Fuzzy logic and neural network technologies
Villarreal, James A.; Lea, Robert N.; Savely, Robert T.
1992-01-01
Applications of fuzzy logic technologies in NASA projects are reviewed to examine their advantages in the development of neural networks for aerospace and commercial expert systems and control. Examples of fuzzy-logic applications include a 6-DOF spacecraft controller, collision-avoidance systems, and reinforcement-learning techniques. The commercial applications examined include a fuzzy autofocusing system, an air conditioning system, and an automobile transmission application. The practical use of fuzzy logic is set in the theoretical context of artificial neural systems (ANSs) to give the background for an overview of ANS research programs at NASA. The research and application programs include the Network Execution and Training Simulator and faster training algorithms such as the Difference Optimized Training Scheme. The networks are well suited for pattern-recognition applications such as predicting sunspots, controlling posture maintenance, and conducting adaptive diagnoses.
Fuzzy logic and neural networks basic concepts & application
Alavala, Chennakesava R
2008-01-01
About the Book: The primary purpose of this book is to provide the student with a comprehensive knowledge of basic concepts of fuzzy logic and neural networks. The hybridization of fuzzy logic and neural networks is also included. No previous knowledge of fuzzy logic and neural networks is required. Fuzzy logic and neural networks have been discussed in detail through illustrative examples, methods and generic applications. Extensive and carefully selected references is an invaluable resource for further study of fuzzy logic and neural networks. Each chapter is followed by a question bank
Fuzzy logic, neural networks, and soft computing
Zadeh, Lofti A.
1994-01-01
The past few years have witnessed a rapid growth of interest in a cluster of modes of modeling and computation which may be described collectively as soft computing. The distinguishing characteristic of soft computing is that its primary aims are to achieve tractability, robustness, low cost, and high MIQ (machine intelligence quotient) through an exploitation of the tolerance for imprecision and uncertainty. Thus, in soft computing what is usually sought is an approximate solution to a precisely formulated problem or, more typically, an approximate solution to an imprecisely formulated problem. A simple case in point is the problem of parking a car. Generally, humans can park a car rather easily because the final position of the car is not specified exactly. If it were specified to within, say, a few millimeters and a fraction of a degree, it would take hours or days of maneuvering and precise measurements of distance and angular position to solve the problem. What this simple example points to is the fact that, in general, high precision carries a high cost. The challenge, then, is to exploit the tolerance for imprecision by devising methods of computation which lead to an acceptable solution at low cost. By its nature, soft computing is much closer to human reasoning than the traditional modes of computation. At this juncture, the major components of soft computing are fuzzy logic (FL), neural network theory (NN), and probabilistic reasoning techniques (PR), including genetic algorithms, chaos theory, and part of learning theory. Increasingly, these techniques are used in combination to achieve significant improvement in performance and adaptability. Among the important application areas for soft computing are control systems, expert systems, data compression techniques, image processing, and decision support systems. It may be argued that it is soft computing, rather than the traditional hard computing, that should be viewed as the foundation for artificial
Experiments on neural network architectures for fuzzy logic
Keller, James M.
1991-01-01
The use of fuzzy logic to model and manage uncertainty in a rule-based system places high computational demands on an inference engine. In an earlier paper, the authors introduced a trainable neural network structure for fuzzy logic. These networks can learn and extrapolate complex relationships between possibility distributions for the antecedents and consequents in the rules. Here, the power of these networks is further explored. The insensitivity of the output to noisy input distributions (which are likely if the clauses are generated from real data) is demonstrated as well as the ability of the networks to internalize multiple conjunctive clause and disjunctive clause rules. Since different rules with the same variables can be encoded in a single network, this approach to fuzzy logic inference provides a natural mechanism for rule conflict resolution.
Smets, P
1995-01-01
We start by describing the nature of imperfect data, and giving an overview of the various models that have been proposed. Fuzzy sets theory is shown to be an extension of classical set theory, and as such has a proeminent role or modelling imperfect data. The mathematic of fuzzy sets theory is detailled, in particular the role of the triangular norms. The use of fuzzy sets theory in fuzzy logic and possibility theory,the nature of the generalized modus ponens and of the implication operator for approximate reasoning are analysed. The use of fuzzy logic is detailled for application oriented towards process control and database problems.
Heterogeneous fuzzy logic networks: fundamentals and development studies.
Pedrycz, Witold
2004-11-01
The recent trend in the development of neurofuzzy systems has profoundly emphasized the importance of synergy between the fundamentals of fuzzy sets and neural networks. The resulting frameworks of the neurofuzzy systems took advantage of an array of learning mechanisms primarily originating within the theory of neurocomputing and the use of fuzzy models (predominantly rule-based systems) being well established in the realm of fuzzy sets. Ideally, one can anticipate that neurofuzzy systems should fully exploit the linkages between these two technologies while strongly preserving their evident identities (plasticity or learning abilities to be shared by the transparency and full interpretability of the resulting neurofuzzy constructs). Interestingly, this synergy still becomes a target yet to be satisfied. This study is an attempt to address the fundamental interpretability challenge of neurofuzzy systems. Our underlying conjecture is that the transparency of any neurofuzzy system links directly with the logic fabric of the system so the logic fundamentals of the underlying architecture become of primordial relevance. Having this in mind the development of neurofuzzy models hinges on a collection of logic driven processing units named here fuzzy (logic) neurons. These are conceptually simple logic-oriented elements that come with a well-defined semantics and plasticity. Owing to their diversity, such neurons form essential building blocks of the networks. The study revisits the existing categories of logic neurons, provides with their taxonomy, helps understand their functional features and sheds light on their behavior when being treated as computational components of any neurofuzzy architecture. The two main categories of aggregative and reference neurons are deeply rooted in the fundamental operations encountered in the technology of fuzzy sets (including logic operations, linguistic modifiers, and logic reference operations). The developed heterogeneous networks
Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 2
Lea, Robert N. (Editor); Villarreal, James A. (Editor)
1991-01-01
Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Texas, Houston. Topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making.
An architecture for designing fuzzy logic controllers using neural networks
Berenji, Hamid R.
1991-01-01
Described here is an architecture for designing fuzzy controllers through a hierarchical process of control rule acquisition and by using special classes of neural network learning techniques. A new method for learning to refine a fuzzy logic controller is introduced. A reinforcement learning technique is used in conjunction with a multi-layer neural network model of a fuzzy controller. The model learns by updating its prediction of the plant's behavior and is related to the Sutton's Temporal Difference (TD) method. The method proposed here has the advantage of using the control knowledge of an experienced operator and fine-tuning it through the process of learning. The approach is applied to a cart-pole balancing system.
Computational intelligence synergies of fuzzy logic, neural networks and evolutionary computing
Siddique, Nazmul
2013-01-01
Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing presents an introduction to some of the cutting edge technological paradigms under the umbrella of computational intelligence. Computational intelligence schemes are investigated with the development of a suitable framework for fuzzy logic, neural networks and evolutionary computing, neuro-fuzzy systems, evolutionary-fuzzy systems and evolutionary neural systems. Applications to linear and non-linear systems are discussed with examples. Key features: Covers all the aspect
FUZZY LOGIC BASED ENERGY EFFICIENT PROTOCOL IN WIRELESS SENSOR NETWORKS
Directory of Open Access Journals (Sweden)
Zhan Wei Siew
2012-12-01
Full Text Available Wireless sensor networks (WSNs have been vastly developed due to the advances in microelectromechanical systems (MEMS using WSN to study and monitor the environments towards climates changes. In environmental monitoring, sensors are randomly deployed over the interest area to periodically sense the physical environments for a few months or even a year. Therefore, to prolong the network lifetime with limited battery capacity becomes a challenging issue. Low energy adaptive cluster hierarchical (LEACH is the common clustering protocol that aim to reduce the energy consumption by rotating the heavy workload cluster heads (CHs. The CHs election in LEACH is based on probability model which will lead to inefficient in energy consumption due to least desired CHs location in the network. In WSNs, the CHs location can directly influence the network energy consumption and further affect the network lifetime. In this paper, factors which will affect the network lifetime will be presented and the demonstration of fuzzy logic based CH selection conducted in base station (BS will also be carried out. To select suitable CHs that will prolong the network first node dies (FND round and consistent throughput to the BS, energy level and distance to the BS are selected as fuzzy inputs.
Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 1
Lea, Robert N. (Editor); Villarreal, James (Editor)
1991-01-01
Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Houston, Clear Lake. The workshop was held April 11 to 13 at the Johnson Space Flight Center. Technical topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making.
Fuzzy knowledge base construction through belief networks based on Lukasiewicz logic
Lara-Rosano, Felipe
1992-01-01
In this paper, a procedure is proposed to build a fuzzy knowledge base founded on fuzzy belief networks and Lukasiewicz logic. Fuzzy procedures are developed to do the following: to assess the belief values of a consequent, in terms of the belief values of its logical antecedents and the belief value of the corresponding logical function; and to update belief values when new evidence is available.
A fuzzy logic based network intrusion detection system for predicting the TCP SYN flooding attack
CSIR Research Space (South Africa)
Mkuzangwe, Nenekazi NP
2017-04-01
Full Text Available presents a fuzzy logic based network intrusion detection system to predict neptune which is a type of a Transmission Control Protocol Synchronized (TCP SYN) flooding attack. The performance of the proposed fuzzy logic based system is compared to that of a...
Lo, Benjamin W. Y.; Macdonald, R. Loch; Baker, Andrew; Levine, Mitchell A. H.
2013-01-01
Objective. The novel clinical prediction approach of Bayesian neural networks with fuzzy logic inferences is created and applied to derive prognostic decision rules in cerebral aneurysmal subarachnoid hemorrhage (aSAH). Methods. The approach of Bayesian neural networks with fuzzy logic inferences was applied to data from five trials of Tirilazad for aneurysmal subarachnoid hemorrhage (3551 patients). Results. Bayesian meta-analyses of observational studies on aSAH prognostic factors gave gene...
Proceedings of the Third International Workshop on Neural Networks and Fuzzy Logic, volume 1
Culbert, Christopher J. (Editor)
1993-01-01
Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by the National Aeronautics and Space Administration and cosponsored by the University of Houston, Clear Lake. The workshop was held June 1-3, 1992 at the Lyndon B. Johnson Space Center in Houston, Texas. During the three days approximately 50 papers were presented. Technical topics addressed included adaptive systems; learning algorithms; network architectures; vision; robotics; neurobiological connections; speech recognition and synthesis; fuzzy set theory and application, control, and dynamics processing; space applications; fuzzy logic and neural network computers; approximate reasoning; and multiobject decision making.
Proceedings of the Third International Workshop on Neural Networks and Fuzzy Logic, volume 2
Culbert, Christopher J. (Editor)
1993-01-01
Papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by the National Aeronautics and Space Administration and cosponsored by the University of Houston, Clear Lake, held 1-3 Jun. 1992 at the Lyndon B. Johnson Space Center in Houston, Texas are included. During the three days approximately 50 papers were presented. Technical topics addressed included adaptive systems; learning algorithms; network architectures; vision; robotics; neurobiological connections; speech recognition and synthesis; fuzzy set theory and application, control and dynamics processing; space applications; fuzzy logic and neural network computers; approximate reasoning; and multiobject decision making.
Fuzzy logic controller optimization
Sepe, Jr., Raymond B; Miller, John Michael
2004-03-23
A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.
Nguyen, Hung T
2005-01-01
THE CONCEPT OF FUZZINESS Examples Mathematical modeling Some operations on fuzzy sets Fuzziness as uncertainty Exercises SOME ALGEBRA OF FUZZY SETS Boolean algebras and lattices Equivalence relations and partitions Composing mappings Isomorphisms and homomorphisms Alpha-cuts Images of alpha-level sets Exercises FUZZY QUANTITIES Fuzzy quantities Fuzzy numbers Fuzzy intervals Exercises LOGICAL ASPECTS OF FUZZY SETS Classical two-valued logic A three-valued logic Fuzzy logic Fuzzy and Lukasiewi
Metamathematics of fuzzy logic
Hájek, Petr
1998-01-01
This book presents a systematic treatment of deductive aspects and structures of fuzzy logic understood as many valued logic sui generis. Some important systems of real-valued propositional and predicate calculus are defined and investigated. The aim is to show that fuzzy logic as a logic of imprecise (vague) propositions does have well-developed formal foundations and that most things usually named `fuzzy inference' can be naturally understood as logical deduction.
Using fuzzy logic to integrate neural networks and knowledge-based systems
Yen, John
1991-01-01
Outlined here is a novel hybrid architecture that uses fuzzy logic to integrate neural networks and knowledge-based systems. The author's approach offers important synergistic benefits to neural nets, approximate reasoning, and symbolic processing. Fuzzy inference rules extend symbolic systems with approximate reasoning capabilities, which are used for integrating and interpreting the outputs of neural networks. The symbolic system captures meta-level information about neural networks and defines its interaction with neural networks through a set of control tasks. Fuzzy action rules provide a robust mechanism for recognizing the situations in which neural networks require certain control actions. The neural nets, on the other hand, offer flexible classification and adaptive learning capabilities, which are crucial for dynamic and noisy environments. By combining neural nets and symbolic systems at their system levels through the use of fuzzy logic, the author's approach alleviates current difficulties in reconciling differences between low-level data processing mechanisms of neural nets and artificial intelligence systems.
Fuzzy Logic and Neuro-fuzzy Systems: A Systematic Introduction
Yue Wu; Biaobiao Zhang; Jiabin Lu; K. -L. Du
2011-01-01
Fuzzy logic is a rigorous mathematical field, and it provides an effective vehicle for modeling the uncertainty in human reasoning. In fuzzy logic, the knowledge of experts is modeled by linguistic rules represented in the form of IF-THEN logic. Like neural network models such as the multilayer perceptron (MLP) and the radial basis function network (RBFN), some fuzzy inference systems (FISs) have the capability of universal approximation. Fuzzy logic can be used in most areas where neural net...
Howard, Ayanna
2005-01-01
The Fuzzy Logic Engine is a software package that enables users to embed fuzzy-logic modules into their application programs. Fuzzy logic is useful as a means of formulating human expert knowledge and translating it into software to solve problems. Fuzzy logic provides flexibility for modeling relationships between input and output information and is distinguished by its robustness with respect to noise and variations in system parameters. In addition, linguistic fuzzy sets and conditional statements allow systems to make decisions based on imprecise and incomplete information. The user of the Fuzzy Logic Engine need not be an expert in fuzzy logic: it suffices to have a basic understanding of how linguistic rules can be applied to the user's problem. The Fuzzy Logic Engine is divided into two modules: (1) a graphical-interface software tool for creating linguistic fuzzy sets and conditional statements and (2) a fuzzy-logic software library for embedding fuzzy processing capability into current application programs. The graphical- interface tool was developed using the Tcl/Tk programming language. The fuzzy-logic software library was written in the C programming language.
Carlsson, Christer; Fullér, Robert
2004-01-01
Fuzzy Logic in Management demonstrates that difficult problems and changes in the management environment can be more easily handled by bringing fuzzy logic into the practice of management. This explicit theme is developed through the book as follows: Chapter 1, "Management and Intelligent Support Technologies", is a short survey of management leadership and what can be gained from support technologies. Chapter 2, "Fuzzy Sets and Fuzzy Logic", provides a short introduction to fuzzy sets, fuzzy relations, the extension principle, fuzzy implications and linguistic variables. Chapter 3, "Group Decision Support Systems", deals with group decision making, and discusses methods for supporting the consensus reaching processes. Chapter 4, "Fuzzy Real Options for Strategic Planning", summarizes research where the fuzzy real options theory was implemented as a series of models. These models were thoroughly tested on a number of real life investments, and validated in 2001. Chapter 5, "Soft Computing Methods for Reducing...
Design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization
Castillo, Oscar; Kacprzyk, Janusz
2015-01-01
This book presents recent advances on the design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization and their application in areas such as, intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems. The book is organized in eight main parts, which contain a group of papers around a similar subject. The first part consists of papers with the main theme of theoretical aspects of fuzzy logic, which basically consists of papers that propose new concepts and algorithms based on fuzzy systems. The second part contains papers with the main theme of neural networks theory, which are basically papers dealing with new concepts and algorithms in neural networks. The third part contains papers describing applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The fourth part contains papers describing new nature-inspired optimization algorithms. The fifth part presents div...
Data Dissemination Based on Fuzzy Logic and Network Coding in Vehicular Networks
Directory of Open Access Journals (Sweden)
Xiaolan Tang
2017-01-01
Full Text Available Vehicular networks, as a significant technology in intelligent transportation systems, improve the convenience, efficiency, and safety of driving in smart cities. However, because of the high velocity, the frequent topology change, and the limited bandwidth, it is difficult to efficiently propagate data in vehicular networks. This paper proposes a data dissemination scheme based on fuzzy logic and network coding for vehicular networks, named SFN. It uses fuzzy logic to compute a transmission ability for each vehicle by comprehensively considering the effects of three factors: the velocity change rate, the velocity optimization degree, and the channel quality. Then, two nodes with high abilities are selected as primary backbone and slave backbone in every road segment, which propagate data to other vehicles in this segment and forward them to the backbones in the next segment. The backbone network helps to increase the delivery ratio and avoid invalid transmissions. Additionally, network coding is utilized to reduce transmission overhead and accelerate data retransmission in interbackbone forwarding and intrasegment broadcasting. Experiments show that, compared with existing schemes, SFN has a high delivery ratio and a short dissemination delay, while the backbone network keeps high reliability.
A Comparison of Neural Networks and Fuzzy Logic Methods for Process Modeling
Cios, Krzysztof J.; Sala, Dorel M.; Berke, Laszlo
1996-01-01
The goal of this work was to analyze the potential of neural networks and fuzzy logic methods to develop approximate response surfaces as process modeling, that is for mapping of input into output. Structural response was chosen as an example. Each of the many methods surveyed are explained and the results are presented. Future research directions are also discussed.
Intelligent control a hybrid approach based on fuzzy logic, neural networks and genetic algorithms
Siddique, Nazmul
2014-01-01
Intelligent Control considers non-traditional modelling and control approaches to nonlinear systems. Fuzzy logic, neural networks and evolutionary computing techniques are the main tools used. The book presents a modular switching fuzzy logic controller where a PD-type fuzzy controller is executed first followed by a PI-type fuzzy controller thus improving the performance of the controller compared with a PID-type fuzzy controller. The advantage of the switching-type fuzzy controller is that it uses one rule-base thus minimises the rule-base during execution. A single rule-base is developed by merging the membership functions for change of error of the PD-type controller and sum of error of the PI-type controller. Membership functions are then optimized using evolutionary algorithms. Since the two fuzzy controllers were executed in series, necessary further tuning of the differential and integral scaling factors of the controller is then performed. Neural-network-based tuning for the scaling parameters of t...
Fault level prediction for distribution network using fuzzy logic identifier
Directory of Open Access Journals (Sweden)
Shi Fang
2016-01-01
Full Text Available With the increasing penetration of the renewable power energy sources, the potential fault current of the distribution power systems changes more frequently as the connection structure of the distribution power system varies from time to time. Traditionally, the fault level can be estimated through short circuit analysis which is time consuming and sometimes difficult as it needs to know the parameters of the transmission line and transformers as well as the structure of the power system. In this paper, an online-used fault level prediction method is proposed via monitoring the phasor value of the local positive-sequence voltage and current. The ratio of the voltage change and current change are used to distinguish the natural deviation of the load from the switching operations or disturbances on the grid side. Several continuous changes of the voltage and current caused by load fluctuations are recorded and used to parameterize the equivalent circuit of the power system and to estimate the fault current level. A fuzzy logic identifier is used for adaptively selecting and recording the satisfactory changes by defining an index of confidence level. The implementation of the proposed scheme is demonstrated in a relay after introducing a low-voltage blocking function. A typical distribution power system with renewable generators is established in PSCAD/EMTDC and is used to verify the effectiveness and accuracy of the proposed method under various load changing conditions.
Mzenda, Bongile; Gegov, Alexander; Brown, David J; Petrov, Nedyalko
2012-01-01
This study investigates the feasibility of using Artificial Neural Network (ANN) and fuzzy logic based techniques to select treatment margins for dynamically moving targets in the radiotherapy treatment of prostate cancer. The use of data from 15 patients relating error effects to the Tumour Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) radiobiological indices was contrasted against the use of data based on the prostate volume receiving 99% of the prescribed dose (V99%) and the rectum volume receiving more than 60Gy (V60). For the same input data, the results of the ANN were compared to results obtained using a fuzzy system, a fuzzy network and current clinically used statistical techniques. Compared to fuzzy and statistical methods, the ANN derived margins were found to be up to 2 mm larger at small and high input errors and up to 3.5 mm larger at medium input error magnitudes.
The Balanced Cross-Layer Design Routing Algorithm in Wireless Sensor Networks Using Fuzzy Logic.
Li, Ning; Martínez, José-Fernán; Hernández Díaz, Vicente
2015-08-10
Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer Fuzzy Logic (BCFL) routing algorithm. In BCFL, we use the cross-layer parameters' dispersion as the fuzzy logic inference system inputs. Moreover, we give each cross-layer parameter a dynamic weight according the value of the dispersion. For getting a balanced solution, the parameter whose dispersion is large will have small weight, and vice versa. In order to compare it with the traditional cross-layer routing algorithms, BCFL is evaluated through extensive simulations. The simulation results show that the new routing algorithm can handle the multiple constraints without increasing the complexity of the algorithm and can achieve the most balanced performance on selecting the next hop relay node. Moreover, the Balanced Cross-layer Fuzzy Logic routing algorithm can adapt to the dynamic changing of the network conditions and topology effectively.
Leak monitoring method for pressurizer based on integrated neural networks and fuzzy logic fusion
International Nuclear Information System (INIS)
Han Long; Zhou Gang; Sun Xusheng
2014-01-01
A new leak monitoring method based on integration neural networks (INN) and the fuzzy logic fusion (FLF) was proposed to solve the problem of pressurizer leak monitoring. In this approach, a pressurizer leaking diagnosis model was established by a radial basis function neural network (RBF-NN). Two Elman neural networks (Elman-NN) were used to establish pressurizer parameters prediction model and pressurizer leak diagnosis model respectively. Then, the fuzzy logical method was used to fuse the diagnosed results of RBF-NN and Elman-NN. The fusion results were the final monitoring results. The nuclear power simulator was used to test the feasibility of the proposed method. The results show that compared with the diagnosis method based on single neural network, the proposed method is simple and reliable. (authors)
Malhas, Othman Qasim
1993-10-01
The concept of “abacus logic” has recently been developed by the author (Malhas, n.d.). In this paper the relation of abacus logic to the concept of fuzziness is explored. It is shown that if a certain “regularity” condition is met, concepts from fuzzy set theory arise naturally within abacus logics. In particular it is shown that every abacus logic then has a “pre-Zadeh orthocomplementation”. It is also shown that it is then possible to associate a fuzzy set with every proposition of abacus logic and that the collection of all such sets satisfies natural conditions expected in systems of fuzzy logic. Finally, the relevance to quantum mechanics is discussed.
Fuzzy Logic Module of Convolutional Neural Network for Handwritten Digits Recognition
Popko, E. A.; Weinstein, I. A.
2016-08-01
Optical character recognition is one of the important issues in the field of pattern recognition. This paper presents a method for recognizing handwritten digits based on the modeling of convolutional neural network. The integrated fuzzy logic module based on a structural approach was developed. Used system architecture adjusted the output of the neural network to improve quality of symbol identification. It was shown that proposed algorithm was flexible and high recognition rate of 99.23% was achieved.
Neural-Network-Based Fuzzy Logic Navigation Control for Intelligent Vehicles
Directory of Open Access Journals (Sweden)
Ahcene Farah
2002-06-01
Full Text Available This paper proposes a Neural-Network-Based Fuzzy logic system for navigation control of intelligent vehicles. First, the use of Neural Networks and Fuzzy Logic to provide intelligent vehicles with more autonomy and intelligence is discussed. Second, the system for the obstacle avoidance behavior is developed. Fuzzy Logic improves Neural Networks (NN obstacle avoidance approach by handling imprecision and rule-based approximate reasoning. This system must make the vehicle able, after supervised learning, to achieve two tasks: 1- to make one’s way towards its target by a NN, and 2- to avoid static or dynamic obstacles by a Fuzzy NN capturing the behavior of a human expert. Afterwards, two association phases between each task and the appropriate actions are carried out by Trial and Error learning and their coordination allows to decide the appropriate action. Finally, the simulation results display the generalization and adaptation abilities of the system by testing it in new unexplored environments.
Modeling Nonlinear Systems by a Fuzzy Logic Neural Network Using Genetic Algorithms
Directory of Open Access Journals (Sweden)
Abdel-Fattah Attia
2001-01-01
Full Text Available The main aim of this work is to optimize the parameters of the constrained membership function of the Fuzzy Logic Neural Network (FLNN. The constraints may be an indirect definition of the search ranges for every membership shape forming parameter based on 2nd order fuzzy set specifications. A particular method widely applicable in solving global optimization problems is introduced. This approach uses a Linear Adapted Genetic Algorithm (LAGA to optimize the FLNN parameters. In this paper the derivation of a 2nd order fuzzy set is performed for a membership function of Gaussian shape, which is assumed for the neuro-fuzzy approach. The explanation of the optimization method is presented in detail on the basis of two examples.
Directory of Open Access Journals (Sweden)
Zoltan Erdei
2011-12-01
Full Text Available In this paper the authors present the usefulness of fuzzy logic in controlling engineering processes or applications. Although fuzzy logic does not represent a novelty for the scientific and engineering field, it enjoys a great appreciation from those involved in the two domains. The fact that fuzzy logic uses sentences kindred with the natural language make it easier to comprehend that a complex mathematical model required by the classic control theory. In MatLab software there are dedicated toolboxes to this subject that make the design of a fuzzy controller a facile one. In the paper design methods of a fuzzy controller are being presented both in Simulink and MatLab.
Genetic optimization of neural network and fuzzy logic for oil bubble point pressure modeling
Energy Technology Data Exchange (ETDEWEB)
Afshar, Mohammad [Islamic Azad University, Kharg (Iran, Islamic Republic of); Gholami, Amin [Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Asoodeh, Mojtaba [Islamic Azad University, Birjand (Iran, Islamic Republic of)
2014-03-15
Bubble point pressure is a critical pressure-volume-temperature (PVT) property of reservoir fluid, which plays an important role in almost all tasks involved in reservoir and production engineering. We developed two sophisticated models to estimate bubble point pressure from gas specific gravity, oil gravity, solution gas oil ratio, and reservoir temperature. Neural network and adaptive neuro-fuzzy inference system are powerful tools for extracting the underlying dependency of a set of input/output data. However, the mentioned tools are in danger of sticking in local minima. The present study went further by optimizing fuzzy logic and neural network models using the genetic algorithm in charge of eliminating the risk of being exposed to local minima. This strategy is capable of significantly improving the accuracy of both neural network and fuzzy logic models. The proposed methodology was successfully applied to a dataset of 153 PVT data points. Results showed that the genetic algorithm can serve the neural network and neuro-fuzzy models from local minima trapping, which might occur through back-propagation algorithm.
Fuzzy Logic-Based Guaranteed Lifetime Protocol for Real-Time Wireless Sensor Networks.
Shah, Babar; Iqbal, Farkhund; Abbas, Ali; Kim, Ki-Il
2015-08-18
Few techniques for guaranteeing a network lifetime have been proposed despite its great impact on network management. Moreover, since the existing schemes are mostly dependent on the combination of disparate parameters, they do not provide additional services, such as real-time communications and balanced energy consumption among sensor nodes; thus, the adaptability problems remain unresolved among nodes in wireless sensor networks (WSNs). To solve these problems, we propose a novel fuzzy logic model to provide real-time communication in a guaranteed WSN lifetime. The proposed fuzzy logic controller accepts the input descriptors energy, time and velocity to determine each node's role for the next duration and the next hop relay node for real-time packets. Through the simulation results, we verified that both the guaranteed network's lifetime and real-time delivery are efficiently ensured by the new fuzzy logic model. In more detail, the above-mentioned two performance metrics are improved up to 8%, as compared to our previous work, and 14% compared to existing schemes, respectively.
Fuzzy Logic Based Anomaly Detection for Embedded Network Security Cyber Sensor
Energy Technology Data Exchange (ETDEWEB)
Ondrej Linda; Todd Vollmer; Jason Wright; Milos Manic
2011-04-01
Resiliency and security in critical infrastructure control systems in the modern world of cyber terrorism constitute a relevant concern. Developing a network security system specifically tailored to the requirements of such critical assets is of a primary importance. This paper proposes a novel learning algorithm for anomaly based network security cyber sensor together with its hardware implementation. The presented learning algorithm constructs a fuzzy logic rule based model of normal network behavior. Individual fuzzy rules are extracted directly from the stream of incoming packets using an online clustering algorithm. This learning algorithm was specifically developed to comply with the constrained computational requirements of low-cost embedded network security cyber sensors. The performance of the system was evaluated on a set of network data recorded from an experimental test-bed mimicking the environment of a critical infrastructure control system.
Lo, Benjamin W Y; Macdonald, R Loch; Baker, Andrew; Levine, Mitchell A H
2013-01-01
The novel clinical prediction approach of Bayesian neural networks with fuzzy logic inferences is created and applied to derive prognostic decision rules in cerebral aneurysmal subarachnoid hemorrhage (aSAH). The approach of Bayesian neural networks with fuzzy logic inferences was applied to data from five trials of Tirilazad for aneurysmal subarachnoid hemorrhage (3551 patients). Bayesian meta-analyses of observational studies on aSAH prognostic factors gave generalizable posterior distributions of population mean log odd ratios (ORs). Similar trends were noted in Bayesian and linear regression ORs. Significant outcome predictors include normal motor response, cerebral infarction, history of myocardial infarction, cerebral edema, history of diabetes mellitus, fever on day 8, prior subarachnoid hemorrhage, admission angiographic vasospasm, neurological grade, intraventricular hemorrhage, ruptured aneurysm size, history of hypertension, vasospasm day, age and mean arterial pressure. Heteroscedasticity was present in the nontransformed dataset. Artificial neural networks found nonlinear relationships with 11 hidden variables in 1 layer, using the multilayer perceptron model. Fuzzy logic decision rules (centroid defuzzification technique) denoted cut-off points for poor prognosis at greater than 2.5 clusters. This aSAH prognostic system makes use of existing knowledge, recognizes unknown areas, incorporates one's clinical reasoning, and compensates for uncertainty in prognostication.
Directory of Open Access Journals (Sweden)
Benjamin W. Y. Lo
2013-01-01
Full Text Available Objective. The novel clinical prediction approach of Bayesian neural networks with fuzzy logic inferences is created and applied to derive prognostic decision rules in cerebral aneurysmal subarachnoid hemorrhage (aSAH. Methods. The approach of Bayesian neural networks with fuzzy logic inferences was applied to data from five trials of Tirilazad for aneurysmal subarachnoid hemorrhage (3551 patients. Results. Bayesian meta-analyses of observational studies on aSAH prognostic factors gave generalizable posterior distributions of population mean log odd ratios (ORs. Similar trends were noted in Bayesian and linear regression ORs. Significant outcome predictors include normal motor response, cerebral infarction, history of myocardial infarction, cerebral edema, history of diabetes mellitus, fever on day 8, prior subarachnoid hemorrhage, admission angiographic vasospasm, neurological grade, intraventricular hemorrhage, ruptured aneurysm size, history of hypertension, vasospasm day, age and mean arterial pressure. Heteroscedasticity was present in the nontransformed dataset. Artificial neural networks found nonlinear relationships with 11 hidden variables in 1 layer, using the multilayer perceptron model. Fuzzy logic decision rules (centroid defuzzification technique denoted cut-off points for poor prognosis at greater than 2.5 clusters. Discussion. This aSAH prognostic system makes use of existing knowledge, recognizes unknown areas, incorporates one's clinical reasoning, and compensates for uncertainty in prognostication.
Energy Technology Data Exchange (ETDEWEB)
Ondrej Linda; Todd Vollmer; Jim Alves-Foss; Milos Manic
2011-08-01
Resiliency and cyber security of modern critical infrastructures is becoming increasingly important with the growing number of threats in the cyber-environment. This paper proposes an extension to a previously developed fuzzy logic based anomaly detection network security cyber sensor via incorporating Type-2 Fuzzy Logic (T2 FL). In general, fuzzy logic provides a framework for system modeling in linguistic form capable of coping with imprecise and vague meanings of words. T2 FL is an extension of Type-1 FL which proved to be successful in modeling and minimizing the effects of various kinds of dynamic uncertainties. In this paper, T2 FL provides a basis for robust anomaly detection and cyber security state awareness. In addition, the proposed algorithm was specifically developed to comply with the constrained computational requirements of low-cost embedded network security cyber sensors. The performance of the system was evaluated on a set of network data recorded from an experimental cyber-security test-bed.
T Atanassov, Krassimir
2017-01-01
The book offers a comprehensive survey of intuitionistic fuzzy logics. By reporting on both the author’s research and others’ findings, it provides readers with a complete overview of the field and highlights key issues and open problems, thus suggesting new research directions. Starting with an introduction to the basic elements of intuitionistic fuzzy propositional calculus, it then provides a guide to the use of intuitionistic fuzzy operators and quantifiers, and lastly presents state-of-the-art applications of intuitionistic fuzzy sets. The book is a valuable reference resource for graduate students and researchers alike.
Fuzzy logic of Aristotelian forms
Energy Technology Data Exchange (ETDEWEB)
Perlovsky, L.I. [Nichols Research Corp., Lexington, MA (United States)
1996-12-31
Model-based approaches to pattern recognition and machine vision have been proposed to overcome the exorbitant training requirements of earlier computational paradigms. However, uncertainties in data were found to lead to a combinatorial explosion of the computational complexity. This issue is related here to the roles of a priori knowledge vs. adaptive learning. What is the a-priori knowledge representation that supports learning? I introduce Modeling Field Theory (MFT), a model-based neural network whose adaptive learning is based on a priori models. These models combine deterministic, fuzzy, and statistical aspects to account for a priori knowledge, its fuzzy nature, and data uncertainties. In the process of learning, a priori fuzzy concepts converge to crisp or probabilistic concepts. The MFT is a convergent dynamical system of only linear computational complexity. Fuzzy logic turns out to be essential for reducing the combinatorial complexity to linear one. I will discuss the relationship of the new computational paradigm to two theories due to Aristotle: theory of Forms and logic. While theory of Forms argued that the mind cannot be based on ready-made a priori concepts, Aristotelian logic operated with just such concepts. I discuss an interpretation of MFT suggesting that its fuzzy logic, combining a-priority and adaptivity, implements Aristotelian theory of Forms (theory of mind). Thus, 2300 years after Aristotle, a logic is developed suitable for his theory of mind.
Anwar, Farhat; Masud, Mosharrof H.; Latif, Suhaimi A.
2013-12-01
Mobile IPv6 (MIPv6) is one of the pioneer standards that support mobility in IPv6 environment. It has been designed to support different types of technologies for providing seamless communications in next generation network. However, MIPv6 and subsequent standards have some limitations due to its handoff latency. In this paper, a fuzzy logic based mechanism is proposed to reduce the handoff latency of MIPv6 for Layer 2 (L2) by scanning the Access Points (APs) while the Mobile Node (MN) is moving among different APs. Handoff latency occurs when the MN switches from one AP to another in L2. Heterogeneous network is considered in this research in order to reduce the delays in L2. Received Signal Strength Indicator (RSSI) and velocity of the MN are considered as the input of fuzzy logic technique. This technique helps the MN to measure optimum signal quality from APs for the speedy mobile node based on fuzzy logic input rules and makes a list of interfaces. A suitable interface from the list of available interfaces can be selected like WiFi, WiMAX or GSM. Simulation results show 55% handoff latency reduction and 50% packet loss improvement in L2 compared to standard to MIPv6.
International Nuclear Information System (INIS)
Anwar, Farhat; Masud, Mosharrof H; Latif, Suhaimi A
2013-01-01
Mobile IPv6 (MIPv6) is one of the pioneer standards that support mobility in IPv6 environment. It has been designed to support different types of technologies for providing seamless communications in next generation network. However, MIPv6 and subsequent standards have some limitations due to its handoff latency. In this paper, a fuzzy logic based mechanism is proposed to reduce the handoff latency of MIPv6 for Layer 2 (L2) by scanning the Access Points (APs) while the Mobile Node (MN) is moving among different APs. Handoff latency occurs when the MN switches from one AP to another in L2. Heterogeneous network is considered in this research in order to reduce the delays in L2. Received Signal Strength Indicator (RSSI) and velocity of the MN are considered as the input of fuzzy logic technique. This technique helps the MN to measure optimum signal quality from APs for the speedy mobile node based on fuzzy logic input rules and makes a list of interfaces. A suitable interface from the list of available interfaces can be selected like WiFi, WiMAX or GSM. Simulation results show 55% handoff latency reduction and 50% packet loss improvement in L2 compared to standard to MIPv6
Directory of Open Access Journals (Sweden)
Yuanjiang Huang
2014-01-01
Full Text Available The sensor nodes in the Wireless Sensor Networks (WSNs are prone to failures due to many reasons, for example, running out of battery or harsh environment deployment; therefore, the WSNs are expected to be able to maintain network connectivity and tolerate certain amount of node failures. By applying fuzzy-logic approach to control the network topology, this paper aims at improving the network connectivity and fault-tolerant capability in response to node failures, while taking into account that the control approach has to be localized and energy efficient. Two fuzzy controllers are proposed in this paper: one is Learning-based Fuzzy-logic Topology Control (LFTC, of which the fuzzy controller is learnt from a training data set; another one is Rules-based Fuzzy-logic Topology Control (RFTC, of which the fuzzy controller is obtained through designing if-then rules and membership functions. Both LFTC and RFTC do not rely on location information, and they are localized. Comparing them with other three representative algorithms (LTRT, List-based, and NONE through extensive simulations, our two proposed fuzzy controllers have been proved to be very energy efficient to achieve desired node degree and improve the network connectivity when sensor nodes run out of battery or are subject to random attacks.
Learning fuzzy logic control system
Lung, Leung Kam
1994-01-01
The performance of the Learning Fuzzy Logic Control System (LFLCS), developed in this thesis, has been evaluated. The Learning Fuzzy Logic Controller (LFLC) learns to control the motor by learning the set of teaching values that are generated by a classical PI controller. It is assumed that the classical PI controller is tuned to minimize the error of a position control system of the D.C. motor. The Learning Fuzzy Logic Controller developed in this thesis is a multi-input single-output network. Training of the Learning Fuzzy Logic Controller is implemented off-line. Upon completion of the training process (using Supervised Learning, and Unsupervised Learning), the LFLC replaces the classical PI controller. In this thesis, a closed loop position control system of a D.C. motor using the LFLC is implemented. The primary focus is on the learning capabilities of the Learning Fuzzy Logic Controller. The learning includes symbolic representation of the Input Linguistic Nodes set and Output Linguistic Notes set. In addition, we investigate the knowledge-based representation for the network. As part of the design process, we implement a digital computer simulation of the LFLCS. The computer simulation program is written in 'C' computer language, and it is implemented in DOS platform. The LFLCS, designed in this thesis, has been developed on a IBM compatible 486-DX2 66 computer. First, the performance of the Learning Fuzzy Logic Controller is evaluated by comparing the angular shaft position of the D.C. motor controlled by a conventional PI controller and that controlled by the LFLC. Second, the symbolic representation of the LFLC and the knowledge-based representation for the network are investigated by observing the parameters of the Fuzzy Logic membership functions and the links at each layer of the LFLC. While there are some limitations of application with this approach, the result of the simulation shows that the LFLC is able to control the angular shaft position of the
Gas Turbine Engine Control Design Using Fuzzy Logic and Neural Networks
Directory of Open Access Journals (Sweden)
M. Bazazzadeh
2011-01-01
Full Text Available This paper presents a successful approach in designing a Fuzzy Logic Controller (FLC for a specific Jet Engine. At first, a suitable mathematical model for the jet engine is presented by the aid of SIMULINK. Then by applying different reasonable fuel flow functions via the engine model, some important engine-transient operation parameters (such as thrust, compressor surge margin, turbine inlet temperature, etc. are obtained. These parameters provide a precious database, which train a neural network. At the second step, by designing and training a feedforward multilayer perceptron neural network according to this available database; a number of different reasonable fuel flow functions for various engine acceleration operations are determined. These functions are used to define the desired fuzzy fuel functions. Indeed, the neural networks are used as an effective method to define the optimum fuzzy fuel functions. At the next step, we propose a FLC by using the engine simulation model and the neural network results. The proposed control scheme is proved by computer simulation using the designed engine model. The simulation results of engine model with FLC illustrate that the proposed controller achieves the desired performance and stability.
The Fuzzy Logic of Network Connectivity in Mouse Visual Thalamus.
Morgan, Josh Lyskowski; Berger, Daniel Raimund; Wetzel, Arthur Willis; Lichtman, Jeff William
2016-03-24
In an attempt to chart parallel sensory streams passing through the visual thalamus, we acquired a 100-trillion-voxel electron microscopy (EM) dataset and identified cohorts of retinal ganglion cell axons (RGCs) that innervated each of a diverse group of postsynaptic thalamocortical neurons (TCs). Tracing branches of these axons revealed the set of TCs innervated by each RGC cohort. Instead of finding separate sensory pathways, we found a single large network that could not be easily subdivided because individual RGCs innervated different kinds of TCs and different kinds of RGCs co-innervated individual TCs. We did find conspicuous network subdivisions organized on the basis of dendritic rather than neuronal properties. This work argues that, in the thalamus, neural circuits are not based on a canonical set of connections between intrinsically different neuronal types but, rather, may arise by experience-based mixing of different kinds of inputs onto individual postsynaptic cells. Copyright © 2016 Elsevier Inc. All rights reserved.
SEffEst: Effort estimation in software projects using fuzzy logic and neural networks
Directory of Open Access Journals (Sweden)
Israel
2012-08-01
Full Text Available Academia and practitioners confirm that software project effort prediction is crucial for an accurate software project management. However, software development effort estimation is uncertain by nature. Literature has developed methods to improve estimation correctness, using artificial intelligence techniques in many cases. Following this path, this paper presents SEffEst, a framework based on fuzzy logic and neural networks designed to increase effort estimation accuracy on software development projects. Trained using ISBSG data, SEffEst presents remarkable results in terms of prediction accuracy.
Directory of Open Access Journals (Sweden)
Daniel Petru GHENCEA
2016-05-01
Full Text Available Simulation spindle behavior in terms of temperature and vibration at higher speeds is more economical and more secure (avoid undesirable mechanical events than testing practice. Testing practice has an important role in finalizing the product but throughout the course of prototype testing is more advantageous economic development simulation parameters based on data sets collected to dangerous speeds. In this paper we present an analysis mode hybrid (artificial neural networks - fuzzy logic on prediction the evolution of temperatures and vibrations at higher speeds for which no measurements were made. The main advantage of the method is the simultaneous prediction of the dynamics of temperature and vibration levels.
Water level forecasting through fuzzy logic and artificial neural network approaches
Directory of Open Access Journals (Sweden)
S. Alvisi
2006-01-01
Full Text Available In this study three data-driven water level forecasting models are presented and discussed. One is based on the artificial neural networks approach, while the other two are based on the Mamdani and the Takagi-Sugeno fuzzy logic approaches, respectively. All of them are parameterised with reference to flood events alone, where water levels are higher than a selected threshold. The analysis of the three models is performed by using the same input and output variables. However, in order to evaluate their capability to deal with different levels of information, two different input sets are considered. The former is characterized by significant spatial and time aggregated rainfall information, while the latter considers rainfall information more distributed in space and time. The analysis is made with great attention to the reliability and accuracy of each model, with reference to the Reno river at Casalecchio di Reno (Bologna, Italy. It is shown that the two models based on the fuzzy logic approaches perform better when the physical phenomena considered are synthesised by both a limited number of variables and IF-THEN logic statements, while the ANN approach increases its performance when more detailed information is used. As regards the reliability aspect, it is shown that the models based on the fuzzy logic approaches may fail unexpectedly to forecast the water levels, in the sense that in the testing phase, some input combinations are not recognised by the rule system and thus no forecasting is performed. This problem does not occur in the ANN approach.
Alomari, Abdullah; Phillips, William; Aslam, Nauman; Comeau, Frank
2017-08-18
Mobile anchor path planning techniques have provided as an alternative option for node localization in wireless sensor networks (WSNs). In such context, path planning is a movement pattern where a mobile anchor node's movement is designed in order to achieve a maximum localization ratio possible with a minimum error rate. Typically, the mobility path planning is designed in advance, which is applicable when the mobile anchor has sufficient sources of energy and time. However, when the mobility movement is restricted or limited, a dynamic path planning design is needed. This paper proposes a novel distributed range-free movement mechanism for mobility-assisted localization in WSNs when the mobile anchor's movement is limited. The designed movement is formed in real-time pattern using a fuzzy-logic approach based on the information received from the network and the nodes' deployment. Our proposed model, Fuzzy-Logic based Path Planning for mobile anchor-assisted Localization in WSNs (FLPPL), offers superior results in several metrics including both localization accuracy and localization ratio in comparison to other similar works.
Mehri, M
2013-04-01
Application of appropriate models to approximate the performance function warrants more precise prediction and helps to make the best decisions in the poultry industry. This study reevaluated the factors affecting hatchability in laying hens from 29 to 56 wk of age. Twenty-eight data lines representing 4 inputs consisting of egg weight, eggshell thickness, egg sphericity, and yolk/albumin ratio and 1 output, hatchability, were obtained from the literature and used to train an artificial neural network (ANN). The prediction ability of ANN was compared with that of fuzzy logic to evaluate the fitness of these 2 methods. The models were compared using R(2), mean absolute deviation (MAD), mean squared error (MSE), mean absolute percentage error (MAPE), and bias. The developed model was used to assess the relative importance of each variable on the hatchability by calculating the variable sensitivity ratio. The statistical evaluations showed that the ANN-based model predicted hatchability more accurately than fuzzy logic. The ANN-based model had a higher determination of coefficient (R(2) = 0.99) and lower residual distribution (MAD = 0.005; MSE = 0.00004; MAPE = 0.732; bias = 0.0012) than fuzzy logic (R(2) = 0.87; MAD = 0.014; MSE = 0.0004; MAPE = 2.095; bias = 0.0046). The sensitivity analysis revealed that the most important variable in the ANN-based model of hatchability was egg weight (variable sensitivity ratio, VSR = 283.11), followed by yolk/albumin ratio (VSR = 113.16), eggshell thickness (VSR = 16.23), and egg sphericity (VSR = 3.63). The results of this research showed that the universal approximation capability of ANN made it a powerful tool to approximate complex functions such as hatchability in the incubation process.
Fuzzy Versions of Epistemic and Deontic Logic
Gounder, Ramasamy S.; Esterline, Albert C.
1998-01-01
Epistemic and deontic logics are modal logics, respectively, of knowledge and of the normative concepts of obligation, permission, and prohibition. Epistemic logic is useful in formalizing systems of communicating processes and knowledge and belief in AI (Artificial Intelligence). Deontic logic is useful in computer science wherever we must distinguish between actual and ideal behavior, as in fault tolerance and database integrity constraints. We here discuss fuzzy versions of these logics. In the crisp versions, various axioms correspond to various properties of the structures used in defining the semantics of the logics. Thus, any axiomatic theory will be characterized not only by its axioms but also by the set of properties holding of the corresponding semantic structures. Fuzzy logic does not proceed with axiomatic systems, but fuzzy versions of the semantic properties exist and can be shown to correspond to some of the axioms for the crisp systems in special ways that support dependency networks among assertions in a modal domain. This in turn allows one to implement truth maintenance systems. For the technical development of epistemic logic, and for that of deontic logic. To our knowledge, we are the first to address fuzzy epistemic and fuzzy deontic logic explicitly and to consider the different systems and semantic properties available. We give the syntax and semantics of epistemic logic and discuss the correspondence between axioms of epistemic logic and properties of semantic structures. The same topics are covered for deontic logic. Fuzzy epistemic and fuzzy deontic logic discusses the relationship between axioms and semantic properties for these logics. Our results can be exploited in truth maintenance systems.
Directory of Open Access Journals (Sweden)
Farnaz Pakdeland
2016-08-01
Full Text Available Wireless sensor network is comprised of several sensor nodes. The retaining factors influence the network operation. In the clustering structure the cluster head failure can cause loss of information.The aim of this paper is to increase tolerance error in the cluster head node. At first, paying attention to the producing balance in the density of the cluster cause to postpone the death time of the cluster head node and lessen the collision due to the lack of the energy balance in clusters. The innovation in this stage is formed by using two fuzzy logic systems. One in the phase of evaluation of the cluster head chance, and the other in the phase of producing balance and the nodes migration to the qualified clusters to increase balance, Then the focus is on recognizing and repairing the cluster head fault.
Directory of Open Access Journals (Sweden)
José Alonso Borba
2010-04-01
Full Text Available There are problems in Finance and Accounting that can not be easily solved by means of traditional techniques (e.g. bankruptcy prediction and strategies for investing in common stock. In these situations, it is possible to use methods of Artificial Intelligence. This paper analyzes empirical works published in international journals between 2000 and 2007 that present studies about the application of Neural Networks, Fuzzy Logic and Genetic Algorithms to problems in Finance and Accounting. The objective is to identify and quantify the relationships established between the available techniques and the problems studied by the researchers. Analyzing 258 papers, it was noticed that the most used technique is the Artificial Neural Network. The most researched applications are from the field of Finance, especially those related to stock exchanges (forecasting of common stock and indices prices.
Jafri, Madiha J.; Ely, Jay J.; Vahala, Linda L.
2007-01-01
In this paper, neural network (NN) modeling is combined with fuzzy logic to estimate Interference Path Loss measurements on Airbus 319 and 320 airplanes. Interference patterns inside the aircraft are classified and predicted based on the locations of the doors, windows, aircraft structures and the communication/navigation system-of-concern. Modeled results are compared with measured data. Combining fuzzy logic and NN modeling is shown to improve estimates of measured data over estimates obtained with NN alone. A plan is proposed to enhance the modeling for better prediction of electromagnetic coupling problems inside aircraft.
Lu, Thomas; Pham, Timothy; Liao, Jason
2011-01-01
This paper presents the development of a fuzzy logic function trained by an artificial neural network to classify the system noise temperature (SNT) of antennas in the NASA Deep Space Network (DSN). The SNT data were classified into normal, marginal, and abnormal classes. The irregular SNT pattern was further correlated with link margin and weather data. A reasonably good correlation is detected among high SNT, low link margin and the effect of bad weather; however we also saw some unexpected non-correlations which merit further study in the future.
Sunal, Cynthia Szymanski; Karr, Charles L.; Sunal, Dennis W.
2003-01-01
Students' conceptions of three major artificial intelligence concepts used in the modeling of systems in science, fuzzy logic, neural networks, and genetic algorithms were investigated before and after a higher education science course. Students initially explored their prior ideas related to the three concepts through active tasks. Then,…
A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation.
Tahmasebi, Pejman; Hezarkhani, Ardeshir
2012-05-01
The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called "Coactive Neuro-Fuzzy Inference System" (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) - as a well-known technique to solve the complex optimization problems - is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS-GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS-GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems.
A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation
Tahmasebi, Pejman; Hezarkhani, Ardeshir
2012-05-01
The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called "Coactive Neuro-Fuzzy Inference System" (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) - as a well-known technique to solve the complex optimization problems - is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS-GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS-GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems.
A review on application of neural networks and fuzzy logic to solve hydrothermal scheduling problem
International Nuclear Information System (INIS)
Haroon, S.; Malik, T.N.; Zafar, S.
2014-01-01
Electrical power system is highly complicated having hydro and thermal mix with large number of machines. To reduce power production cost, hydro and thermal resources are mixed. Hydrothermal scheduling is the optimal coordination of hydro and thermal plants to meet the system load demand at minimum possible operational cost while satisfying the system constraints. Hydrothermal scheduling is dynamic, large scale, non-linear and non-convex optimization problem. The classical techniques have failed in solving such problem. Artificial Intelligence Tools based techniques are used now a day to solve this complex optimization problem because of their no requirements on the nature of the problem. The aim of this research paper is to provide a comprehensive survey of literature related to both Artificial Neural Network (ANN) and Fuzzy Logic (FL) as effective optimization algorithms for the hydrothermal scheduling problem. The outcomes along with the merits and demerits of individual techniques are also discussed. (author)
Many-valued Logic and Fuzzy Logic
Czech Academy of Sciences Publication Activity Database
Hájek, Petr
2011-01-01
Roč. 27, č. 2 (2011), s. 315-324 ISSN 0970-7794 R&D Projects: GA ČR GEICC/08/E018 Institutional research plan: CEZ:AV0Z10300504 Keywords : many valued logic * fuzzy logic Subject RIV: BA - General Mathematics
Fuzzy logic particle tracking velocimetry
Wernet, Mark P.
1993-01-01
Fuzzy logic has proven to be a simple and robust method for process control. Instead of requiring a complex model of the system, a user defined rule base is used to control the process. In this paper the principles of fuzzy logic control are applied to Particle Tracking Velocimetry (PTV). Two frames of digitally recorded, single exposure particle imagery are used as input. The fuzzy processor uses the local particle displacement information to determine the correct particle tracks. Fuzzy PTV is an improvement over traditional PTV techniques which typically require a sequence (greater than 2) of image frames for accurately tracking particles. The fuzzy processor executes in software on a PC without the use of specialized array or fuzzy logic processors. A pair of sample input images with roughly 300 particle images each, results in more than 200 velocity vectors in under 8 seconds of processing time.
2005-01-01
A new all-electronic Particle Image Velocimetry technique that can efficiently map high speed gas flows has been developed in-house at the NASA Lewis Research Center. Particle Image Velocimetry is an optical technique for measuring the instantaneous two component velocity field across a planar region of a seeded flow field. A pulsed laser light sheet is used to illuminate the seed particles entrained in the flow field at two instances in time. One or more charged coupled device (CCD) cameras can be used to record the instantaneous positions of particles. Using the time between light sheet pulses and determining either the individual particle displacements or the average displacement of particles over a small subregion of the recorded image enables the calculation of the fluid velocity. Fuzzy logic minimizes the required operator intervention in identifying particles and computing velocity. Using two cameras that have the same view of the illumination plane yields two single exposure image frames. Two competing techniques that yield unambiguous velocity vector direction information have been widely used for reducing the single-exposure, multiple image frame data: (1) cross-correlation and (2) particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. For the correlation technique, the correlation peak corresponding to the average displacement of particles across the subregion must be identified. Noise on the images and particle dropout result in misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work, fuzzy logic techniques are used to determine the true
Chen, Min; Yin, Xuezhi
2011-07-01
This paper descries a new non-invasive method for diagnosis of breathing disorders based on adaptive-network-based fuzzy inference system (ANFIS). In this method, PetCO2, SpO2 and HR are chosen as inputs, and the breathing condition is selected as output ofANFIS. The inputs and output are then classified into fuzzy subsets by experts' knowledge. After, the fuzzy IF-THEN rules are built up according to the corresponding membership functions by set up of fuzzy subsets. The neural network was finally established and the membership functions and fuzzy rules were optimized by training. The results of experiment shows that ANFIS is more effective than BP Network regarding the diagnosis of breathing disorders.
D-FLER - A Distributed Fuzzy Logic Engine for Rule-Based Wireless Sensor Networks
Marin Perianu, Mihai; Havinga, Paul J.M.
2007-01-01
We propose D-FLER, a distributed, general-purpose reasoning engine for WSN. D-FLER uses fuzzy logic for fusing individual and neighborhood observations, in order to produce a more accurate and reliable result. Thorough simulation, we evaluate D-FLER in a fire-detection scenario, using both fire and
D-FLER: A Distributed Fuzzy Logic Engine for Rule-based Wireless Sensor Networks
Marin Perianu, Mihai; Havinga, Paul J.M.
2007-01-01
We propose D-FLER, a distributed, general-purpose reasoning engine for WSN. D-FLER uses fuzzy logic for fusing individual and neighborhood observations, in order to produce a more accurate and reliable result. Thorough simulation, we evaluate D-FLER in a fire-detection scenario, using both fire and
Coastal vulnerability assessment using Fuzzy Logic and Bayesian Belief Network approaches
Valentini, Emiliana; Nguyen Xuan, Alessandra; Filipponi, Federico; Taramelli, Andrea
2017-04-01
Natural hazards such as sea surge are threatening low-lying coastal plains. In order to deal with disturbances a deeper understanding of benefits deriving from ecosystem services assessment, management and planning can contribute to enhance the resilience of coastal systems. In this frame assessing current and future vulnerability is a key concern of many Systems Of Systems SOS (social, ecological, institutional) that deals with several challenges like the definition of Essential Variables (EVs) able to synthesize the required information, the assignment of different weight to be attributed to each considered variable, the selection of method for combining the relevant variables. It is widely recognized that ecosystems contribute to human wellbeing and then their conservation increases the resilience capacities and could play a key role in reducing climate related risk and thus physical and economic losses. A way to fully exploit ecosystems potential, i.e. their so called ecopotential (see H2020 EU funded project "ECOPOTENTIAL"), is the Ecosystem based Adaptation (EbA): the use of ecosystem services as part of an adaptation strategy. In order to provide insight in understanding regulating ecosystem services to surge and which variables influence them and to make the best use of available data and information (EO products, in situ data and modelling), we propose a multi-component surge vulnerability assessment, focusing on coastal sandy dunes as natural barriers. The aim is to combine together eco-geomorphological and socio-economic variables with the hazard component on the base of different approaches: 1) Fuzzy Logic; 2) Bayesian Belief Networks (BBN). The Fuzzy Logic approach is very useful to get a spatialized information and it can easily combine variables coming from different sources. It provides information on vulnerability moving along-shore and across-shore (beach-dune transect), highlighting the variability of vulnerability conditions in the spatial
Hybrid neural network and fuzzy logic approaches for rendezvous and capture in space
Berenji, Hamid R.; Castellano, Timothy
1991-01-01
The nonlinear behavior of many practical systems and unavailability of quantitative data regarding the input-output relations makes the analytical modeling of these systems very difficult. On the other hand, approximate reasoning-based controllers which do not require analytical models have demonstrated a number of successful applications such as the subway system in the city of Sendai. These applications have mainly concentrated on emulating the performance of a skilled human operator in the form of linguistic rules. However, the process of learning and tuning the control rules to achieve the desired performance remains a difficult task. Fuzzy Logic Control is based on fuzzy set theory. A fuzzy set is an extension of a crisp set. Crisp sets only allow full membership or no membership at all, whereas fuzzy sets allow partial membership. In other words, an element may partially belong to a set.
Fuzzy-logic based Q-Learning interference management algorithms in two-tier networks
Xu, Qiang; Xu, Zezhong; Li, Li; Zheng, Yan
2017-10-01
Unloading from macrocell network and enhancing coverage can be realized by deploying femtocells in the indoor scenario. However, the system performance of the two-tier network could be impaired by the co-tier and cross-tier interference. In this paper, a distributed resource allocation scheme is studied when each femtocell base station is self-governed and the resource cannot be assigned centrally through the gateway. A novel Q-Learning interference management scheme is proposed, that is divided into cooperative and independent part. In the cooperative algorithm, the interference information is exchanged between the cell-edge users which are classified by the fuzzy logic in the same cell. Meanwhile, we allocate the orthogonal subchannels to the high-rate cell-edge users to disperse the interference power when the data rate requirement is satisfied. The resource is assigned directly according to the minimum power principle in the independent algorithm. Simulation results are provided to demonstrate the significant performance improvements in terms of the average data rate, interference power and energy efficiency over the cutting-edge resource allocation algorithms.
Mathematics of Fuzzy Sets and Fuzzy Logic
Bede, Barnabas
2013-01-01
This book presents a mathematically-based introduction into the fascinating topic of Fuzzy Sets and Fuzzy Logic and might be used as textbook at both undergraduate and graduate levels and also as reference guide for mathematician, scientists or engineers who would like to get an insight into Fuzzy Logic. Fuzzy Sets have been introduced by Lotfi Zadeh in 1965 and since then, they have been used in many applications. As a consequence, there is a vast literature on the practical applications of fuzzy sets, while theory has a more modest coverage. The main purpose of the present book is to reduce this gap by providing a theoretical introduction into Fuzzy Sets based on Mathematical Analysis and Approximation Theory. Well-known applications, as for example fuzzy control, are also discussed in this book and placed on new ground, a theoretical foundation. Moreover, a few advanced chapters and several new results are included. These comprise, among others, a new systematic and constructive approach for fuzzy infer...
Coupland, Simon
2006-01-01
There has recently been a significant increase in academic interest in the field oftype-2 fuzzy sets and systems. Type-2 fuzzy systems offer the ability to model and reason with uncertain concepts. When faced with uncertainties type-2 fuzzy systems should, theoretically, give an increase in performance over type-l fuzzy systems. However, the computational complexity of generalised type-2 fuzzy systems is significantly higher than type-l systems. A direct consequence of this is that, prior to ...
Enhancing the selection of backoff interval using fuzzy logic over wireless Ad Hoc networks.
Ranganathan, Radha; Kannan, Kathiravan
2015-01-01
IEEE 802.11 is the de facto standard for medium access over wireless ad hoc network. The collision avoidance mechanism (i.e., random binary exponential backoff-BEB) of IEEE 802.11 DCF (distributed coordination function) is inefficient and unfair especially under heavy load. In the literature, many algorithms have been proposed to tune the contention window (CW) size. However, these algorithms make every node select its backoff interval between [0, CW] in a random and uniform manner. This randomness is incorporated to avoid collisions among the nodes. But this random backoff interval can change the optimal order and frequency of channel access among competing nodes which results in unfairness and increased delay. In this paper, we propose an algorithm that schedules the medium access in a fair and effective manner. This algorithm enhances IEEE 802.11 DCF with additional level of contention resolution that prioritizes the contending nodes according to its queue length and waiting time. Each node computes its unique backoff interval using fuzzy logic based on the input parameters collected from contending nodes through overhearing. We evaluate our algorithm against IEEE 802.11, GDCF (gentle distributed coordination function) protocols using ns-2.35 simulator and show that our algorithm achieves good performance.
Enhancing the Selection of Backoff Interval Using Fuzzy Logic over Wireless Ad Hoc Networks
Ranganathan, Radha; Kannan, Kathiravan
2015-01-01
IEEE 802.11 is the de facto standard for medium access over wireless ad hoc network. The collision avoidance mechanism (i.e., random binary exponential backoff—BEB) of IEEE 802.11 DCF (distributed coordination function) is inefficient and unfair especially under heavy load. In the literature, many algorithms have been proposed to tune the contention window (CW) size. However, these algorithms make every node select its backoff interval between [0, CW] in a random and uniform manner. This randomness is incorporated to avoid collisions among the nodes. But this random backoff interval can change the optimal order and frequency of channel access among competing nodes which results in unfairness and increased delay. In this paper, we propose an algorithm that schedules the medium access in a fair and effective manner. This algorithm enhances IEEE 802.11 DCF with additional level of contention resolution that prioritizes the contending nodes according to its queue length and waiting time. Each node computes its unique backoff interval using fuzzy logic based on the input parameters collected from contending nodes through overhearing. We evaluate our algorithm against IEEE 802.11, GDCF (gentle distributed coordination function) protocols using ns-2.35 simulator and show that our algorithm achieves good performance. PMID:25879066
Structural Completeness in Fuzzy Logics
Czech Academy of Sciences Publication Activity Database
Cintula, Petr; Metcalfe, G.
2009-01-01
Roč. 50, č. 2 (2009), s. 153-183 ISSN 0029-4527 R&D Projects: GA MŠk(CZ) 1M0545 Institutional research plan: CEZ:AV0Z10300504 Keywords : structral logics * fuzzy logics * structural completeness * admissible rules * primitive variety * residuated lattices Subject RIV: BA - General Mathematics
Fuzzy logic in autonomous orbital operations
Lea, Robert N.; Jani, Yashvant
1991-01-01
Fuzzy logic can be used advantageously in autonomous orbital operations that require the capability of handling imprecise measurements from sensors. Several applications are underway to investigate fuzzy logic approaches and develop guidance and control algorithms for autonomous orbital operations. Translational as well as rotational control of a spacecraft have been demonstrated using space shuttle simulations. An approach to a camera tracking system has been developed to support proximity operations and traffic management around the Space Station Freedom. Pattern recognition and object identification algorithms currently under development will become part of this camera system at an appropriate level in the future. A concept to control environment and life support systems for large Lunar based crew quarters is also under development. Investigations in the area of reinforcement learning, utilizing neural networks, combined with a fuzzy logic controller, are planned as a joint project with the Ames Research Center.
FUZZY LOGIC IN LEGAL EDUCATION
Directory of Open Access Journals (Sweden)
Z. Gonul BALKIR
2011-04-01
Full Text Available The necessity of examination of every case within its peculiar conditions in social sciences requires different approaches complying with the spirit and nature of social sciences. Multiple realities require different and various perceptual interpretations. In modern world and social sciences, interpretation of perception of valued and multi-valued have been started to be understood by the principles of fuzziness and fuzzy logic. Having the verbally expressible degrees of truthness such as true, very true, rather true, etc. fuzzy logic provides the opportunity for the interpretation of especially complex and rather vague set of information by flexibility or equivalence of the variables’ of fuzzy limitations. The methods and principles of fuzzy logic can be benefited in examination of the methodological problems of law, especially in the applications of filling the legal loopholes arising from the ambiguities and interpretation problems in order to understand the legal rules in a more comprehensible and applicable way and the efficiency of legal implications. On the other hand, fuzzy logic can be used as a technical legal method in legal education and especially in legal case studies and legal practice applications in order to provide the perception of law as a value and the more comprehensive and more quality perception and interpretation of value of justice, which is the core value of law. In the perception of what happened as it has happened in legal relationships and formations, the understanding of social reality and sociological legal rules with multi valued sense perspective and the their applications in accordance with the fuzzy logic’s methods could create more equivalent and just results. It can be useful for the young lawyers and law students as a facilitating legal method especially in the materialization of the perception and interpretation of multi valued and variables. Using methods and principles of fuzzy logic in legal
Fuzzy Logic and Arithmetical Hierarchy III
Czech Academy of Sciences Publication Activity Database
Hájek, Petr
2001-01-01
Roč. 68, č. 1 (2001), s. 129-142 ISSN 0039-3215 R&D Projects: GA AV ČR IAA1030004 Institutional research plan: AV0Z1030915 Keywords : fuzzy logic * basic fuzzy logic * Lukasiewicz logic * Godel logic * product logic * arithmetical hierarchy Subject RIV: BA - General Mathematics
Fuzzy Logic Reliability Centered Maintenance
Directory of Open Access Journals (Sweden)
Felecia .
2014-01-01
Full Text Available Reliability Centered Maintenence (RCM is a systematic maintenence strategy based on system reliability. Application of RCM process will not always come out with a binary output of “yes” and “no”. Most of the time they are not supported with available detail information to calculate system reliability. The fuzzy logic method attempts to eliminate the uncertainty by providing “truth” in different degrees.Data and responses from maintenance department will be processed using the two methods (reliability centered maintenance and fuzzy logic to design maintenance strategy for the company. The results of the fuzzy logic RCM application are maintenance strategy which fit with current and future condition.
Fuzzy Logic in Medicine and Bioinformatics
Directory of Open Access Journals (Sweden)
Angela Torres
2006-01-01
Full Text Available The purpose of this paper is to present a general view of the current applications of fuzzy logic in medicine and bioinformatics. We particularly review the medical literature using fuzzy logic. We then recall the geometrical interpretation of fuzzy sets as points in a fuzzy hypercube and present two concrete illustrations in medicine (drug addictions and in bioinformatics (comparison of genomes.
From Fuzzy Logic to Fuzzy Mathematics: A Methodological Manifesto
Czech Academy of Sciences Publication Activity Database
Běhounek, Libor; Cintula, Petr
2006-01-01
Roč. 157, č. 5 (2006), s. 642-646 ISSN 0165-0114 R&D Projects: GA AV ČR KJB100300502 Institutional research plan: CEZ:AV0Z10300504 Keywords : non-classical logics * formal fuzzy logic * formal fuzzy mathematics * high-order fuzzy logic Subject RIV: BA - General Mathematics Impact factor: 1.181, year: 2006
The first order fuzzy predicate logic (I)
International Nuclear Information System (INIS)
Sheng, Y.M.
1986-01-01
Some analysis tools of fuzzy measures, Sugeno's integrals, etc. are introduced into the semantic of the first order predicate logic to explain the concept of fuzzy quantifiers. The truth value of a fuzzy quantification proposition is represented by Sugeno's integral. With this framework, several important notions of formation rules, fuzzy valutions and fuzzy validity are discussed
Neurocontrol and fuzzy logic: Connections and designs
Werbos, Paul J.
1991-01-01
Artificial neural networks (ANNs) and fuzzy logic are complementary technologies. ANNs extract information from systems to be learned or controlled, while fuzzy techniques mainly use verbal information from experts. Ideally, both sources of information should be combined. For example, one can learn rules in a hybrid fashion, and then calibrate them for better whole-system performance. ANNs offer universal approximation theorems, pedagogical advantages, very high-throughput hardware, and links to neurophysiology. Neurocontrol - the use of ANNs to directly control motors or actuators, etc. - uses five generalized designs, related to control theory, which can work on fuzzy logic systems as well as ANNs. These designs can copy what experts do instead of what they say, learn to track trajectories, generalize adaptive control, and maximize performance or minimize cost over time, even in noisy environments. Design tradeoffs and future directions are discussed throughout.
Morpho (?) phono (?) logical fuzzy edges
African Journals Online (AJOL)
Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. Morpho (?) phono (?) logical fuzzy edges: The case of {-/}/{-/U/} semantic (?) contrast in Shona. K. G. Mkangwanwi. Abstract. (ZAMBEZIA: Journal of Humanities of the Univ of Zimbabwe, 2000 27(1): 47-54). Full Text: EMAIL FULL TEXT EMAIL FULL TEXT
Anaesthesia monitoring using fuzzy logic.
Baig, Mirza Mansoor; Gholamhosseini, Hamid; Kouzani, Abbas; Harrison, Michael J
2011-10-01
Humans have a limited ability to accurately and continuously analyse large amount of data. In recent times, there has been a rapid growth in patient monitoring and medical data analysis using smart monitoring systems. Fuzzy logic-based expert systems, which can mimic human thought processes in complex circumstances, have indicated potential to improve clinicians' performance and accurately execute repetitive tasks to which humans are ill-suited. The main goal of this study is to develop a clinically useful diagnostic alarm system based on fuzzy logic for detecting critical events during anaesthesia administration. The proposed diagnostic alarm system called fuzzy logic monitoring system (FLMS) is presented. New diagnostic rules and membership functions (MFs) are developed. In addition, fuzzy inference system (FIS), adaptive neuro fuzzy inference system (ANFIS), and clustering techniques are explored for developing the FLMS' diagnostic modules. The performance of FLMS which is based on fuzzy logic expert diagnostic systems is validated through a series of off-line tests. The training and testing data set are selected randomly from 30 sets of patients' data. The accuracy of diagnoses generated by the FLMS was validated by comparing the diagnostic information with the one provided by an anaesthetist for each patient. Kappa-analysis was used for measuring the level of agreement between the anaesthetist's and FLMS's diagnoses. When detecting hypovolaemia, a substantial level of agreement was observed between FLMS and the human expert (the anaesthetist) during surgical procedures. The diagnostic alarm system FLMS demonstrated that evidence-based expert diagnostic systems can diagnose hypovolaemia, with a substantial degree of accuracy, in anaesthetized patients and could be useful in delivering decision support to anaesthetists.
Directory of Open Access Journals (Sweden)
Houda Jouini
2010-01-01
Full Text Available As a perspective to ensure the power system stability and to avoid the vulnerability leading to the blackouts, several preventive and curative means are adopted. In order to avoid the voltage collapse, load shedding schemes represent a suitable action to maintain the power system service quality and to control its vulnerability. In this paper, we try to propose an intelligent load shedding strategy as a new approach based on fuzzy controllers. This strategy was founded on the calculation of generated power sensitivity degree related to those injected at different network buses. During the fault phase, fuzzy controller algorithms generate monitor vectors ensuring a precalculated load shedding ratio in the purpose to reestablish the power balance and conduct the network to a new steady state.
Fuzzy-Logic Based Distributed Energy-Efficient Clustering Algorithm for Wireless Sensor Networks.
Zhang, Ying; Wang, Jun; Han, Dezhi; Wu, Huafeng; Zhou, Rundong
2017-07-03
Due to the high-energy efficiency and scalability, the clustering routing algorithm has been widely used in wireless sensor networks (WSNs). In order to gather information more efficiently, each sensor node transmits data to its Cluster Head (CH) to which it belongs, by multi-hop communication. However, the multi-hop communication in the cluster brings the problem of excessive energy consumption of the relay nodes which are closer to the CH. These nodes' energy will be consumed more quickly than the farther nodes, which brings the negative influence on load balance for the whole networks. Therefore, we propose an energy-efficient distributed clustering algorithm based on fuzzy approach with non-uniform distribution (EEDCF). During CHs' election, we take nodes' energies, nodes' degree and neighbor nodes' residual energies into consideration as the input parameters. In addition, we take advantage of Takagi, Sugeno and Kang (TSK) fuzzy model instead of traditional method as our inference system to guarantee the quantitative analysis more reasonable. In our scheme, each sensor node calculates the probability of being as CH with the help of fuzzy inference system in a distributed way. The experimental results indicate EEDCF algorithm is better than some current representative methods in aspects of data transmission, energy consumption and lifetime of networks.
Fuzzy-Logic Based Distributed Energy-Efficient Clustering Algorithm for Wireless Sensor Networks
Zhang, Ying; Wang, Jun; Han, Dezhi; Wu, Huafeng; Zhou, Rundong
2017-01-01
Due to the high-energy efficiency and scalability, the clustering routing algorithm has been widely used in wireless sensor networks (WSNs). In order to gather information more efficiently, each sensor node transmits data to its Cluster Head (CH) to which it belongs, by multi-hop communication. However, the multi-hop communication in the cluster brings the problem of excessive energy consumption of the relay nodes which are closer to the CH. These nodes’ energy will be consumed more quickly than the farther nodes, which brings the negative influence on load balance for the whole networks. Therefore, we propose an energy-efficient distributed clustering algorithm based on fuzzy approach with non-uniform distribution (EEDCF). During CHs’ election, we take nodes’ energies, nodes’ degree and neighbor nodes’ residual energies into consideration as the input parameters. In addition, we take advantage of Takagi, Sugeno and Kang (TSK) fuzzy model instead of traditional method as our inference system to guarantee the quantitative analysis more reasonable. In our scheme, each sensor node calculates the probability of being as CH with the help of fuzzy inference system in a distributed way. The experimental results indicate EEDCF algorithm is better than some current representative methods in aspects of data transmission, energy consumption and lifetime of networks. PMID:28671641
Introduction to fuzzy logic using Matlab
Sivanandam, SN; Deepa, S N
2006-01-01
Fuzzy Logic, at present is a hot topic, among academicians as well various programmers. This book is provided to give a broad, in-depth overview of the field of Fuzzy Logic. The basic principles of Fuzzy Logic are discussed in detail with various solved examples. The different approaches and solutions to the problems given in the book are well balanced and pertinent to the Fuzzy Logic research projects. The applications of Fuzzy Logic are also dealt to make the readers understand the concept of Fuzzy Logic. The solutions to the problems are programmed using MATLAB 6.0 and the simulated results are given. The MATLAB Fuzzy Logic toolbox is provided for easy reference.
Fuzzy Logic for Incidence Geometry
2016-01-01
The paper presents a mathematical framework for approximate geometric reasoning with extended objects in the context of Geography, in which all entities and their relationships are described by human language. These entities could be labelled by commonly used names of landmarks, water areas, and so forth. Unlike single points that are given in Cartesian coordinates, these geographic entities are extended in space and often loosely defined, but people easily perform spatial reasoning with extended geographic objects “as if they were points.” Unfortunately, up to date, geographic information systems (GIS) miss the capability of geometric reasoning with extended objects. The aim of the paper is to present a mathematical apparatus for approximate geometric reasoning with extended objects that is usable in GIS. In the paper we discuss the fuzzy logic (Aliev and Tserkovny, 2011) as a reasoning system for geometry of extended objects, as well as a basis for fuzzification of the axioms of incidence geometry. The same fuzzy logic was used for fuzzification of Euclid's first postulate. Fuzzy equivalence relation “extended lines sameness” is introduced. For its approximation we also utilize a fuzzy conditional inference, which is based on proposed fuzzy “degree of indiscernibility” and “discernibility measure” of extended points. PMID:27689133
Logical Characterisation of Ontology Construction using Fuzzy Description Logics
DEFF Research Database (Denmark)
Badie, Farshad; Götzsche, Hans
Ontologies based on Description Logics (DLs) have proved to be effective in formally sharing knowledge across semantic technologies, e.g. Semantic Web, Natural Language Processing, Text Analytics, Business intelligence. Our main goal is analysing ontology construction considering vagueness. We have...... had the extension of ontologies with Fuzzy Logic capabilities which plan to make proper backgrounds for ontology driven reasoning and argumentation on vague and imprecise domains. This presentation conceptualises learning from fuzzy classes using the Inductive Logic Programming framework. Then......, employs Description Logics in characterising and analysing fuzzy statements. And finally, provides a conceptual framework describing fuzzy concept learning in ontologies using the Inductive Logic Programming....
APPLICATION OF FUZZY LOGIC TOOLBOX FOR MODELLING FUZZY LOGIC CONTROLLERS
Olesiak, Krzysztof
2017-01-01
Computer technology, which has been developing very fast in the recent years, can be also fruitfully applied in teaching. For example, the software package Matlab is highly useful in teaching students at Bachelor Programs of Electrical Engineering and Automatics and Robotics. Fuzzy Logic Toolbox of the Matlab package can be used for designing and modelling controllers. Thanks to a large number of pre-defined elements available in the libraries, it is possible to create even highly complicated...
Senthil Kumar, A R; Goyal, Manish Kumar; Ojha, C S P; Singh, R D; Swamee, P K
2013-01-01
The prediction of streamflow is required in many activities associated with the planning and operation of the components of a water resources system. Soft computing techniques have proven to be an efficient alternative to traditional methods for modelling qualitative and quantitative water resource variables such as streamflow, etc. The focus of this paper is to present the development of models using multiple linear regression (MLR), artificial neural network (ANN), fuzzy logic and decision tree algorithms such as M5 and REPTree for predicting the streamflow at Kasol located at the upstream of Bhakra reservoir in Sutlej basin in northern India. The input vector to the various models using different algorithms was derived considering statistical properties such as auto-correlation function, partial auto-correlation and cross-correlation function of the time series. It was found that REPtree model performed well compared to other soft computing techniques such as MLR, ANN, fuzzy logic, and M5P investigated in this study and the results of the REPTree model indicate that the entire range of streamflow values were simulated fairly well. The performance of the naïve persistence model was compared with other models and the requirement of the development of the naïve persistence model was also analysed by persistence index.
Mathematical Fuzzy Logic - State of Art 2001
Czech Academy of Sciences Publication Activity Database
Hájek, Petr
2003-01-01
Roč. 24, - (2003), s. 71-89 ISSN 0103-9059. [WOLLIC'2001. Brasília, 31.07.2001-03.08.2001] R&D Projects: GA MŠk LN00A056 Keywords : fuzzy logic * many valued logic * basic fuzzy logic BL Subject RIV: BA - General Mathematics http://www.mat.unb.br/~matcont/24_4.pdf
evaluation of a multi-variable self-learning fuzzy logic controller
African Journals Online (AJOL)
Dr Obe
2003-03-01
Mar 1, 2003 ... the merger of fuzzy logic and other forms of soft computing (principally Neural. Networks and Genetic ... merger of soft computing technologies, but instead is based on a purely fuzzy logic platform, was .... A scheme capable of automatic elicitation of suitable rules for a multivariable fuzzy logic controller has ...
Yeşilkanat, Cafer Mert; Kobya, Yaşar; Taşkın, Halim; Çevik, Uğur
2017-09-01
The aim of this study was to determine spatial risk dispersion of ambient gamma dose rate (AGDR) by using both artificial neural network (ANN) and fuzzy logic (FL) methods, compare the performances of methods, make dose estimations for intermediate stations with no previous measurements and create dose rate risk maps of the study area. In order to determine the dose distribution by using artificial neural networks, two main networks and five different network structures were used; feed forward ANN; Multi-layer perceptron (MLP), Radial basis functional neural network (RBFNN), Quantile regression neural network (QRNN) and recurrent ANN; Jordan networks (JN), Elman networks (EN). In the evaluation of estimation performance obtained for the test data, all models appear to give similar results. According to the cross-validation results obtained for explaining AGDR distribution, Pearson's r coefficients were calculated as 0.94, 0.91, 0.89, 0.91, 0.91 and 0.92 and RMSE values were calculated as 34.78, 43.28, 63.92, 44.86, 46.77 and 37.92 for MLP, RBFNN, QRNN, JN, EN and FL, respectively. In addition, spatial risk maps showing distributions of AGDR of the study area were created by all models and results were compared with geological, topological and soil structure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Radi Radi
2011-08-01
Full Text Available Constructive Back Propagation Neural Network (CBPNN is a kind of back propagation neural network trained with constructive algorithm. Training of CBPNN is mainly conducted by developing the network’s architecture which commonly done by adding a number of new neuron units on learning process. Training of the network usually implements fixed method to develop its structure gradually by adding new units constantly. Although this method is simple and able to create an adaptive network for data pattern complexity, but it is wasteful and inefficient for computing. New unit addition affects directly to the computational load of training, speed of convergence, and structure of the final neural network. While increases training load significantly, excessive addition of units also tends to generate a large size of final network. Moreover, addition pattern with small unit number tends to drop off the adaptability of the network and extends time of training. Therefore, there is important to design an adaptive structure development pattern for CBPNN in order to minimize computing load of training. This study proposes Fuzzy Logic (FL algorithm to manage and develop structure of CBPNN. FL method was implemented on two models of CBPNN, i.e. designed with one and two hidden layers, used to recognize aroma patterns on an electronic nose system. The results showed that this method is effective to be applied due to its capability to minimize time of training, to reduce load of computational learning, and generate small size of network.
ECG Prediction Based on Classification via Neural Networks and Linguistic Fuzzy Logic Forecaster.
Volna, Eva; Kotyrba, Martin; Habiballa, Hashim
2015-01-01
The paper deals with ECG prediction based on neural networks classification of different types of time courses of ECG signals. The main objective is to recognise normal cycles and arrhythmias and perform further diagnosis. We proposed two detection systems that have been created with usage of neural networks. The experimental part makes it possible to load ECG signals, preprocess them, and classify them into given classes. Outputs from the classifiers carry a predictive character. All experimental results from both of the proposed classifiers are mutually compared in the conclusion. We also experimented with the new method of time series transparent prediction based on fuzzy transform with linguistic IF-THEN rules. Preliminary results show interesting results based on the unique capability of this approach bringing natural language interpretation of particular prediction, that is, the properties of time series.
DESIGN POWER SYSTEM STABILIZER MENGGUNAKAN FUZZY LOGIC
Directory of Open Access Journals (Sweden)
Ivo Salvador Soares Miranda
2014-10-01
Full Text Available Stabiltas merupakan kemampuan sistem untuk menjaga kondisi operasi seimbang dan kembali kekondisi operasi normal ketika terjadi gangguan. Penerapan power system stabilizer pada sistem tenaga mampu memberikan sinyal respon yang cepat atas berbagai kondisi gangguan dan mengupayakan tidak meluasnya jangkauan gangguan. Dalam mendesign power system stabilizer menggunakan robust fuzzy logic, menggunakan satu sinyal input yaitu kecepatan deviasi rotor. Hasil simulasinya dibandingkan dengan metode fuzzy logic dan kovensional. Studi simulasi menunjukan, design power system stabilizer menggunakan robust fuzzy logic memiliki nilai sinyal peak time dan settling time relatif kecil dibandingkan dengan metode fuzzy logic dan konvensional.
Fuzzy logic based robotic controller
Attia, F.; Upadhyaya, M.
1994-01-01
Existing Proportional-Integral-Derivative (PID) robotic controllers rely on an inverse kinematic model to convert user-specified cartesian trajectory coordinates to joint variables. These joints experience friction, stiction, and gear backlash effects. Due to lack of proper linearization of these effects, modern control theory based on state space methods cannot provide adequate control for robotic systems. In the presence of loads, the dynamic behavior of robotic systems is complex and nonlinear, especially where mathematical modeling is evaluated for real-time operators. Fuzzy Logic Control is a fast emerging alternative to conventional control systems in situations where it may not be feasible to formulate an analytical model of the complex system. Fuzzy logic techniques track a user-defined trajectory without having the host computer to explicitly solve the nonlinear inverse kinematic equations. The goal is to provide a rule-based approach, which is closer to human reasoning. The approach used expresses end-point error, location of manipulator joints, and proximity to obstacles as fuzzy variables. The resulting decisions are based upon linguistic and non-numerical information. This paper presents a solution to the conventional robot controller which is independent of computationally intensive kinematic equations. Computer simulation results of this approach as obtained from software implementation are also discussed.
Directory of Open Access Journals (Sweden)
José Raúl Castro
2016-02-01
Full Text Available This paper presents an efficient algorithm to solve the multi-objective (MO voltage control problem in distribution networks. The proposed algorithm minimizes the following three objectives: voltage variation on pilot buses, reactive power production ratio deviation, and generator voltage deviation. This work leverages two optimization techniques: fuzzy logic to find the optimum value of the reactive power of the distributed generation (DG and Pareto optimization to find the optimal value of the pilot bus voltage so that this produces lower losses under the constraints that the voltage remains within established limits. Variable loads and DGs are taken into account in this paper. The algorithm is tested on an IEEE 13-node test feeder and the results show the effectiveness of the proposed model.
Molecular processors: from qubits to fuzzy logic.
Gentili, Pier Luigi
2011-03-14
Single molecules or their assemblies are information processing devices. Herein it is demonstrated how it is possible to process different types of logic through molecules. As long as decoherent effects are maintained far away from a pure quantum mechanical system, quantum logic can be processed. If the collapse of superimposed or entangled wavefunctions is unavoidable, molecules can still be used to process either crisp (binary or multi-valued) or fuzzy logic. The way for implementing fuzzy inference engines is declared and it is supported by the examples of molecular fuzzy logic systems devised so far. Fuzzy logic is drawing attention in the field of artificial intelligence, because it models human reasoning quite well. This ability may be due to some structural analogies between a fuzzy logic system and the human nervous system. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The ternary-encoded fuzzy-neural networks
Semenova, Olena; Semenov, Andriy; Koval, Kostyantyn; Galka, Andriy
2012-01-01
When combining fuzzy logic and neural networks it is possible to get a hybrid system that can process uncertain values and can be trained. Fuzzy logic elements can be regarded as fuzzy-neural networks. In order to present a set of fuzzy values the ternary encoding is used.
Possible use of fuzzy logic in database
Directory of Open Access Journals (Sweden)
Vaclav Bezdek
2011-04-01
Full Text Available The article deals with fuzzy logic and its possible use in database systems. At first fuzzy thinking style is shown on a simple example. Next the advantages of the fuzzy approach to database searching are considered on the database of used cars in the Czech Republic.
Logical Characterisation of Ontology Construction using Fuzzy Description Logics
DEFF Research Database (Denmark)
Badie, Farshad; Götzsche, Hans
Ontologies based on Description Logics (DLs) have proved to be effective in formally sharing knowledge across semantic technologies, e.g. Semantic Web, Natural Language Processing, Text Analytics, Business intelligence. Our main goal is analysing ontology construction considering vagueness. We have......, employs Description Logics in characterising and analysing fuzzy statements. And finally, provides a conceptual framework describing fuzzy concept learning in ontologies using the Inductive Logic Programming....
Fifty years of fuzzy logic and its applications
Rishe, Naphtali; Kandel, Abraham
2015-01-01
This book presents a comprehensive report on the evolution of Fuzzy Logic since its formulation in Lotfi Zadeh’s seminal paper on “fuzzy sets,” published in 1965. In addition, it features a stimulating sampling from the broad field of research and development inspired by Zadeh’s paper. The chapters, written by pioneers and prominent scholars in the field, show how fuzzy sets have been successfully applied to artificial intelligence, control theory, inference, and reasoning. The book also reports on theoretical issues; features recent applications of Fuzzy Logic in the fields of neural networks, clustering, data mining, and software testing; and highlights an important paradigm shift caused by Fuzzy Logic in the area of uncertainty management. Conceived by the editors as an academic celebration of the fifty years’ anniversary of the 1965 paper, this work is a must-have for students and researchers willing to get an inspiring picture of the potentialities, limitations, achievements and accomplishments...
Acoustic leak detection at complicated geometrical structures using fuzzy logic and neural networks
International Nuclear Information System (INIS)
Hessel, G.; Schmitt, W.; Weiss, F.P.
1993-10-01
An acoustic method based on pattern recognition is being developed. During the learning phase, the localization classifier is trained with sound patterns that are generated with simulated leaks at all locations endangered by leak. The patterns are extracted from the signals of an appropriate sensor array. After training unknown leak positions can be recognized through comparison with the training patterns. The experimental part is performed at an acoustic 1:3 model of the reactor vessel and head and at an original VVER-440 reactor in the former NPP Greifswald. The leaks were simulated at the vessel head using mobile sound sources driven either by compressed air, a piezoelectric transmitter or by a thin metal blade excited through a jet of compressed air. The sound patterns of the simulated leaks are simultaneously detected with an AE-sensor array and with high frequency microphones measuring structure-borne sound and airborne sound, respectively. Pattern classifiers based on Fuzzy Pattern Classification (FPC) and Artificial Neural Networks (ANN) are currently tested for validation of the acoustic emission-sensor array (FPC), leak localization via structure-borne sound (FPC) and the leak localization using microphones (ANN). The initial results show the used classifiers principally to be capable of detecting and locating leaks, but they also show that further investigations are necessary to develop a reliable method applicable at NPPs. (orig./HP)
Abou, Seraphin C
2012-03-01
In this paper, a new interpretation of intuitionistic fuzzy sets in the advanced framework of the Dempster-Shafer theory of evidence is extended to monitor safety-critical systems' performance. Not only is the proposed approach more effective, but it also takes into account the fuzzy rules that deal with imperfect knowledge/information and, therefore, is different from the classical Takagi-Sugeno fuzzy system, which assumes that the rule (the knowledge) is perfect. We provide an analytical solution to the practical and important problem of the conceptual probabilistic approach for formal ship safety assessment using the fuzzy set theory that involves uncertainties associated with the reliability input data. Thus, the overall safety of the ship engine is investigated as an object of risk analysis using the fuzzy mapping structure, which considers uncertainty and partial truth in the input-output mapping. The proposed method integrates direct evidence of the frame of discernment and is demonstrated through references to examples where fuzzy set models are informative. These simple applications illustrate how to assess the conflict of sensor information fusion for a sufficient cooling power system of vessels under extreme operation conditions. It was found that propulsion engine safety systems are not only a function of many environmental and operation profiles but are also dynamic and complex. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fuzzy Logic Based Automatic Door Control System
Directory of Open Access Journals (Sweden)
Harun SUMBUL
2017-12-01
Full Text Available In this paper, fuzzy logic based an automatic door control system is designed to provide for heat energy savings. The heat energy loss usually occurs in where outomotic doors are used. Designed fuzzy logic system’s Input statuses (WS: Walking Speed and DD: Distance Door and the output status (DOS: Door Opening Speed is determined. According to these cases, rule base (25 rules is created; the rules are processed by a fuzzy logic and by appyled to control of an automatic door. An interface program is prepared by using Matlab Graphical User Interface (GUI programming language and some sample results are checked on Matlab using fuzzy logic toolbox. Designed fuzzy logic controller is tested at different speed cases and the results are plotted. As a result; in this study, we have obtained very good results in control of an automatic door with fuzzy logic. The results of analyses have indicated that the controls performed with fuzzy logic provided heat energy savings, less heat energy loss and reliable, consistent controls and that are feasible to in real.
Czech Academy of Sciences Publication Activity Database
Horčík, Rostislav; Noguera, C.; Petrík, M.
2007-01-01
Roč. 53, č. 3 (2007), s. 268-288 ISSN 0942-5616 R&D Projects: GA AV ČR 1ET100300517 Institutional research plan: CEZ:AV0Z10300504 Keywords : algebraic logic * fuzzy logics * generalized contraction * generalized excluded middle * left-continuous t-norms * MTL-algebras * non-classical logics * residuated lattices * standard completeness * substructural logics * varieties * weak cancellation Subject RIV: BA - General Mathematics Impact factor: 0.317, year: 2007
Directory of Open Access Journals (Sweden)
Yiming Jiang
2016-01-01
Full Text Available Over the last few decades, the intelligent control methods such as fuzzy logic control (FLC and neural network (NN control have been successfully used in various applications. The rapid development of digital computer based control systems requires control signals to be calculated in a digital or discrete-time form. In this background, the intelligent control methods developed for discrete-time systems have drawn great attentions. This survey aims to present a summary of the state of the art of the design of FLC and NN-based intelligent control for discrete-time systems. For discrete-time FLC systems, numerous remarkable design approaches are introduced and a series of efficient methods to deal with the robustness, stability, and time delay of FLC discrete-time systems are recommended. Techniques for NN-based intelligent control for discrete-time systems, such as adaptive methods and adaptive dynamic programming approaches, are also reviewed. Overall, this paper is devoted to make a brief summary for recent progresses in FLC and NN-based intelligent control design for discrete-time systems as well as to present our thoughts and considerations of recent trends and potential research directions in this area.
Fuzzy logic applications in engineering science
Harris, J
2006-01-01
Fuzzy logic is a relatively new concept in science applications. Hitherto, fuzzy logic has been a conceptual process applied in the field of risk management. Its potential applicability is much wider than that, however, and its particular suitability for expanding our understanding of processes and information in science and engineering in our post-modern world is only just beginning to be appreciated. Written as a companion text to the author's earlier volume "An Introduction to Fuzzy Logic Applications", the book is aimed at professional engineers and students and those with an interest in exploring the potential of fuzzy logic as an information processing kit with a wide variety of practical applications in the field of engineering science and develops themes and topics introduced in the author's earlier text.
Redundant sensor validation by using fuzzy logic
International Nuclear Information System (INIS)
Holbert, K.E.; Heger, A.S.; Alang-Rashid, N.K.
1994-01-01
This research is motivated by the need to relax the strict boundary of numeric-based signal validation. To this end, the use of fuzzy logic for redundant sensor validation is introduced. Since signal validation employs both numbers and qualitative statements, fuzzy logic provides a pathway for transforming human abstractions into the numerical domain and thus coupling both sources of information. With this transformation, linguistically expressed analysis principles can be coded into a classification rule-base for signal failure detection and identification
Towards the future of fuzzy logic
Trillas, Enric; Kacprzyk, Janusz
2015-01-01
This book provides readers with a snapshot of the state-of-the art in fuzzy logic. Throughout the chapters, key theories developed in the last fifty years as well as important applications to practical problems are presented and discussed from different perspectives, as the authors hail from different disciplines and therefore use fuzzy logic for different purposes. The book aims at showing how fuzzy logic has evolved since the first theory formulation by Lotfi A. Zadeh in his seminal paper on Fuzzy Sets in 1965. Fuzzy theories and implementation grew at an impressive speed and achieved significant results, especially on the applicative side. The study of fuzzy logic and its practice spread all over the world, from Europe to Asia, America and Oceania. The editors believe that, thanks to the drive of young researchers, fuzzy logic will be able to face the challenging goals posed by computing with words. New frontiers of knowledge are waiting to be explored. In order to motivate young people to engage in the ...
Fuzzy logic based classification and assessment of pathological voice signals.
Aghazadeh, Babak Seyed; Heris, Hossein Khadivi
2009-01-01
In this paper an efficient fuzzy wavelet packet (WP) based feature extraction method and fuzzy logic based disorder assessment technique were used to investigate voice signals of patients suffering from unilateral vocal fold paralysis (UVFP). Mother wavelet function of tenth order Daubechies (d10) was employed to decompose signals in 5 levels. Next, WP coefficients were used to measure energy and Shannon entropy features at different spectral sub-bands. Consequently, using fuzzy c-means method, signals were clustered into 2 classes. The amount of fuzzy membership of pathological and normal signals in their corresponding clusters was considered as a measure to quantify the discrimination ability of features. A classification accuracy of 100 percent was achieved using an artificial neural network classifier. Finally, fuzzy c-means clustering method was used as a way of voice pathology assessment. Accordingly, fuzzy membership function based health index is proposed.
Fuzzy Hypotheses Testing in the Framework of Fuzzy Logic
Czech Academy of Sciences Publication Activity Database
Holeňa, Martin
2004-01-01
Roč. 145, - (2004), s. 229-252 ISSN 0165-0114 R&D Projects: GA AV ČR IAA1030004; GA MŠk OC 274.001 Grant - others:COST(XE) Action 274 TARSKI Institutional research plan: CEZ:AV0Z1030915 Keywords : non-classical logics * fuzzy predicate calculus * basic fuzzy logic * generalized quantifiers * fuzzy statistics and data analysis * vague hypotheses * vague significance level * method Guha Subject RIV: BB - Applied Statistics , Operational Research Impact factor: 0.734, year: 2004
Improvements to Earthquake Location with a Fuzzy Logic Approach
Gökalp, Hüseyin
2018-01-01
In this study, improvements to the earthquake location method were investigated using a fuzzy logic approach proposed by Lin and Sanford (Bull Seismol Soc Am 91:82-93, 2001). The method has certain advantages compared to the inverse methods in terms of eliminating the uncertainties of arrival times and reading errors. In this study, adopting this approach, epicentral locations were determined based on the results of a fuzzy logic space concerning the uncertainties in the velocity models. To map the uncertainties in arrival times into the fuzzy logic space, a trapezoidal membership function was constructed by directly using the travel time difference between the two stations for the P- and S-arrival times instead of the P- and S-wave models to eliminate the need for obtaining information concerning the velocity structure of the study area. The results showed that this method worked most effectively when earthquakes occurred away from a network or when the arrival time data contained phase reading errors. In this study, to resolve the problems related to determining the epicentral locations of the events, a forward modeling method like the grid search technique was used by applying different logical operations (i.e., intersection, union, and their combination) with a fuzzy logic approach. The locations of the events were depended on results of fuzzy logic outputs in fuzzy logic space by searching in a gridded region. The process of location determination with the defuzzification of only the grid points with the membership value of 1 obtained by normalizing all the maximum fuzzy output values of the highest values resulted in more reliable epicentral locations for the earthquakes than the other approaches. In addition, throughout the process, the center-of-gravity method was used as a defuzzification operation.
Integrated development environment for fuzzy logic applications
Pagni, Andrea; Poluzzi, Rinaldo; Rizzotto, GianGuido; Lo Presti, Matteo
1993-12-01
During the last five years, Fuzzy Logic has gained enormous popularity, both in the academic and industrial worlds, breaking up the traditional resistance against changes thanks to its innovative approach to problems formalization. The success of this new methodology is pushing the creation of a brand new class of devices, called Fuzzy Machines, to overcome the limitations of traditional computing systems when acting as Fuzzy Systems and adequate Software Tools to efficiently develop new applications. This paper aims to present a complete development environment for the definition of fuzzy logic based applications. The environment is also coupled with a sophisticated software tool for semiautomatic synthesis and optimization of the rules with stability verifications. Later it is presented the architecture of WARP, a dedicate VLSI programmable chip allowing to compute in real time a fuzzy control process. The article is completed with two application examples, which have been carried out exploiting the aforementioned tools and devices.
Fuzzy logic applications to expert systems and control
Lea, Robert N.; Jani, Yashvant
1991-01-01
A considerable amount of work on the development of fuzzy logic algorithms and application to space related control problems has been done at the Johnson Space Center (JSC) over the past few years. Particularly, guidance control systems for space vehicles during proximity operations, learning systems utilizing neural networks, control of data processing during rendezvous navigation, collision avoidance algorithms, camera tracking controllers, and tether controllers have been developed utilizing fuzzy logic technology. Several other areas in which fuzzy sets and related concepts are being considered at JSC are diagnostic systems, control of robot arms, pattern recognition, and image processing. It has become evident, based on the commercial applications of fuzzy technology in Japan and China during the last few years, that this technology should be exploited by the government as well as private industry for energy savings.
Fuzzy logic congestion control in IEEE 802.11 wireless local area networks: A performance evaluation
CSIR Research Space (South Africa)
Nyirenda, CN
2007-09-01
Full Text Available In 802.11 Wireless Local Area Networks, the wired and the wireless interfaces of the Access Point are characterized by the disparity in channel capacity. This presents a significant bottleneck for traffic flowing from the wired network...
A fuzzy logic based clustering strategy for improving vehicular ad ...
Indian Academy of Sciences (India)
ITS proposes to manage vehicle traffic, support drivers with safety .... the same time. The vehicle that sends firstly a message for inviting the vehicles to join and has more cluster members will be elected as a cluster head. There are ... In this study, an alternative approach using fuzzy logic under dynamic network conditions.
A Brief History of Fuzzy Logic
Directory of Open Access Journals (Sweden)
Angel Garrido
2012-04-01
Full Text Available
The problems of uncertainty, imprecision and vagueness have been discussed for many years. These problems have been major topics in philosophical circles with much debate, in particular, about the nature of vagueness and the ability of traditional Boolean logic to cope with concepts and perceptions that are imprecise or vague. The Fuzzy Logic (which is usually translated into Castilian by “Lógica Borrosa”, or “Lógica Difusa”, but also by “Lógica Heurística” can be considered a bypass-valued logics (Multi-valued Logic, MVL, its acronym in English. It is founded on, and is closely related to-Fuzzy Sets Theory, and successfully applied on Fuzzy Systems. You might think that fuzzy logic is quite recent and what has worked for a short time, but its origins date back at least to the Greek philosophers and especially Plato (428-347 B.C.. It even seems plausible
to trace their origins in China and India. Because it seems that they were the first to consider that all things need not be of a certain type or quit, but there are a stopover between. That is, be the pioneers in considering that there may be varying degrees of truth and falsehood. In case of colors, for example, between white and black there is a whole infinite scale: the shades of gray. Some recent theorems show that in principle fuzzy logic can be used to model any continuous system, be it based
in AI, or physics, or biology, or economics, etc. Investigators in many fields may find that fuzzy, commonsense models are more useful, and many more accurate than are standard mathematical ones. We analyze here the history and development of this problem: Fuzziness, or “Borrosidad” (in Castilian, essential to work with Uncertainty.
Azzali, F.; Ghazali, O.; Omar, M. H.
2017-08-01
The design of next generation networks in various technologies under the “Anywhere, Anytime” paradigm offers seamless connectivity across different coverage. A conventional algorithm such as RSSThreshold algorithm, that only uses the received strength signal (RSS) as a metric, will decrease handover performance regarding handover latency, delay, packet loss, and handover failure probability. Moreover, the RSS-based algorithm is only suitable for horizontal handover decision to examine the quality of service (QoS) compared to the vertical handover decision in advanced technologies. In the next generation network, vertical handover can be started based on the user’s convenience or choice rather than connectivity reasons. This study proposes a vertical handover decision algorithm that uses a Fuzzy Logic (FL) algorithm, to increase QoS performance in heterogeneous vehicular ad-hoc networks (VANET). The study uses network simulator 2.29 (NS 2.29) along with the mobility traffic network and generator to implement simulation scenarios and topologies. This helps the simulation to achieve a realistic VANET mobility scenario. The required analysis on the performance of QoS in the vertical handover can thus be conducted. The proposed Fuzzy Logic algorithm shows improvement over the conventional algorithm (RSSThreshold) in the average percentage of handover QoS whereby it achieves 20%, 21% and 13% improvement on handover latency, delay, and packet loss respectively. This is achieved through triggering a process in layer two and three that enhances the handover performance.
K. Nattar Kannan; B. Paramasivan
2014-01-01
Wireless Sensor Networks (WSNs) is a emerging technology of real time embedded systems for a variety of applications. In general, WSNs has great challenges in the factor of limited computation, energy and memory resources. Clustering techniques play a vital role in WSNs to increase the network lifetime and also made energy efficiency. Existing clustering approaches like LEACH uses neighboring information of the nodes for selecting cluster heads and other nodes spent more energy for transmitti...
Coordinated signal control for arterial intersections using fuzzy logic
Kermanian, Davood; Zare, Assef; Balochian, Saeed
2013-09-01
Every day growth of the vehicles has become one of the biggest problems of urbanism especially in major cities. This can waste people's time, increase the fuel consumption, air pollution, and increase the density of cars and vehicles. Fuzzy controllers have been widely used in many consumer products and industrial applications with success over the past two decades. This article proposes a comprehensive model of urban traffic network using state space equations and then using Fuzzy Logic Tool Box and SIMULINK Program MATLAB a fuzzy controller in order to optimize and coordinate signal control at two intersections at an arterial road. The fuzzy controller decides to extend, early cut or terminate a signal phase and phase sequence to ensure smooth flow of traffic with minimal waiting time and length of queue. Results show that the performance of the proposed traffic controller at novel fuzzy model is better that of conventional controllers under normal and abnormal traffic conditions.
Fuzzy logic guided inverse treatment planning
International Nuclear Information System (INIS)
Yan Hui; Yin Fangfang; Guan Huaiqun; Kim, Jae Ho
2003-01-01
A fuzzy logic technique was applied to optimize the weighting factors in the objective function of an inverse treatment planning system for intensity-modulated radiation therapy (IMRT). Based on this technique, the optimization of weighting factors is guided by the fuzzy rules while the intensity spectrum is optimized by a fast-monotonic-descent method. The resultant fuzzy logic guided inverse planning system is capable of finding the optimal combination of weighting factors for different anatomical structures involved in treatment planning. This system was tested using one simulated (but clinically relevant) case and one clinical case. The results indicate that the optimal balance between the target dose and the critical organ dose is achieved by a refined combination of weighting factors. With the help of fuzzy inference, the efficiency and effectiveness of inverse planning for IMRT are substantially improved
Fuzzy Logic Controller Design for Intelligent Robots
Directory of Open Access Journals (Sweden)
Ching-Han Chen
2017-01-01
Full Text Available This paper presents a fuzzy logic controller by which a robot can imitate biological behaviors such as avoiding obstacles or following walls. The proposed structure is implemented by integrating multiple ultrasonic sensors into a robot to collect data from a real-world environment. The decisions that govern the robot’s behavior and autopilot navigation are driven by a field programmable gate array- (FPGA- based fuzzy logic controller. The validity of the proposed controller was demonstrated by simulating three real-world scenarios to test the bionic behavior of a custom-built robot. The results revealed satisfactorily intelligent performance of the proposed fuzzy logic controller. The controller enabled the robot to demonstrate intelligent behaviors in complex environments. Furthermore, the robot’s bionic functions satisfied its design objectives.
Robust fuzzy logic stabilization with disturbance elimination.
Danapalasingam, Kumeresan A
2014-01-01
A robust fuzzy logic controller is proposed for stabilization and disturbance rejection in nonlinear control systems of a particular type. The dynamic feedback controller is designed as a combination of a control law that compensates for nonlinear terms in a control system and a dynamic fuzzy logic controller that addresses unknown model uncertainties and an unmeasured disturbance. Since it is challenging to derive a highly accurate mathematical model, the proposed controller requires only nominal functions of a control system. In this paper, a mathematical derivation is carried out to prove that the controller is able to achieve asymptotic stability by processing state measurements. Robustness here refers to the ability of the controller to asymptotically steer the state vector towards the origin in the presence of model uncertainties and a disturbance input. Simulation results of the robust fuzzy logic controller application in a magnetic levitation system demonstrate the feasibility of the control design.
Fault Diagnosis in Deaerator Using Fuzzy Logic
Directory of Open Access Journals (Sweden)
S Srinivasan
2007-01-01
Full Text Available In this paper a fuzzy logic based fault diagnosis system for a deaerator in a power plant unit is presented. The system parameters are obtained using the linearised state space deaerator model. The fuzzy inference system is created and rule base are evaluated relating the parameters to the type and severity of the faults. These rules are fired for specific changes in system parameters and the faults are diagnosed.
Directory of Open Access Journals (Sweden)
Rohmatulloh 1
2007-12-01
Full Text Available This paper discussed quality improvement of black tea using fuzzy approach on quality functions deployment and the development of backpropagation neural the software NWP II plus. The research was conducted at PTPN VIII tea industry, Goalpara plantation. Result of the study showed that, parameter first priority based on customer evaluation was tea flavour. The Important process parameter of black tea based on result of fuzzy relationship matrix was the withering process. Based on the test of “trial and error” of network training process, the best network architecture for withering process monitoring [3-15-1] was obtained, that is 3 neurons in input layer, 15 neurons in hidden layer and 1 neuron in output layer. Three inputs and output consist of time, flow, temperature and moisture content. The result sugges that development of backpropagation neural network can be used for process evaluation of withering processes.
Fuzzy Reasoning Based on First-Order Modal Logic,
Zhang, Xiaoru; Zhang, Z.; Sui, Y.; Huang, Z.
2008-01-01
As an extension of traditional modal logics, this paper proposes a fuzzy first-order modal logic based on believable degree, and gives out a description of the fuzzy first-order modal logic based on constant domain semantics. In order to make the reasoning procedure between the fuzzy assertions
Implementation of fuzzy logic control algorithm in embedded ...
African Journals Online (AJOL)
Fuzzy logic control algorithm solves problems that are difficult to address with traditional control techniques. This paper describes an implementation of fuzzy logic control algorithm using inexpensive hardware as well as how to use fuzzy logic to tackle a specific control problem without any special software tools. As a case ...
Modelling with ANIMO: between fuzzy logic and differential equations.
Schivo, Stefano; Scholma, Jetse; van der Vet, Paul E; Karperien, Marcel; Post, Janine N; van de Pol, Jaco; Langerak, Rom
2016-07-27
Computational support is essential in order to reason on the dynamics of biological systems. We have developed the software tool ANIMO (Analysis of Networks with Interactive MOdeling) to provide such computational support and allow insight into the complex networks of signaling events occurring in living cells. ANIMO makes use of timed automata as an underlying model, thereby enabling analysis techniques from computer science like model checking. Biology experts are able to use ANIMO via a user interface specifically tailored for biological applications. In this paper we compare the use of ANIMO with some established formalisms on two case studies. ANIMO is a powerful and user-friendly tool that can compete with existing continuous and discrete paradigms. We show this by presenting ANIMO models for two case studies: Drosophila melanogaster circadian clock, and signal transduction events downstream of TNF α and EGF in HT-29 human colon carcinoma cells. The models were originally developed with ODEs and fuzzy logic, respectively. Two biological case studies that have been modeled with respectively ODE and fuzzy logic models can be conveniently modeled using ANIMO. The ANIMO models require less parameters than ODEs and are more precise than fuzzy logic. For this reason we position the modelling paradigm of ANIMO between ODEs and fuzzy logic.
Fuzzy logic techniques for blotch feature evaluation in dermoscopy images.
Khan, Azmath; Gupta, Kapil; Stanley, R J; Stoecker, William V; Moss, Randy H; Argenziano, Giuseppe; Soyer, H Peter; Rabinovitz, Harold S; Cognetta, Armand B
2009-01-01
Blotches, also called structureless areas, are critical in differentiating malignant melanoma from benign lesions in dermoscopy skin lesion images. In this paper, fuzzy logic techniques are investigated for the automatic detection of blotch features for malignant melanoma discrimination. Four fuzzy sets representative of blotch size and relative and absolute blotch colors are used to extract blotchy areas from a set of dermoscopy skin lesion images. Five previously reported blotch features are computed from the extracted blotches as well as four new features. Using a neural network classifier, malignant melanoma discrimination results are optimized over the range of possible alpha-cuts and compared with results using crisp blotch features. Features computed from blotches using the fuzzy logic techniques based on three plane relative color and blotch size yield the highest diagnostic accuracy of 81.2%.
Interaction analysis through fuzzy temporal logic
Ijsselmuiden, Joris; Dornheim, Johannes
2015-01-01
Interaction analysis is defined as the generation of semantic descriptions from machine perception. This can be achieved through a combination of fuzzy metric temporal logic (FMTL) and situation graph trees (SGTs). We extended the FMTL/SGT framework with modules for clustering and parameter
Complexity of Fuzzy Probability Logics II
Czech Academy of Sciences Publication Activity Database
Hájek, Petr
2007-01-01
Roč. 158, č. 23 (2007), s. 2605-2611 ISSN 0165-0114 R&D Projects: GA AV ČR IAA100300503 Institutional research plan: CEZ:AV0Z10300504 Keywords : fuzzy logic * probability * computational complexity Subject RIV: BA - General Mathematics Impact factor: 1.373, year: 2007
Indeterminacy, linguistic semantics and fuzzy logic
Energy Technology Data Exchange (ETDEWEB)
Novak, V. [Univ. of Ostrava (Czech Republic)
1996-12-31
In this paper, we discuss the indeterminacy phenomenon which has two distinguished faces, namely uncertainty modeled especially by the probability theory and vagueness, modeled by fuzzy logic. Other important mathematical model of vagueness is provided by the Alternative Set Theory. We focus on some of the basic concepts of these theories in connection with mathematical modeling of the linguistic semantics.
Mathematical Fuzzy Logic and Natural Numbers
Czech Academy of Sciences Publication Activity Database
Hájek, Petr
2007-01-01
Roč. 81, č. 1-3 (2007), s. 155-163 ISSN 0169-2968 R&D Projects: GA AV ČR IAA100300503 Institutional research plan: CEZ:AV0Z10300504 Keywords : fuzzy logic * arithmetic * essential undecidability Subject RIV: BA - General Mathematics Impact factor: 0.693, year: 2007
Automating Software Development Process using Fuzzy Logic
Marcelloni, Francesco; Aksit, Mehmet; Damiani, Ernesto; Jain, Lakhmi C.; Madravio, Mauro
2004-01-01
In this chapter, we aim to highlight how fuzzy logic can be a valid expressive tool to manage the software development process. We characterize a software development method in terms of two major components: artifact types and methodological rules. Classes, attributes, operations, and inheritance
A logical approach to fuzzy truth hedges
Czech Academy of Sciences Publication Activity Database
Esteva, F.; Godo, L.; Noguera, Carles
2013-01-01
Roč. 232, č. 1 (2013), s. 366-385 ISSN 0020-0255 Institutional support: RVO:67985556 Keywords : Mathematical fuzzy logic * Standard completeness * Truth hedges Subject RIV: BA - General Mathematics Impact factor: 3.893, year: 2013 http://library.utia.cas.cz/separaty/2016/MTR/noguera-0469148.pdf
Can fuzzy logic make things more clear?
J.A. Hazelzet (Jan)
2009-01-01
textabstractIntensive care is a complex environment involving many signals, data and observations. Clinical decision support and artificial intelligence using fuzzy logic and closed loop techniques are methods that might help us to handle this complexity in a safe, effective and efficient way.
Modeling of Kefir Production with Fuzzy Logic
Directory of Open Access Journals (Sweden)
Hüseyin Nail Akgül
2014-06-01
Full Text Available The fermentation is ended with pH 4.6 values in industrial production of kefir. In this study, the incubation temperature, the incubation time and inoculums of culture were chose as variable parameters of kefir. In conventional control systems, the value of pH can be found by trial method. In these systems, if the number of input parameters is greater, the method of trial and error creates a system dependent on the person as well as troublesome. Fuzzy logic can be used in such cases. Modeling studies with this fuzzy logic control are examined in two portions. The first part consists of fuzzy rules and membership functions, while the second part consists of clarify. Kefir incubation temperature between 20 and 25°C, the incubation period between 18 to 22 hours and the inoculum ratio of culture between 1-5% are selected for optimum production conditions. Three separate fuzzy sets (triangular membership function are used to blur the incubation temperature, the incubation time and the inoculum ratio of culture. Because the membership function numbers belonging to the the input parameters are 3 units, 3x3x3=27 line rule is obtained by multiplying these numbers. The table of fuzzy rules was obtained using the method of Mamdani. The membership function values were determined by the method of average weight using three trapezoidal area of membership functions created for clarification. The success of the system will be found, comparing the numerical values obtained with pH values that should be. Eventually, to achieve the desired pH value of 4.6 in the production of kefir, with the using of fuzzy logic, the workload of people will be decreased and the productivity of business can be increased. In this case, it can be provided savings in both cost and time.
Fuzzy logic application for extruders replacement problem
Directory of Open Access Journals (Sweden)
Edison Conde Perez dos Santos
2017-03-01
Full Text Available In a scenario of uncertainty and imprecision, before taking the replacement analysis, a manager needs to consider the uncertain reality of a problem. In this scenario, the fuzzy logic makes an excellent option. Therefore, it is necessary to make a decision based on the fuzzy model. This study is based on the comparison of two methodologies used in the problem of asset replacement. The study, thus, was based on a comparison between two extruders for polypropylene yarn bibliopegy, comparing mainly the costs involved in maintaining the equipment.
Application of fuzzy logic to social choice theory
Mordeson, John N; Clark, Terry D
2015-01-01
Fuzzy social choice theory is useful for modeling the uncertainty and imprecision prevalent in social life yet it has been scarcely applied and studied in the social sciences. Filling this gap, Application of Fuzzy Logic to Social Choice Theory provides a comprehensive study of fuzzy social choice theory.The book explains the concept of a fuzzy maximal subset of a set of alternatives, fuzzy choice functions, the factorization of a fuzzy preference relation into the ""union"" (conorm) of a strict fuzzy relation and an indifference operator, fuzzy non-Arrowian results, fuzzy versions of Arrow's
control of a dc motor using fuzzy logic control algorithm
African Journals Online (AJOL)
user
This study sought to establish the impact of a fuzzy logic controller (FLC) and a Proportional-Integral-Derivative (PID) controller in the control performance of an industrial type DC motor using MATLAB. The fuzzy logic controller was developed on the basis of Mamdani type fuzzy inference system (FIS). The centroid method ...
Searching the Arcane Origins of Fuzzy Logic
Directory of Open Access Journals (Sweden)
Angel Garrido
2011-05-01
Full Text Available It is well-known that Artificial Intelligence requires Logic. But its Classical version shows too many insufficiencies. So, it is very necessary to introduce more sophisticated tools, as may be
Fuzzy Logic, Modal Logic, Non-Monotonic Logic, and so on. When you are searching the possible precedent of such new ideas, we may found that they are not totally new, because some ancient thinkers have suggested many centuries ago similar concepts, certainly without adequate mathematical formulation, but in the same line: against the dogmatism and the dualistic vision of
the world: absolutely true vs. absolutely false, black vs. white, good or bad by nature, 0 vs.1, etc. We attempt to analyze here some of these greatly unexplored, and very interesting early origins.
Fuzzy Logic Based Autonomous Traffic Control System
Directory of Open Access Journals (Sweden)
Muhammad ABBAS
2012-01-01
Full Text Available The aim of this paper is to design and implement fuzzy logic based traffic light Control system to solve the traffic congestion issues. In this system four input parameters: Arrival, Queue, Pedestrian and Emergency Vehicle and two output parameters: Extension in Green and Pedestrian Signals are used. Using Fuzzy Rule Base, the system extends or terminates the Green Signal according to the Traffic situation at the junction. On the presence of emergency vehicle, the system decides which signal(s should be red and how much an extension should be given to Green Signal for Emergency Vehicle. The system also monitors the density of people and makes decisions accordingly. In order to verify the proposed design algorithm MATLAB simulation is adopted and results obtained show concurrency to the calculated values according to the Mamdani Model of the Fuzzy Control System.
Fuzzy logic model to quantify risk perception
International Nuclear Information System (INIS)
Bukh, Julia; Dickstein, Phineas
2008-01-01
The aim of this study is a quantification of public risk perception towards the nuclear field so as to be considered in decision making whenever the public involvement is sought. The proposed model includes both qualitative factors such as familiarity and voluntariness and numerical factors influencing risk perception, such as probability of occurrence and severity of consequence. Since part of these factors can be characterized only by qualitative expressions and the determination of them are linked with vagueness, imprecision and uncertainty, the most suitable method for the risk level assessment is Fuzzy Logic, which models qualitative aspects of knowledge and reasoning processes without employing precise quantitative analyses. This work, then, offers a Fuzzy-Logic based mean of representing the risk perception by a single numerical feature, which can be weighted and accounted for in decision making procedures. (author)
Fuzzy logic for business, finance, and management
Bojadziev, George
1997-01-01
This is an interdisciplinary book for knowledge workers in business, finance, management, and socio-economic sciences. It provides a guide to and techniques for forecasting, decision making, conclusions, and evaluations in an environment involving uncertainty, vagueness, and impression. Traditional modeling techniques do not capture the nature of complex systems especially when humans are involved. Fuzzy logic provides effective tools for dealing with such systems. Emphasis is on applications presented in case studies including Time Forecasting for Project Management, New Product Pricing, Clie
FUZZY LOGIC CONTROLLED CATHODIC PROTECTION CIRCUIT DESIGN
AKÇAYOL, M. Ali
2010-01-01
In this study, output voltage of automatic transformer-rectifier (TR) unit of impressed current cathodic protection has been controlled by using fuzzy logic controller. To prevent corrosion, voltage between the protection metal and the auxiliary anode has to be controlled on a desired level. Because soil resistance in the environment changes with humidity and soil characteristics, TRs must control the output voltage between protection metal and auxiliary anode automatically. In this study, a ...
Fuzzy logic control of a nitrogen laser
Tam, Siu Chung; Tan, Siong-Chai; Neo, Wah-Peng; Foong, Sze-Chern; Chan, Choon-Hao; Ho, Anthony T.; Chua, Hock-Chuan; Lee, Sing
2001-02-01
Traditionally, the stability of the output of a laser is controlled through scientific means or by a simple feedback loop. For multiinput multioutput control and for medium- to high-power lasers, however, these control schemes may break down. We report on the use of a fuzzy logic control scheme to improve the stability of a pulsed nitrogen laser. Specifically, the nitrogen laser is modeled as a two-input two-output system. The two input parameters are the discharge voltage (V) and nitrogen pressure (P), and the two output parameters are the pulse energy (E) and pulse width (PW). The performance of the fuzzy logic controller is compared with a decoupled two-channel PID (proportional+integral+derivative) controller. In our experiment, the long-term stabilities of the open-loop system are 1.82% root mean square (rms) for pulse energy and 4.58% rms for pulse width. The PID controller achieves better performance with long-term stabilities of 1.46% rms for pulse energy and 4.46% rms for pulse width. The fuzzy logic controller performs the best with long-term stabilities of 1.02% rms for pulse energy and 4.24% rms for pulse width, respectively.
S.Prayla Shyry; V.Ramachandran
2011-01-01
Selfish overlay routing is the technique whereby the sender of the packet can specify the route that the packet should take through the network. Selfish overlay routing allow end users to select routes in an egocentic fashion to optimize their own performance without considering the system wide criteria which in turn cause performance degradation .The main concept behind the selfish overlay network is whenever there is a link failure the overlay nodes in the network will route the packet to t...
Energy Technology Data Exchange (ETDEWEB)
Gentili, Pier Luigi, E-mail: pierluigi.gentili@unipg.it [Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia (Italy); Gotoda, Hiroshi [Department of Mechanical Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu-shi, Shiga 525-8577 (Japan); Dolnik, Milos; Epstein, Irving R. [Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110 (United States)
2015-01-15
Forecasting of aperiodic time series is a compelling challenge for science. In this work, we analyze aperiodic spectrophotometric data, proportional to the concentrations of two forms of a thermoreversible photochromic spiro-oxazine, that are generated when a cuvette containing a solution of the spiro-oxazine undergoes photoreaction and convection due to localized ultraviolet illumination. We construct the phase space for the system using Takens' theorem and we calculate the Lyapunov exponents and the correlation dimensions to ascertain the chaotic character of the time series. Finally, we predict the time series using three distinct methods: a feed-forward neural network, fuzzy logic, and a local nonlinear predictor. We compare the performances of these three methods.
Gentili, Pier Luigi; Gotoda, Hiroshi; Dolnik, Milos; Epstein, Irving R
2015-01-01
Forecasting of aperiodic time series is a compelling challenge for science. In this work, we analyze aperiodic spectrophotometric data, proportional to the concentrations of two forms of a thermoreversible photochromic spiro-oxazine, that are generated when a cuvette containing a solution of the spiro-oxazine undergoes photoreaction and convection due to localized ultraviolet illumination. We construct the phase space for the system using Takens' theorem and we calculate the Lyapunov exponents and the correlation dimensions to ascertain the chaotic character of the time series. Finally, we predict the time series using three distinct methods: a feed-forward neural network, fuzzy logic, and a local nonlinear predictor. We compare the performances of these three methods.
Intelligent control based on fuzzy logic and neural net theory
Lee, Chuen-Chien
1991-01-01
In the conception and design of intelligent systems, one promising direction involves the use of fuzzy logic and neural network theory to enhance such systems' capability to learn from experience and adapt to changes in an environment of uncertainty and imprecision. Here, an intelligent control scheme is explored by integrating these multidisciplinary techniques. A self-learning system is proposed as an intelligent controller for dynamical processes, employing a control policy which evolves and improves automatically. One key component of the intelligent system is a fuzzy logic-based system which emulates human decision making behavior. It is shown that the system can solve a fairly difficult control learning problem. Simulation results demonstrate that improved learning performance can be achieved in relation to previously described systems employing bang-bang control. The proposed system is relatively insensitive to variations in the parameters of the system environment.
Fuzzy Logic and Education: Teaching the Basics of Fuzzy Logic through an Example (By Way of Cycling)
Sobrino, Alejandro
2013-01-01
Fuzzy logic dates back to 1965 and it is related not only to current areas of knowledge, such as Control Theory and Computer Science, but also to traditional ones, such as Philosophy and Linguistics. Like any logic, fuzzy logic is concerned with argumentation, but unlike other modalities, which focus on the crisp reasoning of Mathematics, it deals…
Novin, Vahid; Givehchi, Saeed; Hoveidi, Hassan
2016-09-01
Reliable methods are crucial to cope with uncertainties in the risk analysis process. The aim of this study is to develop an integrated approach to assessing risks of benzene in the petrochemical plant that produces benzene. We offer an integrated system to contribute imprecise variables into the health risk calculation. The project was conducted in Asaluyeh, southern Iran during the years from 2013 to 2014. Integrated method includes fuzzy logic and artificial neural networks. Each technique had specific computational properties. Fuzzy logic was used for estimation of absorption rate. Artificial neural networks can decrease the noise of the data so applied for prediction of benzene concentration. First, the actual exposure was calculated then it combined with Integrated Risk Information System (IRIS) toxicity factors to assess real health risks. High correlation between the measured and predicted benzene concentration was achieved (R 2 = 0.941). As for variable distribution, the best estimation of risk in a population implied 33% of workers exposed less than 1×10 -5 and 67% inserted between 1.0×10 -5 to 9.8×10 -5 risk levels. The average estimated risk of exposure to benzene for entire work zones is equal to 2.4×10 -5 , ranging from 1.5×10 -6 to 6.9×10 -5 . The integrated model is highly flexible as well as the rules possibly will be changed according to the necessities of the user in a different circumstance. The measured exposures can be duplicated well through proposed model and realistic risk assessment data will be produced.
Qing Hu, Bao
2015-11-01
The fuzzy rough set model and interval-valued fuzzy rough set model have been introduced to handle databases with real values and interval values, respectively. Variable precision rough set was advanced by Ziarko to overcome the shortcomings of misclassification and/or perturbation in Pawlak rough sets. By combining fuzzy rough set and variable precision rough set, a variety of fuzzy variable precision rough sets were studied, which cannot only handle numerical data, but are also less sensitive to misclassification. However, fuzzy variable precision rough sets cannot effectively handle interval-valued data-sets. Research into interval-valued fuzzy rough sets for interval-valued fuzzy data-sets has commenced; however, variable precision problems have not been considered in interval-valued fuzzy rough sets and generalized interval-valued fuzzy rough sets based on fuzzy logical operators nor have interval-valued fuzzy sets been considered in variable precision rough sets and fuzzy variable precision rough sets. These current models are incapable of wide application, especially on misclassification and/or perturbation and on interval-valued fuzzy data-sets. In this paper, these models are generalized to a more integrative approach that not only considers interval-valued fuzzy sets, but also variable precision. First, we review generalized interval-valued fuzzy rough sets based on two fuzzy logical operators: interval-valued fuzzy triangular norms and interval-valued fuzzy residual implicators. Second, we propose generalized interval-valued fuzzy variable precision rough sets based on the above two fuzzy logical operators. Finally, we confirm that some existing models, including rough sets, fuzzy variable precision rough sets, interval-valued fuzzy rough sets, generalized fuzzy rough sets and generalized interval-valued fuzzy variable precision rough sets based on fuzzy logical operators, are special cases of the proposed models.
Fuzzy Logic Unmanned Air Vehicle Motion Planning
Directory of Open Access Journals (Sweden)
Chelsea Sabo
2012-01-01
Full Text Available There are a variety of scenarios in which the mission objectives rely on an unmanned aerial vehicle (UAV being capable of maneuvering in an environment containing obstacles in which there is little prior knowledge of the surroundings. With an appropriate dynamic motion planning algorithm, UAVs would be able to maneuver in any unknown environment towards a target in real time. This paper presents a methodology for two-dimensional motion planning of a UAV using fuzzy logic. The fuzzy inference system takes information in real time about obstacles (if within the agent's sensing range and target location and outputs a change in heading angle and speed. The FL controller was validated, and Monte Carlo testing was completed to evaluate the performance. Not only was the path traversed by the UAV often the exact path computed using an optimal method, the low failure rate makes the fuzzy logic controller (FLC feasible for exploration. The FLC showed only a total of 3% failure rate, whereas an artificial potential field (APF solution, a commonly used intelligent control method, had an average of 18% failure rate. These results highlighted one of the advantages of the FLC method: its adaptability to complex scenarios while maintaining low control effort.
Mapping Shape Geometry And Emotions Using Fuzzy Logic
DEFF Research Database (Denmark)
Achiche, Sofiane; Ahmed, Saeema
2008-01-01
and the intended emotion using fuzzy logic. To achieve this; 3D objects (shapes) created by design engineering students to match a set of words/emotions were analyzed. The authors identified geometric information as inputs of the fuzzy model and developed a set of fuzzy if/then rules to map the relationships...... between the fuzzy sets on each input premise and the output premise. In our case the output premise of the fuzzy logic model is the level of belonging to the design context (emotion). An evaluation of how users perceived the shapes was conducted to validate the fuzzy logic model and showed a high...... correlation between the fuzzy logic model and user perception....
Combining fuzzy mathematics with fuzzy logic to solve business management problems
Vrba, Joseph A.
1993-12-01
Fuzzy logic technology has been applied to control problems with great success. Because of this, many observers fell that fuzzy logic is applicable only in the control arena. However, business management problems almost never deal with crisp values. Fuzzy systems technology--a combination of fuzzy logic, fuzzy mathematics and a graphical user interface--is a natural fit for developing software to assist in typical business activities such as planning, modeling and estimating. This presentation discusses how fuzzy logic systems can be extended through the application of fuzzy mathematics and the use of a graphical user interface to make the information contained in fuzzy numbers accessible to business managers. As demonstrated through examples from actual deployed systems, this fuzzy systems technology has been employed successfully to provide solutions to the complex real-world problems found in the business environment.
Learning and tuning fuzzy logic controllers through reinforcements
Berenji, Hamid R.; Khedkar, Pratap
1992-01-01
This paper presents a new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system. In particular, our generalized approximate reasoning-based intelligent control (GARIC) architecture (1) learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward neural network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto et al. (1983) to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
Malmir, Maryam; Zarkesh, Mir Masoud Kheirkhah; Monavari, Seyed Masoud; Jozi, Seyed Ali; Sharifi, Esmail
2016-08-01
The ever-increasing development of cities due to population growth and migration has led to unplanned constructions and great changes in urban spatial structure, especially the physical development of cities in unsuitable places, which requires conscious guidance and fundamental organization. It is therefore necessary to identify suitable sites for future development of cities and prevent urban sprawl as one of the main concerns of urban managers and planners. In this study, to determine the suitable sites for urban development in the county of Ahwaz, the effective biophysical and socioeconomic criteria (including 27 sub-criteria) were initially determined based on literature review and interviews with certified experts. In the next step, a database of criteria and sub-criteria was prepared. Standardization of values and unification of scales in map layers were done using fuzzy logic. The criteria and sub-criteria were weighted by analytic network process (ANP) in the Super Decision software. Next, the map layers were overlaid using weighted linear combination (WLC) in the GIS software. According to the research findings, the final land suitability map was prepared with five suitability classes of very high (5.86 %), high (31.93 %), medium (38.61 %), low (17.65 %), and very low (5.95 %). Also, in terms of spatial distribution, suitable lands for urban development are mainly located in the central and southern parts of the Ahwaz County. It is expected that integration of fuzzy logic and ANP model will provide a better decision support tool compared with other models. The developed model can also be used in the land suitability analysis of other cities.
Paraconsistency properties in degree-preserving fuzzy logics
Czech Academy of Sciences Publication Activity Database
Ertola, R.; Esteva, F.; Flaminio, T.; Godo, L.; Noguera, Carles
2015-01-01
Roč. 19, č. 3 (2015), s. 531-546 ISSN 1432-7643 R&D Projects: GA ČR GAP202/10/1826 Institutional support: RVO:67985556 Keywords : Mathematical fuzzy logic * degree-preserving fuzzy logics * paraconsistent logics * logics of formal inconsistency Subject RIV: BA - General Mathematics Impact factor: 1.630, year: 2015 http://library.utia.cas.cz/separaty/2016/MTR/noguera-0469166.pdf
Fuzzy Logic in Inverse Continuous Method
Directory of Open Access Journals (Sweden)
Víťazoslav Krúpa
2004-12-01
Full Text Available In the field of geotechnics, certain vagueness and ambiquity appears. We might not be able to design a mathematically accuratedescription of rock, whose properties change during the excavation (rock strength, discontinuities direction, dislocations, rock type.Furthermore, the excavation regime (thrust, revolutions, torque changes too, as well as the edge angle of cutting tools (due to wear andworking ability of cutterhead as result of sequential exchanges of worn-out cutterhead discs. All of these facts cause that the cutterheadoperates using the discs with different wear stage. The above mentioned problems led us to the decision to use the fuzzy logic and fuzzy sets,e.g. techniques operating with vagueness and ambiguity.
FUZZY LOGIC STATIC SYNCHRONOUS COMPENSATOR (FLSTATCOM
Directory of Open Access Journals (Sweden)
I Made Mataram
2016-06-01
Full Text Available Penerapan teknik fuzzy membawa perubahan yang signifikan khusus pada perhitungan dan analisis sistem konvensional. Peranan peralatan FACTS (Flexible AC Transmission System untuk memperbaiki kualitas tegangan dari pembangkit menuju beban sangat besar. STATCOM merupakan peralatan paling berpengaruh untuk memperbaiki tegangan pada jaringan transmisi tenaga listrik. Pembahasan pada penelitian ini dikhususkan pada FLSTATCOM. Model Fuzzy Logic dengan dua input digunakan sebagai pengontrol IGBT, sehingga mampu meningkatkan unjuk kerja STATCOM konvensional. Sistem Single Machine Infinite Bus menjadi sistem uji coba penggunaan FLSTATCOM.Hasil simulasi menggunakan simulink MATLAB, diperoleh nilai tegangan pada tiap sisi terima tanpa menggunakan STATCOM menghasilkan tegangan sebesar 217,3 kV, menggunakan STATCOM menghasilkan tegangan sebesar 220 kV, dan penggunaan FLSTATCOM mampu meningkatkan tegangan menjadi 228,9 kV (5,34%
Fuzzy Logics with an Additional Involutive Negation
Czech Academy of Sciences Publication Activity Database
Cintula, Petr; Klement, E.P.; Mesiar, R.; Navara, M.
2010-01-01
Roč. 161, č. 3 (2010), s. 390-411 ISSN 0165-0114 R&D Projects: GA AV ČR KJB100300502; GA MŠk(CZ) 1M0545 Grant - others:Grantová agentura SR(SK) VEGA1/4209/07 Institutional research plan: CEZ:AV0Z10300504 Keywords : triangular norm * triangular conorm * involutive negation * mathematical fuzzy logic * lattice of varieties * compactness * computational complexity Subject RIV: BA - General Mathematics Impact factor: 1.875, year: 2010
FUZZY LOGIC CONTROLLER IMPLEMENTATION FOR PHOTOVOLTAIC STATION
Directory of Open Access Journals (Sweden)
Imad Zein
2014-01-01
Full Text Available Solar panels have a nonlinear voltage-current characteristic, with a distinct maximum power point (MPP, which depends on the environmental factors, such as temperature and irradiation. In order to continuously harvest maximum power from the solar panels, they have to operate at their MPP despite the inevitable changes in the environment. This is why the controllers of all solar power electronic converters employ some method for maximum power point tracking (MPPT . Over the past years many MPPT techniques have been published and based on that the main paper’s objective is to analyze one of the most promising MPPT control algorithms: fuzzy logic controller.
A reinforcement learning-based architecture for fuzzy logic control
Berenji, Hamid R.
1992-01-01
This paper introduces a new method for learning to refine a rule-based fuzzy logic controller. A reinforcement learning technique is used in conjunction with a multilayer neural network model of a fuzzy controller. The approximate reasoning based intelligent control (ARIC) architecture proposed here learns by updating its prediction of the physical system's behavior and fine tunes a control knowledge base. Its theory is related to Sutton's temporal difference (TD) method. Because ARIC has the advantage of using the control knowledge of an experienced operator and fine tuning it through the process of learning, it learns faster than systems that train networks from scratch. The approach is applied to a cart-pole balancing system.
The Assessment of Ramp Metering Based on Fuzzy Logic
Taale, H.; Slager, Jan; Rosloot, Jeroen
1996-01-01
This paper deals with an assessment project and its results of an experiment with ramp metering based on fuzzy logic. In industrial processes and home appliances the control method based on fuzzy logic is being used more and
more. In traffic control however the use of this method is still in a
Comparison of Anti-Virus Programs using Fuzzy Logic
Directory of Open Access Journals (Sweden)
Vaclav Bezdek
2013-07-01
Full Text Available This work follows the previous author´s paper: Possible use of Fuzzy Logic in Database. It tries to show application of Fuzzy Logic in selecting the best anti-virus software based on testing made by AV-Comparatives.
Fuzzy logic system for BBT based fertility prediction | Yazed | Journal ...
African Journals Online (AJOL)
... been obtained with the accuracy of 95 % and 80 respectively. Besides, this prediction system using fuzzy logic could improve the current practice in the FAM technique by integrating it with an Internet of Things (IoT) technology for automatic BBT charting and monitoring. Keywords: family planning; fertility; BBT; fuzzy logic.
FUZZY LOGIC BASED TEMPERATURE CONTROL SYSTEM USING A MICROCONTROLLER
FİDAN, Uğur; BAY, Ö.FARUK
2002-01-01
This paper is aimed to illustrate the design and the implementation of a fuzzy logic controller(FLC) for an incubator using an AT89C205 microcontroller. The basis for fuzzy control and the general structure of the fuzzy logic controllers are illustrated. Then design and implementation steps of the FLC are explained. Experimental results are also included. The incubator temperature can be adjusted at any point between 25oC – 40 oC . The use of fuzzy logic controller in this application has pot...
Direct Torque Control of Asynchronous Motor With Fuzzy Logic Swithching
KORKMAZ, Fatih; KORKMAZ, Yılmaz
2011-01-01
control method in asynchronous motors, are known as high speed and torque ripples. In this study, direct torque control with fuzzy logic based switching method have been studied in order to reduce the speed and torque ripples which occurs during the direct torque control of asynchronous motors. Hysteresis controllers and vector selector that used in conventional control were removed, and fuzzy logic based switching method was used instead of them. Conventional and fuzzy control methods were s...
Control Augmentation Using Fuzzy Logic Control
Kato, Akio; Inukai, Daisuke
Overall control to improve the control characteristics of an aircraft, CA (Control Augmentation), is used to realize the desirable motion of the aircraft in relation to the pilot’s control action. C∗ criterion is an important factor for the pilot’s preferred longitudinal motion. The time history of C∗ corresponding to the step input is specified within the upper and lower envelope, and it is desirable to be near the center of the envelope. In this research, the control laws of control augmentation for small supersonic aircraft were designed with the use of fuzzy logic control to obtain the C∗ response near the center of the envelope. The evaluation of the designed control laws showed good performance in all flight conditions. Here the control laws were varied by only one scaling factor for dynamic pressure. This means that virtually no gain schedules by the Mach number and the angle of attack are necessary. This paper shows that fuzzy logic control is an effective and flexible method when applied to control laws for the control augmentation of aircraft.
Priority-based queuing and transmission rate management using a fuzzy logic controller in WSNs
Directory of Open Access Journals (Sweden)
Imen Bouazzi
2017-06-01
Full Text Available Wireless sensor networks (WSNs operate under challenging conditions, such as maintaining message latency and the reliability of data transmission and maximizing the battery life of sensor nodes. The aim of this study is to propose a fuzzy logic algorithm for solving these issues, which are difficult to address with traditional techniques. The idea, in this study, is to employ a fuzzy logic scheme to optimize energy consumption and minimize packet drops. We demonstrated how fuzzy logic can be used to tackle this specific communication problem with minimal computational complexity. In this context, the implementation of a fuzzy logic in the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA mechanism is achieved through filling the queue length and the traffic rate at each node. Through simulations, we show that our proposed technique has a better performance in terms of energy consumption compared to the basic implementation of CSMA/CA.
On the Difference between Traditional and Deductive Fuzzy Logic
Czech Academy of Sciences Publication Activity Database
Běhounek, Libor
2008-01-01
Roč. 159, č. 10 (2008), s. 1153-1164 ISSN 0165-0114 R&D Projects: GA AV ČR KJB100300502 Institutional research plan: CEZ:AV0Z10300504 Keywords : deductive fuzzy logic * fuzzy elements * gradual sets * entropy of fuzzy sets * aggregation * membership degrees * methodology of fuzzy mathematics Subject RIV: BA - General Mathematics Impact factor: 1.833, year: 2008
Risk analysis with a fuzzy-logic approach of a complex installation
Peikert, Tim; Garbe, Heyno; Potthast, Stefan
2016-09-01
This paper introduces a procedural method based on fuzzy logic to analyze systematic the risk of an electronic system in an intentional electromagnetic environment (IEME). The method analyzes the susceptibility of a complex electronic installation with respect to intentional electromagnetic interference (IEMI). It combines the advantages of well-known techniques as fault tree analysis (FTA), electromagnetic topology (EMT) and Bayesian networks (BN) and extends the techniques with an approach to handle uncertainty. This approach uses fuzzy sets, membership functions and fuzzy logic to handle the uncertainty with probability functions and linguistic terms. The linguistic terms add to the risk analysis the knowledge from experts of the investigated system or environment.
On logical, algebraic, and probabilistic aspects of fuzzy set theory
Mesiar, Radko
2016-01-01
The book is a collection of contributions by leading experts, developed around traditional themes discussed at the annual Linz Seminars on Fuzzy Set Theory. The different chapters have been written by former PhD students, colleagues, co-authors and friends of Peter Klement, a leading researcher and the organizer of the Linz Seminars on Fuzzy Set Theory. The book also includes advanced findings on topics inspired by Klement’s research activities, concerning copulas, measures and integrals, as well as aggregation problems. Some of the chapters reflect personal views and controversial aspects of traditional topics, while others deal with deep mathematical theories, such as the algebraic and logical foundations of fuzzy set theory and fuzzy logic. Originally thought as an homage to Peter Klement, the book also represents an advanced reference guide to the mathematical theories related to fuzzy logic and fuzzy set theory with the potential to stimulate important discussions on new research directions in the fiel...
Advanced Concepts in Fuzzy Logic and Systems with Membership Uncertainty
Starczewski, Janusz T
2013-01-01
This book generalizes fuzzy logic systems for different types of uncertainty, including - semantic ambiguity resulting from limited perception or lack of knowledge about exact membership functions - lack of attributes or granularity arising from discretization of real data - imprecise description of membership functions - vagueness perceived as fuzzification of conditional attributes. Consequently, the membership uncertainty can be modeled by combining methods of conventional and type-2 fuzzy logic, rough set theory and possibility theory. In particular, this book provides a number of formulae for implementing the operation extended on fuzzy-valued fuzzy sets and presents some basic structures of generalized uncertain fuzzy logic systems, as well as introduces several of methods to generate fuzzy membership uncertainty. It is desirable as a reference book for under-graduates in higher education, master and doctor graduates in the courses of computer science, computational intelligence, or...
Fuzzy logic and its application in football team ranking.
Zeng, Wenyi; Li, Junhong
2014-01-01
Fuzzy set theory and fuzzy logic are a highly suitable and applicable basis for developing knowledge-based systems in physical education for tasks such as the selection for athletes, the evaluation for different training approaches, the team ranking, and the real-time monitoring of sports data. In this paper, we use fuzzy set theory and apply fuzzy clustering analysis in football team ranking. Based on some certain rules, we propose four parameters to calculate fuzzy similar matrix, obtain fuzzy equivalence matrix and the ranking result for our numerical example, T 7, T 3, T 1, T 9, T 10, T 8, T 11, T 12, T 2, T 6, T 5, T 4, and investigate four parameters sensitivity analysis. The study shows that our fuzzy logic method is reliable and stable when the parameters change in certain range.
Czech Academy of Sciences Publication Activity Database
Hájek, Petr; Harmancová, Dagmar
2000-01-01
Roč. 8, č. 4 (2000), s. 495-498 ISSN 0218-4885 Grant - others:COST(XE) Action 15 Institutional research plan: AV0Z1030915 Keywords : fuzzy logic * Gödel logic * intuitionistic logic * hedges Subject RIV: BA - General Mathematics Impact factor: 0.145, year: 2000
Interdisciplinarity, logic of uncertainty and fuzzy logic in primary school
Directory of Open Access Journals (Sweden)
Luciana Delli Rocili
2015-12-01
Full Text Available On the occasion of the 120th anniversary of Mathesis, this work wants to be a memory, a tribute to two great presidents of Mathesis: Bruno de Finetti and Angelo Fadini. Both have pursued the idea of interdisciplinary teaching and research. Bruno de Finetti, with his books on The invention of truth, (1934, and on Logic and Intuitive Mathematics, (1959, and his very famous "Theory of probability", (1970, shows a rejection of formal education, comfortable, monodisciplinary, made of certainties, and chooses the impervious way of addressing the problems that are to the base of science. Angelo Fadini, with his papers and books on Theory of Fuzzy Sets, shows first in Italy several logical questions which puts as the basis for practical applications in Architecture. This paper is an attempt to experiment, in an interdisciplinary framework, the basic ideas of Bruno de Finetti and Angelo Fadini in primary school, in the belief that in the Primary School are formed ideas and intuitions, while in the secondary school the attention is focused mainly on specific issues of Mathematics. We shows some results of a still ongoing experimentation. Interdisciplinarietà, logica dell'incerto e logica sfumata nella scuola primaria In occasione dei 120 anni della Mathesis, questo lavoro vuole essere un ricordo, un omaggio a due grandi Presidenti della Mathesis: Bruno de Finetti e Angelo Fadini. Entrambi hanno portato avanti l’idea della interdisciplinarietà nell’insegnamento e nella ricerca. Bruno de Finetti, con la sua “Matematica Logico Intuitiva” del 1959, e la sua “Teoria delle probabilità”, del 1970, e ancora prima, con “L’invenzione della verità”, del 1934, mostra un rifiuto dell’insegnamento formale, comodo, monodisciplinare, fatto di certezze, e sceglie la strada impervia dell’affrontare i problemi che sono alla base della scienza. Angelo Fadini, con la sua Teoria degli Insiemi Sfocati, mostra per primo in Italia varie questioni
What Could Fuzzy Logic Bring to Statistical Information Systems?
Directory of Open Access Journals (Sweden)
Miroslav Hudec
2011-03-01
Full Text Available The aim of the paper is to present the applicability of the fuzzy logic for statistical information systems in order to improve work with statistical data. The improvement offers the approximate reasoning in order to solve problems in a way that more resembles human logic. The paper examines the fuzzy logic approach,emphasizes situations when the two-valued (crisp logic is not adequate and offers solutions based on fuzzy logic. The first step of using data is its selection from a database. Although the Structured Query Language (SQL is a very powerful tool, it is unable to satisfy needs for data selection based on linguistic expressions and degrees of truth. For this purpose the fuzzy generalised logicalcondition (GLC was developed. Later researches have shown that the GLC formula is suitable for other processes concerning data, namely data classification and data dissemination.
CAC Algorithm Based on Fuzzy Logic
Directory of Open Access Journals (Sweden)
Ľubomír DOBOŠ
2009-05-01
Full Text Available Quality of Service (QoS represent one ofmajor parameters that describe mobile wirelesscommunication systems. Thanks growing popularity ofmobile communication in last years, there is anincreasing expansion of connection admission controlschemes (CAC that plays important role in QoSdelivering in terms of connection blocking probability,connection dropping probability, data loss rate andsignal quality.With expansion of services provided by the mobilenetworks growing the requirements to QoS andtogether growing requirements to CAC schemes.Therefore, still more sophisticated CAC schemes arerequired to guarantee the QoS. This paper containsshort introduction into division of connectionadmission control schemes and presents thresholdoriented CAC scheme with fuzzy logic used foradaptation of the threshold value.
Fuzzy Logic Enhanced Digital PIV Processing Software
Wernet, Mark P.
1999-01-01
Digital Particle Image Velocimetry (DPIV) is an instantaneous, planar velocity measurement technique that is ideally suited for studying transient flow phenomena in high speed turbomachinery. DPIV is being actively used at the NASA Glenn Research Center to study both stable and unstable operating conditions in a high speed centrifugal compressor. Commercial PIV systems are readily available which provide near real time feedback of the PIV image data quality. These commercial systems are well designed to facilitate the expedient acquisition of PIV image data. However, as with any general purpose system, these commercial PIV systems do not meet all of the data processing needs required for PIV image data reduction in our compressor research program. An in-house PIV PROCessing (PIVPROC) code has been developed for reducing PIV data. The PIVPROC software incorporates fuzzy logic data validation for maximum information recovery from PIV image data. PIVPROC enables combined cross-correlation/particle tracking wherein the highest possible spatial resolution velocity measurements are obtained.
Petr Hájek on mathematical fuzzy logic
Montagna, Franco
2014-01-01
This volume celebrates the work of Petr Hájek on mathematical fuzzy logic and presents how his efforts have influenced prominent logicians who are continuing his work. The book opens with a discussion on Hájek's contribution to mathematical fuzzy logic and with a scientific biography of him, progresses to include two articles with a foundation flavour, that demonstrate some important aspects of Hájek's production, namely, a paper on the development of fuzzy sets and another paper on some fuzzy versions of set theory and arithmetic. Articles in the volume also focus on the treatment of vague
Petri Nets with Fuzzy Logic (PNFL: reverse engineering and parametrization.
Directory of Open Access Journals (Sweden)
Robert Küffner
Full Text Available BACKGROUND: The recent DREAM4 blind assessment provided a particularly realistic and challenging setting for network reverse engineering methods. The in silico part of DREAM4 solicited the inference of cycle-rich gene regulatory networks from heterogeneous, noisy expression data including time courses as well as knockout, knockdown and multifactorial perturbations. METHODOLOGY AND PRINCIPAL FINDINGS: We inferred and parametrized simulation models based on Petri Nets with Fuzzy Logic (PNFL. This completely automated approach correctly reconstructed networks with cycles as well as oscillating network motifs. PNFL was evaluated as the best performer on DREAM4 in silico networks of size 10 with an area under the precision-recall curve (AUPR of 81%. Besides topology, we inferred a range of additional mechanistic details with good reliability, e.g. distinguishing activation from inhibition as well as dependent from independent regulation. Our models also performed well on new experimental conditions such as double knockout mutations that were not included in the provided datasets. CONCLUSIONS: The inference of biological networks substantially benefits from methods that are expressive enough to deal with diverse datasets in a unified way. At the same time, overly complex approaches could generate multiple different models that explain the data equally well. PNFL appears to strike the balance between expressive power and complexity. This also applies to the intuitive representation of PNFL models combining a straightforward graphical notation with colloquial fuzzy parameters.
Fuzzy logic control to be conventional method
International Nuclear Information System (INIS)
Eker, Ilyas; Torun, Yunis
2006-01-01
Increasing demands for flexibility and fast reactions in modern process operation and production methods result in nonlinear system behaviour of partly unknown systems, and this necessitates application of alternative control methods to meet the demands. Fuzzy logic (FL) control can play an important role because knowledge based design rules can easily be implemented in systems with unknown structure, and it is going to be a conventional control method since the control design strategy is simple and practical and is based on linguistic information. Computational complexity is not a limitation any more because the computing power of computers has been significantly improved even for high speed industrial applications. This makes FL control an important alternative method to the conventional PID control method for use in nonlinear industrial systems. This paper presents a practical implementation of the FL control to an electrical drive system. Such drive systems used in industry are composed of masses moving under the action of position and velocity dependent forces. These forces exhibit nonlinear behaviour. For a multi-mass drive system, the nonlinearities, like Coulomb friction and dead zone, significantly influence the operation of the systems. The proposed FL control configuration is based on speed error and change of speed error. The feasibility and effectiveness of the control method are experimentally demonstrated. The results obtained from conventional FL control, fuzzy PID and adaptive FL control are compared with traditional PID control for the dynamic responses of the closed loop drive system
Bicycle Frame Prediction Techniques with Fuzzy Logic Method
Rafiuddin Syam; La Ode Asman Muriman
2017-01-01
In general, an appropriate size bike frame would get comfort to the rider while biking. This study aims to predict the simulation system on the bike frame sizes with fuzzy logic. Testing method used is the simulation test. In this study, fuzzy logic will be simulated using Matlab language to test their performance. Mamdani fuzzy logic using 3 variables and 1 output variable intake. Triangle function for the input and output. The controller is designed in the type mamdani with max-min composit...
Jani, Yashvant
1992-01-01
The reinforcement learning techniques developed at Ames Research Center are being applied to proximity and docking operations using the Shuttle and Solar Maximum Mission (SMM) satellite simulation. In utilizing these fuzzy learning techniques, we also use the Approximate Reasoning based Intelligent Control (ARIC) architecture, and so we use two terms interchangeable to imply the same. This activity is carried out in the Software Technology Laboratory utilizing the Orbital Operations Simulator (OOS). This report is the deliverable D3 in our project activity and provides the test results of the fuzzy learning translational controller. This report is organized in six sections. Based on our experience and analysis with the attitude controller, we have modified the basic configuration of the reinforcement learning algorithm in ARIC as described in section 2. The shuttle translational controller and its implementation in fuzzy learning architecture is described in section 3. Two test cases that we have performed are described in section 4. Our results and conclusions are discussed in section 5, and section 6 provides future plans and summary for the project.
Twenty-Five Years of the Fuzzy Factor: Fuzzy Logic, the Courts, and Student Press Law.
Plopper, Bruce L.; McCool, Lauralee
A study applied the structure of fuzzy logic, a fairly modern development in mathematical set theory, to judicial opinions concerning non-university, public school student publications, from 1975 to 1999. The study examined case outcomes (19 cases generated 27 opinions) as a function of fuzzy logic, and it evaluated interactions between fuzzy…
Enric Trillas a passion for fuzzy sets : a collection of recent works on fuzzy logic
Verdegay, Jose; Esteva, Francesc
2015-01-01
This book presents a comprehensive collection of the latest and most significant research advances and applications in the field of fuzzy logic. It covers fuzzy structures, rules, operations and mathematical formalisms, as well as important applications of fuzzy logic in a number of fields, like decision-making, environmental prediction and prevention, communication, controls and many others. Dedicated to Enric Trillas in recognition of his pioneering research in the field, the book also includes a foreword by Lotfi A. Zadeh and an outlook on the future of fuzzy logic.
Type-2 Fuzzy Logic in Intelligent Control Applications
Castillo, Oscar
2012-01-01
We describe in this book, hybrid intelligent systems based mainly on type-2 fuzzy logic for intelligent control. Hybrid intelligent systems combine several intelligent computing paradigms, including fuzzy logic, and bio-inspired optimization algorithms, which can be used to produce powerful automatic control systems. The book is organized in three main parts, which contain a group of chapters around a similar subject. The first part consists of chapters with the main theme of theory and design algorithms, which are basically chapters that propose new models and concepts, which can be the basis for achieving intelligent control with interval type-2 fuzzy logic. The second part of the book is comprised of chapters with the main theme of evolutionary optimization of type-2 fuzzy systems in intelligent control with the aim of designing optimal type-2 fuzzy controllers for complex control problems in diverse areas of application, including mobile robotics, aircraft dynamics systems and hardware implementations. Th...
Type-2 fuzzy logic uncertain systems’ modeling and control
Antão, Rómulo
2017-01-01
This book focuses on a particular domain of Type-2 Fuzzy Logic, related to process modeling and control applications. It deepens readers’understanding of Type-2 Fuzzy Logic with regard to the following three topics: using simpler methods to train a Type-2 Takagi-Sugeno Fuzzy Model; using the principles of Type-2 Fuzzy Logic to reduce the influence of modeling uncertainties on a locally linear n-step ahead predictor; and developing model-based control algorithms according to the Generalized Predictive Control principles using Type-2 Fuzzy Sets. Throughout the book, theory is always complemented with practical applications and readers are invited to take their learning process one step farther and implement their own applications using the algorithms’ source codes (provided). As such, the book offers avaluable referenceguide for allengineers and researchers in the field ofcomputer science who are interested in intelligent systems, rule-based systems and modeling uncertainty.
French-speaking meeting on fuzzy logic and its applications
International Nuclear Information System (INIS)
1997-01-01
The 1997 edition of LFA'97 meeting for fuzzy logic has been organized by the Pattern Recognition and Computer Vision Laboratory of the National Institute of Applied Sciences. The objective of the meeting was to provide a forum for researchers and users of fuzzy logic and possibility theory to present and discuss theoretical researches and concrete applications. The domains in concern are: the control decision theory, the pattern recognition and image analysis, the artificial intelligence and the information systems. From the 41 papers of this book, two were selected for ETDE and deal with fuzzy regulation systems for heating systems and with fuzzy controllers for gas refining plants, and one was selected for INIS and deal with real-time surveillance and fuzzy logic control systems for nuclear power plants. (J.S.)
Application of Fuzzy Logic in Control of Switched Reluctance Motor
Directory of Open Access Journals (Sweden)
Pavel Brandstetter
2006-01-01
Full Text Available The flux linkage of switched reluctance motor (SRM depends on the stator current and position between the rotor and stator poles. The fact determines that during control of SRM current with the help of classical PI controllers in a wide regulation range unsatisfied results occur. The main reasons of the mentioned situation are big changes of the stator inductance depending on the stator current and rotor position. In a switched reluctance motor the stator phase inductance is a non-linear function of the stator phase current and rotor position. Fuzzy controller and fuzzy logic are generally non-linear systems; hence they can provide better performance in this case. Fuzzy controller is mostly presented as a direct fuzzy controller or as a system, which realizes continued changing parameters of other controller, so-called fuzzy supervisor. Referring to the usage of fuzzy logic as a supervisor of conventional PI controller in control of SRM possible improvement occurs.
INDONESIA PUBLIC BANKS PERFORMANCE EVALUATION USING FUZZY LOGIC
Directory of Open Access Journals (Sweden)
Sugiarto Sugiarto
2016-10-01
Full Text Available Return on Asset (ROA is a variable that has the greatest ability in predicting public banks stock prices in Indonesia. The coefficient of determination of ROA on public banks stock prices in Indonesia reached 54.8%. ROA has a significant positive influence on public bank stock prices in Indonesia. Fuzzy logic process on the performance of the 15 public banks in Indonesia have been carried out using the data of ROA for the period 2010 up to 2013. Bank reference performance according to ROA is based on Bank Indonesia Letter No. 6 / 23DPNP / 2011. The performance of each bank was analyzed by conventional methods and as a comparison used fuzzy logic. The evaluation with fuzzy logic method able to provide added value to the currently enforced performance evaluation method. There is significant difference in conclusion between the determination of fuzzy logic models and conventional method
Fuzzy logic color detection: Blue areas in melanoma dermoscopy images.
Lingala, Mounika; Stanley, R Joe; Rader, Ryan K; Hagerty, Jason; Rabinovitz, Harold S; Oliviero, Margaret; Choudhry, Iqra; Stoecker, William V
2014-07-01
Fuzzy logic image analysis techniques were used to analyze three shades of blue (lavender blue, light blue, and dark blue) in dermoscopic images for melanoma detection. A logistic regression model provided up to 82.7% accuracy for melanoma discrimination for 866 images. With a support vector machines (SVM) classifier, lower accuracy was obtained for individual shades (79.9-80.1%) compared with up to 81.4% accuracy with multiple shades. All fuzzy blue logic alpha cuts scored higher than the crisp case. Fuzzy logic techniques applied to multiple shades of blue can assist in melanoma detection. These vector-based fuzzy logic techniques can be extended to other image analysis problems involving multiple colors or color shades. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fuzzy Logic and Its Application in Football Team Ranking
Directory of Open Access Journals (Sweden)
Wenyi Zeng
2014-01-01
some certain rules, we propose four parameters to calculate fuzzy similar matrix, obtain fuzzy equivalence matrix and the ranking result for our numerical example, T7, T3, T1, T9, T10, T8, T11, T12, T2, T6, T5, T4, and investigate four parameters sensitivity analysis. The study shows that our fuzzy logic method is reliable and stable when the parameters change in certain range.
Fuzzy logic controller for weaning neonates from mechanical ventilation.
Hatzakis, G. E.; Davis, G. M.
2002-01-01
Weaning from mechanical ventilation is the gradual detachment from any ventilatory support till normal spontaneous breathing can be fully resumed. To date, we have developed a fuzzy logic controller for weaning COPD adults using pressure support ventilation (PS). However, adults and newborns differ in the pathophysiology of lung disease. We therefore used our fuzzy logic-based weaning platform to develop modularized components for weaning newborns with lung disease. Our controller uses the he...
Fuzzy logic based ELF magnetic field estimation in substations
International Nuclear Information System (INIS)
Kosalay, I.
2008-01-01
This paper examines estimation of the extremely low frequency magnetic fields (MF) in the power substation. First, the results of the previous relevant research studies and the MF measurements in a sample power substation are presented. Then, a fuzzy logic model based on the geometric definitions in order to estimate the MF distribution is explained. Visual software, which has a three-dimensional screening unit, based on the fuzzy logic technique, has been developed. (authors)
Fuzzy Logic and Intelligent Technologies in Nuclear Science
International Nuclear Information System (INIS)
Da Ruan
1998-01-01
FLINS is the acronym for Fuzzy Logic and Intelligent Technologies in Nuclear Science. The main task for FLINS is to solve intricate problems pertaining to the nuclear environment by using modern technologies as additional tools and to bridge the gap between novel technologies and the industrial nuclear world. In 1997, major efforts went to the specific prototyping of Fuzzy Logic Control of SCK-CEN's BR1 research Reactor. Progress and achievements are reported
Fuzzy logic based ELF magnetic field estimation in substations.
Kosalay, Ilhan
2008-01-01
This paper examines estimation of the extremely low frequency magnetic fields (MF) in the power substation. First, the results of the previous relevant research studies and the MF measurements in a sample power substation are presented. Then, a fuzzy logic model based on the geometric definitions in order to estimate the MF distribution is explained. Visual software, which has a three-dimensional screening unit, based on the fuzzy logic technique, has been developed.
Implementation of fuzzy logic control algorithm in embedded ...
African Journals Online (AJOL)
As a case study, hardware implementation of fuzzy control algorithm for online temperature control system is demonstrated using 8-bit microcontroller. The hardware implementation followed by software approach has been discussed. Real time result of fuzzy logic temperature control system is also presented.
Optimization of Fuzzy Logic Controller for Supervisory Power System Stabilizers
Directory of Open Access Journals (Sweden)
Y. A. Al-Turki
2012-01-01
Full Text Available This paper presents a powerful supervisory power system stabilizer (PSS using an adaptive fuzzy logic controller driven by an adaptive fuzzy set (AFS. The system under study consists of two synchronous generators, each fitted with a PSS, which are connected via double transmission lines. Different types of PSS-controller techniques are considered. The proposed genetic adaptive fuzzy logic controller (GAFLC-PSS, using 25 rules, is compared with a static fuzzy logic controller (SFLC driven by a fixed fuzzy set (FFS which has 49 rules. Both fuzzy logic controller (FLC algorithms utilize the speed error and its rate of change as an input vector. The adaptive FLC algorithm uses a genetic algorithmto tune the parameters of the fuzzy set of each PSS. The FLC’s are simulated and tested when the system is subjected to different disturbances under a wide range of operating points. The proposed GAFLC using AFS reduced the computational time of the FLC, where the number of rules is reduced from 49 to 25 rules. In addition, the proposed adaptive FLC driven by a genetic algorithm also reduced the complexity of the fuzzy model, while achieving a good dynamic response of the system under study.
Implementation of Fuzzy Logic Based Temperature-Controlled Heat ...
African Journals Online (AJOL)
This research then compares the control performance of PID (Proportional Integral and Derivative) and Fuzzy logic controllers. Conclusions are made based on these control performances. The results show that the control performance for a Fuzzy controller is quite similar to PID controller but comparatively gives a better ...
USE OF FUZZY LOGIC TO INVESTIGATE WEATHER PARAMETER ...
African Journals Online (AJOL)
Load forecasting guides the power company to make some decisions on generation, transmission and distribution of electrical power. This work presents a solution methodology, using fuzzy logic approach for short term load forecasting (STLF) for Adamawa State University, Mubi. The proposed methodology utilized fuzzy ...
Saravanan, Vijayakumar; Lakshmi, P T V
2014-09-01
The path to personalized medicine demands the use of new and customized biopharmaceutical products containing modified proteins. Hence, assessment of these products for allergenicity becomes mandatory before they are introduced as therapeutics. Despite the availability of different tools to predict the allergenicity of proteins, it remains challenging to predict the allergens and nonallergens, when they share significant sequence similarity with known nonallergens and allergens, respectively. Hence, we propose "FuzzyApp," a novel fuzzy rule based system to evaluate the quality of the query protein to be an allergen. It measures the allergenicity of the protein based on the fuzzy IF-THEN rules derived from five different modules. On various datasets, FuzzyApp outperformed other existing methods and retained balance between sensitivity and specificity, with positive Mathew's correlation coefficient. The high specificity of allergen-like putative nonallergens (APN) revealed the FuzzyApp's capability in distinguishing the APN from allergens. In addition, the error analysis and whole proteome dataset analysis suggest the efficiency and consistency of the proposed method. Further, FuzzyApp predicted the Tropomyosin from various allergenic and nonallergenic sources accurately. The web service created allows batch sequence submission, and outputs the result as readable sentences rather than values alone, which assists the user in understanding why and what features are responsible for the prediction. FuzzyApp is implemented using PERL CGI and is freely accessible at http://fuzzyapp.bicpu.edu.in/predict.php . We suggest the use of Fuzzy logic has much potential in biomarker and personalized medicine research to enhance predictive capabilities of post-genomics diagnostics.
Jani, Yashvant
1992-01-01
As part of the RICIS activity, the reinforcement learning techniques developed at Ames Research Center are being applied to proximity and docking operations using the Shuttle and Solar Max satellite simulation. This activity is carried out in the software technology laboratory utilizing the Orbital Operations Simulator (OOS). This report is deliverable D2 Altitude Control Results and provides the status of the project after four months of activities and outlines the future plans. In section 2 we describe the Fuzzy-Learner system for the attitude control functions. In section 3, we provide the description of test cases and results in a chronological order. In section 4, we have summarized our results and conclusions. Our future plans and recommendations are provided in section 5.
Qualitative assessment of environmental impacts through fuzzy logic
International Nuclear Information System (INIS)
Peche G, Roberto
2008-01-01
The vagueness of many concepts usually utilized in environmental impact studies, along with frequent lack of quantitative information, suggests that fuzzy logic can be applied to carry out qualitative assessment of such impacts. This paper proposes a method for valuing environmental impacts caused by projects, based on fuzzy sets theory and methods of approximate reasoning. First, impacts must be described by a set of features. A linguistic variable is assigned to each feature, whose values are fuzzy sets. A fuzzy evaluation of environmental impacts is achieved using rule based fuzzy inference and the estimated fuzzy value of each feature. Generalized modus ponens has been the inference method. Finally, a crisp value of impact is attained by aggregation and defuzzification of all fuzzy results
Astronomical pipeline processing using fuzzy logic
Shamir, Lior
In the past few years, pipelines providing astronomical data have been becoming increasingly important. The wide use of robotic telescopes has provided significant discoveries, and sky survey projects such as SDSS and the future LSST are now considered among the premier projects in the field astronomy. The huge amount of data produced by these pipelines raises the need for automatic processing. Astronomical pipelines introduce several well-defined problems such as astronomical image compression, cosmic-ray hit rejection, transient detection, meteor triangulation and association of point sources with their corresponding known stellar objects. We developed and applied soft computing algorithms that provide new or improved solutions to these growing problems in the field of pipeline processing of astronomical data. One new approach that we use is fuzzy logic-based algorithms, which enables the automatic analysis of the astronomical pipelines and allows mining the data for not-yet-known astronomical discoveries such as optical transients and variable stars. The developed algorithms have been tested with excellent results on the NightSkyLive sky survey, which provides a pipeline of 150 astronomical pictures per hour, and covers almost the entire global night sky.
Expanding Basic Fuzzy Logic with Truth Constants for Component Delimiters
Czech Academy of Sciences Publication Activity Database
Haniková, Zuzana
2012-01-01
Roč. 197, 16 June (2012), s. 95-107 ISSN 0165-0114 R&D Projects: GA ČR GEICC/08/E018 Institutional research plan: CEZ:AV0Z10300504 Keywords : mathematics * non-classical logics * algebra * basic fuzzy logic BL * propositional constants Subject RIV: BA - General Mathematics Impact factor: 1.749, year: 2012
A Note on the Notion of Truth in Fuzzy Logic
Czech Academy of Sciences Publication Activity Database
Hájek, Petr; Shepherdson, J.
2001-01-01
Roč. 109, 1-2 (2001), s. 65-69 ISSN 0168-0072 Institutional research plan: AV0Z1030915 Keywords : many-valued logic * fuzzy logic Subject RIV: BA - General Mathematics Impact factor: 0.519, year: 2001
A fuzzy logic pitch angle controller for power system stabilization
Energy Technology Data Exchange (ETDEWEB)
Jauch, Clemens; Cronin, Tom; Sorensen, Poul [Wind Energy Department, Riso National Laboratory, PO Box 49, DK-4000 Roskilde, (Denmark); Jensen, Birgitte Bak [Institute of Energy Technology, Aalborg University, Pontoppidanstraede 101, DK-9220 Aalborg East, (Denmark)
2006-07-12
In this article the design of a fuzzy logic pitch angle controller for a fixed speed, active-stall wind turbine, which is used for power system stabilization, is presented. The system to be controlled, which is the wind turbine and the power system to which the turbine is connected, is described. The advantages of fuzzy logic control when applied to large-signal control of active-stall wind turbines are outlined. The general steps of the design process for a fuzzy logic controller, including definition of the controller inputs, set-up of the fuzzy rules and the method of defuzzification, are described. The performance of the controller is assessed by simulation, where the wind turbine's task is to dampen power system oscillations. In the scenario simulated for this work, the wind turbine has to ride through a transient short-circuit fault and subsequently contribute to the damping of the grid frequency oscillations that are caused by the transient fault. It is concluded that the fuzzy logic controller enables the wind turbine to dampen power system oscillations. It is also concluded that, owing to the inherent non-linearities in a wind turbine and the unpredictability of the whole system, the fuzzy logic controller is very suitable for this application. (Author).
Fuzzy logic an introductory course for engineering students
Trillas, Enric
2015-01-01
This book introduces readers to fundamental concepts in fuzzy logic. It describes the necessary theoretical background and a number of basic mathematical models. Moreover, it makes them familiar with fuzzy control, an important topic in the engineering field. The book offers an unconventional introductory textbook on fuzzy logic, presenting theory together with examples and not always following the typical mathematical style of theorem-corollaries. Primarily intended to support engineers during their university studies, and to spark their curiosity about fuzzy logic and its applications, the book is also suitable for self-study, providing a valuable resource for engineers and professionals who deal with imprecision and non-random uncertainty in real-world applications.
Distributed traffic signal control using fuzzy logic
Chiu, Stephen
1992-01-01
We present a distributed approach to traffic signal control, where the signal timing parameters at a given intersection are adjusted as functions of the local traffic condition and of the signal timing parameters at adjacent intersections. Thus, the signal timing parameters evolve dynamically using only local information to improve traffic flow. This distributed approach provides for a fault-tolerant, highly responsive traffic management system. The signal timing at an intersection is defined by three parameters: cycle time, phase split, and offset. We use fuzzy decision rules to adjust these three parameters based only on local information. The amount of change in the timing parameters during each cycle is limited to a small fraction of the current parameters to ensure smooth transition. We show the effectiveness of this method through simulation of the traffic flow in a network of controlled intersections.
Fuzzy-logic-assisted surgical planning in adolescent idiopathic scoliosis.
Nault, Marie-Lyne; Labelle, Hubert; Aubin, Carl-Eric; Sangole, Archana; Balazinski, Marek
2009-06-01
Selection of appropriate curve fusion levels for surgery in adolescent idiopathic scoliosis (AIS) is a complex and difficult task and, despite numerous publications, still remains a highly controversial topic. To evaluate a fuzzy-logic-based surgical planning tool by comparing the results suggested by the software with the average outcome recommended by a panel of 5 expert spinal deformity surgeons. It is hypothesized that, given the same information, the fuzzy-logic tool will perform as favorably as the surgeons. Proof-of-concept study evaluating the use of a fuzzy-logic-assisted surgical planning tool in AIS to select the appropriate spinal curve to be instrumented. A cohort of 30 AIS surgical cases with a main thoracic curve was used. Each case included standard measurements recorded from preoperative standing postero-anterior and lateral, supine side bending, and 1-year postoperative standing radiographs. Five experienced spinal deformity surgeons evaluated each case independently and gave their preferred levels of instrumentation and fusion. The cases were then presented to the fuzzy-logic tool to determine whether the high thoracic and/or lumbar curves were to be instrumented. For each case, a percentage value was obtained indicating inclusion/exclusion of the respective curves in the surgical instrumentation procedure. Kappa statistics was used to compare the model output and the average decision of the surgeons. Kappa values of 0.71 and 0.64 were obtained, respectively, for the proximal thoracic and lumbar curves models, thus suggesting a good agreement of the fusion recommendations made by the fuzzy-logic tool and the surgeons. Given the same information, the fuzzy-logic-assisted recommendation of the curve to be instrumented compared favorably with the collective decision of the surgeons. The findings thus suggest that a fuzzy-logic approach is helpful in assisting surgeons with the preoperative selection of curve instrumentation and fusion levels in AIS.
Assessment of groundwater vulnerability using supervised committee to combine fuzzy logic models.
Nadiri, Ata Allah; Gharekhani, Maryam; Khatibi, Rahman; Moghaddam, Asghar Asghari
2017-03-01
Vulnerability indices of an aquifer assessed by different fuzzy logic (FL) models often give rise to differing values with no theoretical or empirical basis to establish a validated baseline or to develop a comparison basis between the modeling results and baselines, if any. Therefore, this research presents a supervised committee fuzzy logic (SCFL) method, which uses artificial neural networks to overarch and combine a selection of FL models. The indices are expressed by the widely used DRASTIC framework, which include geological, hydrological, and hydrogeological parameters often subject to uncertainty. DRASTIC indices represent collectively intrinsic (or natural) vulnerability and give a sense of contaminants, such as nitrate-N, percolating to aquifers from the surface. The study area is an aquifer in Ardabil plain, the province of Ardabil, northwest Iran. Improvements on vulnerability indices are achieved by FL techniques, which comprise Sugeno fuzzy logic (SFL), Mamdani fuzzy logic (MFL), and Larsen fuzzy logic (LFL). As the correlation between estimated DRASTIC vulnerability index values and nitrate-N values is as low as 0.4, it is improved significantly by FL models (SFL, MFL, and LFL), which perform in similar ways but have differences. Their synergy is exploited by SCFL and uses the FL modeling results "conditioned" by nitrate-N values to raise their correlation to higher than 0.9.
Nadiri, Ata Allah; Sedghi, Zahra; Khatibi, Rahman; Gharekhani, Maryam
2017-09-01
Driven by contamination risks, mapping Vulnerability Indices (VI) of multiple aquifers (both unconfined and confined) is investigated by integrating the basic DRASTIC framework with multiple models overarched by Artificial Neural Networks (ANN). The DRASTIC framework is a proactive tool to assess VI values using the data from the hydrosphere, lithosphere and anthroposphere. However, a research case arises for the application of multiple models on the ground of poor determination coefficients between the VI values and non-point anthropogenic contaminants. The paper formulates SCFL models, which are derived from the multiple model philosophy of Supervised Committee (SC) machines and Fuzzy Logic (FL) and hence SCFL as their integration. The Fuzzy Logic-based (FL) models include: Sugeno Fuzzy Logic (SFL), Mamdani Fuzzy Logic (MFL), Larsen Fuzzy Logic (LFL) models. The basic DRASTIC framework uses prescribed rating and weighting values based on expert judgment but the four FL-based models (SFL, MFL, LFL and SCFL) derive their values as per internal strategy within these models. The paper reports that FL and multiple models improve considerably on the correlation between the modeled vulnerability indices and observed nitrate-N values and as such it provides evidence that the SCFL multiple models can be an alternative to the basic framework even for multiple aquifers. The study area with multiple aquifers is in Varzeqan plain, East Azerbaijan, northwest Iran. Copyright © 2017 Elsevier B.V. All rights reserved.
Automated interpretation of LIBS spectra using a fuzzy logic inference engine.
Hatch, Jeremy J; McJunkin, Timothy R; Hanson, Cynthia; Scott, Jill R
2012-03-01
Automated interpretation of laser-induced breakdown spectroscopy (LIBS) data is necessary due to the plethora of spectra that can be acquired in a relatively short time. However, traditional chemometric and artificial neural network methods that have been employed are not always transparent to a skilled user. A fuzzy logic approach to data interpretation has now been adapted to LIBS spectral interpretation. Fuzzy logic inference rules were developed using methodology that includes data mining methods and operator expertise to differentiate between various copper-containing and stainless steel alloys as well as unknowns. Results using the fuzzy logic inference engine indicate a high degree of confidence in spectral assignment. © 2012 Optical Society of America
Forest fire autonomous decision system based on fuzzy logic
Lei, Z.; Lu, Jianhua
2010-11-01
The proposed system integrates GPS / pseudolite / IMU and thermal camera in order to autonomously process the graphs by identification, extraction, tracking of forest fire or hot spots. The airborne detection platform, the graph-based algorithms and the signal processing frame are analyzed detailed; especially the rules of the decision function are expressed in terms of fuzzy logic, which is an appropriate method to express imprecise knowledge. The membership function and weights of the rules are fixed through a supervised learning process. The perception system in this paper is based on a network of sensorial stations and central stations. The sensorial stations collect data including infrared and visual images and meteorological information. The central stations exchange data to perform distributed analysis. The experiment results show that working procedure of detection system is reasonable and can accurately output the detection alarm and the computation of infrared oscillations.
A Game Theoretic Sensor Resource Allocation Using Fuzzy Logic
Directory of Open Access Journals (Sweden)
Stephen C. Stubberud
2013-01-01
Full Text Available A sensor resource management system that employs fuzzy logic to provide the utility functions to a game theoretic approach is developed. The application looks at a virtual fence problem where several unattended ground sensors are placed in remote locations to act as virtual sentries. The goal of the approach is to maximize the battery life while tracking targets of interest. This research also considers the incorporation of uncertainty into the fuzzy membership functions. Both type-2 fuzzy logic and the use of conditional fuzzy membership function are employed. The type-2 fuzzy logic is employed in the case of acoustical sensor tracking accuracy degradation, while the condition-based membership functions are used to adapt to different conditions, such as environmental conditions and sensor performance degradation, over time. The resource management process uses fuzzy logic to determine which of the sensor systems on a sensor pod is used to provide initial classification of the target and which sensor or sensors are to be used in tracking and better classifying the target if it is determined to be of value to the mission. The three different approaches are compared to determine when the best times for the more complex approaches are warranted.
Fuzzy logic control and optimization system
Lou, Xinsheng [West Hartford, CT
2012-04-17
A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.
IMPLEMENTATION OF FUZZY LOGIC BASED TEMPERATURE ...
African Journals Online (AJOL)
The “center of gravity” or the “centroid” method of defuzzification was chosen, since it weighs the effect of each input variable towards the calculation of the output [5]. Input fuzzy sets and rules are converted into an output fuzzy set, and then into a crisp output for controlling the steam control valve. All the rules that have any ...
2000-02-01
A Fuzzy Logic Ramp Metering Algorithm was implemented on 126 ramps in the greater Seattle area. This report documents the implementation of the Fuzzy Logic Ramp Metering Algorithm at the Northwest District of the Washington State Department of Transp...
Fuzzy Logic Temperature Control System For The Induction Furnace
Directory of Open Access Journals (Sweden)
Lei Lei Hnin
2015-08-01
Full Text Available This research paper describes the fuzzy logic temperature control system of the induction furnace. Temperature requirement of the heating system varies during the heating process. In the conventional control schemes the switching losses increase with the change in the load. A closed loop control is required to have a smooth control on the system. In this system pulse width modulation based power control scheme for the induction heating system is developed using the fuzzy logic controller. The induction furnace requires a good voltage regulation to have efficient response. The controller controls the temperature depending upon weight of meat water and time. This control system is implemented in hardware system using microcontroller. Here the fuzzy logic controller is designed and simulated in MATLAB to get the desire condition.
The design of thermoelectric footwear heating system via fuzzy logic.
Işik, Hakan; Saraçoğlu, Esra
2007-12-01
In this study, Heat Control of Thermoelectric Footwear System via Fuzzy Logic has been implemented in order to use efficiently in cold weather conditions. Temperature control is very important in domestic as well as in many industrial applications. The final product is seriously affected from the changes in temperature. So it is necessary to reach some desired temperature points quickly and avoid large overshoot. Here, fuzzy logic acts an important role. PIC 16F877 microcontroller has been designed to act as fuzzy logic controller. The designed system provides energy saving and has better performance than proportional control that was implemented in the previous study. The designed system takes into consideration so appropriate parameters that it can also be applied to the people safely who has illnesses like diabetes, etc.
On Witnessed Models in Fuzzy Logic III - Witnessed Gödel Logics
Czech Academy of Sciences Publication Activity Database
Hájek, Petr
2010-01-01
Roč. 56, č. 2 (2010), s. 171-174 ISSN 0942-5616 R&D Projects: GA MŠk(CZ) 1M0545 Institutional research plan: CEZ:AV0Z10300504 Keywords : mathematical fuzzy logic * Gödel logic * witnessed models * arithmetical complexity Subject RIV: BA - General Mathematics Impact factor: 0.361, year: 2010
Towards rational closure for fuzzy logic: The case of propositional Godel logic
CSIR Research Space (South Africa)
Casini, G
2013-12-01
Full Text Available In the field of non-monotonic logics, the notion of rational closure is acknowledged as a landmark and we are going to see whether such a construction can be adopted in the context of mathematical fuzzy logic, a so far (apparently) unexplored...
Genetic Algorithm Based Design of Fuzzy Logic Power System Stabilizers in Multimachine Power System
Manisha Dubey; Aalok Dubey
2010-01-01
This paper presents an approach for the design of fuzzy logic power system stabilizers using genetic algorithms. In the proposed fuzzy expert system, speed deviation and its derivative have been selected as fuzzy inputs. In this approach the parameters of the fuzzy logic controllers have been tuned using genetic algorithm. Incorporation of GA in the design of fuzzy logic power system stabilizer will add an intelligent dimension to the stabilizer and significantly reduces ...
Modeling Academic Performance Evaluation Using Soft Computing Techniques: A Fuzzy Logic Approach
Ramjeet Singh Yadav; Vijendra Pratap Singh
2011-01-01
We have proposed a Fuzzy Expert System (FES) for student academic performance evaluation based on fuzzy logic techniques. A suitable fuzzy inference mechanism and associated rule has been discussed. It introduces the principles behind fuzzy logic and illustrates how these principles could be applied by educators to evaluating student academic performance. Several approaches using fuzzy logic techniques have been proposed to provide a practical method for evaluating student academic performanc...
Genetic Algorithm Tuned Fuzzy Logic for Gliding Return Trajectories
Burchett, Bradley T.
2003-01-01
The problem of designing and flying a trajectory for successful recovery of a reusable launch vehicle is tackled using fuzzy logic control with genetic algorithm optimization. The plant is approximated by a simplified three degree of freedom non-linear model. A baseline trajectory design and guidance algorithm consisting of several Mamdani type fuzzy controllers is tuned using a simple genetic algorithm. Preliminary results show that the performance of the overall system is shown to improve with genetic algorithm tuning.
Performance evaluation of the distance education system with fuzzy logic
Armaǧan, Hamit; Yiǧit, Tuncay
2017-07-01
Distance education is a kind of education that brought together course advisor, student and educational materials in a different time and place through communicational technologies. In this educational system the success of education is directly related to audio, video and interaction. In this study, a model is created by using fuzzy logic with the success of distance education students and the components of distance education. This study is made by MATLAB fuzzy logic toolbox. Audio, video, educational technology, student achievement are used as parameters in the evaluation. System assessment is carried out depending on parameter.
Fuzzy logic: A "simple" solution for complexities in neurosciences?
Godil, Saniya Siraj; Shamim, Muhammad Shahzad; Enam, Syed Ather; Qidwai, Uvais
2011-02-26
Fuzzy logic is a multi-valued logic which is similar to human thinking and interpretation. It has the potential of combining human heuristics into computer-assisted decision making, which is applicable to individual patients as it takes into account all the factors and complexities of individuals. Fuzzy logic has been applied in all disciplines of medicine in some form and recently its applicability in neurosciences has also gained momentum. This review focuses on the use of this concept in various branches of neurosciences including basic neuroscience, neurology, neurosurgery, psychiatry and psychology. The applicability of fuzzy logic is not limited to research related to neuroanatomy, imaging nerve fibers and understanding neurophysiology, but it is also a sensitive and specific tool for interpretation of EEGs, EMGs and MRIs and an effective controller device in intensive care units. It has been used for risk stratification of stroke, diagnosis of different psychiatric illnesses and even planning neurosurgical procedures. In the future, fuzzy logic has the potential of becoming the basis of all clinical decision making and our understanding of neurosciences.
Fuzzy Logic as a Tool for Assessing Students' Knowledge and Skills
Voskoglou, Michael Gr.
2013-01-01
Fuzzy logic, which is based on fuzzy sets theory introduced by Zadeh in 1965, provides a rich and meaningful addition to standard logic. The applications which may be generated from or adapted to fuzzy logic are wide-ranging and provide the opportunity for modeling under conditions which are imprecisely defined. In this article we develop a fuzzy…
Modelling of Reservoir Operations using Fuzzy Logic and ANNs
Van De Giesen, N.; Coerver, B.; Rutten, M.
2015-12-01
Today, almost 40.000 large reservoirs, containing approximately 6.000 km3 of water and inundating an area of almost 400.000 km2, can be found on earth. Since these reservoirs have a storage capacity of almost one-sixth of the global annual river discharge they have a large impact on the timing, volume and peaks of river discharges. Global Hydrological Models (GHM) are thus significantly influenced by these anthropogenic changes in river flows. We developed a parametrically parsimonious method to extract operational rules based on historical reservoir storage and inflow time-series. Managing a reservoir is an imprecise and vague undertaking. Operators always face uncertainties about inflows, evaporation, seepage losses and various water demands to be met. They often base their decisions on experience and on available information, like reservoir storage and the previous periods inflow. We modeled this decision-making process through a combination of fuzzy logic and artificial neural networks in an Adaptive-Network-based Fuzzy Inference System (ANFIS). In a sensitivity analysis, we compared results for reservoirs in Vietnam, Central Asia and the USA. ANFIS can indeed capture reservoirs operations adequately when fed with a historical monthly time-series of inflows and storage. It was shown that using ANFIS, operational rules of existing reservoirs can be derived without much prior knowledge about the reservoirs. Their validity was tested by comparing actual and simulated releases with each other. For the eleven reservoirs modelled, the normalised outflow, , was predicted with a MSE of 0.002 to 0.044. The rules can be incorporated into GHMs. After a network for a specific reservoir has been trained, the inflow calculated by the hydrological model can be combined with the release and initial storage to calculate the storage for the next time-step using a mass balance. Subsequently, the release can be predicted one time-step ahead using the inflow and storage.
Fuzzy logic for structural system control
Directory of Open Access Journals (Sweden)
Herbert Martins Gomes
Full Text Available This paper provides some information and numerical tests that aims to investigate the use of a Fuzzy Controller applied to control systems. Some advantages are reported regarding the use of this controller, such as the characteristic ease of implementation due to its semantic feature in the statement of the control rules. On the other hand, it is also hypothesized that these systems have a lower performance loss when the system to be controlled is nonlinear or has time varying parameters. Numerical tests are performed using modal LQR optimal control and Fuzzy control of non-collocated systems with full state feedback in a two-dimensional structure. The paper proposes a way of designing a controller that may be a supervisory Fuzzy controller for a traditional controller or even a fuzzy controller independent from the traditional control, consisting on individual mode controllers. Some comments are drawn regarding the performance of these proposals in a number of arrangements.
Formal Systems of Fuzzy Logic and their Fragments
Czech Academy of Sciences Publication Activity Database
Cintula, Petr; Hájek, Petr; Horčík, Rostislav
2007-01-01
Roč. 150, č. 1-3 (2007), s. 40-65 ISSN 0168-0072 R&D Projects: GA MŠk(CZ) 1M0545; GA AV ČR 1ET100300517 Institutional research plan: CEZ:AV0Z10300504 Keywords : mathematical fuzzy logic * BCK-algebras * BCK * FBCK * monoidal t-norm based logic Subject RIV: BA - General Mathematics Impact factor: 0.613, year: 2007
Complexity of Some Language Fragments of Fuzzy Logics
Czech Academy of Sciences Publication Activity Database
Haniková, Zuzana
2017-01-01
Roč. 21, č. 1 (2017), s. 69-77 ISSN 1432-7643 R&D Projects: GA ČR GAP202/11/1632 Institutional support: RVO:67985807 Keywords : fuzzy logic * propositional logic * language fragment * implicational fragment * commutative semigroup * equational theory * computational complexity Subject RIV: BA - General Mathematics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 2.472, year: 2016
Driver's Behavior Modeling Using Fuzzy Logic
Directory of Open Access Journals (Sweden)
Sehraneh Ghaemi
2010-01-01
Full Text Available In this study, we propose a hierarchical fuzzy system for human in a driver-vehicle-environment system to model takeover by different drivers. The driver's behavior is affected by the environment. The climate, road and car conditions are included in fuzzy modeling. For obtaining fuzzy rules, experts' opinions are benefited by means of questionnaires on effects of parameters such as climate, road and car conditions on driving capabilities. Also the precision, age and driving individuality are used to model the driver's behavior. Three different positions are considered for driving and decision making. A fuzzy model called Model I is presented for modeling the change of steering angle and speed control by considering time distances with existing cars in these three positions, the information about the speed and direction of car, and the steering angle of car. Also we obtained two other models based on fuzzy rules called Model II and Model III by using Sugeno fuzzy inference. Model II and Model III have less linguistic terms than Model I for the steering angle and direction of car. The results of three models are compared for a driver who drives based on driving laws.
A practical introduction to fuzzy logic using LISP
Argüelles Mendez, Luis
2016-01-01
This book makes use of the LISP programming language to provide readers with the necessary background to understand and use fuzzy logic to solve simple to medium-complexity real-world problems. It introduces the basics of LISP required to use a Fuzzy LISP programming toolbox, which was specifically implemented by the author to “teach” the theory behind fuzzy logic and at the same time equip readers to use their newly-acquired knowledge to build fuzzy models of increasing complexity. The book fills an important gap in the literature, providing readers with a practice-oriented reference guide to fuzzy logic that offers more complexity than popular books yet is more accessible than other mathematical treatises on the topic. As such, students in first-year university courses with a basic tertiary mathematical background and no previous experience with programming should be able to easily follow the content. The book is intended for students and professionals in the fields of computer science and engineering, ...
Implementation of a Fuzzy Logic Speed Controller for a Permanent ...
African Journals Online (AJOL)
The purpose is to achieve accurate trajectory control of the speed of permanent magnet brushless DC Motor, especially when the motor and load parameters are unknown. Based on the mathematic model of BLDCM, a fuzzy logic controller is designed, and the membership function is composed by Gauss function.
Fuzzy logic control of the building structure with CLEMR dampers
Zhang, Xiang-Cheng; Xu, Zhao-Dong; Huang, Xing-Huai; Zhu, Jun-Tao
2013-04-01
The semi-active control technology has been paid more attention in the field of structural vibration control due to its high controllability, excellent control effect and low power requirement. When semi-active control device are used for vibration control, some challenges must be taken into account, such as the reliability and the control strategy of the device. This study presents a new large tonnage compound lead extrusion magnetorheological (CLEMR) damper, whose mathematical model is introduced to describe the variation of damping force with current and velocity. Then a current controller based on the fuzzy logic control strategy is designed to determine control currents of the CLEMR dampers rapidly. A ten-floor frame structure with CLEMR dampers using the fuzzy logic control strategy is built and calculated by using MATLAB. Calculation results show that CLEMR dampers can reduce the seismic responses of structures effectively. Calculation results of the fuzzy logic control strategy are compared with those of the semi-active limit Hrovat control structure, the passive-off control structure, and the uncontrolled structure. Comparison results show that the fuzzy logic control strategy can determine control currents of CLEMR dampers quickly and can reduce seismic responses of the structures more effectively than the passive-off control strategy and the uncontrolled structure.
Pneumatic motor speed control by trajectory tracking fuzzy logic ...
Indian Academy of Sciences (India)
In this study, trajectory tracking fuzzy logic controller (TTFLC) is proposed for the speed control of a pneumatic motor (PM). A third order trajectory is deﬁned to determine the trajectory function that has to be tracked by the PM speed. Genetic algorithm (GA) is used to ﬁnd the TTFLC boundary values of membership functions ...
On Theories and Models in Fuzzy Predicate Logics
Czech Academy of Sciences Publication Activity Database
Hájek, Petr; Cintula, Petr
2006-01-01
Roč. 71, č. 3 (2006), s. 863-880 ISSN 0022-4812 R&D Projects: GA AV ČR IAA100300503 Institutional research plan: CEZ:AV0Z10300504 Keywords : fuzzy logic * model theory * witnessed models * conservative extension * completeness theorem Subject RIV: BA - General Mathematics Impact factor: 0.664, year: 2006
Different control applications on a vehicle using fuzzy logic control
Indian Academy of Sciences (India)
Abstract. In this paper, the active suspension control of a vehicle model that has five degrees of freedom with a passenger seat using a fuzzy logic controller is studied. Three cases are taken into account as different control applications. In the first case, the vehicle model having passive suspensions with an active passenger.
A Self-Organising Fuzzy Logic Controller | Ekemezie | Nigerian ...
African Journals Online (AJOL)
One major drawback of fuzzy logic controllers is the difficulty encountered in the construction of a rule- base that is suitable for the controlled process. In this paper we tackle this problem by proposing an algorithm that allows a designer to initially specify a possibly inaccurate rule-base, which is then made more and more ...
Use of fuzzy logic in signal processing and validation
International Nuclear Information System (INIS)
Heger, A.S.; Alang-Rashid, N.K.; Holbert, K.E.
1993-01-01
The advent of fuzzy logic technology has afforded another opportunity to reexamine the signal processing and validation process (SPV). The features offered by fuzzy logic can lend themselves to a more reliable and perhaps fault-tolerant approach to SPV. This is particularly attractive to complex system operations, where optimal control for safe operation depends on reliable input data. The reason for the use of fuzzy logic as the tool for SPV is its ability to transform information from the linguistic domain to a mathematical domain for processing and then transformation of its result back into the linguistic domain for presentation. To ensure the safe and optimal operation of a nuclear plant, for example, reliable and valid data must be available to the human and computer operators. Based on these input data, the operators determine the current state of the power plant and project corrective actions for future states. This determination is based on available data and the conceptual and mathematical models for the plant. A fault-tolerant SPV based on fuzzy logic can help the operators meet the objective of effective, efficient, and safe operation of the nuclear power plant. The ultimate product of this project will be a code that will assist plant operators in making informed decisions under uncertain conditions when conflicting signals may be present
Bicycle Frame Prediction Techniques with Fuzzy Logic Method
Directory of Open Access Journals (Sweden)
Rafiuddin Syam
2015-03-01
Full Text Available In general, an appropriate size bike frame would get comfort to the rider while biking. This study aims to predict the simulation system on the bike frame sizes with fuzzy logic. Testing method used is the simulation test. In this study, fuzzy logic will be simulated using Matlab language to test their performance. Mamdani fuzzy logic using 3 variables and 1 output variable intake. Triangle function for the input and output. The controller is designed in the type mamdani with max-min composition and the method deffuzification using center of gravity method. The results showed that height, inseam and Crank Size generating appropriate frame size for the rider associated with comfort. Has a height range between 142 cm and 201 cm. Inseam has a range between 64 cm and 97 cm. Crank has a size range between 175 mm and 180 mm. The simulation results have a range of frame sizes between 13 inches and 22 inches. By using the fuzzy logic can be predicted the size frame of bicycle suitable for the biker.
Pneumatic motor speed control by trajectory tracking fuzzy logic
Indian Academy of Sciences (India)
In this study, trajectory tracking fuzzy logic controller (TTFLC) is proposed for the speed control of a pneumatic motor (PM). A third order trajectory is deﬁned to determine the trajectory function that has to be tracked by the PM speed. Genetic algorithm (GA) is used to ﬁnd the TTFLC boundary values of membership functions ...
Towards Metamathematics of Weak Arithmetics over Fuzzy Logic
Czech Academy of Sciences Publication Activity Database
Hájek, Petr
2011-01-01
Roč. 19, č. 3 (2011), s. 467-475 ISSN 1367-0751 R&D Projects: GA AV ČR IAA100300503 Institutional research plan: CEZ:AV0Z10300504 Keywords : weak arithmetics * mathematical fuzzy logic * Gödel’s theorem * essential undecidability Subject RIV: BA - General Mathematics Impact factor: 0.913, year: 2011
Fuzzy logic control of vehicle suspensions with dry friction nonlinearity
Indian Academy of Sciences (India)
We design and investigate the performance of fuzzy logic-controlled (FLC) active suspensions on a nonlinear vehicle model with four degrees of freedom, without causing any degeneration in suspension working limits. Force actuators were mounted parallel to the suspensions. In this new approach, linear combinations of ...
Fuzzy logic control of vehicle suspensions with dry friction nonlinearity
Indian Academy of Sciences (India)
and a harsh ride. In order to overcome this practical difficulty a new FLC approach is proposed. The algorithm of the MIMO fuzzy logic controller for the vehicle suspension system uses the errors of the suspension end velocities of the front and rear, and their accelerations and suspension gap velocities as the input variables, ...
Bicycle Frame Prediction Techniques with Fuzzy Logic Method
Directory of Open Access Journals (Sweden)
Rafiuddin Syam
2017-03-01
Full Text Available In general, an appropriate size bike frame would get comfort to the rider while biking. This study aims to predict the simulation system on the bike frame sizes with fuzzy logic. Testing method used is the simulation test. In this study, fuzzy logic will be simulated using Matlab language to test their performance. Mamdani fuzzy logic using 3 variables and 1 output variable intake. Triangle function for the input and output. The controller is designed in the type mamdani with max-min composition and the method deffuzification using center of gravity method. The results showed that height, inseam and Crank Size generating appropriate frame size for the rider associated with comfort. Has a height range between 142 cm and 201 cm. Inseam has a range between 64 cm and 97 cm. Crank has a size range between 175 mm and 180 mm. The simulation results have a range of frame sizes between 13 inches and 22 inches. By using the fuzzy logic can be predicted the size frame of bicycle suitable for the biker.
Determination Of Adaptive Control Parameter Using Fuzzy Logic Controller
Directory of Open Access Journals (Sweden)
Omur Can Ozguney
2017-08-01
Full Text Available The robot industry has developed along with the increasing the use of robots in industry. This has led to increase the studies on robots. The most important part of these studies is that the robots must be work with minimum tracking trajectory error. But it is not easy for robots to track the desired trajectory because of the external disturbances and parametric uncertainty. Therefore adaptive and robust controllers are used to decrease tracking error. The aim of this study is to increase the tracking performance of the robot and minimize the trajectory tracking error. For this purpose adaptive control law for robot manipulator is identified and fuzzy logic controller is applied to find the accurate values for adaptive control parameter. Based on the Lyapunov theory stability of the uncertain system is guaranteed. In this study robot parameters are assumed to be unknown. This controller is applied to a robot model and the results of simulations are given. Controller with fuzzy logic and without fuzzy logic are compared with each other. Simulation results show that the fuzzy logic controller has improved the results.
Normal Forms for Fuzzy Logics: A Proof-Theoretic Approach
Czech Academy of Sciences Publication Activity Database
Cintula, Petr; Metcalfe, G.
2007-01-01
Roč. 46, č. 5-6 (2007), s. 347-363 ISSN 1432-0665 R&D Projects: GA MŠk(CZ) 1M0545 Institutional research plan: CEZ:AV0Z10300504 Keywords : fuzzy logic * normal form * proof theory * hypersequents Subject RIV: BA - General Mathematics Impact factor: 0.620, year: 2007
modelling room cooling capacity with fuzzy logic procedure
African Journals Online (AJOL)
The primary aim of this study is to develop a model for estimation of the cooling requirement of residential rooms. Fuzzy logic was employed to model four input variables (window area (m2), roof area (m2), external wall area (m2) and internal load (Watt). The algorithm of the inference engine applied sets of 81 linguistic ...
Self-learning fuzzy logic controllers based on reinforcement
International Nuclear Information System (INIS)
Wang, Z.; Shao, S.; Ding, J.
1996-01-01
This paper proposes a new method for learning and tuning Fuzzy Logic Controllers. The self-learning scheme in this paper is composed of Bucket-Brigade and Genetic Algorithm. The proposed method is tested on the cart-pole system. Simulation results show that our approach has good learning and control performance
Minimising tremor in a joystick using fuzzy logic
van der Zwaag, B.J.; Corbett, Dan; Jain, Lakhmi; Kappen, H.J.; Duin, R.P.W.; Krose, B.J.A.; Segeth, W.
We have designed and built a fuzzy logic controller which minimises the effect of Multiple Sclerosis (MS) hand tremors. The aim of our project has been to give people with Multiple Sclerosis better control of an electronic wheelchair by removing tremors from the joystick signal. The system
Capturing hand tremors with a fuzzy logic wheelchair joystick controller
van der Zwaag, B.J.; Corbett, Dan
We have designed and built a fuzzy logic wheelchair controller which minimizes the effect of Multiple Sclerosis and tremors. The aim of our project has been to give people with Multiple Sclerosis better control of an electric wheelchair by removing tremors from the joystick signal. The system
Comments on Interpretability and Decidability in Fuzzy Logic
Czech Academy of Sciences Publication Activity Database
Hájek, Petr
2011-01-01
Roč. 21, č. 5 (2011), s. 823-828 ISSN 0955-792X R&D Projects: GA ČR GEICC/08/E018 Institutional research plan: CEZ:AV0Z10300504 Keywords : mathematical fuzzy logic * interpretability * decidability Subject RIV: BA - General Mathematics Impact factor: 0.611, year: 2011
An Innovative Fuzzy-Logic-Based Methodology for Trend Identification
International Nuclear Information System (INIS)
Wang Xin; Tsoukalas, Lefteri H.; Wei, Thomas Y.C.; Reifman, Jaques
2001-01-01
A new fuzzy-logic-based methodology for on-line signal trend identification is introduced. The methodology may be used for detecting the onset of nuclear power plant (NPP) transients at the earliest possible time and could be of great benefit to diagnostic, maintenance, and performance-monitoring programs. Although signal trend identification is complicated by the presence of noise, fuzzy methods can help capture important features of on-line signals, integrate the information included in these features, and classify incoming NPP signals into increasing, decreasing, and steady-state trend categories. A computer program named PROTREN is developed and tested for the purpose of verifying this methodology using NPP and simulation data. The results indicate that the new fuzzy-logic-based methodology is capable of detecting transients accurately, it identifies trends reliably and does not misinterpret a steady-state signal as a transient one
Stock and option portfolio using fuzzy logic approach
Sumarti, Novriana; Wahyudi, Nanang
2014-03-01
Fuzzy Logic in decision-making process has been widely implemented in various problems in industries. It is the theory of imprecision and uncertainty that was not based on probability theory. Fuzzy Logic adds values of degree between absolute true and absolute false. It starts with and builds on a set of human language rules supplied by the user. The fuzzy systems convert these rules to their mathematical equivalents. This could simplify the job of the system designer and the computer, and results in much more accurate representations of the way systems behave in the real world. In this paper we examine the decision making process of stock and option trading by the usage of MACD (Moving Average Convergence Divergence) technical analysis and Option Pricing with Fuzzy Logic approach. MACD technical analysis is for the prediction of the trends of underlying stock prices, such as bearish (going downward), bullish (going upward), and sideways. By using Fuzzy C-Means technique and Mamdani Fuzzy Inference System, we define the decision output where the value of MACD is high then decision is "Strong Sell", and the value of MACD is Low then the decision is "Strong Buy". We also implement the fuzzification of the Black-Scholes option-pricing formula. The stock and options methods are implemented on a portfolio of one stock and its options. Even though the values of input data, such as interest rates, stock price and its volatility, cannot be obtain accurately, these fuzzy methods can give a belief degree of the calculated the Black-Scholes formula so we can make the decision on option trading. The results show the good capability of the methods in the prediction of stock price trends. The performance of the simulated portfolio for a particular period of time also shows good return.
A SELF-ORGANISING FUZZY LOGIC CONTROLLER
African Journals Online (AJOL)
ES Obe
centroid method will be employed. Since the ultimate result of the fuzzy reasoning process is the defuzzified output, it is necessary first of all to choose a defuzzification method that is suitable to the proposed strategy. The weighted averaging method of defuzzification described in [5], which is similar to the centroid method, is.
Transport Routes Optimization Model Through Application of Fuzzy Logic
Directory of Open Access Journals (Sweden)
Ivan Bortas
2018-03-01
Full Text Available The transport policy of the European Union is based on the mission of restructuring road traffic into other and energy-favourable transport modes which have not been sufficiently represented yet. Therefore, the development of the inland waterway and rail transport, and connectivity in the intermodal transport network are development planning priorities of the European transport strategy. The aim of this research study was to apply the scientific methodology and thus analyse the factors that affect the distribution of the goods flows and by using the fuzzy logic to make an optimization model, according to the criteria of minimizing the costs and negative impact on the environment, for the selection of the optimal transport route. Testing of the model by simulation, was performed on the basis of evaluating the criteria of the influential parameters with unprecise and indefinite input parameters. The testing results show that by the distribution of the goods flow from road transport network to inland waterways or rail transport, can be predicted in advance and determine the transport route with optimal characteristics. The results of the performed research study will be used to improve the process of planning the transport service, with the aim of reducing the transport costs and environmental pollution.
Fuzzy Logic Decoupled Lateral Control for General Aviation Airplanes
Duerksen, Noel
1997-01-01
It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control different airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control aileron or roll spoiler position. This controller was used to control bank angle for both a piston powered single engine aileron equipped airplane simulation and a business jet simulation which used spoilers for primary roll control. Overspeed, stall and overbank protection were incorporated in the form of expert systems supervisors and weighted fuzzy rules. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic lateral controller could be successfully used on two general aviation aircraft types that have very different characteristics. These controllers worked for both airplanes over their entire flight envelopes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle ]ever travel, etc.). This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.
Self-tuning fuzzy logic nuclear reactor controller
International Nuclear Information System (INIS)
Sharif Heger, A.; Alang-Rashid, N.K.
1996-01-01
We present a method for self-tuning of fuzzy logic controllers based on the estimation of the optimum value of the centroids of its output fuzzy set. The method can be implemented on-line and does not require modification of membership functions and control rules. The main features of this method are: the rules are left intact to retain the operator's expertise in the FLC rule base, and the parameters that require any adjustment are identifiable in advance and their number is kept at a minimum. Therefore, the use of this method preserves the control statements in the original form. Results of simulation and actual tests show that this tuning method improves the performance of fuzzy logic controllers in following the desired reactor power level trajectories. In addition, this method demonstrates a similar improvement for power up and power down experiments, based on both simulation and actual case studies. For these experiments, the control rules for the fuzzy logic controller were derived from control statements that expressed the relationships between error, rate of error change, and duration of direction of control rod movements
Fuzzy logic based variable speed wind generation system
Energy Technology Data Exchange (ETDEWEB)
Simoes, M.G. [Sao Paulo Univ., SP (Brazil). Escola Politecnica. PMC - Mecatronica; Bose, B.K. [Tennessee Univ., Knoxville, TN (United States). Dept. of Electrical Engineering; Spiegel, Ronal J. [Environmental Protection Agency, Research Triangle Park, NC (United States). Air and Energy Engineering Research Lab.
1996-12-31
This work demonstrates the successful application of fuzzy logic to enhance the performance and control of a variable speed wind generation system. A maximum power point tracker control is performed with three fuzzy controllers, without wind velocity measurement, and robust to wind vortex and turbine torque ripple. A squirrel cage induction generator feeds the power to a double-sided PWM converter system which pumps the power to a utility grid or supplies to an autonomous system. The fuzzy logic controller FLC-1 searches on-line the generator speed so that the aerodynamic efficiency of the wind turbine is optimized. A second fuzzy controller FLC-2 programs the machine flux by on-line search so as to optimize the machine-converter system wind vortex. Detailed analysis and simulation studies were performed for development of the control strategy and fuzzy algorithms, and a DSP TMS320C30 based hardware with C control software was built for the performance evaluation of a laboratory experimental set-up. The theoretical development was fully validated and the system is ready to be reproduced in a higher power installation. (author) 7 refs., 3 figs., 1 tab.
Directory of Open Access Journals (Sweden)
H. Sudheer
2016-06-01
Full Text Available This paper presents improvements in Direct Torque control of induction motor using Fuzzy logic switching controller (FDTC. The conventional DTC (CDTC and FDTC drive performance is compared using Conventional PI, Fuzzy controller and Neural Network controllers. The major disadvantages of CDTC are high torque and flux ripples in steady state operation of the drive, inferior performance at low speed operation and variable switching frequency. The presence of hysteresis bands is the major reason for high torque and flux ripples in CDTC. In FDTC the hysteresis band and switching table are replaced by Fuzzy logic switching controller. Using fuzzy logic torque, stator flux space are divided into smaller subsections which results in precise and optimal selection of switching state to meet load torque. In high performance drives accurate tuning of PI speed controller is required. The conventional PI controller cannot adapt to the variation in model parameters. Artificial intelligence based fuzzy controller and neural network controller are compared with PI controller for both CDTC and FDTC of Induction machine. The proposed schemes are developed in Matlab/Simulink environment. Simulation results shows reduction in torque and flux ripples in FDTC and dynamic performance of the drive at low speeds and sudden change in load torque can be improved using Fuzzy logic controller compared to PI and neural network controller.
Fuzzy logic estimator of rotor time constant in induction motors
Energy Technology Data Exchange (ETDEWEB)
Alminoja, J. [Tampere University of Technology (Finland). Control Engineering Laboratory; Koivo, H. [Helsinki University of Technology, Otaniemi (Finland). Control Engineering Laboratory
1997-12-31
Vector control of AC machines is a well-known and widely used technique in induction machine control. It offers an exact method for speed control of induction motors, but it is also sensitive to the changes in machine parameters. E.g. rotor time constant has a strong dependence on temperature. In this paper a fuzzy logic estimator is developed, with which the rotor time constant can be estimated when the machine has a load. It is more simple than the estimators proposed in the literature. The fuzzy estimator is tested by simulation when step-wise abrupt changes and slow drifting occurs. (orig.) 7 refs.
The Fuzzy Logic of MicroRNA Regulation: A Key to Control Cell Complexity.
Ripoli, Andrea; Rainaldi, Giuseppe; Rizzo, Milena; Mercatanti, Alberto; Pitto, Letizia
2010-08-01
Genomic and clinical evidence suggest a major role of microRNAs (miRNAs) in the regulatory mechanisms of gene expression, with a clear impact on development and physiology; miRNAs are a class of endogenous 22-25 nt single-stranded RNA molecules, that negatively regulate gene expression post-transcriptionally, by imperfect base pairing with the 3' UTR of the corresponding mRNA target. Because of this imperfection, each miRNA can bind multiple targets, and multiple miRNAs can bind the same mRNA target; although digital, the miRNAs control mechanism is characterized by an imprecise action, naturally understandable in the theoretical framework of fuzzy logic.A major practical application of fuzzy logic is represented by the design and the realization of efficient and robust control systems, even when the processes to be controlled show chaotic, deterministic as well unpredictable, behaviours. The vagueness of miRNA action, when considered together with the controlled and chaotic gene expression, is a hint of a cellular fuzzy control system. As a demonstration of the possibility and the effectiveness of miRNA based fuzzy mechanism, a fuzzy cognitive map -a mathematical formalism combining neural network and fuzzy logic- has been developed to study the apoptosis/proliferation control performed by the miRNA-17-92 cluster/E2F1/cMYC circuitry.When experimentally demonstrated, the concept of fuzzy control could modify the way we analyse and model gene expression, with a possible impact on the way we imagine and design therapeutic intervention based on miRNA silencing.
LA LÓGICA DIFUSA COMPENSATORIA / THE COMPENSATORY FUZZY LOGIC
Directory of Open Access Journals (Sweden)
Jesús Cejas-Montero
2011-06-01
Full Text Available
La Lógica Difusa Compensatoria es un modelo lógico que permite la modelación simultánea de los procesos deductivos y de toma de decisiones. Sus características más importantes son: la flexibilidad, la tolerancia con la imprecisión, la capacidad para moldear problemas no-lineales y su fundamento en el lenguaje de sentido común. El artículo pretende llevar a la comunidad académico-empresarial las ideas fundamentales de la Lógica Difusa Compensatoria, ilustrándola en sus posibles campos de aplicación para lograr la competitividad de una organización.
Abstract
The Compensatory Fuzzy Logic is a logical model that allows the simultaneous modeling of the deductive and decision-making processes. The most important characteristics of Compensatory Fuzzy Logic are: the flexibility, the tolerance with the inaccuracy, the capacity to model no-lineal problems and its foundation in the language of common sense. The article seeks to bring the basic ideas of the Compensatory Fuzzy Logic to the academic–managerial community, illustrating it in its possible fields of application, in order to achieve the competitiveness of an organization.
Edge detection methods based on generalized type-2 fuzzy logic
Gonzalez, Claudia I; Castro, Juan R; Castillo, Oscar
2017-01-01
In this book four new methods are proposed. In the first method the generalized type-2 fuzzy logic is combined with the morphological gra-dient technique. The second method combines the general type-2 fuzzy systems (GT2 FSs) and the Sobel operator; in the third approach the me-thodology based on Sobel operator and GT2 FSs is improved to be applied on color images. In the fourth approach, we proposed a novel edge detec-tion method where, a digital image is converted a generalized type-2 fuzzy image. In this book it is also included a comparative study of type-1, inter-val type-2 and generalized type-2 fuzzy systems as tools to enhance edge detection in digital images when used in conjunction with the morphologi-cal gradient and the Sobel operator. The proposed generalized type-2 fuzzy edge detection methods were tested with benchmark images and synthetic images, in a grayscale and color format. Another contribution in this book is that the generalized type-2 fuzzy edge detector method is applied in the preproc...
Control of a dc motor using fuzzy logic control algorithm | Usoro ...
African Journals Online (AJOL)
This study sought to establish the impact of a fuzzy logic controller (FLC) and a Proportional-Integral-Derivative (PID) controller in the control performance of an industrial type DC motor using MATLAB. The fuzzy logic controller was developed on the basis of Mamdani type fuzzy inference system (FIS). The centroid method ...
Mapping Shape Geometry And Emotions Using Fuzzy Logic
DEFF Research Database (Denmark)
Achiche, Sofiane; Ahmed, Saeema
2008-01-01
An important aspect of artifact/product design is defining the aesthetic and emotional value. The success of a product is not only dependent on its functionality but also on the emotional value that it creates to its user. However, if several designers are faced with a task to create an object...... that would evoke a certain emotion (aggressive, soft, heavy, friendly, etc.), each would most likely interpret the emotion with a different set of geometric features and shapes. In this paper the authors propose an approach to formalize the relationship between geometric information of a 3D object...... and the intended emotion using fuzzy logic. To achieve this; 3D objects (shapes) created by design engineering students to match a set of words/emotions were analyzed. The authors identified geometric information as inputs of the fuzzy model and developed a set of fuzzy if/then rules to map the relationships...
Fuzzy Logic Applied to an Oven Temperature Control System
Directory of Open Access Journals (Sweden)
Nagabhushana KATTE
2011-10-01
Full Text Available The paper describes the methodology of design and development of fuzzy logic based oven temperature control system. As simple fuzzy logic controller (FLC structure with an efficient realization and a small rule base that can be easily implemented in existing underwater control systems is proposed. The FLC has been designed using bell-shaped membership function for fuzzification, 49 control rules in its rule base and centre of gravity technique for defuzzification. Analog interface card with 16-bits resolution is designed to achieve higher precision in temperature measurement and control. The experimental results of PID and FLC implemented system are drawn for a step input and presented in a comparative fashion. FLC exhibits fast response and it has got sharp rise time and smooth control over conventional PID controller. The paper scrupulously discusses the hardware and software (developed using ‘C’ language features of the system.
DC motor speed control using fuzzy logic controller
Ismail, N. L.; Zakaria, K. A.; Nazar, N. S. Moh; Syaripuddin, M.; Mokhtar, A. S. N.; Thanakodi, S.
2018-02-01
The automatic control has played a vital role in the advance of engineering and science. Nowadays in industries, the control of direct current (DC) motor is a common practice thus the implementation of DC motor controller speed is important. The main purpose of motor speed control is to keep the rotation of the motor at the present speed and to drive a system at the demand speed. The main purpose of this project is to control speed of DC Series Wound Motor using Fuzzy Logic Controller (FLC). The expectation of this project is the Fuzzy Logic Controller will get the best performance compared to dc motor without controller in terms of settling time (Ts), rise time (Tr), peak time (Tp) and percent overshoot (%OS).
Fuzzy Temporal Logic Based Railway Passenger Flow Forecast Model
Dou, Fei; Jia, Limin; Wang, Li; Xu, Jie; Huang, Yakun
2014-01-01
Passenger flow forecast is of essential importance to the organization of railway transportation and is one of the most important basics for the decision-making on transportation pattern and train operation planning. Passenger flow of high-speed railway features the quasi-periodic variations in a short time and complex nonlinear fluctuation because of existence of many influencing factors. In this study, a fuzzy temporal logic based passenger flow forecast model (FTLPFFM) is presented based on fuzzy logic relationship recognition techniques that predicts the short-term passenger flow for high-speed railway, and the forecast accuracy is also significantly improved. An applied case that uses the real-world data illustrates the precision and accuracy of FTLPFFM. For this applied case, the proposed model performs better than the k-nearest neighbor (KNN) and autoregressive integrated moving average (ARIMA) models. PMID:25431586
Fuzzy-logic optical optimization of mainframe CPU and memory
Zalevsky, Zeev; Gur, Eran; Mendlovic, David
2006-07-01
The allocation of CPU time and memory resources is a familiar problem in organizations with a large number of users and a single mainframe. Usually the amount of resources allocated to a single user is based on the user's own statistics not on the statistics of the entire organization, therefore patterns are not well identified and the allocation system is prodigal. A fuzzy-logic-based algorithm to optimize the CPU and memory distribution among users based on their history is suggested. The algorithm works on heavy and light users separately since they present different patterns to be observed. The result is a set of rules generated by the fuzzy-logic inference engine that will allow the system to use its computing ability in an optimized manner. Test results on data taken from the Faculty of Engineering of Tel Aviv University demonstrate the capabilities of the new algorithm.
Classification of Children Intelligence with Fuzzy Logic Method
Syahminan; ika Hidayati, Permata
2018-04-01
Intelligence of children s An Important Thing To Know The Parents Early on. Typing Can be done With a Child’s intelligence Grouping Dominant Characteristics Of each Type of Intelligence. To Make it easier for Parents in Determining The type of Children’s intelligence And How to Overcome them, for It Created A Classification System Intelligence Grouping Children By Using Fuzzy logic method For determination Of a Child’s degree of intelligence type. From the analysis We concluded that The presence of Intelligence Classification systems Pendulum Children With Fuzzy Logic Method Of determining The type of The Child’s intelligence Can be Done in a way That is easier And The results More accurate Conclusions Than Manual tests.
Fuzzy-Rough Cognitive Networks.
Nápoles, Gonzalo; Mosquera, Carlos; Falcon, Rafael; Grau, Isel; Bello, Rafael; Vanhoof, Koen
2018-01-01
Rough Cognitive Networks (RCNs) are a kind of granular neural network that augments the reasoning rule present in Fuzzy Cognitive Maps with crisp information granules coming from Rough Set Theory. While RCNs have shown promise in solving different classification problems, this model is still very sensitive to the similarity threshold upon which the rough information granules are built. In this paper, we cast the RCN model within the framework of fuzzy rough sets in an attempt to eliminate the need for a user-specified similarity threshold while retaining the model's discriminatory power. As far as we know, this is the first study that brings fuzzy sets into the domain of rough cognitive mapping. Numerical results in the presence of 140 well-known pattern classification problems reveal that our approach, referred to as Fuzzy-Rough Cognitive Networks, is capable of outperforming most traditional classifiers used for benchmarking purposes. Furthermore, we explore the impact of using different heterogeneous distance functions and fuzzy operators over the performance of our granular neural network. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rule based fuzzy logic approach for classification of fibromyalgia syndrome.
Arslan, Evren; Yildiz, Sedat; Albayrak, Yalcin; Koklukaya, Etem
2016-06-01
Fibromyalgia syndrome (FMS) is a chronic muscle and skeletal system disease observed generally in women, manifesting itself with a widespread pain and impairing the individual's quality of life. FMS diagnosis is made based on the American College of Rheumatology (ACR) criteria. However, recently the employability and sufficiency of ACR criteria are under debate. In this context, several evaluation methods, including clinical evaluation methods were proposed by researchers. Accordingly, ACR had to update their criteria announced back in 1990, 2010 and 2011. Proposed rule based fuzzy logic method aims to evaluate FMS at a different angle as well. This method contains a rule base derived from the 1990 ACR criteria and the individual experiences of specialists. The study was conducted using the data collected from 60 inpatient and 30 healthy volunteers. Several tests and physical examination were administered to the participants. The fuzzy logic rule base was structured using the parameters of tender point count, chronic widespread pain period, pain severity, fatigue severity and sleep disturbance level, which were deemed important in FMS diagnosis. It has been observed that generally fuzzy predictor was 95.56 % consistent with at least of the specialists, who are not a creator of the fuzzy rule base. Thus, in diagnosis classification where the severity of FMS was classified as well, consistent findings were obtained from the comparison of interpretations and experiences of specialists and the fuzzy logic approach. The study proposes a rule base, which could eliminate the shortcomings of 1990 ACR criteria during the FMS evaluation process. Furthermore, the proposed method presents a classification on the severity of the disease, which was not available with the ACR criteria. The study was not limited to only disease classification but at the same time the probability of occurrence and severity was classified. In addition, those who were not suffering from FMS were
Modelling Of Anticipated Damage Ratio On Breakwaters Using Fuzzy Logic
Mercan, D. E.; Yagci, O.; Kabdasli, S.
2003-04-01
In breakwater design the determination of armour unit weight is especially important in terms of the structure's life. In a typical experimental breakwater stability study, different wave series composed of different wave heights; wave period and wave steepness characteristics are applied in order to investigate performance the structure. Using a classical approach, a regression equation is generated for damage ratio as a function of characteristic wave height. The parameters wave period and wave steepness are not considered. In this study, differing from the classical approach using a fuzzy logic, a relationship between damage ratio as a function of mean wave period (T_m), wave steepness (H_s/L_m) and significant wave height (H_s) was further generated. The system's inputs were mean wave period (T_m), wave steepness (H_s/L_m) and significant wave height (H_s). For fuzzification all input variables were divided into three fuzzy subsets, their membership functions were defined using method developed by Mandani (Mandani, 1974) and the rules were written. While for defuzzification the centroid method was used. In order to calibrate and test the generated models an experimental study was conducted. The experiments were performed in a wave flume (24 m long, 1.0 m wide and 1.0 m high) using 20 different irregular wave series (P-M spectrum). Throughout the study, the water depth was 0.6 m and the breakwater cross-sectional slope was 1V/2H. In the armour layer, a type of artificial armour unit known as antifer cubes were used. The results of the established fuzzy logic model and regression equation model was compared with experimental data and it was determined that the established fuzzy logic model gave a more accurate prediction of the damage ratio on this type of breakwater. References Mandani, E.H., "Application of Fuzzy Algorithms for Control of Simple Dynamic Plant", Proc. IEE, vol. 121, no. 12, December 1974.
Switch Reluctance Motor Control Based on Fuzzy Logic System
Directory of Open Access Journals (Sweden)
S. V. Aleksandrovsky
2012-01-01
Full Text Available Due to its intrinsic simplicity and reliability, the switched reluctance motor (SRM has now become a promising candidate for variable-speed drive applications as an alternative induction motor in various industrial application. However, the SRM has the disadvantage of nonlinear characteristic and control. It is suggested to use controller based on fuzzy logic system. Design of FLS controller and simulation model presented.
SPEED CONTROL OF DC MOTOR ON LOAD USING FUZZY LOGIC ...
African Journals Online (AJOL)
This paper presents the development of a fuzzy logic controller for the driver DC motor in the lube oil system of the H25 Hitachi gas turbine generator. The turbine generator is required to run at an operating pressure of 1.5bar with the low and the high pressure trip points being 0.78 bar and 1.9 bar respectively. However, the ...
A Fuzzy Logic System to Analyze a Student's Lifestyle
Ghosh, Sourish; Boob, Aaditya Sanjay; Nikhil, Nishant; Vysyaraju, Nayan Raju; Kumar, Ankit
2016-01-01
A college student's life can be primarily categorized into domains such as education, health, social and other activities which may include daily chores and travelling time. Time management is crucial for every student. A self realisation of one's daily time expenditure in various domains is therefore essential to maximize one's effective output. This paper presents how a mobile application using Fuzzy Logic and Global Positioning System (GPS) analyzes a student's lifestyle and provides recom...
Induction Motor Speed Control Using Fuzzy Logic Controller
V. Chitra; R. S. Prabhakar
2008-01-01
Because of the low maintenance and robustness induction motors have many applications in the industries. The speed control of induction motor is more important to achieve maximum torque and efficiency. Various speed control techniques like, Direct Torque Control, Sensorless Vector Control and Field Oriented Control are discussed in this paper. Soft computing technique – Fuzzy logic is applied in this paper for the speed control of induction motor to achieve maximum torque with minimum loss. T...
Development of fuzzy logic algorithm for water purification plant
SUDESH SINGH RANA; SUDESH SINGH RANA
2015-01-01
This paper propose the design of FLC algorithm for industrial application such application is water purification plant. In the water purification plant raw water or ground water is promptly purified by injecting chemical at rates related to water quality. The feed of chemical rates judged and determined by the skilled operator. Yagishita et al.[1] structured a system based on fuzzy logic so that the feed rate of the coagulant can be judged automatically without any skilled operator. We perfor...
Fuzzy logic controllers and chaotic natural convection loops
International Nuclear Information System (INIS)
Theler, German
2007-01-01
The study of natural circulation loops is a subject of special concern for the engineering design of advanced nuclear reactors, as natural convection provides an efficient and completely passive heat removal system. However, under certain circumstances thermal-fluid-dynamical instabilities may appear, threatening the reactor safety as a whole.On the other hand, fuzzy logic controllers provide an ideal framework to approach highly non-linear control problems. In the present work, we develop a software-based fuzzy logic controller and study its application to chaotic natural convection loops.We numerically analyse the linguistic control of the loop known as the Welander problem in such conditions that, if the controller were not present, the circulation flow would be non-periodic unstable.We also design a Taka gi-Sugeno fuzzy controller based on a fuzzy model of a natural convection loop with a toroidal geometry, in order to stabilize a Lorenz-chaotic behaviour.Finally, we show experimental results obtained in a rectangular natural circulation loop [es
Abihana, Osama A.; Gonzalez, Oscar R.
1993-01-01
The main objectives of our research are to present a self-contained overview of fuzzy sets and fuzzy logic, develop a methodology for control system design using fuzzy logic controllers, and to design and implement a fuzzy logic controller for a real system. We first present the fundamental concepts of fuzzy sets and fuzzy logic. Fuzzy sets and basic fuzzy operations are defined. In addition, for control systems, it is important to understand the concepts of linguistic values, term sets, fuzzy rule base, inference methods, and defuzzification methods. Second, we introduce a four-step fuzzy logic control system design procedure. The design procedure is illustrated via four examples, showing the capabilities and robustness of fuzzy logic control systems. This is followed by a tuning procedure that we developed from our design experience. Third, we present two Lyapunov based techniques for stability analysis. Finally, we present our design and implementation of a fuzzy logic controller for a linear actuator to be used to control the direction of the Free Flight Rotorcraft Research Vehicle at LaRC.
Fuzzy Logic-Based Aerodynamic Modeling with Continuous Differentiability
Directory of Open Access Journals (Sweden)
Ray C. Chang
2013-01-01
Full Text Available This paper presents a modeling method based on a fuzzy-logic algorithm to establish aerodynamic models by using the datasets from flight data recorder (FDR. The fuzzy-logic aerodynamic models are utilized to estimate more accurately the nonlinear unsteady aerodynamics for a transport aircraft, including the effects of atmospheric turbulence. The main objective in this paper is to present the model development and the resulting models with continuous differentiability. The uncertainty and correlation of the data points are estimated and improved by monitoring a multivariable correlation coefficient in the modeling process. The latter is increased by applying a least square method to a set of data points to train a set of modeling coefficients. A commercial transport aircraft encountered severe atmospheric turbulence twice at transonic flight in descending phase is the study case in the present paper. The robustness and nonlinear interpolation capability of the fuzzy-logic algorithm are demonstrated in predicting the degradation in performance and stability characteristics of this transport in severe atmospheric turbulence with sudden plunging motion.
Fuzzy Logic Decoupled Longitudinal Control for General Aviation Airplanes
Duerksen, Noel
1996-01-01
It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control difference airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control throttle position and another to control elevator position. These two controllers were used to control flight path angle and airspeed for both a piston powered single engine airplane simulation and a business jet simulation. Overspeed protection and stall protection were incorporated in the form of expert systems supervisors. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic longitudinal controller could be successfully used on two general aviation aircraft types that have very difference characteristics. These controllers worked for both airplanes over their entire flight envelopes including configuration changes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle lever travel, etc.). The controllers also handled configuration changes without mode switching or knowledge of the current configuration. This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.
Analysis of Learning Development With Sugeno Fuzzy Logic And Clustering
Directory of Open Access Journals (Sweden)
Maulana Erwin Saputra
2017-06-01
Full Text Available In the first journal, I made this attempt to analyze things that affect the achievement of students in each school of course vary. Because students are one of the goals of achieving the goals of successful educational organizations. The mental influence of students’ emotions and behaviors themselves in relation to learning performance. Fuzzy logic can be used in various fields as well as Clustering for grouping, as in Learning Development analyzes. The process will be performed on students based on the symptoms that exist. In this research will use fuzzy logic and clustering. Fuzzy is an uncertain logic but its excess is capable in the process of language reasoning so that in its design is not required complicated mathematical equations. However Clustering method is K-Means method is method where data analysis is broken down by group k (k = 1,2,3, .. k. To know the optimal number of Performance group. The results of the research is with a questionnaire entered into matlab will produce a value that means in generating the graph. And simplify the school in seeing Student performance in the learning process by using certain criteria. So from the system that obtained the results for a decision-making required by the school.
Model Reduction of Fuzzy Logic Systems
Directory of Open Access Journals (Sweden)
Zhandong Yu
2014-01-01
Full Text Available This paper deals with the problem of ℒ2-ℒ∞ model reduction for continuous-time nonlinear uncertain systems. The approach of the construction of a reduced-order model is presented for high-order nonlinear uncertain systems described by the T-S fuzzy systems, which not only approximates the original high-order system well with an ℒ2-ℒ∞ error performance level γ but also translates it into a linear lower-dimensional system. Then, the model approximation is converted into a convex optimization problem by using a linearization procedure. Finally, a numerical example is presented to show the effectiveness of the proposed method.
Fuzzy Logic: A New Tool for the Analysis and Organization of International Business Communications.
Sondak, Norman E.; Sondak, Eileen M.
Classical western logic, built on a foundation of true/false, yes/no, right/wrong statements, leads to many difficulties and inconsistencies in the logical analysis and organization of international business communications. This paper presents the basic principles of classical logic and of fuzzy logic, a type of logic developed to allow for…
Control of beam halo-chaos using fuzzy logic controller
International Nuclear Information System (INIS)
Gao Yuan; Yuan Haiying; Tan Guangxing; Luo Wenguang
2012-01-01
Considering the ion beam with initial K-V distribution in the periodic focusing magnetic filed channels (PFCs) as a typical sample, a fuzzy control method for control- ling beam halo-chaos was studied. A fuzzy proportional controller, using output of fuzzy inference as a control factor, was presented for adjusting exterior focusing magnetic field. The stability of controlled system was proved by fuzzy phase plane analysis. The simulation results demonstrate that the chaotic radius of envelope can be controlled to the matched radius via controlling magnetic field. This method was also applied to the multi-particle model. Under the control condition, the beam halos and its regeneration can be eliminated effectively, and that both the compactness and the uniformity of ion beam are improved evidently. Since the exterior magnetic field can be rather easily adjusted by proportional control and the fuzzy logic controller is independent to the mathematical model, this method has adaptive ability and is easily realized in experiment. The research offers a valuable reference for the design of the PFCs in the high- current linear ion accelerators. (authors)
An Adaptive Fuzzy-Logic Traffic Control System in Conditions of Saturated Transport Stream
Marakhimov, A. R.; Igamberdiev, H. Z.; Umarov, Sh. X.
2016-01-01
This paper considers the problem of building adaptive fuzzy-logic traffic control systems (AFLTCS) to deal with information fuzziness and uncertainty in case of heavy traffic streams. Methods of formal description of traffic control on the crossroads based on fuzzy sets and fuzzy logic are proposed. This paper also provides efficient algorithms for implementing AFLTCS and develops the appropriate simulation models to test the efficiency of suggested approach. PMID:27517081
Noise-based logic: Binary, multi-valued, or fuzzy, with optional superposition of logic states
Energy Technology Data Exchange (ETDEWEB)
Kish, Laszlo B. [Texas A and M University, Department of Electrical and Computer Engineering, College Station, TX 77843-3128 (United States)], E-mail: laszlo.kish@ece.tamu.edu
2009-03-02
A new type of deterministic (non-probabilistic) computer logic system inspired by the stochasticity of brain signals is shown. The distinct values are represented by independent stochastic processes: independent voltage (or current) noises. The orthogonality of these processes provides a natural way to construct binary or multi-valued logic circuitry with arbitrary number N of logic values by using analog circuitry. Moreover, the logic values on a single wire can be made a (weighted) superposition of the N distinct logic values. Fuzzy logic is also naturally represented by a two-component superposition within the binary case (N=2). Error propagation and accumulation are suppressed. Other relevant advantages are reduced energy dissipation and leakage current problems, and robustness against circuit noise and background noises such as 1/f, Johnson, shot and crosstalk noise. Variability problems are also non-existent because the logic value is an AC signal. A similar logic system can be built with orthogonal sinusoidal signals (different frequency or orthogonal phase) however that has an extra 1/N type slowdown compared to the noise-based logic system with increasing number of N furthermore it is less robust against time delay effects than the noise-based counterpart.
Noise-based logic: Binary, multi-valued, or fuzzy, with optional superposition of logic states
International Nuclear Information System (INIS)
Kish, Laszlo B.
2009-01-01
A new type of deterministic (non-probabilistic) computer logic system inspired by the stochasticity of brain signals is shown. The distinct values are represented by independent stochastic processes: independent voltage (or current) noises. The orthogonality of these processes provides a natural way to construct binary or multi-valued logic circuitry with arbitrary number N of logic values by using analog circuitry. Moreover, the logic values on a single wire can be made a (weighted) superposition of the N distinct logic values. Fuzzy logic is also naturally represented by a two-component superposition within the binary case (N=2). Error propagation and accumulation are suppressed. Other relevant advantages are reduced energy dissipation and leakage current problems, and robustness against circuit noise and background noises such as 1/f, Johnson, shot and crosstalk noise. Variability problems are also non-existent because the logic value is an AC signal. A similar logic system can be built with orthogonal sinusoidal signals (different frequency or orthogonal phase) however that has an extra 1/N type slowdown compared to the noise-based logic system with increasing number of N furthermore it is less robust against time delay effects than the noise-based counterpart
Noise-based logic: Binary, multi-valued, or fuzzy, with optional superposition of logic states
Kish, Laszlo B.
2009-03-01
A new type of deterministic (non-probabilistic) computer logic system inspired by the stochasticity of brain signals is shown. The distinct values are represented by independent stochastic processes: independent voltage (or current) noises. The orthogonality of these processes provides a natural way to construct binary or multi-valued logic circuitry with arbitrary number N of logic values by using analog circuitry. Moreover, the logic values on a single wire can be made a (weighted) superposition of the N distinct logic values. Fuzzy logic is also naturally represented by a two-component superposition within the binary case ( N=2). Error propagation and accumulation are suppressed. Other relevant advantages are reduced energy dissipation and leakage current problems, and robustness against circuit noise and background noises such as 1/f, Johnson, shot and crosstalk noise. Variability problems are also non-existent because the logic value is an AC signal. A similar logic system can be built with orthogonal sinusoidal signals (different frequency or orthogonal phase) however that has an extra 1/N type slowdown compared to the noise-based logic system with increasing number of N furthermore it is less robust against time delay effects than the noise-based counterpart.
Development of Fuzzy Logic Tool to predict Wear Rate in Aluminum Composite
Prabha, Rajesh; Raja, Dhas. J. Edwin
2017-10-01
Industrial automation is the need of the hour. Success and failure of automation depends on the selection and efficient utilization of soft computing tools such as artificial neural network, expert systems, and fuzzy logic. This article explores the idea of constructing a fuzzy logic model to predict wear rate of fabricated composites under predetermined conditions of input variables such as applied load, sliding velocity and distance travelled. Taguchi design of experiments is employed for experimentation. 27 sets of experiments are performed by varying the parameters of applied load, sliding velocity and distance travelled. Experiment is repeated for average values of wear rate are measured to reduce experimental error. Matlab toolbox functions are used to build the model. Confirmatory experiments are done and the results are measured in terms of accuracy and time. It is found that the developed model predicts wear rate with acceptable limit. Hence the constructed model can be forwarded to predict wear rate of the developed composite under different conditions.
Development of Fuzzy-Logic-Based Self Tuning PI Controller for Servomotor
Saad, Nordin; Wahyunggoro, Oyas
2010-01-01
This work discusses the modeling of a DC servomotor from gray box identification and performance evaluations of real time experiment using a fuzzy-logic-based self tuning PI controller as compared to fuzzy-logic-based self tuning PID controller, fuzzy logic controller, PID controller and PI controller on the DC servomotor system. Here, the s-model transfer function of a DC servomotor is identified as a third order transfer function without
DEFF Research Database (Denmark)
Bergenholtz, Carsten; Bjerregaard, Toke
The present study investigates how a high-tech-small-firm (HTSF) can carry out an inter-organizational search of actors located at universities. Responding to calls to study how firms navigate multiple institutional norms, this research examines the different strategies used by a HTSF to balance...... adopted academic norm-sets, commercial imperatives and formal regulations to support formation of networks and collaborations with universities. The findings show how the significance of weak and strong ties for the formation of collaborations and networks with universities is relative...
Modular Neural Networks and Type-2 Fuzzy Systems for Pattern Recognition
Melin, Patricia
2012-01-01
This book describes hybrid intelligent systems using type-2 fuzzy logic and modular neural networks for pattern recognition applications. Hybrid intelligent systems combine several intelligent computing paradigms, including fuzzy logic, neural networks, and bio-inspired optimization algorithms, which can be used to produce powerful pattern recognition systems. Type-2 fuzzy logic is an extension of traditional type-1 fuzzy logic that enables managing higher levels of uncertainty in complex real world problems, which are of particular importance in the area of pattern recognition. The book is organized in three main parts, each containing a group of chapters built around a similar subject. The first part consists of chapters with the main theme of theory and design algorithms, which are basically chapters that propose new models and concepts, which are the basis for achieving intelligent pattern recognition. The second part contains chapters with the main theme of using type-2 fuzzy models and modular neural ne...
Moini, A
2002-01-01
In this paper, genetic algorithms are used in the design and robustification various mo el-ba ed/non-model-based fuzzy-logic controllers for robotic manipulators. It is demonstrated that genetic algorithms provide effective means of designing the optimal set of fuzzy rules as well as the optimal domains of associated fuzzy sets in a new class of model-based-fuzzy-logic controllers. Furthermore, it is shown that genetic algorithms are very effective in the optimal design and robustification of non-model-based multivariable fuzzy-logic controllers for robotic manipulators.
Szulczyński, Bartosz; Gębicki, Jacek; Namieśnik, Jacek
2018-01-01
The paper presents the possibility of application of fuzzy logic to determine the odour intensity of model, ternary gas mixtures (α-pinene, toluene and triethylamine) using electronic nose prototype. The results obtained using fuzzy logic algorithms were compared with the values obtained using multiple linear regression (MLR) model and sensory analysis. As the results of the studies, it was found the electronic nose prototype along with the fuzzy logic pattern recognition system can be successfully used to estimate the odour intensity of tested gas mixtures. The correctness of the results obtained using fuzzy logic was equal to 68%.
Applying Performance-Controlled Systems, Fuzzy Logic, and Fly-by-Wire Controls to General Aviation
National Research Council Canada - National Science Library
Beringer, Dennis
2002-01-01
A fuzzy-logic 'performance control' system, providing envelope protection and direct command of airspeed, vertical velocity, and turn rate, was evaluated in a reconfigurable general aviation simulator...
Geo-Spatial Tactical Decision Aid Systems: Fuzzy Logic for Supporting Decision Making
National Research Council Canada - National Science Library
Grasso, Raffaele; Giannecchini, Simone
2006-01-01
.... This paper describes a tactical decision aid system based on fuzzy logic reasoning for data fusion and on current Open Geospatial Consortium specifications for interoperability, data dissemination...
COMPARISON AODV AND DSDV ROUTING PROTOCOLS WITH USING FUZZY LOGIC IN THE MANET
Directory of Open Access Journals (Sweden)
Hamed Jelodar
2014-06-01
Full Text Available Mobile ad hoc networks have consisted of the nodes which are freely displaced. In other words, this network has dynamic topology. Routing protocols find route of forwarding data packets from the source node to the destination node. A routing protocol plays important role in finding the shortest time and the route path. In this paper, considering significance of the subject, attempt has been made to present a model using fuzzy logic approach to evaluate and compare two routing protocols i.e. AODV DSDV using effective factor of the number of nodes based on 2 outputs of delay and throughput rate (totally fuzzy system with four outputs in order to select one of these two routing protocols properly under different conditions and based on need and goal. To show efficiency and truth of fuzzy system, two protocols have been evaluated completely equally using NS-2 simulator and attempt has been made to prove efficiency of the designed fuzzy system by comparing results of simulation of fuzzy system and NS-2 software.
Keller, James M; Fogel, David B
2016-01-01
This book covers the three fundamental topics that form the basis of computational intelligence: neural networks, fuzzy systems, and evolutionary computation. The text focuses on inspiration, design, theory, and practical aspects of implementing procedures to solve real-world problems. While other books in the three fields that comprise computational intelligence are written by specialists in one discipline, this book is co-written by current former Editor-in-Chief of IEEE Transactions on Neural Networks and Learning Systems, a former Editor-in-Chief of IEEE Transactions on Fuzzy Systems, and the founding Editor-in-Chief of IEEE Transactions on Evolutionary Computation. The coverage across the three topics is both uniform and consistent in style and notation. Discusses single-layer and multilayer neural networks, radial-basi function networks, and recurrent neural networks Covers fuzzy set theory, fuzzy relations, fuzzy logic interference, fuzzy clustering and classification, fuzzy measures and fuzz...
Motion Control of the Soccer Robot Based on Fuzzy Logic
Coman, Daniela; Ionescu, Adela
2009-08-01
Robot soccer is a challenging platform for multi-agent research, involving topics such as real-time image processing and control, robot path planning, obstacle avoidance and machine learning. The conventional robot control consists of methods for path generation and path following. When a robot moves away the estimated path, it must return immediately, and while doing so, the obstacle avoidance behavior and the effectiveness of such a path are not guaranteed. So, motion control is a difficult task, especially in real time and high speed control. This paper describes the use of fuzzy logic control for the low level motion of a soccer robot. Firstly, the modelling of the soccer robot is presented. The soccer robot based on MiroSoT Small Size league is a differential-drive mobile robot with non-slipping and pure-rolling. Then, the design of fuzzy controller is describes. Finally, the computer simulations in MATLAB Simulink show that proposed fuzzy logic controller works well.
Včelař, František; Pátíková, Zuzana
2017-07-01
For the case of classical Tarski's theorem on fixed points of isotone maps we show that embedding of this statement into fuzzy logical environment leads to surprising results, which cannot be easily seen and awaited in classical logical environment.
Limitations of Passively Mapping Logical Network Topologies
Ayodeji J. Akande; Colin Fidge; Ernest Foo
2017-01-01
Understanding logical network connectivity is essential in network topology mapping especially in a fast growing network where knowing what is happening on the network is critical for security purposes and where knowing how network resources are being used is highly important. Mapping logical communication topology is important for network auditing, network maintenance and governance, network optimization, and network security. However, the process of capturing network traffic to generate the...
Fuzzy Logic Approaches to Multi-Objective Decision-Making in Aerospace Applications
Hardy, Terry L.
1994-01-01
Fuzzy logic allows for the quantitative representation of multi-objective decision-making problems which have vague or fuzzy objectives and parameters. As such, fuzzy logic approaches are well-suited to situations where alternatives must be assessed by using criteria that are subjective and of unequal importance. This paper presents an overview of fuzzy logic and provides sample applications from the aerospace industry. Applications include an evaluation of vendor proposals, an analysis of future space vehicle options, and the selection of a future space propulsion system. On the basis of the results provided in this study, fuzzy logic provides a unique perspective on the decision-making process, allowing the evaluator to assess the degree to which each option meets the evaluation criteria. Future decision-making should take full advantage of fuzzy logic methods to complement existing approaches in the selection of alternatives.
Fuzzy Logic-Based Histogram Equalization for Image Contrast Enhancement
Directory of Open Access Journals (Sweden)
V. Magudeeswaran
2013-01-01
Full Text Available Fuzzy logic-based histogram equalization (FHE is proposed for image contrast enhancement. The FHE consists of two stages. First, fuzzy histogram is computed based on fuzzy set theory to handle the inexactness of gray level values in a better way compared to classical crisp histograms. In the second stage, the fuzzy histogram is divided into two subhistograms based on the median value of the original image and then equalizes them independently to preserve image brightness. The qualitative and quantitative analyses of proposed FHE algorithm are evaluated using two well-known parameters like average information contents (AIC and natural image quality evaluator (NIQE index for various images. From the qualitative and quantitative measures, it is interesting to see that this proposed method provides optimum results by giving better contrast enhancement and preserving the local information of the original image. Experimental result shows that the proposed method can effectively and significantly eliminate washed-out appearance and adverse artifacts induced by several existing methods. The proposed method has been tested using several images and gives better visual quality as compared to the conventional methods.
Cluster forest based fuzzy logic for massive data clustering
Lahmar, Ines; Ben Ayed, Abdelkarim; Ben Halima, Mohamed; Alimi, Adel M.
2017-03-01
This article is focused in developing an improved cluster ensemble method based cluster forests. Cluster forests (CF) is considered as a version of clustering inspired from Random Forests (RF) in the context of clustering for massive data. It aggregates intermediate Fuzzy C-Means (FCM) clustering results via spectral clustering since pseudo-clustering results are presented in the spectral space in order to classify these data sets in the multidimensional data space. One of the main advantages is the use of FCM, which allows building fuzzy membership to all partitions of the datasets due to the fuzzy logic whereas the classical algorithms as K-means permitted to build just hard partitions. In the first place, we ameliorate the CF clustering algorithm with the integration of fuzzy FCM and we compare it with other existing clustering methods. In the second place, we compare K-means and FCM clustering methods with the agglomerative hierarchical clustering (HAC) and other theory presented methods using data benchmarks from UCI repository.
Development of erosion risk map using fuzzy logic approach
Directory of Open Access Journals (Sweden)
Fauzi Manyuk
2017-01-01
Full Text Available Erosion-hazard assessment is an important aspect in the management of a river basin such as Siak River Basin, Riau Province, Indonesia. This study presents an application of fuzzy logic approach to develop erosion risk map based on geographic information system. Fuzzy logic is a computing approach based on “degrees of truth” rather than the usual “true or false” (1 or 0 Boolean logic on which the modern computer is based. The results of the erosion risk map were verified by using field measurements. The verification result shows that the parameter of soil-erodibility (K indicates a good agreement with field measurement data. The classification of soil-erodibility (K as the result of validation were: very low (0.0–0.1, medium (0.21-0.32, high (0.44-0.55 and very high (0.56-0.64. The results obtained from this study show that the erosion risk map of Siak River Basin were dominantly classified as medium level which cover about 68.54%. The other classifications were high and very low erosion level which cover about 28.84% and 2.61% respectively.
Fuzzy logic of quasi-truth an algebraic treatment
Di Nola, Antonio; Turunen, Esko
2016-01-01
This book presents the first algebraic treatment of quasi-truth fuzzy logic and covers the algebraic foundations of many-valued logic. It offers a comprehensive account of basic techniques and reports on important results showing the pivotal role played by perfect many-valued algebras (MV-algebras). It is well known that the first-order predicate Łukasiewicz logic is not complete with respect to the canonical set of truth values. However, it is complete with respect to all linearly ordered MV –algebras. As there are no simple linearly ordered MV-algebras in this case, infinitesimal elements of an MV-algebra are allowed to be truth values. The book presents perfect algebras as an interesting subclass of local MV-algebras and provides readers with the necessary knowledge and tools for formalizing the fuzzy concept of quasi true and quasi false. All basic concepts are introduced in detail to promote a better understanding of the more complex ones. It is an advanced and inspiring reference-guide for graduate s...
Application of fuzzy logic in multicomponent analysis by optodes.
Wollenweber, M; Polster, J; Becker, T; Schmidt, H L
1997-01-01
Fuzzy logic can be a useful tool for the determination of substrate concentrations applying optode arrays in combination with flow injection analysis, UV-VIS spectroscopy and kinetics. The transient diffuse reflectance spectra in the visible wavelength region from four optodes were evaluated to carry out the simultaneous determination of artificial mixtures of ampicillin and penicillin. The discrimination of the samples was achieved by changing the composition of the receptor gel and working pH. Different algorithms of pre-processing were applied on the data to reduce the spectral information to a few analytic-specific variables. These variables were used to develop the fuzzy model. After calibration the model was validated by an independent test data set.
Fuzzy Logic Control of a Ball on Sphere System
Directory of Open Access Journals (Sweden)
Seyed Alireza Moezi
2014-01-01
Full Text Available The scope of this paper is to present a fuzzy logic control of a class of multi-input multioutput (MIMO nonlinear systems called “system of ball on a sphere,” such an inherently nonlinear, unstable, and underactuated system, considered truly to be two independent ball and wheel systems around its equilibrium point. In this work, Sugeno method is investigated as a fuzzy controller method, so it works in a good state with optimization and adaptive techniques, which makes it very attractive in control problems, particularly for such nonlinear dynamic systems. The system’s dynamic is described and the equations are illustrated. The outputs are shown in different figures so as to be compared. Finally, these simulation results show the exactness of the controller’s performance.
Turbulence for different background conditions using fuzzy logic and clustering
Directory of Open Access Journals (Sweden)
K. Satheesan
2010-08-01
Full Text Available Wind and turbulence estimated from MST radar observations in Kiruna, in Arctic Sweden are used to characterize turbulence in the free troposphere using data clustering and fuzzy logic. The root mean square velocity, νfca, a diagnostic of turbulence is clustered in terms of hourly wind speed, direction, vertical wind speed, and altitude of the radar observations, which are the predictors. The predictors are graded over an interval of zero to one through an input membership function. Subtractive data clustering has been applied to classify νfca depending on its homogeneity. Fuzzy rules are applied to the clustered dataset to establish a relationship between predictors and the predictant. The accuracy of the predicted turbulence shows that this method gives very good prediction of turbulence in the troposphere. Using this method, the behaviour of νfca for different wind conditions at different altitudes is studied.
A neuro-fuzzy inference system through integration of fuzzy logic and extreme learning machines.
Sun, Zhan-Li; Au, Kin-Fan; Choi, Tsan-Ming
2007-10-01
This paper investigates the feasibility of applying a relatively novel neural network technique, i.e., extreme learning machine (ELM), to realize a neuro-fuzzy Takagi-Sugeno-Kang (TSK) fuzzy inference system. The proposed method is an improved version of the regular neuro-fuzzy TSK fuzzy inference system. For the proposed method, first, the data that are processed are grouped by the k-means clustering method. The membership of arbitrary input for each fuzzy rule is then derived through an ELM, followed by a normalization method. At the same time, the consequent part of the fuzzy rules is obtained by multiple ELMs. At last, the approximate prediction value is determined by a weight computation scheme. For the ELM-based TSK fuzzy inference system, two extensions are also proposed to improve its accuracy. The proposed methods can avoid the curse of dimensionality that is encountered in backpropagation and hybrid adaptive neuro-fuzzy inference system (ANFIS) methods. Moreover, the proposed methods have a competitive performance in training time and accuracy compared to three ANFIS methods.
On-line tuning of a fuzzy-logic power system stabilizer
International Nuclear Information System (INIS)
Hossein-Zadeh, N.; Kalam, A.
2002-01-01
A scheme for on-line tuning of a fuzzy-logic power system stabilizer is presented. firstly, a fuzzy-logic power system stabilizer is developed using speed deviation and accelerating power as the controller input variables. The inference mechanism of fuzzy-logic controller is represented by a decision table, constructed of linguistic IF-THEN rules. The Linguistic rules are available from experts and the design procedure is based on these rules. It assumed that an exact model of the plant is not available and it is difficult to extract the exact parameters of the power plant. Thus, the design procedure can not be based on an exact model. This is an advantage of fuzzy logic that makes the design of a controller possible without knowing the exact model of the plant. Secondly, two scaling parameters are introduced to tune the fuzzy-logic power system stabilizer. These scaling parameters are the outputs of another fuzzy-logic system, which gets the operating conditions of power system as inputs. These mechanism of tuning the fuzzy-logic power system stabilizer makes the fuzzy-logic power system stabilizer adaptive to changes in the operating conditions. Therefore, the degradation of the system response, under a wide range of operating conditions, is less compared to the system response with a fixed-parameter fuzzy-logic power system stabilizer and a conventional (linear) power system stabilizer. The tuned stabilizer has been tested by performing nonlinear simulations using a synchronous machine-infinite bus model. The responses are compared with a fixed parameters fuzzy-logic power system stabilizer and a conventional (linear) power system stabilizer. It is shown that the tuned fuzzy-logic power system stabilizer is superior to both of them
Fuzzy logic controller for weaning neonates from mechanical ventilation.
Hatzakis, G E; Davis, G M
2002-01-01
Weaning from mechanical ventilation is the gradual detachment from any ventilatory support till normal spontaneous breathing can be fully resumed. To date, we have developed a fuzzy logic controller for weaning COPD adults using pressure support ventilation (PS). However, adults and newborns differ in the pathophysiology of lung disease. We therefore used our fuzzy logic-based weaning platform to develop modularized components for weaning newborns with lung disease. Our controller uses the heart rate (HR), respiratory rate (RR), tidal volume (VT) and oxygen saturation (SaO2) and their trends deltaHR/deltat, deltaVT/deltat and deltaSaO2/deltat to evaluate, respectively, the Current and Trend weaning status of the newborn. Through appropriate fuzzification of these vital signs, Current and Trend weaning status can quantitatively determine the increase/decrease in the synchronized intermittent mandatory ventilation (SIMV) setting. The post-operative weaning courses of 10 newborns, 82+/-162 days old, were assessed at 2-hour intervals for 68+/-39 days. The SIMV levels, proposed by our algorithm, were matched to those levels actually applied. For 60% of the time both values coincided. For the remaining 40%, our algorithm suggested lower SIMV support than what was applied. The Area Under the Curve for integrated ventilatory support over time was 1203+/-846 for standard ventilatory strategies and 1152+/-802 for fuzzy controller. This suggests that the algorithm, approximates the actual weaning progression, and may advocate a more aggressive strategy. Moreover, the core of the fuzzy controller facilitates adaptation for body size and diversified disease patterns and sets the premises as an infant-weaning tool.
PENGGUNAAN FUZZY LOGIC UNTUK KONTROL PARALLEL CONVERTER DC-DC
Directory of Open Access Journals (Sweden)
Bambang Prio Hartono
2012-09-01
Full Text Available Abstract: Using system fuzzy logic as control technology have been used on low load dc-dc converter with combined parallel compiled dc-dc converter can obtain big load. With existence of differrence of component parameter and each parallel compiled converter can obtained different current and voltage output. Function of controller for to do adjustment, so that current which is applied to load by each converter can be obtained difference error as small as possible or same. The object of research is developing design of large signal dc-dc converter which is combined with using FLC so that obtain better performance. To get better performance have been made plant model and simulation with CDE method. The more systematic system and design is needed to overcome bigger load on dc-dc converter, so that parallel compiled current master slave control system on dc-dc converter with using fuzzy logic controller is used. Result of research showed that error or difference of current which is applied to load can handled by fuzzy logic controller. Technic of current and voltage controller co to do adjustment current and voltage distribution equally to load. Distribution of iL1,iL2 and output voltage Vo on dc-dc converter with load 2,25 until 7,875 and voltage 100 until 120 volt, load current beetwen 12 until 48, % relatif error Vo 0,4% until 0,9%.
Fuzzy Logic Trajectory Tracking Controller for a Tanker
Directory of Open Access Journals (Sweden)
Dur Muhammad Pathan
2012-04-01
Full Text Available This paper proposes a fuzzy logic controller for design of autopilot of a ship. Triangular membership functions have been use for fuzzification and the centroid method for defuzzification. A nonlinear mathematical model of an oil tanker has been considered whose parameters vary with the depth of water. The performance of proposed controller has been tested under both course changing and trajectory keeping mode of operations. It has been demonstrated that the performance is robust in shallow as well as deep waters.
A Comparison of Fuzzy and Annotated Logic Programming
Czech Academy of Sciences Publication Activity Database
Krajči, S.; Lencses, R.; Vojtáš, Peter
2004-01-01
Roč. 144, - (2004), s. 173-192 ISSN 0165-0114 R&D Projects: GA ČR GA201/00/1489 Grant - others:VEGA(SK) 1/7557/20; VEGA(SK) 1/7555/20; VEGA(SK) 1/0385/03 Institutional research plan: CEZ:AV0Z1030915 Keywords : fuzzy logic programming * generalized annotated programs * declarative and procedural semantics * continuous semantics and computable fixpoint * soundness and completeness Subject RIV: BA - General Mathematics Impact factor: 0.734, year: 2004
Fuzzy Logic Approach to Diagnosis of Feedwater Heater Performance Degradation
Energy Technology Data Exchange (ETDEWEB)
Kang, Yeon Kwan; Kim, Hyeon Min; Heo, Gyun Young [Kyung Hee University, Yongin (Korea, Republic of); Sang, Seok Yoon [Engineering and Technical Center, Korea Hydro, Daejeon (Korea, Republic of)
2014-08-15
Since failure in, damage to, and performance degradation of power generation components in operation under harsh environment of high pressure and high temperature may cause both economic and human loss at power plants, highly reliable operation and control of these components are necessary. Therefore, a systematic method of diagnosing the condition of these components in its early stages is required. There have been many researches related to the diagnosis of these components, but our group developed an approach using a regression model and diagnosis table, specializing in diagnosis relating to thermal efficiency degradation of power plant. However, there was a difficulty in applying the method using the regression model to power plants with different operating conditions because the model was sensitive to value. In case of the method that uses diagnosis table, it was difficult to find the level at which each performance degradation factor had an effect on the components. Therefore, fuzzy logic was introduced in order to diagnose performance degradation using both qualitative and quantitative results obtained from the components' operation data. The model makes performance degradation assessment using various performance degradation variables according to the input rule constructed based on fuzzy logic. The purpose of the model is to help the operator diagnose performance degradation of components of power plants. This paper makes an analysis of power plant feedwater heater by using fuzzy logic. Feedwater heater is one of the core components that regulate life-cycle of a power plant. Performance degradation has a direct effect on power generation efficiency. It is not easy to observe performance degradation of feedwater heater. However, on the other hand, troubles such as tube leakage may bring simultaneous damage to the tube bundle and therefore it is the object of concern in economic aspect. This study explains the process of diagnosing and verifying typical
A Note on Axiomatizations of Pavelka-style Complete Fuzzy Logics
Czech Academy of Sciences Publication Activity Database
Cintula, Petr
2016-01-01
Roč. 292, 1 June (2016), s. 160-174 ISSN 0165-0114 R&D Projects: GA ČR GAP202/10/1826 Institutional support: RVO:67985807 Keywords : mathematical fuzzy logic * Pavelka-style completeness * MTL logic * Lukasiewicz logics * Product Logic * truth constants * Monteiro–Baaz delta Subject RIV: BA - General Mathematics Impact factor: 2.718, year: 2016
Advances In Infection Surveillance and Clinical Decision Support With Fuzzy Sets and Fuzzy Logic.
Koller, Walter; de Bruin, Jeroen S; Rappelsberger, Andrea; Adlassnig, Klaus-Peter
2015-01-01
By the use of extended intelligent information technology tools for fully automated healthcare-associated infection (HAI) surveillance, clinicians can be informed and alerted about the emergence of infection-related conditions in their patients. Moni--a system for monitoring nosocomial infections in intensive care units for adult and neonatal patients--employs knowledge bases that were written with extensive use of fuzzy sets and fuzzy logic, allowing the inherent un-sharpness of clinical terms and the inherent uncertainty of clinical conclusions to be a part of Moni's output. Thus, linguistic as well as propositional uncertainty became a part of Moni, which can now report retrospectively on HAIs according to traditional crisp HAI surveillance definitions, as well as support clinical bedside work by more complex crisp and fuzzy alerts and reminders. This improved approach can bridge the gap between classical retrospective surveillance of HAIs and ongoing prospective clinical-decision-oriented HAI support.
Uncovering transcriptional interactions via an adaptive fuzzy logic approach
Directory of Open Access Journals (Sweden)
Chen Chung-Ming
2009-12-01
Full Text Available Abstract Background To date, only a limited number of transcriptional regulatory interactions have been uncovered. In a pilot study integrating sequence data with microarray data, a position weight matrix (PWM performed poorly in inferring transcriptional interactions (TIs, which represent physical interactions between transcription factors (TF and upstream sequences of target genes. Inferring a TI means that the promoter sequence of a target is inferred to match the consensus sequence motifs of a potential TF, and their interaction type such as AT or RT is also predicted. Thus, a robust PWM (rPWM was developed to search for consensus sequence motifs. In addition to rPWM, one feature extracted from ChIP-chip data was incorporated to identify potential TIs under specific conditions. An interaction type classifier was assembled to predict activation/repression of potential TIs using microarray data. This approach, combining an adaptive (learning fuzzy inference system and an interaction type classifier to predict transcriptional regulatory networks, was named AdaFuzzy. Results AdaFuzzy was applied to predict TIs using real genomics data from Saccharomyces cerevisiae. Following one of the latest advances in predicting TIs, constrained probabilistic sparse matrix factorization (cPSMF, and using 19 transcription factors (TFs, we compared AdaFuzzy to four well-known approaches using over-representation analysis and gene set enrichment analysis. AdaFuzzy outperformed these four algorithms. Furthermore, AdaFuzzy was shown to perform comparably to 'ChIP-experimental method' in inferring TIs identified by two sets of large scale ChIP-chip data, respectively. AdaFuzzy was also able to classify all predicted TIs into one or more of the four promoter architectures. The results coincided with known promoter architectures in yeast and provided insights into transcriptional regulatory mechanisms. Conclusion AdaFuzzy successfully integrates multiple types of
International Nuclear Information System (INIS)
Ahn, Jonghoon; Cho, Soolyeon; Chung, Dae Hun
2017-01-01
Highlights: • Advanced controllers are proposed to reduce control errors and energy consumption increases. • The FIS and ANN models are utilized to compare conventional thermostat on/off controller. • To provide appropriate thermal energy, the models control the amount of air and its temperature simultaneously. • Control errors, heat gains, and output signals are compared to define models’ effectiveness. • The ANN model shows the best result for space heating responding to intermittent thermal changes. - Abstract: This paper presents hybrid control approaches for heating air supply in response to changes in demand by using the Fuzzy Inference System (FIS) and Artificial Neural Network (ANN) fitting models. Since early 2000’s, some advanced computing and statistical tools were introduced to replace conventional control models in improving control and energy efficiency. Among the tools, the FIS and ANN algorithms were used to define complex interactions between inputs and outputs, and were able to facilitate control models to predict or evaluate precise thermal performance. This paper introduces the FIS and ANN control schemes for simultaneously controlling the amount of supply air and its temperature. Input and output data derived from the FIS results generate and validate the ANN model, and both models are compared to the typical thermostat on/off baseline control to evaluate conditions of supply air for a heating season. The differences between the set-point and actual room temperature and their sums indicate control efficiency, and the heat gains into a room and their sums define the energy consumption level. This paper concludes that the simultaneous control of mass and temperature maintains the desired room temperature in a highly efficient manner. Sensitive controls may have a disadvantage in terms of energy consumption, but the ANN controller can minimize energy consumption in comparison with simple thermostat on/off controller. The results also
Fuzzy logic analysis optimizations for pattern recognition - Implementation and experimental results
Hires, Matej; Habiballa, Hashim
2017-07-01
The article presents an practical results of optimization of the fuzzy logic analysis method for pattern recognition. The theoretical background of the proposed theory is shown in the former article extending the original fuzzy logic analysis method. This article shows the implementation and experimental verification of the approach.
Application of fuzzy logic control system for reactor feed-water control
International Nuclear Information System (INIS)
Iijima, T.; Nakajima, Y.
1994-01-01
The successful actual application of a fuzzy logic control system to the a nuclear Fugen nuclear power reactor is described. Fugen is a heavy-water moderated, light-water cooled reactor. The introduction of fuzzy logic control system has enabled operators to control the steam drum water level more effectively in comparison to a conventional proportional-integral (PI) control system
A Modification of the Fuzzy Logic Based DASH Adaptation Scheme for Performance Improvement
Directory of Open Access Journals (Sweden)
Hyun Jun Kim
2018-01-01
Full Text Available We propose a modification of the fuzzy logic based DASH adaptation scheme (FDASH for seamless media service in time-varying network conditions. The proposed scheme (mFDASH selects a more appropriate bit-rate for the next segment by modification of the Fuzzy Logic Controller (FLC and estimates more accurate available bandwidth than FDASH scheme by using History-Based TCP Throughput Estimation. Moreover, mFDASH reduces the number of video bit-rate changes by applying Segment Bit-Rate Filtering Module (SBFM and employs Start Mechanism for clients to provide high-quality videos in the very beginning stage of the streaming service. Lastly, Sleeping Mechanism is applied to avoid any expected buffer overflow. We then use NS-3 Network Simulator to verify the performance of mFDASH. Upon the experimental results, mFDASH shows no buffer overflow within the limited buffer size, which is not guaranteed in FDASH. Also, we confirm that mFDASH provides the highest QoE to DASH clients among the three schemes (mFDASH, FDASH, and SVAA in Point-to-Point networks, Wi-Fi networks, and LTE networks, respectively.
Fuzzy Logic Based Autonomous Parallel Parking System with Kalman Filtering
Panomruttanarug, Benjamas; Higuchi, Kohji
This paper presents an emulation of fuzzy logic control schemes for an autonomous parallel parking system in a backward maneuver. There are four infrared sensors sending the distance data to a microcontroller for generating an obstacle-free parking path. Two of them mounted on the front and rear wheels on the parking side are used as the inputs to the fuzzy rules to calculate a proper steering angle while backing. The other two attached to the front and rear ends serve for avoiding collision with other cars along the parking space. At the end of parking processes, the vehicle will be in line with other parked cars and positioned in the middle of the free space. Fuzzy rules are designed based upon a wall following process. Performance of the infrared sensors is improved using Kalman filtering. The design method needs extra information from ultrasonic sensors. Starting from modeling the ultrasonic sensor in 1-D state space forms, one makes use of the infrared sensor as a measurement to update the predicted values. Experimental results demonstrate the effectiveness of sensor improvement.
Toward a fuzzy logic control of the infant incubator.
Reddy, Narender P; Mathur, Garima; Hariharan, S I
2009-10-01
Premature birth is a world wide problem. Thermo regulation is a major problem in premature infants. Premature infants are often kept in infant incubators providing convective heating. Currently either the incubator air temperature is sensed and used to control the heat flow, or infant's skin temperature is sensed and used in the close loop control. Skin control often leads to large fluctuations in the incubator air temperature. Air control also leads to skin temperature fluctuations. The question remains if both the infant's skin temperature and the incubator air temperature can be simultaneously used in the control. The purpose of the present study was to address this question by developing a fuzzy logic control which incorporates both incubator air temperature and infant's skin temperature to control the heating. The control was evaluated using a lumped parameter mathematical model of infant-incubator system (Simon, B. N., N. P. Reddy, and A. Kantak, J. Biomech. Eng. 116:263-266, 1994). Simulation results confirmed previous experimental results that the on-off skin control could lead to fluctuations in the incubator air temperature, and the air control could lead to too slow rise time in the core temperature. The fuzzy logic provides a smooth control with the desired rise time.
Fuzzy logic and A* algorithm implementation on goat foraging games
Harsani, P.; Mulyana, I.; Zakaria, D.
2018-03-01
Goat foraging is one of the games that apply the search techniques within the scope of artificial intelligence. This game involves several actors including players and enemies. The method used in this research is fuzzy logic and Algorithm A*. Fuzzy logic is used to determine enemy behaviour. The A* algorithm is used to search for the shortest path. There are two input variables: the distance between the player and the enemy and the anger level of the goat. The output variable that has been defined is the enemy behaviour. The A* algorithm is used to determine the closest path between the player and the enemy and define the enemy's escape path to avoid the player. There are 4 types of enemies namely farmers, planters, farmers and sellers of plants. Players are goats that aims to find a meal that is a plant. In this game goats aim to spend grass in the garden in the form of a maze while avoiding the enemy. The game provides an application of artificial intelligence and is made in four difficulty levels.
Fuzzy logic anti-skid control for commercial trucks
Akey, Mark L.
1995-06-01
A fuzzy logic (FL) anti-skid brake controller (ABS) is proposed as the next generation ABS replacing current generation finite state (FS) control. The FL controller is part of a commercial truck braking system, encompassing reverse front-back braking proportions on an articulated vehicle as compared to that found on fixed, passenger car systems. In this early research, the FL controller must satisfy three goals. The first goal is to produce superior braking distances over that of the finite state controller, specifically under low (mu) conditions. The second goal is to provide superior braking under varying system conditions (road surface conditions, physical brake parameters, wheel velocity sensor parameters). The third goal is to provide a convenient, flexible, and tractable ABS solution which is amenable to redevelopemnt to different vehicular platforms. Monte Carlo simulation results illustrate stopping distance improvements of 5 to 10 % averaged over all (mu) surfaces for varying wheel loads. On low (mu) surfaces, the improvement increases to 15% (up to a full tractor-trailer length). These results are obtained while varying other system parameters demonstrating robustness. Finally, the fuzzy logic rule sets and the overall configuration illustrate a straight-forward design and maturation process for the rule sets.
Simulating Shopper Behavior using Fuzzy Logic in Shopping Center Simulation
Directory of Open Access Journals (Sweden)
Jason Christian
2016-12-01
Full Text Available To simulate real-world phenomena, a computer tool can be used to run a simulation and provide a detailed report. By using a computer-aided simulation tool, we can retrieve information relevant to the simulated subject in a relatively short time. This study is an extended and complete version of an initial research done by Christian and Hansun and presents a prototype of a multi-agent shopping center simulation tool along with a fuzzy logic algorithm implemented in the system. Shopping centers and all their components are represented in a simulated 3D environment. The simulation tool was created using the Unity3D engine to build the 3D environment and to run the simulation. To model and simulate the behavior of agents inside the simulation, a fuzzy logic algorithm that uses the agents’ basic knowledge as input was built to determine the agents’ behavior inside the system and to simulate human behaviors as realistically as possible.
Controlling Smart Green House Using Fuzzy Logic Method
Directory of Open Access Journals (Sweden)
Rafiuddin Syam
2015-10-01
Full Text Available To increase agricultural output it is needed a system that can help the environmental conditions for optimum plant growth. Smart greenhouse allows for plants to grow optimally, because the temperature and humidity can be controlled so that no drastic changes. It is necessary for optimal smart greenhouse needed a system to manipulate the environment in accordance with the needs of the plant. In this case the setting temperature and humidity in the greenhouse according to the needs of the plant. So using an automated system for keeping such environmental condition is important. In this study, the authors use fuzzy logic to make the duration of watering the plants more dynamic in accordance with the input temperature and humidity so that the temperature and humidity in the green house plants maintained in accordance to the reference condition. Based on the experimental results using fuzzy logic method is effective to control the duration of watering and to maintain the optimum temperature and humidity inside the greenhouse
A Grey Fuzzy Logic Approach for Cotton Fibre Selection
Chakraborty, Shankar; Das, Partha Protim; Kumar, Vidyapati
2017-06-01
It is a well known fact that the quality of ring spun yarn predominantly depends on various physical properties of cotton fibre. Any variation in these fibre properties may affect the strength and unevenness of the final yarn. Thus, so as to achieve the desired yarn quality and characteristics, it becomes imperative for the spinning industry personnel to identify the most suitable cotton fibre from a set of feasible alternatives in presence of several conflicting properties/attributes. This cotton fibre selection process can be modelled as a Multi-Criteria Decision Making (MCDM) problem. In this paper, a grey fuzzy logic-based approach is proposed for selection of the most apposite cotton fibre from 17 alternatives evaluated based on six important fibre properties. It is observed that the preference order of the top-ranked cotton fibres derived using the grey fuzzy logic approach closely matches with that attained by the past researchers which proves the application potentiality of this method in solving varying MCDM problems in textile industries.
Fuzzy neural network theory and application
Liu, Puyin
2004-01-01
This book systematically synthesizes research achievements in the field of fuzzy neural networks in recent years. It also provides a comprehensive presentation of the developments in fuzzy neural networks, with regard to theory as well as their application to system modeling and image restoration. Special emphasis is placed on the fundamental concepts and architecture analysis of fuzzy neural networks. The book is unique in treating all kinds of fuzzy neural networks and their learning algorithms and universal approximations, and employing simulation examples which are carefully designed to he
Multi-valued and Fuzzy Logic Realization using TaOx Memristive Devices.
Bhattacharjee, Debjyoti; Kim, Wonjoo; Chattopadhyay, Anupam; Waser, Rainer; Rana, Vikas
2018-01-08
Among emerging non-volatile storage technologies, redox-based resistive switching Random Access Memory (ReRAM) is a prominent one. The realization of Boolean logic functionalities using ReRAM adds an extra edge to this technology. Recently, 7-state ReRAM devices were used to realize ternary arithmetic circuits, which opens up the computing space beyond traditional binary values. In this manuscript, we report realization of multi-valued and fuzzy logic operators with a representative application using ReRAM devices. Multi-valued logic (MVL), such as Łukasiewicz logic generalizes Boolean logic by allowing more than two truth values. MVL also permits operations on fuzzy sets, where, in contrast to standard crisp logic, an element is permitted to have a degree of membership to a given set. Fuzzy operations generally model human reasoning better than Boolean logic operations, which is predominant in current computing technologies. When the available information for the modelling of a system is imprecise and incomplete, fuzzy logic provides an excellent framework for the system design. Practical applications of fuzzy logic include, industrial control systems, robotics, and in general, design of expert systems through knowledge-based reasoning. Our experimental results show, for the first time, that it is possible to model fuzzy logic natively using multi-state memristive devices.
Fuzzy logic approach for energetic and economic evaluation of hydroelectric projects
International Nuclear Information System (INIS)
Iliev, Atanas M.
2003-01-01
A mathematical model for energetic and economic evaluation of hydroelectric projects is developed. The main advantage of the proposed methodology is that the model considers uncertainty and vagueness which appears during the decision making process. Due to modeling of variables that are non statistical in their character, fuzzy logic approach is fully incorporated in the model. The first step in energetic evaluation of the hydro power projects is determination of the characteristic of the efficiency of the units to be installed in hydro power plants. For this purpose the model which uses the best characteristics of Artificial Network Fuzzy Inference System (ANFIS) is applied. The method is tested on real systems: HPP Tikves- the power plant in operation and HPP Kozjak - the power plant in construction. The results obtained from practical implementation show that the proposed approach gives superior results than classical polynomial approximation. The model for determining the consumption characteristic of hydro power plant is developed by Sugeno Fuzzy Logic System with polynomials in the consequent part of the rules. Model takes into account the variable gross head of HPP, as well as, the number of units which will be in operation for given output. Modeling of the gross head and power output are performed by expert's design membership functions. This model is practically applied on HPP Tikves for determination of the consumption characteristic for several gross head. The plausible yearly production of electricity from hydro power project, which is important for estimation of the benefit from the project, is calculated by mixed fuzzy-statistical model. hi this approach fuzzy set of the inflow is constructed according to the statistical parameters. The calculation of the production of electricity is realized for a several hydrological conditions which are described by linguistic variables. Finally, Mamdani Fuzzy Inference System with fuzzy number in consequent part
Utility of Arden Syntax for Representation of Fuzzy Logic in Clinical Quality Measures.
Jenders, Robert A
2015-01-01
Prior work has established that fuzzy logic is prevalent in clinical practice guidelines and that Arden Syntax is suitable for representing clinical quality measures (CQMs). Approved since then, Arden Syntax v2.9 (2012) has formal constructs for fuzzy logic even as new formalisms are proposed to represent quality logic. Determine the prevalence of fuzzy logic in CQMs and assess the utility of a contemporary version of Arden Syntax for representing them. Linguistic variables were tabulated in the 329 Assessing Care of the Vulnerable Elderly (ACOVE-3) CQMs, and these logic statements were encoded in Arden Syntax. In a total of 392 CQMs, linguistic variables occurred in 30.6%, and Arden Syntax could be used to represent these formally. Fuzzy logic occurs commonly in CQMs, and Arden Syntax offers particular utility for the representations of these constructs.
A PSO-based approach to optimize the triangular membership functions in a fuzzy logic controller
Maniscalco, Vincenzo; Lombardo, Francesco
2017-11-01
In this paper a Particle Swarm Optimization (PSO) algorithm is considered in order to optimize the triangular Membership Functions (MF) in a Fuzzy Logic Controller (FLC). PSO algorithm belongs to the class of Swarm Intelligence (SI) techniques and is considered an efficient heuristic technique for optimization problem in a continuous and multidimen-sional search spaces. Performance of a FLC depends on the fuzzy partition of each input/output space considered and the PSO algorithm can be used to obtain the optimal or near optimal parameters of the triangular membership functions in order to achieve the best results in the defuzzification process. Simulation results obtained by this approach to tune the triangular membership functions of a FLC for an application concerning the optimization of the energy consumption in Industrial Wireless Sensor Networks (IWSN) are reported.
SISTEM PENGEMBANGAN KENDALI FUZZY LOGIC BERBASIS MIKROKONTROLER KELUARGA MCS51 (PetraFuz
Directory of Open Access Journals (Sweden)
Thiang Thiang
1999-01-01
Full Text Available This paper presents a Fuzzy Logic Development Tool called PetraFuz which has been developed at Control System Laboratory, Electrical Engineering Department, Petra Christian University. The system consists of a hardware target based on MCS51 microcontroller and a software support running under PC Windows. The system is targeted for developing fuzzy logic based systems. It supports fuzzy logic design, evaluation, assembly language generator and downloading process to the target hardware to perform on-line fuzzy process. Process action and fuzzy parameters could be transferred to PC monitor via RS-232 serial communication, this on-line process parameters is used for fuzzy tuning, i.e. fuzzy if-then rules and fuzzy membership functions. The PetraFuz tool helps very much for Fuzzy system developments, it could reduce development time significantly. The tool could spur the development of fuzzy systems based on microcontroller systems such as fuzzy control systems, fuzzy information processing, etc. Abstract in Bahasa Indonesia : Makalah ini menyajikan sebuah sistem pengembangan kendali fuzzy logic (PetraFuz, Petra Fuzzy Development System yang dikembangkan oleh laboratorium Sistem Kontrol, Jurusan Teknik Elektro, Universitas Kristen Petra Surabaya. Sistem ini terdiri dari perangkat keras sistem mikrokontroler MCS51 dan perangkat lunak pendukung yang berjalan pada PC. Sistem PetraFuz digunakan untuk mengembangkan sistem berbasis fuzzy logic utamanya pada bidang kendali. Kemampuan sistem meliputi pengembangan pada fase perancangan kendali, evaluasi kendali, pembentukan program bahasa assembly MCS51 dan proses downloading program menuju target sistem mikrokontroler MCS51 untuk dieksekusi melakukan kendali pada plant yang nyata. Aksi kendali dapat diakuisi oleh program PC melalui komunikasi serial RS232 sehingga respon kendali dapat digambarkan pada layar monitor untuk dilakukan analisis lebih lanjut yang diperlukan pada proses tuning if-then fuzzy rules
A few categories of electromagnetic field problems treated through Fuzzy Logic
Lolea, M. S.; Dzitac, S.
2018-01-01
The paper deals with the problems of fuzzy logic applied in the field of electromagnetism. In the first part, there are presented some theoretical aspects regarding the characteristics and the application of the fuzzy logic in the general case. Are presented then, some categories of electromagnetic field problems treated by fuzzy logic. The accent is on the effects of exposure to the electromagnetic field on the human body. For this approach is dedicated a paragraph at the end of the paper. There is an application on how to treat by fuzzy logic the effects of electric field exposure. For this purpose, the fuzzy toolbox existing in the Matlab software and the results of some electric field strength measurements into a power substation are used. The results of the study and its conclusions are analyzed and exposed at the end of the paper.
A Modern Syllogistic Method in Intuitionistic Fuzzy Logic with Realistic Tautology
Directory of Open Access Journals (Sweden)
Ali Muhammad Rushdi
2015-01-01
Full Text Available The Modern Syllogistic Method (MSM of propositional logic ferrets out from a set of premises all that can be concluded from it in the most compact form. The MSM combines the premises into a single function equated to 1 and then produces the complete product of this function. Two fuzzy versions of MSM are developed in Ordinary Fuzzy Logic (OFL and in Intuitionistic Fuzzy Logic (IFL with these logics augmented by the concept of Realistic Fuzzy Tautology (RFT which is a variable whose truth exceeds 0.5. The paper formally proves each of the steps needed in the conversion of the ordinary MSM into a fuzzy one. The proofs rely mainly on the successful replacement of logic 1 (or ordinary tautology by an RFT. An improved version of Blake-Tison algorithm for generating the complete product of a logical function is also presented and shown to be applicable to both crisp and fuzzy versions of the MSM. The fuzzy MSM methodology is illustrated by three specific examples, which delineate differences with the crisp MSM, address the question of validity values of consequences, tackle the problem of inconsistency when it arises, and demonstrate the utility of the concept of Realistic Fuzzy Tautology.
A Modern Syllogistic Method in Intuitionistic Fuzzy Logic with Realistic Tautology.
Rushdi, Ali Muhammad; Zarouan, Mohamed; Alshehri, Taleb Mansour; Rushdi, Muhammad Ali
2015-01-01
The Modern Syllogistic Method (MSM) of propositional logic ferrets out from a set of premises all that can be concluded from it in the most compact form. The MSM combines the premises into a single function equated to 1 and then produces the complete product of this function. Two fuzzy versions of MSM are developed in Ordinary Fuzzy Logic (OFL) and in Intuitionistic Fuzzy Logic (IFL) with these logics augmented by the concept of Realistic Fuzzy Tautology (RFT) which is a variable whose truth exceeds 0.5. The paper formally proves each of the steps needed in the conversion of the ordinary MSM into a fuzzy one. The proofs rely mainly on the successful replacement of logic 1 (or ordinary tautology) by an RFT. An improved version of Blake-Tison algorithm for generating the complete product of a logical function is also presented and shown to be applicable to both crisp and fuzzy versions of the MSM. The fuzzy MSM methodology is illustrated by three specific examples, which delineate differences with the crisp MSM, address the question of validity values of consequences, tackle the problem of inconsistency when it arises, and demonstrate the utility of the concept of Realistic Fuzzy Tautology.
Berenji, Hamid R.
1992-01-01
Fuzzy logic and neural networks provide new methods for designing control systems. Fuzzy logic controllers do not require a complete analytical model of a dynamic system and can provide knowledge-based heuristic controllers for ill-defined and complex systems. Neural networks can be used for learning control. In this chapter, we discuss hybrid methods using fuzzy logic and neural networks which can start with an approximate control knowledge base and refine it through reinforcement learning.
WARP: Weight Associative Rule Processor. A dedicated VLSI fuzzy logic megacell
Pagni, A.; Poluzzi, R.; Rizzotto, G. G.
1992-01-01
During the last five years Fuzzy Logic has gained enormous popularity in the academic and industrial worlds. The success of this new methodology has led the microelectronics industry to create a new class of machines, called Fuzzy Machines, to overcome the limitations of traditional computing systems when utilized as Fuzzy Systems. This paper gives an overview of the methods by which Fuzzy Logic data structures are represented in the machines (each with its own advantages and inefficiencies). Next, the paper introduces WARP (Weight Associative Rule Processor) which is a dedicated VLSI megacell allowing the realization of a fuzzy controller suitable for a wide range of applications. WARP represents an innovative approach to VLSI Fuzzy controllers by utilizing different types of data structures for characterizing the membership functions during the various stages of the Fuzzy processing. WARP dedicated architecture has been designed in order to achieve high performance by exploiting the computational advantages offered by the different data representations.
A critical study of fuzzy logic as a scientific method in social sciences ...
African Journals Online (AJOL)
The logic of the social sciences, from its inception, has been certain and classic. By advent of Fuzzy logic, gradually making use of it was common because of frequent capabilities and applications that in resolving problems of this science was been attributed to it. Changing of logic in a science or epistemic system has many ...
Adaptive Process Control with Fuzzy Logic and Genetic Algorithms
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
Adaptive process control using fuzzy logic and genetic algorithms
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
Fuzzy Logic Controller based on geothermal recirculating aquaculture system
Directory of Open Access Journals (Sweden)
Hanaa M. Farghally
2014-01-01
Full Text Available One of the most common uses of geothermal heat is in recirculation aquaculture systems (RAS where the water temperature is accurately controlled for optimum growing conditions for sustainable and intensive rearing of marine and freshwater fish. This paper presents a design for RAS rearing tank and brazed heat exchanger to be used with geothermal energy as a source of heating water. The heat losses from the RAS tank are calculated using Geo Heat Center Software. Then a plate type heat exchanger is designed using the epsilon – NTU analysis method. For optimal growth and abundance of production, a Fuzzy Logic control (FLC system is applied to control the water temperature (29 °C. A FLC system has several advantages over conventional techniques; relatively simple, fast, adaptive, and its response is better and faster at all atmospheric conditions. Finally, the total system is built in MATLAB/SIMULINK to study the overall performance of control unit.
Optimum selection of an energy resource using fuzzy logic
Energy Technology Data Exchange (ETDEWEB)
Abouelnaga, Ayah E., E-mail: ayahabouelnaga@hotmail.co [Nuclear Engineering Department, Faculty of Engineering, Alexandria University, 21544 Alexandria (Egypt); Metwally, Abdelmohsen; Nagy, Mohammad E.; Agamy, Saeed [Nuclear Engineering Department, Faculty of Engineering, Alexandria University, 21544 Alexandria (Egypt)
2009-12-15
Optimum selection of an energy resource is a vital issue in developed countries. Considering energy resources as alternatives (nuclear, hydroelectric, gas/oil, and solar) and factors upon which the proper decision will be taken as attributes (economics, availability, environmental impact, and proliferation), one can use the multi-attribute utility theory (MAUT) to optimize the selection process. Recently, fuzzy logic is extensively applied to the MAUT as it expresses the linguistic appraisal for all attributes in wide and reliable manners. The rise in oil prices and the increased concern about environmental protection from CO{sub 2} emissions have promoted the attention to the use of nuclear power as a viable energy source for power generation. For Egypt, as a case study, the nuclear option is found to be an appropriate choice. Following the introduction of innovative designs of nuclear power plants, improvements in the proliferation resistance, environmental impacts, and economics will enhance the selection of the nuclear option.
Optimum selection of an energy resource using fuzzy logic
International Nuclear Information System (INIS)
Abouelnaga, Ayah E.; Metwally, Abdelmohsen; Nagy, Mohammad E.; Agamy, Saeed
2009-01-01
Optimum selection of an energy resource is a vital issue in developed countries. Considering energy resources as alternatives (nuclear, hydroelectric, gas/oil, and solar) and factors upon which the proper decision will be taken as attributes (economics, availability, environmental impact, and proliferation), one can use the multi-attribute utility theory (MAUT) to optimize the selection process. Recently, fuzzy logic is extensively applied to the MAUT as it expresses the linguistic appraisal for all attributes in wide and reliable manners. The rise in oil prices and the increased concern about environmental protection from CO 2 emissions have promoted the attention to the use of nuclear power as a viable energy source for power generation. For Egypt, as a case study, the nuclear option is found to be an appropriate choice. Following the introduction of innovative designs of nuclear power plants, improvements in the proliferation resistance, environmental impacts, and economics will enhance the selection of the nuclear option.
High-efficiency induction motor drives using type-2 fuzzy logic
Khemis, A.; Benlaloui, I.; Drid, S.; Chrifi-Alaoui, L.; Khamari, D.; Menacer, A.
2018-03-01
In this work we propose to develop an algorithm for improving the efficiency of an induction motor using type-2 fuzzy logic. Vector control is used to control this motor due to the high performances of this strategy. The type-2 fuzzy logic regulators are developed to obtain the optimal rotor flux for each torque load by minimizing the copper losses. We have compared the performances of our fuzzy type-2 algorithm with the type-1 fuzzy one proposed in the literature. The proposed algorithm is tested with success on the dSPACE DS1104 system even if there is parameters variance.
Membership function modification of fuzzy logic controllers with histogram equalization.
Zhuang, H; Wu, X
2001-01-01
In most fuzzy logic controllers (FLCs), initial membership functions (MFs) are normally laid evenly all across the universes of discourse (UD) that represent fuzzy control inputs. However, for evenly distributed MFs, there exists a potential problem that may adversely affect the control performance; that is, if the actual inputs are not equally distributed, but instead concentrate within a certain interval that is only part of the entire input area, this will result in two negative effects. On one hand, the MFs staying in the dense-input area will not be sufficient to react precisely to the inputs, because these inputs are too close to each other compared to the MFs in this area. The same fuzzy control output could be triggered for several different inputs. On the other hand, some of the MFs assigned for the sparse-input area are "wasted". In this paper we argue that, if we arrange the placement of these MFs according to a statistical study of feedback errors in a closed-loop system, we can expect a better control performance. To this end, we introduce a new mechanism to modify the evenly distributed MFs with the help of a technique termed histogram equalization. The histogram of the errors is actually the spatial distribution of real-time errors of the control system. To illustrate the proposed MF modification approach, a computer simulation of a simple system that has a known mathematical model is first analyzed, leading to our understanding of how this histogram-based modification mechanism functions. We then apply this method to an experimental laser tracking system to demonstrate that in real-world applications, a better control performance can he obtained by using this proposed technique.
Rollover prevention for sport utility vehicle using fuzzy logic controller
Lee, Yong-hwi; Yi, Seung-Jong
2005-12-01
The purpose of this study is to develop the fuzzy logic RSC(Roll Stability Control) system to prevent the rollover for the SUV(sport utility vehicle). The SUV model used in this study is the 8-DOF model considering the longitudinal, lateral, yaw and roll motions. The longitudinal and transversal weight transfers are considered in the computation of the vertical forces acting on a wheel. The engine torque is obtained from the throttle position and the r.p.m. of the engine map. The fuzzy logic controller input consists of the roll angle error and its derivative. The output is the brake torque and the throttle angle. The engine torque controller controls the throttle valve angle. The brake controller independently controls both right and left wheels. When the roll angle is +/-4.5° defined as the critical roll angle, the front inner tire experiences the 1/100 ~ 1/50 of the total vertical forces, and the rollover starts. To prevent the rollover in advance, the target angle +/-4.5° is adopted to control the vehicle stability. The RSC system begins operating at +/-4.5° and stops at 0°. The simulations are conducted to evaluate the controller performance at right turns for the excessive steering angle. When the roll angle error and its derivative exceed the limited point, the RSC system makes the longitudinal velocity of the SUV decrease the brake torque and adjusts the throttle angle. The roll motion of the SUV is then stabilized.
CONTROLLING MECHANICAL VENTILATION IN ARDS WITH FUZZY LOGIC
Nguyen, Binh; Bernstein, David B.; Bates, Jason H.T.
2014-01-01
Purpose The current ventilatory care goal for acute respiratory distress syndrome (ARDS), and the only evidence-based approach for managing ARDS, is to ventilate with a tidal volume (VT) of 6 ml/kg predicted body weight (PBW). However, it is not uncommon for some caregivers to feel inclined to deviate from this strategy for one reason or another. To accommodate this inclination in a rationalized manner, we previously developed an algorithm that allows for VT to depart from 6 ml/kg PBW based on physiological criteria. The goal of the present study was to test the feasibility of this algorithm in a small retrospective study. Materials and Methods Current values of peak airway pressure (PAP), positive end-expiratory pressure (PEEP) and arterial oxygen saturation (SaO2) are used in a fuzzy logic algorithm to decide how much VT should differ from 6 ml/kg PBW and how much PEEP should change from its current setting. We retrospectively tested the predictions of the algorithm against 26 cases of decision making in 17 patients with ARDS. Results Differences between algorithm and physician VT decisions were within 2.5 ml/kg PBW except in 1 of 26 cases, and differences between PEEP decisions were within 2.5 cm H2O except in 3 of 26 cases. The algorithm was consistently more conservative than physicians in changing VT, but was slightly less conservative when changing PEEP. Conclusions Within the limits imposed by a small retrospective study, we conclude that our fuzzy logic algorithm makes sensible decisions while at the same time keeping practice close to the current ventilatory care goal. PMID:24721387
A Fuzzy Logic Framework for Integrating Multiple Learned Models
Energy Technology Data Exchange (ETDEWEB)
Hartog, Bobi Kai Den [Univ. of Nebraska, Lincoln, NE (United States)
1999-03-01
The Artificial Intelligence field of Integrating Multiple Learned Models (IMLM) explores ways to combine results from sets of trained programs. Aroclor Interpretation is an ill-conditioned problem in which trained programs must operate in scenarios outside their training ranges because it is intractable to train them completely. Consequently, they fail in ways related to the scenarios. We developed a general-purpose IMLM solution, the Combiner, and applied it to Aroclor Interpretation. The Combiner's first step, Scenario Identification (M), learns rules from very sparse, synthetic training data consisting of results from a suite of trained programs called Methods. S1 produces fuzzy belief weights for each scenario by approximately matching the rules. The Combiner's second step, Aroclor Presence Detection (AP), classifies each of three Aroclors as present or absent in a sample. The third step, Aroclor Quantification (AQ), produces quantitative values for the concentration of each Aroclor in a sample. AP and AQ use automatically learned empirical biases for each of the Methods in each scenario. Through fuzzy logic, AP and AQ combine scenario weights, automatically learned biases for each of the Methods in each scenario, and Methods' results to determine results for a sample.
Using Fuzzy Logic to Enhance Stereo Matching in Multiresolution Images
Directory of Open Access Journals (Sweden)
Marcos D. Medeiros
2010-01-01
Full Text Available Stereo matching is an open problem in Computer Vision, for which local features are extracted to identify corresponding points in pairs of images. The results are heavily dependent on the initial steps. We apply image decomposition in multiresolution levels, for reducing the search space, computational time, and errors. We propose a solution to the problem of how deep (coarse should the stereo measures start, trading between error minimization and time consumption, by starting stereo calculation at varying resolution levels, for each pixel, according to fuzzy decisions. Our heuristic enhances the overall execution time since it only employs deeper resolution levels when strictly necessary. It also reduces errors because it measures similarity between windows with enough details. We also compare our algorithm with a very fast multi-resolution approach, and one based on fuzzy logic. Our algorithm performs faster and/or better than all those approaches, becoming, thus, a good candidate for robotic vision applications. We also discuss the system architecture that efficiently implements our solution.
Efficiency of particle swarm optimization applied on fuzzy logic DC motor speed control
Directory of Open Access Journals (Sweden)
Allaoua Boumediene
2008-01-01
Full Text Available This paper presents the application of Fuzzy Logic for DC motor speed control using Particle Swarm Optimization (PSO. Firstly, the controller designed according to Fuzzy Logic rules is such that the systems are fundamentally robust. Secondly, the Fuzzy Logic controller (FLC used earlier was optimized with PSO so as to obtain optimal adjustment of the membership functions only. Finally, the FLC is completely optimized by Swarm Intelligence Algorithms. Digital simulation results demonstrate that in comparison with the FLC the designed FLC-PSO speed controller obtains better dynamic behavior and superior performance of the DC motor, as well as perfect speed tracking with no overshoot.
Design of a Tele-Control Electrical Vehicle System Using a Fuzzy Logic Control
Directory of Open Access Journals (Sweden)
M. Boukhnifer
2012-11-01
Full Text Available This paper presents a fuzzy logic design of a tele-control electrical vehicle system. We showed that the application of fuzzy logic control allows the stability of tele-vehicle system in spite of communication delays between the operator and the vehicle. A robust bilateral controller design using fuzzy logic frameworks was proposed. This approach allows a convenient means to trade off robustness and stability for a pre-specified time-delay margin. Both the performance and robustness of the proposed method were demonstrated by simulation results for a constant time delay between the operator and the electrical vehicle system.
Virtual reality simulation of fuzzy-logic control during underwater dynamic positioning
Thekkedan, Midhin Das; Chin, Cheng Siong; Woo, Wai Lok
2015-03-01
In this paper, graphical-user-interface (GUI) software for simulation and fuzzy-logic control of a remotely operated vehicle (ROV) using MATLAB™ GUI Designing Environment is proposed. The proposed ROV's GUI platform allows the controller such as fuzzy-logic control systems design to be compared with other controllers such as proportional-integral-derivative (PID) and sliding-mode controller (SMC) systematically and interactively. External disturbance such as sea current can be added to improve the modelling in actual underwater environment. The simulated results showed the position responses of the fuzzy-logic control exhibit reasonable performance under the sea current disturbance.
International Nuclear Information System (INIS)
Karakaya, A.; Karakas, E.
2008-01-01
Permanent Magnet Synchronous Motors have nonlinear characteristics whose dynamics changes with time. In spite of this structure the permanent magnet synchronous motor has answered engineering problems in industry such as motion control which need high torque values. This paper obtains a nonlinear mathematical model for Permanent Magnet Synchronous Motor and realizes stimulation of the obtained model in the Matlab/Simulink program. Motor parameters are determined by an experimental set-up and they are used in the motor model. Speed control of motor model is made with Fuzzy Logic and Self Tuning logic PI controllers. Using the speed graphs obtained, rise time, overshoot, steady-state error and settling time are analyzed and controller performances are compared. (author)
Autonomous Control of a Quadrotor UAV Using Fuzzy Logic
Sureshkumar, Vijaykumar
UAVs are being increasingly used today than ever before in both military and civil applications. They are heavily preferred in "dull, dirty or dangerous" mission scenarios. Increasingly, UAVs of all kinds are being used in policing, fire-fighting, inspection of structures, pipelines etc. Recently, the FAA gave its permission for UAVs to be used on film sets for motion capture and high definition video recording. The rapid development in MEMS and actuator technology has made possible a plethora of UAVs that are suited for commercial applications in an increasingly cost effective manner. An emerging popular rotary wing UAV platform is the Quadrotor A Quadrotor is a helicopter with four rotors, that make it more stable; but more complex to model and control. Characteristics that provide a clear advantage over other fixed wing UAVs are VTOL and hovering capabilities as well as a greater maneuverability. It is also simple in construction and design compared to a scaled single rotorcraft. Flying such UAVs using a traditional radio Transmitter-Receiver setup can be a daunting task especially in high stress situations. In order to make such platforms widely applicable, a certain level of autonomy is imperative to the future of such UAVs. This thesis paper presents a methodology for the autonomous control of a Quadrotor UAV using Fuzzy Logic. Fuzzy logic control has been chosen over conventional control methods as it can deal effectively with highly nonlinear systems, allows for imprecise data and is extremely modular. Modularity and adaptability are the key cornerstones of FLC. The objective of this thesis is to present the steps of designing, building and simulating an intelligent flight control module for a Quadrotor UAV. In the course of this research effort, a Quadrotor UAV is indigenously developed utilizing the resources of an online open source project called Aeroquad. System design is comprehensively dealt with. A math model for the Quadrotor is developed and a
Flows in networks under fuzzy conditions
Bozhenyuk, Alexander Vitalievich; Kacprzyk, Janusz; Rozenberg, Igor Naymovich
2017-01-01
This book offers a comprehensive introduction to fuzzy methods for solving flow tasks in both transportation and networks. It analyzes the problems of minimum cost and maximum flow finding with fuzzy nonzero lower flow bounds, and describes solutions to minimum cost flow finding in a network with fuzzy arc capacities and transmission costs. After a concise introduction to flow theory and tasks, the book analyzes two important problems. The first is related to determining the maximum volume for cargo transportation in the presence of uncertain network parameters, such as environmental changes, measurement errors and repair work on the roads. These parameters are represented here as fuzzy triangular, trapezoidal numbers and intervals. The second problem concerns static and dynamic flow finding in networks under fuzzy conditions, and an effective method that takes into account the network’s transit parameters is presented here. All in all, the book provides readers with a practical reference guide to state-of-...
Directory of Open Access Journals (Sweden)
Oscar Castillo
2013-01-01
Full Text Available Ant Colony Optimization (ACO is a population-based constructive meta-heuristic that exploits a form of past performance memory inspired by the foraging behaviour of real ants. The behaviour of the ACO algorithm is highly dependent on the values defined for its parameters. Adaptation and parameter control are recurring themes in the field of bio-inspired algorithms. The present paper explores a new approach to diversity control in ACO. The central idea is to avoid or slow down full convergence through the dynamic variation of certain parameters. The performance of different variants of the ACO algorithm was observed to choose one as the basis for the proposed approach. A convergence fuzzy logic controller with the objective of maintaining diversity at some level to avoid premature convergence was created. Encouraging results have been obtained on its application to the design of fuzzy controllers. In particular, the optimization of membership functions for a unicycle mobile robot trajectory control is presented with the proposed method.
Fuzzy mobile-robot positioning in intelligent spaces using wireless sensor networks.
Herrero, David; Martínez, Humberto
2011-01-01
This work presents the development and experimental evaluation of a method based on fuzzy logic to locate mobile robots in an Intelligent Space using wireless sensor networks (WSNs). The problem consists of locating a mobile node using only inter-node range measurements, which are estimated by radio frequency signal strength attenuation. The sensor model of these measurements is very noisy and unreliable. The proposed method makes use of fuzzy logic for modeling and dealing with such uncertain information. Besides, the proposed approach is compared with a probabilistic technique showing that the fuzzy approach is able to handle highly uncertain situations that are difficult to manage by well-known localization methods.
Feasibility analysis of fuzzy logic control for ITER Poloidal field (PF) AC/DC converter system
Energy Technology Data Exchange (ETDEWEB)
Hassan, Mahmood Ul; Fu, Peng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China (China); Song, Zhiquan, E-mail: zhquansong@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Chen, Xiaojiao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China (China); Zhang, Xiuqing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Humayun, Muhammad [Shanghai Jiaotong University (China)
2017-05-15
Highlights: • The implementation of the Fuzzy controller for the ITER PF converter system is presented. • The comparison of the FLC and PI simulation are investigated. • The FLC single and parallel bridge operation are presented. • Fuzzification and Defuzzification algorithms are presented using FLC controller. - Abstract: This paper describes the feasibility analysis of the fuzzy logic control to increase the performance of the ITER poloidal field (PF) converter systems. A fuzzy-logic-based controller is designed for ITER PF converter system, using the traditional PI controller and Fuzzy controller (FC), the dynamic behavior and transient response of the PF converter system are compared under normal operation by analysis and simulation. The analysis results show that the fuzzy logic control can achieve better operation performance than PI control.
Fuzzy logic algorithms for atmospheric transmittances of use in solar energy estimation
International Nuclear Information System (INIS)
Paulescu, Marius; Gravila, Paul; Tulcan-Paulescu, Eugenia
2008-01-01
Two models for solar radiation attenuation in the atmosphere are presented. The novelty consists in using fuzzy logic algorithms for evaluating atmospheric transmittances associated to the main attenuators: Rayleigh scattering, aerosol extinction, ozone, water vapor and trace gas absorption. The first model encompasses self-dependent fuzzy modeling of each characteristic transmittance, while the second is a proper fuzzy logic model for beam and diffuse atmospheric transmittances. The assembly of our results leads to the conclusion that developing parametric models along the ways of fuzzy logic is a viable alternative to classical parameterization. Due to the heuristic nature of the fuzzy model input-output map, it leads to more flexibility in adapting to local meteo-climatic conditions
Fuzzy Modelling for Human Dynamics Based on Online Social Networks.
Cuenca-Jara, Jesus; Terroso-Saenz, Fernando; Valdes-Vela, Mercedes; Skarmeta, Antonio F
2017-08-24
Human mobility mining has attracted a lot of attention in the research community due to its multiple implications in the provisioning of innovative services for large metropolises. In this scope, Online Social Networks (OSN) have arisen as a promising source of location data to come up with new mobility models. However, the human nature of this data makes it rather noisy and inaccurate. In order to deal with such limitations, the present work introduces a framework for human mobility mining based on fuzzy logic. Firstly, a fuzzy clustering algorithm extracts the most active OSN areas at different time periods. Next, such clusters are the building blocks to compose mobility patterns. Furthermore, a location prediction service based on a fuzzy rule classifier has been developed on top of the framework. Finally, both the framework and the predictor has been tested with a Twitter and Flickr dataset in two large cities.
A Note on Axiomatizations of Pavelka-style Complete Fuzzy Logics
Czech Academy of Sciences Publication Activity Database
Cintula, Petr
2016-01-01
Roč. 292, 1 June (2016), s. 160-174 ISSN 0165-0114 R&D Projects: GA ČR GAP202/10/1826 Institutional support: RVO:67985807 Keywords : mathematical fuzzy logic * Pavelka-style completeness * MTL logic * Lukasiewicz logic s * Product Logic * truth constants * Monteiro–Baaz delta Subject RIV: BA - General Mathematics Impact factor: 2.718, year: 2016
ANFIS optimized semi-active fuzzy logic controller for magnetorheological dampers
César, Manuel Braz; Barros, Rui Carneiro
2016-11-01
In this paper, we report on the development of a neuro-fuzzy controller for magnetorheological dampers using an Adaptive Neuro-Fuzzy Inference System or ANFIS. Fuzzy logic based controllers are capable to deal with non-linear or uncertain systems, which make them particularly well suited for civil engineering applications. The main objective is to develop a semi-active control system with a MR damper to reduce the response of a three degrees-of-freedom (DOFs) building structure. The control system is designed using ANFIS to optimize the fuzzy inference rule of a simple fuzzy logic controller. The results show that the proposed semi-active neuro-fuzzy based controller is effective in reducing the response of structural system.
A new approach of active compliance control via fuzzy logic control for multifingered robot hand
Jamil, M. F. A.; Jalani, J.; Ahmad, A.
2016-07-01
Safety is a vital issue in Human-Robot Interaction (HRI). In order to guarantee safety in HRI, a model reference impedance control can be a very useful approach introducing a compliant control. In particular, this paper establishes a fuzzy logic compliance control (i.e. active compliance control) to reduce impact and forces during physical interaction between humans/objects and robots. Exploiting a virtual mass-spring-damper system allows us to determine a desired compliant level by understanding the behavior of the model reference impedance control. The performance of fuzzy logic compliant control is tested in simulation for a robotic hand known as the RED Hand. The results show that the fuzzy logic is a feasible control approach, particularly to control position and to provide compliant control. In addition, the fuzzy logic control allows us to simplify the controller design process (i.e. avoid complex computation) when dealing with nonlinearities and uncertainties.
National Research Council Canada - National Science Library
Lim, P
2001-01-01
.... Thus, the proposed learning base is constructed in a 3-tuple: observation, label, membership value in term of fuzzy logic for each class and not a 2-tuple as in the usual supervised Bayes classification application...
The use of fuzzy logic for data analysis and modelling of European ...
African Journals Online (AJOL)
The use of fuzzy logic for data analysis and modelling of European harmful algal blooms: results of the HABES project. AN Blauw, P Anderson, M Estrada, M Johansen, J Laanemets, L Peperzak, D Purdie, R Raine, E Vahtera ...
Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass.
Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S
2016-06-01
A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis.
Systematic methods for the design of a class of fuzzy logic controllers
Yasin, Saad Yaser
2002-09-01
Fuzzy logic control, a relatively new branch of control, can be used effectively whenever conventional control techniques become inapplicable or impractical. Various attempts have been made to create a generalized fuzzy control system and to formulate an analytically based fuzzy control law. In this study, two methods, the left and right parameterization method and the normalized spline-base membership function method, were utilized for formulating analytical fuzzy control laws in important practical control applications. The first model was used to design an idle speed controller, while the second was used to control an inverted control problem. The results of both showed that a fuzzy logic control system based on the developed models could be used effectively to control highly nonlinear and complex systems. This study also investigated the application of fuzzy control in areas not fully utilizing fuzzy logic control. Three important practical applications pertaining to the automotive industries were studied. The first automotive-related application was the idle speed of spark ignition engines, using two fuzzy control methods: (1) left and right parameterization, and (2) fuzzy clustering techniques and experimental data. The simulation and experimental results showed that a conventional controller-like performance fuzzy controller could be designed based only on experimental data and intuitive knowledge of the system. In the second application, the automotive cruise control problem, a fuzzy control model was developed using parameters adaptive Proportional plus Integral plus Derivative (PID)-type fuzzy logic controller. Results were comparable to those using linearized conventional PID and linear quadratic regulator (LQR) controllers and, in certain cases and conditions, the developed controller outperformed the conventional PID and LQR controllers. The third application involved the air/fuel ratio control problem, using fuzzy clustering techniques, experimental
Development of Fuzzy Logic Controller for Quanser Bench-Top Helicopter
Jafri, M. H.; Mansor, H.; Gunawan, T. S.
2017-11-01
Bench-top helicopter is a laboratory scale helicopter that usually used as a testing bench of the real helicopter behavior. This helicopter is a 3 Degree of Freedom (DOF) helicopter which works by three different axes wshich are elevation, pitch and travel. Thus, fuzzy logic controller has been proposed to be implemented into Quanser bench-top helicopter because of its ability to work with non-linear system. The objective for this project is to design and apply fuzzy logic controller for Quanser bench-top helicopter. Other than that, fuzzy logic controller performance system has been simulated to analyze and verify its behavior over existing PID controller by using Matlab & Simulink software. In this research, fuzzy logic controller has been designed to control the elevation angle. After simulation has been performed, it can be seen that simulation result shows that fuzzy logic elevation control is working for 4°, 5° and 6°. These three angles produce zero steady state error and has a fast response. Other than that, performance comparisons have been performed between fuzzy logic controller and PID controller. Fuzzy logic elevation control has a better performance compared to PID controller where lower percentage overshoot and faster settling time have been achieved in 4°, 5° and 6° step response test. Both controller are have zero steady state error but fuzzy logic controller is managed to produce a better performance in term of settling time and percentage overshoot which make the proposed controller is reliable compared to the existing PID controller.
Fuzzy Logic Based The Application of Multi-Microcontroller in Mobile Robot Model
Directory of Open Access Journals (Sweden)
Nuryono Satya Widodo
2009-12-01
Full Text Available This paper proposed a fuzzy logic based mobile robot as implemented in a multimicrocontroller system. Fuzzy logic controller was developed based on a behavior based approach. The Controller inputs were obtained from seven sonar sensor and three tactile switches. Behavior based approach was implemented in different level priority of behaviors. The behaviors were: obstacle avoidance, wall following and escaping as the emergency behavior. The results show that robot was able to navigate autonomously and avoid the entire obstacle.
Control of an air conditional system with fuzzy logic and PIC using
ERKAYMAZ, Hande; ÇAYIROĞLU, İbrahim
2010-01-01
In this study an air conditioner system was put into practice as programming PIC by fuzzy logic system. The system keeps temperature of atmosphere between 19-23oC. As input variable damp and heat values are taken by sensor called SHT11 and they are transmitted to PIC 16F876 which programmed by fuzzy logic system. Heater and cooler fans work as required climate.
ThetKoKo; ZawMyoTun; Hla Myo Tun
2015-01-01
Abstract This research paper describes the design and simulation of the automatic wiper speed and headlight modes controllers using fuzzy logic. This proposed system consists of a fuzzy logic controller to control a cars wiper speed and headlight modes. The automatic wiper system detects the rain and its intensity. And according to the rain intensity the wiper speed is automatically controlled. Headlight modes automatically changes either from low beam mode to high beam mode or form high beam...
Directory of Open Access Journals (Sweden)
Y. N. Petrenko
2011-01-01
Full Text Available The purpose of a crane control system is to provide load transfer with minimum swinging. The paper presents a developed three-dimensional simulation model of a bridge crane with fuzzy logic controller designed with application of genetic algorithms. Comparative indices of oscillation while load transferring are given in the paper. The indices have been obtained at various parameters of the fuzzy logic controller.
A Fuzzy-Logic advisory system for lean manufacturing within SMEs
Achanga, Pius Coxwell; Shehab, Essam; Roy, Rajkumar; Nelder, Geoff
2012-01-01
This research paper presents the development of a fuzzy-logic advisory system to assist small-medium size companies (SMEs) as a decision support tool for implementing lean manufacturing. The system is developed using fuzzy logic rules, with a combination of research methodology approaches employed in the research study that included data collection from ten manufacturing SMEs through documentation analysis, observation of companies' practices and semi-structured interviews. The overall system...
Fuzzy logic controller for crude oil levels at Escravos Tank Farm ...
African Journals Online (AJOL)
Fuzzy logic controller (FLC) for crude oil flow rates and tank levels was designed for monitoring flow and tank level management at Escravos Tank Farm in Nigeria. The fuzzy control system incorporated essence of expert knowledge required to handle the tasks. Proportional Integral Derivative (PID) control of crude flow ...
Evaluation of a Multi-Variable Self-Learning Fuzzy Logic Controller ...
African Journals Online (AJOL)
In spite of the usefulness of fuzzy control, its main drawback comes from lack of a systematic control design methodology. The most challenging aspect of the design of a fuzzy logic controller is the elicitation of the control rules for its rule base. In this paper, a scheme capable of elicitation of acceptable rules for multivariable ...
DEFF Research Database (Denmark)
Achiche, Sofiane; Ahmed, Saeema
2009-01-01
with a different set of geometric features and shapes. In this paper the authors propose an automatic approach to formalize the relationships between geometric information of 3D objects and the intended emotion using fuzzy logic. In addition automatically generated fuzzy rules and sets are developed and compared...
Obtaining ABET Student Outcome Satisfaction from Course Learning Outcome Data Using Fuzzy Logic
Imam, Muhammad Hasan; Tasadduq, Imran Ali; Ahmad, Abdul-Rahim; Aldosari, Fahd
2017-01-01
One of the approaches for obtaining the satisfaction data for ABET "Student Outcomes" (SOs) is to transform Course Learning Outcomes (CLOs) satisfaction data obtained through assessment of CLOs to SO satisfaction data. Considering the fuzzy nature of metrics of CLOs and SOs, a Fuzzy Logic algorithm has been proposed to extract SO…
Structural modeling and fuzzy-logic based diagnosis of a ship propulsion benchmark
DEFF Research Database (Denmark)
Izadi-Zamanabadi, Roozbeh; Blanke, M.; Katebi, S.D.
2000-01-01
An analysis of structural model of a ship propulsion benchmark leads to identifying the subsystems with inherent redundant information. For a nonlinear part of the system, a Fuzzy logic based FD algorithm with adaptive threshold is employed. The results illustrate the applicability of structural...... analysis as well as fuzzy observer....
Structural modeling and fuzzy-logic based diagnosis of a ship propulsion benchmark
DEFF Research Database (Denmark)
Izadi-Zamanabadi, Roozbeh; Blanke, M.; Katebi, S.D.
2000-01-01
An analysis of structural model of a ship propulsion benchmark leads to identifying the subsystems with inherent redundant information. For a nonlinear part of the system, a Fuzzy logic based FD algorithm with adaptive threshold is employed. The results illustrate the applicability of structural...... analysis as well as fuzzy observer...
Fuzzy logic based control system for fresh water aquaculture: A MATLAB based simulation approach
Directory of Open Access Journals (Sweden)
Rana Dinesh Singh
2015-01-01
Full Text Available Fuzzy control is regarded as the most widely used application of fuzzy logic. Fuzzy logic is an innovative technology to design solutions for multiparameter and non-linear control problems. One of the greatest advantages of fuzzy control is that it uses human experience and process information obtained from operator rather than a mathematical model for the definition of a control strategy. As a result, it often delivers solutions faster than conventional control design techniques. The proposed system is an attempt to apply fuzzy logic techniques to predict the stress factor on the fish, based on line data and rule base generated using domain expert. The proposed work includes a use of Data acquisition system, an interfacing device for on line parameter acquisition and analysis, fuzzy logic controller (FLC for inferring the stress factor. The system takes stress parameters on the fish as inputs, fuzzified by using FLC with knowledge base rules and finally provides single output. All the parameters are controlled and calibrated by the fuzzy logic toolbox and MATLAB programming.
Barbosa, A Márcia; Real, Raimundo
2012-01-01
We modelled the distributions of two toads (Bufo bufo and Epidalea calamita) in the Iberian Peninsula using the favourability function, which makes predictions directly comparable for different species and allows fuzzy logic operations to relate different models. The fuzzy intersection between individual models, representing favourability for the presence of both species simultaneously, was compared with another favourability model built on the presences shared by both species. The fuzzy union between individual models, representing favourability for the presence of any of the two species, was compared with another favourability model based on the presences of either or both of them. The fuzzy intersections between favourability for each species and the complementary of favourability for the other (corresponding to the logical operation "A and not B") were compared with models of exclusive presence of one species versus the exclusive presence of the other. The results of modelling combined species data were highly similar to those of fuzzy logic operations between individual models, proving fuzzy logic and the favourability function valuable for comparative distribution modelling. We highlight several advantages of fuzzy logic over other forms of combining distribution models, including the possibility to combine multiple species models for management and conservation planning.
Fuzzy logic-based diagnostic algorithm for implantable cardioverter defibrillators.
Bárdossy, András; Blinowska, Aleksandra; Kuzmicz, Wieslaw; Ollitrault, Jacky; Lewandowski, Michał; Przybylski, Andrzej; Jaworski, Zbigniew
2014-02-01
total 57 shocks and 28 antitachycardia pacing (ATP) therapies were delivered by ICDs. 25 out of 57 shocks were unjustified: 7 for ST, 12 for DAI, 6 for ATF. Our fuzzy rule-based diagnostic algorithm correctly recognized all episodes of VF and VT, except for one case where VT was recognized as VF. In four cases short lasting, spontaneously ending VT episodes were not detected (in these cases no therapy was needed and they were not detected by ICDs either). In other words, a fuzzy logic algorithm driven ICD would deliver one unjustified shock and deliver correct therapies in all other cases. In the tests, no adjustments of our algorithm to individual patients were needed. The sensitivity and specificity calculated from the results were 100% and 98%, respectively. In 126 ECG recordings from PhysioBank (about 30min each) our algorithm incorrectly detected 4 episodes of VT, which should rather be classified as fast supraventricular tachycardias. The estimated power consumption of the dedicated integrated circuit implementing the algorithm was below 120nW. The paper presents a fuzzy logic-based control algorithm for ICD. Its main advantages are: simplicity and ability to decrease the rate of occurrence of inappropriate therapies. The algorithm can work in real time (i.e. update the diagnosis after every RR-interval) with very limited computational resources. Copyright © 2013 Elsevier B.V. All rights reserved.
Deng, Zhaohong; Choi, Kup-Sze; Cao, Longbing; Wang, Shitong
2014-04-01
A challenge in modeling type-2 fuzzy logic systems is the development of efficient learning algorithms to cope with the ever increasing size of real-world data sets. In this paper, the extreme learning strategy is introduced to develop a fast training algorithm for interval type-2 Takagi-Sugeno-Kang fuzzy logic systems. The proposed algorithm, called type-2 fuzzy extreme learning algorithm (T2FELA), has two distinctive characteristics. First, the parameters of the antecedents are randomly generated and parameters of the consequents are obtained by a fast learning method according to the extreme learning mechanism. In addition, because the obtained parameters are optimal in the sense of minimizing the norm, the resulting fuzzy systems exhibit better generalization performance. The experimental results clearly demonstrate that the training speed of the proposed T2FELA algorithm is superior to that of the existing state-of-the-art algorithms. The proposed algorithm also shows competitive performance in generalization abilities.
On enhancing on-line collaboration using fuzzy logic modeling
Directory of Open Access Journals (Sweden)
Leontios J. Hadjileontiadis
2004-04-01
Full Text Available Web-based collaboration calls for professional skills and competences to the benefit of the quality of the collaboration and its output. Within this framework, educational virtual environments may provide a means for training upon these skills and in particular the collaborative ones. On the basis of the existing technological means such training may be enhanced even more. Designing considerations towards this direction include the close follow-up of the collaborative activity and provision of support grounded upon a pedagogical background. To this vein, a fuzzy logic-based expert system, namely Collaboration/Reflection-Fuzzy Inference System (C/R-FIS, is presented in this paper. By means of interconnected FISs, the C/R-FIS expert system automatically evaluates the collaborative activity of two peers, during their asynchronous, written, web-based collaboration. This information is used for the provision of adaptive support to peers during their collaboration, towards equilibrium of their collaborative activity. In particular, this enhanced formative feedback aims at diminishing the possible dissonance between the individual collaborative skills by challenging self-adjustment procedures. The proposed model extents the evaluation system of a web-based collaborative tool namely Lin2k, which has served as a test-bed for the C/R-FIS experimental use. Results from its experimental use have proved the potentiality of the proposed model to significantly contribute to the enhancement of the collaborative activity and its transferability to other collaborative learning contexts, such as medicine, environmental engineering, law, and music education.
Directory of Open Access Journals (Sweden)
Mohamad Agung Prawira Negara
2017-08-01
Full Text Available Telecommunications and robotics technology is being developed to assist and facilitate the work of a human. In the field of telecommunications particularly smartphone has reached the planting of operating systems like android until planting sensors such as an accelerometer, gyro, proximity, etc. We would like to take advantage of the accelerometer sensor on a smartphone as robot control. We will compare the use of Sugeno Fuzzy Logic and Mamdani Fuzzy Logic to determine the best control method. The basic components of the robot are the Bluetooth module HC-05 as a medium of communication with the android, arduino as the control system and actuators such as DC motors drive the rear wheels to adjust the speed of the robot, and servo motor drives the front wheels to adjust the degree of turn robot. In robot’s movement test, 4 of 8 trials or approximately 50% stated better Sugeno Fuzzy Logic than Mamdani Fuzzy Logic in terms of linearity. In robot's controller response test, for Sugeno Fuzzy Logic method the average delay is 0.41 seconds, and for Mamdani Fuzzy Logic method the average delay is 10.80 seconds.
Jani, Yashvant
1993-01-01
As part of the RICIS project, the reinforcement learning techniques developed at Ames Research Center are being applied to proximity and docking operations using the Shuttle and Solar Maximum Mission (SMM) satellite simulation. In utilizing these fuzzy learning techniques, we use the Approximate Reasoning based Intelligent Control (ARIC) architecture, and so we use these two terms interchangeably to imply the same. This activity is carried out in the Software Technology Laboratory utilizing the Orbital Operations Simulator (OOS) and programming/testing support from other contractor personnel. This report is the final deliverable D4 in our milestones and project activity. It provides the test results for the special testcase of approach/docking scenario for the shuttle and SMM satellite. Based on our experience and analysis with the attitude and translational controllers, we have modified the basic configuration of the reinforcement learning algorithm in ARIC. The shuttle translational controller and its implementation in ARIC is described in our deliverable D3. In order to simulate the final approach and docking operations, we have set-up this special testcase as described in section 2. The ARIC performance results for these operations are discussed in section 3 and conclusions are provided in section 4 along with the summary for the project.
Ito, K; Gunji, Y P
1997-01-01
Complex systems in which internal agents (observers) interact with each other with finite velocity of information propagation cannot be described with a single consistent logic. We have proposed the bootstrapping system of cellular automata for describing such complex systems using two types of complementary logic: Boolean and non-Boolean. We extend this in this paper to a system of time-discrete continuous maps using fuzzy logic in place of non-Boolean logic. Fuzziness implies the intrinsic ambiguity of internal measurement. The bootstrapping system evolves, changing the dynamics perpetually, so that the discrepancy between the two types of complementary logic may be minimized. The equilibration force defined from the strength of discrepancy forms a landscape for self-organization which is similar to the fitness landscape for evolution. Though they appear similar, the former is derived from the internal dynamics. The goal of evolution, when applied to the map of the Belousov-Zabochinsky reaction, is demonstrated to be near the border between periodicity and chaos. The behavior depends on the degree of fuzziness and the extent of noise. When fuzziness increases too much, the system becomes unstable. Near the boundary, it exhibits intermittent chaos with a background of 1/f noise.
PI and fuzzy logic controllers for shunt Active Power Filter--a report.
P, Karuppanan; Mahapatra, Kamala Kanta
2012-01-01
This paper presents a shunt Active Power Filter (APF) for power quality improvements in terms of harmonics and reactive power compensation in the distribution network. The compensation process is based only on source current extraction that reduces the number of sensors as well as its complexity. A Proportional Integral (PI) or Fuzzy Logic Controller (FLC) is used to extract the required reference current from the distorted line-current, and this controls the DC-side capacitor voltage of the inverter. The shunt APF is implemented with PWM-current controlled Voltage Source Inverter (VSI) and the switching patterns are generated through a novel Adaptive-Fuzzy Hysteresis Current Controller (A-F-HCC). The proposed adaptive-fuzzy-HCC is compared with fixed-HCC and adaptive-HCC techniques and the superior features of this novel approach are established. The FLC based shunt APF system is validated through extensive simulation for diode-rectifier/R-L loads. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Derrouazin, A., E-mail: derrsid@gmail.com [University Hassiba BenBouali of Chlef, LGEER,Chlef (Algeria); Université de Lorraine, LMOPS, EA 4423, 57070 Metz (France); CentraleSupélec, LMOPS, 57070 Metz (France); Aillerie, M., E-mail: aillerie@metz.supelec.fr; Charles, J. P. [Université de Lorraine, LMOPS, EA 4423, 57070 Metz (France); CentraleSupélec, LMOPS, 57070 Metz (France); Mekkakia-Maaza, N. [Université des sciences et de la Technologie d’Oran, Mohamed Boudiaf-USTO MB,LMSE, Oran Algérie (Algeria)
2016-07-25
Several researches for management of diverse hybrid energy systems and many techniques have been proposed for robustness, savings and environmental purpose. In this work we aim to make a comparative study between two supervision and control techniques: fuzzy and classic logics to manage the hybrid energy system applied for typical housing fed by solar and wind power, with rack of batteries for storage. The system is assisted by the electric grid during energy drop moments. A hydrogen production device is integrated into the system to retrieve surplus energy production from renewable sources for the household purposes, intending the maximum exploitation of these sources over years. The models have been achieved and generated signals for electronic switches command of proposed both techniques are presented and discussed in this paper.
International Nuclear Information System (INIS)
Derrouazin, A.; Aillerie, M.; Charles, J. P.; Mekkakia-Maaza, N.
2016-01-01
Several researches for management of diverse hybrid energy systems and many techniques have been proposed for robustness, savings and environmental purpose. In this work we aim to make a comparative study between two supervision and control techniques: fuzzy and classic logics to manage the hybrid energy system applied for typical housing fed by solar and wind power, with rack of batteries for storage. The system is assisted by the electric grid during energy drop moments. A hydrogen production device is integrated into the system to retrieve surplus energy production from renewable sources for the household purposes, intending the maximum exploitation of these sources over years. The models have been achieved and generated signals for electronic switches command of proposed both techniques are presented and discussed in this paper.
POWER SYSTEM PLANNING USING ANN WITH FUZZY LOGIC AND WAVELET ANALYSIS
Directory of Open Access Journals (Sweden)
V. Dharma Dharshin
2016-10-01
Full Text Available The electricity load required for the forthcoming years are predetermined by means of power system planning. Accuracy is the crucial factor that must be taken care of in the power system planning. Electricity is generally volatile, that is it changes and hence appropriate estimation must be done without leading to overestimation or underestimation. The aim of the project is to do appropriate power estimation with the help of the economic factors. The 9 input factors used are GDP, industry, imports, CO2 emission, exports, services, manufacturing, population, per capita consumption. The proposed methodology is done by means of Neural Network concept and Wavelet Analysis. Regression Analysis is also performed and the comparisons are done using Fuzzy Logic. The nonlinear model, Artificial Neural Network and the Wavelet Analysis are found to be more accurate and effective.
Artificial Hydrocarbon Networks Fuzzy Inference System
Directory of Open Access Journals (Sweden)
Hiram Ponce
2013-01-01
Full Text Available This paper presents a novel fuzzy inference model based on artificial hydrocarbon networks, a computational algorithm for modeling problems based on chemical hydrocarbon compounds. In particular, the proposed fuzzy-molecular inference model (FIM-model uses molecular units of information to partition the output space in the defuzzification step. Moreover, these molecules are linguistic units that can be partially understandable due to the organized structure of the topology and metadata parameters involved in artificial hydrocarbon networks. In addition, a position controller for a direct current (DC motor was implemented using the proposed FIM-model in type-1 and type-2 fuzzy inference systems. Experimental results demonstrate that the fuzzy-molecular inference model can be applied as an alternative of type-2 Mamdani’s fuzzy control systems because the set of molecular units can deal with dynamic uncertainties mostly present in real-world control applications.
Control Augmentation Using Adaptive Fuzzy Neural Networks
Kato, Akio; Wada, Yoshihisa
Control to improve control characteristics of aircraft, CA (Control Augmentation), is used to realize the desirable motion of aircraft corresponding to pilot's control action. When the control laws using fuzzy inference were designed, trial and error was repeated for optimization of the parameter. Here, in designing control laws using fuzzy neural networks, the systematic optimization of the parameter was possible using the learning algorithm usually used in neural networks, by expressing the fuzzy inference in the form of neural networks. Here, the control laws, which learned the characteristics of the aircraft for one flight condition only, were used in all flight conditions without changing any parameter. Evaluation of the designed control laws showed good performance in all flight conditions. This proves that fuzzy neural networks are an effective and flexible method when applied to control laws for control augmentation of aircraft.
Use of UPFC device controlled by fuzzy logic controllers for decoupled power flow control
Directory of Open Access Journals (Sweden)
Ivković Sanja
2014-01-01
Full Text Available This paper investigates the possibility of decoupled active and reactive power flow control in a power system using a UPFC device controlled by fuzzy logic controllers. A Brief theoretical review of the operation principles and applications of UPFC devices and design principles of the fuzzy logic controller used are given. A Matlab/Simulink model of the system with UPFC, the fuzzy controller setup, and graphs of the results are presented. Conclusions are drawn regarding the possibility of using this system for decoupled control of the power flow in power systems based on analysis of these graphs.
Ensemble of ground subsidence hazard maps using fuzzy logic
Park, Inhye; Lee, Jiyeong; Saro, Lee
2014-06-01
Hazard maps of ground subsidence around abandoned underground coal mines (AUCMs) in Samcheok, Korea, were constructed using fuzzy ensemble techniques and a geographical information system (GIS). To evaluate the factors related to ground subsidence, a spatial database was constructed from topographic, geologic, mine tunnel, land use, groundwater, and ground subsidence maps. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 70/30 for training and validation of the models. The relationships between the detected ground-subsidence area and the factors were identified and quantified by frequency ratio (FR), logistic regression (LR) and artificial neural network (ANN) models. The relationships were used as factor ratings in the overlay analysis to create ground-subsidence hazard indexes and maps. The three GSH maps were then used as new input factors and integrated using fuzzy-ensemble methods to make better hazard maps. All of the hazard maps were validated by comparison with known subsidence areas that were not used directly in the analysis. As the result, the ensemble model was found to be more effective in terms of prediction accuracy than the individual model.
Evaluation of a fuzzy logic controller for laser thermal therapy
Choy, Vanessa; Sadeghian, Alireza; Sherar, Michael D.; Whelan, William M.
2002-06-01
Laser thermal therapy (LTT) is a minimally invasive surgical technique used to destroy solid tumors while minimizing damage to adjacent normal tissues. Optical energy, delivered through fibers implanted into the target volume, raises tissue temperatures above 60 degree(s)C resulting in coagulative necrosis (thermal damage). Thermal damage volumes, however, can be irregular and unpredictable, resulting from dynamic changes in the tissue properties during treatment. A closed-loop feedback fuzzy logic controller for LTT was developed with the tissue treated as a black-box system. Preliminary testing was conducted for simulated LTT with a single spherically emitting source fiber at the center of 5 mm and 10 mm diameter target tissues. Dynamic changes in blood perfusion and tissue optical properties due to heating were incorporated into the LTT simulator. Input laser power was modulated to control the temperature field in an attempt to reach target temperatures at the source (90 degree(s)C to avoid tissue charring) and at the target boundary (55 degree(s)C). In all simulations, thermal damage based on Arrhenius formulation ((Omega) equals 1) was reached at the target boundary. The controller also responded efficiently to unexpected, rapid temperature changes.
A new adaptive configuration of PID type fuzzy logic controller.
Fereidouni, Alireza; Masoum, Mohammad A S; Moghbel, Moayed
2015-05-01
In this paper, an adaptive configuration for PID type fuzzy logic controller (FLC) is proposed to improve the performances of both conventional PID (C-PID) controller and conventional PID type FLC (C-PID-FLC). The proposed configuration is called adaptive because its output scaling factors (SFs) are dynamically tuned while the controller is functioning. The initial values of SFs are calculated based on its well-tuned counterpart while the proceeding values are generated using a proposed stochastic hybrid bacterial foraging particle swarm optimization (h-BF-PSO) algorithm. The performance of the proposed configuration is evaluated through extensive simulations for different operating conditions (changes in reference, load disturbance and noise signals). The results reveal that the proposed scheme performs significantly better over the C-PID controller and the C-PID-FLC in terms of several performance indices (integral absolute error (IAE), integral-of-time-multiplied absolute error (ITAE) and integral-of-time-multiplied squared error (ITSE)), overshoot and settling time for plants with and without dead time. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Bioimpedance-based identification of malnutrition using fuzzy logic
International Nuclear Information System (INIS)
Wieskotten, S; Isermann, R; Heinke, S; Wabel, P; Moissl, U; Becker, J; Pirlich, M; Keymling, M
2008-01-01
Protein-energy malnutrition reduces the quality of life, lengthens the time in hospital and dramatically increases mortality. Currently there is no simple and objective method available for assessing nutritional status and identifying malnutrition. The aim of this work is to develop a novel assistance system that supports the physician in the assessment of the nutritional status. Therefore, three subject groups were investigated: the first group consisted of 688 healthy subjects. Two additional groups consisted of 707 patients: 94 patients with primary diseases that are known to cause malnutrition, and 613 patients from a hospital admission screening. In all subjects bioimpedance spectroscopy measurements were performed, and the body composition was calculated. Additionally, in all patients the nutritional status was assessed by the subjective global assessment score. These data are used for the development and validation of the assistance system. The basic idea of the system is that nutritional status is reflected by body composition. Hence, features of the nutritional status, based on the body composition, are determined and compared with reference ranges, derived from healthy subjects' data. The differences are evaluated by a fuzzy logic system or a decision tree in order to identify malnourished patients. The novel assistance system allows the identification of malnourished patients, and it can be applied for screening and monitoring of the nutritional status of hospital patients
Automated mango fruit assessment using fuzzy logic approach
Hasan, Suzanawati Abu; Kin, Teoh Yeong; Sauddin@Sa'duddin, Suraiya; Aziz, Azlan Abdul; Othman, Mahmod; Mansor, Ab Razak; Parnabas, Vincent
2014-06-01
In term of value and volume of production, mango is the third most important fruit product next to pineapple and banana. Accurate size assessment of mango fruits during harvesting is vital to ensure that they are classified to the grade accordingly. However, the current practice in mango industry is grading the mango fruit manually using human graders. This method is inconsistent, inefficient and labor intensive. In this project, a new method of automated mango size and grade assessment is developed using RGB fiber optic sensor and fuzzy logic approach. The calculation of maximum, minimum and mean values based on RGB fiber optic sensor and the decision making development using minimum entropy formulation to analyse the data and make the classification for the mango fruit. This proposed method is capable to differentiate three different grades of mango fruit automatically with 77.78% of overall accuracy compared to human graders sorting. This method was found to be helpful for the application in the current agricultural industry.
Energy Analysis for Air Conditioning System Using Fuzzy Logic Control
Directory of Open Access Journals (Sweden)
Henry Nasution
2011-04-01
Full Text Available Reducing energy consumption and to ensure thermal comfort are two important considerations for the designing an air conditioning system. An alternative approach to reduce energy consumption proposed in this study is to use a variable speed compressor. The control strategy will be proposed using the fuzzy logic controller (FLC. FLC was developed to imitate the performance of human expert operators by encoding their knowledge in the form of linguistic rules. The system is installed on a thermal environmental room with a data acquisition system to monitor the temperature of the room, coefficient of performance (COP, energy consumption and energy saving. The measurements taken during the two hour experimental periods at 5-minutes interval times for temperature setpoints of 20oC, 22oC and 24oC with internal heat loads 0, 500, 700 and 1000 W. The experimental results indicate that the proposed technique can save energy in comparison with On/Off and proportional-integral-derivative (PID control.
Development of Fuzzy Logic Control for Vehicle Air Conditioning System
Directory of Open Access Journals (Sweden)
Henry Nasution
2008-08-01
Full Text Available A vehicle air conditioning system is experimentally investigated. Measurements were taken during the experimental period at a time interval of one minute for a set point temperature of 22, 23 and 24oC with internal heat loads of 0, 1 and 2 kW. The cabin temperature and the speed of the compressor were varied and the performance of the system, energy consumption and energy saving ware analyzed. The main objective of the experimental work is to evaluate the energy saving obtained when the fuzzy logic control (FLC algorithm, through an inverter, continuously regulates the compressor speed. It demonstrates better control of the compressor operation in terms of energy consumption as compared to the control by using a thermostat imposing On/Off cycles on the compressor at the nominal frequency of 50 Hz. The experimental set-up consists of original components from the air conditioning system of a compact passenger vehicle. The experimental results indicate that the proposed technique can save energy and improve indoor comfort significantly for vehicle air conditioning systems compared to the conventional (On/Off control technique.
Model for Adjustment of Aggregate Forecasts using Fuzzy Logic
Directory of Open Access Journals (Sweden)
Taracena–Sanz L. F.
2010-07-01
Full Text Available This research suggests a contribution in the implementation of forecasting models. The proposed model is developed with the aim to fit the projection of demand to surroundings of firms, and this is based on three considerations that cause that in many cases the forecasts of the demand are different from reality, such as: 1 one of the problems most difficult to model in the forecasts is the uncertainty related to the information available; 2 the methods traditionally used by firms for the projection of demand mainly are based on past behavior of the market (historical demand; and 3 these methods do not consider in their analysis the factors that are influencing so that the observed behaviour occurs. Therefore, the proposed model is based on the implementation of Fuzzy Logic, integrating the main variables that affect the behavior of market demand, and which are not considered in the classical statistical methods. The model was applied to a bottling of carbonated beverages, and with the adjustment of the projection of demand a more reliable forecast was obtained.
Structural Health Monitoring of Transport Aircraft with Fuzzy Logic Modeling
Directory of Open Access Journals (Sweden)
Ray C. Chang
2013-01-01
Full Text Available A structural health monitoring method based on the concept of static aeroelasticity is presented in this paper. This paper focuses on the estimation of these aeroelastic effects on older transport aircraft, in particular the structural components that are most affected, in severe atmospheric turbulence. Because the structural flexibility properties are mostly unknown to aircraft operators, only the trend, not the magnitude, of these effects is estimated. For this purpose, one useful concept in static aeroelastic effects for conventional aircraft structures is that under aeroelastic deformation the aerodynamic center should move aft. This concept is applied in the present paper by using the fuzzy-logic aerodynamic models. A twin-jet transport aircraft in severe atmospheric turbulence involving plunging motion is examined. It is found that the pitching moment derivatives in cruise with moderate to severe turbulence in transonic flight indicate some degree of abnormality in the stabilizer (i.e., the horizontal tail. Therefore, the horizontal tail is the most severely affected structural component of the aircraft probably caused by vibration under the dynamic loads induced by turbulence.
Remote triage support algorithm based on fuzzy logic.
Achkoski, Jugoslav; Koceski, S; Bogatinov, D; Temelkovski, B; Stevanovski, G; Kocev, I
2017-06-01
This paper presents a remote triage support algorithm as a part of a complex military telemedicine system which provides continuous monitoring of soldiers' vital sign data gathered on-site using unobtrusive set of sensors. The proposed fuzzy logic-based algorithm takes physiological data and classifies the casualties according to their health risk level, calculated following the Modified Early Warning Score (MEWS) methodology. To verify the algorithm, eight different evaluation scenarios using random vital sign data have been created. In each scenario, the hypothetical condition of the victims was assessed in parallel both by the system as well as by 50 doctors with significant experience in the field. The results showed that there is high (0.928) average correlation of the classification results. This suggests that the proposed algorithm can be used for automated remote triage in real life-saving situations even before the medical team arrives at the spot, and shorten the response times. Moreover, an additional study has been conducted in order to increase the computational efficiency of the algorithm, without compromising the quality of the classification results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Fuzzy-logic-based active vibration control of beams using piezoelectric patches
Sharma, Manu; Singh, S. P.; Sachdeva, B. L.
2003-10-01
The present work presents a fuzzy logic based controller with a compact rule base, for active vibration control of beams. The controller was implemented experimentally on a test beam and the results were found satisfactory. The test system consists of a cantilevered beam with two piezoelectric patches mounted near its root in collocated fashion. This piezo-beam system was modelled using Finite Element Method. To derive the equations of motion, Hamilton's principle was used. Electro-mechanical interaction of the piezoelectric patch with the beam was modelled using linear constitutive equations for piezoceramics, which relate strain and electric displacement to stress and electric field. The fuzzy logic controller is based on modal velocity of the beam. The basis for generating the fuzzy logic rule base of this controller is obtained from negative velocity feedback control. Modal velocity of the beam acts as an input to the fuzzy controller and actuation force is the output from the inference engine. Linear decay of vibratory amplitude is observed in case of fuzzy logic controller as opposed to logarithmic decay in case of negative velocity feedback control Present controller has just three rules. This is an important achievement because bulky fuzzy logic controllers for active vibration control require fast processors for real time implementation (Kwak and Sciulli and Mayhan and Washington).
Interval Type-2 Fuzzy Logic Controller Based Maximum Power Point Tracking in Photovoltaic Systems
Directory of Open Access Journals (Sweden)
ALTIN, N.
2013-08-01
Full Text Available In this paper, interval type-2 fuzzy logic controller based maximum power point tracking method is proposed for photovoltaic systems. The proposed interval type-2 fuzzy logic controller has two inputs and one output. Rate of change in photovoltaic system output power and rate of change in photovoltaic system terminal voltage are selected as input variables and change in duty cycle as output variable. Seven type-2 membership functions are used for determined input and output variables of fuzzy logic controller. Since type-2 fuzzy sets are used, effect of uncertainties on maximum power point tracking capability is removed. Operation point of the photovoltaic system is controlled via a boost type DC?DC converter. Simulation results show that the proposed maximum power point tracking method provides fast dynamic response, and it is also useful for rapidly changing atmospheric conditions.
CONTROL SYSTEM DESIGN WITH FUZZY LOGIC PID-СONTROLLER TYPE 2
Directory of Open Access Journals (Sweden)
A. Tунік
2011-04-01
Full Text Available This paper presents a fuzzy logic PID-controller synthesis method for solid body guidance. Formany nonlinear systems with nonlinearities and uncertainties, the performance of fuzzy controllertype 1 may not be satisfactory. Therefore, in this work, fuzzy logic type 2 controller design isintroduced. These controllers capture the advantage of a linear controller in terms of simplicity andalso can handle nonlinearity because of their inference mechanism.The main feature of the proposedmethod constitutes in a membership functions type 2 applications. The membership function type 2is represented by upper and lower membership functions of type 1. The interval between these twofunctions represent the footprint of uncertainty, which give an opportunity to synthesize commonregulator for set of a models. The structure of fuzzy logic controller for solid body control isgrounded. Simulation results confirm the effectiveness of the proposed approach.
Directory of Open Access Journals (Sweden)
Guruprasad Mamatha
2016-01-01
Full Text Available Performance appraisal of teaching faculty in higher education institutions is becoming increasingly challenging with the changing role of teachers in advancing knowledge to students necessitating use of advanced soft computing models. The conventional evaluation methods lack assigning weightage to individual criteria and rely on numerical values. Fuzzy logic advocated by Lotfi Zadeh (1965, used to measure faculty ability, competence and skills, which are actually fuzzy concepts that can be captured in fuzzy terms and fuzzy approach can be used to handle these imprecision and uncertainty information. Present study, we developed a fuzzy logic model using an algorithm in visual basics (VB and implemented in Matlab, using Matlab Fuzzy logic toolbox, to predict the importance of each category in evaluating the faculty performance. Based on the calculated fuzzy values, the weighed values of each category were grouped for similarity and comparison. This provides a number of interactive tools that allows accessing many of the functions through a Graphic User Interface and also provides a 3-D visualization and fuzzy rule inference.It should not normally exceed 200 words.
Najafi, Shahriar; Flintsch, Gerardo W; Khaleghian, Seyedmeysam
2016-05-01
Minimizing roadway crashes and fatalities is one of the primary objectives of highway engineers, and can be achieved in part through appropriate maintenance practices. Maintaining an appropriate level of friction is a crucial maintenance practice, due to the effect it has on roadway safety. This paper presents a fuzzy logic inference system that predicts the rate of vehicle crashes based on traffic level, speed limit, and surface friction. Mamdani and Sugeno fuzzy controllers were used to develop the model. The application of the proposed fuzzy control system in a real-time slippery road warning system is demonstrated as a proof of concept. The results of this study provide a decision support model for highway agencies to monitor their network's friction and make appropriate judgments to correct deficiencies based on crash risk. Furthermore, this model can be implemented in the connected vehicle environment to warn drivers of potentially slippery locations. Published by Elsevier Ltd.
Roshani, Amir; Erfanian, Abbas
2013-01-01
In this paper, a control strategy is proposed for control of ankle movement on animals using intraspinal microstimulation (ISMS). The proposed method is based on fuzzy logic control. Fuzzy logic control is a methodology of intelligent control that mimics human decision making process. This type of control method can be very useful for the complex uncertain systems that their mathematical model is unknown. To increase the stability and speed of the system's response and reduce the steady-state error, we combine the FLC with a lead (lag) compensator. The experiments are conducted on five rats. Microelectrodes are implanted into the spinal cord to provide selective stimulation of plantarflexor and dorsiflexor. The results show that motor functions can be restored using ISMS. Despite the complexity of the spinal neuronal networks and simplicity of the proposed control strategy, our results show that the proposed strategy can provide acceptable tracking control with fast convergence. PMID:25337352
Fuzzy logic control of vehicle suspensions with dry friction nonlinearity
Indian Academy of Sciences (India)
of methods could be used to perform defuzzification, two of the most common of which are: i) The Mamdani method that returns the centroid of the output fuzzy region as the crisp output of the fuzzy interface system. ii) The TVFI (truth value flow inference) method that returns a weighted average as the crisp output of the fuzzy ...
Fuzzy logic type 1 and type 2 based on LabVIEW FPGA
Ponce-Cruz, Pedro; MacCleery, Brian
2016-01-01
This book is a comprehensive introduction to LabVIEW FPGA™, a package allowing the programming of intelligent digital controllers in field programmable gate arrays (FPGAs) using graphical code. It shows how both potential difficulties with understanding and programming in VHDL and the consequent difficulty and slowness of implementation can be sidestepped. The text includes a clear theoretical explanation of fuzzy logic (type 1 and type 2) with case studies that implement the theory and systematically demonstrate the implementation process. It goes on to describe basic and advanced levels of programming LabVIEW FPGA and show how implementation of fuzzy-logic control in FPGAs improves system responses. A complete toolkit for implementing fuzzy controllers in LabVIEW FPGA has been developed with the book so that readers can generate new fuzzy controllers and deploy them immediately. Problems and their solutions allow readers to practice the techniques and to absorb the theoretical ideas as they arise. Fuzzy L...
A fuzzy logic controller for feedwater regulation in pressurized water reactors
International Nuclear Information System (INIS)
Eryuerek, E.E.; Upadhyaya, B.R.; Alguindigue, I.E.
1994-01-01
Fuzzy control refers to the application of fuzzy logic theory to control systems. In this paper fuzzy controllers for steam generator water level control and pump speed control are presented, and their performance in the presence of perturbations is discussed. In order to test the robustness of the controllers, their performance is compared with the performance of model based adaptive controllers and traditional PID controllers. The control actions calculated by the fuzzy controllers is have the characteristic of quick and smooth control compared to the others
A fuzzy logic based PROMETHEE method for material selection problems
Directory of Open Access Journals (Sweden)
Muhammet Gul
2018-03-01
Full Text Available Material selection is a complex problem in the design and development of products for diverse engineering applications. This paper presents a fuzzy PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation method based on trapezoidal fuzzy interval numbers that can be applied to the selection of materials for an automotive instrument panel. Also, it presents uniqueness in making a significant contribution to the literature in terms of the application of fuzzy decision-making approach to material selection problems. The method is illustrated, validated, and compared against three different fuzzy MCDM methods (fuzzy VIKOR, fuzzy TOPSIS, and fuzzy ELECTRE in terms of its ranking performance. Also, the relationships between the compared methods and the proposed scenarios for fuzzy PROMETHEE are evaluated via the Spearman’s correlation coefficient. Styrene Maleic Anhydride and Polypropylene are determined optionally as suitable materials for the automotive instrument panel case. We propose a generic fuzzy MCDM methodology that can be practically implemented to material selection problem. The main advantages of the methodology are consideration of the vagueness, uncertainty, and fuzziness to decision making environment.
A study of fuzzy logic ensemble system performance on face recognition problem
Polyakova, A.; Lipinskiy, L.
2017-02-01
Some problems are difficult to solve by using a single intelligent information technology (IIT). The ensemble of the various data mining (DM) techniques is a set of models which are able to solve the problem by itself, but the combination of which allows increasing the efficiency of the system as a whole. Using the IIT ensembles can improve the reliability and efficiency of the final decision, since it emphasizes on the diversity of its components. The new method of the intellectual informational technology ensemble design is considered in this paper. It is based on the fuzzy logic and is designed to solve the classification and regression problems. The ensemble consists of several data mining algorithms: artificial neural network, support vector machine and decision trees. These algorithms and their ensemble have been tested by solving the face recognition problems. Principal components analysis (PCA) is used for feature selection.
FUZZY LOGIC BASED HYBRID RECOMMENDER OF MAXIMUM YIELD CROP USING SOIL, WEATHER AND COST
Directory of Open Access Journals (Sweden)
U Aadithya
2016-07-01
Full Text Available Our system is designed to predict best suitable crops for the region of farmer. It also suggests farming strategies for the crops such as mixed cropping, spacing, irrigation, seed treatment, etc. along with fertilizer and pesticide suggestions. This is done based on the historic soil parameters of the region and by predicting cost of crops and weather. The system is based on fuzzy logic which gets input from an Artificial Neural Network (ANN based weather prediction module. An Agricultural Named Entity Recognition (NER module is developed using Conditional Random Field (CRF to extract crop conditions data. Further, cost prediction is done based on Linear Regression equation to aid in ranking the crops recommended. Using this approach we achieved an F-Score of 54% with a precision of 77% thus accounting for the correctness of crop production.
Directory of Open Access Journals (Sweden)
Melody K Morris
2011-03-01
Full Text Available Predictive understanding of cell signaling network operation based on general prior knowledge but consistent with empirical data in a specific environmental context is a current challenge in computational biology. Recent work has demonstrated that Boolean logic can be used to create context-specific network models by training proteomic pathway maps to dedicated biochemical data; however, the Boolean formalism is restricted to characterizing protein species as either fully active or inactive. To advance beyond this limitation, we propose a novel form of fuzzy logic sufficiently flexible to model quantitative data but also sufficiently simple to efficiently construct models by training pathway maps on dedicated experimental measurements. Our new approach, termed constrained fuzzy logic (cFL, converts a prior knowledge network (obtained from literature or interactome databases into a computable model that describes graded values of protein activation across multiple pathways. We train a cFL-converted network to experimental data describing hepatocytic protein activation by inflammatory cytokines and demonstrate the application of the resultant trained models for three important purposes: (a generating experimentally testable biological hypotheses concerning pathway crosstalk, (b establishing capability for quantitative prediction of protein activity, and (c prediction and understanding of the cytokine release phenotypic response. Our methodology systematically and quantitatively trains a protein pathway map summarizing curated literature to context-specific biochemical data. This process generates a computable model yielding successful prediction of new test data and offering biological insight into complex datasets that are difficult to fully analyze by intuition alone.
Fuzzy logic-based prognostic score for outcome prediction in esophageal cancer.
Wang, Chang-Yu; Lee, Tsair-Fwu; Fang, Chun-Hsiung; Chou, Jyh-Horng
2012-11-01
Given the poor prognosis of esophageal cancer and the invasiveness of combined modality treatment, improved prognostic scoring systems are needed. We developed a fuzzy logic-based system to improve the predictive performance of a risk score based on the serum concentrations of C-reactive protein (CRP) and albumin in a cohort of 271 patients with esophageal cancer before radiotherapy. Univariate and multivariate survival analyses were employed to validate the independent prognostic value of the fuzzy risk score. To further compare the predictive performance of the fuzzy risk score with other prognostic scoring systems, time-dependent receiver operating characteristic curve (ROC) analysis was used. Application of fuzzy logic to the serum values of CRP and albumin increased predictive performance for 1-year overall survival (AUC=0.773) compared with that of a single marker (AUC=0.743 and 0.700 for CRP and albumin, respectively), where the AUC denotes the area under curve. This fuzzy logic-based approach also performed consistently better than the Glasgow Prognostic Score (GPS) (AUC=0.745). Thus, application of fuzzy logic to the analysis of serum markers can more accurately predict the outcome for patients with esophageal cancer.
Fuzzy neural approach for colon cancer prediction | Obi | Scientia ...
African Journals Online (AJOL)
fuzzy inference procedure. The proposed system which is self-learning and adaptive is able to handle the uncertainties often associated with the diagnosis and analysis of colon cancer. Keywords: Neural Network, Fuzzy logic, Neuro Fuzzy System, ...
Fuzzy-logic-based resource allocation for isolated and multiple platforms
Smith, James F., III; Rhyne, Robert D., II
2000-08-01
Modern naval battle forces generally include many different platforms each with its own sensors, radar, ESM, and communications. The sharing of information measured by local sensors via communication links across the battle group should allow for optimal or near optimal decision. The survival of the battle group or members of the group depends on the automatic real-time allocation of various resources. A fuzzy logic algorithm has been developed that automatically allocates electronic attack resources in real- time. The particular approach to fuzzy logic that is used is the fuzzy decision tree, a generalization of the standard artificial intelligence technique of decision trees. The controller must be able to make decisions based on rules provided by experts. The fuzzy logic approach allows the direct incorporation of expertise forming a fuzzy linguistic description, i.e. a formal representation of the system in terms of fuzzy if-then rules. Genetic algorithm based optimization is conducted to determine the form of the membership functions for the fuzzy root concepts. The isolated platform and multi platform resource manager models are discussed as well as the underlying multi-platform communication model. The resource manager is shown to exhibit excellent performance under many demanding scenarios.
Directory of Open Access Journals (Sweden)
A. Stanley Raj
2015-01-01
Full Text Available Soft computing based geoelectrical data inversion differs from conventional computing in fixing the uncertainty problems. It is tractable, robust, efficient, and inexpensive. In this paper, fuzzy logic clustering methods are used in the inversion of geoelectrical resistivity data. In order to characterize the subsurface features of the earth one should rely on the true field oriented data validation. This paper supports the field data obtained from the published results and also plays a crucial role in making an interdisciplinary approach to solve complex problems. Three clustering algorithms of fuzzy logic, namely, fuzzy C-means clustering, fuzzy K-means clustering, and fuzzy subtractive clustering, were analyzed with the help of fuzzy inference system (FIS training on synthetic data. Here in this approach, graphical user interface (GUI was developed with the integration of three algorithms and the input data (AB/2 and apparent resistivity, while importing will process each algorithm and interpret the layer model parameters (true resistivity and depth. A complete overview on the three above said algorithms is presented in the text. It is understood from the results that fuzzy logic subtractive clustering algorithm gives more reliable results and shows efficacy of soft computing tools in the inversion of geoelectrical resistivity data.
Uzoka, Faith-Michael Emeka; Obot, Okure; Barker, Ken; Osuji, J
2011-07-01
The task of medical diagnosis is a complex one, considering the level vagueness and uncertainty management, especially when the disease has multiple symptoms. A number of researchers have utilized the fuzzy-analytic hierarchy process (fuzzy-AHP) methodology in handling imprecise data in medical diagnosis and therapy. The fuzzy logic is able to handle vagueness and unstructuredness in decision making, while the AHP has the ability to carry out pairwise comparison of decision elements in order to determine their importance in the decision process. This study attempts to do a case comparison of the fuzzy and AHP methods in the development of medical diagnosis system, which involves basic symptoms elicitation and analysis. The results of the study indicate a non-statistically significant relative superiority of the fuzzy technology over the AHP technology. Data collected from 30 malaria patients were used to diagnose using AHP and fuzzy logic independent of one another. The results were compared and found to covary strongly. It was also discovered from the results of fuzzy logic diagnosis covary a little bit more strongly to the conventional diagnosis results than that of AHP. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Julie, E. Golden; Selvi, S. Tamil
2016-01-01
Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes. PMID:26881269
Julie, E Golden; Selvi, S Tamil
2016-01-01
Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes.
Directory of Open Access Journals (Sweden)
E. Golden Julie
2016-01-01
Full Text Available Wireless sensor networks (WSNs consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes.
Artificial Hydrocarbon Networks Fuzzy Inference System
Ponce, Hiram; Ponce, Pedro; Molina, Arturo
2013-01-01
This paper presents a novel fuzzy inference model based on artificial hydrocarbon networks, a computational algorithm for modeling problems based on chemical hydrocarbon compounds. In particular, the proposed fuzzy-molecular inference model (FIM-model) uses molecular units of information to partition the output space in the defuzzification step. Moreover, these molecules are linguistic units that can be partially understandable due to the organized structure of the topology and metadata param...
Synthesis of nonlinear control strategies from fuzzy logic control algorithms
Langari, Reza
1993-01-01
Fuzzy control has been recognized as an alternative to conventional control techniques in situations where the plant model is not sufficiently well known to warrant the application of conventional control techniques. Precisely what fuzzy control does and how it does what it does is not quite clear, however. This important issue is discussed and in particular it is shown how a given fuzzy control scheme can resolve into a nonlinear control law and that in those situations the success of fuzzy control hinges on its ability to compensate for nonlinearities in plant dynamics.
Probabilistic Logic and Probabilistic Networks
Haenni, R.; Romeijn, J.-W.; Wheeler, G.; Williamson, J.
2009-01-01
While in principle probabilistic logics might be applied to solve a range of problems, in practice they are rarely applied at present. This is perhaps because they seem disparate, complicated, and computationally intractable. However, we shall argue in this programmatic paper that several approaches
Assessment of Seismic Damage on The Exist Buildings Using Fuzzy Logic
Pınar, USTA; Nihat, MOROVA; EVCİ, Ahmet; ERGÜN, Serap
2018-01-01
Earthquake as a natural disaster could damage the lives of many people and buildings all over the world. These is micvulnerability of the buildings needs to be evaluated. Accurate evaluation of damage sustained by buildings during natural disaster events is critical to determine the buildings safety and their suitability for future occupancy. The earthquake is one of the disasters that structures face the most. There fore, there is a need to evaluate seismic damage and vulnerability of the buildings to protect them. These days fuzzy systems have been widely used in different fields of science because of its simpli city and efficiency. Fuzzy logic provides a suitable framework for reasoning, deduction, and decision making in fuzzy conditions. In this paper, studies on earthquake hazard evaluation of buildings by fuzzy logic modeling concepts in the literature have been investigated and evaluated, as a whole.
A fuzzy logic approach to modeling the underground economy in Taiwan
Yu, Tiffany Hui-Kuang; Wang, David Han-Min; Chen, Su-Jane
2006-04-01
The size of the ‘underground economy’ (UE) is valuable information in the formulation of macroeconomic and fiscal policy. This study applies fuzzy set theory and fuzzy logic to model Taiwan's UE over the period from 1960 to 2003. Two major factors affecting the size of the UE, the effective tax rate and the degree of government regulation, are used. The size of Taiwan's UE is scaled and compared with those of other models. Although our approach yields different estimates, similar patterns and leading are exhibited throughout the period. The advantage of applying fuzzy logic is twofold. First, it can avoid the complex calculations in conventional econometric models. Second, fuzzy rules with linguistic terms are easy for human to understand.
Modelling of the automatic stabilization system of the aircraft course by a fuzzy logic method
Mamonova, T.; Syryamkin, V.; Vasilyeva, T.
2016-04-01
The problem of the present paper concerns the development of a fuzzy model of the system of an aircraft course stabilization. In this work modelling of the aircraft course stabilization system with the application of fuzzy logic is specified. Thus the authors have used the data taken for an ordinary passenger plane. As a result of the study the stabilization system models were realised in the environment of Matlab package Simulink on the basis of the PID-regulator and fuzzy logic. The authors of the paper have shown that the use of the method of artificial intelligence allows reducing the time of regulation to 1, which is 50 times faster than the time when standard receptions of the management theory are used. This fact demonstrates a positive influence of the use of fuzzy regulation.
Simulation of New Simple Fuzzy Logic Maximum Power Point ...
African Journals Online (AJOL)
Journal of Fundamental and Applied Sciences ... The input parameters and duty cycle D are used to generate the optimal MPPT under different operating conditions, The photovoltaic system simulated and constructed by photovoltaic arrays, a DC/DC boost converter, a fuzzy MPPT control and a resistive load, The Fuzzy ...
Fuzzy Logic: Toward Measuring Gottfredson's Concept of Occupational Social Space.
Hesketh, Beryl; And Others
1989-01-01
Investigated the application of fuzzy graphic rating scale to measurement of preferences for occupational sex type, prestige, and interests using Gottfredson's concept of occupational social space. Reported reliability and validity data with illustrative examples of respondents' interpretations of their own fuzzy ratings. Outlined counseling and…
Design of a fuzzy logic based controller for neutron power regulation
International Nuclear Information System (INIS)
Velez D, D.
2000-01-01
This work presents a fuzzy logic controller design for neutron power control, from its source to its full power level, applied to a nuclear reactor model. First, we present the basic definitions on fuzzy sets as generalized definitions of the crisp (non fuzzy) set theory. Likewise, we define the basic operations on fuzzy sets (complement, union, and intersection), and the operations on fuzzy relations such as projection and cylindrical extension operations. Furthermore, some concepts of the fuzzy control theory, such as the main modules of the typical fuzzy controller structure and its internal variables, are defined. After the knowledge base is obtained by simulation of the reactor behavior, where the controlled system is modeled by a simple nonlinear reactor model, this model is used to infer a set of fuzzy rules for the reactor response to different insertions of reactivity. The reduction of the response time, using fuzzy rule based controllers on this reactor, is possible by adjusting the output membership functions, by selecting fuzzy rule sets, or by increasing the number of crisp inputs to the fuzzy controller. System characteristics, such as number of rules, response times, and safety parameter values, were considered in the evaluation of each controller merits. Different fuzzy controllers are designed to attain the desired power level, to maintain a constant level for long periods of time, and to keep the reactor away from a shutdown condition. The basic differences among the controllers are the number of crisp inputs and the novel implementation of a crisp power level-based selection of different sets of output membership functions. Simulation results highlight, mainly: (1) A decrease of the response variations at low power level, and (2) a decrease in the time required to attain the desired neutron power. Finally, we present a comparative study of different fuzzy control algorithms applied to a nuclear model. (Author)
Application of fuzzy logic controller to load-follow operations in pressurized water reactors
International Nuclear Information System (INIS)
Lin, Chaung; Lin, Hua-Wei
1994-01-01
The fuzzy logic controller was developed to control load-follow operations in pressurized water reactors. The reactor core characteristics change according to different fuel cycles or core exposures, thus making a nonlinear time-varying control problem. This proposed method, however, does not require a mathematical model to design the controller, and so avoids redesigning or tuning controller gain for various cores. Clearly, this method is very suitable for reactor load-following operation control. The control system has two subsystems: one is to track the desired power, and the other is to keep axial offset close to the target value. Both controllers use fuzzy logic: one is the conventional type, and the other uses fuzzy logic to tune the parameters of the controller so the controller can correspond to various core characteristics. Simulation results show that the control system performs well for different cores, and so this system is useful for load-follow operation. (author)
A real time fuzzy logic power management strategy for a fuel cell vehicle
International Nuclear Information System (INIS)
Hemi, Hanane; Ghouili, Jamel; Cheriti, Ahmed
2014-01-01
Highlights: • We present a real time fuzzy logic power management strategy. • This strategy is applied to hybrid electric vehicle dynamic model. • Three configurations evaluated during a drive cycle. • The hydrogen consumption is analysed for the three configurations. - Abstract: This paper presents real time fuzzy logic controller (FLC) approach used to design a power management strategy for a hybrid electric vehicle and to protect the battery from overcharging during the repetitive braking energy accumulation. The fuel cell (FC) and battery (B)/supercapacitor (SC) are the primary and secondary power sources, respectively. This paper analyzes and evaluates the performance of the three configurations, FC/B, FC/SC and FC/B/SC during real time driving conditions and unknown driving cycle. The MATLAB/Simulink and SimPowerSystems software packages are used to model the electrical and mechanical elements of hybrid vehicles and implement a fuzzy logic strategy
Fuzzy Logic-based expert system for evaluating cake quality of freeze-dried formulations
DEFF Research Database (Denmark)
Trnka, Hjalte; Wu, Jian-Xiong; van de Weert, Marco
2013-01-01
critical visual features such as the degree of cake collapse, glassiness, and color uniformity. On the basis of the IA outputs, a fuzzy logic system for analysis of these freeze-dried cakes was constructed. After this development phase, the system was tested with a new screening well plate. The developed...... are needed. The aim of this study was to develop a fuzzy logic system based on image analysis (IA) for analyzing cake quality. Freeze-dried samples with different visual quality attributes were prepared in well plates. Imaging solutions together with image analytical routines were developed for extracting...... fuzzy logic-based system was found to give comparable quality scores with visual evaluation, making high-throughput classification of cake quality possible....
Realworld maximum power point tracking simulation of PV system based on Fuzzy Logic control
Directory of Open Access Journals (Sweden)
Ahmed M. Othman
2012-12-01
Full Text Available In the recent years, the solar energy becomes one of the most important alternative sources of electric energy, so it is important to improve the efficiency and reliability of the photovoltaic (PV systems. Maximum power point tracking (MPPT plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize their array efficiency. This paper presents a maximum power point tracker (MPPT using Fuzzy Logic theory for a PV system. The work is focused on the well known Perturb and Observe (P&O algorithm and is compared to a designed fuzzy logic controller (FLC. The simulation work dealing with MPPT controller; a DC/DC Ćuk converter feeding a load is achieved. The results showed that the proposed Fuzzy Logic MPPT in the PV system is valid.
Fuzzy logic based power-efficient real-time multi-core system
Ahmed, Jameel; Najam, Shaheryar; Najam, Zohaib
2017-01-01
This book focuses on identifying the performance challenges involved in computer architectures, optimal configuration settings and analysing their impact on the performance of multi-core architectures. Proposing a power and throughput-aware fuzzy-logic-based reconfiguration for Multi-Processor Systems on Chip (MPSoCs) in both simulation and real-time environments, it is divided into two major parts. The first part deals with the simulation-based power and throughput-aware fuzzy logic reconfiguration for multi-core architectures, presenting the results of a detailed analysis on the factors impacting the power consumption and performance of MPSoCs. In turn, the second part highlights the real-time implementation of fuzzy-logic-based power-efficient reconfigurable multi-core architectures for Intel and Leone3 processors. .
Fuzzy logic based anaesthesia monitoring systems for the detection of absolute hypovolaemia.
Mansoor Baig, Mirza; Gholamhosseini, Hamid; Harrison, Michael J
2013-07-01
Anaesthesia monitoring involves critical diagnostic tasks carried out amongst lots of distractions. Computers are capable of handling large amounts of data at high speed and therefore decision support systems and expert systems are now capable of processing many signals simultaneously in real time. We have developed two fuzzy logic based anaesthesia monitoring systems; a real time smart anaesthesia alarm system (RT-SAAM) and fuzzy logic monitoring system-2 (FLMS-2), an updated version of FLMS for the detection of absolute hypovolaemia. This paper presents the design aspects of these two systems which employ fuzzy logic techniques to detect absolute hypovolaemia, and compares their performances in terms of usability and acceptability. The interpretation of these two systems of absolute hypovolaemia was compared with clinicians' assessments using Kappa analysis, RT-SAAM K=0.62, FLMS-2 K=0.75; an improvement in performance by FLMS-2. Copyright © 2013 Elsevier Ltd. All rights reserved.
A novel fuzzy logic inference system for decision support in weaning from mechanical ventilation.
Kilic, Yusuf Alper; Kilic, Ilke
2010-12-01
Weaning from mechanical ventilation represents one of the most challenging issues in management of critically ill patients. Currently used weaning predictors ignore many important dimensions of weaning outcome and have not been uniformly successful. A fuzzy logic inference system that uses nine variables, and five rule blocks within two layers, has been designed and implemented over mathematical simulations and random clinical scenarios, to compare its behavior and performance in predicting expert opinion with those for rapid shallow breathing index (RSBI), pressure time index and Jabour' weaning index. RSBI has failed to predict expert opinion in 52% of scenarios. Fuzzy logic inference system has shown the best discriminative power (ROC: 0.9288), and RSBI the worst (ROC: 0.6556) in predicting expert opinion. Fuzzy logic provides an approach which can handle multi-attribute decision making, and is a very powerful tool to overcome the weaknesses of currently used weaning predictors.
CONTROL TEMPERATURE ON PLANT BABY INCUBATOR WITH FUZZY LOGIC
Directory of Open Access Journals (Sweden)
Noor Yulita Dwi Setyaningsih
2016-04-01
Full Text Available Inkubator bayi merupakan salah satu media medis yang digunakan untuk menjaga kondisi suhu dari bayi prematur atau bayi yang baru lahir. Suhu merupakan salah satu faktor yang sangat penting untuk dijaga bagi bayi baru lahir, karena kondisi bayi baru lahir yang tidak stabil dan belum bisa melakukan produksi panas sendiri untuk menghangatkan tubuhnya dan memproduksi panas untuk menjaga kestabilan tubuhnya. Kendali logika fuzzy digunakan untuk mengendalikan suhu pada penelitian ini, karena kebutuhan bayi yang berbeda-beda sehingga pemanfaatan sistem kendali fuzzy ini sangat mempermudah dalam melakukan pengendalian. Parameter yang digunakan dalam pengendalian ini adalah nilai Error, d-eror, dan sinyal kontrol. Hasil penggunaan sistem kendali logika fuzzy untuk pengendalian suhu pada plant inkubator bayi adalah kesalahan yang terjadi dapat dikurangi dan kestabilan dapat dipertahankan. Meskipun adanya gangguan yang diberikan pada sistem, dengan pemanfaatan sistem kendali fuzzy ini, dapat menjaga sistem pada keadaan yang stabil. Kata kunci: sistem kendali, temperature, inkubator bayi, plant, logika fuzzy, new born.
Adaptive Fuzzy Logic based MPPT Control for PV System Under Partial Shading Condition
Choudhury, Subhashree; Rout, Pravat Kumar
2016-01-01
Partial shading causes power loss, hotspots and threatens the reliability of the Photovoltaic generation system. Moreover characteristic curves exhibit multiple peaks. Conventional MPPT techniques under this condition often fail to give optimum MPP. Focusing on the afore mentioned problem an attempt has been made to design an Adaptive Takagi-Sugeno Fuzzy Inference System based Fuzzy Logic Control MPPT.The mathematical model of PV array is simulated using in MATLAB/Simulink environment.Various...
A Novel Fuzzy Logic Based Power System Stabilizer for a Multimachine System
Singh, Anup; Sen, Indraneel
2003-01-01
This paper describes the design of a Fuzzy logic based controller to counter the small signal oscillatory instability in power system. The stabilizing signal is computed in real time using suitable fuzzy membership functions depending upon the state of the generator on the speed-acceleration phase plane. The use of output membership function permits further fine tuning of the controller parameters for varied system configurations specially in multimachine environment. The efficacy of the p...
Convergent method of and apparatus for distributed control of robotic systems using fuzzy logic
Feddema, John T.; Driessen, Brian J.; Kwok, Kwan S.
2002-01-01
A decentralized fuzzy logic control system for one vehicle or for multiple robotic vehicles provides a way to control each vehicle to converge on a goal without collisions between vehicles or collisions with other obstacles, in the presence of noisy input measurements and a limited amount of compute-power and memory on board each robotic vehicle. The fuzzy controller demonstrates improved robustness to noise relative to an exact controller.
Burn control of an ITER-like fusion reactor using fuzzy logic
Garcia-Amador, A. Sair; Martinell, Julio J.
2016-10-01
The fuel burn in a fusion reactor has to be kept at a nearly constant rate in order to have a steady power exhaust. Here, we develop a control system based on a fuzzy logic controller in order that adjusts external parameters to keep the plasma temperature and density at the design values of a reactor of the characteristics of ITER. The control parameters chosen are the D-T refueling rate, the auxiliary heating power and a neutral helium beam. We use a fuzzy controller of the Mamdani type that uses a number of membership functions appropriate to produce a response to parameter deviations that minimizes the response time. The inference rules are determined in a way to provide stabilization to all perturbations of the temperature, density and alpha particle fraction. The dynamical response of the reactor is simulated with a 0D model that uses confinement times provided by the ITER scaling. We show that the system is feedback stabilized for a large range of parameters around the nominal values. The recovery time after a departure from the steady values is of the order of one second. We compare the results with another control system based on neural networks that was developed previously. Funded by projects PAPIIT IN109115 and Conacyt 152905.
Logic Learning in Hopfield Networks
Sathasivam, Saratha; Abdullah, Wan Ahmad Tajuddin Wan
2008-01-01
Synaptic weights for neurons in logic programming can be calculated either by using Hebbian learning or by Wan Abdullah's method. In other words, Hebbian learning for governing events corresponding to some respective program clauses is equivalent with learning using Wan Abdullah's method for the same respective program clauses. In this paper we will evaluate experimentally the equivalence between these two types of learning through computer simulations.
A Study on the Fuzzy-Logic-Based Solar Power MPPT Algorithms Using Different Fuzzy Input Variables
Directory of Open Access Journals (Sweden)
Jaw-Kuen Shiau
2015-04-01
Full Text Available Maximum power point tracking (MPPT is one of the key functions of the solar power management system in solar energy deployment. This paper investigates the design of fuzzy-logic-based solar power MPPT algorithms using different fuzzy input variables. Six fuzzy MPPT algorithms, based on different input variables, were considered in this study, namely (i slope (of solar power-versus-solar voltage and changes of the slope; (ii slope and variation of the power; (iii variation of power and variation of voltage; (iv variation of power and variation of current; (v sum of conductance and increment of the conductance; and (vi sum of angles of arctangent of the conductance and arctangent of increment of the conductance. Algorithms (i–(iv have two input variables each while algorithms (v and (vi use a single input variable. The fuzzy logic MPPT function is deployed using a buck-boost power converter. This paper presents the details of the determinations, considerations of the fuzzy rules, as well as advantages and disadvantages of each MPPT algorithm based upon photovoltaic (PV cell properties. The range of the input variable of Algorithm (vi is finite and the maximum power point condition is well defined in steady condition and, therefore, it can be used for multipurpose controller design. Computer simulations are conducted to verify the design.
Construction of a fuzzy and all Boolean logic gates based on DNA
DEFF Research Database (Denmark)
M. Zadegan, Reza; Jepsen, Mette D E; Hildebrandt, Lasse
2015-01-01
to the operation of the six Boolean logic gates AND, NAND, OR, NOR, XOR, and XNOR. The logic gate complex is shown to work also when implemented in a three-dimensional DNA origami box structure, where it controlled the position of the lid in a closed or open position. Implementation of multiple microRNA sensitive...... DNA locks on one DNA origami box structure enabled fuzzy logical operation that allows biosensing of complex molecular signals. Integrating logic gates with DNA origami systems opens a vast avenue to applications in the fields of nanomedicine for diagnostics and therapeutics....
Detection of Stator Winding Fault in Induction Motor Using Fuzzy Logic with Optimal Rules
Directory of Open Access Journals (Sweden)
Hamid Fekri Azgomi
2013-04-01
Full Text Available Induction motors are critical components in many industrial processes. Therefore, swift, precise and reliable monitoring and fault detection systems are required to prevent any further damages. The online monitoring of induction motors has been becoming increasingly important. The main difficulty in this task is the lack of an accurate analytical model to describe a faulty motor. A fuzzy logic approach may help to diagnose traction motor faults. This paper presents a simple method for the detection of stator winding faults (which make up 38% of induction motor failures based on monitoring the line/terminal current amplitudes. In this method, fuzzy logic is used to make decisions about the stator motor condition. In fact, fuzzy logic is reminiscent of human thinking processes and natural language enabling decisions to be made based on vague information. The motor condition is described using linguistic variables. Fuzzy subsets and the corresponding membership functions describe stator current amplitudes. A knowledge base, comprising rule and data bases, is built to support the fuzzy inference. Simulation results are presented to verify the accuracy of motor’s fault detection and knowledge extraction feasibility. The preliminary results show that the proposed fuzzy approach can be used for accurate stator fault diagnosis.
Control of motion stability of the line tracer robot using fuzzy logic and kalman filter
Novelan, M. S.; Tulus; Zamzami, E. M.
2018-03-01
Setting of motion and balance line tracer robot two wheels is actually a combination of a two-wheeled robot balance concept and the concept of line follower robot. The main objective of this research is to maintain the robot in an upright and can move to follow the line of the Wizard while maintaining balance. In this study the motion balance system on line tracer robot by considering the presence of a noise, so that it takes the estimator is used to mengestimasi the line tracer robot motion. The estimation is done by the method of Kalman Filter and the combination of Fuzzy logic-Fuzzy Kalman Filter called Kalman Filter, as well as optimal smooting. Based on the results of the study, the value of the output of the fuzzy results obtained from the sensor input value has been filtered before entering the calculation of the fuzzy. The results of the output of the fuzzy logic hasn’t been able to control dc motors are well balanced at the moment to be able to run. The results of the fuzzy logic by using membership function of triangular membership function or yet can control with good dc motor movement in order to be balanced
Fuzzy Logic as a Tool for Assessing Students’ Knowledge and Skills
Directory of Open Access Journals (Sweden)
Michael Gr. Voskoglou
2013-05-01
Full Text Available Fuzzy logic, which is based on fuzzy sets theory introduced by Zadeh in 1965, provides a rich and meaningful addition to standard logic. The applications which may be generated from or adapted to fuzzy logic are wide-ranging and provide the opportunity for modeling under conditions which are imprecisely defined. In this article we develop a fuzzy model for assessing student groups’ knowledge and skills. In this model the students’ characteristics under assessment (knowledge of the subject matter, problem solving skills and analogical reasoning abilities are represented as fuzzy subsets of a set of linguistic labels characterizing their performance, and the possibilities of all student profiles are calculated. In this way, a detailed quantitative/qualitative study of the students’ group performance is obtained. The centroid method and the group’s total possibilistic uncertainty are used as defuzzification methods in converting our fuzzy outputs to a crisp number. According to the centroid method, the coordinates of the center of gravity of the graph of the membership function involved provide a measure of the students’ performance. Techniques of assessing the individual students’ abilities are also studied and examples are presented to illustrate the use of our results in practice.
Postoperative vomiting in pediatric oncologic patients: prediction by a fuzzy logic model.
Bassanezi, Betina S B; de Oliveira-Filho, Antônio G; Jafelice, Rosana S M; Bustorff-Silva, Joaquim M; Udelsmann, Artur
2013-01-01
To report a fuzzy logic mathematical model to predict postoperative vomiting (POV) in pediatric oncologic patients and compare with preexisting scores. Although POV has a high incidence in children and may decrease parental satisfaction after surgeries, there is only one specific score that predicts POV in children: the Eberhart's score. In this study, we report a fuzzy model that intends to predict the probability of POV in pediatric oncologic patients. Fuzzy logic is a mathematical theory that recognizes more than simple true and false values and takes into account levels of continuous variables such as age or duration of the surgery. The fuzzy model tries to account for subjectiveness in the variables. Preoperative potential risk factors for POV in 198 children (0-19 year old) with malignancies were collected and analyzed. Data analysis was performed with the chi-square test and logistic regression to evaluate probable risk factors for POV. A system based on fuzzy logic was developed with the risk factors found in the logistic regression, and a computational interface was created to calculate the probability of POV. The model showed a good performance in predicting POV. After the analysis, the model was compared with Eberhart's score in the same population and showed a better performance. The fuzzy score can predict the chance of POV in children with cancer with good accuracy, allowing better planning for postoperative prophylaxis of vomiting. The computational interface is available for free download at the internet and is very easy to use. © 2012 Blackwell Publishing Ltd.
Fuzzy logic and information fusion to commemorate the 70th birthday of Professor Gaspar Mayor
Sastre, Joan
2016-01-01
This book offers a timely report on key theories and applications of soft-computing. Written in honour of Professor Gaspar Mayor on his 70th birthday, it primarily focuses on areas related to his research, including fuzzy binary operators, aggregation functions, multi-distances, and fuzzy consensus/decision models. It also discusses a number of interesting applications such as the implementation of fuzzy mathematical morphology based on Mayor-Torrens t-norms. Importantly, the different chapters, authored by leading experts, present novel results and offer new perspectives on different aspects of Mayor’s research. The book also includes an overview of evolutionary fuzzy systems, a topic that is not one of Mayor’s main areas of interest, and a final chapter written by the Spanish pioneer in fuzzy logic, Professor E. Trillas. Computer and decision scientists, knowledge engineers and mathematicians alike will find here an authoritative overview of key soft-computing concepts and techniques.
A Genetic Algorithm and Fuzzy Logic Approach for Video Shot Boundary Detection.
Thounaojam, Dalton Meitei; Khelchandra, Thongam; Manglem Singh, Kh; Roy, Sudipta
2016-01-01
This paper proposed a shot boundary detection approach using Genetic Algorithm and Fuzzy Logic. In this, the membership functions of the fuzzy system are calculated using Genetic Algorithm by taking preobserved actual values for shot boundaries. The classification of the types of shot transitions is done by the fuzzy system. Experimental results show that the accuracy of the shot boundary detection increases with the increase in iterations or generations of the GA optimization process. The proposed system is compared to latest techniques and yields better result in terms of F1score parameter.
Fuzzy Logic and PID control of a 3 DOF Robotic Arm
Directory of Open Access Journals (Sweden)
Korhan Kayışlı
2017-12-01
Full Text Available The robotic arms are used in many industrial applications at the present time. At this point, high precision control is required for robotics used in fields such as healthcare area. Therefore, the control method applied to robots is also important. In this study, a force was applied to the end function of a three degree-of-freedom robot and the robustness of the controllers are tested. PID and Fuzzy Logic control method are used for this process. The control process of robotic arm which is designed and simulated is obtained by using Fuzzy Logic and classical PID controllers and the results are presented comparatively
Directory of Open Access Journals (Sweden)
Kristina Marsic
2016-06-01
The purpose of this paper is to address this issue in three ways. First, we review existing estimates of the size of the underground economy. Second, we apply a novel calculation method for estimation: fuzzy logic. Third, we calculated and compared underground economy index for 25 European Union countries and compared it, with special focus on Croatian underground economy index. Results indicated that Croatia has the thirteenth largest underground economy among measured members of the European Union. This study is the first of its kind with recent data to measure the size of underground economy in European Union countries by employing fuzzy logic approach.
Nonlinear Aerodynamic Modeling From Flight Data Using Advanced Piloted Maneuvers and Fuzzy Logic
Brandon, Jay M.; Morelli, Eugene A.
2012-01-01
Results of the Aeronautics Research Mission Directorate Seedling Project Phase I research project entitled "Nonlinear Aerodynamics Modeling using Fuzzy Logic" are presented. Efficient and rapid flight test capabilities were developed for estimating highly nonlinear models of airplane aerodynamics over a large flight envelope. Results showed that the flight maneuvers developed, used in conjunction with the fuzzy-logic system identification algorithms, produced very good model fits of the data, with no model structure inputs required, for flight conditions ranging from cruise to departure and spin conditions.
Fuzzy-logic-based safety verification framework for nuclear power plants.
Rastogi, Achint; Gabbar, Hossam A
2013-06-01
This article presents a practical implementation of a safety verification framework for nuclear power plants (NPPs) based on fuzzy logic where hazard scenarios are identified in view of safety and control limits in different plant process values. Risk is estimated quantitatively and compared with safety limits in real time so that safety verification can be achieved. Fuzzy logic is used to define safety rules that map hazard condition with required safety protection in view of risk estimate. Case studies are analyzed from NPP to realize the proposed real-time safety verification framework. An automated system is developed to demonstrate the safety limit for different hazard scenarios. © 2012 Society for Risk Analysis.
On the fusion of tuning parameters of fuzzy rules and neural network
Mamuda, Mamman; Sathasivam, Saratha
2017-08-01
Learning fuzzy rule-based system with neural network can lead to a precise valuable empathy of several problems. Fuzzy logic offers a simple way to reach at a definite conclusion based upon its vague, ambiguous, imprecise, noisy or missing input information. Conventional learning algorithm for tuning parameters of fuzzy rules using training input-output data usually end in a weak firing state, this certainly powers the fuzzy rule and makes it insecure for a multiple-input fuzzy system. In this paper, we introduce a new learning algorithm for tuning the parameters of the fuzzy rules alongside with radial basis function neural network (RBFNN) in training input-output data based on the gradient descent method. By the new learning algorithm, the problem of weak firing using the conventional method was addressed. We illustrated the efficiency of our new learning algorithm by means of numerical examples. MATLAB R2014(a) software was used in simulating our result The result shows that the new learning method has the best advantage of training the fuzzy rules without tempering with the fuzzy rule table which allowed a membership function of the rule to be used more than one time in the fuzzy rule base.
Beta normal control of TFTR using fuzzy logic
International Nuclear Information System (INIS)
Lawson, J.E.; Bell, M.G.; Marsala, R.J.; Mueller, D.
1995-01-01
In TFTR plasmas heated by neutral beam injection, the fusion power yield increases rapidly with the plasma pressure. However, the pressure is limited by the onset of instabilities which may result in plasma disruptions that would have had an adverse effect on the performance of subsequent discharges and increase the risk of damage to internal components. The likelihood of disruption has been found to correlate with the normalized beta, defined as βN = 2 x 10 8 μ circle left angle p perpendicular to right angle a / BTIp where left angle p perpendicular to right angle is the volume-average plasma perpendicular pressure, a the mid-plane minor radius of the plasma, BT the toroidal magnetic field and Ip the plasma current. Other variables, such as the peaking of the plasma pressure and current profiles, have been found to influence the threshold of βN at which the probability of disruption begins to increase significantly. For TFTR plasmas with high fusion performance (TFTR ''supershots'') the probability of disruption has been found to increase rapidly for βN > 1.8. Since confinement in this regime is affected by plasma-wall interaction, which can vary from shot to shot, operation at high βN with preprogrammed heating power pulses can produce an unacceptably high risk of disruption. To reduce the risk of producing beta-limit disruptions during neutral beam heating experiments, a control system, the Neutral Beam Power Feedback System (NBPFS), has been developed to modulate the total heating power by switching individual neutral beam sources on and off in response to the evolution of the normalized beta so that the limit will not be exceeded. The value of βN is calculated in real time and transmitted to the NBPFS. The value of βN and its calculated time derivative are input to a fuzzy logic controller which implements a proportional-derivative control based on the difference between βN and a programmed reference level βNREF which can be programmed as a function
Fuzzy logic: A “simple” solution for complexities in neurosciences?
Godil, Saniya Siraj; Shamim, Muhammad Shahzad; Enam, Syed Ather; Qidwai, Uvais
2011-01-01
Background: Fuzzy logic is a multi-valued logic which is similar to human thinking and interpretation. It has the potential of combining human heuristics into computer-assisted decision making, which is applicable to individual patients as it takes into account all the factors and complexities of individuals. Fuzzy logic has been applied in all disciplines of medicine in some form and recently its applicability in neurosciences has also gained momentum. Methods: This review focuses on the use of this concept in various branches of neurosciences including basic neuroscience, neurology, neurosurgery, psychiatry and psychology. Results: The applicability of fuzzy logic is not limited to research related to neuroanatomy, imaging nerve fibers and understanding neurophysiology, but it is also a sensitive and specific tool for interpretation of EEGs, EMGs and MRIs and an effective controller device in intensive care units. It has been used for risk stratification of stroke, diagnosis of different psychiatric illnesses and even planning neurosurgical procedures. Conclusions: In the future, fuzzy logic has the potential of becoming the basis of all clinical decision making and our understanding of neurosciences. PMID:21541006
Application of ANN and fuzzy logic algorithms for streamflow ...
Indian Academy of Sciences (India)
most common COG method of defuzzification was adopted and expressed by equation (6). Cg = ∑ n i=1 yiXMB(yi). ∑n i=1 MB(yi). (6) where Cg is the the centroid of the truncated fuzzy output set B; MB(yi) is the membership value of element yi in the fuzzy output of set B and n is the number of elements. 2.5 Performance ...
Fuzzy logic-based tumor-marker profiles improved sensitivity in the diagnosis of lung cancer.
Schneider, Joachim; Bitterlich, Norman; Velcovsky, Hans-Georg; Morr, Harald; Katz, Norbert; Eigenbrodt, Erich
2002-06-01
The aim of this study was to improve the diagnostic efficiency of tumor markers in the diagnosis of lung cancer, by the mathematical evaluation of a tumor marker profile employing fuzzy logic modelling. A panel of four tumor markers, i.e., carcinoembryonic antigen (CEA), cytokeratin 19 antibody (CYFRA 21-1), neuron-specific enolase (NSE), squamous cell carcinoma-related antigen (SCC) and, additionally, C-reactive protein (CRP), was measured in 175 newly diagnosed lung cancer patients with different histological types and stages. Results were compared with those in 120 control subjects, including 27 with chronic obstructive pulmonary diseases (COPD), 65 with pneumoconiosis, and 11 persons with acute inflammatory lung diseases. A classificator was developed using a fuzzy-logic rule-based system. Application of the fuzzy-logic rule-based system to the tumor marker values of CYFRA 21-1, NSE, and CRP yielded an increase in sensitivity of approximately 20%, i.e., 92%, compared with that of the best single marker, CYFRA 21-1(sensitivity, 72%). The corresponding specificity was 95%. The fuzzy classificator significantly improved the sensitivity of the tumor marker panel in stages I and IIIa for non-small-cell lung cancer, as well as in "limited disease" status for small-cell lung cancer. Also, the diagnosis of other stages of lung cancer was enhanced. Fuzzy-logic analysis was proven to be more powerful than the measurement of single markers alone or combinations using multiple logistic regression analysis of all markers. Therefore, fuzzy logic offers a promising diagnostic tool to improve tumor marker efficiency.
Using fuzzy logic analysis for siting decisions of infiltration trenches for highway runoff control.
Ki, Seo Jin; Ray, Chittaranjan
2014-09-15
Determining optimal locations for best management practices (BMPs), including their field considerations and limitations, plays an important role for effective stormwater management. However, these issues have been often overlooked in modeling studies that focused on downstream water quality benefits. This study illustrates the methodology of locating infiltration trenches at suitable locations from spatial overlay analyses which combine multiple layers that address different aspects of field application into a composite map. Using seven thematic layers for each analysis, fuzzy logic was employed to develop a site suitability map for infiltration trenches, whereas the DRASTIC method was used to produce a groundwater vulnerability map on the island of Oahu, Hawaii, USA. In addition, the analytic hierarchy process (AHP), one of the most popular overlay analyses, was used for comparison to fuzzy logic. The results showed that the AHP and fuzzy logic methods developed significantly different index maps in terms of best locations and suitability scores. Specifically, the AHP method provided a maximum level of site suitability due to its inherent aggregation approach of all input layers in a linear equation. The most eligible areas in locating infiltration trenches were determined from the superposition of the site suitability and groundwater vulnerability maps using the fuzzy AND operator. The resulting map successfully balanced qualification criteria for a low risk of groundwater contamination and the best BMP site selection. The results of the sensitivity analysis showed that the suitability scores were strongly affected by the algorithms embedded in fuzzy logic; therefore, caution is recommended with their use in overlay analysis. Accordingly, this study demonstrates that the fuzzy logic analysis can not only be used to improve spatial decision quality along with other overlay approaches, but also is combined with general water quality models for initial and refined
Simplified interval type-2 fuzzy neural networks.
Lin, Yang-Yin; Liao, Shih-Hui; Chang, Jyh-Yeong; Lin, Chin-Teng
2014-05-01
This paper describes a self-evolving interval type-2 fuzzy neural network (FNN) for various applications. As type-1 fuzzy systems cannot effectively handle uncertainties in information within the knowledge base, we propose a simple interval type-2 FNN, which uses interval type-2 fuzzy sets in the premise and the Takagi-Sugeno-Kang (TSK) type in the consequent of the fuzzy rule. The TSK-type consequent of fuzzy rule is a linear combination of exogenous input variables. Given an initially empty the rule-base, all rules are generated with on-line type-2 fuzzy clustering. Instead of the time-consuming K-M iterative procedure, the design factors ql and qr are learned to adaptively adjust the upper and lower positions on the left and right limit outputs, using the parameter update rule based on a gradient descent algorithm. Simulation results demonstrate that our approach yields fewer test errors and less computational complexity than other type-2 FNNs.
Fuzzy, crisp, and human logic in e-commerce marketing data mining
Hearn, Kelda L.; Zhang, Yanqing
2001-03-01
In today's business world there is an abundance of available data and a great need to make good use of it. Many businesses would benefit from examining customer habits and trends and making marketing and product decisions based on that analysis. However, the process of manually examining data and making sound decisions based on that data is time consuming and often impractical. Intelligent systems that can make judgments similar to human judgments are sorely needed. Thus, systems based on fuzzy logic present themselves as an option to be seriously considered. The work described in this paper attempts to make an initial comparison between fuzzy logic and more traditional hard or crisp logic to see which would make a better substitute for human intervention. In this particular case study, customers are classified into categories that indicate how desirable the customer would be as a prospect for marketing. This classification is based on a small set of customer data. The results from these investigations make it clear that fuzzy logic is more able to think for itself and make decisions that more closely match human decision and is therefore significantly closer to human logic than crisp logic.
Hierarchical modular granular neural networks with fuzzy aggregation
Sanchez, Daniela
2016-01-01
In this book, a new method for hybrid intelligent systems is proposed. The proposed method is based on a granular computing approach applied in two levels. The techniques used and combined in the proposed method are modular neural networks (MNNs) with a Granular Computing (GrC) approach, thus resulting in a new concept of MNNs; modular granular neural networks (MGNNs). In addition fuzzy logic (FL) and hierarchical genetic algorithms (HGAs) are techniques used in this research work to improve results. These techniques are chosen because in other works have demonstrated to be a good option, and in the case of MNNs and HGAs, these techniques allow to improve the results obtained than with their conventional versions; respectively artificial neural networks and genetic algorithms.
A fuzzy-logic-based approach to qualitative safety modelling for marine systems
International Nuclear Information System (INIS)
Sii, H.S.; Ruxton, Tom; Wang Jin
2001-01-01
Safety assessment based on conventional tools (e.g. probability risk assessment (PRA)) may not be well suited for dealing with systems having a high level of uncertainty, particularly in the feasibility and concept design stages of a maritime or offshore system. By contrast, a safety model using fuzzy logic approach employing fuzzy IF-THEN rules can model the qualitative aspects of human knowledge and reasoning processes without employing precise quantitative analyses. A fuzzy-logic-based approach may be more appropriately used to carry out risk analysis in the initial design stages. This provides a tool for working directly with the linguistic terms commonly used in carrying out safety assessment. This research focuses on the development and representation of linguistic variables to model risk levels subjectively. These variables are then quantified using fuzzy sets. In this paper, the development of a safety model using fuzzy logic approach for modelling various design variables for maritime and offshore safety based decision making in the concept design stage is presented. An example is used to illustrate the proposed approach
Fuzzy logic techniques for rendezvous and docking of two geostationary satellites
Ortega, Guillermo
1995-01-01
Large assemblings in space require the ability to manage rendezvous and docking operations. In future these techniques will be required for the gradual build up of big telecommunication platforms in the geostationary orbit. The paper discusses the use of fuzzy logic to model and implement a control system for the docking/berthing of two satellites in geostationary orbit. The system mounted in a chaser vehicle determines the actual state of both satellites and generates torques to execute maneuvers to establish the structural latching. The paper describes the proximity operations to collocate the two satellites in the same orbital window, the fuzzy guidance and navigation of the chaser approaching the target and the final Fuzzy berthing. The fuzzy logic system represents a knowledge based controller that realizes the close loop operations autonomously replacing the conventional control algorithms. The goal is to produce smooth control actions in the proximity of the target and during the docking to avoid disturbance torques in the final assembly orbit. The knowledge of the fuzzy controller consists of a data base of rules and the definitions of the fuzzy sets. The knowledge of an experienced spacecraft controller is captured into a set of rules forming the Rules Data Base.
Evaluation of Fuzzy Logic Subsets Effects on Maximum Power Point Tracking for Photovoltaic System
Directory of Open Access Journals (Sweden)
Shahrooz Hajighorbani
2014-01-01
Full Text Available Photovoltaic system (PV has nonlinear characteristics which are affected by changing the climate conditions and, in these characteristics, there is an operating point in which the maximum available power of PV is obtained. Fuzzy logic controller (FLC is the artificial intelligent based maximum power point tracking (MPPT method for obtaining the maximum power point (MPP. In this method, defining the logical rule and specific range of membership function has the significant effect on achieving the best and desirable results. This paper presents a detailed comparative survey of five general and main fuzzy logic subsets used for FLC technique in DC-DC boost converter. These rules and specific range of membership functions are implemented in the same system and the best fuzzy subset is obtained from the simulation results carried out in MATLAB. The proposed subset is able to track the maximum power point in minimum time with small oscillations and the highest system efficiency (95.7%. This investigation provides valuable results for all users who want to implement the reliable fuzzy logic subset for their works.
Process optimization of citric acid production from aspergillus niger using fuzzy logic design
International Nuclear Information System (INIS)
Ali, S.; Haq, I.U.
2014-01-01
The inherent non-linearity of citric acid fermentation from Aspergillus niger renders its control difficult, so there is a need to fine-tune the bioreactor performance for maximum production of citric acid in batch culture. For this, fuzzy logic is becoming a popular tool to handle non-linearity of a batch process. The present manuscript deals with fuzzy logic control of citric acid accretion by A. niger in a stirred tank reactor using blackstrap sugarcane molasses as a basal fermentation medium. The customary batches were termed as 'control' while those under fuzzy logic were 'experimental'. The performance of fuzzy logic control of stirred tank reactor was found to be very encouraging for enhanced production of citric acid. The comparison of kinetic parameters showed improved citrate synthase ability of experimental culture (Yp/x = 7.042 g/g). When the culture grown on 150 g/l carbohydrates was monitored for Qp, Qs and Yp/s, there was significant enhancement in these variables over the control. Specific productivity of culture (qp = 0.070 g/g cells/h) was several fold increased. The enthalpy (HD = 70.5 kJ/mol) and entropy of activation (S = -144 J/mol/K) of enzyme for citric acid biosynthesis, free energies for transition state formation and substrate binding for sucrose hydrolysis of experimental were substantially improved. (author)
Fuzzy-logic based learning style prediction in e-learning using web ...
Indian Academy of Sciences (India)
humanoid robot. IJCSSE 26(3). Triantafillou E, Pomportsis A and Georgiadou E 2002 AES-CS: Adaptive educational system base on cognitive styles. In: Proceedings AH2002 Workshop, 10–20. Wilges B, Mateus G P, Nassar S M and Bastos R C 2012 Integration of BDI agent with fuzzy logic in a virtual learning environment.
Controlling the Power Output of a Nuclear Reactor with Fuzzy Logic
Ruan, D.; Wal, A.J. van der
1997-01-01
The application of fuzzy logic control (FLC) in the domain of nuclear industry presents a tremendous challenge. The main reason for this is the public awareness of the risks of nuclear reactors and the very strict safety regulations in force for nuclear power plants. The very same regulations
Predicting recycling behaviour: Comparison of a linear regression model and a fuzzy logic model.
Vesely, Stepan; Klöckner, Christian A; Dohnal, Mirko
2016-03-01
In this paper we demonstrate that fuzzy logic can provide a better tool for predicting recycling behaviour than the customarily used linear regression. To show this, we take a set of empirical data on recycling behaviour (N=664), which we randomly divide into two halves. The first half is used to estimate a linear regression model of recycling behaviour, and to develop a fuzzy logic model of recycling behaviour. As the first comparison, the fit of both models to the data included in estimation of the models (N=332) is evaluated. As the second comparison, predictive accuracy of both models for "new" cases (hold-out data not included in building the models, N=332) is assessed. In both cases, the fuzzy logic model significantly outperforms the regression model in terms of fit. To conclude, when accurate predictions of recycling and possibly other environmental behaviours are needed, fuzzy logic modelling seems to be a promising technique. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor
International Nuclear Information System (INIS)
Zainal, Nurul Afiqah; Tat, Chan Sooi; Ajisman
2016-01-01
Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's output is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor. (paper)
Energy Technology Data Exchange (ETDEWEB)
Turek, M. [Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Juelich, Juelich (Germany); Institute of Bio- and Nanosystems (IBN), Research Centre Juelich GmbH, Juelich (Germany); Heiden, W.; Riesen, A. [Bonn-Rhein-Sieg University of Applied Sciences, Sankt Augustin (Germany); Chhabda, T.A. [Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Juelich, Juelich (Germany); Schubert, J.; Zander, W. [Institute of Bio- and Nanosystems (IBN), Research Centre Juelich GmbH, Juelich (Germany); Krueger, P. [Institute of Biochemistry and Molecular Biology, RWTH Aachen, Aachen (Germany); Keusgen, M. [Institute for Pharmaceutical Chemistry, Philipps-University Marburg, Marburg (Germany); Schoening, M.J. [Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Juelich, Juelich (Germany); Institute of Bio- and Nanosystems (IBN), Research Centre Juelich GmbH, Juelich (Germany)], E-mail: m.j.schoening@fz-juelich.de
2009-10-30
The cross-sensitivity of chemical sensors for several metal ions resembles in a way the overlapping sensitivity of some biological sensors, like the optical colour receptors of human retinal cone cells. While it is difficult to assign crisp classification values to measurands based on complex overlapping sensory signals, fuzzy logic offers a possibility to mathematically model such systems. Current work goes into the direction of mixed heavy metal solutions and the combination of fuzzy logic with heavy metal-sensitive, silicon-based chemical sensors for training scenarios of arbitrary sensor/probe combinations in terms of an electronic tongue. Heavy metals play an important role in environmental analysis. As trace elements as well as water impurities released from industrial processes they occur in the environment. In this work, the development of a new fuzzy logic method based on potentiometric measurements performed with three different miniaturised chalcogenide glass sensors in different heavy metal solutions will be presented. The critical validation of the developed fuzzy logic program will be demonstrated by means of measurements in unknown single- and multi-component heavy metal solutions. Limitations of this program and a comparison between calculated and expected values in terms of analyte composition and heavy metal ion concentration will be shown and discussed.
FUZZY-LOGIC-BASED CONTROLLERS FOR EFFICIENCY OPTIMIZATION OF INVERTER-FED INDUCTION MOTOR DRIVES
This paper describes a fuzzy-logic-based energy optimizing controller to improve the efficiency of induction motor/drives operating at various load (torque) and speed conditions. Improvement of induction motor efficiency is important not only from the considerations of energy sav...
Optimization of the High-Shear Wet Granulation Wetting Process Using Fuzzy Logic Modeling
Czech Academy of Sciences Publication Activity Database
Bělohlav, Z.; Břenková, L.; Kalčíková, J.; Hanika, Jiří; Durdil, P.; Tomášek, V.; Palatová, M.
2007-01-01
Roč. 12, č. 4 (2007), s. 345-352 ISSN 1083-7450 Institutional research plan: CEZ:AV0Z40720504 Keywords : fuzzy logic * mathematical model * granulation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.876, year: 2007
Sustainable rangeland management using fuzzy logic : A case study in Southwest Iran
Azadi, Hossein; van den Berg, Jan; Shahvali, Mansour; Hosseininia, Gholamhossein
While there is no consensus oil a definition, it is widely recognized that the concept of sustainability has economic, environmental and social dimensions. We used fuzzy logic as a well-suited tool to handle the Vague, uncertain, and polymorphous Concept Of sustainability. For recognizing the major