing problem with the capacity constraints was considered in this paper. It is quite difficult to achieve an optimal solution with traditional optimization methods by reason of the high computational complexity for large-scale problems. Consequently, new heuristic or metaheuristic approaches have been developed to solve this problem. In this paper, we constructed a new heuristic algorithm based on the tabu search and adaptive large neighborhood search (ALNS) with several specifically designed operators and features to solve the capacitated vehicle routing problem (CVRP). The effectiveness of the proposed algorithm was illustrated on the benchmark problems. The algorithm provides a better performance on large-scaled instances and gained advantage in terms of CPU time. In addition, we solved a real-life CVRP using the proposed algorithm and found the encouraging results by comparison with the current situation that the company is in.
Heuristic Biases in Mathematical Reasoning
Inglis, Matthew; Simpson, Adrian
2005-01-01
In this paper we briefly describe the dual process account of reasoning, and explain the role of heuristic biases in human thought. Concentrating on the so-called matching bias effect, we describe a piece of research that indicates a correlation between success at advanced level mathematics and an ability to override innate and misleading…
Heuristic reasoning and relative incompleteness
Treur, J.
1993-01-01
In this paper an approach is presented in which heuristic reasoning is interpreted as strategic reasoning. This type of reasoning enables one to derive which hypothesis to investigate, and which observable information to acquire next (to be able to verify the chosen hypothesis). A compositional
Comparison of Heuristics for Generating All-partition Arrays in the Style of Milton Babbitt
DEFF Research Database (Denmark)
Bemman, Brian; Meredith, David
2015-01-01
aggregate or an incomplete one that can be made complete by adding OARPs. It is noteworthy that, when constructing an all-partition array, Babbitt started out with a non-self-contained sequence of partitions. In this paper, we use a known self-contained sequence as a basis for forming two heuristics...... that select integer partitions likely to have been chosen by Babbitt. We suggest these heuristics will select integer partitions more likely to produce a self-contained sequence and we present it as a means for efficiently searching the space of possible sequences. We apply our heuristics to both types...
Iterated local search and record-to-record travel applied to the fixed charge transportation problem
DEFF Research Database (Denmark)
Andersen, Jeanne; Klose, Andreas
The fixed charge transportation problem (FCTP) is a well-known and difficult optimization problem with lots of applications in logistics. It consists in finding a minimum cost network flow from a set of suppliers to a set of customers. Beside costs proportional to quantities transported......, transportation costs do, however, include a fixed charge. Iterated local search and record-to-record travel are both simple local search based meta-heuristics that, to our knowledge, not yet have been applied to the FCTP. In this paper, we apply both types of search strategies and combine them into a single...
The use of meta-heuristics for airport gate assignment
DEFF Research Database (Denmark)
Cheng, Chun-Hung; Ho, Sin C.; Kwan, Cheuk-Lam
2012-01-01
proposed to generate good solutions within a reasonable timeframe. In this work, we attempt to assess the performance of three meta-heuristics, namely, genetic algorithm (GA), tabu search (TS), simulated annealing (SA) and a hybrid approach based on SA and TS. Flight data from Incheon International Airport...... are collected to carry out the computational comparison. Although the literature has documented these algorithms, this work may be a first attempt to evaluate their performance using a set of realistic flight data....
Heuristics for NP-hard optimization problems - simpler is better!?
Directory of Open Access Journals (Sweden)
Žerovnik Janez
2015-11-01
Full Text Available We provide several examples showing that local search, the most basic metaheuristics, may be a very competitive choice for solving computationally hard optimization problems. In addition, generation of starting solutions by greedy heuristics should be at least considered as one of very natural possibilities. In this critical survey, selected examples discussed include the traveling salesman, the resource-constrained project scheduling, the channel assignment, and computation of bounds for the Shannon capacity.
Combined heuristic with fuzzy system to transmission system expansion planning
Energy Technology Data Exchange (ETDEWEB)
Silva Sousa, Aldir; Asada, Eduardo N. [University of Sao Paulo, Sao Carlos School of Engineering, Department of Electrical Engineering Av. Trabalhador Sao-carlense, 400, 13566-590 Sao Carlos, SP (Brazil)
2011-01-15
A heuristic algorithm that employs fuzzy logic is proposed to the power system transmission expansion planning problem. The algorithm is based on the divide to conquer strategy, which is controlled by the fuzzy system. The algorithm provides high quality solutions with the use of fuzzy decision making, which is based on nondeterministic criteria to guide the search. The fuzzy system provides a self-adjusting mechanism that eliminates the manual adjustment of parameters to each system being solved. (author)
examining the predictive power of the VRIO-Framework and the Recognition Heuristic
Powalla, Christian
2010-01-01
Boundedly rational managers regularly have to make complex strategic decisions under uncertainty. In this context heuristics can play an important supporting role. They are used to reasonably structure the decision making process, to reduce the information search, and to achieve a good solution with an acceptable problem-solving effort. This empirical research project analyzes the practical usefulness of several selected heuristic techniques, which can be used within strategic analysis, by...
Zhang, Lu; Du, Hongru; Zhao, Yannan; Wu, Rongwei; Zhang, Xiaolei
2017-01-01
"The Belt and Road" initiative has been expected to facilitate interactions among numerous city centers. This initiative would generate a number of centers, both economic and political, which would facilitate greater interaction. To explore how information flows are merged and the specific opportunities that may be offered, Chinese cities along "the Belt and Road" are selected for a case study. Furthermore, urban networks in cyberspace have been characterized by their infrastructure orientation, which implies that there is a relative dearth of studies focusing on the investigation of urban hierarchies by capturing information flows between Chinese cities along "the Belt and Road". This paper employs Baidu, the main web search engine in China, to examine urban hierarchies. The results show that urban networks become more balanced, shifting from a polycentric to a homogenized pattern. Furthermore, cities in networks tend to have both a hierarchical system and a spatial concentration primarily in regions such as Beijing-Tianjin-Hebei, Yangtze River Delta and the Pearl River Delta region. Urban hierarchy based on web search activity does not follow the existing hierarchical system based on geospatial and economic development in all cases. Moreover, urban networks, under the framework of "the Belt and Road", show several significant corridors and more opportunities for more cities, particularly western cities. Furthermore, factors that may influence web search activity are explored. The results show that web search activity is significantly influenced by the economic gap, geographical proximity and administrative rank of the city.
Directory of Open Access Journals (Sweden)
Lu Zhang
Full Text Available "The Belt and Road" initiative has been expected to facilitate interactions among numerous city centers. This initiative would generate a number of centers, both economic and political, which would facilitate greater interaction. To explore how information flows are merged and the specific opportunities that may be offered, Chinese cities along "the Belt and Road" are selected for a case study. Furthermore, urban networks in cyberspace have been characterized by their infrastructure orientation, which implies that there is a relative dearth of studies focusing on the investigation of urban hierarchies by capturing information flows between Chinese cities along "the Belt and Road". This paper employs Baidu, the main web search engine in China, to examine urban hierarchies. The results show that urban networks become more balanced, shifting from a polycentric to a homogenized pattern. Furthermore, cities in networks tend to have both a hierarchical system and a spatial concentration primarily in regions such as Beijing-Tianjin-Hebei, Yangtze River Delta and the Pearl River Delta region. Urban hierarchy based on web search activity does not follow the existing hierarchical system based on geospatial and economic development in all cases. Moreover, urban networks, under the framework of "the Belt and Road", show several significant corridors and more opportunities for more cities, particularly western cities. Furthermore, factors that may influence web search activity are explored. The results show that web search activity is significantly influenced by the economic gap, geographical proximity and administrative rank of the city.
Drake, John H; Özcan, Ender; Burke, Edmund K
2016-01-01
Hyper-heuristics are high-level methodologies for solving complex problems that operate on a search space of heuristics. In a selection hyper-heuristic framework, a heuristic is chosen from an existing set of low-level heuristics and applied to the current solution to produce a new solution at each point in the search. The use of crossover low-level heuristics is possible in an increasing number of general-purpose hyper-heuristic tools such as HyFlex and Hyperion. However, little work has been undertaken to assess how best to utilise it. Since a single-point search hyper-heuristic operates on a single candidate solution, and two candidate solutions are required for crossover, a mechanism is required to control the choice of the other solution. The frameworks we propose maintain a list of potential solutions for use in crossover. We investigate the use of such lists at two conceptual levels. First, crossover is controlled at the hyper-heuristic level where no problem-specific information is required. Second, it is controlled at the problem domain level where problem-specific information is used to produce good-quality solutions to use in crossover. A number of selection hyper-heuristics are compared using these frameworks over three benchmark libraries with varying properties for an NP-hard optimisation problem: the multidimensional 0-1 knapsack problem. It is shown that allowing crossover to be managed at the domain level outperforms managing crossover at the hyper-heuristic level in this problem domain.
Efficient heuristics for the Rural Postman Problem | Groves | ORiON
African Journals Online (AJOL)
A local search framework for the (undirected) Rural Postman Problem (RPP) is presented in this paper. The framework allows local search approaches that have been applied successfully to the well–known Travelling Salesman Problem also to be applied to the RPP. New heuristics for the RPP, based on this framework, ...
Familiarity and recollection in heuristic decision making.
Schwikert, Shane R; Curran, Tim
2014-12-01
Heuristics involve the ability to utilize memory to make quick judgments by exploiting fundamental cognitive abilities. In the current study we investigated the memory processes that contribute to the recognition heuristic and the fluency heuristic, which are both presumed to capitalize on the byproducts of memory to make quick decisions. In Experiment 1, we used a city-size comparison task while recording event-related potentials (ERPs) to investigate the potential contributions of familiarity and recollection to the 2 heuristics. ERPs were markedly different for recognition heuristic-based decisions and fluency heuristic-based decisions, suggesting a role for familiarity in the recognition heuristic and recollection in the fluency heuristic. In Experiment 2, we coupled the same city-size comparison task with measures of subjective preexperimental memory for each stimulus in the task. Although previous literature suggests the fluency heuristic relies on recognition speed alone, our results suggest differential contributions of recognition speed and recollected knowledge to these decisions, whereas the recognition heuristic relies on familiarity. Based on these results, we created a new theoretical framework that explains decisions attributed to both heuristics based on the underlying memory associated with the choice options. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Distance-Constraint k-Nearest Neighbor Searching in Mobile Sensor Networks.
Han, Yongkoo; Park, Kisung; Hong, Jihye; Ulamin, Noor; Lee, Young-Koo
2015-07-27
The κ-Nearest Neighbors ( κNN) query is an important spatial query in mobile sensor networks. In this work we extend κNN to include a distance constraint, calling it a l-distant κ-nearest-neighbors (l-κNN) query, which finds the κ sensor nodes nearest to a query point that are also at or greater distance from each other. The query results indicate the objects nearest to the area of interest that are scattered from each other by at least distance l. The l-κNN query can be used in most κNN applications for the case of well distributed query results. To process an l-κNN query, we must discover all sets of κNN sensor nodes and then find all pairs of sensor nodes in each set that are separated by at least a distance l. Given the limited battery and computing power of sensor nodes, this l-κNN query processing is problematically expensive in terms of energy consumption. In this paper, we propose a greedy approach for l-κNN query processing in mobile sensor networks. The key idea of the proposed approach is to divide the search space into subspaces whose all sides are l. By selecting κ sensor nodes from the other subspaces near the query point, we guarantee accurate query results for l-κNN. In our experiments, we show that the proposed method exhibits superior performance compared with a post-processing based method using the κNN query in terms of energy efficiency, query latency, and accuracy.
How the twain can meet: Prospect theory and models of heuristics in risky choice.
Pachur, Thorsten; Suter, Renata S; Hertwig, Ralph
2017-03-01
Two influential approaches to modeling choice between risky options are algebraic models (which focus on predicting the overt decisions) and models of heuristics (which are also concerned with capturing the underlying cognitive process). Because they rest on fundamentally different assumptions and algorithms, the two approaches are usually treated as antithetical, or even incommensurable. Drawing on cumulative prospect theory (CPT; Tversky & Kahneman, 1992) as the currently most influential instance of a descriptive algebraic model, we demonstrate how the two modeling traditions can be linked. CPT's algebraic functions characterize choices in terms of psychophysical (diminishing sensitivity to probabilities and outcomes) as well as psychological (risk aversion and loss aversion) constructs. Models of heuristics characterize choices as rooted in simple information-processing principles such as lexicographic and limited search. In computer simulations, we estimated CPT's parameters for choices produced by various heuristics. The resulting CPT parameter profiles portray each of the choice-generating heuristics in psychologically meaningful ways-capturing, for instance, differences in how the heuristics process probability information. Furthermore, CPT parameters can reflect a key property of many heuristics, lexicographic search, and track the environment-dependent behavior of heuristics. Finally, we show, both in an empirical and a model recovery study, how CPT parameter profiles can be used to detect the operation of heuristics. We also address the limits of CPT's ability to capture choices produced by heuristics. Our results highlight an untapped potential of CPT as a measurement tool to characterize the information processing underlying risky choice. Copyright © 2017 Elsevier Inc. All rights reserved.
Identifying multiple influential spreaders by a heuristic clustering algorithm
Energy Technology Data Exchange (ETDEWEB)
Bao, Zhong-Kui [School of Mathematical Science, Anhui University, Hefei 230601 (China); Liu, Jian-Guo [Data Science and Cloud Service Research Center, Shanghai University of Finance and Economics, Shanghai, 200133 (China); Zhang, Hai-Feng, E-mail: haifengzhang1978@gmail.com [School of Mathematical Science, Anhui University, Hefei 230601 (China); Department of Communication Engineering, North University of China, Taiyuan, Shan' xi 030051 (China)
2017-03-18
The problem of influence maximization in social networks has attracted much attention. However, traditional centrality indices are suitable for the case where a single spreader is chosen as the spreading source. Many times, spreading process is initiated by simultaneously choosing multiple nodes as the spreading sources. In this situation, choosing the top ranked nodes as multiple spreaders is not an optimal strategy, since the chosen nodes are not sufficiently scattered in networks. Therefore, one ideal situation for multiple spreaders case is that the spreaders themselves are not only influential but also they are dispersively distributed in networks, but it is difficult to meet the two conditions together. In this paper, we propose a heuristic clustering (HC) algorithm based on the similarity index to classify nodes into different clusters, and finally the center nodes in clusters are chosen as the multiple spreaders. HC algorithm not only ensures that the multiple spreaders are dispersively distributed in networks but also avoids the selected nodes to be very “negligible”. Compared with the traditional methods, our experimental results on synthetic and real networks indicate that the performance of HC method on influence maximization is more significant. - Highlights: • A heuristic clustering algorithm is proposed to identify the multiple influential spreaders in complex networks. • The algorithm can not only guarantee the selected spreaders are sufficiently scattered but also avoid to be “insignificant”. • The performance of our algorithm is generally better than other methods, regardless of real networks or synthetic networks.
Identifying multiple influential spreaders by a heuristic clustering algorithm
International Nuclear Information System (INIS)
Bao, Zhong-Kui; Liu, Jian-Guo; Zhang, Hai-Feng
2017-01-01
The problem of influence maximization in social networks has attracted much attention. However, traditional centrality indices are suitable for the case where a single spreader is chosen as the spreading source. Many times, spreading process is initiated by simultaneously choosing multiple nodes as the spreading sources. In this situation, choosing the top ranked nodes as multiple spreaders is not an optimal strategy, since the chosen nodes are not sufficiently scattered in networks. Therefore, one ideal situation for multiple spreaders case is that the spreaders themselves are not only influential but also they are dispersively distributed in networks, but it is difficult to meet the two conditions together. In this paper, we propose a heuristic clustering (HC) algorithm based on the similarity index to classify nodes into different clusters, and finally the center nodes in clusters are chosen as the multiple spreaders. HC algorithm not only ensures that the multiple spreaders are dispersively distributed in networks but also avoids the selected nodes to be very “negligible”. Compared with the traditional methods, our experimental results on synthetic and real networks indicate that the performance of HC method on influence maximization is more significant. - Highlights: • A heuristic clustering algorithm is proposed to identify the multiple influential spreaders in complex networks. • The algorithm can not only guarantee the selected spreaders are sufficiently scattered but also avoid to be “insignificant”. • The performance of our algorithm is generally better than other methods, regardless of real networks or synthetic networks.
Asmar, Sami; Renzetti, Nicholas
1994-01-01
The Deep Space Network generates accurate radio science data observables for investigators who use radio links between spacecraft and the Earth to examine small changes in the phase and/or amplitude of the signal to study a wide variety of structures and phenomena in space. Several such studies are directed at aspects of the theory of general relativity such as gravitational redshift and gravitational waves. A gravitational wave is a propagating, polarized gravitational field, a ripple in the curvature of space-time. In Einstein's theory of general relativity, the waves are propagating solutions of the Einstein field equations. Their amplitudes are dimensionless strain amplitudes that change the fractional difference in distance between test masses and the rates at which separated clocks keep time. Predicted by all relativistic theories of gravity, they are extremely weak (the ratio of gravitational forces to electrical forces is about 10(sup -40)) and are generated at detectable levels only by astrophysical sources - very massive sources under violent dynamical conditions. The waves have never been detected but searches in the low-frequency band using Doppler tracking of many spacecraft have been conducted and others are being planned. Upper limits have been placed on the gravitational wave strength with the best sensitivities to date are for periodic waves being 7 x 10(sup -15).
Directory of Open Access Journals (Sweden)
Arie Budovsky
2012-09-01
Full Text Available Plants growing in the Judea region are widely used in traditional medicine of the Levant region. Nevertheless, they have not so far been sufficiently analyzed and their medicinal potential has not been evaluated. This study is the first attempt to fill the gap in the knowledge of the plants growing in the region. Comprehensive data mining of online botanical databases and peer-reviewed scientific literature including ethno-pharmacological surveys from the Levant region was applied to compile a full list of plants growing in the Judea region, with the focus on their medicinal applications. Around 1300 plants growing in the Judea region were identified. Of them, 25% have medicinal applications which were analyzed in this study. Screening for chemical-protein interactions, together with the network-based analysis of potential targets, will facilitate discovery and therapeutic applications of the Judea region plants. Such an approach could also be applied as an integrative platform for further searching the potential therapeutic targets of plants growing in other regions of the world.
Special relativity a heuristic approach
Hassani, Sadri
2017-01-01
Special Relativity: A Heuristic Approach provides a qualitative exposition of relativity theory on the basis of the constancy of the speed of light. Using Einstein's signal velocity as the defining idea for the notion of simultaneity and the fact that the speed of light is independent of the motion of its source, chapters delve into a qualitative exposition of the relativity of time and length, discuss the time dilation formula using the standard light clock, explore the Minkowski four-dimensional space-time distance based on how the time dilation formula is derived, and define the components of the two-dimensional space-time velocity, amongst other topics. Provides a heuristic derivation of the Minkowski distance formula Uses relativistic photography to see Lorentz transformation and vector algebra manipulation in action Includes worked examples to elucidate and complement the topic being discussed Written in a very accessible style
Utilizing scale-free networks to support the search for scientific publications
Hauff, C.; Nürnberger, Andreas; de Jong, Franciska M.G.; Kraaij, W.
2006-01-01
When searching for scientic publications, users today often rely on search engines such as Yahoo.com. Whereas searching for publications whose titles are known is considered to be an easy task, users who are looking for important publications in research elds they are unfamiliar with face greater
Application of heuristic and machine-learning approach to engine model calibration
Cheng, Jie; Ryu, Kwang R.; Newman, C. E.; Davis, George C.
1993-03-01
Automation of engine model calibration procedures is a very challenging task because (1) the calibration process searches for a goal state in a huge, continuous state space, (2) calibration is often a lengthy and frustrating task because of complicated mutual interference among the target parameters, and (3) the calibration problem is heuristic by nature, and often heuristic knowledge for constraining a search cannot be easily acquired from domain experts. A combined heuristic and machine learning approach has, therefore, been adopted to improve the efficiency of model calibration. We developed an intelligent calibration program called ICALIB. It has been used on a daily basis for engine model applications, and has reduced the time required for model calibrations from many hours to a few minutes on average. In this paper, we describe the heuristic control strategies employed in ICALIB such as a hill-climbing search based on a state distance estimation function, incremental problem solution refinement by using a dynamic tolerance window, and calibration target parameter ordering for guiding the search. In addition, we present the application of a machine learning program called GID3* for automatic acquisition of heuristic rules for ordering target parameters.
A nuclear heuristic for application to metaheuristics in-core fuel management optimization
Energy Technology Data Exchange (ETDEWEB)
Meneses, Anderson Alvarenga de Moura, E-mail: ameneses@lmp.ufrj.b [COPPE/Federal University of Rio de Janeiro, RJ (Brazil). Nuclear Engineering Program; Dalle Molle Institute for Artificial Intelligence (IDSIA), Manno-Lugano, TI (Switzerland); Gambardella, Luca Maria, E-mail: luca@idsia.c [Dalle Molle Institute for Artificial Intelligence (IDSIA), Manno-Lugano, TI (Switzerland); Schirru, Roberto, E-mail: schirru@lmp.ufrj.b [COPPE/Federal University of Rio de Janeiro, RJ (Brazil). Nuclear Engineering Program
2009-07-01
The In-Core Fuel Management Optimization (ICFMO) is a well-known problem of nuclear engineering whose features are complexity, high number of feasible solutions, and a complex evaluation process with high computational cost, thus it is prohibitive to have a great number of evaluations during an optimization process. Heuristics are criteria or principles for deciding which among several alternative courses of action are more effective with respect to some goal. In this paper, we propose a new approach for the use of relational heuristics for the search in the ICFMO. The Heuristic is based on the reactivity of the fuel assemblies and their position into the reactor core. It was applied to random search, resulting in less computational effort concerning the number of evaluations of loading patterns during the search. The experiments demonstrate that it is possible to achieve results comparable to results in the literature, for future application to metaheuristics in the ICFMO. (author)
A nuclear heuristic for application to metaheuristics in-core fuel management optimization
International Nuclear Information System (INIS)
Meneses, Anderson Alvarenga de Moura; Gambardella, Luca Maria; Schirru, Roberto
2009-01-01
The In-Core Fuel Management Optimization (ICFMO) is a well-known problem of nuclear engineering whose features are complexity, high number of feasible solutions, and a complex evaluation process with high computational cost, thus it is prohibitive to have a great number of evaluations during an optimization process. Heuristics are criteria or principles for deciding which among several alternative courses of action are more effective with respect to some goal. In this paper, we propose a new approach for the use of relational heuristics for the search in the ICFMO. The Heuristic is based on the reactivity of the fuel assemblies and their position into the reactor core. It was applied to random search, resulting in less computational effort concerning the number of evaluations of loading patterns during the search. The experiments demonstrate that it is possible to achieve results comparable to results in the literature, for future application to metaheuristics in the ICFMO. (author)
Heuristic Synthesis of Reversible Logic – A Comparative Study
Directory of Open Access Journals (Sweden)
Chua Shin Cheng
2014-01-01
Full Text Available Reversible logic circuits have been historically motivated by theoretical research in low-power, and recently attracted interest as components of the quantum algorithm, optical computing and nanotechnology. However due to the intrinsic property of reversible logic, traditional irreversible logic design and synthesis methods cannot be carried out. Thus a new set of algorithms are developed correctly to synthesize reversible logic circuit. This paper presents a comprehensive literature review with comparative study on heuristic based reversible logic synthesis. It reviews a range of heuristic based reversible logic synthesis techniques reported by researchers (BDD-based, cycle-based, search-based, non-search-based, rule-based, transformation-based, and ESOP-based. All techniques are described in detail and summarized in a table based on their features, limitation, library used and their consideration metric. Benchmark comparison of gate count and quantum cost are analysed for each synthesis technique. Comparing the synthesis algorithm outputs over the years, it can be observed that different approach has been used for the synthesis of reversible circuit. However, the improvements are not significant. Quantum cost and gate count has improved over the years, but arguments and debates are still on certain issues such as the issue of garbage outputs that remain the same. This paper provides the information of all heuristic based synthesis of reversible logic method proposed over the years. All techniques are explained in detail and thus informative for new reversible logic researchers and bridging the knowledge gap in this area.
In Search of a Network Organization for TNC’s Innovation
DEFF Research Database (Denmark)
Hu, Yimei; Sørensen, Olav Jull
organization among many kinds of innovation networks based on review of relative literatures. Then this paper moves one step further to introduce a network perspective, i.e. network is the context of firms as well as TNCs, and market and hierarchy can be analyzed from a network approach. Further on, this paper......During the past three decades, there are massive researches on innovation networks and network organizations. However, researchers are holding different understandings, some of which even conflict with each other, thus this paper makes an inductive conceptual analysis to clarify what is a network...... discusses the theoretical foundation of network organization, and proposes that since a focal firm has different strength of power in different levels of network, it will have different roles and may not always have the power to “manage” an innovation network....
Smoly, Ilan; Carmel, Amir; Shemer-Avni, Yonat; Yeger-Lotem, Esti; Ziv-Ukelson, Michal
2016-03-01
Network querying is a powerful approach to mine molecular interaction networks. Most state-of-the-art network querying tools either confine the search to a prespecified topology in the form of some template subnetwork, or do not specify any topological constraints at all. Another approach is grammar-based queries, which are more flexible and expressive as they allow for expressing the topology of the sought pattern according to some grammar-based logic. Previous grammar-based network querying tools were confined to the identification of paths. In this article, we extend the patterns identified by grammar-based query approaches from paths to trees. For this, we adopt a higher order query descriptor in the form of a regular tree grammar (RTG). We introduce a novel problem and propose an algorithm to search a given graph for the k highest scoring subgraphs matching a tree accepted by an RTG. Our algorithm is based on the combination of dynamic programming with color coding, and includes an extension of previous k-best parsing optimization approaches to avoid isomorphic trees in the output. We implement the new algorithm and exemplify its application to mining viral infection patterns within molecular interaction networks. Our code is available online.
International Nuclear Information System (INIS)
Kim, Kyungmin; Lee, Hyun Kyu; Harry, Ian W; Hodge, Kari A; Kim, Young-Min; Lee, Chang-Hwan; Oh, John J; Oh, Sang Hoon; Son, Edwin J
2015-01-01
We apply a machine learning algorithm, the artificial neural network, to the search for gravitational-wave signals associated with short gamma-ray bursts (GRBs). The multi-dimensional samples consisting of data corresponding to the statistical and physical quantities from the coherent search pipeline are fed into the artificial neural network to distinguish simulated gravitational-wave signals from background noise artifacts. Our result shows that the data classification efficiency at a fixed false alarm probability (FAP) is improved by the artificial neural network in comparison to the conventional detection statistic. Specifically, the distance at 50% detection probability at a fixed false positive rate is increased about 8%–14% for the considered waveform models. We also evaluate a few seconds of the gravitational-wave data segment using the trained networks and obtain the FAP. We suggest that the artificial neural network can be a complementary method to the conventional detection statistic for identifying gravitational-wave signals related to the short GRBs. (paper)
Windows .NET Network Distributed Basic Local Alignment Search Toolkit (W.ND-BLAST
Directory of Open Access Journals (Sweden)
Oliver Melvin J
2005-04-01
Full Text Available Abstract Background BLAST is one of the most common and useful tools for Genetic Research. This paper describes a software application we have termed Windows .NET Distributed Basic Local Alignment Search Toolkit (W.ND-BLAST, which enhances the BLAST utility by improving usability, fault recovery, and scalability in a Windows desktop environment. Our goal was to develop an easy to use, fault tolerant, high-throughput BLAST solution that incorporates a comprehensive BLAST result viewer with curation and annotation functionality. Results W.ND-BLAST is a comprehensive Windows-based software toolkit that targets researchers, including those with minimal computer skills, and provides the ability increase the performance of BLAST by distributing BLAST queries to any number of Windows based machines across local area networks (LAN. W.ND-BLAST provides intuitive Graphic User Interfaces (GUI for BLAST database creation, BLAST execution, BLAST output evaluation and BLAST result exportation. This software also provides several layers of fault tolerance and fault recovery to prevent loss of data if nodes or master machines fail. This paper lays out the functionality of W.ND-BLAST. W.ND-BLAST displays close to 100% performance efficiency when distributing tasks to 12 remote computers of the same performance class. A high throughput BLAST job which took 662.68 minutes (11 hours on one average machine was completed in 44.97 minutes when distributed to 17 nodes, which included lower performance class machines. Finally, there is a comprehensive high-throughput BLAST Output Viewer (BOV and Annotation Engine components, which provides comprehensive exportation of BLAST hits to text files, annotated fasta files, tables, or association files. Conclusion W.ND-BLAST provides an interactive tool that allows scientists to easily utilizing their available computing resources for high throughput and comprehensive sequence analyses. The install package for W.ND-BLAST is
Shiangjen, Kanokwatt; Chaijaruwanich, Jeerayut; Srisujjalertwaja, Wijak; Unachak, Prakarn; Somhom, Samerkae
2018-02-01
This article presents an efficient heuristic placement algorithm, namely, a bidirectional heuristic placement, for solving the two-dimensional rectangular knapsack packing problem. The heuristic demonstrates ways to maximize space utilization by fitting the appropriate rectangle from both sides of the wall of the current residual space layer by layer. The iterative local search along with a shift strategy is developed and applied to the heuristic to balance the exploitation and exploration tasks in the solution space without the tuning of any parameters. The experimental results on many scales of packing problems show that this approach can produce high-quality solutions for most of the benchmark datasets, especially for large-scale problems, within a reasonable duration of computational time.
A Heuristic Procedure for the Outbound Container Relocation Problem during Export Loading Operations
Directory of Open Access Journals (Sweden)
Roberto Guerra-Olivares
2015-01-01
Full Text Available During export ship loading operations, it is often necessary to perform relocation movements with containers that interfere with access to the desired container in the ship loading sequence. This paper presents a real-time heuristic procedure for the container relocation problem employing reachstacker vehicles as container handling equipment. The proposed heuristic searches for good relocation coordinates within a set of nearby bays. The heuristic has a parameter that determines how far from the original bay a container may be relocated. The tradeoff between reducing relocation movements and limiting vehicle travel distances is examined and the performance of the heuristic is compared with a common practice in the smaller container terminals in Chile and Mexico. Finally, a mathematical model for the container relocation problem is presented.
DEFF Research Database (Denmark)
Hu, Yimei
2013-01-01
4 explores how transnational corporations perceive and design an internal network organization to facilitate global innovation. Based on a multiple case study of three Danish transnational corporations’ global R&D organization, this paper shows three types of network organization design...... explores how an SME develops a network organization consisting of both interfirm innovation networks and an internal network organization to facilitate its global innovation strategy. Regarding the intraorganizational network organization, market mechanism is adopted to optimize internal resource...... corporations perceive/design a network organization to facilitate their global innovation? • To what extent and how can we manage a network organization? Research focus of the dissertation is on transnational corporations’ network organization for innovation. The first research question aims to clarify...
Heuristic Approach for Balancing Shift Schedules
International Nuclear Information System (INIS)
Kim, Dae Ho; Yun, Young Su; Lee, Yong Hee
2005-01-01
In this paper, a heuristic approach for balancing shift schedules is proposed. For the shift schedules, various constraints which have usually been considered in realworld industry are used, and the objective is to minimize the differences of the workloads in each workgroup. The constraints and objective function are implemented in the proposed heuristic approach. Using a simple instance, the efficiency of the proposed heuristic approach is proved
Exact and heuristic solutions to the Double TSP with Multiple Stacks
DEFF Research Database (Denmark)
Petersen, Hanne Løhmann; Archetti, Claudia; Madsen, Oli B.G.
-pallet, which can be loaded in 3 stacks in a standard 40 foot container. Different exact and heuristic solution approaches to the DTSPMS have been implemented and tested. The exact approaches are based on different mathematical formulations of the problem which are solved using branch-and-cut. One formulation...... instances. The implemented heuristics include tabu search, simulated annealing and large neighbourhood search. Particularly the LNS approach shows promising results. It finds the known optimal solution of smaller instances (15 orders) within 10 seconds in most cases, and in 3 minutes it finds solutions...
A single cognitive heuristic process meets the complexity of domain-specific moral heuristics.
Dubljević, Veljko; Racine, Eric
2014-10-01
The inherence heuristic (a) offers modest insights into the complex nature of both the is-ought tension in moral reasoning and moral reasoning per se, and (b) does not reflect the complexity of domain-specific moral heuristics. Formal and general in nature, we contextualize the process described as "inherence heuristic" in a web of domain-specific heuristics (e.g., agent specific; action specific; consequences specific).
Heuristics for multiobjective multiple sequence alignment.
Abbasi, Maryam; Paquete, Luís; Pereira, Francisco B
2016-07-15
Aligning multiple sequences arises in many tasks in Bioinformatics. However, the alignments produced by the current software packages are highly dependent on the parameters setting, such as the relative importance of opening gaps with respect to the increase of similarity. Choosing only one parameter setting may provide an undesirable bias in further steps of the analysis and give too simplistic interpretations. In this work, we reformulate multiple sequence alignment from a multiobjective point of view. The goal is to generate several sequence alignments that represent a trade-off between maximizing the substitution score and minimizing the number of indels/gaps in the sum-of-pairs score function. This trade-off gives to the practitioner further information about the similarity of the sequences, from which she could analyse and choose the most plausible alignment. We introduce several heuristic approaches, based on local search procedures, that compute a set of sequence alignments, which are representative of the trade-off between the two objectives (substitution score and indels). Several algorithm design options are discussed and analysed, with particular emphasis on the influence of the starting alignment and neighborhood search definitions on the overall performance. A perturbation technique is proposed to improve the local search, which provides a wide range of high-quality alignments. The proposed approach is tested experimentally on a wide range of instances. We performed several experiments with sequences obtained from the benchmark database BAliBASE 3.0. To evaluate the quality of the results, we calculate the hypervolume indicator of the set of score vectors returned by the algorithms. The results obtained allow us to identify reasonably good choices of parameters for our approach. Further, we compared our method in terms of correctly aligned pairs ratio and columns correctly aligned ratio with respect to reference alignments. Experimental results show
Directory of Open Access Journals (Sweden)
Gregorius Satia Budhi
2002-01-01
Full Text Available The application of Activity Based Costing (ABC approach to select the set-machine that is used in the production of Flexible Manufacture System (FMS based on technical and economical criteria can be useful for producers to design FMS by considering the minimum production cost. In the other hand, Heuristic Search is known to have a short searching time. Algorithm Heuristic that using ABC approach as the weight in finding the solution to shorten the equipment selection time during the design / redesign process of the FMS in less than exponential time was designed in this research. The increasing speed is useful because with the faster time in design / redesign process, therefore the flexibility level of part variety that can be processed will become better. Theoretical and empirical analysis in Algorithm Heuristic shows that time searching to get appropriate set of equipment is not too long, so that we can assume that the designed Algorithm Heuristic can be implemented in the real world. By comparing the empirical result of Algorithm Heuristic to the Algorithm Exhaustive, we can also assume that Algorithm Heuristic that using ABC method as the weight for finding solution can optimise the equipment selection problem of FMS based on economical criteria too. Abstract in Bahasa Indonesia : Penggunaan pendekatan Activity Based Costing (ABC untuk memilih set mesin yang digunakan dalam produksi pada Flexible Manufacture Systems (FMS berdasar atas kriteria teknis dan ekonomis, dapat membantu pelaku produksi untuk mendisain FMS dengan pertimbangan minimalisasi biaya produksi. Sementara itu, Heuristic Search dikenal memiliki waktu pencarian yang singkat. Pada riset ini didisain sebuah Algoritma Heuristic yang menggunakan pendekatan ABC sebagai bobot dalam pencarian solusi, untuk mempersingkat waktu pemilihan peralatan saat desain/redisain FMS dalam waktu kurang dari waktu Eksponensial. Peningkatan kecepatan ini bermanfaat, karena dengan cepatnya waktu
Marcum, Richard A.; Davis, Curt H.; Scott, Grant J.; Nivin, Tyler W.
2017-10-01
We evaluated how deep convolutional neural networks (DCNN) could assist in the labor-intensive process of human visual searches for objects of interest in high-resolution imagery over large areas of the Earth's surface. Various DCNN were trained and tested using fewer than 100 positive training examples (China only) from a worldwide surface-to-air-missile (SAM) site dataset. A ResNet-101 DCNN achieved a 98.2% average accuracy for the China SAM site data. The ResNet-101 DCNN was used to process ˜19.6 M image chips over a large study area in southeastern China. DCNN chip detections (˜9300) were postprocessed with a spatial clustering algorithm to produce a ranked list of ˜2100 candidate SAM site locations. The combination of DCNN processing and spatial clustering effectively reduced the search area by ˜660X (0.15% of the DCNN-processed land area). An efficient web interface was used to facilitate a rapid serial human review of the candidate SAM sites in the China study area. Four novice imagery analysts with no prior imagery analysis experience were able to complete a DCNN-assisted SAM site search in an average time of ˜42 min. This search was ˜81X faster than a traditional visual search over an equivalent land area of ˜88,640 km2 while achieving nearly identical statistical accuracy (˜90% F1).
Huesch, Marco D; Galstyan, Aram; Ong, Michael K; Doctor, Jason N
2016-06-01
To pilot public health interventions at women potentially interested in maternity care via campaigns on social media (Twitter), social networks (Facebook), and online search engines (Google Search). Primary data from Twitter, Facebook, and Google Search on users of these platforms in Los Angeles between March and July 2014. Observational study measuring the responses of targeted users of Twitter, Facebook, and Google Search exposed to our sponsored messages soliciting them to start an engagement process by clicking through to a study website containing information on maternity care quality information for the Los Angeles market. Campaigns reached a little more than 140,000 consumers each day across the three platforms, with a little more than 400 engagements each day. Facebook and Google search had broader reach, better engagement rates, and lower costs than Twitter. Costs to reach 1,000 targeted users were approximately in the same range as less well-targeted radio and TV advertisements, while initial engagements-a user clicking through an advertisement-cost less than $1 each. Our results suggest that commercially available online advertising platforms in wide use by other industries could play a role in targeted public health interventions. © Health Research and Educational Trust.
Directory of Open Access Journals (Sweden)
G. Esteve-Asensio
2009-01-01
Full Text Available We propose and compare three novel heuristics for the calculation of the optimal cell radius in mobile networks based on Wideband Code Division Multiple Access (WCDMA technology. The proposed heuristics solve the problem of the load assignment and cellular radius calculation. We have tested our approaches with experiments in multiservices scenarios showing that the proposed heuristics maximize the cell radius, providing the optimum load factor assignment. The main application of these algorithms is strategic planning studies, where an estimation of the number of Nodes B of the mobile operator, at a national level, is required for economic analysis. In this case due to the large number of different scenarios considered (cities, towns, and open areas other methods than simulation need to be considered. As far as we know, there is no other similar method in the literature and therefore these heuristics may represent a novelty in strategic network planning studies. The proposed heuristics are implemented in a strategic planning software tool and an example of their application for a case in Spain is presented. The proposed heuristics are used for telecommunications regulatory studies in several countries.
End-User Searching in a Large Library Network: A Case Study of Patent Attorneys.
Vollaro, Alice J.; Hawkins, Donald T.
1986-01-01
Reports results of study of a group of end users (patent attorneys) doing their own online searching at AT&T Bell Laboratories. Highlights include DIALOG databases used by the attorneys, locations and searching modes, characteristics of patent attorney searchers, and problem areas. Questionnaire is appended. (5 references) (EJS)
Conspicuous Waste and Representativeness Heuristic
Directory of Open Access Journals (Sweden)
Tatiana M. Shishkina
2017-12-01
Full Text Available The article deals with the similarities between conspicuous waste and representativeness heuristic. The conspicuous waste is analyzed according to the classic Veblen’ interpretation as a strategy to increase social status through conspicuous consumption and conspicuous leisure. In “The Theory of the Leisure Class” Veblen introduced two different types of utility – conspicuous and functional. The article focuses on the possible benefits of the analysis of conspicuous utility not only in terms of institutional economic theory, but also in terms of behavioral economics. To this end, the representativeness heuristics is considered, on the one hand, as a way to optimize the decision-making process, which allows to examine it in comparison with procedural rationality by Simon. On the other hand, it is also analyzed as cognitive bias within the Kahneman and Twersky’ approach. The article provides the analysis of the patterns in the deviations from the rational behavior strategy that could be observed in case of conspicuous waste both in modern market economies in the form of conspicuous consumption and in archaic economies in the form of gift-exchange. The article also focuses on the marketing strategies for luxury consumption’ advertisement. It highlights the impact of the symbolic capital (in Bourdieu’ interpretation on the social and symbolic payments that actors get from the act of conspicuous waste. This allows to perform a analysis of conspicuous consumption both as a rational way to get the particular kind of payments, and, at the same time, as a form of institutionalized cognitive bias.
Planning chemical syntheses with deep neural networks and symbolic AI
Segler, Marwin H. S.; Preuss, Mike; Waller, Mark P.
2018-03-01
To plan the syntheses of small organic molecules, chemists use retrosynthesis, a problem-solving technique in which target molecules are recursively transformed into increasingly simpler precursors. Computer-aided retrosynthesis would be a valuable tool but at present it is slow and provides results of unsatisfactory quality. Here we use Monte Carlo tree search and symbolic artificial intelligence (AI) to discover retrosynthetic routes. We combined Monte Carlo tree search with an expansion policy network that guides the search, and a filter network to pre-select the most promising retrosynthetic steps. These deep neural networks were trained on essentially all reactions ever published in organic chemistry. Our system solves for almost twice as many molecules, thirty times faster than the traditional computer-aided search method, which is based on extracted rules and hand-designed heuristics. In a double-blind AB test, chemists on average considered our computer-generated routes to be equivalent to reported literature routes.
The Probability Heuristics Model of Syllogistic Reasoning.
Chater, Nick; Oaksford, Mike
1999-01-01
Proposes a probability heuristic model for syllogistic reasoning and confirms the rationality of this heuristic by an analysis of the probabilistic validity of syllogistic reasoning that treats logical inference as a limiting case of probabilistic inference. Meta-analysis and two experiments involving 40 adult participants and using generalized…
Cooperative heuristic multi-agent planning
De Weerdt, M.M.; Tonino, J.F.M.; Witteveen, C.
2001-01-01
In this paper we will use the framework to study cooperative heuristic multi-agent planning. During the construction of their plans, the agents use a heuristic function inspired by the FF planner (l3l). At any time in the process of planning the agents may exchange available resources, or they may
"A Heuristic for Visual Thinking in History"
Staley, David J.
2007-01-01
This article details a heuristic history teachers can use in assigning and evaluating multimedia projects in history. To use this heuristic successfully, requires more than simply following the steps in the list or stages in a recipe: in many ways, it requires a reorientation in what it means to think like an historian. This article, as much as…
Effective Heuristics for New Venture Formation
Kraaijenbrink, Jeroen
2010-01-01
Entrepreneurs are often under time pressure and may only have a short window of opportunity to launch their new venture. This means they often have no time for rational analytical decisions and rather rely on heuristics. Past research on entrepreneurial heuristics has primarily focused on predictive
Religion, Heuristics, and Intergenerational Risk Management
Rupert Read; Nassim Nicholas Taleb
2014-01-01
Religions come with risk-managing interdicts and heuristics, and they carry such interdicts and heuristics across generations. We remark on such facets of religion in relation to a propensity among some decision scientists and others to regard practices that they cannot understand as being irrational, biased, and so on.
Comparison of Heuristics for Inhibitory Rule Optimization
Alsolami, Fawaz; Chikalov, Igor; Moshkov, Mikhail
2014-01-01
Friedman test with Nemenyi post-hoc are used to compare the greedy algorithms statistically against each other for length and coverage. The experiments are carried out on real datasets from UCI Machine Learning Repository. For leading heuristics, the constructed rules are compared with optimal ones obtained based on dynamic programming approach. The results seem to be promising for the best heuristics: the average relative difference between length (coverage) of constructed and optimal rules is at most 2.27% (7%, respectively). Furthermore, the quality of classifiers based on sets of inhibitory rules constructed by the considered heuristics are compared against each other, and the results show that the three best heuristics from the point of view classification accuracy coincides with the three well-performed heuristics from the point of view of rule length minimization.
Use of Tabu Search in a Solver to Map Complex Networks onto Emulab Testbeds
National Research Council Canada - National Science Library
MacDonald, Jason E
2007-01-01
The University of Utah's solver for the testbed mapping problem uses a simulated annealing metaheuristic algorithm to map a researcher's experimental network topology onto available testbed resources...
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, Lia; Arruda, Lucia Valeria Ramos de; Libert, Nikolas [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)
2008-07-01
This work presents the VNS heuristic technique applied on batches ordering in a real network of petroleum derivatives distribution. These ordering have great influence in operational scheduling of a pipeline network. The operational scheduling purposes the efficient utilization of the resources, resulting on a better performance. Due to the great complexity of the real network problem and the necessity of its resolution in little computational time, it was adopted a problem subdivision in assignment of resources, sequencing and timing. In the resources assignment stage, it is considered the production/consumption functions and the products tankages to determine the total batches, including its volume, flow rate and the time-windows to satisfy the demand. These data are used in the sequencing stage, where a VNS based model determines the batches ordering. In a final step, the last block, realize the temporisation considering the network operational constraints. This work shows the results from the optimization of the sequencing stage which aims the improvement of the solution quality of scheduling. (author)
Directory of Open Access Journals (Sweden)
Farzad Kiani
2016-01-01
Full Text Available Energy issue is one of the most important problems in wireless sensor networks. They consist of low-power sensor nodes and a few base station nodes. They must be adaptive and efficient in data transmission to sink in various areas. This paper proposes an aware-routing protocol based on clustering and recursive search approaches. The paper focuses on the energy efficiency issue with various measures such as prolonging network lifetime along with reducing energy consumption in the sensor nodes and increasing the system reliability. Our proposed protocol consists of two phases. In the first phase (network development phase, the sensors are placed into virtual layers. The second phase (data transmission is related to routes discovery and data transferring so it is based on virtual-based Classic-RBFS algorithm in the lake of energy problem environments but, in the nonchargeable environments, all nodes in each layer can be modeled as a random graph and then begin to be managed by the duty cycle method. Additionally, the protocol uses new topology control, data aggregation, and sleep/wake-up schemas for energy saving in the network. The simulation results show that the proposed protocol is optimal in the network lifetime and packet delivery parameters according to the present protocols.
Roberts, B. M.; Blewitt, G.; Dailey, C.; Derevianko, A.
2018-04-01
We analyze the prospects of employing a distributed global network of precision measurement devices as a dark matter and exotic physics observatory. In particular, we consider the atomic clocks of the global positioning system (GPS), consisting of a constellation of 32 medium-Earth orbit satellites equipped with either Cs or Rb microwave clocks and a number of Earth-based receiver stations, some of which employ highly-stable H-maser atomic clocks. High-accuracy timing data is available for almost two decades. By analyzing the satellite and terrestrial atomic clock data, it is possible to search for transient signatures of exotic physics, such as "clumpy" dark matter and dark energy, effectively transforming the GPS constellation into a 50 000 km aperture sensor array. Here we characterize the noise of the GPS satellite atomic clocks, describe the search method based on Bayesian statistics, and test the method using simulated clock data. We present the projected discovery reach using our method, and demonstrate that it can surpass the existing constrains by several order of magnitude for certain models. Our method is not limited in scope to GPS or atomic clock networks, and can also be applied to other networks of precision measurement devices.
Maximum Parsimony on Phylogenetic networks
2012-01-01
Background Phylogenetic networks are generalizations of phylogenetic trees, that are used to model evolutionary events in various contexts. Several different methods and criteria have been introduced for reconstructing phylogenetic trees. Maximum Parsimony is a character-based approach that infers a phylogenetic tree by minimizing the total number of evolutionary steps required to explain a given set of data assigned on the leaves. Exact solutions for optimizing parsimony scores on phylogenetic trees have been introduced in the past. Results In this paper, we define the parsimony score on networks as the sum of the substitution costs along all the edges of the network; and show that certain well-known algorithms that calculate the optimum parsimony score on trees, such as Sankoff and Fitch algorithms extend naturally for networks, barring conflicting assignments at the reticulate vertices. We provide heuristics for finding the optimum parsimony scores on networks. Our algorithms can be applied for any cost matrix that may contain unequal substitution costs of transforming between different characters along different edges of the network. We analyzed this for experimental data on 10 leaves or fewer with at most 2 reticulations and found that for almost all networks, the bounds returned by the heuristics matched with the exhaustively determined optimum parsimony scores. Conclusion The parsimony score we define here does not directly reflect the cost of the best tree in the network that displays the evolution of the character. However, when searching for the most parsimonious network that describes a collection of characters, it becomes necessary to add additional cost considerations to prefer simpler structures, such as trees over networks. The parsimony score on a network that we describe here takes into account the substitution costs along the additional edges incident on each reticulate vertex, in addition to the substitution costs along the other edges which are
Multiobjective hyper heuristic scheme for system design and optimization
Rafique, Amer Farhan
2012-11-01
As system design is becoming more and more multifaceted, integrated, and complex, the traditional single objective optimization trends of optimal design are becoming less and less efficient and effective. Single objective optimization methods present a unique optimal solution whereas multiobjective methods present pareto front. The foremost intent is to predict a reasonable distributed pareto-optimal solution set independent of the problem instance through multiobjective scheme. Other objective of application of intended approach is to improve the worthiness of outputs of the complex engineering system design process at the conceptual design phase. The process is automated in order to provide the system designer with the leverage of the possibility of studying and analyzing a large multiple of possible solutions in a short time. This article presents Multiobjective Hyper Heuristic Optimization Scheme based on low level meta-heuristics developed for the application in engineering system design. Herein, we present a stochastic function to manage meta-heuristics (low-level) to augment surety of global optimum solution. Generic Algorithm, Simulated Annealing and Swarm Intelligence are used as low-level meta-heuristics in this study. Performance of the proposed scheme is investigated through a comprehensive empirical analysis yielding acceptable results. One of the primary motives for performing multiobjective optimization is that the current engineering systems require simultaneous optimization of conflicting and multiple. Random decision making makes the implementation of this scheme attractive and easy. Injecting feasible solutions significantly alters the search direction and also adds diversity of population resulting in accomplishment of pre-defined goals set in the proposed scheme.
A peer-to-peer file search and download protocol for wireless ad-hoc networks
Sözer, Hasan; Tekkalmaz, M.; Korpeoglu, I.
Deployment of traditional peer-to-peer file sharing systems on a wireless ad-hoc network introduces several challenges. Information and workload distribution as well as routing are major problems for members of a wireless ad-hoc network, which are only aware of their immediate neighborhood. In this
Clark, Kevin B
2010-03-01
Fringe quantum biology theories often adopt the concept of Bose-Einstein condensation when explaining how consciousness, emotion, perception, learning, and reasoning emerge from operations of intact animal nervous systems and other computational media. However, controversial empirical evidence and mathematical formalism concerning decoherence rates of bioprocesses keep these frameworks from satisfactorily accounting for the physical nature of cognitive-like events. This study, inspired by the discovery that preferential attachment rules computed by complex technological networks obey Bose-Einstein statistics, is the first rigorous attempt to examine whether analogues of Bose-Einstein condensation precipitate learned decision making in live biological systems as bioenergetics optimization predicts. By exploiting the ciliate Spirostomum ambiguum's capacity to learn and store behavioral strategies advertising mating availability into heuristics of topologically invariant computational networks, three distinct phases of strategy use were found to map onto statistical distributions described by Bose-Einstein, Fermi-Dirac, and classical Maxwell-Boltzmann behavior. Ciliates that sensitized or habituated signaling patterns to emit brief periods of either deceptive 'harder-to-get' or altruistic 'easier-to-get' serial escape reactions began testing condensed on initially perceived fittest 'courting' solutions. When these ciliates switched from their first strategy choices, Bose-Einstein condensation of strategy use abruptly dissipated into a Maxwell-Boltzmann computational phase no longer dominated by a single fittest strategy. Recursive trial-and-error strategy searches annealed strategy use back into a condensed phase consistent with performance optimization. 'Social' decisions performed by ciliates showing no nonassociative learning were largely governed by Fermi-Dirac statistics, resulting in degenerate distributions of strategy choices. These findings corroborate
Heuristic Strategies in Systems Biology
Directory of Open Access Journals (Sweden)
Fridolin Gross
2016-06-01
Full Text Available Systems biology is sometimes presented as providing a superior approach to the problem of biological complexity. Its use of ‘unbiased’ methods and formal quantitative tools might lead to the impression that the human factor is effectively eliminated. However, a closer look reveals that this impression is misguided. Systems biologists cannot simply assemble molecular information and compute biological behavior. Instead, systems biology’s main contribution is to accelerate the discovery of mechanisms by applying models as heuristic tools. These models rely on a variety of idealizing and simplifying assumptions in order to be efficient for this purpose. The strategies of systems biologists are similar to those of experimentalists in that they attempt to reduce the complexity of the discovery process. Analyzing and comparing these strategies, or ‘heuristics’, reveals the importance of the human factor in computational approaches and helps to situate systems biology within the epistemic landscape of the life sciences.
Zhao, Wei; Tang, Zhenmin; Yang, Yuwang; Wang, Lei; Lan, Shaohua
2014-01-01
This paper presents a searching control approach for cooperating mobile sensor networks. We use a density function to represent the frequency of distress signals issued by victims. The mobile nodes' moving in mission space is similar to the behaviors of fish-swarm in water. So, we take the mobile node as artificial fish node and define its operations by a probabilistic model over a limited range. A fish-swarm based algorithm is designed requiring local information at each fish node and maximizing the joint detection probabilities of distress signals. Optimization of formation is also considered for the searching control approach and is optimized by fish-swarm algorithm. Simulation results include two schemes: preset route and random walks, and it is showed that the control scheme has adaptive and effective properties. PMID:24741341
Directory of Open Access Journals (Sweden)
Wei Zhao
2014-01-01
Full Text Available This paper presents a searching control approach for cooperating mobile sensor networks. We use a density function to represent the frequency of distress signals issued by victims. The mobile nodes’ moving in mission space is similar to the behaviors of fish-swarm in water. So, we take the mobile node as artificial fish node and define its operations by a probabilistic model over a limited range. A fish-swarm based algorithm is designed requiring local information at each fish node and maximizing the joint detection probabilities of distress signals. Optimization of formation is also considered for the searching control approach and is optimized by fish-swarm algorithm. Simulation results include two schemes: preset route and random walks, and it is showed that the control scheme has adaptive and effective properties.
THE HEURISTIC FUNCTION OF SPORT
Directory of Open Access Journals (Sweden)
Adam Petrović
2012-09-01
Full Text Available Being a significant area of human activity, sport has multiple functions. One of the more important functions of sport, especially top sport, is the inventive heuristic function. Creative work, being a process of creating new values, represents a significant possibility for advancement of sport. This paper aims at pointing at the various dimensions of human creative work, at the creative work which can be seen in sport (in a narrow sense and at the scientific and practical areas which borderline sport. The method of theoretical analysis of different approaches to the phenomenon of creative work , both in general and in sport, was applied in this paper. This area can be systematized according to various criterion : the level of creative work, different fields where it appears, the subjects of creative work - creators etc. Case analysis shows that the field of creative work in sport is widening and deepening constantly. There are different levels of creativity not only in the system of training and competition, but in a wider social context of sport as well. As a process of human spirit and mind the creative work belongs not just to athletes and coaches, but also to all the people and social groups who's creative power manifests itself in sport. The classification of creative work in sport according to various criterion allows for heuristic function of sport to be explained comprehensively and to create an image how do the sparks of human spirit improve the micro cosmos of sport. A thorough classification of creative work in sport allows for a detailed analysis of all the elements of creative work and each of it’s area in sport. In this way the progress in sport , as a consequence of innovations in both competitions and athletes’ training and of everything that goes with those activities, can be guided into the needed direction more easily as well as studied and applied.
Directory of Open Access Journals (Sweden)
Cécile Bordier
2017-08-01
Full Text Available Neuroimaging data can be represented as networks of nodes and edges that capture the topological organization of the brain connectivity. Graph theory provides a general and powerful framework to study these networks and their structure at various scales. By way of example, community detection methods have been widely applied to investigate the modular structure of many natural networks, including brain functional connectivity networks. Sparsification procedures are often applied to remove the weakest edges, which are the most affected by experimental noise, and to reduce the density of the graph, thus making it theoretically and computationally more tractable. However, weak links may also contain significant structural information, and procedures to identify the optimal tradeoff are the subject of active research. Here, we explore the use of percolation analysis, a method grounded in statistical physics, to identify the optimal sparsification threshold for community detection in brain connectivity networks. By using synthetic networks endowed with a ground-truth modular structure and realistic topological features typical of human brain functional connectivity networks, we show that percolation analysis can be applied to identify the optimal sparsification threshold that maximizes information on the networks' community structure. We validate this approach using three different community detection methods widely applied to the analysis of brain connectivity networks: Newman's modularity, InfoMap and Asymptotical Surprise. Importantly, we test the effects of noise and data variability, which are critical factors to determine the optimal threshold. This data-driven method should prove particularly useful in the analysis of the community structure of brain networks in populations characterized by different connectivity strengths, such as patients and controls.
Simple heuristics and rules of thumb: where psychologists and behavioural biologists might meet.
Hutchinson, John M C; Gigerenzer, Gerd
2005-05-31
The Centre for Adaptive Behaviour and Cognition (ABC) has hypothesised that much human decision-making can be described by simple algorithmic process models (heuristics). This paper explains this approach and relates it to research in biology on rules of thumb, which we also review. As an example of a simple heuristic, consider the lexicographic strategy of Take The Best for choosing between two alternatives: cues are searched in turn until one discriminates, then search stops and all other cues are ignored. Heuristics consist of building blocks, and building blocks exploit evolved or learned abilities such as recognition memory; it is the complexity of these abilities that allows the heuristics to be simple. Simple heuristics have an advantage in making decisions fast and with little information, and in avoiding overfitting. Furthermore, humans are observed to use simple heuristics. Simulations show that the statistical structures of different environments affect which heuristics perform better, a relationship referred to as ecological rationality. We contrast ecological rationality with the stronger claim of adaptation. Rules of thumb from biology provide clearer examples of adaptation because animals can be studied in the environments in which they evolved. The range of examples is also much more diverse. To investigate them, biologists have sometimes used similar simulation techniques to ABC, but many examples depend on empirically driven approaches. ABC's theoretical framework can be useful in connecting some of these examples, particularly the scattered literature on how information from different cues is integrated. Optimality modelling is usually used to explain less detailed aspects of behaviour but might more often be redirected to investigate rules of thumb.
Budilova, E. V.; Terekhin, A. T.; Chepurnov, S. A.
1994-09-01
A hypothetical neural scheme is proposed that ensures efficient decision making by an animal searching for food in a maze. Only the general structure of the network is fixed; its quantitative characteristics are found by numerical optimization that simulates the process of natural selection. Selection is aimed at maximization of the expected number of descendants, which is directly related to the energy stored during the reproductive cycle. The main parameters to be optimized are the increments of the interneuronal links and the working-memory constants.
Meta-Heuristics for Dynamic Lot Sizing: a review and comparison of solution approaches
R.F. Jans (Raf); Z. Degraeve (Zeger)
2004-01-01
textabstractProofs from complexity theory as well as computational experiments indicate that most lot sizing problems are hard to solve. Because these problems are so difficult, various solution techniques have been proposed to solve them. In the past decade, meta-heuristics such as tabu search,
Virtual File System Mounting amp Searching With Network JVM For LAN
Directory of Open Access Journals (Sweden)
Nikita Kamble
2015-08-01
Full Text Available Computer technology has rapidly grown over past decades. Most of this can be attributed to the Internet as many computers now have a need to be networked together to establish an online connection. A local area network is a group of computers and associated devices that share a common communication line or wireless link to the service. Typically a LAN compasses computers and peripherals connected to a secure server within a small geographic area such as an office building or home computer and other mobile devices that share resources such as printer or network storage. A LAN is contrasted in principle to a wide area networkWANwhich covers a larger geographic distance and may involve leased telecom circuits while the media for LANs are locally managed. Ethernet are twisted pair cabling amp Wi-Fi are the two most common transmission technologies in use for LAN. The rise of virtualization has fueled the development of virtual LANWLANwhich allows network administrator to logically group network nodes amp partition their networks without the need for major infrastructure changes. In some situations a wireless LAN or Wi-Fi maybe preferable to a wired LAN because of its flexibility amp cost. Companies are asserting WLANs as a replacement for their wired infrastructure as the number of smart phones tablets amp other mobile devices proliferates.
Comparison of Heuristics for Inhibitory Rule Optimization
Alsolami, Fawaz
2014-09-13
Knowledge representation and extraction are very important tasks in data mining. In this work, we proposed a variety of rule-based greedy algorithms that able to obtain knowledge contained in a given dataset as a series of inhibitory rules containing an expression “attribute ≠ value” on the right-hand side. The main goal of this paper is to determine based on rule characteristics, rule length and coverage, whether the proposed rule heuristics are statistically significantly different or not; if so, we aim to identify the best performing rule heuristics for minimization of rule length and maximization of rule coverage. Friedman test with Nemenyi post-hoc are used to compare the greedy algorithms statistically against each other for length and coverage. The experiments are carried out on real datasets from UCI Machine Learning Repository. For leading heuristics, the constructed rules are compared with optimal ones obtained based on dynamic programming approach. The results seem to be promising for the best heuristics: the average relative difference between length (coverage) of constructed and optimal rules is at most 2.27% (7%, respectively). Furthermore, the quality of classifiers based on sets of inhibitory rules constructed by the considered heuristics are compared against each other, and the results show that the three best heuristics from the point of view classification accuracy coincides with the three well-performed heuristics from the point of view of rule length minimization.
Search for gravitational wave bursts by the network of resonant detectors
Astone, P; Busby, D; Bassan, M; Blair, D G; Bonaldi, M; Bonifazi, P; Carelli, P; Cerdonio, M; Coccia, E; Conti, L; Cosmelli, C; D'Antonio, S; Fafone, V; Falferi, P; Fortini, P; Frasca, S; Hamilton, W O; Heng, I S; Ivanov, E N; Johnson, W W; Locke, C R; Marini, A; Mauceli, E; McHugh, M P; Mezzena, R; Minenkov, Y; Modena, I; Modestino, G; Moleti, A; Ortolan, A; Pallottino, G V; Pizzella, G; Prodi, G A; Quintieri, L; Rocchi, A; Rocco, E; Ronga, F; Salemi, F; Santostasi, G; Taffarello, L; Terenzi, R; Tobar, M E; Vedovato, G; Vinante, A; Visco, M; Vitale, S; Zendri, J P
2002-01-01
The groups operating cryogenic bar detectors of gravitational waves are performing a coordinated search for short signals within the International Gravitational Event Collaboration (IGEC). We review the most relevant aspects of the data analysis, based on a time-coincidence search among triggers from different detectors, and the properties of the data exchanged by each detector under a recently-upgraded agreement. The IGEC is currently analysing the observations from 1997 to 2000, when up to four detectors were operating simultaneously. 10% and 50% of this time period were covered by simultaneous observations, respectively, of at least three or at least two detectors. Typical signal search thresholds were in the range 2-6 10 sup - sup 2 sup 1 /Hz. The coincidences found are within the estimated background, hence improved upper limits on incoming GW (gravitational wave) bursts have been set.
Directory of Open Access Journals (Sweden)
Jeng-Fung Chen
2014-11-01
Full Text Available The accuracy of reservoir flow forecasting has the most significant influence on the assurance of stability and annual operations of hydro-constructions. For instance, accurate forecasting on the ebb and flow of Vietnam’s Hoabinh Reservoir can aid in the preparation and prevention of lowland flooding and drought, as well as regulating electric energy. This raises the need to propose a model that accurately forecasts the incoming flow of the Hoabinh Reservoir. In this study, a solution to this problem based on neural network with the Cuckoo Search (CS algorithm is presented. In particular, we used hydrographic data and predicted total incoming flows of the Hoabinh Reservoir over a period of 10 days. The Cuckoo Search algorithm was utilized to train the feedforward neural network (FNN for prediction. The algorithm optimized the weights between layers and biases of the neuron network. Different forecasting models for the three scenarios were developed. The constructed models have shown high forecasting performance based on the performance indices calculated. These results were also compared with those obtained from the neural networks trained by the particle swarm optimization (PSO and back-propagation (BP, indicating that the proposed approach performed more effectively. Based on the experimental results, the scenario using the rainfall and the flow as input yielded the highest forecasting accuracy when compared with other scenarios. The performance criteria RMSE, MAPE, and R obtained by the CS-FNN in this scenario were calculated as 48.7161, 0.067268 and 0.8965, respectively. These results were highly correlated to actual values. It is expected that this work may be useful for hydrographic forecasting.
National Research Council Canada - National Science Library
Mitchell, Jason
2003-01-01
.... This model is used to study the effect of communication delays on the performance of an iteractive network flow optimization model that results in a sequence of linear programs for the optimal...
Virtual File System Mounting amp Searching With Network JVM For LAN
Nikita Kamble; Vaishnavi Patil; Shweta Desai; Dhanashri Kasar; Mrunali Patil
2015-01-01
Computer technology has rapidly grown over past decades. Most of this can be attributed to the Internet as many computers now have a need to be networked together to establish an online connection. A local area network is a group of computers and associated devices that share a common communication line or wireless link to the service. Typically a LAN compasses computers and peripherals connected to a secure server within a small geographic area such as an office building or home computer and...
Connection Setup Signaling Scheme with Flooding-Based Path Searching for Diverse-Metric Network
Kikuta, Ko; Ishii, Daisuke; Okamoto, Satoru; Oki, Eiji; Yamanaka, Naoaki
Connection setup on various computer networks is now achieved by GMPLS. This technology is based on the source-routing approach, which requires the source node to store metric information of the entire network prior to computing a route. Thus all metric information must be distributed to all network nodes and kept up-to-date. However, as metric information become more diverse and generalized, it is hard to update all information due to the huge update overhead. Emerging network services and applications require the network to support diverse metrics for achieving various communication qualities. Increasing the number of metrics supported by the network causes excessive processing of metric update messages. To reduce the number of metric update messages, another scheme is required. This paper proposes a connection setup scheme that uses flooding-based signaling rather than the distribution of metric information. The proposed scheme requires only flooding of signaling messages with requested metric information, no routing protocol is required. Evaluations confirm that the proposed scheme achieves connection establishment without excessive overhead. Our analysis shows that the proposed scheme greatly reduces the number of control messages compared to the conventional scheme, while their blocking probabilities are comparable.
An efficient heuristic for the multi-compartment vehicle routing problem
Paulo Vitor Silvestrin
2016-01-01
We study a variant of the vehicle routing problem that allows vehicles with multiple compartments. The need for multiple compartments frequently arises in practical applications when there are several products of different quality or type, that must be kept or handled separately. The resulting problem is called the multi-compartment vehicle routing problem (MCVRP). We propose a tabu search heuristic and embed it into an iterated local search to solve the MCVRP. In several experiments we analy...
A New Approach to Tuning Heuristic Parameters of Genetic Algorithms
Czech Academy of Sciences Publication Activity Database
Holeňa, Martin
2006-01-01
Roč. 3, č. 3 (2006), s. 562-569 ISSN 1790-0832. [AIKED'06. WSEAS International Conference on Artificial Intelligence , Knowledge Engineering and Data Bases. Madrid, 15.02.2006-17.02.2006] R&D Projects: GA ČR(CZ) GA201/05/0325; GA ČR(CZ) GA201/05/0557 Institutional research plan: CEZ:AV0Z10300504 Keywords : evolutionary optimization * genetic algorithms * heuristic parameters * parameter tuning * artificial neural networks * convergence speed * population diversity Subject RIV: IN - Informatics, Computer Science
Directory of Open Access Journals (Sweden)
Imran A Mir
2014-06-01
Full Text Available Since last few years, social media have profoundly changed the ways of social and business communication. Particularly, social network sites (SNSs have rapidly grown in popularity and number of users globally. They have become the main place for social interaction, discussion and communication. Today, businesses of various types use SNSs for commercial communication. Banner advertising is one of the common methods of commercial communication on SNSs. Advertising is a key source of revenue for many SNSs firms such as Facebook. In fact, the existence of many SNSs owners and advertisers is contingent upon the success of social network advertising (SNA. Users demand free SNS services which makes SNA crucial for SNSs firms. SNA can be effective only if it is aligned with user motivations. Marketing literature identifies pre-purchase search as a primary consumer motivation for using media. The current study aims to identify the effects of pre-purchase search motivation (PSM on user attitudes toward SNA. It also assesses the association between the attitudes toward SNA and users’ banner ad-clicking behavior on SNSs. Data was gathered from 200 university students in Islamabad using offline survey. Results show positive effects of PSM on user attitudes toward SNA. They also show positive association between user attitudes toward SNA and their SNS banner ad-clicking behavior. The firms which promote their products through SNSs to the young South Asian consumers may benefit from the findings of the current study.
Omar, Hani; Hoang, Van Hai; Liu, Duen-Ren
2016-01-01
Enhancing sales and operations planning through forecasting analysis and business intelligence is demanded in many industries and enterprises. Publishing industries usually pick attractive titles and headlines for their stories to increase sales, since popular article titles and headlines can attract readers to buy magazines. In this paper, information retrieval techniques are adopted to extract words from article titles. The popularity measures of article titles are then analyzed by using the search indexes obtained from Google search engine. Backpropagation Neural Networks (BPNNs) have successfully been used to develop prediction models for sales forecasting. In this study, we propose a novel hybrid neural network model for sales forecasting based on the prediction result of time series forecasting and the popularity of article titles. The proposed model uses the historical sales data, popularity of article titles, and the prediction result of a time series, Autoregressive Integrated Moving Average (ARIMA) forecasting method to learn a BPNN-based forecasting model. Our proposed forecasting model is experimentally evaluated by comparing with conventional sales prediction techniques. The experimental result shows that our proposed forecasting method outperforms conventional techniques which do not consider the popularity of title words.
Omar, Hani; Hoang, Van Hai; Liu, Duen-Ren
2016-01-01
Enhancing sales and operations planning through forecasting analysis and business intelligence is demanded in many industries and enterprises. Publishing industries usually pick attractive titles and headlines for their stories to increase sales, since popular article titles and headlines can attract readers to buy magazines. In this paper, information retrieval techniques are adopted to extract words from article titles. The popularity measures of article titles are then analyzed by using the search indexes obtained from Google search engine. Backpropagation Neural Networks (BPNNs) have successfully been used to develop prediction models for sales forecasting. In this study, we propose a novel hybrid neural network model for sales forecasting based on the prediction result of time series forecasting and the popularity of article titles. The proposed model uses the historical sales data, popularity of article titles, and the prediction result of a time series, Autoregressive Integrated Moving Average (ARIMA) forecasting method to learn a BPNN-based forecasting model. Our proposed forecasting model is experimentally evaluated by comparing with conventional sales prediction techniques. The experimental result shows that our proposed forecasting method outperforms conventional techniques which do not consider the popularity of title words. PMID:27313605
User Oriented Trajectory Search for Trip Recommendation
Ding, Ruogu
2012-07-08
Trajectory sharing and searching have received significant attention in recent years. In this thesis, we propose and investigate the methods to find and recommend the best trajectory to the traveler, and mainly focus on a novel technique named User Oriented Trajectory Search (UOTS) query processing. In contrast to conventional trajectory search by locations (spatial domain only), we consider both spatial and textual domains in the new UOTS query. Given a trajectory data set, the query input contains a set of intended places given by the traveler and a set of textual attributes describing the traveler’s preference. If a trajectory is connecting/close to the specified query locations, and the textual attributes of the trajectory are similar to the traveler’s preference, it will be recommended to the traveler. This type of queries can enable many popular applications such as trip planning and recommendation. There are two challenges in UOTS query processing, (i) how to constrain the searching range in two domains and (ii) how to schedule multiple query sources effectively. To overcome the challenges and answer the UOTS query efficiently, a novel collaborative searching approach is developed. Conceptually, the UOTS query processing is conducted in the spatial and textual domains alternately. A pair of upper and lower bounds are devised to constrain the searching range in two domains. In the meantime, a heuristic searching strategy based on priority ranking is adopted for scheduling the multiple query sources, which can further reduce the searching range and enhance the query efficiency notably. Furthermore, the devised collaborative searching approach can be extended to situations where the query locations are ordered. Extensive experiments are conducted on both real and synthetic trajectory data in road networks. Our approach is verified to be effective in reducing both CPU time and disk I/O time.
User oriented trajectory search for trip recommendation
Shang, Shuo
2012-01-01
Trajectory sharing and searching have received significant attentions in recent years. In this paper, we propose and investigate a novel problem called User Oriented Trajectory Search (UOTS) for trip recommendation. In contrast to conventional trajectory search by locations (spatial domain only), we consider both spatial and textual domains in the new UOTS query. Given a trajectory data set, the query input contains a set of intended places given by the traveler and a set of textual attributes describing the traveler\\'s preference. If a trajectory is connecting/close to the specified query locations, and the textual attributes of the trajectory are similar to the traveler\\'e preference, it will be recommended to the traveler for reference. This type of queries can bring significant benefits to travelers in many popular applications such as trip planning and recommendation. There are two challenges in the UOTS problem, (i) how to constrain the searching range in two domains and (ii) how to schedule multiple query sources effectively. To overcome the challenges and answer the UOTS query efficiently, a novel collaborative searching approach is developed. Conceptually, the UOTS query processing is conducted in the spatial and textual domains alternately. A pair of upper and lower bounds are devised to constrain the searching range in two domains. In the meantime, a heuristic searching strategy based on priority ranking is adopted for scheduling the multiple query sources, which can further reduce the searching range and enhance the query efficiency notably. Furthermore, the devised collaborative searching approach can be extended to situations where the query locations are ordered. The performance of the proposed UOTS query is verified by extensive experiments based on real and synthetic trajectory data in road networks. © 2012 ACM.
The Effect of Incentive Structure on Heuristic Decision Making: The Proportion Heuristic
Robert Oxoby
2007-01-01
When making judgments, individuals often utilize heuristics to interpret information. We report on a series of experiments designed to test the ways in which incentive mechanisms influence the use of a particular heuristic in decision-making. Specifically, we demonstrate how information regarding the number of available practice problems influences the behaviors of individuals preparing for an exam (the proportion heuristic). More importantly the extent to which this information influences be...
A Modularity Degree Based Heuristic Community Detection Algorithm
Directory of Open Access Journals (Sweden)
Dongming Chen
2014-01-01
Full Text Available A community in a complex network can be seen as a subgroup of nodes that are densely connected. Discovery of community structures is a basic problem of research and can be used in various areas, such as biology, computer science, and sociology. Existing community detection methods usually try to expand or collapse the nodes partitions in order to optimize a given quality function. These optimization function based methods share the same drawback of inefficiency. Here we propose a heuristic algorithm (MDBH algorithm based on network structure which employs modularity degree as a measure function. Experiments on both synthetic benchmarks and real-world networks show that our algorithm gives competitive accuracy with previous modularity optimization methods, even though it has less computational complexity. Furthermore, due to the use of modularity degree, our algorithm naturally improves the resolution limit in community detection.
Heuristic attacks against graphical password generators
CSIR Research Space (South Africa)
Peach, S
2010-05-01
Full Text Available In this paper the authors explore heuristic attacks against graphical password generators. A new trend is emerging to use user clickable pictures to generate passwords. This technique of authentication can be successfully used for - for example...
A Direct Heuristic Algorithm for Linear Programming
Indian Academy of Sciences (India)
Abstract. An (3) mathematically non-iterative heuristic procedure that needs no artificial variable is presented for solving linear programming problems. An optimality test is included. Numerical experiments depict the utility/scope of such a procedure.
Hermawati, Setia; Lawson, Glyn
2016-09-01
Heuristics evaluation is frequently employed to evaluate usability. While general heuristics are suitable to evaluate most user interfaces, there is still a need to establish heuristics for specific domains to ensure that their specific usability issues are identified. This paper presents a comprehensive review of 70 studies related to usability heuristics for specific domains. The aim of this paper is to review the processes that were applied to establish heuristics in specific domains and identify gaps in order to provide recommendations for future research and area of improvements. The most urgent issue found is the deficiency of validation effort following heuristics proposition and the lack of robustness and rigour of validation method adopted. Whether domain specific heuristics perform better or worse than general ones is inconclusive due to lack of validation quality and clarity on how to assess the effectiveness of heuristics for specific domains. The lack of validation quality also affects effort in improving existing heuristics for specific domain as their weaknesses are not addressed. Copyright © 2016 Elsevier Ltd. All rights reserved.
RELAXATION HEURISTICS FOR THE SET COVERING PROBLEM
Umetani, Shunji; Yagiura, Mutsunori; 柳浦, 睦憲
2007-01-01
The set covering problem (SCP) is one of representative combinatorial optimization problems, which has many practical applications. The continuous development of mathematical programming has derived a number of impressive heuristic algorithms as well as exact branch-and-bound algorithms, which can solve huge SCP instances of bus, railway and airline crew scheduling problems. We survey heuristic algorithms for SCP focusing mainly on contributions of mathematical programming techniques to heuri...
Psychology into economics: fast and frugal heuristics
Schilirò, Daniele
2015-01-01
The present essay focuses on the fast and frugal heuristics program set forth by Gerd Gigerenzer and his fellows. In particular it examines the contribution of Gigerenzer and Goldstein (1996) ‘Reasoning the Fast and Frugal Way: Models of Bounded Rationality’. This essay, following the theoretical propositions and the empirical evidence of Gigerenzer and Goldstein, points out that simple cognitive mechanisms such as fast and frugal heuristics can be capable of successful performance in real wo...
Arational heuristic model of economic decision making
Grandori, Anna
2010-01-01
The article discuss the limits of both the rational actor and the behavioral paradigms in explaining and guiding innovative decision making and outlines a model of economic decision making that in the course of being 'heuristic' (research and discovery oriented) is also 'rational' (in the broad sense of following correct reasoning and scientific methods, non 'biasing'). The model specifies a set of 'rational heuristics' for innovative decision making, for the various sub-processes of problem ...
Social heuristics shape intuitive cooperation.
Rand, David G; Peysakhovich, Alexander; Kraft-Todd, Gordon T; Newman, George E; Wurzbacher, Owen; Nowak, Martin A; Greene, Joshua D
2014-04-22
Cooperation is central to human societies. Yet relatively little is known about the cognitive underpinnings of cooperative decision making. Does cooperation require deliberate self-restraint? Or is spontaneous prosociality reined in by calculating self-interest? Here we present a theory of why (and for whom) intuition favors cooperation: cooperation is typically advantageous in everyday life, leading to the formation of generalized cooperative intuitions. Deliberation, by contrast, adjusts behaviour towards the optimum for a given situation. Thus, in one-shot anonymous interactions where selfishness is optimal, intuitive responses tend to be more cooperative than deliberative responses. We test this 'social heuristics hypothesis' by aggregating across every cooperation experiment using time pressure that we conducted over a 2-year period (15 studies and 6,910 decisions), as well as performing a novel time pressure experiment. Doing so demonstrates a positive average effect of time pressure on cooperation. We also find substantial variation in this effect, and show that this variation is partly explained by previous experience with one-shot lab experiments.
Metagovernance, network structure, and legitimacy
DEFF Research Database (Denmark)
Daugbjerg, Carsten; Fawcett, Paul
2017-01-01
This article develops a heuristic for comparative governance analysis. The heuristic depicts four network types by combining network structure with the state’s capacity to metagovern. It suggests that each network type produces a particular combination of input and output legitimacy. We illustrate...... the heuristic and its utility using a comparative study of agri-food networks (organic farming and land use) in four countries, which each exhibit different combinations of input and output legitimacy respectively. The article concludes by using a fifth case study to illustrate what a network type that produces...... high levels of input and output legitimacy might look like....
User-assisted visual search and tracking across distributed multi-camera networks
Raja, Yogesh; Gong, Shaogang; Xiang, Tao
2011-11-01
Human CCTV operators face several challenges in their task which can lead to missed events, people or associations, including: (a) data overload in large distributed multi-camera environments; (b) short attention span; (c) limited knowledge of what to look for; and (d) lack of access to non-visual contextual intelligence to aid search. Developing a system to aid human operators and alleviate such burdens requires addressing the problem of automatic re-identification of people across disjoint camera views, a matching task made difficult by factors such as lighting, viewpoint and pose changes and for which absolute scoring approaches are not best suited. Accordingly, we describe a distributed multi-camera tracking (MCT) system to visually aid human operators in associating people and objects effectively over multiple disjoint camera views in a large public space. The system comprises three key novel components: (1) relative measures of ranking rather than absolute scoring to learn the best features for matching; (2) multi-camera behaviour profiling as higher-level knowledge to reduce the search space and increase the chance of finding correct matches; and (3) human-assisted data mining to interactively guide search and in the process recover missing detections and discover previously unknown associations. We provide an extensive evaluation of the greater effectiveness of the system as compared to existing approaches on industry-standard i-LIDS multi-camera data.
Energy Technology Data Exchange (ETDEWEB)
Ciric, Rade M.; Padilha, Antonio [UNESP, Ilha Solteira, SP (Brazil)
2002-07-01
This paper describes the allocation and the performance of the distributed generators installed in a electric power distribution network, and presents a investigation to determining the impacts of distributed generators integration in power systems and the distribution network global performance.
Directory of Open Access Journals (Sweden)
Y. D. Shabalin
2016-03-01
Full Text Available A problem of aberrant behavior detection for network communicating computer is discussed. A novel approach based on dynamic response of computer is introduced. The computer is suggested as a multiple-input multiple-output (MIMO plant. To characterize dynamic response of the computer on incoming requests a correlation between input data rate and observed output response (outgoing data rate and performance metrics is used. To distinguish normal and aberrant behavior of the computer one-class neural network classifieris used. General idea of the algorithm is shortly described. Configuration of network testbed for experiments with real attacks and their detection is presented (the automated search for XSS and SQL injections. Real found-XSS and SQL injection attack software was used to model the intrusion scenario. It would be expectable that aberrant behavior of the server will reveal itself by some instantaneous correlation response which will be significantly different from any of normal ones. It is evident that correlation picture of attacks from different malware running, the site homepage overriding on the server (so called defacing, hardware and software failures will differ from correlation picture of normal functioning. Intrusion detection algorithm is investigated to estimate false positive and false negative rates in relation to algorithm parameters. The importance of correlation width value and threshold value selection was emphasized. False positive rate was estimated along the time series of experimental data. Some ideas about enhancement of the algorithm quality and robustness were mentioned.
Heuristic thinking makes a chemist smart.
Graulich, Nicole; Hopf, Henning; Schreiner, Peter R
2010-05-01
We focus on the virtually neglected use of heuristic principles in understanding and teaching of organic chemistry. As human thinking is not comparable to computer systems employing factual knowledge and algorithms--people rarely make decisions through careful considerations of every possible event and its probability, risks or usefulness--research in science and teaching must include psychological aspects of the human decision making processes. Intuitive analogical and associative reasoning and the ability to categorize unexpected findings typically demonstrated by experienced chemists should be made accessible to young learners through heuristic concepts. The psychology of cognition defines heuristics as strategies that guide human problem-solving and deciding procedures, for example with patterns, analogies, or prototypes. Since research in the field of artificial intelligence and current studies in the psychology of cognition have provided evidence for the usefulness of heuristics in discovery, the status of heuristics has grown into something useful and teachable. In this tutorial review, we present a heuristic analysis of a familiar fundamental process in organic chemistry--the cyclic six-electron case, and we show that this approach leads to a more conceptual insight in understanding, as well as in teaching and learning.
Heuristics as Bayesian inference under extreme priors.
Parpart, Paula; Jones, Matt; Love, Bradley C
2018-05-01
Simple heuristics are often regarded as tractable decision strategies because they ignore a great deal of information in the input data. One puzzle is why heuristics can outperform full-information models, such as linear regression, which make full use of the available information. These "less-is-more" effects, in which a relatively simpler model outperforms a more complex model, are prevalent throughout cognitive science, and are frequently argued to demonstrate an inherent advantage of simplifying computation or ignoring information. In contrast, we show at the computational level (where algorithmic restrictions are set aside) that it is never optimal to discard information. Through a formal Bayesian analysis, we prove that popular heuristics, such as tallying and take-the-best, are formally equivalent to Bayesian inference under the limit of infinitely strong priors. Varying the strength of the prior yields a continuum of Bayesian models with the heuristics at one end and ordinary regression at the other. Critically, intermediate models perform better across all our simulations, suggesting that down-weighting information with the appropriate prior is preferable to entirely ignoring it. Rather than because of their simplicity, our analyses suggest heuristics perform well because they implement strong priors that approximate the actual structure of the environment. We end by considering how new heuristics could be derived by infinitely strengthening the priors of other Bayesian models. These formal results have implications for work in psychology, machine learning and economics. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Ball, Keira; Lane, Alison R; Smith, Daniel T; Ellison, Amanda
2013-11-01
The right posterior parietal cortex (rPPC) and the right frontal eye field (rFEF) form part of a network of brain areas involved in orienting spatial attention. Previous studies using transcranial magnetic stimulation (TMS) have demonstrated that both areas are critically involved in the processing of conjunction visual search tasks, since stimulation of these sites disrupts performance. This study investigated the effects of long term neuronal modulation to rPPC and rFEF using transcranial direct current stimulation (tDCS) with the aim of uncovering sharing of these resources in the processing of conjunction visual search tasks. Participants completed four blocks of conjunction search trials over the course of 45 min. Following the first block they received 15 min of either cathodal or anodal stimulation to rPPC or rFEF, or sham stimulation. A significant interaction between block and stimulation condition was found, indicating that tDCS caused different effects according to the site (rPPC or rFEF) and type of stimulation (cathodal, anodal, or sham). Practice resulted in a significant reduction in reaction time across the four blocks in all conditions except when cathodal tDCS was applied to rPPC. The effects of cathodal tDCS over rPPC are subtler than those seen with TMS, and no effect of tDCS was evident at rFEF. This suggests that rFEF has a more transient role than rPPC in the processing of conjunction visual search and is robust to longer-term methods of neuro-disruption. Our results may be explained within the framework of functional connectivity between these, and other, areas. Copyright © 2013 Elsevier Inc. All rights reserved.
Special issue on searching and mining the web and social networks
Litvak, Nelly; Vigna, Sebastiano
2014-01-01
The past few decades have seen the rise of online social networks as a worldwide phenomenon with a high impact on our society. Beyond the obvious exposure phenomena, with obvious implications on security and privacy, people have started to become acquainted - even married! - in online social
R. Colak; F. Moser; J. Shu; A. Schönhuth (Alexander); N. Chen; M. Ester
2010-01-01
htmlabstractBackground Computational prediction of functionally related groups of genes (functional modules) from large-scale data is an important issue in computational biology. Gene expression experiments and interaction networks are well studied large-scale data sources, available for many not
A Local Search Algorithm for Clustering in Software as a Service Networks
J.P. van der Gaast (Jelmer); C.A. Rietveld (Niels); A.F. Gabor (Adriana); Y. Zhang (Yingqian)
2011-01-01
textabstractIn this paper we present and analyze a model for clustering in networks that offer Software as a Service (SaaS). In this problem, organizations requesting a set of applications have to be assigned to clusters such that the costs of opening clusters and installing the necessary
Green, Christopher D; Feinerer, Ingo; Burman, Jeremy T
2015-05-01
This study continues a previous investigation of the intellectual structure of early American psychology by presenting and analyzing 3 networks that collectively include every substantive article published in Psychological Review during the 15-year period from 1909 to 1923. The networks were laid out such that articles (represented by the network's nodes) that possessed strongly correlated vocabularies were positioned closer to each other spatially than articles with weakly correlated vocabularies. We identified distinct research communities within the networks by locating and interpreting the clusters of lexically similar articles. We found that the Psychological Review was in some turmoil during this period compared with its first 15 years attributable, first, to Baldwin's unexpected departure in 1910; second, to the pressures placed on the discipline by United States entry into World War I; and, third, to the emergence of specialty psychology journals catering to research communities that had once published in the Review. The journal emerged from these challenges, however, with a better-defined mission: to serve as the chief repository of theoretical psychology in the United States. (c) 2015 APA, all rights reserved).
Towards Optimal Transport Networks
Directory of Open Access Journals (Sweden)
Erik P. Vargo
2010-08-01
Full Text Available Our ultimate goal is to design transportation net- works whose dynamic performance metrics (e.g. pas- senger throughput, passenger delay, and insensitivity to weather disturbances are optimized. Here the fo- cus is on optimizing static features of the network that are known to directly aﬀect the network dynamics. First, we present simulation results which support a connection between maximizing the ﬁrst non-trivial eigenvalue of a network's Laplacian and superior air- port network performance. Then, we explore the ef- fectiveness of a tabu search heuristic for optimizing this metric by comparing experimental results to the- oretical upper bounds. We also consider generating upper bounds on a network's algebraic connectivity via the solution of semideﬁnite programming (SDP relaxations. A modiﬁcation of an existing subgraph extraction algorithm is implemented to explore the underlying regional structures in the U.S. airport net- work, with the hope that the resulting localized struc- tures can be optimized independently and reconnected via a "backbone" network to achieve superior network performance.
Implementation of a Tabu Search Heuristic for the Examinations ...
African Journals Online (AJOL)
Log in or Register to get access to full text downloads. ... The Examinations Timetabling Problem is the problem of assigning examinations and candidates to ... Generally, timetabling problems are NP-Hard and therefore very difficult to solve.
Best-First Heuristic Search for Multicore Machines
2010-01-01
Otto, 1998) to implement an asynchronous version of PRA* that they call Hash Distributed A* ( HDA *). HDA * distributes nodes using a hash function in...nodes which are being communicated between peers are in transit. In contact with the authors of HDA *, we have created an implementation of HDA * for...Also, our implementation of HDA * allows us to make a fair comparison between algorithms by sharing common data structures such as priority queues and
Static and Dynamic Path Planning Using Incremental Heuristic Search
Khattab, Asem
2018-01-01
Path planning is an important component in any highly automated vehicle system. In this report, the general problem of path planning is considered first in partially known static environments where only static obstacles are present but the layout of the environment is changing as the agent acquires new information. Attention is then given to the problem of path planning in dynamic environments where there are moving obstacles in addition to the static ones. Specifically, a 2D car-like agent t...
The Impact of Parametrization on Randomized Search Heuristics
DEFF Research Database (Denmark)
Gießen, Christian
with mutation probability c/n on ONEMAX, where c > 0 and λ are constant. We present an improved variable drift theorem that weakens the requirement that no large steps towards the optimum may occur in the process to a stochastic one, reducing the analysis of the expected optimization time to ﬁnding an exact...... algorithms. It consists of creating half the offspring with a higher and the rest with a lower mutation rate. The mutation rate is then adjusted, based on the success of the subpopulations. We show that the (1+λ) EA optimizes ONEMAX in an expected optimization time of O(nλ/logλ + nlogn) which has been shown...... evaluation. On classical test functions, such noise makes optimization by the simple (1+1) EA hillclimber infeasible even in exponential time. Interestingly, the use of parent and offspring populations of only logarithmic size turns the algorithm into an efﬁcient one. The results are obtained by drift...
Fast Optimal Replica Placement with Exhaustive Search Using Dynamically Reconfigurable Processor
Directory of Open Access Journals (Sweden)
Hidetoshi Takeshita
2011-01-01
Full Text Available This paper proposes a new replica placement algorithm that expands the exhaustive search limit with reasonable calculation time. It combines a new type of parallel data-flow processor with an architecture tuned for fast calculation. The replica placement problem is to find a replica-server set satisfying service constraints in a content delivery network (CDN. It is derived from the set cover problem which is known to be NP-hard. It is impractical to use exhaustive search to obtain optimal replica placement in large-scale networks, because calculation time increases with the number of combinations. To reduce calculation time, heuristic algorithms have been proposed, but it is known that no heuristic algorithm is assured of finding the optimal solution. The proposed algorithm suits parallel processing and pipeline execution and is implemented on DAPDNA-2, a dynamically reconfigurable processor. Experiments show that the proposed algorithm expands the exhaustive search limit by the factor of 18.8 compared to the conventional algorithm search limit running on a Neumann-type processor.
Energy aware swarm optimization with intercluster search for wireless sensor network.
Thilagavathi, Shanmugasundaram; Geetha, Bhavani Gnanasambandan
2015-01-01
Wireless sensor networks (WSNs) are emerging as a low cost popular solution for many real-world challenges. The low cost ensures deployment of large sensor arrays to perform military and civilian tasks. Generally, WSNs are power constrained due to their unique deployment method which makes replacement of battery source difficult. Challenges in WSN include a well-organized communication platform for the network with negligible power utilization. In this work, an improved binary particle swarm optimization (PSO) algorithm with modified connected dominating set (CDS) based on residual energy is proposed for discovery of optimal number of clusters and cluster head (CH). Simulations show that the proposed BPSO-T and BPSO-EADS perform better than LEACH- and PSO-based system in terms of energy savings and QOS.
Energy Aware Swarm Optimization with Intercluster Search for Wireless Sensor Network
Directory of Open Access Journals (Sweden)
Shanmugasundaram Thilagavathi
2015-01-01
Full Text Available Wireless sensor networks (WSNs are emerging as a low cost popular solution for many real-world challenges. The low cost ensures deployment of large sensor arrays to perform military and civilian tasks. Generally, WSNs are power constrained due to their unique deployment method which makes replacement of battery source difficult. Challenges in WSN include a well-organized communication platform for the network with negligible power utilization. In this work, an improved binary particle swarm optimization (PSO algorithm with modified connected dominating set (CDS based on residual energy is proposed for discovery of optimal number of clusters and cluster head (CH. Simulations show that the proposed BPSO-T and BPSO-EADS perform better than LEACH- and PSO-based system in terms of energy savings and QOS.
Thirty years of European Collaboration in R&D: a Search for Key Network Indicators
Energy Technology Data Exchange (ETDEWEB)
Caloghirou, Y.; Protogerou, A.; Siokas, E.
2016-07-01
The purpose of this session is to present a coherent set of papers offering useful insights on research priority setting processes/activities and indicators used to measure the impact of research and technology development programmes in Europe and Emerging Economies (Brazil, Chile, Peru and Russia). In particular, the first paper focuses on the research collaborative networks funded by the European Union during the past three decades and offers a comprehensive picture of science-industry collaboration in Europe by using network indicators and providing data on the characteristics and the innovative performance of young firms participating in these networks. The second paper presents three cases of non-traditional indicators for R&D funding agencies from emerging economies and aims at contributing to the discussions on the importance of employing suitable indicators that can complement classic STI indicators. The third paper seeks to provide a critical overview of the recent exercise in the evaluation of public research institutions in Russia. The session aims at bringing together researchers from both developed and emerging countries as well as policy makers and will be divided into two parts . The first part will be devoted in papers’ presentation and the second one in papers’ discussion by invited policy experts and officials. (Author)
Two efficient heuristics to solve the integrated load distribution and production planning problem
International Nuclear Information System (INIS)
Gajpal, Yuvraj; Nourelfath, Mustapha
2015-01-01
This paper considers a multi-period production system where a set of machines are arranged in parallel. The machines are unreliable and the failure rate of machine depends on the load assigned to the machine. The expected production rate of the system is considered to be a non-monotonic function of its load. Because of the machine failure rate, the total production output depends on the combination of loads assigned to different machines. We consider the integration of load distribution decisions with production planning decision. The product demands are considered to be known in advance. The objective is to minimize the sum of holding costs, backorder costs, production costs, setup costs, capacity change costs and unused capacity costs while satisfying the demand over specified time horizon. The constraint is not to exceed available repair resources required to repair the machine breakdown. The paper develops two heuristics to solve the integrated load distribution and production planning problem. The first heuristic consists of a three-phase approach, while the second one is based on tabu search metaheuristic. The efficiency of the proposed heuristics is tested through the randomly generated problem instances. - Highlights: • The expected performance of the system is a non-monotonic function of its load. • We consider the integration of load distribution and production planning decisions. • The paper proposes three phase and tabu search based heuristics to solve the problem. • Lower bound has been developed for checking the effectiveness of the heuristics. • The efficiency of the heuristic is tested through randomly generated instances.
Energy Technology Data Exchange (ETDEWEB)
Conte, Viviane Cristhyne Bini; Arruda, Lucia Valeria Ramos de; Yamamoto, Lia [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)
2008-07-01
Planning and scheduling of the pipeline network operations aim the most efficient use of the resources resulting in a better performance of the network. A petroleum distribution pipeline network is composed by refineries, sources and/or storage parks, connected by a set of pipelines, which operate the transportation of petroleum and derivatives among adjacent areas. In real scenes, this problem is considered a combinatorial problem, which has difficult solution, which makes necessary methodologies of the resolution that present low computational time. This work aims to get solutions that attempt the demands and minimize the number of batch fragmentations on the sent operations of products for the pipelines in a simplified model of a real network, through by application of the local search metaheuristic GRASP. GRASP does not depend of solutions of previous iterations and works in a random way so it allows the search for the solution in an ampler and diversified search space. GRASP utilization does not demand complex calculation, even the construction stage that requires more computational effort, which provides relative rapidity in the attainment of good solutions. GRASP application on the scheduling of the operations of this network presented feasible solutions in a low computational time. (author)
Design of a search and rescue terminal based on the dual-mode satellite and CDMA network
Zhao, Junping; Zhang, Xuan; Zheng, Bing; Zhou, Yubin; Song, Hao; Song, Wei; Zhang, Meikui; Liu, Tongze; Zhou, Li
2010-12-01
The current goal is to create a set of portable terminals with GPS/BD2 dual-mode satellite positioning, vital signs monitoring and wireless transmission functions. The terminal depends on an ARM processor to collect and combine data related to vital signs and GPS/BD2 location information, and sends the message to headquarters through the military CDMA network. It integrates multiple functions as a whole. The satellite positioning and wireless transmission capabilities are integrated into the motherboard, and the vital signs sensors used in the form of belts communicate with the board through Bluetooth. It can be adjusted according to the headquarters' instructions. This kind of device is of great practical significance for operations during disaster relief, search and rescue of the wounded in wartime, non-war military operations and other special circumstances.
Directory of Open Access Journals (Sweden)
Tinggui Chen
2014-01-01
Full Text Available Artificial bee colony (ABC algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA, artificial colony optimization (ACO, and particle swarm optimization (PSO. However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments.
Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Aguilo, Ernest; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Reis, Thomas; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Castello, Roberto; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Malek, Magdalena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Soares Jorge, Luana; Sznajder, Andre; Vilela Pereira, Antonio; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Mahrous, Ayman; Radi, Amr; Kadastik, Mario; Müntel, Mait; Murumaa, Marion; Raidal, Martti; Rebane, Liis; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Karjalainen, Ahti; Korpela, Arja; Tuuva, Tuure; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Millischer, Laurent; Nayak, Aruna; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Florent, Alice; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Veelken, Christian; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Juillot, Pierre; Le Bihan, Anne-Catherine; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Beauceron, Stephanie; Beaupere, Nicolas; Bondu, Olivier; Boudoul, Gaelle; Brochet, Sébastien; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sgandurra, Louis; Sordini, Viola; Tschudi, Yohann; Verdier, Patrice; Viret, Sébastien; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Calpas, Betty; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Bontenackels, Michael; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Lingemann, Joschka; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Sauerland, Philip; Stahl, Achim; Aldaya Martin, Maria; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Castro, Elena; Costanza, Francesco; Dammann, Dirk; Diez Pardos, Carmen; Eckerlin, Guenter; Eckstein, Doris; Flucke, Gero; Geiser, Achim; Glushkov, Ivan; Gunnellini, Paolo; Habib, Shiraz; Hauk, Johannes; Hellwig, Gregor; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Leonard, Jessica; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Novgorodova, Olga; Olzem, Jan; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Ron, Elias; Rosin, Michele; Salfeld-Nebgen, Jakob; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Enderle, Holger; Erfle, Joachim; Gebbert, Ulla; Görner, Martin; Gosselink, Martijn; Haller, Johannes; Hermanns, Thomas; Höing, Rebekka Sophie; Kaschube, Kolja; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Lange, Jörn; Nowak, Friederike; Peiffer, Thomas; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schröder, Matthias; Schum, Torben; Seidel, Markus; Sibille, Jennifer; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Vanelderen, Lukas; Barth, Christian; Berger, Joram; Böser, Christian; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Guthoff, Moritz; Hackstein, Christoph; Hartmann, Frank; Hauth, Thomas; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Husemann, Ulrich; Katkov, Igor; Komaragiri, Jyothsna Rani; Lobelle Pardo, Patricia; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Röcker, Steffen; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Zeise, Manuel; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Ntomari, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Saoulidou, Niki; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Beni, Noemi; Czellar, Sandor; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Kaur, Manjit; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Ganguly, Sanmay; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Hesari, Hoda; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Tosi, Silvano; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Dogangun, Oktay; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Taroni, Silvia; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Fanelli, Cristiano; Grassi, Marco; Longo, Egidio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Sigamani, Michael; Soffi, Livia; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Demaria, Natale; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Schizzi, Andrea; Kim, Tae Yeon; Nam, Soon-Kwon; Chang, Sunghyun; Kim, Dong Hee; Kim, Gui Nyun; Kong, Dae Jung; Park, Hyangkyu; Son, Dong-Chul; Son, Taejin; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Juodagalvis, Andrius; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Martínez-Ortega, Jorge; Sánchez Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Bell, Alan James; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Silverwood, Hamish; Ahmad, Muhammad; Asghar, Muhammad Irfan; Butt, Jamila; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Boimska, Bozena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Seixas, Joao; Varela, Joao; Vischia, Pietro; Belotelov, Ivan; Bunin, Pavel; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Savina, Maria; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Evstyukhin, Sergey; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Erofeeva, Maria; Gavrilov, Vladimir; Kossov, Mikhail; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Shreyber, Irina; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Popov, Andrey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Senghi Soares, Mara; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Piedra Gomez, Jonatan; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Graziano, Alberto; Jorda, Clara; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; D'Enterria, David; Dabrowski, Anne; De Roeck, Albert; Di Guida, Salvatore; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Georgiou, Georgios; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Govoni, Pietro; Gowdy, Stephen; Guida, Roberto; Gundacker, Stefan; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hartl, Christian; Harvey, John; Hegner, Benedikt; Hinzmann, Andreas; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Kousouris, Konstantinos; Lecoq, Paul; Lee, Yen-Jie; Lenzi, Piergiulio; Lourenco, Carlos; Magini, Nicolo; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Musella, Pasquale; Nesvold, Erik; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Quertenmont, Loic; Racz, Attila; Reece, William; Rodrigues Antunes, Joao; Rolandi, Gigi; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Worm, Steven; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Bäni, Lukas; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Hits, Dmitry; Lecomte, Pierre; Lustermann, Werner; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Mohr, Niklas; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pape, Luc; Pauss, Felicitas; Peruzzi, Marco; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Starodumov, Andrei; Stieger, Benjamin; Takahashi, Maiko; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Hannsjoerg Artur; Wehrli, Lukas; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Kilminster, Benjamin; Millan Mejias, Barbara; Otiougova, Polina; Robmann, Peter; Snoek, Hella; Tupputi, Salvatore; Verzetti, Mauro; Chang, Yuan-Hann; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Lu, Yun-Ju; Singh, Anil; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wan, Xia; Wang, Minzu; Asavapibhop, Burin; Srimanobhas, Norraphat; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Karaman, Turker; Karapinar, Guler; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Latife Nukhet; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Yildirim, Eda; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Cankocak, Kerem; Levchuk, Leonid; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Bainbridge, Robert; Ball, Gordon; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Stoye, Markus; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Whyntie, Tom; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Hatakeyama, Kenichi; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Gardner, Michael; Houtz, Rachel; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Mall, Orpheus; Miceli, Tia; Pellett, Dave; Ricci-Tam, Francesca; Rutherford, Britney; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Yohay, Rachel; Andreev, Valeri; Cline, David; Cousins, Robert; Duris, Joseph; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Rakness, Gregory; Schlein, Peter; Traczyk, Piotr; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Dinardo, Mauro Emanuele; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Paramesvaran, Sudarshan; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Evans, David; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Mangano, Boris; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Golf, Frank; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Magaña Villalba, Ricardo; Mccoll, Nickolas; Pavlunin, Viktor; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Veverka, Jan; Wilkinson, Richard; Xie, Si; Yang, Yong; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Liu, Yueh-Feng; Paulini, Manfred; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Green, Dan; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kunori, Shuichi; Kwan, Simon; Leonidopoulos, Christos; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Cheng, Tongguang; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Park, Myeonghun; Remington, Ronald; Rinkevicius, Aurelijus; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Hewamanage, Samantha; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Vodopiyanov, Igor; Yumiceva, Francisco; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Bucinskaite, Inga; Callner, Jeremy; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Lacroix, Florent; O'Brien, Christine; Silkworth, Christopher; Strom, Derek; Turner, Paul; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Duru, Firdevs; Griffiths, Scott; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Swartz, Morris; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Stringer, Robert; Tinti, Gemma; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Peterman, Alison; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Kim, Yongsun; Klute, Markus; Krajczar, Krisztian; Levin, Andrew; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Velicanu, Dragos; Wenger, Edward Allen; Wolf, Roger; Wyslouch, Bolek; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Zhukova, Victoria; Cooper, Seth; Dahmes, Bryan; De Benedetti, Abraham; Franzoni, Giovanni; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Cremaldi, Lucien Marcus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Keller, Jason; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Snow, Gregory R; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Hahn, Kristan Allan; Kubik, Andrew; Lusito, Letizia; Mucia, Nicholas; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Brinkerhoff, Andrew; Chan, Kwok Ming; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Bylsma, Ben; Durkin, Lloyd Stanley; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Vuosalo, Carl; Williams, Grayson; Winer, Brian L; Berry, Edmund; Elmer, Peter; Halyo, Valerie; Hebda, Philip; Hegeman, Jeroen; Hunt, Adam; Jindal, Pratima; Koay, Sue Ann; Lopes Pegna, David; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Lopez, Angel; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Alagoz, Enver; Barnes, Virgil E; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Vidal Marono, Miguel; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Guragain, Samir; Parashar, Neeti; Adair, Antony; Akgun, Bora; Boulahouache, Chaouki; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Robles, Jorge; Rose, Keith; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Walker, Matthew; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Sengupta, Sinjini; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Florez, Carlos; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sakharov, Alexandre; Anderson, Michael; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Friis, Evan; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Palmonari, Francesco; Pierro, Giuseppe Antonio; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua
2013-04-02
In this paper, a search for supersymmetry (SUSY) is presented in events with two opposite-sign isolated leptons in the final state, accompanied by hadronic jets and missing transverse energy. An artificial neural network is employed to discriminate possible SUSY signals from standard model background. The analysis uses a data sample collected with the CMS detector during the 2011 LHC run, corresponding to an integrated luminosity of 4.98 inverse femtobarns of proton-proton collisions at the center of mass energy of 7 TeV. Compared to other CMS analyses, this one uses relaxed criteria on missing transverse energy (missing ET > 40 GeV) and total hadronic transverse energy (HT > 120 GeV), thus probing different regions of parameter space. Agreement is found between standard model expectation and observation, yielding limits in the context of the constrained mininal supersymmetric standard model and on a set of simplified models.
Prediction-based dynamic load-sharing heuristics
Goswami, Kumar K.; Devarakonda, Murthy; Iyer, Ravishankar K.
1993-01-01
The authors present dynamic load-sharing heuristics that use predicted resource requirements of processes to manage workloads in a distributed system. A previously developed statistical pattern-recognition method is employed for resource prediction. While nonprediction-based heuristics depend on a rapidly changing system status, the new heuristics depend on slowly changing program resource usage patterns. Furthermore, prediction-based heuristics can be more effective since they use future requirements rather than just the current system state. Four prediction-based heuristics, two centralized and two distributed, are presented. Using trace driven simulations, they are compared against random scheduling and two effective nonprediction based heuristics. Results show that the prediction-based centralized heuristics achieve up to 30 percent better response times than the nonprediction centralized heuristic, and that the prediction-based distributed heuristics achieve up to 50 percent improvements relative to their nonprediction counterpart.
Accelerated Profile HMM Searches.
Directory of Open Access Journals (Sweden)
Sean R Eddy
2011-10-01
Full Text Available Profile hidden Markov models (profile HMMs and probabilistic inference methods have made important contributions to the theory of sequence database homology search. However, practical use of profile HMM methods has been hindered by the computational expense of existing software implementations. Here I describe an acceleration heuristic for profile HMMs, the "multiple segment Viterbi" (MSV algorithm. The MSV algorithm computes an optimal sum of multiple ungapped local alignment segments using a striped vector-parallel approach previously described for fast Smith/Waterman alignment. MSV scores follow the same statistical distribution as gapped optimal local alignment scores, allowing rapid evaluation of significance of an MSV score and thus facilitating its use as a heuristic filter. I also describe a 20-fold acceleration of the standard profile HMM Forward/Backward algorithms using a method I call "sparse rescaling". These methods are assembled in a pipeline in which high-scoring MSV hits are passed on for reanalysis with the full HMM Forward/Backward algorithm. This accelerated pipeline is implemented in the freely available HMMER3 software package. Performance benchmarks show that the use of the heuristic MSV filter sacrifices negligible sensitivity compared to unaccelerated profile HMM searches. HMMER3 is substantially more sensitive and 100- to 1000-fold faster than HMMER2. HMMER3 is now about as fast as BLAST for protein searches.
On the Use of Local Search in the Evolution of Neural Networks for the Diagnosis of Breast Cancer
Directory of Open Access Journals (Sweden)
Agam Gupta
2015-07-01
Full Text Available With the advancement in the field of Artificial Intelligence, there have been considerable efforts to develop technologies for pattern recognition related to medical diagnosis. Artificial Neural Networks (ANNs, a significant piece of Artificial Intelligence forms the base for most of the marvels in the former field. However, ANNs face the problem of premature convergence at a local minimum and inability to set hyper-parameters (like the number of neurons, learning rate, etc. while using Back Propagation Algorithm (BPA. In this paper, we have used the Genetic Algorithm (GA for the evolution of the ANN, which overcomes the limitations of the BPA. Since GA alone cannot fit for a high-dimensional, complex and multi-modal optimization landscape of the ANN, BPA is used as a local search algorithm to aid the evolution. The contributions of GA and BPA in the resultant approach are adjudged to determine the magnitude of local search necessary for optimization, striking a clear balance between exploration and exploitation in the evolution. The algorithm was applied to deal with the problem of Breast Cancer diagnosis. Results showed that under optimal settings, hybrid algorithm performs better than BPA or GA alone.
Quantifying Heuristic Bias: Anchoring, Availability, and Representativeness.
Richie, Megan; Josephson, S Andrew
2018-01-01
Construct: Authors examined whether a new vignette-based instrument could isolate and quantify heuristic bias. Heuristics are cognitive shortcuts that may introduce bias and contribute to error. There is no standardized instrument available to quantify heuristic bias in clinical decision making, limiting future study of educational interventions designed to improve calibration of medical decisions. This study presents validity data to support a vignette-based instrument quantifying bias due to the anchoring, availability, and representativeness heuristics. Participants completed questionnaires requiring assignment of probabilities to potential outcomes of medical and nonmedical scenarios. The instrument randomly presented scenarios in one of two versions: Version A, encouraging heuristic bias, and Version B, worded neutrally. The primary outcome was the difference in probability judgments for Version A versus Version B scenario options. Of 167 participants recruited, 139 enrolled. Participants assigned significantly higher mean probability values to Version A scenario options (M = 9.56, SD = 3.75) than Version B (M = 8.98, SD = 3.76), t(1801) = 3.27, p = .001. This result remained significant analyzing medical scenarios alone (Version A, M = 9.41, SD = 3.92; Version B, M = 8.86, SD = 4.09), t(1204) = 2.36, p = .02. Analyzing medical scenarios by heuristic revealed a significant difference between Version A and B for availability (Version A, M = 6.52, SD = 3.32; Version B, M = 5.52, SD = 3.05), t(404) = 3.04, p = .003, and representativeness (Version A, M = 11.45, SD = 3.12; Version B, M = 10.67, SD = 3.71), t(396) = 2.28, p = .02, but not anchoring. Stratifying by training level, students maintained a significant difference between Version A and B medical scenarios (Version A, M = 9.83, SD = 3.75; Version B, M = 9.00, SD = 3.98), t(465) = 2.29, p = .02, but not residents or attendings. Stratifying by heuristic and training level, availability maintained
Design of Seat Search System in the Classroom Based on Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Jia Yu chen
2018-01-01
Full Text Available The purpose of this design is intended to statistics and publishes free seats information in classroom timely to students, and then save students’ time to looking for classroom. The system uses wireless sensor networks to monitor classroom vacancies. It consists of classroom monitoring system and information transmission system. The classroom monitoring system consists of a coordinator node for remote wireless communication and two collection nodes for local communications in the classroom, and that three nodes are star-connected. The tasks of the coordinator node are to collect information from the collection nodes and display and transmission. Set up two collection nodes for collecting information of the number who inter the classroom. The devices for counting include two units, signal acquisition unit is constituted with pyroelectric infrared sensor which contains RE200B probe and conditioning circuit, and the control unit is constituted with CC2530 for signal processing. LCD screen is used to real-time display in coordinator node for counting the number of coming in or out the classroom. Users who enter the teaching building check which classroom have seats available. The manner of local communication is using ZIGBEE. The entire system uses sensor technology and mobile network communication technology to achieve real-time acquisition and release of information. The ability to identify and stability of the experimental system currently implemented are strong.
Discrete Globalised Dual Heuristic Dynamic Programming in Control of the Two-Wheeled Mobile Robot
Marcin Szuster; Zenon Hendzel
2014-01-01
Network-based control systems have been emerging technologies in the control of nonlinear systems over the past few years. This paper focuses on the implementation of the approximate dynamic programming algorithm in the network-based tracking control system of the two-wheeled mobile robot, Pioneer 2-DX. The proposed discrete tracking control system consists of the globalised dual heuristic dynamic programming algorithm, the PD controller, the supervisory term, and an additional control signal...
Directory of Open Access Journals (Sweden)
Jie-sheng Wang
2014-01-01
Full Text Available For meeting the forecasting target of key technology indicators in the flotation process, a BP neural network soft-sensor model based on features extraction of flotation froth images and optimized by shuffled cuckoo search algorithm is proposed. Based on the digital image processing technique, the color features in HSI color space, the visual features based on the gray level cooccurrence matrix, and the shape characteristics based on the geometric theory of flotation froth images are extracted, respectively, as the input variables of the proposed soft-sensor model. Then the isometric mapping method is used to reduce the input dimension, the network size, and learning time of BP neural network. Finally, a shuffled cuckoo search algorithm is adopted to optimize the BP neural network soft-sensor model. Simulation results show that the model has better generalization results and prediction accuracy.
Scheduling Heuristics for Live Video Transcoding on Cloud Edges
Institute of Scientific and Technical Information of China (English)
Panagiotis Oikonomou; Maria G. Koziri; Nikos Tziritas; Thanasis Loukopoulos; XU Cheng-Zhong
2017-01-01
Efficient video delivery involves the transcoding of the original sequence into various resolutions, bitrates and standards, in order to match viewers 'capabilities. Since video coding and transcoding are computationally demanding, performing a portion of these tasks at the network edges promises to decrease both the workload and network traffic towards the data centers of media provid-ers. Motivated by the increasing popularity of live casting on social media platforms, in this paper we focus on the case of live vid-eo transcoding. Specifically, we investigate scheduling heuristics that decide on which jobs should be assigned to an edge mini-datacenter and which to a backend datacenter. Through simulation experiments with different QoS requirements we conclude on the best alternative.
Breadth-First Search-Based Single-Phase Algorithms for Bridge Detection in Wireless Sensor Networks
Akram, Vahid Khalilpour; Dagdeviren, Orhan
2013-01-01
Wireless sensor networks (WSNs) are promising technologies for exploring harsh environments, such as oceans, wild forests, volcanic regions and outer space. Since sensor nodes may have limited transmission range, application packets may be transmitted by multi-hop communication. Thus, connectivity is a very important issue. A bridge is a critical edge whose removal breaks the connectivity of the network. Hence, it is crucial to detect bridges and take preventions. Since sensor nodes are battery-powered, services running on nodes should consume low energy. In this paper, we propose energy-efficient and distributed bridge detection algorithms for WSNs. Our algorithms run single phase and they are integrated with the Breadth-First Search (BFS) algorithm, which is a popular routing algorithm. Our first algorithm is an extended version of Milic's algorithm, which is designed to reduce the message length. Our second algorithm is novel and uses ancestral knowledge to detect bridges. We explain the operation of the algorithms, analyze their proof of correctness, message, time, space and computational complexities. To evaluate practical importance, we provide testbed experiments and extensive simulations. We show that our proposed algorithms provide less resource consumption, and the energy savings of our algorithms are up by 5.5-times. PMID:23845930
Improving the Bin Packing Heuristic through Grammatical Evolution Based on Swarm Intelligence
Directory of Open Access Journals (Sweden)
Marco Aurelio Sotelo-Figueroa
2014-01-01
Full Text Available In recent years Grammatical Evolution (GE has been used as a representation of Genetic Programming (GP which has been applied to many optimization problems such as symbolic regression, classification, Boolean functions, constructed problems, and algorithmic problems. GE can use a diversity of searching strategies including Swarm Intelligence (SI. Particle Swarm Optimisation (PSO is an algorithm of SI that has two main problems: premature convergence and poor diversity. Particle Evolutionary Swarm Optimization (PESO is a recent and novel algorithm which is also part of SI. PESO uses two perturbations to avoid PSO’s problems. In this paper we propose using PESO and PSO in the frame of GE as strategies to generate heuristics that solve the Bin Packing Problem (BPP; it is possible however to apply this methodology to other kinds of problems using another Grammar designed for that problem. A comparison between PESO, PSO, and BPP’s heuristics is performed through the nonparametric Friedman test. The main contribution of this paper is proposing a Grammar to generate online and offline heuristics depending on the test instance trying to improve the heuristics generated by other grammars and humans; it also proposes a way to implement different algorithms as search strategies in GE like PESO to obtain better results than those obtained by PSO.
Black-Box Search by Unbiased Variation
DEFF Research Database (Denmark)
Lehre, Per Kristian; Witt, Carsten
2012-01-01
The complexity theory for black-box algorithms, introduced by Droste, Jansen, and Wegener (Theory Comput. Syst. 39:525–544, 2006), describes common limits on the efficiency of a broad class of randomised search heuristics. There is an obvious trade-off between the generality of the black-box model...... and the strength of the bounds that can be proven in such a model. In particular, the original black-box model provides for well-known benchmark problems relatively small lower bounds, which seem unrealistic in certain cases and are typically not met by popular search heuristics.In this paper, we introduce a more...... restricted black-box model for optimisation of pseudo-Boolean functions which we claim captures the working principles of many randomised search heuristics including simulated annealing, evolutionary algorithms, randomised local search, and others. The key concept worked out is an unbiased variation operator...
Veenstra-VanderWeele, Jeremy; Blakely, Randy D
2012-01-01
Autism Spectrum Disorder (ASD) is a common neurodevelopmental disorder affecting approximately 1% of children. ASD is defined by core symptoms in two domains: negative symptoms of impairment in social and communication function, and positive symptoms of restricted and repetitive behaviors. Available treatments are inadequate for treating both core symptoms and associated conditions. Twin studies indicate that ASD susceptibility has a large heritable component. Genetic studies have identified promising leads, with converging insights emerging from single-gene disorders that bear ASD features, with particular interest in mammalian target of rapamycin (mTOR)-linked synaptic plasticity mechanisms. Mouse models of these disorders are revealing not only opportunities to model behavioral perturbations across species, but also evidence of postnatal rescue of brain and behavioral phenotypes. An intense search for ASD biomarkers has consistently pointed to elevated platelet serotonin (5-HT) levels and a surge in brain growth in the first 2 years of life. Following a review of the diversity of ASD phenotypes and its genetic origins and biomarkers, we discuss opportunities for translation of these findings into novel ASD treatments, focusing on mTor- and 5-HT-signaling pathways, and their possible intersection. Paralleling the progress made in understanding the root causes of rare genetic syndromes that affect cognitive development, we anticipate progress in models systems using bona fide ASD-associated molecular changes that have the potential to accelerate the development of ASD diagnostics and therapeutics.
Can we trust module-respect heuristics?
International Nuclear Information System (INIS)
Mo, Yuchang
2013-01-01
BDD (Binary Decision Diagrams) have proven to be a very efficient tool to assess Fault Trees. However, the size of BDD, and therefore the efficiency of the whole methodology, depends dramatically on the choice of variable ordering. The determination of the best variable ordering is intractable. Therefore, heuristics have been designed to select reasonably good variable orderings. One very important common feature for good static heuristics is to respect modules. In this paper, the notion of module-respect is studied in a systematic way. It is proved that under certain condition there always exists an optimal ordering that respects modules. This condition is that for each module there is always a smallest module BDD and each included module variable appears only once. On the other hand, it is shown that for the trees not satisfying the above sufficient condition the optimal orderings may not be able to be directly generated using module-respect heuristics, even when the shuffling strategy is used.
Judgment under Uncertainty: Heuristics and Biases.
Tversky, A; Kahneman, D
1974-09-27
This article described three heuristics that are employed in making judgements under uncertainty: (i) representativeness, which is usually employed when people are asked to judge the probability that an object or event A belongs to class or process B; (ii) availability of instances or scenarios, which is often employed when people are asked to assess the frequency of a class or the plausibility of a particular development; and (iii) adjustment from an anchor, which is usually employed in numerical prediction when a relevant value is available. These heuristics are highly economical and usually effective, but they lead to systematic and predictable errors. A better understanding of these heuristics and of the biases to which they lead could improve judgements and decisions in situations of uncertainty.
Fuel lattice design using heuristics and new strategies
Energy Technology Data Exchange (ETDEWEB)
Ortiz S, J. J.; Castillo M, J. A.; Torres V, M.; Perusquia del Cueto, R. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Pelta, D. A. [ETS Ingenieria Informatica y Telecomunicaciones, Universidad de Granada, Daniel Saucedo Aranda s/n, 18071 Granada (Spain); Campos S, Y., E-mail: juanjose.ortiz@inin.gob.m [IPN, Escuela Superior de Fisica y Matematicas, Unidad Profesional Adolfo Lopez Mateos, Edif. 9, 07738 Mexico D. F. (Mexico)
2010-10-15
This work show some results of the fuel lattice design in BWRs when some allocation pin rod rules are not taking into account. Heuristics techniques like Path Re linking and Greedy to design fuel lattices were used. The scope of this work is to search about how do classical rules in design fuel lattices affect the heuristics techniques results and the fuel lattice quality. The fuel lattices quality is measured by Power Peaking Factor and Infinite Multiplication Factor at the beginning of the fuel lattice life. CASMO-4 code to calculate these parameters was used. The analyzed rules are the following: pin rods with lowest uranium enrichment are only allocated in the fuel lattice corner, and pin rods with gadolinium cannot allocated in the fuel lattice edge. Fuel lattices with and without gadolinium in the main diagonal were studied. Some fuel lattices were simulated in an equilibrium cycle fuel reload, using Simulate-3 to verify their performance. So, the effective multiplication factor and thermal limits can be verified. The obtained results show a good performance in some fuel lattices designed, even thought, the knowing rules were not implemented. A fuel lattice performance and fuel lattice design characteristics analysis was made. To the realized tests, a dell workstation was used, under Li nux platform. (Author)
Heuristics Miner for E-Commerce Visitor Access Pattern Representation
Directory of Open Access Journals (Sweden)
Kartina Diah Kesuma Wardhani
2017-06-01
Full Text Available E-commerce click stream data can form a certain pattern that describe visitor behavior while surfing the e-commerce website. This pattern can be used to initiate a design to determine alternative access sequence on the website. This research use heuristic miner algorithm to determine the pattern. σ-Algorithm and Genetic Mining are methods used for pattern recognition with frequent sequence item set approach. Heuristic Miner is an evolved form of those methods. σ-Algorithm assume that an activity in a website, that has been recorded in the data log, is a complete sequence from start to finish, without any tolerance to incomplete data or data with noise. On the other hand, Genetic Mining is a method that tolerate incomplete data or data with noise, so it can generate a more detailed e-commerce visitor access pattern. In this study, the same sequence of events obtained from six-generated patterns. The resulting pattern of visitor access is that visitors are often access the home page and then the product category page or the home page and then the full text search page.
Fuel lattice design using heuristics and new strategies
International Nuclear Information System (INIS)
Ortiz S, J. J.; Castillo M, J. A.; Torres V, M.; Perusquia del Cueto, R.; Pelta, D. A.; Campos S, Y.
2010-10-01
This work show some results of the fuel lattice design in BWRs when some allocation pin rod rules are not taking into account. Heuristics techniques like Path Re linking and Greedy to design fuel lattices were used. The scope of this work is to search about how do classical rules in design fuel lattices affect the heuristics techniques results and the fuel lattice quality. The fuel lattices quality is measured by Power Peaking Factor and Infinite Multiplication Factor at the beginning of the fuel lattice life. CASMO-4 code to calculate these parameters was used. The analyzed rules are the following: pin rods with lowest uranium enrichment are only allocated in the fuel lattice corner, and pin rods with gadolinium cannot allocated in the fuel lattice edge. Fuel lattices with and without gadolinium in the main diagonal were studied. Some fuel lattices were simulated in an equilibrium cycle fuel reload, using Simulate-3 to verify their performance. So, the effective multiplication factor and thermal limits can be verified. The obtained results show a good performance in some fuel lattices designed, even thought, the knowing rules were not implemented. A fuel lattice performance and fuel lattice design characteristics analysis was made. To the realized tests, a dell workstation was used, under Li nux platform. (Author)
A HYBRID HEURISTIC ALGORITHM FOR SOLVING THE RESOURCE CONSTRAINED PROJECT SCHEDULING PROBLEM (RCPSP
Directory of Open Access Journals (Sweden)
Juan Carlos Rivera
Full Text Available The Resource Constrained Project Scheduling Problem (RCPSP is a problem of great interest for the scientific community because it belongs to the class of NP-Hard problems and no methods are known that can solve it accurately in polynomial processing times. For this reason heuristic methods are used to solve it in an efficient way though there is no guarantee that an optimal solution can be obtained. This research presents a hybrid heuristic search algorithm to solve the RCPSP efficiently, combining elements of the heuristic Greedy Randomized Adaptive Search Procedure (GRASP, Scatter Search and Justification. The efficiency obtained is measured taking into account the presence of the new elements added to the GRASP algorithm taken as base: Justification and Scatter Search. The algorithms are evaluated using three data bases of instances of the problem: 480 instances of 30 activities, 480 of 60, and 600 of 120 activities respectively, taken from the library PSPLIB available online. The solutions obtained by the developed algorithm for the instances of 30, 60 and 120 are compared with results obtained by other researchers at international level, where a prominent place is obtained, according to Chen (2011.
Heuristics for container loading of furniture
DEFF Research Database (Denmark)
Egeblad, Jens; Garavelli, Claudio; Lisi, Stefano
2010-01-01
. In the studied company, the problem arises hundreds of times daily during transport planning. Instances may contain more than one hundred different items with irregular shapes. To solve this complex problem we apply a set of heuristics successively that each solve one part of the problem. Large items...... are combined in specific structures to ensure proper protection of the items during transportation and to simplify the problem. The solutions generated by the heuristic has an average loading utilization of 91.3% for the most general instances with average running times around 100 seconds....
Heuristic extension of the Schwarzschild metric
International Nuclear Information System (INIS)
Espinosa, J.M.
1982-01-01
The Schwarzschild solution of Einstein's equations of gravitation has several singularities. It is known that the singularity at r = 2Gm/c 2 is only apparent, a result of the coordinates in which the solution was found. Paradoxical results occuring near the singularity show the system of coordinates is incomplete. We introduce a simple, two-dimensional metric with an apparent singularity that makes it incomplete. By a straightforward, heuristic procedure we extend and complete this simple metric. We then use the same procedure to give a heuristic derivation of the Kruskal system of coordinates, which is known to extend the Schwarzschild manifold past its apparent singularity and produce a complete manifold
Age Effects and Heuristics in Decision Making.
Besedeš, Tibor; Deck, Cary; Sarangi, Sudipta; Shor, Mikhael
2012-05-01
Using controlled experiments, we examine how individuals make choices when faced with multiple options. Choice tasks are designed to mimic the selection of health insurance, prescription drug, or retirement savings plans. In our experiment, available options can be objectively ranked allowing us to examine optimal decision making. First, the probability of a person selecting the optimal option declines as the number of options increases, with the decline being more pronounced for older subjects. Second, heuristics differ by age with older subjects relying more on suboptimal decision rules. In a heuristics validation experiment, older subjects make worse decisions than younger subjects.
Döveling, Katrin
2015-04-01
In an age of rising impact of online communication in social network sites (SNS), emotional interaction is neither limited nor restricted by time or space. Bereavement extends to the anonymity of cyberspace. What role does virtual interaction play in SNS in dealing with the basic human emotion of grief caused by the loss of a beloved person? The analysis laid out in this article provides answers in light of an interdisciplinary perspective on online bereavement. Relevant lines of research are scrutinized. After laying out the theoretical spectrum for the study, hypotheses based on a prior in-depth qualitative content analysis of 179 postings in three different German online bereavement platforms are proposed and scrutinized in a quantitative content analysis (2127 postings from 318 users). Emotion regulation patterns in SNS and similarities as well as differences in online bereavement of children, adolescents and adults are revealed. Large-scale quantitative findings into central motives, patterns, and restorative effects of online shared bereavement in regulating distress, fostering personal empowerment, and engendering meaning are presented. The article closes with implications for further analysis in memorialization practices.
Searching for collective behavior in a large network of sensory neurons.
Directory of Open Access Journals (Sweden)
Gašper Tkačik
2014-01-01
Full Text Available Maximum entropy models are the least structured probability distributions that exactly reproduce a chosen set of statistics measured in an interacting network. Here we use this principle to construct probabilistic models which describe the correlated spiking activity of populations of up to 120 neurons in the salamander retina as it responds to natural movies. Already in groups as small as 10 neurons, interactions between spikes can no longer be regarded as small perturbations in an otherwise independent system; for 40 or more neurons pairwise interactions need to be supplemented by a global interaction that controls the distribution of synchrony in the population. Here we show that such "K-pairwise" models--being systematic extensions of the previously used pairwise Ising models--provide an excellent account of the data. We explore the properties of the neural vocabulary by: 1 estimating its entropy, which constrains the population's capacity to represent visual information; 2 classifying activity patterns into a small set of metastable collective modes; 3 showing that the neural codeword ensembles are extremely inhomogenous; 4 demonstrating that the state of individual neurons is highly predictable from the rest of the population, allowing the capacity for error correction.
Directory of Open Access Journals (Sweden)
Maryam Ashouri
2017-07-01
Full Text Available Vehicle routing problem (VRP is a Nondeterministic Polynomial Hard combinatorial optimization problem to serve the consumers from central depots and returned back to the originated depots with given vehicles. Furthermore, two of the most important extensions of the VRPs are the open vehicle routing problem (OVRP and VRP with simultaneous pickup and delivery (VRPSPD. In OVRP, the vehicles have not return to the depot after last visit and in VRPSPD, customers require simultaneous delivery and pick-up service. The aim of this paper is to present a combined effective ant colony optimization (CEACO which includes sweep and several local search algorithms which is different with common ant colony optimization (ACO. An extensive numerical experiment is performed on benchmark problem instances addressed in the literature. The computational result shows that suggested CEACO approach not only presented a very satisfying scalability, but also was competitive with other meta-heuristic algorithms in the literature for solving VRP, OVRP and VRPSPD problems. Keywords: Meta-heuristic algorithms, Vehicle Routing Problem, Open Vehicle Routing Problem, Simultaneously Pickup and Delivery, Ant Colony Optimization.
Improved merit order and augmented Lagrange Hopfield network for short term hydrothermal scheduling
International Nuclear Information System (INIS)
Vo Ngoc Dieu; Ongsakul, Weerakorn
2009-01-01
This paper proposes an improved merit order (IMO) combined with an augmented Lagrangian Hopfield network (ALHN) for solving short term hydrothermal scheduling (HTS) with pumped-storage hydro plants. The proposed IMO-ALHN consists of a merit order based on the average production cost of generating units enhanced by heuristic search algorithm for finding unit scheduling and a continuous Hopfield neural network with its energy function based on augmented Lagrangian relaxation for solving constrained economic dispatch (CED). The proposed method is applied to solve the HTS problem in five stages including thermal, hydro and pumped-storage unit commitment by IMO and heuristic search, constraint violations repairing by heuristic search and CED by ALHN. The proposed method is tested on the 24-bus IEEE RTS with 32 units including 4 fuel-constrained, 4-hydro, and 2 pumped-storage units scheduled over a 24-h period. Test results indicate that the proposed IMO-ALHN is efficient for hydrothermal systems with various constraints.
Directory of Open Access Journals (Sweden)
Ahmed R. Abdelaziz
2015-08-01
Full Text Available This paper presents an application of Chaotic differential evolution optimization approach meta-heuristics in solving transmission network expansion planning TNEP using an AC model associated with reactive power planning RPP. The reliabilityredundancy of network analysis optimization problems implicate selection of components with multiple choices and redundancy levels that produce maximum benefits can be subject to the cost weight and volume constraints is presented in this paper. Classical mathematical methods have failed in handling non-convexities and non-smoothness in optimization problems. As an alternative to the classical optimization approaches the meta-heuristics have attracted lot of attention due to their ability to find an almost global optimal solution in reliabilityredundancy optimization problems. Evolutionary algorithms EAs paradigms of evolutionary computation field are stochastic and robust meta-heuristics useful to solve reliabilityredundancy optimization problems. EAs such as genetic algorithm evolutionary programming evolution strategies and differential evolution are being used to find global or near global optimal solution. The Differential Evolution Algorithm DEA population-based algorithm is an optimal algorithm with powerful global searching capability but it is usually in low convergence speed and presents bad searching capability in the later evolution stage. A new Chaotic Differential Evolution algorithm CDE based on the cat map is recommended which combines DE and chaotic searching algorithm. Simulation results and comparisons show that the chaotic differential evolution algorithm using Cat map is competitive and stable in performance with other optimization approaches and other maps.
Greedy Local Search and Vertex Cover in Sparse Random Graphs
DEFF Research Database (Denmark)
Witt, Carsten
2009-01-01
. This work starts with a rigorous explanation for this claim based on the refined analysis of the Karp-Sipser algorithm by Aronson et al. Subsequently, theoretical supplements are given to experimental studies of search heuristics on random graphs. For c 1, a greedy and randomized local-search heuristic...... finds an optimal cover in polynomial time with a probability arbitrarily close to 1. This behavior relies on the absence of a giant component. As an additional insight into the randomized search, it is shown that the heuristic fails badly also on graphs consisting of a single tree component of maximum......Recently, various randomized search heuristics have been studied for the solution of the minimum vertex cover problem, in particular for sparse random instances according to the G(n, c/n) model, where c > 0 is a constant. Methods from statistical physics suggest that the problem is easy if c
Adaptive switching gravitational search algorithm: an attempt to ...
Indian Academy of Sciences (India)
Nor Azlina Ab Aziz
An adaptive gravitational search algorithm (GSA) that switches between synchronous and ... genetic algorithm (GA), bat-inspired algorithm (BA) and grey wolf optimizer (GWO). ...... heuristic with applications in applied electromagnetics. Prog.
High-Quality Ultra-Compact Grid Layout of Grouped Networks.
Yoghourdjian, Vahan; Dwyer, Tim; Gange, Graeme; Kieffer, Steve; Klein, Karsten; Marriott, Kim
2016-01-01
Prior research into network layout has focused on fast heuristic techniques for layout of large networks, or complex multi-stage pipelines for higher quality layout of small graphs. Improvements to these pipeline techniques, especially for orthogonal-style layout, are difficult and practical results have been slight in recent years. Yet, as discussed in this paper, there remain significant issues in the quality of the layouts produced by these techniques, even for quite small networks. This is especially true when layout with additional grouping constraints is required. The first contribution of this paper is to investigate an ultra-compact, grid-like network layout aesthetic that is motivated by the grid arrangements that are used almost universally by designers in typographical layout. Since the time when these heuristic and pipeline-based graph-layout methods were conceived, generic technologies (MIP, CP and SAT) for solving combinatorial and mixed-integer optimization problems have improved massively. The second contribution of this paper is to reassess whether these techniques can be used for high-quality layout of small graphs. While they are fast enough for graphs of up to 50 nodes we found these methods do not scale up. Our third contribution is a large-neighborhood search meta-heuristic approach that is scalable to larger networks.
Raaijmakers, J.G.W.; Shiffrin, R.M.
1981-01-01
Describes search of associative memory (SAM), a general theory of retrieval from long-term memory that combines features of associative network models and random search models. It posits cue-dependent probabilistic sampling and recovery from an associative network, but the network is specified as a
Heuristic Optimization for the Discrete Virtual Power Plant Dispatch Problem
DEFF Research Database (Denmark)
Petersen, Mette Kirschmeyer; Hansen, Lars Henrik; Bendtsen, Jan Dimon
2014-01-01
We consider a Virtual Power Plant, which is given the task of dispatching a fluctuating power supply to a portfolio of flexible consumers. The flexible consumers are modeled as discrete batch processes, and the associated optimization problem is denoted the Discrete Virtual Power Plant Dispatch...... Problem. First NP-completeness of the Discrete Virtual Power Plant Dispatch Problem is proved formally. We then proceed to develop tailored versions of the meta-heuristic algorithms Hill Climber and Greedy Randomized Adaptive Search Procedure (GRASP). The algorithms are tuned and tested on portfolios...... of varying sizes. We find that all the tailored algorithms perform satisfactorily in the sense that they are able to find sub-optimal, but usable, solutions to very large problems (on the order of 10 5 units) at computation times on the scale of just 10 seconds, which is far beyond the capabilities...
State analysis of BOP using statistical and heuristic methods
International Nuclear Information System (INIS)
Heo, Gyun Young; Chang, Soon Heung
2003-01-01
Under the deregulation environment, the performance enhancement of BOP in nuclear power plants is being highlighted. To analyze performance level of BOP, we use the performance test procedures provided from an authorized institution such as ASME. However, through plant investigation, it was proved that the requirements of the performance test procedures about the reliability and quantity of sensors was difficult to be satisfied. As a solution of this, state analysis method that are the expanded concept of signal validation, was proposed on the basis of the statistical and heuristic approaches. Authors recommended the statistical linear regression model by analyzing correlation among BOP parameters as a reference state analysis method. Its advantage is that its derivation is not heuristic, it is possible to calculate model uncertainty, and it is easy to apply to an actual plant. The error of the statistical linear regression model is below 3% under normal as well as abnormal system states. Additionally a neural network model was recommended since the statistical model is impossible to apply to the validation of all of the sensors and is sensitive to the outlier that is the signal located out of a statistical distribution. Because there are a lot of sensors need to be validated in BOP, wavelet analysis (WA) were applied as a pre-processor for the reduction of input dimension and for the enhancement of training accuracy. The outlier localization capability of WA enhanced the robustness of the neural network. The trained neural network restored the degraded signals to the values within ±3% of the true signals
Assessing Use of Cognitive Heuristic Representativeness in Clinical Reasoning
Payne, Velma L.; Crowley, Rebecca S.
2008-01-01
We performed a pilot study to investigate use of the cognitive heuristic Representativeness in clinical reasoning. We tested a set of tasks and assessments to determine whether subjects used the heuristics in reasoning, to obtain initial frequencies of heuristic use and related cognitive errors, and to collect cognitive process data using think-aloud techniques. The study investigates two aspects of the Representativeness heuristic - judging by perceived frequency and representativeness as ca...
Automated generation of constructive ordering heuristics for educational timetabling
Pillay, Nelishia; Özcan, Ender
2017-01-01
Construction heuristics play an important role in solving combinatorial optimization problems. These heuristics are usually used to create an initial solution to the problem which is improved using optimization techniques such as metaheuristics. For examination timetabling and university course timetabling problems essentially graph colouring heuristics have been used for this purpose. The process of deriving heuristics manually for educational timetabling is a time consuming task. Furthermor...
Adaptive selection of heuristics for improving exam timetables
Burke, Edmund; Qu, Rong; Soghier, Amr
2014-01-01
This paper presents a hyper-heuristic approach which hybridises low-level heuristic moves to improve timetables. Exams which cause a soft-constraint violation in the timetable are ordered and rescheduled to produce a better timetable. It is observed that both the order in which exams are rescheduled and the heuristic moves used to reschedule the exams and improve the timetable affect the quality of the solution produced. After testing different combinations in a hybrid hyper-heuristic approac...
International Nuclear Information System (INIS)
Trovão, João P.; Antunes, Carlos Henggeler
2015-01-01
Highlights: • Two meta-heuristic approaches are evaluated for multi-ESS management in electric vehicles. • An online global energy management strategy with two different layers is studied. • Meta-heuristic techniques are used to define optimized energy sharing mechanisms. • A comparative analysis for ARTEMIS driving cycle is addressed. • The effectiveness of the double-layer management with meta-heuristic is presented. - Abstract: This work is focused on the performance evaluation of two meta-heuristic approaches, simulated annealing and particle swarm optimization, to deal with power management of a dual energy storage system for electric vehicles. The proposed strategy is based on a global energy management system with two layers: long-term (energy) and short-term (power) management. A rule-based system deals with the long-term (strategic) layer and for the short-term (action) layer meta-heuristic techniques are developed to define optimized online energy sharing mechanisms. Simulations have been made for several driving cycles to validate the proposed strategy. A comparative analysis for ARTEMIS driving cycle is presented evaluating three performance indicators (computation time, final value of battery state of charge, and minimum value of supercapacitors state of charge) as a function of input parameters. The results show the effectiveness of an implementation based on a double-layer management system using meta-heuristic methods for online power management supported by a rule set that restricts the search space
Approach to design neural cryptography: a generalized architecture and a heuristic rule.
Mu, Nankun; Liao, Xiaofeng; Huang, Tingwen
2013-06-01
Neural cryptography, a type of public key exchange protocol, is widely considered as an effective method for sharing a common secret key between two neural networks on public channels. How to design neural cryptography remains a great challenge. In this paper, in order to provide an approach to solve this challenge, a generalized network architecture and a significant heuristic rule are designed. The proposed generic framework is named as tree state classification machine (TSCM), which extends and unifies the existing structures, i.e., tree parity machine (TPM) and tree committee machine (TCM). Furthermore, we carefully study and find that the heuristic rule can improve the security of TSCM-based neural cryptography. Therefore, TSCM and the heuristic rule can guide us to designing a great deal of effective neural cryptography candidates, in which it is possible to achieve the more secure instances. Significantly, in the light of TSCM and the heuristic rule, we further expound that our designed neural cryptography outperforms TPM (the most secure model at present) on security. Finally, a series of numerical simulation experiments are provided to verify validity and applicability of our results.
Applying usability heuristics to radiotherapy systems
International Nuclear Information System (INIS)
Chan, Alvita J.; Islam, Mohammad K.; Rosewall, Tara; Jaffray, David A.; Easty, Anthony C.; Cafazzo, Joseph A.
2012-01-01
Background and purpose: Heuristic evaluations have been used to evaluate safety of medical devices by identifying and assessing usability issues. Since radiotherapy treatment delivery systems often consist of multiple complex user-interfaces, a heuristic evaluation was conducted to assess the potential safety issues of such a system. Material and methods: A heuristic evaluation was conducted to evaluate the treatment delivery system at Princess Margaret Hospital (Toronto, Canada). Two independent evaluators identified usability issues with the user-interfaces and rated the severity of each issue. Results: The evaluators identified 75 usability issues in total. Eighteen of them were rated as high severity, indicating the potential to have a major impact on patient safety. A majority of issues were found on the record and verify system, and many were associated with the patient setup process. While the hospital has processes in place to ensure patient safety, recommendations were developed to further mitigate the risks of potential consequences. Conclusions: Heuristic evaluation is an efficient and inexpensive method that can be successfully applied to radiotherapy delivery systems to identify usability issues and improve patient safety. Although this study was conducted only at one site, the findings may have broad implications for the design of these systems.
Can the inherence heuristic explain vitalistic reasoning?
Bastian, Brock
2014-10-01
Inherence is an important component of psychological essentialism. By drawing on vitalism as a way in which to explain this link, however, the authors appear to conflate causal explanations based on fixed features with those based on general causal forces. The disjuncture between these two types of explanatory principles highlights potential new avenues for the inherence heuristic.
Fast heuristics for a dynamic paratransit problem
Cremers, M.L.A.G.; Klein Haneveld, W.K.; van der Vlerk, M.H.
2008-01-01
In a previous paper we developed a non-standard two-stage recourse model for the dynamic day-ahead paratransit planning problem. Two heuristics, which are frequently applied in the recourse model, contain many details which leads to large CPU times to solve instances of relatively small size. In
A Heuristic for Improving Transmedia Exhibition Experience
DEFF Research Database (Denmark)
Selvadurai, Vashanth; Rosenstand, Claus Andreas Foss
2017-01-01
in the scientific field of designing transmedia experience in an exhibition context that links the pre- and post-activities to the actual visit (during-activities). The result of this study is a preliminary heuristic for establishing a relation between the platform and content complexity in transmedia exhibitions....
Heuristics for speeding up gaze estimation
DEFF Research Database (Denmark)
Leimberg, Denis; Vester-Christensen, Martin; Ersbøll, Bjarne Kjær
2005-01-01
A deformable template method for eye tracking on full face images is presented. The strengths of the method are that it is fast and retains accuracy independently of the resolution. We compare the method with a state of the art active contour approach, showing that the heuristic method is more...
The Heuristic Interpretation of Box Plots
Lem, Stephanie; Onghena, Patrick; Verschaffel, Lieven; Van Dooren, Wim
2013-01-01
Box plots are frequently used, but are often misinterpreted by students. Especially the area of the box in box plots is often misinterpreted as representing number or proportion of observations, while it actually represents their density. In a first study, reaction time evidence was used to test whether heuristic reasoning underlies this…
Heuristic Classification. Technical Report Number 12.
Clancey, William J.
A broad range of well-structured problems--embracing forms of diagnosis, catalog selection, and skeletal planning--are solved in expert computer systems by the method of heuristic classification. These programs have a characteristic inference structure that systematically relates data to a pre-enumerated set of solutions by abstraction, heuristic…
Engineering applications of heuristic multilevel optimization methods
Barthelemy, Jean-Francois M.
1989-01-01
Some engineering applications of heuristic multilevel optimization methods are presented and the discussion focuses on the dependency matrix that indicates the relationship between problem functions and variables. Coordination of the subproblem optimizations is shown to be typically achieved through the use of exact or approximate sensitivity analysis. Areas for further development are identified.
A Heuristic for the Teaching of Persuasion.
Schell, John F.
Interpreting Aristotle's criteria for persuasive writing--ethos, logos, and pathos--as a concern for writer, language, and audience creates both an effective model for persuasive writing and a structure around which to organize discussions of relevant rhetorical issues. Use of this heuristic to analyze writing style, organization, and content…
Fourth Graders' Heuristic Problem-Solving Behavior.
Lee, Kil S.
1982-01-01
Eight boys and eight girls from a rural elementary school participated in the investigation. Specific heuristics were adopted from Polya; and the students selected represented two substages of Piaget's concrete operational stage. Five hypotheses were generated, based on observed results and the study's theoretical rationale. (MP)
Investigating Heuristic Evaluation: A Case Study.
Goldman, Kate Haley; Bendoly, Laura
When museum professionals speak of evaluating a web site, they primarily mean formative evaluation, and by that they primarily mean testing the usability of the site. In the for-profit world, usability testing is a multi-million dollar industry, while non-profits often rely on far too few dollars to do too much. Hence, heuristic evaluation is one…
Internal Medicine residents use heuristics to estimate disease probability
Directory of Open Access Journals (Sweden)
Sen Phang
2015-12-01
Conclusions: Our findings suggest that despite previous exposure to the use of Bayesian reasoning, residents use heuristics, such as the representative heuristic and anchoring with adjustment, to estimate probabilities. Potential reasons for attribute substitution include the relative cognitive ease of heuristics vs. Bayesian reasoning or perhaps residents in their clinical practice use gist traces rather than precise probability estimates when diagnosing.
Heuristics Made Easy: An Effort-Reduction Framework
Shah, Anuj K.; Oppenheimer, Daniel M.
2008-01-01
In this article, the authors propose a new framework for understanding and studying heuristics. The authors posit that heuristics primarily serve the purpose of reducing the effort associated with a task. As such, the authors propose that heuristics can be classified according to a small set of effort-reduction principles. The authors use this…
A Variable-Selection Heuristic for K-Means Clustering.
Brusco, Michael J.; Cradit, J. Dennis
2001-01-01
Presents a variable selection heuristic for nonhierarchical (K-means) cluster analysis based on the adjusted Rand index for measuring cluster recovery. Subjected the heuristic to Monte Carlo testing across more than 2,200 datasets. Results indicate that the heuristic is extremely effective at eliminating masking variables. (SLD)
Heuristic Diagrams as a Tool to Teach History of Science
Chamizo, Jose A.
2012-01-01
The graphic organizer called here heuristic diagram as an improvement of Gowin's Vee heuristic is proposed as a tool to teach history of science. Heuristic diagrams have the purpose of helping students (or teachers, or researchers) to understand their own research considering that asks and problem-solving are central to scientific activity. The…
A hybrid heuristic algorithm for the open-pit-mining operational planning problem.
Souza, Marcone Jamilson Freitas; Coelho, Igor Machado; Ribas, Sabir; Santos, Haroldo Gambini; Merschmann, Luiz Henrique de Campos
2010-01-01
This paper deals with the Open-Pit-Mining Operational Planning problem with dynamic truck allocation. The objective is to optimize mineral extraction in the mines by minimizing the number of mining trucks used to meet production goals and quality requirements. According to the literature, this problem is NPhard, so a heuristic strategy is justified. We present a hybrid algorithm that combines characteristics of two metaheuristics: Greedy Randomized Adaptive Search Procedures and General Varia...
Heuristics structure and pervade formal risk assessment.
MacGillivray, Brian H
2014-04-01
Lay perceptions of risk appear rooted more in heuristics than in reason. A major concern of the risk regulation literature is that such "error-strewn" perceptions may be replicated in policy, as governments respond to the (mis)fears of the citizenry. This has led many to advocate a relatively technocratic approach to regulating risk, characterized by high reliance on formal risk and cost-benefit analysis. However, through two studies of chemicals regulation, we show that the formal assessment of risk is pervaded by its own set of heuristics. These include rules to categorize potential threats, define what constitutes valid data, guide causal inference, and to select and apply formal models. Some of these heuristics lay claim to theoretical or empirical justifications, others are more back-of-the-envelope calculations, while still more purport not to reflect some truth but simply to constrain discretion or perform a desk-clearing function. These heuristics can be understood as a way of authenticating or formalizing risk assessment as a scientific practice, representing a series of rules for bounding problems, collecting data, and interpreting evidence (a methodology). Heuristics are indispensable elements of induction. And so they are not problematic per se, but they can become so when treated as laws rather than as contingent and provisional rules. Pitfalls include the potential for systematic error, masking uncertainties, strategic manipulation, and entrenchment. Our central claim is that by studying the rules of risk assessment qua rules, we develop a novel representation of the methods, conventions, and biases of the prior art. © 2013 Society for Risk Analysis.
Wu, Huafeng; Mei, Xiaojun; Chen, Xinqiang; Li, Junjun; Wang, Jun; Mohapatra, Prasant
2018-07-01
Maritime search and rescue (MSR) play a significant role in Safety of Life at Sea (SOLAS). However, it suffers from scenarios that the measurement information is inaccurate due to wave shadow effect when utilizing wireless Sensor Network (WSN) technology in MSR. In this paper, we develop a Novel Cooperative Localization Algorithm (NCLA) in MSR by using an enhanced particle filter method to reduce measurement errors on observation model caused by wave shadow effect. First, we take into account the mobility of nodes at sea to develop a motion model-Lagrangian model. Furthermore, we introduce both state model and observation model to constitute a system model for particle filter (PF). To address the impact of the wave shadow effect on the observation model, we develop an optimal parameter derived by Kullback-Leibler divergence (KLD) to mitigate the error. After the optimal parameter is acquired, an improved likelihood function is presented. Finally, the estimated position is acquired. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Chiroma, Haruna; Abdul-kareem, Sameem; Khan, Abdullah; Nawi, Nazri Mohd; Gital, Abdulsalam Ya'u; Shuib, Liyana; Abubakar, Adamu I; Rahman, Muhammad Zubair; Herawan, Tutut
2015-01-01
Global warming is attracting attention from policy makers due to its impacts such as floods, extreme weather, increases in temperature by 0.7°C, heat waves, storms, etc. These disasters result in loss of human life and billions of dollars in property. Global warming is believed to be caused by the emissions of greenhouse gases due to human activities including the emissions of carbon dioxide (CO2) from petroleum consumption. Limitations of the previous methods of predicting CO2 emissions and lack of work on the prediction of the Organization of the Petroleum Exporting Countries (OPEC) CO2 emissions from petroleum consumption have motivated this research. The OPEC CO2 emissions data were collected from the Energy Information Administration. Artificial Neural Network (ANN) adaptability and performance motivated its choice for this study. To improve effectiveness of the ANN, the cuckoo search algorithm was hybridised with accelerated particle swarm optimisation for training the ANN to build a model for the prediction of OPEC CO2 emissions. The proposed model predicts OPEC CO2 emissions for 3, 6, 9, 12 and 16 years with an improved accuracy and speed over the state-of-the-art methods. An accurate prediction of OPEC CO2 emissions can serve as a reference point for propagating the reorganisation of economic development in OPEC member countries with the view of reducing CO2 emissions to Kyoto benchmarks--hence, reducing global warming. The policy implications are discussed in the paper.
Directory of Open Access Journals (Sweden)
Haruna Chiroma
Full Text Available Global warming is attracting attention from policy makers due to its impacts such as floods, extreme weather, increases in temperature by 0.7°C, heat waves, storms, etc. These disasters result in loss of human life and billions of dollars in property. Global warming is believed to be caused by the emissions of greenhouse gases due to human activities including the emissions of carbon dioxide (CO2 from petroleum consumption. Limitations of the previous methods of predicting CO2 emissions and lack of work on the prediction of the Organization of the Petroleum Exporting Countries (OPEC CO2 emissions from petroleum consumption have motivated this research.The OPEC CO2 emissions data were collected from the Energy Information Administration. Artificial Neural Network (ANN adaptability and performance motivated its choice for this study. To improve effectiveness of the ANN, the cuckoo search algorithm was hybridised with accelerated particle swarm optimisation for training the ANN to build a model for the prediction of OPEC CO2 emissions. The proposed model predicts OPEC CO2 emissions for 3, 6, 9, 12 and 16 years with an improved accuracy and speed over the state-of-the-art methods.An accurate prediction of OPEC CO2 emissions can serve as a reference point for propagating the reorganisation of economic development in OPEC member countries with the view of reducing CO2 emissions to Kyoto benchmarks--hence, reducing global warming. The policy implications are discussed in the paper.
Becker, Stefanie I; Grubert, Anna; Dux, Paul E
2014-11-15
In visual search, responses are slowed, from one trial to the next, both when the target dimension changes (e.g., from a color target to a size target) and when the target feature changes (e.g., from a red target to a green target) relative to being repeated across trials. The present study examined whether such feature and dimension switch costs can be attributed to the same underlying mechanism(s). Contrary to this contention, an EEG study showed that feature changes influenced visual selection of the target (i.e., delayed N2pc onset), whereas dimension changes influenced the later process of response selection (i.e., delayed s-LRP onset). An fMRI study provided convergent evidence for the two-system view: Compared with repetitions, feature changes led to increased activation in the occipital cortex, and superior and inferior parietal lobules, which have been implicated in spatial attention. By contrast, dimension changes led to activation of a fronto-posterior network that is primarily linked with response selection (i.e., pre-motor cortex, supplementary motor area and frontal areas). Taken together, the results suggest that feature and dimension switch costs are based on different processes. Specifically, whereas target feature changes delay attention shifts to the target, target dimension changes interfere with later response selection operations. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
Heuristic Evaluation of E-Learning Courses: A Comparative Analysis of Two E-Learning Heuristic Sets
Zaharias, Panagiotis; Koutsabasis, Panayiotis
2012-01-01
Purpose: The purpose of this paper is to discuss heuristic evaluation as a method for evaluating e-learning courses and applications and more specifically to investigate the applicability and empirical use of two customized e-learning heuristic protocols. Design/methodology/approach: Two representative e-learning heuristic protocols were chosen…
Identifying product development crises: The potential of adaptive heuristics
DEFF Research Database (Denmark)
Münzberger, C.; Stingl, Verena; Oehmen, Josef
2017-01-01
This paper introduces adaptive heuristics as a tool to identify crises in design projects and highlights potential applications of these heuristics as decision support tool for crisis identification. Crises may emerge slowly or suddenly, and often have ambiguous signals. Thus the identification...... for the application of heuristics in design sciences. To achieve this, the paper compares crises to 'business as usual', and presents sixteen indicators for emerging crises. These indicators are potential cues for adaptive heuristics. Specifically three adaptive heuristics, One-single-cue, Fast-and-Frugal-Trees...
Learning process mapping heuristics under stochastic sampling overheads
Ieumwananonthachai, Arthur; Wah, Benjamin W.
1991-01-01
A statistical method was developed previously for improving process mapping heuristics. The method systematically explores the space of possible heuristics under a specified time constraint. Its goal is to get the best possible heuristics while trading between the solution quality of the process mapping heuristics and their execution time. The statistical selection method is extended to take into consideration the variations in the amount of time used to evaluate heuristics on a problem instance. The improvement in performance is presented using the more realistic assumption along with some methods that alleviate the additional complexity.
Project Scheduling Heuristics-Based Standard PSO for Task-Resource Assignment in Heterogeneous Grid
Directory of Open Access Journals (Sweden)
Ruey-Maw Chen
2011-01-01
Full Text Available The task scheduling problem has been widely studied for assigning resources to tasks in heterogeneous grid environment. Effective task scheduling is an important issue for the performance of grid computing. Meanwhile, the task scheduling problem is an NP-complete problem. Hence, this investigation introduces a named “standard“ particle swarm optimization (PSO metaheuristic approach to efficiently solve the task scheduling problems in grid. Meanwhile, two promising heuristics based on multimode project scheduling are proposed to help in solving interesting scheduling problems. They are the best performance resource heuristic and the latest finish time heuristic. These two heuristics applied to the PSO scheme are for speeding up the search of the particle and improving the capability of finding a sound schedule. Moreover, both global communication topology and local ring communication topology are also investigated for efficient study of proposed scheme. Simulation results demonstrate that the proposed approach in this investigation can successfully solve the task-resource assignment problems in grid computing and similar scheduling problems.
Commercial Territory Design for a Distribution Firm with New Constructive and Destructive Heuristics
Directory of Open Access Journals (Sweden)
Jaime
2012-02-01
Full Text Available A commercial territory design problem with compactness maximization criterion subject to territory balancing and connectivity is addressed. Four new heuristics based on Greedy Randomized Adaptive Search Procedures within a location-allocation scheme for this NP-hard combinatorial optimization problem are proposed. The first three (named GRLH1, GRLH2, and GRDL build the territories simultaneously. Their construction phase consists of two parts: a location phase where territory seeds are identified, and an allocation phase where the remaining basic units are iteratively assigned to a territory. In contrast, the other heuristic (named SLA builds the territories one at a time. Empirical results reveals that GRLH1 and GRLH2 find near-optimal or optimal solutions to relatively small instances, where exact solutions could be found. The proposed procedures are relatively fast. We carried out a comparison between the proposed heuristic procedures and the existing method in larger instances. It was observed the proposed heuristic GRLH1 produced competitive results with respect to the existing approach.
Path-Wise Test Data Generation Based on Heuristic Look-Ahead Methods
Directory of Open Access Journals (Sweden)
Ying Xing
2014-01-01
Full Text Available Path-wise test data generation is generally considered an important problem in the automation of software testing. In essence, it is a constraint optimization problem, which is often solved by search methods such as backtracking algorithms. In this paper, the backtracking algorithm branch and bound and state space search in artificial intelligence are introduced to tackle the problem of path-wise test data generation. The former is utilized to explore the space of potential solutions and the latter is adopted to construct the search tree dynamically. Heuristics are employed in the look-ahead stage of the search. Dynamic variable ordering is presented with a heuristic rule to break ties, values of a variable are determined by the monotonicity analysis on branching conditions, and maintaining path consistency is achieved through analysis on the result of interval arithmetic. An optimization method is also proposed to reduce the search space. The results of empirical experiments show that the search is conducted in a basically backtrack-free manner, which ensures both test data generation with promising performance and its excellence over some currently existing static and dynamic methods in terms of coverage. The results also demonstrate that the proposed method is applicable in engineering.
Assessing the use of cognitive heuristic representativeness in clinical reasoning.
Payne, Velma L; Crowley, Rebecca S; Crowley, Rebecca
2008-11-06
We performed a pilot study to investigate use of the cognitive heuristic Representativeness in clinical reasoning. We tested a set of tasks and assessments to determine whether subjects used the heuristics in reasoning, to obtain initial frequencies of heuristic use and related cognitive errors, and to collect cognitive process data using think-aloud techniques. The study investigates two aspects of the Representativeness heuristic - judging by perceived frequency and representativeness as causal beliefs. Results show that subjects apply both aspects of the heuristic during reasoning, and make errors related to misapplication of these heuristics. Subjects in this study rarely used base rates, showed significant variability in their recall of base rates, demonstrated limited ability to use provided base rates, and favored causal data in diagnosis. We conclude that the tasks and assessments we have developed provide a suitable test-bed to study the cognitive processes underlying heuristic errors.
Assessing Use of Cognitive Heuristic Representativeness in Clinical Reasoning
Payne, Velma L.; Crowley, Rebecca S.
2008-01-01
We performed a pilot study to investigate use of the cognitive heuristic Representativeness in clinical reasoning. We tested a set of tasks and assessments to determine whether subjects used the heuristics in reasoning, to obtain initial frequencies of heuristic use and related cognitive errors, and to collect cognitive process data using think-aloud techniques. The study investigates two aspects of the Representativeness heuristic - judging by perceived frequency and representativeness as causal beliefs. Results show that subjects apply both aspects of the heuristic during reasoning, and make errors related to misapplication of these heuristics. Subjects in this study rarely used base rates, showed significant variability in their recall of base rates, demonstrated limited ability to use provided base rates, and favored causal data in diagnosis. We conclude that the tasks and assessments we have developed provide a suitable test-bed to study the cognitive processes underlying heuristic errors. PMID:18999140
Reconsidering "evidence" for fast-and-frugal heuristics.
Hilbig, Benjamin E
2010-12-01
In several recent reviews, authors have argued for the pervasive use of fast-and-frugal heuristics in human judgment. They have provided an overview of heuristics and have reiterated findings corroborating that such heuristics can be very valid strategies leading to high accuracy. They also have reviewed previous work that implies that simple heuristics are actually used by decision makers. Unfortunately, concerning the latter point, these reviews appear to be somewhat incomplete. More important, previous conclusions have been derived from investigations that bear some noteworthy methodological limitations. I demonstrate these by proposing a new heuristic and provide some novel critical findings. Also, I review some of the relevant literature often not-or only partially-considered. Overall, although some fast-and-frugal heuristics indeed seem to predict behavior at times, there is little to no evidence for others. More generally, the empirical evidence available does not warrant the conclusion that heuristics are pervasively used.
Simple heuristics in over-the-counter drug choices: a new hint for medical education and practice.
Riva, Silvia; Monti, Marco; Antonietti, Alessandro
2011-01-01
Over-the-counter (OTC) drugs are widely available and often purchased by consumers without advice from a health care provider. Many people rely on self-management of medications to treat common medical conditions. Although OTC medications are regulated by the National and the International Health and Drug Administration, many people are unaware of proper dosing, side effects, adverse drug reactions, and possible medication interactions. This study examined how subjects make their decisions to select an OTC drug, evaluating the role of cognitive heuristics which are simple and adaptive rules that help the decision-making process of people in everyday contexts. By analyzing 70 subjects' information-search and decision-making behavior when selecting OTC drugs, we examined the heuristics they applied in order to assess whether simple decision-making processes were also accurate and relevant. Subjects were tested with a sequence of two experimental tests based on a computerized Java system devised to analyze participants' choices in a virtual environment. We found that subjects' information-search behavior reflected the use of fast and frugal heuristics. In addition, although the heuristics which correctly predicted subjects' decisions implied significantly fewer cues on average than the subjects did in the information-search task, they were accurate in describing order of information search. A simple combination of a fast and frugal tree and a tallying rule predicted more than 78% of subjects' decisions. The current emphasis in health care is to shift some responsibility onto the consumer through expansion of self medication. To know which cognitive mechanisms are behind the choice of OTC drugs is becoming a relevant purpose of current medical education. These findings have implications both for the validity of simple heuristics describing information searches in the field of OTC drug choices and for current medical education, which has to prepare competent health
Simple heuristics in over-the-counter drug choices: a new hint for medical education and practice
Riva, Silvia; Monti, Marco; Antonietti, Alessandro
2011-01-01
Introduction Over-the-counter (OTC) drugs are widely available and often purchased by consumers without advice from a health care provider. Many people rely on self-management of medications to treat common medical conditions. Although OTC medications are regulated by the National and the International Health and Drug Administration, many people are unaware of proper dosing, side effects, adverse drug reactions, and possible medication interactions. Purpose This study examined how subjects make their decisions to select an OTC drug, evaluating the role of cognitive heuristics which are simple and adaptive rules that help the decision-making process of people in everyday contexts. Subjects and methods By analyzing 70 subjects’ information-search and decision-making behavior when selecting OTC drugs, we examined the heuristics they applied in order to assess whether simple decision-making processes were also accurate and relevant. Subjects were tested with a sequence of two experimental tests based on a computerized Java system devised to analyze participants’ choices in a virtual environment. Results We found that subjects’ information-search behavior reflected the use of fast and frugal heuristics. In addition, although the heuristics which correctly predicted subjects’ decisions implied significantly fewer cues on average than the subjects did in the information-search task, they were accurate in describing order of information search. A simple combination of a fast and frugal tree and a tallying rule predicted more than 78% of subjects’ decisions. Conclusion The current emphasis in health care is to shift some responsibility onto the consumer through expansion of self medication. To know which cognitive mechanisms are behind the choice of OTC drugs is becoming a relevant purpose of current medical education. These findings have implications both for the validity of simple heuristics describing information searches in the field of OTC drug choices and
Heuristic learning parameter identification for surveillance and diagnostics of nuclear power plants
International Nuclear Information System (INIS)
Machado, E.L.
1983-01-01
A new method of heuristic reinforcement learning was developed for parameter identification purposes. In essence, this new parameter identification technique is based on the idea of breaking a multidimensional search for the minimum of a given functional into a set of unidirectional searches in parameter space. Each search situation is associated with one block in a memory organized into cells, where the information learned about the situations is stored (e.g. the optimal directions in parameter space). Whenever the search falls into an existing memory cell, the system chooses the learned direction. For new search situations, the system creates additional memory cells. This algorithm imitates the following cognitive process: 1) characterize a situation, 2) select an optimal action, 3) evaluate the consequences of the action, and 4) memorize the results for future use. As a result, this algorithm is trainable in the sense that it can learn from previous experience within a specific class of parameter identification problems
Directory of Open Access Journals (Sweden)
M. Sharma
2010-12-01
Full Text Available The recent trends in electrical power distribution system operation and management are aimed at improving system conditions in order to render good service to the customer. The reforms in distribution sector have given major scope for employment of distributed generation (DG resources which will boost the system performance. This paper proposes a heuristic technique for allocation of distribution generation source in a distribution system. The allocation is determined based on overall improvement in network performance parameters like reduction in system losses, improvement in voltage stability, improvement in voltage profile. The proposed Network Performance Enhancement Index (NPEI along with the heuristic rules facilitate determination of feasible location and corresponding capacity of DG source. The developed approach is tested with different test systems to ascertain its effectiveness.
Heuristics and Cognitive Error in Medical Imaging.
Itri, Jason N; Patel, Sohil H
2018-05-01
The field of cognitive science has provided important insights into mental processes underlying the interpretation of imaging examinations. Despite these insights, diagnostic error remains a major obstacle in the goal to improve quality in radiology. In this article, we describe several types of cognitive bias that lead to diagnostic errors in imaging and discuss approaches to mitigate cognitive biases and diagnostic error. Radiologists rely on heuristic principles to reduce complex tasks of assessing probabilities and predicting values into simpler judgmental operations. These mental shortcuts allow rapid problem solving based on assumptions and past experiences. Heuristics used in the interpretation of imaging studies are generally helpful but can sometimes result in cognitive biases that lead to significant errors. An understanding of the causes of cognitive biases can lead to the development of educational content and systematic improvements that mitigate errors and improve the quality of care provided by radiologists.
Heuristic program to design Relational Databases
Directory of Open Access Journals (Sweden)
Manuel Pereira Rosa
2009-09-01
Full Text Available The great development of today’s world determines that the world level of information increases day after day, however, the time allowed to transmit this information in the classrooms has not changed. Thus, the rational work in this respect is more than necessary. Besides, if for the solution of a given type of problem we do not have a working algorism, we have, first to look for a correct solution, then the heuristic programs are of paramount importance to succeed in these aspects. Having into consideration that the design of the database is, essentially, a process of problem resolution, this article aims at proposing a heuristic program for the design of the relating database.
Heuristic Evaluation for Novice Programming Systems
Kölling, Michael; McKay, Fraser
2016-01-01
The past few years has seen a proliferation of novice programming tools. The availability of a large number of systems has made it difficult for many users to choose among them. Even for education researchers, comparing the relative quality of these tools, or judging their respective suitability for a given context, is hard in many instances. For designers of such systems, assessing the respective quality of competing design decisions can be equally difficult.\\ud Heuristic evaluation provides...
Entrepreneurial Learning, Heuristics and Venture Creation
RAUF, MIAN SHAMS; ZAINULLAH, MOHAMMAD
2009-01-01
After rigorous criticism on trait approach and with the emergence of behavioral approach in entrepreneurship during 1980s, the researchers started to introduce learning and cognitive theories in entrepreneurship to describe and explain the dynamic nature of entrepreneurship. Many researchers have described venture creation as a core and the single most important element of entrepreneurship. This thesis will discuss and present the role of entrepreneurial learning and heuristics in venture cre...
Armstrong, Mark
2016-01-01
The paper discusses situations in which consumers search through their options in a deliberate order, in contrast to more familiar models with random search. Topics include: network effects (consumers may be better off following the same search order as other consumers); the use of price and non-price advertising to direct search; the impact of consumers starting a new search with their previous supplier; the incentive sellers have to merge or co-locate with other sellers; and the incentive a...
Directory of Open Access Journals (Sweden)
M. Metz
2011-02-01
Full Text Available The availability of both global and regional elevation datasets acquired by modern remote sensing technologies provides an opportunity to significantly improve the accuracy of stream mapping, especially in remote, hard to reach regions. Stream extraction from digital elevation models (DEMs is based on computation of flow accumulation, a summary parameter that poses performance and accuracy challenges when applied to large, noisy DEMs generated by remote sensing technologies. Robust handling of DEM depressions is essential for reliable extraction of connected drainage networks from this type of data. The least-cost flow routing method implemented in GRASS GIS as the module r.watershed was redesigned to significantly improve its speed, functionality, and memory requirements and make it an efficient tool for stream mapping and watershed analysis from large DEMs. To evaluate its handling of large depressions, typical for remote sensing derived DEMs, three different methods were compared: traditional sink filling, impact reduction approach, and least-cost path search. The comparison was performed using the Shuttle Radar Topographic Mission (SRTM and Interferometric Synthetic Aperture Radar for Elevation (IFSARE datasets covering central Panama at 90 m and 10 m resolutions, respectively. The accuracy assessment was based on ground control points acquired by GPS and reference points digitized from Landsat imagery along segments of selected Panamanian rivers. The results demonstrate that the new implementation of the least-cost path method is significantly faster than the original version, can cope with massive datasets, and provides the most accurate results in terms of stream locations validated against reference points.
Methodology and Implementation on DSP of Heuristic Multiuser DS/CDMA Detectors
Directory of Open Access Journals (Sweden)
Alex Miyamoto Mussi
2010-12-01
Full Text Available The growing number of users of mobile communications networks and the scarcity of the electromagnetic spectrum make the use of diversity techniques and detection/decoding efficient, such as the use of multiple antennas at the transmitter and/or receiver, multiuser detection (MuD – Multiuser Detection, among others, have an increasingly prominent role in the telecommunications landscape. This paper presents a design methodology based on digital signal processors (DSP – Digital Signal Processor with a view to the implementation of multiuser heuristics detectors in systems DS/CDMA (Direct Sequence Code Division Multiple Access. Heuristics detection techniques result in near-optimal performance in order to approach the performance of maximum-likelihood (ML. In this work, was employed the DSP development platform called the C6713 DSK, which is based in Texas TMS320C6713 processor. The heuristics techniques proposed are based on well established algorithms in the literature. The efficiency of the algorithms implemented in DSP has been evaluated numerically by computing the measure of bit error rate (BER. Finally, the feasibility of implementation in DSP could then be verified by comparing results from multiple Monte-Carlo simulation in Matlab, with those obtained from implementation on DSP. It also demonstrates the effective increase in performance and system capacity of DS/CDMA with the use of heuristic multiuser detection techniques, implemented directly in the DSP.
The affect heuristic in occupational safety.
Savadori, Lucia; Caovilla, Jessica; Zaniboni, Sara; Fraccaroli, Franco
2015-07-08
The affect heuristic is a rule of thumb according to which, in the process of making a judgment or decision, people use affect as a cue. If a stimulus elicits positive affect then risks associated to that stimulus are viewed as low and benefits as high; conversely, if the stimulus elicits negative affect, then risks are perceived as high and benefits as low. The basic tenet of this study is that affect heuristic guides worker's judgment and decision making in a risk situation. The more the worker likes her/his organization the less she/he will perceive the risks as high. A sample of 115 employers and 65 employees working in small family agricultural businesses completed a questionnaire measuring perceived safety costs, psychological safety climate, affective commitment and safety compliance. A multi-sample structural analysis supported the thesis that safety compliance can be explained through an affect-based heuristic reasoning, but only for employers. Positive affective commitment towards their family business reduced employers' compliance with safety procedures by increasing the perceived cost of implementing them.
A general heuristic for genome rearrangement problems.
Dias, Ulisses; Galvão, Gustavo Rodrigues; Lintzmayer, Carla Négri; Dias, Zanoni
2014-06-01
In this paper, we present a general heuristic for several problems in the genome rearrangement field. Our heuristic does not solve any problem directly, it is rather used to improve the solutions provided by any non-optimal algorithm that solve them. Therefore, we have implemented several algorithms described in the literature and several algorithms developed by ourselves. As a whole, we implemented 23 algorithms for 9 well known problems in the genome rearrangement field. A total of 13 algorithms were implemented for problems that use the notions of prefix and suffix operations. In addition, we worked on 5 algorithms for the classic problem of sorting by transposition and we conclude the experiments by presenting results for 3 approximation algorithms for the sorting by reversals and transpositions problem and 2 approximation algorithms for the sorting by reversals problem. Another algorithm with better approximation ratio can be found for the last genome rearrangement problem, but it is purely theoretical with no practical implementation. The algorithms we implemented in addition to our heuristic lead to the best practical results in each case. In particular, we were able to improve results on the sorting by transpositions problem, which is a very special case because many efforts have been made to generate algorithms with good results in practice and some of these algorithms provide results that equal the optimum solutions in many cases. Our source codes and benchmarks are freely available upon request from the authors so that it will be easier to compare new approaches against our results.
When decision heuristics and science collide.
Yu, Erica C; Sprenger, Amber M; Thomas, Rick P; Dougherty, Michael R
2014-04-01
The ongoing discussion among scientists about null-hypothesis significance testing and Bayesian data analysis has led to speculation about the practices and consequences of "researcher degrees of freedom." This article advances this debate by asking the broader questions that we, as scientists, should be asking: How do scientists make decisions in the course of doing research, and what is the impact of these decisions on scientific conclusions? We asked practicing scientists to collect data in a simulated research environment, and our findings show that some scientists use data collection heuristics that deviate from prescribed methodology. Monte Carlo simulations show that data collection heuristics based on p values lead to biases in estimated effect sizes and Bayes factors and to increases in both false-positive and false-negative rates, depending on the specific heuristic. We also show that using Bayesian data collection methods does not eliminate these biases. Thus, our study highlights the little appreciated fact that the process of doing science is a behavioral endeavor that can bias statistical description and inference in a manner that transcends adherence to any particular statistical framework.
The recognition heuristic: A decade of research
Directory of Open Access Journals (Sweden)
Gerd Gigerenzer
2011-02-01
Full Text Available The recognition heuristic exploits the basic psychological capacity for recognition in order to make inferences about unknown quantities in the world. In this article, we review and clarify issues that emerged from our initial work (Goldstein and Gigerenzer, 1999, 2002, including the distinction between a recognition and an evaluation process. There is now considerable evidence that (i the recognition heuristic predicts the inferences of a substantial proportion of individuals consistently, even in the presence of one or more contradicting cues, (ii people are adaptive decision makers in that accordance increases with larger recognition validity and decreases in situations when the validity is low or wholly indeterminable, and (iii in the presence of contradicting cues, some individuals appear to select different strategies. Little is known about these individual differences, or how to precisely model the alternative strategies. Although some researchers have attributed judgments inconsistent with the use of the recognition heuristic to compensatory processing, little research on such compensatory models has been reported. We discuss extensions of the recognition model, open questions, unanticipated results, and the surprising predictive power of recognition in forecasting.
Tan, Maxine; Pu, Jiantao; Zheng, Bin
2014-01-01
In the field of computer-aided mammographic mass detection, many different features and classifiers have been tested. Frequently, the relevant features and optimal topology for the artificial neural network (ANN)-based approaches at the classification stage are unknown, and thus determined by trial-and-error experiments. In this study, we analyzed a classifier that evolves ANNs using genetic algorithms (GAs), which combines feature selection with the learning task. The classifier named "Phased Searching with NEAT in a Time-Scaled Framework" was analyzed using a dataset with 800 malignant and 800 normal tissue regions in a 10-fold cross-validation framework. The classification performance measured by the area under a receiver operating characteristic (ROC) curve was 0.856 ± 0.029. The result was also compared with four other well-established classifiers that include fixed-topology ANNs, support vector machines (SVMs), linear discriminant analysis (LDA), and bagged decision trees. The results show that Phased Searching outperformed the LDA and bagged decision tree classifiers, and was only significantly outperformed by SVM. Furthermore, the Phased Searching method required fewer features and discarded superfluous structure or topology, thus incurring a lower feature computational and training and validation time requirement. Analyses performed on the network complexities evolved by Phased Searching indicate that it can evolve optimal network topologies based on its complexification and simplification parameter selection process. From the results, the study also concluded that the three classifiers - SVM, fixed-topology ANN, and Phased Searching with NeuroEvolution of Augmenting Topologies (NEAT) in a Time-Scaled Framework - are performing comparably well in our mammographic mass detection scheme.
"The Gaze Heuristic:" Biography of an Adaptively Rational Decision Process.
Hamlin, Robert P
2017-04-01
This article is a case study that describes the natural and human history of the gaze heuristic. The gaze heuristic is an interception heuristic that utilizes a single input (deviation from a constant angle of approach) repeatedly as a task is performed. Its architecture, advantages, and limitations are described in detail. A history of the gaze heuristic is then presented. In natural history, the gaze heuristic is the only known technique used by predators to intercept prey. In human history the gaze heuristic was discovered accidentally by Royal Air Force (RAF) fighter command just prior to World War II. As it was never discovered by the Luftwaffe, the technique conferred a decisive advantage upon the RAF throughout the war. After the end of the war in America, German technology was combined with the British heuristic to create the Sidewinder AIM9 missile, the most successful autonomous weapon ever built. There are no plans to withdraw it or replace its guiding gaze heuristic. The case study demonstrates that the gaze heuristic is a specific heuristic type that takes a single best input at the best time (take the best 2 ). Its use is an adaptively rational response to specific, rapidly evolving decision environments that has allowed those animals/humans/machines who use it to survive, prosper, and multiply relative to those who do not. Copyright © 2017 Cognitive Science Society, Inc.
Penjadwalan Produksi Garment Menggunakan Algoritma Heuristic Pour
Directory of Open Access Journals (Sweden)
Rizal Rachman
2018-04-01
Full Text Available Abstrak Penjadwalan merupakan suatu kegiatan pengalokasian sumber daya yang terbatas untuk mengerjakan sejumlah pekerjaan. Proses penjadwalan timbul jika terdapat keterbatasan sumber daya yang dimiliki, karena pada saat ini perusahaan menerapkan sistem penjadwalan manual dimana dengan penjadwalan tersebut masih terdapat beberapa produk yang terlewati sehingga menyebabkan keterlambatan dalam proses produksi, aturan ini sering tidak menguntungkan bagi order yang membutuhkan waktu proses pendek karena apabila order itu berada dibelakang antrian maka harus menunggu lama sebelum diproses dan menyebabkan waktu penyelesaian seluruh order menjadi panjang, sehingga diperlukan adanya pengaturan sumber-sumber daya yang ada secara efisien. Adapun dasar perhitungan Penjadwalan dengan menggunakan algoritma Heuristic Pour. Tahapan-tahapan penelitian terdiri dari pengumpulan data, perhitungan waktu standar, perhitungan total waktu proses berdasarkan job, penjadwalan dengan metode awal perusahaan, penjadwalan dengan metode Heuristik Pour. Berdasarkan hasil penjadwalan menggunakan Heuristik Pour diperoleh penghematan dibanding dengan metode perusahaan saat ini, sehingga dapat digunakan sebagai alternatif metode dalam melakukan penjadwalan pengerjaan proses produksi di perusahaan Garment tersebut. Kata kunci: Penjadwalan Produksi, Algoritma, Heuristic Pour. Abstract Scheduling is a limited resource allocation activity to do a number of jobs. The scheduling process arises if there are limited resources available, because at this time the company implement a manual scheduling system where the scheduling is still there are some products passed so as to cause delays in the production process, this rule is often not profitable for orders that require short processing time because if the order is behind the queue then it must wait a long time before it is processed and cause the completion time of all orders to be long, so it is necessary to regulate the existing
A matheuristic for the liner shipping network design problem
DEFF Research Database (Denmark)
Brouer, Berit Dangaard; Desaulniers, Guy
2012-01-01
for revenue and transshipment of cargo along with in/decrease of vessel- and operational cost for the current solution. The evaluation functions may be used by heuristics in general to evaluate changes to a network design without solving a large scale multicommodity flow problem.......We present a matheuristic, an integer programming based heuristic, for the Liner Shipping Network Design Problem. The heuristic applies a greedy construction heuristic based on an interpretation of the liner shipping network design problem as a multiple quadratic knapsack problem. The construction...
Directory of Open Access Journals (Sweden)
Suresh K. Damodaran
2018-02-01
Full Text Available Hydro-thermal-wind generation scheduling (HTWGS with economic and environmental factors is a multi-objective complex nonlinear power system optimization problem with many equality and inequality constraints. The objective of the problem is to generate an hour-by-hour optimum schedule of hydro-thermal-wind power plants to attain the least emission of pollutants from thermal plants and a reduced generation cost of thermal and wind plants for a 24-h period, satisfying the system constraints. The paper presents a detailed framework of the HTWGS problem and proposes a modified particle swarm optimization (MPSO algorithm for evolving a solution. The competency of selected heuristic algorithms, representing different heuristic groups, viz. the binary coded genetic algorithm (BCGA, particle swarm optimization (PSO, improved harmony search (IHS, and JAYA algorithm, for searching for an optimal solution to HTWGS considering economic and environmental factors was investigated in a trial system consisting of a multi-stream cascaded system with four reservoirs, three thermal plants, and two wind plants. Appropriate mathematical models were used for representing the water discharge, generation cost, and pollutant emission of respective power plants incorporated in the system. Statistical analysis was performed to check the consistency and reliability of the proposed algorithm. The simulation results indicated that the proposed MPSO algorithm provided a better solution to the problem of HTWGS, with a reduced generation cost and the least emission, when compared with the other heuristic algorithms considered.
Kossowska, Małgorzata; Bar-Tal, Yoram
2013-11-01
In contrast to the ample research that shows a positive relationship between the need for closure (NFC) and heuristic information processing, this research examines the hypothesis that this relationship is moderated by the ability to achieve closure (AAC), that is, the ability to use information-processing strategies consistent with the level of NFC. Three different operationalizations of heuristic information processing were used: recall of information consistent with the impression (Study 1); pre-decisional information search (Study 2); and stereotypic impression formation (Study 3). The results of the studies showed that there were positive relationships between NFC and heuristic information processing when participants assessed themselves as being able to use cognitive strategies consistent with their level of NFC (high AAC). For individuals with low AAC, the relationships were negative. Our data show that motivation-cognition interactions influence the information-processing style. © 2012 The British Psychological Society.
Directory of Open Access Journals (Sweden)
AYAS, S.
2018-02-01
Full Text Available Image thresholding is the most crucial step in microscopic image analysis to distinguish bacilli objects causing of tuberculosis disease. Therefore, several bi-level thresholding algorithms are widely used to increase the bacilli segmentation accuracy. However, bi-level microscopic image thresholding problem has not been solved using optimization algorithms. This paper introduces a novel approach for the segmentation problem using heuristic algorithms and presents visual and quantitative comparisons of heuristic and state-of-art thresholding algorithms. In this study, well-known heuristic algorithms such as Firefly Algorithm, Particle Swarm Optimization, Cuckoo Search, Flower Pollination are used to solve bi-level microscopic image thresholding problem, and the results are compared with the state-of-art thresholding algorithms such as K-Means, Fuzzy C-Means, Fast Marching. Kapur's entropy is chosen as the entropy measure to be maximized. Experiments are performed to make comparisons in terms of evaluation metrics and execution time. The quantitative results are calculated based on ground truth segmentation. According to the visual results, heuristic algorithms have better performance and the quantitative results are in accord with the visual results. Furthermore, experimental time comparisons show the superiority and effectiveness of the heuristic algorithms over traditional thresholding algorithms.
An ordering heuristic for building Binary Decision Diagrams for fault-trees
Energy Technology Data Exchange (ETDEWEB)
Bouissou, M. [Electricite de France (EDF), 75 - Paris (France)
1997-12-31
Binary Decision Diagrams (BDD) have recently made a noticeable entry in the RAMS field. This kind of representation for boolean functions makes possible the assessment of complex fault-trees, both qualitatively (minimal cut-sets search) and quantitatively (exact calculation of top event probability). The object of the paper is to present a pre-processing of the fault-tree which ensures that the results given by different heuristics on the `optimized` fault-tree are not too sensitive to the way the tree is written. This property is based on a theoretical proof. In contrast with some well known heuristics, the method proposed is not based only on intuition and practical experiments. (author) 12 refs.
An ordering heuristic for building Binary Decision Diagrams for fault-trees
International Nuclear Information System (INIS)
Bouissou, M.
1997-01-01
Binary Decision Diagrams (BDD) have recently made a noticeable entry in the RAMS field. This kind of representation for boolean functions makes possible the assessment of complex fault-trees, both qualitatively (minimal cut-sets search) and quantitatively (exact calculation of top event probability). The object of the paper is to present a pre-processing of the fault-tree which ensures that the results given by different heuristics on the 'optimized' fault-tree are not too sensitive to the way the tree is written. This property is based on a theoretical proof. In contrast with some well known heuristics, the method proposed is not based only on intuition and practical experiments. (author)
Cultural heuristics in risk assessment of HIV/AIDS.
Bailey, Ajay; Hutter, Inge
2006-01-01
Behaviour change models in HIV prevention tend to consider that risky sexual behaviours reflect risk assessments and that by changing risk assessments behaviour can be changed. Risk assessment is however culturally constructed. Individuals use heuristics or bounded cognitive devices derived from broader cultural meaning systems to rationalize uncertainty. In this study, we identify some of the cultural heuristics used by migrant men in Goa, India to assess their risk of HIV infection from different sexual partners. Data derives from a series of in-depth interviews and a locally informed survey. Cultural heuristics identified include visual heuristics, heuristics of gender roles, vigilance and trust. The paper argues that, for more culturally informed HIV/AIDS behaviour change interventions, knowledge of cultural heuristics is essential.
Directory of Open Access Journals (Sweden)
Tashkova Katerina
2011-10-01
Full Text Available Abstract Background We address the task of parameter estimation in models of the dynamics of biological systems based on ordinary differential equations (ODEs from measured data, where the models are typically non-linear and have many parameters, the measurements are imperfect due to noise, and the studied system can often be only partially observed. A representative task is to estimate the parameters in a model of the dynamics of endocytosis, i.e., endosome maturation, reflected in a cut-out switch transition between the Rab5 and Rab7 domain protein concentrations, from experimental measurements of these concentrations. The general parameter estimation task and the specific instance considered here are challenging optimization problems, calling for the use of advanced meta-heuristic optimization methods, such as evolutionary or swarm-based methods. Results We apply three global-search meta-heuristic algorithms for numerical optimization, i.e., differential ant-stigmergy algorithm (DASA, particle-swarm optimization (PSO, and differential evolution (DE, as well as a local-search derivative-based algorithm 717 (A717 to the task of estimating parameters in ODEs. We evaluate their performance on the considered representative task along a number of metrics, including the quality of reconstructing the system output and the complete dynamics, as well as the speed of convergence, both on real-experimental data and on artificial pseudo-experimental data with varying amounts of noise. We compare the four optimization methods under a range of observation scenarios, where data of different completeness and accuracy of interpretation are given as input. Conclusions Overall, the global meta-heuristic methods (DASA, PSO, and DE clearly and significantly outperform the local derivative-based method (A717. Among the three meta-heuristics, differential evolution (DE performs best in terms of the objective function, i.e., reconstructing the output, and in terms of
Tashkova, Katerina; Korošec, Peter; Silc, Jurij; Todorovski, Ljupčo; Džeroski, Sašo
2011-10-11
We address the task of parameter estimation in models of the dynamics of biological systems based on ordinary differential equations (ODEs) from measured data, where the models are typically non-linear and have many parameters, the measurements are imperfect due to noise, and the studied system can often be only partially observed. A representative task is to estimate the parameters in a model of the dynamics of endocytosis, i.e., endosome maturation, reflected in a cut-out switch transition between the Rab5 and Rab7 domain protein concentrations, from experimental measurements of these concentrations. The general parameter estimation task and the specific instance considered here are challenging optimization problems, calling for the use of advanced meta-heuristic optimization methods, such as evolutionary or swarm-based methods. We apply three global-search meta-heuristic algorithms for numerical optimization, i.e., differential ant-stigmergy algorithm (DASA), particle-swarm optimization (PSO), and differential evolution (DE), as well as a local-search derivative-based algorithm 717 (A717) to the task of estimating parameters in ODEs. We evaluate their performance on the considered representative task along a number of metrics, including the quality of reconstructing the system output and the complete dynamics, as well as the speed of convergence, both on real-experimental data and on artificial pseudo-experimental data with varying amounts of noise. We compare the four optimization methods under a range of observation scenarios, where data of different completeness and accuracy of interpretation are given as input. Overall, the global meta-heuristic methods (DASA, PSO, and DE) clearly and significantly outperform the local derivative-based method (A717). Among the three meta-heuristics, differential evolution (DE) performs best in terms of the objective function, i.e., reconstructing the output, and in terms of convergence. These results hold for both real and
DEFF Research Database (Denmark)
Sousa, Tiago M; Morais, Hugo; Castro, R.
2014-01-01
scheduling problem. Therefore, the use of metaheuristics is required to obtain good solutions in a reasonable amount of time. This paper proposes two new heuristics, called naive electric vehicles charge and discharge allocation and generation tournament based on cost, developed to obtain an initial solution...... to be used in the energy resource scheduling methodology based on simulated annealing previously developed by the authors. The case study considers two scenarios with 1000 and 2000 electric vehicles connected in a distribution network. The proposed heuristics are compared with a deterministic approach...
Rearrangement moves on rooted phylogenetic networks.
Gambette, Philippe; van Iersel, Leo; Jones, Mark; Lafond, Manuel; Pardi, Fabio; Scornavacca, Celine
2017-08-01
Phylogenetic tree reconstruction is usually done by local search heuristics that explore the space of the possible tree topologies via simple rearrangements of their structure. Tree rearrangement heuristics have been used in combination with practically all optimization criteria in use, from maximum likelihood and parsimony to distance-based principles, and in a Bayesian context. Their basic components are rearrangement moves that specify all possible ways of generating alternative phylogenies from a given one, and whose fundamental property is to be able to transform, by repeated application, any phylogeny into any other phylogeny. Despite their long tradition in tree-based phylogenetics, very little research has gone into studying similar rearrangement operations for phylogenetic network-that is, phylogenies explicitly representing scenarios that include reticulate events such as hybridization, horizontal gene transfer, population admixture, and recombination. To fill this gap, we propose "horizontal" moves that ensure that every network of a certain complexity can be reached from any other network of the same complexity, and "vertical" moves that ensure reachability between networks of different complexities. When applied to phylogenetic trees, our horizontal moves-named rNNI and rSPR-reduce to the best-known moves on rooted phylogenetic trees, nearest-neighbor interchange and rooted subtree pruning and regrafting. Besides a number of reachability results-separating the contributions of horizontal and vertical moves-we prove that rNNI moves are local versions of rSPR moves, and provide bounds on the sizes of the rNNI neighborhoods. The paper focuses on the most biologically meaningful versions of phylogenetic networks, where edges are oriented and reticulation events clearly identified. Moreover, our rearrangement moves are robust to the fact that networks with higher complexity usually allow a better fit with the data. Our goal is to provide a solid basis for
Rearrangement moves on rooted phylogenetic networks.
Directory of Open Access Journals (Sweden)
Philippe Gambette
2017-08-01
Full Text Available Phylogenetic tree reconstruction is usually done by local search heuristics that explore the space of the possible tree topologies via simple rearrangements of their structure. Tree rearrangement heuristics have been used in combination with practically all optimization criteria in use, from maximum likelihood and parsimony to distance-based principles, and in a Bayesian context. Their basic components are rearrangement moves that specify all possible ways of generating alternative phylogenies from a given one, and whose fundamental property is to be able to transform, by repeated application, any phylogeny into any other phylogeny. Despite their long tradition in tree-based phylogenetics, very little research has gone into studying similar rearrangement operations for phylogenetic network-that is, phylogenies explicitly representing scenarios that include reticulate events such as hybridization, horizontal gene transfer, population admixture, and recombination. To fill this gap, we propose "horizontal" moves that ensure that every network of a certain complexity can be reached from any other network of the same complexity, and "vertical" moves that ensure reachability between networks of different complexities. When applied to phylogenetic trees, our horizontal moves-named rNNI and rSPR-reduce to the best-known moves on rooted phylogenetic trees, nearest-neighbor interchange and rooted subtree pruning and regrafting. Besides a number of reachability results-separating the contributions of horizontal and vertical moves-we prove that rNNI moves are local versions of rSPR moves, and provide bounds on the sizes of the rNNI neighborhoods. The paper focuses on the most biologically meaningful versions of phylogenetic networks, where edges are oriented and reticulation events clearly identified. Moreover, our rearrangement moves are robust to the fact that networks with higher complexity usually allow a better fit with the data. Our goal is to provide
Identifying Onboarding Heuristics for Free-to-Play Mobile Games
DEFF Research Database (Denmark)
Thomsen, Line Ebdrup; Weigert Petersen, Falko; Drachen, Anders
2016-01-01
a set of heuristics for the design of onboarding phases in mobile games is presented. The heuristics are identified by a lab-based mixed-methods experiment, utilizing lightweight psycho-physiological measures together with self-reported player responses, across three titles that cross the genres...... of puzzle games, base builders and arcade games, and utilize different onboarding phase design approaches. Results showcase how heuristics can be used to design engaging onboarding phases in mobile games....
The recognition heuristic : A review of theory and tests
Pachur, T.; Todd, P.; Gigerenzer, G.; Schooler, L.; Goldstein, D.
2011-01-01
The recognition heuristic is a prime example of how, by exploiting a match between mind and environment, a simple mental strategy can lead to efficient decision making. The proposal of the heuristic initiated a debate about the processes underlying the use of recognition in decision making. We review research addressing four key aspects of the recognition heuristic: (a) that recognition is often an ecologically valid cue; (b) that people often follow recognition when making inferences; (c) th...
Proposing New Heuristic Approaches for Preventive Maintenance Scheduling
Directory of Open Access Journals (Sweden)
majid Esmailian
2013-08-01
Full Text Available The purpose of preventive maintenance management is to perform a series of tasks that prevent or minimize production breakdowns and improve reliability of production facilities. An important objective of preventive maintenance management is to minimize downtime of production facilities. In order to accomplish this objective, personnel should efficiently allocate resources and determine an effective maintenance schedule. Gopalakrishnan (1997 developed a mathematical model and four heuristic approaches to solve the preventive maintenance scheduling problem of assigning skilled personnel to work with tasks that require a set of corresponding skills. However, there are several limitations in the prior work in this area of research. The craft combination problem has not been solved because the craft combination is assumed as given. The craft combination problem concerns the computation of all combinations of assigning multi skilled workers to accomplishment of a particular task. In fact, determining craft combinations is difficult because of the exponential number of craft combinations that are possible. This research provides a heuristic approach for determining the craft combination and four new heuristic approach solution for the preventive maintenance scheduling problem with multi skilled workforce constraints. In order to examine the new heuristic approach and to compare the new heuristic approach with heuristic approach of Gopalakrishnan (1997, 81 standard problems have been generated based on the criterion suggested by from Gopalakrishnan (1997. The average solution quality (SQ of the new heuristic approaches is 1.86% and in old heuristic approaches is 8.32%. The solution time of new heuristic approaches are shorter than old heuristic approaches. The solution time of new heuristic approaches is 0.78 second and old heuristic approaches is 6.43 second, but the solution time of mathematical model provided by Gopalakrishnan (1997 is 152 second.
A heuristic evaluation of the Facebook's advertising tool beacon
Jamal, A; Cole, M
2009-01-01
Interface usability is critical to the successful adoption of information systems. The aim of this study is to evaluate interface of Facebook's advertising tool Beacon by using privacy heuristics [4]. Beacon represents an interesting case study because of the negative media and user backlash it received. The findings of heuristic evaluation suggest violation of privacy heuristics [4]. Here, analysis identified concerns about user choice and consent, integrity and security of data, and awarene...
Interliminal Design: Understanding cognitive heuristics to mitigate design distortion
Andrew McCollough; DeAunne Denmark; Donald Harker
2014-01-01
Cognitive heuristics are mental shortcuts adapted over time to enable rapid interpretation of our complex environment. They are intrinsic to human cognition and resist modification. Heuristics applied outside the context to which they are best suited are termed cognitive bias, and are the cause of systematic errors in judgment and reasoning. As both a cognitive and intuitive discipline, design by individuals is vulnerable to context-inappropriate heuristic usage. Designing in groups can act p...
Aungkulanon, P.; Luangpaiboon, P.
2010-10-01
Nowadays, the engineering problem systems are large and complicated. An effective finite sequence of instructions for solving these problems can be categorised into optimisation and meta-heuristic algorithms. Though the best decision variable levels from some sets of available alternatives cannot be done, meta-heuristics is an alternative for experience-based techniques that rapidly help in problem solving, learning and discovery in the hope of obtaining a more efficient or more robust procedure. All meta-heuristics provide auxiliary procedures in terms of their own tooled box functions. It has been shown that the effectiveness of all meta-heuristics depends almost exclusively on these auxiliary functions. In fact, the auxiliary procedure from one can be implemented into other meta-heuristics. Well-known meta-heuristics of harmony search (HSA) and shuffled frog-leaping algorithms (SFLA) are compared with their hybridisations. HSA is used to produce a near optimal solution under a consideration of the perfect state of harmony of the improvisation process of musicians. A meta-heuristic of the SFLA, based on a population, is a cooperative search metaphor inspired by natural memetics. It includes elements of local search and global information exchange. This study presents solution procedures via constrained and unconstrained problems with different natures of single and multi peak surfaces including a curved ridge surface. Both meta-heuristics are modified via variable neighbourhood search method (VNSM) philosophy including a modified simplex method (MSM). The basic idea is the change of neighbourhoods during searching for a better solution. The hybridisations proceed by a descent method to a local minimum exploring then, systematically or at random, increasingly distant neighbourhoods of this local solution. The results show that the variant of HSA with VNSM and MSM seems to be better in terms of the mean and variance of design points and yields.